

Simulator Expressions

1

Advanced Design System 2011

September 2011
Simulator Expressions

Simulator Expressions

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Simulator Expressions

3

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Simulator Expressions

4

your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Simulator Expressions

5

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Simulator Expressions

6

 Introduction to Simulator Expressions . 7
 Using Simulator Expressions in Advanced Design System . 20

 Data Access Functions For Simulator Expressions . 26
 Harmonic Balance Functions for Simulator Expressions . 34
 HSPICE Compatibility Functions . 35
 Math Functions for Simulator Expressions . 40
 S-Parameter Analysis Functions for Simulator Expressions . 91
 Transient Source Functions . 93
 Utility Functions for Simulator Expressions . 115

Simulator Expressions

7

 Introduction to Simulator Expressions
This document describes the simulator expressions that are available for use with several
Agilent EEsof EDA products. For a complete list of available simulator functions, refer to
the Alphabetical Listing of Simulator Functions.

 Simulator expressions are functions that you define before they are used internally during
simulation run-time. They can be entered into the program using various methods,
depending on which product you are using. Unlike the expressions described in the
Measurement Expressions documentation, simulator expressions are evaluated at the
beginning of a simulation, not after the simulation has completed.
Although there is some overlap among many of the more commonly used functions,
simulator expressions and measurement expressions are derived from separate sources,
evaluated at different times, and can have subtle differences in their usages. Thus, these
two types of expressions need to be considered separately. For an overview of how
simulator expressions are evaluated, refer to How Simulator Expressions are Evaluated.

Note that if a particular term is used in a simulator expression, the term must be defined
before the simulation is run. For example, if you use the variable R in a simulator
expression, and R = S(1,1), where the results of S(1,1) will not be known until after the
simulation is complete, an error will be returned by the simulator.

 How Simulator Expressions Are Evaluated

Within this document you will find:

Simulator Expressions

8

Information on simulator expressions syntax.
A functions reference table that provides a complete list of all available simulator
functions. Individual functions are also listed in the index for your convenience.
Information specific to entering simulator expressions in your product.

You will also find a complete list of functions that can be used as simulator expressions
individually, or combined together as a nested expression. These expressions have been
separated into libraries and are listed in alphabetical order within each library. The
expressions available include:

Data Access Functions (expsim)

Harmonic Balance Functions (expsim)

Math Functions (expsim)

S-Parameter Analysis Functions (expsim)

Transient Source Functions (expsim)

Utility Functions (expsim)

Note
All predefined expressions, functions, constants, and variables listed in this section are reserved names.
You can use them in your expressions; however, you cannot redefine them to something else.

 Simulator Expressions Syntax

Use the following guidelines when creating simulator expressions:

Simulator expressions are based on the mathematical syntax in Application Extension
Language (AEL).
Function names, variable names, and constant names are all case sensitive in
simulator expressions.
Use commas to separate arguments.
White space between arguments is acceptable.

The general form of an expression is:
expressionName = nonconstantExpression

For example:
x1 = 4.3 + freq;
syc_a = cos(1.0+sin(pi*3 + 2.0*x1))
Zin = 7.8 ohm + j*freq * 1.9 ph
y = if (x equals 0) then 1.0e100 else 1/x endif

Simulator Expressions

9

 Case Sensitivity

All variable names, functions names, and equation names are case sensitive in simulator
expressions.

 Predefined Expressions

The following expressions are predefined:

gaussian = _gaussian_tol(10.0) default gaussian distribution

nfmin = _nfmin() the minimum noise figure

omega = 2.0*pi*freq the analysis frequency

rn = _rn() the noise resistance

sopt = _sopt the optimum noise match

tempkelvin = temp + 273.15 the analysis temperature

uniform = _uniform_tol(10.0) default uniform distribution

 Constants and Variables

Many predefined constants and predefined global variables are available. Predefined
Simulator Variables and Constants Reserved Names lists the simulator constants and
variables and provides a brief description of each.

 Constants

An integer constant is represented by a sequence of digits optionally preceded by a
negative sign (e.g. 14 , -3).

A real number contains a decimal point and/or an exponential suffix using the e notation
(e.g. 14.0 , -13e-10).

The only complex constant is the predefined constant j , which is equal to the square root
of -1. It can be used to generate complex constants from real and integer constants (e.g.,
j*3 , 9.1 + j*1.2e-2). The predefined functions complex() (expmeas) and polar()
(expsim) can also be used to enter complex constants into an expression.

A string constant is delimited by single or double quotes (e.g. 'string' , "this is a
string"). Always use vertical quotes (e.g. ' <string> ') as opposed to open quotes (e.g. `
<string>').

Simulator Expressions

10

 Variables

Variables can be modified and swept. The main difference between expressions and
variables is that a variable can be directly swept and modified by an analysis but an
expression cannot. Note however, that any instance parameter that depends on an
expression is updated whenever one of the variables that the expression depends upon is
changed (e.g. by a sweep).

The general form of variables is:
variableName = constantExpression

Note
Once a variable has been defined, it cannot be redefined with another variableName = constantExpression
statement. This will create an error.

For example:
x1 = 4.3inches + 3mils
syc_a = cos(1.0+sin(pi*3))
Zin = 7.8k - j*3.2k

The type of a variable is determined by the type of its value. For example, x=1 is an
integer, x=1+j is complex, and x = "Tuesday" is a string.

 Predefined Constants and Variables Reserved Names

When you are using simulator expressions, keep in mind that predefined constants and
variables are reserved words. You can use these constants and variables, but you cannot
redefine them to something else. Predefined Simulator Variables and Constants Reserved
Names lists the simulator constants and variables available and provides a brief
description of each.

 Predefined Simulator Variables and Constants Reserved Names

Variable/Constant Name Description

__fdd Flag to indicate a new FDD instance

__fdd_v Flag to indicate updated FDD state vars

_ABM_Phase ††† Phase for ABM cosim modeling (internal use)

_ABM_SourceLevel ††† Linear amplitude scaling for ABM cosim modeling (internal use)

_ac_state Is analyses in ac state

_c1 to _c30 Symbolic controlling current

_dc_state Is analyses in dc state

_default Used to set parameter to inbuilt default value.

_freq1 to _freq12 Fundamental frequency

Simulator Expressions

11

_harm Harmonic number index for sources and FDD

_hb_state Is analyses in harmonic balance state

_i1 to _i19 † State variable currents used by the sdd device

_M Multiplicity factor.

_p2dInputPower Port input power for P2D simulation

_sigproc_state Is analyses in signal processing state

_sm_state Is analyses in sm state

_sp_state Is analyses in sparameter analysis state

_tr_state Is analyses in transient state

_v1 to _v19 † State variable voltages used by the sdd device

time = 0 s the analysis time

timestep = 1 s the analysis time step

tranorder = 1 the transient analysis integration order

freq = 1e+006 Hz the analysis frequency

noisefreq = 1e+006 Hz the spectral noise analysis frequency

ssfreq = 1e+006 Hz the small-signal mixer analysis frequency

temp = 25 C the analysis temperature

tnom = 25 C default nominal temperature for models

e = 2.71828 2.71828...

j Square root of -1

ln10 = 2.30259 ln(10)

pi 3.14...

c0 = 2.99792e+008 m/s the speed of light

e0 = 8.85419e-012 vacuum permittivity

u0 = 1.25664e-006 vacuum permeability

boltzmann = 1.38066e-023 Boltzmann's constant

qelectron = 1.60218e-019 the charge of an electron

planck = 6.62608e-034 Planck's constant

hugereal = 1.79769e+308 largest real number

tinyreal = 2.22507e-308 smallest real number

sourceLevel = 1 †† used for source-level sweeping

dcSourceLevel = 1 used for DC source-level sweeping

logRshunt = 0 used for DC Rshunt sweeping

logNodesetScale = 0 used for DC nodeset simulation

logRforce = 0 used for HB Rforce sweeping

mcindex = 0 index for Monte Carlo sweeps

doeindex = 0 index for Design of Experiment sweeps

CostIndex = 0 index for optimization cost plots

mcTrial = 0 trial counter for Monte Carlo based simulations

Simulator Expressions

12

optIter = 0 optimization job iteration counter

doeIter = 0 doe experiment iteration counter

DeviceIndex = 0 device Index used for noise contribution or DC OP output

LinearizedElementIndex = 0 index for BudLinearization sweep

DF_Value = -1e+009 reference to corresponding value defined in Data Flow controller

DF_ZERO_OHMS = 1e-013 symbol for use as zero ohms

DF_DefaultInt = -1e+009 reference to default int value defined in Data Flow controller

† The _i and _v variables should only be used in the context of the SDD device.

†† The sourcelevel variable is used by the spectral analysis when it needs to gradually increase source power
from 0 to full scale to obtain convergence. It can be used by the user to sweep the level of ALL spectral
source components, but is not recommended.

††† The _ABM_Phase and _ABM_SourceLevel variables are only visible in an AVM/FastCosim dataset;
however, they are not supported for regular use. These are used as the independent swept variables for the
nonlinear characterization data.

 Units and Scale Factors

The fundamental units for the simulator are shown in Fundamental Units in the Simulator.
A parameter with a given dimension assumes its value has the corresponding units. For
example, for a resistance, R=10 its assumed to be 10 Ohms.

 Fundamental Units in the Simulator

Dimension Fundamental Unit

Frequency Hertz

Resistance Ohms

Conductance Siemens

Capacitance Farads

Inductance Henries

Length meters

Time seconds

Voltage Volts

Current Amperes

Power Watts

Distance meters

Temperature Celsius

 Recognizing Scale Factors

Variations on the fundamental units in the simulator are referred to as scale factors. A
scale factor is a single word that begins with a letter or an underscore character (_). The
remaining characters, if any, consist of letters, digits, and underscores. The value of a
scale factor is resolved using the following rules in the order shown:

Simulator Expressions

13

If the scale factor exactly matches one of the predefined scale-factor words (1.
Predefined Scale Factor Words), then use the numerical equivalent; otherwise, go to
rule 2.

 Predefined Scale Factor Words

Scale Factor Word Numerical Equivalent Meaning

mil 2.54*10-5 mils

mils 2.54*10-5 mils

in 2.54*10-2 inches

ft 12*2.54*10-2 feet

mi 5280*12*2.54*10-2 miles

cm 1.0*10-2 centimeters

PHz 1.0*1015 petahertz

dB 1.0 decibels

nmi 1852 nautical miles

If the scale factor exactly matches one of the scale-factor units (Scale Factor Units)2.
except for m , then use the numerical equivalent; otherwise, go to rule 3.

 Scale Factor Units

Scale Factor Unit Numerical Equivalent Meaning

A 1.0 Amperes

F 1.0 Farads

H 1.0 Henries

Hz 1.0 Hertz

metermetersmetremetres 1.0 meters

OhmOhms 1.0 Ohms

S 1.0 Siemens

sec 1.0 seconds

V 1.0 Volts

W 1.0 Watts

If the first character of the scale factor is one of the legal scale-factor prefixes (Scale3.
Factor Prefixes), then use the numerical equivalent; otherwise, go to rule 4.

 Scale Factor Prefixes

Simulator Expressions

14

Prefix Numerical Equivalent Meaning

T 1012 Tera

G 109 Giga

M 106 Mega

K 103 kilo

k 103 kilo

_ (underscore) 1 (no scale)

m 10-3 milli

u 10-6 micro

n 10-9 nano

p 10-12 pico

f 10-15 femto

a 10-18 atto

The scale factor is not recognized.4.
Important considerations include:

Scale factors are case sensitive.
A single m means milli, not meters.
A lower case f by itself means femto. An upper case F by itself means Farad.
A lower case a by itself means atto. An upper case A by itself means Ampere.
The imperial units (mils , in , ft , mi , nmi) do not accept prefixes.
The simulator will report a warning if an unrecognized scale factor is
encountered, and use a scale-factor value of 1.0.
It is not required that the characters following a scale-factor prefix match one of
the scale-factor units.
There are no scale factors for dBm , dBW , or temperature. Simulator functions
are provided to convert these values to the corresponding fundamental units
(Watts and Celsius).

 Mathematical Operators and Hierarchy

Simulator expressions are evaluated from left to right, unless there are parentheses.
Operators are listed from higher to lower precedence in Arithmetic and Boolean Operator
Precedence. Operators on the same line have the same precedence. For example, a+bc
means a+(bc), because multiplication has a higher precedence than addition. Similarly,
a+b-c means (a+b)-c, because addition and subtraction have the same precedence (and
because + is left-associative).

The operators !, &&, and || work with the logical values. The operands are tested for the
values TRUE and FALSE, and the result of the operation is either TRUE or FALSE. A logical
test of a value is TRUE for non-zero numbers or strings with non-zero length, and FALSE
for 0.0 (real), 0 (integer), NULL or empty strings. Note that the right hand operand of &&
is only evaluated if the left hand operand tests TRUE, and the right hand operand of || is
only evaluated if the left hand operand tests FALSE.

Simulator Expressions

15

The Boolean operators >=, <=, >, <, ==, != , and, or, equals, and not equals also
produce logical results, producing a logical TRUE or FALSE upon comparing the values of
two expressions. These operators are most often used to compare two real numbers or
integers. These operators operate differently than C with string expressions in that they
actually perform the equivalent of strcmp() between the first and second operands, and
test the return value against 0 using the specified operator.

 Arithmetic and Boolean Operator Precedence

Operator Name Example

() function call foo(expr_list)

[] indexer, array X[expr_list]

** exponentiation expr**expr 1

* multiply expr * expr

+ add expr + expr

:: sequence operator exp::expr::expr

< less than expr < expr

== equal expr == expr

&& logical and expr && expr

|| logical or expr || expr

1 To avoid returning incorrect results when using ** with very large integers, convert
integers to real numbers first.

 Conditional Expressions

The simulator supports simple in-line conditional expressions:
A = if boolExpr then expr else expr endif

A = if boolExpr then expr elseif boolExpr then expr else expr endif

boolExpr is a valid Boolean expression, that is, an expression that evaluates to TRUE or
FALSE.
expr is any valid non-Boolean expression.
The else is required because the conditional expression must always evaluate to some
value.
There can be any number of occurrences of elseif expr then expr.
A conditional expression can legally occur as the right-hand side of an expression or
function definition or, if parenthesized, anywhere in an expression that a variable can
occur. The dimensionality and number of points in these expressions follow the same
matching conditions required for the basic operators. The type of the result depends on
the type of the true and false expressions. The size of the result depends on the size of
the condition, the true expression, and the false expression.

 Boolean expressions

Simulator Expressions

16

A Boolean expression must evaluate to TRUE or FALSE and, therefore, must contain a
relational operator (equals, =, ==, notequals, !=, <, >, <=, or >=).
The only legal place for a Boolean expression is directly after an if or an elseif.
A Boolean expression cannot stand alone, that is,
x = a > b
is illegal.

 Precedence

Tightest binding: equals, =, ==, notequals, !=, >, <, >=, <=
not, !

and

Loosest binding: or, ||
All arithmetic operators have tighter binding than the Boolean operators.

 Evaluation

Boolean expressions are short-circuit evaluated. For example, if when evaluating a and b ,
expression a evaluates to FALSE, expression b will not be evaluated.
During evaluation of Boolean expressions with arithmetic operands, the operand with the
lower type is promoted to the type of the other operand. For example, in 3 equals x
+j*b, 3 is promoted to complex.
A complex number cannot be used with < , > , <= , or >=. Nor can an array (and remember
that strings are arrays). This will cause an evaluation-time error.
Pointers can be compared only with pointers.

 Examples

Protect against divide by zero:
f(a) = if a equals 0 then 1.0e100 else 1.0/a endif

Nested if's #1:
f(mode) = if mode equals 0 then 1-a else f2(mode) endif

f2(mode) = if mode equals 1 then log(1-a) else f3(mode) endif

f3(mode) = if mode equals 2 then exp(1-a) else 0.0 endif

Nested if's #2:
f(mode) = if mode equals 0 then 1-a elseif mode equals 1 then log(1-a)

elseif mode equals 2 then exp(1-a) else 0.0 endif

Soft exponential:
exp_max = 1.0e16

x_max = ln(exp_max)

Simulator Expressions

17

exp_soft(x) = if x<x_max then exp(x) else (x+1-x_max)*exp_max endif

 Functions

You can define your own functions in simulator expressions. These functions can then be
used in other expressions.

The general form of a function is:

functionName ([arg1, ..., argn]) = expression

For example:

y_srl(freq, r, l) = 1.0/(r + j*freq*l)
expl(a,b) = exp(a)*step(b-a) + exp(b)*(a-b-1)*step(a-b)

In expression, the function's arguments can be used, as can any other ADS Simulator
variables, expressions, or functions. For a complete list of available simulator functions,
refer to the Alphabetical Listing of Simulator Functions or consult the index.

Note
The trigonometric functions always expect the argument to be specified in radians. If you want to specify
the angle in degrees, then use the function deg() (expsim) to convert radians to degrees, or you can use
the function rad() (expsim) to convert degrees to radians.

Another example of defining and using a function is:

B(x) = makearray(1,x*1.0,x*2.1,x*3.0)
B_2 = B(2)[2]

which returns 4.2

You can also define custom functions to be used as simulator expressions defined in a VAR
item. Consider the following example:

my_fcn(X) = 2*X

This function can be evaluated in two different ways:

Explicit definition of X in a VAR item, where:

X = 5
R = my_fcn(X)

R is evaluated as 2*5=10 ohms
Definition of X using a component parameter value, where:

R = my_fcn(25)

Simulator Expressions

18

R is evaluated as 2*25=50 ohms

 Predefined Functions Reserved Names

Predefined Function Reserved Names lists predefined functions which are reserved names.
Many functions in the list are used only internally, or are obsolete, so they are not
described in the documentation. However, the names are still reserved.

 Predefined Function Reserved Names

Simulator Expressions

19

abs access_all_data† access_data acos acosh amp_harm_coef†
arcsinh arctan asin asinh atan atan2 atanh awg_dia†

bin bitseq

ceil coef_count† complex compute_poly_coef† conj cos
cos_pulse cosh cot coth cpx_gain_poly† ctof ctok cxform†

damped_sin db dbm dbmtoa dbmtov
dbmtow dbpolar dbwtow deembed† deg
delay† dep_data† deriv† dphase dsexpr
dstoarray† d_atan2†

echo embedded_ptolemy_exec† erf_pulse eval_controlled_pwl
eval_miso_poly eval_poly exp exp_pulse

floor fmod fread† freq_mult_coef†
freq_mult_poly† ftoc ftok

gcdata_to_poly† generate_gmsk_iq_spectra†
generate_gmsk_pulse_spectra† generate_piqpsk_spectra†
generate_pulse_train_spectra† generate_qam16_spectra†
generate_qpsk_pulse_spectra† get_array_size get_attribute†
get_block† get_fund_freq get_max_points†

hypot

i† ilsb† imag impulse imt_hbdata_to_array†
imt_hpvar_to_array† index innerprod† inoise† int
internal_generate_gmsk_iq_spectra†
internal_generate_gmsk_pulse_spectra†
internal_generate_piqpsk_spectra†
internal_generate_pulse_train_spectra†
internal_generate_qam16_spectra†
internal_generate_qpsk_pulse_spectra†
internal_get_fund_freq† internal_window† interp† interp1†
interp2† interp3† interp4† iss† itob iusb†

jn

ktoc ktof length lfsr limit_warn list ln log log10
log_amp† log_amp_cas† lookup†

mag makearray max min miximt_coef† miximt_poly†
multi_freq†

names† nf† norm†

phase phasedeg phaserad phasewrap phase_noise_pwl† polar
polarcpx pow pulse pwl pwlr pwlr_tr†

qinterp†

rad ramp rawtoarray† readdata† readlib† readraw† read_data†
read_lib† real rect rem repeat† ripple rms† rpsmooth†

scalearray sens† setDT† sffm sgn sin sinc
sinh spectrum sprintf sqrt step strcat
stypexform† sym_set† system†

tan tanh thd† toi† transform† v† value vlsb† vnoise† vss† vswrpolar vusb†

window† wtodbm _discrete_density† _divn† _gaussian†
_gaussian_tol† _get_fnom_freq†
_get_fund_freq_for_fdd† _lfsr†
_mvgaussian† _mvgaussian_cov† _nfmin†
_n_state† _phase_freq† _pwl_density†
_pwl_distribution† _randvar† _rn†
_shift_reg† _si†† _si_bb† _si_d†† _si_e†
_sopt† _sv†† _sv_bb† _sv_d†† _sv_e† _tn†
_to† _tt† _uniform† _uniform_tol† _xcross†

† These simulator functions are for Agilent internal use only and are not supported for regular use.

†† These simulator functions are used for frequency-domain defined devices (FDDs). For more information,
refer to "Retrieving Values from Port Variables" in the "User-Defined Models" documentation.

Simulator Expressions

20

 Using Simulator Expressions in
Advanced Design System
Simulator expressions can be entered into Advanced Design System using the following
methods:

Using a VAR (Variables and Equations Component)

Editing Component Parameters

Setting up a Frequency-domain Defined Devices (FDD)

Setting up a Symbolically Defined Devices (SDD)

 Using a VAR (Variables and Equations Component)

Simulator expressions are sometimes referred to as VARs in Advanced Design System.
The VAR (Variables and Equations Component) is available in the Data Items palette in an
Analog/RF Systems Schematic window, or from the Controllers palette in a Signal
Processing Schematic window. For more information, refer to Variables and Equations
Component in the Introduction to Circuit Components (ccsim) documentation.

Caution
Do not use more than 1800 characters in a VAR equation. If longer VARs are required, consider dividing
up the long equation into multiple shorter equations and then summing the right hand side of the shorter
equations. You may also want to consider using a netlist fragment instead of a VAR.

To add a simulator expression in an Analog/RF Systems Schematic window using a VAR:

Click the VAR in the Data Items palette.1.
Place a VAR on the schematic.2.
Double-click the VAR to display the dialog box.3.
Click the Equation Editor button. The Equation Editor dialog box is displayed.4.

Simulator Expressions

21

Enter your expression in the field provided and click OK .5.
For more information on using the Equation Editor, click the Help button in the lower
right hand corner of the dialog box. This will refer you to "Using the Equation Editor"
in the Schematic Capture and Layout (usrguide) documentation.

 VarEqn Data Types

 The four basic data types that VarEqn supports are integer, real, complex, and string.
There is a fifth data type, pointer, that is also supported. Pointers are not allowed in an
algebraic expression, except as an argument to a function that is expecting a pointer.
Strings are not allowed in algebraic expressions either except that addition of strings is
equivalent to catenation of the strings. String catenation is not commutative, and since
VarEqn's simplification routines can internally change the order of operands of
commutative operators, this feature should be used cautiously. It will most likely be
replaced by an explicit catenation function.

 Type conversion

 The data type of a VarEqn expression is determined at the time the expression is
evaluated and depends on the data types of the terms in the expression. For example, let
y=3*x^2. If x is an integer, then y is integer-valued. If x is real, then y is real-valued. If x
is complex, then y is complex-valued.

As another example, let y=sqrt(2.5*x). If x is a positive integer, then y evaluates to a real
number. If, however, x is a negative integer, then y evaluates to a complex number.

There are some special cases of type conversion:

If either operand of a division is integer-valued, it is promoted to a real before the
division occurs. Thus, 2/3 evaluates to 0.6666....

Simulator Expressions

22

The built-in trigonometric, hyperbolic, and logarithmic functions never return an
integer, only a real or complex number.

 Editing Component Parameters

Simulator expressions can be entered in place of most component parameters in
Advanced Design System. The components are available from the component palette in an
Analog/RF Systems Schematic window, or from the Controllers palette in a Signal
Processing Schematic window. For more information on ADS components, refer to the
Components category of your online documentation set.
To add a simulator expression to a component parameter:

In a schematic window, select the component from the component palette and place1.
it on the schematic.
Double-click the component to display the dialog box.2.
If available, set the Parameter Entry Mode to Standard in the component dialog box.3.

Note
The Standard Parameter Entry Mode is not available for all component parameters. If the Standard
Parameter Entry Mode is not available, the Equation Editor is not available for that particular
parameter.

Click the Equation Editor button. The Equation Editor dialog box appears with the4.
component parameter displayed on the left.
Enter your expression in the field provided and click OK .5.
For more information on using the Equation Editor, click the Help button in the lower
right hand corner of the dialog box. This will refer you to Using the Equation Editor in
the Schematic Capture and Layout (usrguide) documentation.

 Setting up Frequency-Domain Defined Devices (FDD)

The frequency-domain defined device (FDD) enables you to create equation-based, user-
defined, nonlinear components. The FDD is a multi-port device that describes current and
voltage spectral values in terms of algebraic relationships of other voltage and current
spectral values. It is for developing nonlinear, behavioral models that are more easily
defined in the frequency domain.

For more information on setting up an FDD, refer to Nonlinear Devices (ccnld).

 Setting up a Symbolically Defined Devices (SDD)

The symbolically-defined device (SDD) enables you to create equation based, user-
defined, nonlinear components. The SDD is a multi-port device which is defined by
specifying algebraic relationships that relate the port voltages, currents, and their
derivatives, plus currents from certain other devices.

Simulator Expressions

23

For more information on setting up an SDD, refer to Nonlinear Devices (ccnld).

 Alphabetical Listing of Simulator Functions

Consult the Index for an alternate method of accessing simulator functions.

For information on measurement functions, refer to the Measurement Expressions
(expmeas) documentation.

_

_db_hspice() (expsim) _pow_hspice() (expsim)

_log10_hspice() (expsim) _pwr_hspice() (expsim)

_log_hspice() (expsim) _sign_hspice() (expsim)

_nint_hspice() (expsim) _sqrt_hspice() (expsim)

A

abs() (expsim) asin() (expsim)

access_data() (expsim) asinh() (expsim)

acos() (expsim) atan() (expsim)

acosh() (expsim) atan2() (expsim)

arcsinh() (expsim) atanh() (expsim)

arctan() (expsim)

B, C

bin() (expsim) cos_pulse() (expsim)

bitseq() (expsim) cosh() (expsim)

ceil() (expsim) cot() (expsim)

complex() (expsim) coth() (expsim)

conj() (expsim) ctof() (expsim)

cos() (expsim) ctok() (expsim)

D

damped_sin() (expsim) dbpolar() (expsim)

db() (expsim) dbwtow() (expsim)

dbm() (expsim) deg() (expsim)

dbmtoa() (expsim) dphase() (expsim)

dbmtov() (expsim) dsexpr() (expsim)

dbmtow() (expsim)

E

echo() (expsim) eval_poly() (expsim)

erf_pulse() (expsim) exp() (expsim)

Simulator Expressions

24

eval_controlled_pwl() (expsim) exp_pulse() (expsim)

eval_miso_poly() (expsim)

F

floor() (expsim) ftoc() (expsim)

fmod() (expsim) ftok() (expsim)

G

get_array_size() (expsim) get_fund_freq() (expsim)

gridSmithChart() (expsim)

H, I

hypot() (expsim) index() (expsim)

imag() (expsim) int() (expsim)

impulse() (expsim) itob() (expsim)

J, K, L

jn() (expsim) limit_warn() (expsim)

ktoc() (expsim) list() (expsim)

ktof() (expsim) ln() (expsim)

length() (expsim) log() (expsim)

lfsr() (expsim) log10() (expsim)

M, N

mag() (expsim) max() (expmeas)

makearray() (expsim) min() (expmeas)

P, Q

phase() (expsim) polarcpx() (expsim)

phasedeg() (expsim) pow() (expsim)

phaserad() (expsim) pulse() (expsim)

phasewrap() (expsim) pwl() (expsim)

polar() (expsim) pwlr() (expsim)

R

rad() (expsim) rect() (expsim)

ramp() (expsim) rem() (expsim)

real() (expsim) ripple() (expsim)

S

scalearray() (expsim) spectrum() (expsim)

sffm() (expsim) sprintf() (expsim)

sgn() (expsim) sqrt() (expsim)

sin() (expsim) step() (expsim)

Simulator Expressions

25

sinc() (expsim) strcat() (expsim)

sinh() (expsim)

T, V, W

tan() (expsim) vswrpolar() (expsim)

tanh() (expsim) wtodbm() (expsim)

value() (expsim)

Simulator Expressions

26

 Data Access Functions For Simulator Expressions
This section describes the data access functions in detail. Data Access Functions are used
to manipulate data types, such as arrays, lists, datasets, etc. The functions are listed in
alphabetical order.

access data() (expsim)
dsexpr() (expsim)
dstoarray (expsim)
get array size() (expsim)
index() Expression (expsim)
length() (expsim)
list() Expression (expsim)
makearray() (expsim)
scalearray() (expsim)

 access_data()

Datafile dependents lookup or interpolation function

 Syntax

access_data(AccessType, DataSetVar, Ivar1, IValue1, Ivar2, Ivalue2, ...)

 Arguments

Name Description Default Range Type Required

AccessType Type of access to data None [0-6]
†

Integer, String Yes

DataSetVar Dataset variable that points to dataset
that has been accessed

None None Dataset Variable Yes

Ivar1, Ivar2, ... Independent variable to be accessed None None String, Integer No

Ivalue1,
Ivalue2, ...

Independent variable value to be
accessed

None None Integer, Real,
Complex, String

No

† alternately use
[linear,spline,cubic,index_lookup,value_lookup,ceil_value_lookup,floor_value_lookup]

 Examples

In this example we assume that the dataset spar.ds contains S-parameters at 2

frequencies 1 and 2 GHz.

dsS11=dsexpr("S(1,1)", "spar.ds") returns the S(1,1) dataset variable

adV0=access_data("linear", dsS11, "freq", 1.5 GHz) returns linearly

interpolated S11 at 1.5 GHz

adV3=access_data(3, dsS11, "freq", 1) returns S11 at 2 GHz

adV4=access_data(4, dsS11, "freq", 1 GHz) returns S11 at 1 GHz

adV5=access_data(5, dsS11, "freq", 1.9 GHz) returns S11 at 2 GHz

adV6=access_data(6, dsS11, "freq", 1.1 GHz) returns S11 at 1 GHz

Simulator Expressions

27

 See Also

dsexpr() (expsim)

 Notes/Equations

The access_data() function is used to access the dependent data of a specific type from a
dataset. The accessed data can then be used in the design as a parameter value or in
other simulation expressions. The data can be accessed either by interpolation or lookup.
The access type choices are:

Access Type Description

0 or linear access data by linear interpolation

1 or spline access data by spline interpolation

2 or cubic access data by cubic interpolation

3 or index_lookup access data by index value truncation, average of end indices if midway

4 or value_lookup access data by value - nearest value, average of end points if midway

5 or
ceil_value_lookup

access data by nearest value not less than given value, except maximum of value for
value greater than maximum value

6 or
floor_value_lookup

access data by nearest value not greater than given value, except minimum of value
for value less than minimum value

 dsexpr()

Evaluate a dataset expression to a dataset variable

 Syntax

dsexpr(Expression, DataSet, UseCache)

 Arguments

Name Description Default Range Type Required

Expression Expression to be evaluated None None String Yes

DataSet Full-path to the dataset file None None String Yes

UseCache Use Dataset that has already been cached False [True:False] Boolean No

 Examples

In this example we assume that the dataset spar.ds contains S-parameters at

frequencies of 1 and 2 GHz.

S11Var=dsexpr("S(1,1)", "spar.ds") returns a dataset variable conatining S(1,1)

S11A=dstoarray(S11Var) returns an array of S(1,1) value

Simulator Expressions

28

 See Also

access_data() (expsim)

 Notes/Equations

The dsexpr() function executes a simulation expression on the dataset and returns the
results as a dataset variable, which can be processed further to access the required data.
If the dataset has already been accessed before and has been cached, then the cached
value can be accessed by setting the UseCache argument as True.
 dstoarray()

Accesses the independent or dependent values of a variable from a dataset variable vector
as an array.

 Syntax

dstoarray(DataSetVar, "VarName",VarIndex)

 Arguments

Name Description Default Range Type Required

DataSetVar Dataset variable that has already been read
or accessed

None None Dataset
Variable

Yes

"VarName",VarIndex Independent or dependent name or index 1 [1:∞) String or
Integer

No

VarType Specifies independent or dependent variable
to get

0 [0:1]
†

Integer No

† 0 - dependent data, 1 - independent data

 Examples

In this example we assume that the dataset spar.ds contains S-parameters at 2

frequencies 1 and 2 GHz.

S11Var=dsexpr("S(1,1)", "spar.ds") returns a dataset variable containing S(1,1)

S11A=dstoarray(S11Var) returns an array of S(1,1) value

fData=read_data("dataset", "spar.ds") reads the dataset

dsS11=dstoarray(fData, 1) returns an array of S(1,1) value

fData=read_data("dataset", "spar.ds") reads the dataset

freqV=dstoarray(fData, 1, 1) returns an array of freq values

 get_array_size()

Get the size of the array

 Syntax

get_array_size(Array)

 Arguments

Simulator Expressions

29

Name Description Default Range Type Required

Array array None None Integer, Real, Complex or String Array Yes

 See Also

makearray() (expsim),list() (expsim),length() (expsim)
 index()

Get index of name in an array

 Syntax

index(Array, Name, CaseSensitive, Length)

 Arguments

Name Description Default Range Type Required

Array Array of strings NONE NONE String
Array

Yes

Name Name or name of a simulator expression variable to
find in array

None None String Yes

CaseSensitive specifies if a case sensitive search is to be done YES [NO :
YES]

Boolean No

Length compares length number of characters 0 [0:∞) Integer No

 Examples

sA = makearray(3, "Zero", "One", "Two") returns an array of three strings

indx = index(sA, "One") returns 2

indx = index(sA, "one", 1) returns -1

indx = index(sA, "On", 1, 2) returns 2

varName = "One"

indx = index(sA, varName)

returns 2

 See Also

makearray() (expsim), get_array_size() (expsim)

 Notes/Equations

This function finds the index of a search string or name of a Simulator Expression variable
in the given string array. If a match is found, the index (starts at 1) is returned.
Otherwise, a -1 is returned.

Simulator Expressions

30

Note
The function name index() is used for more than one type of expression. For comparison, see the AEL
Function index() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 length()

Returns number of elements in array

 Syntax

length(Array)

 Arguments

Name Description Default Range Type Required

Array array None None Integer, Real, Complex or String Array Yes

 Examples

rA = makearray(1, 1, 2.0, 3.0) returns a real array of three numbers

rSize = length(rA) returns 3

cA = list(1+j*1, 2.0+j*2, 3.0+j*3) returns a complex array of three numbers

cSize = length(cA) returns 3

 See Also

get_array_size() (expsim), list() (expsim), scalearray() (expsim), makearray() (expsim)

 Notes/Equations

The length() function returns the number of elements in an array that has been created
using the makearray() or list() expression.
 list()

Creates a list of values

 Syntax

list(A0,A1,A2,..)
list("One", "Two", "Three")
list(list(1,2), list(3,4)) returns list(1,3,2,4)

 Arguments

Name Description Default Range Type Required

A0,A1,A2,... individual values of the
array

None NA Integer, Real, Complex, string or array
†

Yes

If the arguments are arrays, they must all be the same length.

Simulator Expressions

31

 Examples

y = list(1.0, 2.0, 3.0) returns a real list of three numbers

y = list(1+j*1, 2+j*2, 3+j*3) returns a complex list of three complex numbers

 See Also

get_array_size() (expsim), length() (expsim), makearray() (expsim), scalearray()
(expsim)

 Notes/Equations

The list() function is nothing but an array in Simulator Expressions. It is similar to the1.
makearray() function. The function can be used to create a list of integer, real, or
complex values. With the list() function, the data type does not need to be specified.
If any of the array entries are real, the array returned is of type real. If any of the
entries are complex, the array is of type complex. There should be a minimum of one
entry in the list. Unlike the makearray() function, the list() function cannot be used to
create an array of string or text values.

Note
Important Note Regarding Use of makearray() or list() VAR Equations As Direct vs.
Indirect Variables In Post-Simulation Data Display:

You can use makearray() or list() to create a pre-simulation (in design schematic) temporary
arbitrary array variable, but you cannot directly access/use the same, intended variable
access array in the post-simulation resulting Data Display window.
Instead, you are free to use the temporary arbitrary data array (created directly by
makearray() or list() like “X = makearray(1,.95,.99,1,2)”) and then re-cast also in schematic
to another indirect variable that references the original temporary variable (Ex: create another
variable VAR “Y = X[1]” in design before simulation). Thus, using the X and Y examples here,
you will NOT be able to get evaluated direct data “X” variable as intended in data display, but
you can get access to the indirect “Y” data.

As shown in the following example, you can use an indirect variable like "Y"
(Y=X[int_A]) that references the original direct "X" arbirary data array (“X =
makearray(1,.95,.99,1,2)”) that will be available also in post simulation Data Display:

ADS design VAR Simulator Expression makearray list create arbitrary
data array no DataAccessComponent DAC required

List data in simulator expressions cannot be stored into a dataset. Attempting to2.
store list data will result in a zero being stored in place of the list value.

Notes
The list() function defined for Simulator Expressions has an index starting at 1; in contrast to
the AEL list() function, which has a starting index of 0. This function does not support mixed
value types in the same area (e.g. complex, real, integer).
The function name list() is used for more than one type of expression. For comparison, see
the AEL Function list() Function (ael). Also, for more information on the different expression
types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 makearray()

http://edocs.soco.agilent.com/x/Sp-yBg
http://edocs.soco.agilent.com/x/Sp-yBg
http://edocs.soco.agilent.com/x/Sp-yBg

Simulator Expressions

32

Creates an array of real, complex or string values

 Syntax

makearray(Type, A1, A2..)
makearray(Array, StartIndex, StopIndex)

 Arguments

Name Description Default Range Type Required

Type array type 0:integer, 1:real, 2:complex, or
3:string

None [1:3] Integer Yes

A1,A2, ... Values in the array None (-
∞:∞)

Real, Complex or String Yes

Array Array from which the sub-array is to be
created

None None Real, Complex or String
Array

Yes

StartIndex Start index of the array None [1:∞) Integer Yes

StopIndex Stop index of the array None [1:∞) Integer Yes

Note
Important Note Regarding Use of makearray() or list() VAR Equations As Direct vs. Indirect
Variables In Post-Simulation Data Display:

You can use makearray() or list() to create a pre-simulation (in design schematic) temporary
arbitrary array variable, but you cannot directly access/use the same, intended variable access
array in the post-simulation resulting Data Display window.
Instead, you are free to use the temporary arbitrary data array (created directly by makearray() or
list() like “X = makearray(1,.95,.99,1,2)”) and then re-cast also in schematic to another indirect
variable that references the original temporary variable (Ex: create another variable VAR “Y = X[1]”
in design before simulation). Thus, using the X and Y examples here, you will NOT be able to get
evaluated direct data “X” variable as intended in data display, but you can get access to the indirect
“Y” data.

As shown in the following example, you can use an indirect variable like "Y" (Y=X[int_A]) that
references the original direct "X" arbirary data array (“X = makearray(1,.95,.99,1,2)”) that
will be available also in post simulation Data Display:

ADS design VAR Simulator Expression makearray list create arbitrary data
array no DataAccessComponent DAC required

 See Also

get_array_size() (expsim), list() (expsim), length() (expsim)
 scalearray()

Scalar times a vector (array) function

 Syntax

scalearray(Scalar, Array)

 Arguments

http://edocs.soco.agilent.com/x/Sp-yBg
http://edocs.soco.agilent.com/x/Sp-yBg
http://edocs.soco.agilent.com/x/Sp-yBg

Simulator Expressions

33

Name Description Default Range Type Required

Scalar Scalar value None (-
∞:∞)

Integer, Real or Complex Yes

Array Array to be
scaled

None None Integer, Real or Complex
Array

Yes

 Examples

rA=makearray(1, 1,2.0,3.0) returns an array of 3 real numbers

srA=scalearray(10,rA) returns array (10,20,30)

cA=makearray(2,1+j*1, 2+j*2) returns an array of 3 complex numbers

scA=scalearray(10, cA) returns array (10+j*10,20+j*20)

 See Also

makearray() (expsim), get_array_size() (expsim)

Simulator Expressions

34

 Harmonic Balance Functions for Simulator
Expressions
This section describes the Harmonic Balance functions in detail.

get fund freq() (expsim)
 get_fund_freq()

Get the frequency associated with a specified fundamental index

 Syntax

get_fund_freq(fundamental)

 Arguments

Name Description Default Range Type Required

fundamental the fundamental index of the frequency None [1:12] Integer, Real Yes

 Examples

Assumes that a single-tone harmonic balance analysis is being run at 1GHz

get_fund_freq(1) returns the 1GHz

 Notes/Equations

The get_fund_freq() function is used during harmonic balance analysis to get the
frequency of the specified fundamental.

Simulator Expressions

35

 HSPICE Compatibility Functions
This section describes the HSPICE Compatibility Functions in detail. HSPICE Compatibility
Functions are math functions used to with HSPICE netlist simulations. The functions are
listed in alphabetical order.

_db_hspice() (expsim)
_log10_hspice() (expsim)
_log_hspice() (expsim)
_nint_hspice() (expsim)
_pow_hspice() (expsim)
_pwr_hspice() (expsim)
_sign_hspice() (expsim)
_sqrt_hspice() (expsim)

 _db_hspice()

Return the base 10 log of the absolute value of x, mulitple by 20, with the sign of x

 Syntax

_db_hspice(x)

 Arguments

Name Description Default Range Type Required

x value for finding
decibel

None (-
∞:∞)

Integer, Real Yes

 Examples

y=db(10) returns 20.0

y=db(-10) returns -20.0

 See Also

_log_hspice() (expsim), _log10_hspice() (expsim), _nint_hspice() (expsim),
_pow_hspice() (expsim), _pwr_hspice() (expsim), _sign_hspice() (expsim),
_sqrt_hspice() (expsim)
 _log10_hspice()

Returns the base 10 logarithm of the absolute value of x, with the sign of x

 Syntax

_log10_hspice(x)

 Arguments

Simulator Expressions

36

Name Description Default Range Type Required

x real number None (-
∞:∞)

Real Yes

 Examples

log10V=log10(100) returns 2.0

log10V=log10(-100) returns -2.0

 See Also

_db_hspice() (expsim), _log_hspice() (expsim), _nint_hspice() (expsim), _pow_hspice()
(expsim), _pwr_hspice() (expsim), _sign_hspice() (expsim), _sqrt_hspice() (expsim)
 _log_hspice()

Returns the natural log of the absolute value of x, with the sign of x

 Syntax

_log_hspice(x)

 Arguments

Name Description Default Range Type Required

x integer, real None (-
∞:∞)

Integer,
real

Yes

 Examples

lnV=ln(100) returns 4.605

ln2V=ln(-100) returns -4.605

 See Also

_db_hspice() (expsim), _log10_hspice() (expsim), _nint_hspice() (expsim),
_pow_hspice() (expsim), _pwr_hspice() (expsim), _sign_hspice() (expsim),
_sqrt_hspice() (expsim)
 _nint_hspice()

Round x up or down, to the nearest integer

 Syntax

_nint_hspice(x)

 Arguments

Simulator Expressions

37

Name Description Default Range Type Required

x integer or real number to convert None (∞:∞) Integer,
real

Yes

 Examples

intV=nint(2.3) returns 2

intV=nint(2.7) returns 3

 See Also

_db_hspice() (expsim), _log_hspice() (expsim), _log10_hspice() (expsim), _pow_hspice()
(expsim), _pwr_hspice() (expsim), _sign_hspice() (expsim), _sqrt_hspice() (expsim)
 _pow_hspice()

Returns the value of x raised to the integer part of y, x^(int(y))

 Syntax

_pow_hspice(x, y)

 Arguments

Name Description Default Range Type Required

x Integer or real number None (-
∞:∞)

Integer,
real

Yes

y exponent of the number None (-
∞:∞)

Integer,
real

Yes

 Examples

powI=_pow_hspice(10, 3.2) returns 1000.0

 See Also

_db_hspice() (expsim), _log_hspice() (expsim), _log10_hspice() (expsim), _nint_hspice()
(expsim), _pwr_hspice() (expsim), _sign_hspice() (expsim), _sqrt_hspice() (expsim)
 _pwr_hspice()

Returns the absolute value of x, raised to the y power, with the sign of x

 Syntax

_pwr_hspice(x, y)

 Arguments

Simulator Expressions

38

Name Description Default Range Type Required

x Integer or real number None (-
∞:∞)

Integer,
real

Yes

y exponent of the number None (-
∞:∞)

Integer,
real

Yes

 Examples

pwrI=_pwr_hspice(10, 3) returns 1000.0

pwrI=_pwr_hspice(-10, 3) returns -1000.0

 See Also

_db_hspice() (expsim), _log_hspice() (expsim), _log10_hspice() (expsim), _nint_hspice()
(expsim), _pow_hspice() (expsim), _sign_hspice() (expsim), _sqrt_hspice() (expsim)
 _sign_hspice()

Returns the absolute value of x, with the sign of y

 Syntax

_sign_hspice(x, y)

 Arguments

Name Description Default Range Type Required

x Integer or real number None (-
∞:∞)

Integer,
real

Yes

y exponent of the number None (-
∞:∞)

Integer,
real

Yes

 Examples

intV= returns 2

intV=sign(2.5, -5) returns -2.5

 See Also

_db_hspice() (expsim), _log_hspice() (expsim), _log10_hspice() (expsim), _nint_hspice()
(expsim), _pow_hspice() (expsim), _pwr_hspice() (expsim), _sqrt_hspice() (expsim)
 _sqrt_hspice()

Returns the square root of the absolute value of x:

 Syntax

_sqrt_hspice(x)

 Arguments

Simulator Expressions

39

Name Description Default Range Type Required

x integer, real None (-
∞:∞)

real Yes

 Examples

sqrtV=sqrt(100) returns 10

sqrtCV=sqrt(-100) returns 10

 See Also

_db_hspice() (expsim), _log_hspice() (expsim), _log10_hspice() (expsim), _nint_hspice()
(expsim), _pow_hspice() (expsim), _pwr_hspice() (expsim), _sign_hspice() (expsim)

Simulator Expressions

40

 Math Functions for Simulator Expressions
This section describes the math functions in detail. Math Functions are used for matrix
conversion, trigonometry, absolute value, etc. The functions are listed in alphabetical
order.

abs() Expression (expsim)
acos() Expression (expsim)
acosh() Expression (expsim)
arcsinh() (expsim)
arctan() (expsim)
asin() Expression (expsim)
asinh() Expression (expsim)
atan2() Expression (expsim)
atan() Expression (expsim)
atanh() Expression (expsim)
bin() (expsim)
ceil() Expression (expsim)
complex() Expression (expsim)
conj() Expression (expsim)
cos() Expression (expsim)
cosh() Expression (expsim)
cot() Expression (expsim)
coth() Expression (expsim)
ctof() (expsim)
ctok() (expsim)
db() Expression (expsim)
dbm() Expression (expsim)
dbmtoa() (expsim)
dbmtov() (expsim)
dbmtow() Expression (expsim)
dbpolar() (expsim)
dbwtow() (expsim)
deg() Expression (expsim)
dphase() (expsim)
eval_pole_zero() (expsim)
eval controlled pwl() (expsim)
eval miso poly() (expsim)
eval poly() (expsim)
exp() Expression (expsim)
floor() Expression (expsim)
fmod() Expression (expsim)
ftoc() (expsim)
ftok() (expsim)
hypot() Expression (expsim)
imag() Expression (expsim)
int() Expression (expsim)
itob() (expsim)
jn() Expression (expsim)

Simulator Expressions

41

ktoc() (expsim)
ktof() (expsim)
ln() Expression (expsim)
log10() Expression (expsim)
log() Expression (expsim)
mag() Expression (expsim)
max() Expression (expsim)
min() Expression (expsim)
phase() Expression (expsim)
phasedeg() Expression (expsim)
phaserad() Expression (expsim)
phasewrap() (expsim)
polar() Expression (expsim)
polarcpx() (expsim)
pow() Expression (expsim)
rad() Expression (expsim)
real() Expression (expsim)
rem() (expsim)
sgn() Expression (expsim)
sin() Expression (expsim)
sinc() Expression (expsim)
sinh() Expression (expsim)
spectrum() (expsim)
sqrt() Expression (expsim)
sum() Expression (expsim)
tan() Expression (expsim)
tanh() Expression (expsim)
wtodbm() Expression (expsim)

 abs()

Returns the absolute value of an integer or real number

 Syntax

abs(x)

 Arguments

Name Description Default Range Type Required

x value to find
abs

None (-
∞:∞)

Integer, real, complex, or an array of those
types

Yes

 Examples

absRV=abs(-0.3) returns 0.3

absCV=abs(0.3-j*0.4) returns 0.5

absRVA=abs(list(-0.3,-0.4)) returns list(0.3,0.4)

absCVA=abs(list(-0.3-j*0.4,-0.3+j*0.4)) returns list(0.5,0.5)

 See Also

Simulator Expressions

42

exp() (expsim), int() (expsim), log() (expsim), log10() (expsim), mag() (expsim), pow()
(expsim), sgn() (expsim), sqrt() (expsim)

Note
The function name abs() is used for more than one type of expression. For comparison, see the
Measurement Expression abs() Measurement (expmeas) and the AEL Function abs() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 acos()

Returns the arc-cosine of an integer or real number

 Syntax

acos(x)

 Arguments

Name Description Default Range Type Required

x integer or real number None [-1:1]
†

Integer,
real

Yes

† A warning will be issued if value is out of this range.

 Examples

acosV=acos(0.9) returns 0.451

acosV=acos(-0.5) returns 2.094

 See Also

asin() (expsim), atan() (expsim)

Note
The function name acos() is used for more than one type of expression. For comparison, see the
Measurement Expression acos() Measurement (expmeas) and the AEL Function acos() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 acosh()

Returns the inverse hyperbolic cosine of an integer or real number

 Syntax

acosh(x)

 Arguments

Simulator Expressions

43

Name Description Default Range Type Required

x integer, real
number

None [1:∞)
†

Integer,
real

Yes

† A warning will be issued if value is out of this range.

 Examples

acoshV=acosh(1.8) returns 1.193

 See Also

arcsinh() (expsim), asinh() (expsim), atanh() (expsim)

Note
The function name acosh() is used for more than one type of expression. For comparison, see the
Measurement Expression acosh() Measurement (expmeas) and the AEL Function acosh() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 arcsinh()

Returns the inverse hyperbolic sine of an integer, real or complex number

 Syntax

arcsinh(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

arcsinhV=arcsinh(0.8) returns 0.733

arcsinhV=arcsinh(-0.5) returns -0.481

arcsinhCV=arcsinh(1+j*0.4) returns 0.952/17.151

 See Also

acosh() (expsim), asinh() (expsim), atanh() (expsim)
 arctan()

Returns the arc-tangent of an integer or real number

 Syntax

arctan(x)

Simulator Expressions

44

 Arguments

Name Description Default Range Type Required

x integer or real number None (-
∞:∞)

Integer,
real

Yes

 Examples

atanV=atan(0.9) returns 0.733

atanV=atan(-0.5) returns -0.464

 See Also

acos() (expsim), asin() (expsim), tan() (expsim)
 asin()

Returns the arc-sine of an integer or real number

 Syntax

asin(x)

 Arguments

Name Description Default Range Type Required

x integer or real number None [-1:1]
†

Integer,
real

Yes

† A warning will be issued if value is out of this range.

 Examples

asinV=asin(0.9) returns 1.12

asinV=asin(-0.5) returns -0.524

 See Also

acos() (expsim), atan() (expsim), atan2() (expsim)

Note
The function name asin() is used for more than one type of expression. For comparison, see the
Measurement Expression asin() Measurement (expmeas) and the AEL Function asin() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 asinh()

Returns the inverse hyperbolic sine of an integer, real or complex number

 Syntax

Simulator Expressions

45

 Syntax

asinh(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

asinhV=asinh(0.8) returns 0.733

asinhV=asinh(-0.5) returns -0.481

asinhCV=asinh(1+j*0.4) returns 0.952/17.151

 See Also

acosh() (expsim), arcsinh() (expsim), atanh() (expsim)

Note
The function name asinh() is used for more than one type of expression. For comparison, see the
Measurement Expression asinh() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 atan2()

Returns the arctangent of y/x

 Syntax

atan2(y,x)

 Arguments

Name Description Default Range Type Required

y y value e.g.
imaginary

None (-
∞:∞)

Integer,
real

Yes

x x value e.g. real None (-
∞:∞)

Integer,
real

Yes

 Examples

y=atan(1,2) returns 0.464

y=atan(0.001,2) returns 5e-4

 See Also

acos() (expsim), asin() (expsim), atan() (expsim), cos() (expsim), sin() (expsim), tan()
(expsim)

Simulator Expressions

46

Note
The function name atan2() is used for more than one type of expression. For comparison, see the
Measurement Expression atan2() Measurement (expmeas) and the AEL Function atan2() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 atan()

Returns the arg-tangent of an integer or real number

 Syntax

atan(x)

 Arguments

Name Description Default Range Type Required

x integer or real number None (-
∞:∞)

Integer,
real

Yes

 Examples

atanV=atan(0.9) returns 0.733

atanV=atan(-0.5) returns -0.464

 See Also

acos() (expsim), asin() (expsim), atan2() (expsim)

Note
The function name atan() is used for more than one type of expression. For comparison, see the
Measurement Expression atan() Measurement (expmeas) and the AEL Function atan() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 atanh()

Returns the inverse hyperbolic tangent of an integer or real number

 Syntax

atanh(x)

 Arguments

Name Description Default Range Type Required

x integer, real
number

None [-1:1)
†

Integer,
real

Yes

† A warning will be issued if value is out of this range.
If x equals 1, the returned value is 1e20
If x equals -1, the returned value is -1e20

Simulator Expressions

47

 Examples

atanhV=atanh(0.8) returns 1.099

atanhV=atanh(-0.5) returns -0.549

 See Also

acosh() (expsim), arcsinh() (expsim), asinh() (expsim)

Note
The function name atanh() is used for more than one type of expression. For comparison, see the
Measurement Expression atanh() Measurement (expmeas) and the AEL Function atanh() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 bin()

Converts a binary to an integer and returns a real number

 Syntax

bin(Input)

 Arguments

Name Description Default Range Type Required

Input binary input as a string None [0:1] † String Yes

† Binary representation conatining 1's and 0's

 Examples

binV=bin("11011") returns 27.0

 See Also

itob() (expsim)
 ceil()

Returns the ceil as a real number

 Syntax

ceil(x)

 Arguments

Simulator Expressions

48

Name Description Default Range Type Required

x real number to find ceil None (-
∞:∞)

Real Yes

 Examples

ceilV=ceil(1.8) returns 2.0

 See Also

floor() (expsim)

Note
The function name ceil() is used for more than one type of expression. For comparison, see the
Measurement Expression ceil() Measurement (expmeas) and the AEL Function ceil() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 complex()

Forms a complex number in rectangular format

 Syntax

complex(realValue, imageValue)

 Arguments

Name Description Default Range Type Required

realValue real part of the complex number None (-
∞:∞)

Integer,
real

Yes

imagValue imaginary part of the complex
number

None (-
∞:∞)

Integer,
real

Yes

 Examples

complexV=complex(1,2) returns 1+j*2

 See Also

imag() (expsim), real() (expsim)

Note
The function name complex() is used for more than one type of expression. For comparison, see the
Measurement Expression complex() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 conj()

Returns the complex conjugate

Simulator Expressions

49

 Syntax

conj(x)

 Arguments

Name Description Default Range Type Required

x Value to operate
on

None (-
∞:∞)

Integer, real, complex, or an array of those
types

Yes

 Examples

conjV=conj(1+j*2) returns 1-j*2

 See Also

mag() (expsim)

Note
The function name conj() is used for more than one type of expression. For comparison, see the
Measurement Expression conj() Measurement (expmeas) and the AEL Function conj() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 cos()

Returns the cosine as an integer, real or complex number.

 Syntax

cos(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

cosRV=cos(pi) returns -1

cosRV=cos(-pi/4) returns 0.707

cosCV=cos(0.8+j*0.5) returns 0.87/-25.446

 See Also

sin() (expsim), tan() (expsim)

Simulator Expressions

50

Note
The function name cos() is used for more than one type of expression. For comparison, see the
Measurement Expression cos() Measurement (expmeas) and the AEL Function cos() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 cosh()

Returns the hyperbolic cosine as an integer, real or complex number

 Syntax

cosh(x)

 Arguments

Name Description Default Range Type Required

x integer, real, or complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

coshV=cosh(0.8) returns 1.337

coshV=cosh(-0.5) returns 1.128

coshCV=cosh(0.8+j*0.5) returns 1.249/19.939

 See Also

sinh() (expsim), tanh() (expsim)

Note
The function name cosh() is used for more than one type of expression. For comparison, see the
Measurement Expression cosh() Measurement (expmeas) and the AEL Function cosh() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 cot()

Returns the cotangent as a real or complex number

 Syntax

cot(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Real, Complex Yes

 Examples

cotRV=cot(pi/2) returns 6.123e-17

Simulator Expressions

51

cotCV=cot(0.5-j*0.5) returns 1.441/54.396

 See Also

cos() (expsim), sin() (expsim), tan() (expsim)

Note
The function name cot() is used for more than one type of expression. For comparison, see the
Measurement Expression cot() Measurement (expmeas) and the AEL Function cot() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 coth()

Returns the hyperbolic cotangent as a real or complex number.

 Syntax

coth(x)

 Arguments

Name Description Default Range Type Required

x Real or complex number None (-
∞:∞)

Real,
complex

Yes

 Examples

cothV=coth(0.8) returns 1.506

cothCV=coth(0.5-j*0.5) returns 1.441/35.604

 See Also

cosh() (expsim), sinh() (expsim), tanh() (expsim)

Note
The function name coth() is used for more than one type of expression. For comparison, see the
Measurement Expression coth() Measurement (expmeas) and the AEL Function coth() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 ctof()

Converts Celsius to Fahrenheit and returns a real number

 Syntax

ctof(Value)

 Arguments

Simulator Expressions

52

Name Description Default Range Type Required

Value value in
Celsius

None (-
∞:∞)

Real Yes

 Examples

ctofV=ctof(100) returns 212.0

 See Also

ftoc() (expsim), ktof() (expsim)
 ctok()

Converts Celsius to Kelvin and returns a real number

 Syntax

ctok(Value)

 Arguments

Name Description Default Range Type Required

Value Value in
Celsius

None (-
∞:∞)

Real Yes

 Examples

ctokV=ctok(100) returns 373.15

 See Also

ftok() (expsim), ktoc() (expsim)
 db()

Returns the decibel as an integer or real.

 Syntax

db(x)

 Arguments

Name Description Default Range Type Required

x value for finding
decibel

None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

y=db(10) returns 20.0

y=db(1+j*2) returns 6.99

Simulator Expressions

53

 See Also

dbm() (expsim), dbmtoa() (expsim), dbmtov() (expsim), dbmtow() (expsim), dbpolar()
(expsim), dbwtow() (expsim), wtodbm() (expsim)

 Notes/Equations

This expression calculates the decibel of the given value.
The value in dB is calculated as follows:

where tinyreal = 2.22507e-308 (see Predefined Simulator Variables and Constants
Reserved Names (expsim))

Note
The function name db() is used for more than one type of expression. For comparison, see the
Measurement Expression db() Measurement (expmeas) and the AEL Function dB() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 dbm()

Converts voltage to decibel referenced to a 1 milliwatt signal and returns a real number

 Syntax

dbm(Value, Zref)

 Arguments

Name Description Default Range Type Required

Value Voltage None (-
∞:∞)

Integer, Real, Complex Yes

Zref Reference impedance None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

y=dbm(0, 50) returns -3046.527

y=dbm(1+j*2, 25) returns 20.0

y=dbm(-30, 1+j*1) returns 53.522

 See Also

db() (expsim), dbmtoa() (expsim), dbmtov() (expsim), dbmtow() (expsim), dbpolar()
(expsim), dbwtow() (expsim), wtodbm() (expsim)

Simulator Expressions

54

 Notes/Equations

This expression calculates the decibel measure of a voltage referenced to a 1 milliwatt
signal.

The value in dBm is calculated as follows:

where tinyreal = 2.22507e-308 (see Predefined Simulator Variables and Constants
Reserved Names (expsim))

Given a power Po in Watts, the power in dB is:

while the power in dBm is:

Note
The function name dbm() is used for more than one type of expression. For comparison, see the
Measurement Expression dbm() Measurement (expmeas) and the AEL Function dBm() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 dbmtoa()

Converts dbm into short circuit current, given the reference impedance and returns a real
or complex number

 Syntax

dbmtoa(Value, Zref)

 Arguments

Name Description Default Range Type Required

Value value in dBm None (-
∞:∞)

Real, Complex Yes

Zref Reference Impedance None (-
∞:∞)

Integer, Real or
Complex

Yes

 Examples

y=dbmtoa(1+j*1,50) returns 0.014+j0.002

y=dbmtoa(0, 50) returns 0.013

y=dbmtoa(-30, 1+j*1) returns 0.002

 See Also

db() (expsim), dbm() (expsim), dbmtov() (expsim), dbmtow() (expsim), dbpolar()
(expsim), dbwtow() (expsim), wtodbm() (expsim)

Simulator Expressions

55

 Notes/Equations

This expression converts the dBm measure into short circuit current given the reference
impedance. The value is calculated as follows:

 dbmtov()

Converts dbm into open circuit voltage, given the reference impedance and returns a real
or complex number

 Syntax

dbmtov(Value, Zref)

 Arguments

Name Description Default Range Type Required

Value value in dBm None (-
∞:∞)

Real, Complex Yes

Zref Reference Impdeance None (-
∞:∞)

Real, Complex Yes

 Examples

y=dbmtov(1+j*1,50) returns 0.705+j0.082

y=dbmtov(10, 50) returns 2.0

y=dbmtov(-30, 1+j*1) returns 0.003

 See Also

db() (expsim), dbm() (expsim), dbmtoa() (expsim), dbmtow() (expsim), dbpolar()
(expsim), dbwtow() (expsim), wtodbm() (expsim)

 Notes/Equations

This expression converts the dBm measure into open circuit voltage given the reference
impedance. The value is calculated as follows:

 dbmtow()

Converts dBm to Watts and returns a real or complex number

Simulator Expressions

56

 Syntax

dbmtow(Value)

 Arguments

Name Description Default Range Type Required

Value Value in
dBm

None (-
∞:∞)

Real, Complex Yes

 Examples

y=dbmtow(1+j*1) returns 0.001+j2.873e-4

y=dbmtow(50) returns 100.0

y=dbmtow(30) returns 1.0

 See Also

db() (expsim), dbm() (expsim), dbmtoa() (expsim), dbmtov() (expsim), dbpolar()
(expsim), dbwtow() (expsim), wtodbm() (expsim)

 Notes/Equations

This expression converts the dBm measure into Watts. The value is calculated as follows:

Note
The function name dbmtow() is used for more than one type of expression. For comparison, see the
Measurement Expression dbmtow() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 dbpolar()

Converts (dB,angle) to rectangular coordinates and returns a complex number

 Syntax

dbpolar(dB, Angle)

 Arguments

Name Description Default Range Type Required

dB value in decibel None (-∞:∞) Real Yes

Angle Angle to
convert

None [-360:360] Real Yes

 Examples

Simulator Expressions

57

dbV=6.99

value=dbpolar(dbV, 63.435) returns 1+j*2

 See Also

db() (expsim), dbm() (expsim), dbmtoa() (expsim), dbmtov() (expsim), dbmtow()
(expsim), dbwtow() (expsim), vswrpolar() (expsim), wtodbm() (expsim)

 Notes/Equations

This expression converts the (dB, angle) to rectangular format. The dbpolar is calculated
as follows:

 dbwtow()

Converts dBW to Watts and returns a real or complex number

 Syntax

dbwtow(Value)

 Arguments

Name Description Default Range Type Required

Value Value in dBW None (-
∞:∞)

Real, Complex Yes

 Examples

y=dbwtow(1+j*1) returns 1.226+j0.287

y=dbwtow(50) returns 100000.0

y=dbwtow(-30) returns 10e-4

 See Also

db() (expsim), dbm() (expsim), dbmtoa() (expsim), dbmtov() (expsim), dbmtow()
(expsim), dbpolar() (expsim), wtodbm() (expsim)

 Notes/Equations

This expression converts the dBw measure into Watts. The value is calculated as follows:

Simulator Expressions

58

 deg()

Converts radian to degree and returns an integer or real

 Syntax

deg(x)

 Arguments

Name Description Default Range Type Required

x integer or real number None (-
∞:∞)

Integer, Real Yes

 Examples

degV=deg(pi) returns 180.0

 See Also

rad() (expsim)

Note
The function name deg() is used for more than one type of expression. For comparison, see the
Measurement Expression deg() Measurement (expmeas) and the AEL Function deg() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 dphase()

Returns the continuous phase difference (radians) between two numbers as a real number

 Syntax

dphase(x, y)

 Arguments

Name Description Default Range Type Required

x first number None (-
∞:∞)

Integer, Real or Complex. Yes

y second number None (-
∞:∞)

Integer, Real or Complex. Yes

 Examples

diffPC = dphase(complex(0.333,0.01),complex(0.633,0.1)) returns -0.127

diffPR = dphase(90,100) returns 0

diffP = dphase(complex(0.333,0.01),100) returns 0.03

Simulator Expressions

59

 See Also

phase() (expsim), phasedeg() (expsim), phaserad() (expsim)

 Notes/Equations

This expression takes into account any potential 2*PI phase jumps. The jump threshold is
fixed at PI degrees and is calculated as follows:

Note
The phase() function used here assumes a value returned in radians.

 eval_pole_zero()

Optionally evaluates rational polynomial function when supplied with zeros and poles and
input values.

 Syntax

eval_pole_zero(zeros, poles, x, type) where zeros and poles are either in list(...)
or one-dimensional makearray(1,...) form.

 Arguments

Name Description Default Range Type Required

zeros one-dimensional array of coefficients NONE (-∞:∞) † Integer, Real † † Yes

poles one-dimensional array of coefficients NONE (-∞:∞) † Integer, Real † † Yes

x input variable of polynomial function NONE (-∞:∞) † Integer, Real, Complex † †
†

Yes

type specifies the type of input NONE (-∞:∞) † † †
†

Integer Yes

† Individual elements of array may have values in this range.
† † Individual elements of array may be integer or real valued but not complex.
† † † Complex input cannot be used for derivative or integral operations.
† † † † Input type = 0 the simulator will create the complex conjugate
for each complex zero/pole; = 1 the simulator assumes all poles and zeros are specified in
the
input arguments.

 Examples

Complex poles/zeros with type = 01.
result = eval_pole_zero(list(2,1,2), list(5,3,7), x, 0)

Simulator Expressions

60

= 2*(x + 1 + j*2*PI*2)(x + 1 - j*2*PI*2)/[5(x + 3 + j*2*PI*7)*(x + 3 -

j*2*PI*7)]

Complex poles/zeros with type = 12.
result = eval_pole_zero(list(2,1,2), list(5,3,7), x, 1)

= 2*(x + 1 + j*2*PI*2)/[5*(x + 3 + j*2*PI*7)]

Real poles/zeros3.
result = eval_pole_zero(list(2,1,0), list(5,3,0), x, 1)

= 2*(x + 1)/[5*(x + 3)]

Real poles/zeros are not affected by the value of type.

Duplicate poles/zeros4.
result = eval_pole_zero(list(2,1,0,1,0), list(5,3,0,2,5,2,5), x, 0)

= 2*(x + 1)

2

/[5*(x + 3)*(x + 2 + j*2*PI*5)

2

*(x + 2 - j*2*PI*5)

2

]

 Notes / Equations

eval_pole_zero(list(a az1, fz1, ..., azn, fzn), list(b, ap1, fp1, ..., apm, fpm), s, 0)1.
specifies the following function:

If the type is set to 1 instead of 0, that is, eval_pole_zero(list(a az1, fz1, ..., azn,2.
fzn), list(b, ap1, fp1, ..., apm, fpm), s, 1), the function will be:

 eval_controlled_pwl()

Evaluates the piece-wise linear response of system when supplied with N pairs of data
points in vector format.

 Syntax

eval_controlled_pwl(pwlvector, xin, [stretch], [scale]) where pwlvector is a list(in1,
out1, ..., inN, outN)

 Arguments

Simulator Expressions

61

Name Description Default Range Type Required

pwlvector list of pairs of datapoints defining corners of
the PWL function

NONE list of (-∞:∞)
† † †

Integer, Real † † Yes †

xin scalar input signal 0.0 (-∞:∞) Integer, Real,
Complex

Yes

stretch used for scaling input signal prior to PWL
computation

1.0 (-∞:0) U
(0:∞)

Integer, Real No

scale used for scaling output signal following PWL
computation

1.0 (-∞:∞) Integer, Real No

† At least one pair of data points should be supplied.
† † Only scalar inputs should be supplied.
† † † First element should always be listed. If Ith element is listed then (I-1)th element
should also be explicitly listed.

 Examples

The response of a system described by the three-point PWL vector

list(in 1 , out 1 , in 2 , out 2 , in 3 , out 3) to input xin , stretch , and

scale is

xout = eval_controlled_pwl(list(in 1 , out 1 , in 2 , out 2 , in 3 , out 3), xin,
stretch, scale)

The input is stretched up to

xin

~
= min(xin*stretch, stretchEps) where stretchEps is an internal limit

generated when stretch is too close to zero.

The proper bin for xin

~

 is detected using the three corner points along

input axis: in

1

, in

2

, and in

3

, which may be out of order in the list() or

file forms.

If xin

~

 falls within bounded limits, e.g., in

1

 and in

3

, then xout

~

 is

computed using linear equation:

(xout

~
- out 3) * (in 1 - in 3) = (xin~

- in 3) * (out 1 - out 3) else, if

it falls in either of the two unbounded sections with nearest data point in

i

, out

i

, then constant extrapolation is done as follows:

xout

~
= out i

If scale factor is defined, it is used on the raw output. If not, scale is

assumed to be unity. Thus:

xout = xout

~
* scale

Given: pwlvector = list(2, 4, 3, -1, -1, 3)

xin=1

stretch=0.75

scale=3.0

xin

~

 {{= 3/4

which falls within input side range {{(-1,2] with output side range (3, 4] .

Simulator Expressions

62

Thus,

xout~ = (3/4 - (-1))/(2 - (-1)) * (4 - 3) + 3 = 7/12 * 1 + 3 = 43/3

xout = 43/3 * 3.0 = 43

 Notes/Equations

This function exists in ADS primarily to emulate the behavior of piece-wise linear1.
(PWL) behavior of single input, single output controlled voltage and current sources
of the Cadence Spectre library. For further information about the sources cccs , ccvs ,
vccs , and vcvs , see the Cadence Spectre simulator's analog library documentation.
This function supports PWL values either directly in list() or indirectly in file format.2.
For PWL files, the following approach is recommended to create a list-based entry for
the SYM function:
pwlData = read_data("file","<pwlvector_filename>","sppwl")
pwlIn = dstoarray(pwlData,"inputPWL")
pwlOut = dstoarray(pwlData,"outputPWL")
xout = eval_controlled_pwl(list(pwlIn, pwlOut), xin[, stretch[, scale]])

In this case the list() function concatenates the two vectors pwlIn and pwlOut by
interleaving the values as expected by eval_controlled_pwl().
A PWL file is a simple ASCII data file containing two columns, for input and output
values marking corner points of the function. This file may contain comment lines
preceded by the ";" character. No explicit format information is expected from such a
file. An example of a PWL file is:
; PWLfile
; Input Output
2 4.0
3 -1.0
-1 3.0
The file contents are equivalent to
list(2, 4.0, 3, -1.0, -1, 3.0) Data points may be supplied out of order in
either list or file format. The function automatically checks for duplicate points, which
it tolerates, for ambiguity, such as one-to-many input-output mapping causing an
error when encountered.
Default value of stretch is 1.0, but if a value is supplied and found to be too close to3.
zero, its effective value is limited to a small non-zero number. This prevents
interpolation errors due to infinitesimal shrinkage of input xin by the stretch factor. It
ensures that xin~ is truly 0.0 only when xin is 0.0.
Only the real part of a complex input variable is affected by the PWL. The imaginary4.
part merely gets stretched and scaled.

 eval_miso_poly()

Evaluates the multi-input-single-output (miso) polynomial response of an M-input system
when supplied with N+1 coefficients list format.

 Syntax

eval_miso_poly(coefs, x1, ... ,xM) where coefs is a list(c0, ..., cN)

Simulator Expressions

63

 Arguments

Name Description Default Range Type Required

coefs list of numbers or scalar variables formed using
simulator expression list()

list(1.0) list of (-
∞:∞) †

Integer, Real † † Yes † † †

xJ scalar input signal at Jth port of system, J >= 1. x1=0.0 (-∞:∞) Integer, Real,
Complex †

Yes † † †

† At least one non-zero coefficient should be present.
† † Individual coefficients in list may be integer or real valued.
† † † First element should always be defined. If Ith element is listed then (I-1)th element
should also be explicitly listed.

 Examples

The response of a three-input, 13-coefficient system:

1.

returns

Therefore, if all coefficients were 1 and the three inputs were 2, 3, and 5

respectively,

The response of a four-input, 13-coefficient system:

2.

returns

Therefore, if all coefficients were 1 and the four inputs were 2, 3, 5, and

7 respectively,

 See Also

eval_poly() (expsim)

 Notes/Equations

This function exists in ADS primarily to emulate the behavior of polynomially-1.
controlled voltage and current sources of the Cadence Spectre library. For further
information about the sources pcccs , pccvs , pvccs , and pvcvs , see the Cadence
Spectre simulator's analog library documentation.
This function does not support array-based inputs. All xJ must be scalar numbers or2.

variables. Contrast this with the eval_poly() function which does allow array-based
inputs. The functionality of these two expressions is vastly different as is evidenced
by notes and examples.
This function supports coefficient values either directly in list() format or indirectly via3.
a coefficient file format. If coefficient files must be used, the following approach is

Simulator Expressions

64

recommended:
{{coefData = read_data("file","<coefvector_filename>","spcoef")
coefVect = dstoarray(coefData,"coef")
y = eval_miso_poly(coefVect, x}} 1 , ... ,x M)
A coefficient file is a simple ASCII data file containing two columns, for coefficient
indices and values respectively. This file may contain comment lines preceded by the
";" character. No explicit format information is expected from such a file. An example
of a coefficient file is:
; Coeffile
; Col 1 Col2
0 3.4
3 -2.7
1 6.2
4 1.3
The file contents are equivalent to:
list(3.4, 6.2, 0.0, -2.7, 1.3)

Within a file, the coefficients may be supplied out of order and absent coefficients are
noted as zero. However, when presenting coefficients in list format, the values should
be explicitly mentioned and in sequential order.
Only contiguous sequences of coefficients and inputs are supported. If coefficient cI is4.

given, all its predecessors must be explicitly specified in the list. No blank spaces
signifying missing elements are supported. On the other hand, if xJ is specified in the

function, then all J-1 inputs before it either must be specified explicitly or represented
by a space between successive delimiter instances, i.e. ", ,".
The distribution of polynomial coefficients among inputs and their higher order5.
combinations depends the number of input variables M and the number of
coefficients N+1 where M, N are integers > 0. For a system with a fixed M-number of
inputs, the degree of polynomial is determined by the number of coefficients
supplied. Conversely, given a fixed list of coefficients, the system response depends
on number of inputs listed, even if certain inputs are listed as zero-valued.
To understand the mathematical framework on which eval_miso_poly() is based,6.
consider the order in which polynomial summands are created in the example section
above. Each polynomial summand is a product of all the input signals raised to
various integral exponents, e.g. x1

2·x3 for a three-input system can be interpreted as

x1
2·x2

0·x3
1, where the vector of exponents is [2, 0, 1]. The same term, for a four-

input system would be interpreted as x1
2·x2

0·x3
1·x4

0, where the vector of exponents

is [2, 0, 1, 0].
Each polynomial summand for a system with fixed number of inputs has a 1-to-1
relationship with the vector of coefficients. The order in which coefficients are
distributed among summands and therefore among exponent vectors is dependent
on the order in which summands are produced by left-longhand multiplication
(without multiplicative coefficients) of successive orders of polynomial summands.
An example of such multiplication is shown using three scalar numbers a, b, c.
The first order vector formed by these numbers is [a b c]. Left long-hand
multiplication of this vector with itself would mean an inner product of the vector with
its transpose such that the duplicate terms are removed from the sequence.
a b c

Simulator Expressions

65

a b c

a.a a.b a.c - Pivoting at 1st element a of the lower or multiplier vector
b.a b.b b.c - Pivoting at 2nd element b of the lower or multiplier vector
c.a c.b c.c - Pivoting at 3rd element c of the lower or multiplier vector
Ignore duplicate scalar values b.a, c.a and c.b because a.b , a.c , and b.c have
already been computed in advance.
The remaining summands forming the 2nd-order vector are
a^2 a.b a.c b^2 b.c c^2

This is the result of 2nd-order left long-hand multiplication using two variables. For
this square matrix, is the equivalent of considering only diagonal and upper triangle
elements scanned in raster form.
Given a three-input system,

There is only one 0th-order summand.

There are three 1st-order summands.

There are six 2nd-order summands listed without multiplicative coefficients in
order of appearance due to left long-hand multiplication.

There are ten 3rd-order summands listed without multiplicative coefficients in
order of appearance due to left long-hand multiplication of the 2nd-order list by
the original input list.

 eval_poly()

Optionally evaluates polynomial function, or derivative or integral of polynomial when
supplied with coefficients and input values.

Simulator Expressions

66

 Syntax

eval_poly(coefs, x, type) where coefs is either in list(...) or one-dimensional
makearray(1,...) form.

 Arguments

Name Description Default Range Type Required

coefs one-dimensional array of coefficients NONE (-∞:∞) † Integer, Real † † Yes

x input variable of polynomial function NONE (-∞:∞) † Integer, Real, Complex † †
†

Yes

type specifies the type of operation NONE (-∞:∞) † † †
†

Integer Yes

† Individual elements of array may have values in this range.
† † Individual elements of array may be integer or real valued but not complex.
† † † Complex input cannot be used for derivative or integral operations.
† † † † Function type = 0 for direct polynomial, < 0 for integral of polynomial, > 0 for
derivative of polynomial.

 Examples

The following variables are used to demonstrate the behavior of this function:

c = list(7)

Carr = list(7,11,13,17)

x = 2

Xarr = list(2,3,5)

y = 2+j*2

Yarr = list(2+j*2,3+j*3,5+j*5)

Direct polynomial evaluation1.
Recommended use is for a vector of real coefficients and a scalar input

which may be integer, real or complex:

result = eval_poly(Carr, x, 0)

= 7 + 11 * 2 + 13 * 2

2
+ 17 * 2

3}}
= 217

result = eval_poly(Carr, y, 0)

= 7 + 11 * (2+j*2) + 13 * (2+j*2)

2

 + 17 * (2+j*2)

3

= 243 + j*398

Other combinations yield degenerate cases:

result = eval_poly(c, x, 0) = 7

result = eval_poly(c, y, 0) = 7

result = eval_poly(c, Xarr, 0) = 7

result = eval_poly(c, Yarr, 0) = 7

An overloaded use is made of the eval_poly() function of type=0 for partial

derivative computation when both coefficient and input are in vector form.

When both the first and second arguments are vectors, an inner or dot

product of the two is generated instead of the algebraic polynomial

Simulator Expressions

67

explained thus far. The dot product is performed as far as possible along

the shorter of the two vectors. In this example, it is done until the third

element of either vector. This is useful for several specialized operations

in ADS.

Thus: result = eval_poly(Carr, Xarr, 0)

= d/dx 0 (7 * x 0 + 11 * x 1 + 13 * x 2)}}
= 7

Likewise, given a complex input, the result is the same:

result = eval_poly(Carr, Yarr, 0) = 7

Derivative of evaluated polynomial2.
Recommended use is for a vector of real coefficients and a scalar input

which may be integer or real but not complex:

result = eval_poly(Carr, x, 1)

= 11 + 2 * (13 * 2) + 3 * (17 * 2

2

)

= 267

Using a scalar coefficient yields degenerate cases which correspond to the

direct function responses highlighted above:

result = eval_poly(c, x, 1)

= d/dx(eval_poly(c, x, 0))

= 0

result = eval_poly(c, Xarr, 1)

= d/dx(eval_poly(c, Xarr, 0))

= 0

In keeping with the idea of partial derivative behavior signaled by vector

on vector operation using this function, when type = 1, the partial

derivative of the polynomial is computed with respect to x

1

:

result = eval_poly(Carr, Xarr, 1)

= d/dx 1 (7 * x 0 + 11 * x 1 + 13 * x 2)}}
= 11

This use model is only restricted to type = 1. Setting type > 1 yields zero

output.

Integral of evaluated polynomial3.
Recommended use is for a vector of real coefficients and a scalar input

which may be integer or real but not complex:

result = eval_poly(Carr, x, -1)

= 7 * 2 + 11/2 * 2

2

 {{+ 13/3 * 2

3 + 17/4 * 24}}
= 138.667

Using a scalar coefficient yields degenerate cases which correspond to the

direct function responses highlighted above:

result = eval_poly(c, x, -1)

= integral x (eval_poly(c, x, 0))

= c 0 * x

result = eval_poly(c, Xarr, -1)

= integral x (eval_poly(c, Xarr, 0))

= c 0 {{* x 0}}

Simulator Expressions

68

 See Also

eval_miso_poly() (expsim)

 Notes / Equations

It is recommended that general use of this function be restricted to scalar inputs and1.
coefficient vectors of length greater than 1. Under this condition, the direct
polynomial, derivative and integral functions of the polynomial work as expected
algebraically. All other variations of argument types exist to support specialized
functionalities for various components and designs and may not be of interest to the
average user.
The differences between this and the eval_miso_poly() function are as follows:2.

The function eval_miso_poly() can operate on dynamically varying inputs since
each is supplied as an independent argument of the function and not as a pre-
compiled list as is necessary for eval_poly().
The function eval_poly() can perform differentiation and integration operations
but eval_miso_poly() cannot.
When working with vector input rather than scalar input the eval_miso_poly()
function is recommended over eval_poly() if the intention is to use the left long-
hand multiplication approach to distributing coefficients. Otherwise any arbitrary
composite function should be devised using several simple eval_poly()
operations.

 exp()

Returns the exponential as an integer, real or complex number

 Syntax

exp(x, MaxExpArg)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-∞:∞) Integer, real, complex Yes

MaxExpArg maximum value of argument 60 (-∞:709] Integer, real No

 Examples

expV=exp(10) returns 22026.466

exp2V=exp(-0.001) returns 0.999

exp3V=exp(0.5) returns 1.649

expCV=exp(0.5+j*0.5) returns 1.649/28.648

 See Also

Simulator Expressions

69

abs() (expsim), int() (expsim), log() (expsim), log10() (expsim), pow() (expsim), sgn()
(expsim), sqrt() (expsim)

 Notes/Equations

The output value is calculated as follows:

exp\(x,\[MaxExpArg\]\) = if \(x<MaxExpArg\) then exp\(x\) else

\(1\+x-MaxExpArg\)*exp\(MaxExpArg\)

If you are using Advanced Design System, the MaxExpArg argument can also be set using
the Options Component. You can set the MaxExpArg argument in the ADS Options
component using the Other parameter as follows:
Other = "MaxExpArg=default-value"

 Modification to the exp() function

The exp() simulator expression was modified in order to make symbolically defined device
(SDD) modeling more robust. However, the new default behavior can interact and break
existing user implementations of soft_exp() or equivalent functions.
For real values, it is now always a soft limited exponential that turns into a linear function
above the maximum argument value.
exp(x,[max_arg]) = if (x < max_arg) then exp(x) else (1 + x -

max_arg)*exp(max_arg)

It is only continuous to the first derivative. The maximum argument value can be explicitly
specified by the optional second argument to the exp() function. If this argument is not
provided, it uses a global gCircuit value that can be set by the Options parameter
MaxExpArg. The default value for this is 60.0. The MaxExpArg parameter must be entered
using the Other = parameter.

Note
The function name exp() is used for more than one type of expression. For comparison, see the
Measurement Expression exp() Measurement (expmeas) and the AEL Function exp() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 floor()

Returns the floor as an real number

 Syntax

floor(x)

 Arguments

Simulator Expressions

70

Name Description Default Range Type Required

x integer or real number None (-
∞:∞)

Integer,
real

Yes

 Examples

floorV=floor(1.8) returns 1.0

floorV=floor(-1.8) returns -2.0

 See Also

ceil() (expsim)

Note
The function name floor() is used for more than one type of expression. For comparison, see the
Measurement Expression floor() Measurement (expmeas) and the AEL Function floor() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 fmod()

Returns the remainder of the division as a real number

 Syntax

fmod(a, b)

 Arguments

Name Description Default Range Type Required

a dividend None (-
∞:∞)

Integer,
real

Yes

b divisor None (-
∞:∞)

Integer,
real

Yes

 Examples

fmodV=fmod(1.2, 0.31) returns 0.27

 See Also

rem() (expsim)

Note
The function name fmod() is used for more than one type of expression. For comparison, see the
Measurement Expression fmod() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 ftoc()

Simulator Expressions

71

Converts Fahrenheit to Celsius and returns a real number

 Syntax

ftoc(Value)

 Arguments

Name Description Default Range Type Required

Value value in
Fahrenheit

None (-
∞:∞)

Real Yes

 Examples

ftocV=ftoc(32) returns 0

 See Also

ctof() (expsim), ktoc() (expsim)
 ftok()

Converts Fahrenheit to Kelvin and returns a real number

 Syntax

ftok(Value)

 Arguments

Name Description Default Range Type Required

Value value to convert in
Fahrenheit

None (-
∞:∞)

Real Yes

 Examples

ftokV=ftok(32) returns 273.15

 See Also

ctok() (expsim), ktof() (expsim)
 hypot()

Returns the hypotenuse as a real or complex number

 Syntax

hypot(x, y)

 Arguments

Simulator Expressions

72

Name Description Default Range Type Required

x x value None (-
∞:∞)

Integer, real, complex Yes

y y value None (-
∞:∞)

Integer, real, complex Yes

 Examples

hypotV=hypot(1,2) returns 2.236

hypotCV=hypot(1+j*0.2,2-j*1.1) returns 2.342/-23.424

Note
The function name hypot() is used for more than one type of expression. For comparison, see the
Measurement Expression hypot() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 imag()

Returns the imaginary part of a complex number as a real number

 Syntax

imag(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

imagV=imag(1+j*2) returns 2.0

 See Also

complex() (expsim), real() (expsim)

Note
The function name imag() is used for more than one type of expression. For comparison, see the
Measurement Expression imag() Measurement (expmeas) and the AEL Function imag() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 int()

Converts to integer number

 Syntax

int(x)

Simulator Expressions

73

 Arguments

Name Description Default Range Type Required

x integer or real number to convert None (∞:∞) Integer,
real

Yes

 Examples

intV=int(2.3) returns 2

 See Also

abs() (expsim), exp() (expsim), log10() (expsim), pow() (expsim), sgn() (expsim), sqrt()
(expsim)

Note
The function name int() is used for more than one type of expression. For comparison, see the
Measurement Expression int() Measurement (expmeas) and the AEL Function int() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 itob()

Converts integer to binary and returns a string

 Syntax

itob(IntegerValue, NumberBits)

 Arguments

Name Description Default Range Type Required

IntegerValue Integer to convert to binary int(log(IntegerValue)/log(2)) (-
∞:∞)

Integer Yes

NumberBits Number of bits None [1:∞) Integer No

 Examples

itobV=itob(27) returns "11011"

 See Also

bin() (expsim)
 jn()

Computes the bessel function of the first kind and returns a real number.

 Syntax

jn(n, x)

Simulator Expressions

74

 Arguments

Name Description Default Range Type Required

n Order None [0:∞) Integer, Real Yes

x Value None (-
∞:∞)

Integer, Real Yes

 Examples

j0_15 = jn(0,15) returns -0.014

j10_15 = jn(10, 15) returns -0.09

Note
The function name jn() is used for more than one type of expression. For comparison, see the
Measurement Expression jn() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 ktoc()

Converts Kelvin to Celsius and returns a real number

 Syntax

ktoc(Value)

 Arguments

Name Description Default Range Type Required

Value Value in
Kelvin

None (-
∞:∞)

Real Yes

 Examples

ktocV=ktoc(212) returns -61.15

 See Also

ctok() (expsim), ftoc() (expsim)
 ktof()

Converts Kelvin to Fahrenheit and returns a real number

 Syntax

ktof(Value)

 Arguments

Name Description Default Range Type Required

Value value to convert in
Kelvin

None (-
∞:∞)

Real Yes

Simulator Expressions

75

 Examples

ktofV=ktof(273.15) returns 32.00

 See Also

ctof() (expsim), ftok() (expsim)
 ln()

Returns the natural log as an integer, real or complex

 Syntax

ln(x)

 Arguments

Name Description Default Range Type Required

x integer, real, complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

lnV=ln(100) returns 4.605

ln2V=ln(-100) returns 5.575/34.301

lnCV=ln(0.3-j*0.9) returns 1.25/-92.415

 See Also

log() (expsim), log10() (expsim)

Note
The function name ln() is used for more than one type of expression. For comparison, see the
Measurement Expression ln() Measurement (expmeas) and the AEL Function ln() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 log10()

Returns the log to base 10 as an real or complex number

 Syntax

log10(x)

 Arguments

Simulator Expressions

76

Name Description Default Range Type Required

x real or complex
number

None (-
∞:∞)

Real,
complex

Yes

 Examples

log10V=log10(100) returns 2.0

log10V=log10(-100) returns 2.421/34.301

log10CV=log10(1+j*0.9) returns 0.343/67.961

 See Also

ln() (expsim), log() (expsim)

Note
The function name log10() is used for more than one type of expression. For comparison, see the
Measurement Expression log10() Measurement (expmeas) and the AEL Function log10() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 log()

Returns the log to base 10 as a real or complex number

 Syntax

log(x)

 Arguments

Name Description Default Range Type Required

x real or complex
number

None (-
∞:∞)

Real,
complex

Yes

 Examples

logV=log(100) returns 2.0

log1V=log(-100) returns 2.421/34.301

logCV=log(1+j*0.9) returns 0.343/67.961

 See Also

ln() (expsim), log10() (expsim)

Note
The function name log() is used for more than one type of expression. For comparison, see the
Measurement Expression log() Measurement (expmeas) and the AEL Function log() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

Simulator Expressions

77

 mag()

Returns the magnitude of a complex number

 Syntax

mag(x)

 Arguments

Name Description Default Range Type Required

x number to find the
magnitude

None (-
∞:∞)

Complex, or an array of
complex

Yes

 Examples

magRV=mag(-0.3) returns 0.3

magCV=mag(0.3-j*0.4) returns 0.5

magRVA=mag(list(-0.3,-0.4)) returns list(0.3,0.4)

magCVA=mag(list(-0.3-j*0.4,-0.3+j*0.4)) returns list(0.5,0.5)

 See Also

abs() (expsim), conj() (expsim)

Note
The function name mag() is used for more than one type of expression. For comparison, see the
Measurement Expression mag() Measurement (expmeas) and the AEL Function mag() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 max()

Returns the maximum of two numbers as a real number

 Syntax

max(x, y)

 Arguments

Name Description Default Range Type Required

x first number None (-
∞:∞)

Integer,
real

Yes

y second number None (-
∞:∞)

Integer,
real

Yes

 Examples

maxV=max(1,2) returns 2.0

Simulator Expressions

78

 See Also

min() (expsim)

Note
The function name max() is used for more than one type of expression. For comparison, see the
Measurement Expression max() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 min()

Returns the minimum of two numbers as a real number

 Syntax

min(x, y)

 Arguments

Name Description Default Range Type Required

x first number None (-
∞:∞)

Integer,
real

Yes

y second number None (-
∞:∞)

Integer,
real

Yes

 Examples

minV=min(1,2) returns 1.0

 See Also

max() (expsim)

Note
The function name min() is used for more than one type of expression. For comparison, see the
Measurement Expression min() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 phase()

Returns the phase in degrees as a real number

 Syntax

phase(x)

 Arguments

Name Description Default Range Type Required

x number to find the
phase

None (-
∞:∞)

Integer, real, complex Yes

Simulator Expressions

79

 Examples

phaseV=phase(1+j*2) returns 64.435

 See Also

phasedeg() (expsim), phaserad() (expsim)

Note
The function name phase() is used for more than one type of expression. For comparison, see the
Measurement Expression phase() Measurement (expmeas) and the AEL Function phase() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 phasedeg()

Returns the phase in degrees as a real number

 Syntax

phasedeg(x)

 Arguments

Name Description Default Range Type Required

x number to find the
phase

None (-
∞:∞)

Integer, real, complex Yes

 Examples

phasedegV=phasedeg(1+j*2) returns 64.435

 See Also

phase() (expsim), phaserad() (expsim)

Note
The function name phasedeg() is used for more than one type of expression. For comparison, see the
Measurement Expression phasedeg() Measurement (expmeas) and the AEL Function phasedeg() Function
(ael). Also, for more information on the different expression types and the contexts in which they are
used, see Duplicated Expression Names (expmeas).

 phaserad()

Returns phase to radians as a real number

 Syntax

phaserad(x)

Simulator Expressions

80

 Arguments

Name Description Default Range Type Required

x number to find the
phase

None (-
∞:∞)

Integer, real, complex Yes

 Examples

phaseradV=phaserad(1+j*2) returns 1.107

 See Also

phase() (expsim), phasedeg() (expsim)

Note
The function name phaserad() is used for more than one type of expression. For comparison, see the
Measurement Expression phaserad() Measurement (expmeas) and the AEL Function phaserad() Function
(ael). Also, for more information on the different expression types and the contexts in which they are
used, see Duplicated Expression Names (expmeas).

 phasewrap()

Returns wrapped phase value in range [0,360) or [0,2*PI) when supplied raw phase
value.

 Syntax

wrappedPhase = phasewrap(rawPhase, unitString) where unitString={"deg","rad"} is
optional.

 Arguments

Name Description Default Range Type Required

rawPhase user supplied phase value NONE (-∞:∞) Integer, Real Yes

unitString optional user-identified phase unit "deg" {"deg", "rad"} String No

 Examples

phasewrap(-95) evaluates to phasewrap(360-95) = 265 degrees

phasewrap(390) evaluates to phasewrap(30) = 30 degrees

phasewrap(x, "deg") = phasewrap(x)

phasewrap(-0.5*pi, "rad") evaluates to 1.5*pi in radians

phasewrap(3.5*pi, "rad") evaluates to 1.5*pi in radians

 Notes / Equations

This function can handle only scalar phase value rawPhase .1.
The closest reverse function is measurement expression unwrap () which unravels a2.

Simulator Expressions

81

vector of wrapped phases relative to a reference phase value.
 polar()

Builds a complex number from magnitude and angle (in degrees)

 Syntax

polar(x, y)

 Arguments

Name Description Default Range Type Required

x magnitude part of the complex number None (-
∞:∞)

Integer,
real

Yes

y phase part of the complex number in
degrees

None (-
∞:∞)

Integer,
real

Yes

 Examples

polarV=polar(1, 90) returns 1/90

 See Also

complex() (expsim)

Note
The function name polar() is used for more than one type of expression. For comparison, see the
Measurement Expression polar() Measurement (expmeas) and the AEL Function polar() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 polarcpx()

Polar to rectangular conversion function

 Syntax

polarcpx(Number, Convert)

 Arguments

Name Description Default Range Type Required

Number Number or array to convert None (-
∞:∞)

Integer, real, complex, array Yes

Convert Converts result to real (for integer, real) 0 [0:1] Integer No

 Examples

y=polarcpx(polar(1,90)) returns 3.308e-17 + j*5.153e-17

y=polarcpx(makearray(2,polar(1,90),polar(2,90))) returns (3.308e-17, 5.153e-

17), (-5.096e-17, 1.113e-16)

Simulator Expressions

82

 See Also

polar() (expsim)
 pow()

Calculates the power and returns x**y as an integer, real or complex number.

 Syntax

pow(x, y)

 Arguments

Name Description Default Range Type Required

x Integer or real number None (-
∞:∞)

Integer, real, complex Yes

y exponent of the number None (-
∞:∞)

Integer, real, complex Yes

 Examples

powI=pow(10, 3) returns 1000.0

powC=pow(1+j*2,3+j*3) returns 0.404/-31.374

 See Also

abs() (expsim), exp() (expsim), int() (expsim), log10() (expsim), sgn() (expsim), sqrt()
(expsim)

 Notes

For very large parameter values, pow() converts integers to real numbers, and1.
returns a real number.

Note
The function name pow() is used for more than one type of expression. For comparison, see the
Measurement Expression pow() Measurement (expmeas) and the AEL Function pow() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 rad()

Converts degree to radian and returns integer or real number.

 Syntax

rad(x)

 Arguments

Simulator Expressions

83

Name Description Default Range Type Required

x integer or real number to convert in
degrees

None (-
∞:∞)

Integer,
real

Yes

 Examples

radV=rad(180) returns 3.142

 See Also

deg() (expsim)

Note
The function name rad() is used for more than one type of expression. For comparison, see the
Measurement Expression rad() Measurement (expmeas) and the AEL Function rad() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 real()

Returns the real part as a real number

 Syntax

real(x)

 Arguments

Name Description Default Range Type Required

x number to find the real part None (-
∞:∞)

Integer, real, complex Yes

 Examples

realV=real(1+j*2) returns 1.0

 See Also

complex() (expsim), imag() (expsim)

Note
The function name real() is used for more than one type of expression. For comparison, see the
Measurement Expression real() Measurement (expmeas) and the AEL Function real() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 rem()

Returns the remainder of the division of 2 numbers as a real number

 Syntax

Simulator Expressions

84

 Syntax

rem(x1, x2)

 Arguments

Name Description Default Range Type Required

x1 dividend None (-
∞:∞)

Integer, real, complex Yes

x2 divisor 1 (-
∞:∞)

Integer, real, complex No

 Examples

remV=rem(100, 2.3) returns 1.1

remV=rem(1) returns 1

remCV=rem(1+j*0.2, 10) returns 1.02

 See Also

fmod() (expsim)
 sgn()

Returns the signum value as an integer, real or complex number

 Syntax

sgn(x)

 Arguments

Name Description Default Range Type Required

x Integer, real, complex value None (-
∞:∞)

Integer, real, complex Yes

 Examples

sgnV=sgn(100) returns 1.0

sgnV=sgn(-0.3) returns -1.0

 See Also

abs() (expsim), exp() (expsim), int() (expsim), log10() (expsim), pow() (expsim), sqrt()
(expsim)

Simulator Expressions

85

Note
The function name sgn() is used for more than one type of expression. For comparison, see the
Measurement Expression sgn() Measurement (expmeas) and the AEL Function sgn() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 sin()

Returns the sine as an integer, real or complex number.

 Syntax

sin(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

sinRV=sin(pi) returns 1.225e-16

sinRV=sin(-pi/2) returns -1

sinCV=sin(1+j*0.4) returns 0.936/13.71

 See Also

cos() (expsim), tan() (expsim)

Note
The function name sin() is used for more than one type of expression. For comparison, see the
Measurement Expression sin() Measurement (expmeas) and the AEL Function sin() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 sinc()

Returns the sinc - sin(x)/x value of an integer or real number

 Syntax

sinc(x)

 Arguments

Name Description Default Range Type Required

x value to find sinc None (-
∞:∞)

Integer,
real

Yes

 Examples

y=sinc(pi/2) returns 0.637

Simulator Expressions

86

 See Also

sin() (expsim)

Note
The function name sinc() is used for more than one type of expression. For comparison, see the
Measurement Expression sinc() Measurement (expmeas) and the AEL Function sinc() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 sinh()

Returns the hyperbolic sine as an integer, real or complex number

 Syntax

sinh(x)

 Arguments

Name Description Default Range Type Required

x integer, real, or complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

sinhV=sinh(0.8) returns 0.888

sinhV=sinh(-0.5) returns -0.521

sinhCV=sinh(0.8+j*0.5) returns 1.238/29.037

 See Also

cosh() (expsim), tanh() (expsim)

Note
The function name sinh() is used for more than one type of expression. For comparison, see the
Measurement Expression sinh() Measurement (expmeas) and the AEL Function sinh() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 spectrum()

Returns the spectrum as a complex array

 Syntax

spectrum(function(0), NumPoints, Period, Delay, Window)

 Arguments

Simulator Expressions

87

Name Description Default Range Type Required

function(0) Function with a single argument None None function Yes

NumPoints Number of points None [0:∞) Integer, real Yes

Period Time step period None [0:∞) Integer, real Yes

Delay Delay 0 [0:∞) Integer, real No

Window Specifies if windowing is to be applied 0 [0:1] Integer, Real No

 Examples

Creates a spectrum:

fCos(x) = cos_pulse(x, 0, 2, 0, 100ps, 100ps, 200ps, 400ps)

specV = spectrum(fCos(time), 128, 400ps)

 sqrt()

Returns the square root as an integer, real or complex number

 Syntax

sqrt(x)

 Arguments

Name Description Default Range Type Required

x integer, real, complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

sqrtV=sqrt(100) returns 10

sqrtCV=sqrt(0.1+j*0.3) returns 0.562/35.783

 See Also

abs() (expsim), exp() (expsim), int() (expsim), log10() (expsim), pow() (expsim), sgn()
(expsim)

Note
The function name sqrt() is used for more than one type of expression. For comparison, see the
Measurement Expression sqrt() Measurement (expmeas) and the AEL Function sqrt() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 sum()

Returns the sum of values in an array

 Syntax

sum(x)

 Arguments

Simulator Expressions

88

Name Description Default Range Type Required

x array to sum None (-
∞:∞)

Array of integer, real, or
complex

Yes

 Examples

sumV=sum(list(1,2,3)) returns 6

 See Also

max() (expsim), min() (expsim)

Note
The function name sum() is used for more than one type of expression. For comparison, see the Simulator
Expression sum() Expression (expsim). Also, for more information on the different expression types and
the contexts in which they are used, see Duplicated Expression Names (expmeas).

 tan()

Returns the tangent as an integer, real or complex number.

 Syntax

tan(x)

 Arguments

Name Description Default Range Type Required

x integer, real or complex
number

None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

tanRV=tan(pi) returns 0

tanRV=tan(-pi/4) returns -1

tanCV=tan(0.5-j*0.5) returns 0.694/-54.396

 See Also

cos() (expsim), sin() (expsim)

Note
The function name tan() is used for more than one type of expression. For comparison, see the
Measurement Expression tan() Measurement (expmeas) and the AEL Function tan() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 tanh()

Returns the hyperbolic tangent as an integer, real or complex number

 Syntax

Simulator Expressions

89

 Syntax

tanh(x)

 Arguments

Name Description Default Range Type Required

x integer, real, or complex
number

None (-
∞:∞)

Integer, real, complex Yes

 Examples

tanhV=tanh(0.8) returns 0.664

tanhV=tanh(-0.5) returns -0.462

tanhCV=tanh(0.8+j*0.5) returns 0.694/-35.604

 See Also

cosh() (expsim), sinh() (expsim)

Note
The function name tanh() is used for more than one type of expression. For comparison, see the
Measurement Expression tanh() Measurement (expmeas) and the AEL Function tanh() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 wtodbm()

Converts Watts to dBm and returns a real or complex number

 Syntax

dbmVal = wtodbm(Value)

 Arguments

Name Description Default Range Type Required

Value Value in
Watts

None (-
∞:∞)

Real, Complex Yes

 Examples

wtodbm01_V=wtodbm(0.01) returns 10

wtodbm1_V=wtodbm(1) returns 30

wtodbmC_V=wtodbm(complex(10,2)) returns 40.094/1.225

 See Also

db() Expression (expsim), dbm() Expression (expsim), dbmtoa() (expsim), dbmtov()
(expsim), dbmtow() Expression (expsim), dbpolar() (expsim), dbwtow() (expsim)

Simulator Expressions

90

 Notes/Equations

This function converts Watts to dBm using the formula below:

Note
The function name wtodbm() is used for more than one type of expression. For comparison, see the
Measurement Expression wtodbm() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

Simulator Expressions

91

 S-Parameter Analysis Functions for Simulator
Expressions
This section describes the S-parameter functions in detail.

ripple() Expression (expsim)
vswrpolar() (expsim)

 ripple()

Calculates the ripple as amplitude*sin(2.PI(variable-intercept)/period)

 Syntax

y = ripple(amplitude, intercept, period, variable)

 Arguments

Name Description Default Range Type Required

amplitude Amplitude of the ripple None (-
∞:∞)

Integer,
real

Yes

intercept intercept of the ripple None (-
∞:∞)

Integer,
real

Yes

period Period of the waveform None (0:∞) Integer,
real

Yes

variable ripple variable None (-
∞:∞)

Integer,
real

Yes

 Examples

y = ripple(0.1, 0, 10 MHz, freq)

yS21 = dbpolar(10 + ripple(0.1, 0, 10 MHz, freq), 0)

 Notes/Equations

This function calculates the ripple as:

Note
The function name ripple() is used for more than one type of expression. For comparison, see the
Measurement Expression ripple() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 vswrpolar()

(VSWR,angle)-to-rectangular conversion function

 Syntax

Simulator Expressions

92

vswrpolar(VSWR, Angle)

 Arguments

Name Description Default Range Type Required

VSWR VSWR value None (-∞:∞) Real Yes

Angle Angle to
convert

None [-360:360] Real Yes

 Examples

vswr = 1.99

value = vswrpolar(vswr, 1.72) returns 0.333+j0.01

 See Also

dbpolar() (expsim)

 Notes/Equations

The vswrpolar() function converts the VSWR, angle to rectangular format.
vswrpolar is calculated as follows:

Simulator Expressions

93

 Transient Source Functions
There are several built-in functions that mimic SPICE transient sources. These functions
are typically used with the vt parameter of the voltage source, and the it parameter of the
current source. This section describes the transient source functions in detail. The
functions are listed in alphabetical order.

bitseq() (expsim)
cos pulse() (expsim)
damped sin() (expsim)
erf pulse() (expsim)
exp pulse() (expsim)
impulse() (expsim)
lfsr() (expsim)
pulse() (expsim)
pwl() (expsim)
pwlr() (expsim)
ramp() (expsim)
rect() (expsim)
sffm() (expsim)
step() Expression (expsim)

 bitseq()

Returns the bit sequence at specified time point as a real number

 Syntax

bitseq(time, ClockFreq, Rise, Fall, Vlow, Vhigh, BitSeq)

 Arguments

Name Description Default Range Type Required

time program variable time None [0:∞) Real Yes

ClockFreq Clock frequency of the signal Fstop † (0:∞) Real No

Rise Rise time of pulse Tstep † † [0:∞) Real No

Fall Fall time of pulse Tstep † † [0:∞) Real No

Vlow Minimum voltage level 0 V (-∞:∞) Real No

Vhigh Maximum voltage level 1 V (-∞:∞) Real No

BitSeq Bit sequence "1101010100101" [0:1] † †
†

String No

† Fstop is 1/Transient StopTime or 1/Envelope Stop
† † Tstep is Transient MaxTimeStep or Envelope Step
† † † sequence of 0s and 1s

 Examples

This example assumes that a transient simulation is performed using:

Simulator Expressions

94

StartTime = 0, StopTime = 2*BitPeriod*NumBits,

MaxTimeStep = BitPeriod*NumBits/pow(2,NumBits)

where: BitRate = 500MHz, BitPeriod = 1/BitRate, NumBits = length(BitSeq)-1,

BitSeq = "110101110011"

This expression creates a bit sequence which repeats every 24 nsec:

value = bitseq(time, BitRate, 0.1nsec, 0.1nsec, 0, 5, BitSeq)

 Notes/Equations

The bitseq() function can be used to vary the waveform of a pulse, an arbitrary bit pattern
such a 110101110011. When the end of the sequence is reached, the sequence is
repeated.

The transient stop time (Tstop) should be exactly one bit cycle for good results. For the
example given above, BitPeriod=1/BitRate = 1/500MHz = 2nsec . For
BitSeq="110101110011", Tstop=NumBits * BitRate = 12bits * 2nsec = 24 nsec .

 Figure: The bitseq() Function

 cos_pulse()

Returns the periodic cosine shaped pulse value at time, as a real number

 Syntax

cos_pulse(time, Low, High, Delay, Rise, Fall, Width, Period)

Simulator Expressions

95

 Arguments

Name Description Default Range Type Required

time program time
variable

None [0:∞) Real Yes

Low initial value 0 (-∞:∞) Real No

High peak value 1 (-∞:∞) Real No

Delay delay time 0 [0:∞) Real No

Rise rise time Tstep † [0:∞) Real No

Fall fall time Tstep † [0:∞) Real No

Width pulse width Tstop †
†

(0:∞) Real No

Period pulse period Tstop †
†

[Width+Rise+Fall:∞) Real No

† Where Tstep is Transient MaxTimeStep or Envelope Step
† † Where Tstop is StopTime or Envelope Stop

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 3ns, MaxTimeStep = 50ps

This expression creates cosine-shaped pulses, repeating periodically, at

1.

every 400ps up to 3ns:

Vcos = cos_pulse(time, 0, 2, 0, 100ps, 100ps, 200ps, 400ps)

This expression creates a single cosine-shaped pulse using default values

2.

for the arguments not listed in the function:

Vcos_default = cos_pulse(time)

Low=0, High=1, Delay=0, Rise=50ps, Fall=50ps, Width=3ns, Period=3ns

 See Also

pulse() (expsim), exp_pulse() (expsim), erf_pulse() (expsim), damped_sin() (expsim),
pwl() (expsim), pwlr() (expsim)

 Notes/Equations

This expression can be used to create a current or voltage cosine-shaped pulse using the
ItUserDef or VtUserDef time domain sources. Alternately, the built-in time domain current
or voltage source component, ItPulse or VtPulse can be used and setting Edge=cosine.

The slope change is not abrupt and its frequency spectrum decreases more rapidly. The
rise and fall time define the total transition period and the maximum slope is greater than
(High-Low)/Rise.

Simulator Expressions

96

The output value is calculated as follows:

 Figure: The cos_pulse() Function

 damped_sin()

Returns the damped sin value at time point as a real number

 Syntax

damped_sin(time, Offset, Amplitude, Freq, Delay, Damping, Phase)

 Arguments

Simulator Expressions

97

Name Description Default Range Type Required

time program time variable None (0:∞) Real Yes

Offset initial offset 0.0 (-
∞:∞)

Real No

Amplitude amplitude of sinusoidal wave 1.0 (-
∞:∞)

Real No

Freq frequency of sinusoidal wave Fstop † (0:∞) Real No

Delay time delay 0.0 [0:∞) Real No

Damping damping factor in Hertz 0.0 (-
∞:∞)

Real No

Phase initial phase value in
degrees

0.0 (-
∞:∞)

Real No

† Fstop is 1/(Transient StopTime or Envelope Stop)

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 3ns, MaxTimeStep = 50ps

This expression creates a damped sine pulse repeating periodically every

1.

1ns:

DsineValue = damped_sin(time, 0, 2, 1e9, 0.05, 0.5, 0)

This expression creates one damped sine pulse using default values for the

2.

arguments not listed in the function:

DsineValue = damped_sin(time)

Offset=0, Amplitude=1, Freq=1/3ns, Delay=0.0, Damping=0.0, Phase=0

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 10ns, MaxTimeStep = 10ps

DsineValue=damped_sin(time, 0.5 V, 2 V, 1.2 GHz, 0.8 ns, 0.2 GHz, 15 _deg)

The output of this example is shown in Example damped_sin() Output below.

 See Also

cos_pulse() (expsim), erf_pulse() (expsim), exp_pulse() (expsim), pulse() (expsim), pwl()
(expsim), pwlr() (expsim), ramp() (expsim), step() (expsim)

 Notes/Equations

This expression creates a time-periodic sinusoidal waveform at a specified frequency and
phase, including turn-on characteristics. It can be used to create a current or voltage
damped sinusoidal wave using the ItUserDef or VtUserDef time domain sources.
Alternately, the built-in time domain current or voltage source component, ItSine or
VtSine can be used.
The output is calculated as follows:

Simulator Expressions

98

 Figure: Example damped_sin() Output

 erf_pulse()

Returns the periodic error function shaped pulse at specified time point as a real number

 Syntax

erf_pulse(time, Low, High, Delay, Rise, Fall, Width, Period)

 Arguments

Simulator Expressions

99

Name Description Default Range Type Required

time program time
variable

None [0:∞) Real Yes

Low initial value 0 (-∞:∞) Real No

High peak value 1 (-∞:∞) Real No

Delay delay time 0 [0:∞) Real No

Rise rise time Tstep † [0:∞) Real No

Fall fall time Tstep † [0:∞) Real No

Width pulse width Tstop †
†

(0:∞) Real No

Period pulse period Tstop †
†

[Width+Rise+Fall:∞) Real No

† Where Tstep is Transient MaxTimeStep or Envelope Step
† † Where Tstop is StopTime or Envelope Stop

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 3ns, MaxTimeStep = 50ps

This expression creates an error function repeating periodically at every

1.

400ps:

value = erf_pulse(time, 0, 2, 0, 100ps, 100ps, 200ps, 400ps)

This expression creates an error function using default values for the

2.

arguments not listed in the function:

value = erf_pulse(time)

Low=0, High=1, Delay=0, Rise=50ps, Fall=50ps, Width=3ns, Period=3ns

 See Also

cos_pulse() (expsim), damped_sin() (expsim), exp_pulse() (expsim), pulse() (expsim),
pwl() (expsim), pwlr() (expsim), ramp() (expsim), step() (expsim)

 Notes/Equations

This function creates a time-periodic, error function shaped, rising and falling edged pulse
train. For example it can be used to create a current or voltage error function shaped
pulse using the ItUserDef or VtUserDef time domain sources. Alternately, the built-in time
domain current or voltage source component, ItPulse or VtPulse can be used and setting
Edge=erf. The slope change is not abrupt, and its frequency spectrum decreases more
rapidly. The rise and fall time define the total transition period and the maximum slope is
greater than (High-Low)/Rise.

 Figure: The erf_pulse() Function

Simulator Expressions

100

 Figure: The erf_pulse() Function

 exp_pulse()

Exponential pulse function

 Syntax

exp_pulse(time, Low, High, Delay1, Tau1, Delay2, Tau2)

 Arguments

Name Description Default Range Type Required

time program time
variable

None [0:∞) Real Yes

Low initial value 0 (-
∞:∞)

Real No

High peak value 1 (-
∞:∞)

Real No

Delay1 rise time delay 0 [0:∞) Real No

Tau1 rise time constant Tstep † [0:∞) Real No

Delay2 fall time delay delay1 + Tstep † [0:∞) Real No

Tau2 rise time constant Tstep † [0:∞) Real No

† Where Tstep is Transient MaxTimeStep or Envelope Step

Simulator Expressions

101

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 3ns, MaxTimeStep = 50ps

This expression creates an exponential pulse:

1.

value = exp_pulse(time, 0, 2, 50ps, 50ps, 100ps, 50ps)

This expression creates an exponential pulse using default values for the

2.

arguments not listed in the function:

value = exp_pulse(time)

Low=0, High=1, Delay1=0, Tau1=50ps, Delay2=50ps, Tau2=50ps

 See Also

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), pulse() (expsim),
pwl() (expsim), pwlr() (expsim), ramp() (expsim), step() (expsim)

 Notes/Equations

This expression can be used to create an exponential pulse. For example it can be used to
create a current or voltage exponential decay signal using the ItUserDef or VtUserDef time
domain sources. Alternately, the built-in time domain current or voltage source
component, ItExp or VtExp can be used.
If Tau1 or Tau2 = 0, it is replaced by MaxTimeStep in transient simulation or Step in
envelope simulation.

 Figure: The exp_pulse() Function

Simulator Expressions

102

 impulse()

Computes the impulse response and returns a complex array

 Syntax

impulse(CpxFunction(0), NumPoints, TimeStep, CnterFreq, Window)

 Arguments

Name Description Default Range Type Required

CpxFunction(0) Function with a single argument None None Function Yes

NumPoints number of points None [0:∞) Integer, Real Yes

TimeStep Time Step 0.0 (0:∞) Integer, Real Yes

CenterFreq Center frequency 0.0 † [0:∞) Integer, Real No

Window Specifies if window is to be applied 0 † [0:1] Integer, Real No

† by default response is assumed to be baseband and no window applied.

 Examples

Create a baseband response:

f(x) = exp(-j*2*pi*x*2ns)/2 + exp(-j*2*pi*x*5ns)/(1+j*2*pi*x*20ns)

imp = impulse(f(0), 128, 1ns)

Creates a RF response:

frect(x) = rect(x, 1GHz, 0.02/1ns) * exp(-j*2*pi*x*128ns)

imp = impulse(frect(0), 256, 1ns, 1GHz)

Simulator Expressions

103

 Notes/Equations

The impulse() function does nothing about potential non-causal responses. The1.
function simply returns the entire inverse transformed waveform as being a long
positive time only impulse.
The number of points is rounded up to the next power of 2, in order to apply an FFT.2.

 lfsr()

Returns a string containing the complete sequence

 Syntax

lfsr(Taps, Seed)

 Arguments

Name Description Default Range Type Required

Taps Used to generate feedback. None [0:LARGEST_LONG_INTEGER]
†

Integer,
real

Yes

Seed Initial value loaded into the shift
regsiter.

None [0:LARGEST_LONG_INTEGER]
†

Integer,
real

Yes

† LARGEST_LONG_INTEGER is 2147483647

 Notes/Equations

For more information on lfsr, refer to the VtLFSR_DT (Voltage Source, Pseudo-Random
Pulse Train Defined at Discrete Time Steps) in Sources found in the Components section of
your documentation.
 pulse()

Periodic pulse function

 Syntax

pulse(time, Low, High, Delay, Rise, Fall, Width, Period)

 Arguments

Simulator Expressions

104

Name Description Default Range Type Required

time program time
variable

None [0:∞) Real Yes

Low initial value 0 (-∞:∞) Real No

High peak value 1 (-∞:∞) Real No

Delay delay time 0 [0:∞) Real No

Rise rise time Tstep † [0:∞) Real No

Fall fall time Tstep † [0:∞) Real No

Width pulse width Tstop †
†

(0:∞) Real No

Period pulse period Tstop †
†

[Width+Rise+Fall:∞) Real No

† Where Tstep is Transient MaxTimeStep or Envelope Step
† † Where Tstop is StopTime or Envelope Stop

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 3ns, MaxTimeStep = 50ps

This expression creates a pulse repeating periodically at every 400ps:

1.

value = pulse(time, 0, 2, 50ps, 100ps, 100ps, 200ps, 400ps)

2.

This expression creates a pulse using default values for the arguments not

3.

listed in the function:

value = pulse(time)

Low=0, High=1, Delay=0, Rise=50ps, Fall=50ps, Width=3ns, Period=3ns

 See Also

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), exp_pulse()
(expsim), pwl() (expsim), pwlr() (expsim), ramp() (expsim), step() (expsim)

 Notes/Equations

This function creates a time-periodic linear ramp-shaped rising and falling edged pulse
train. For example it can be used to create a current or voltage ramp-shaped pulse using
the ItUserDef or VtUserDef time domain sources. Alternately, the built-in time domain
current or voltage source component, ItPulse or VtPulse can be used and setting
Edge=linear.

 Figure: The pulse() function

Simulator Expressions

105

 pwl()

Piecewise-linear function

 Syntax

pwl(time, T1, V1, T2, V2, ..., TN, VN)

 Arguments

Name Description Default Range Type Required

time program time variable None (0:∞) Real Yes

T1, T2, ..., TN time points None (0:∞) Real Yes

V1, V2, ...,
VN

value at time points T1, T2, ..., TN None (-
∞:∞)

Real Yes

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 100ns, MaxTimeStep = 50ps

This expression creates a single piecewise linear pulse:

value = pwl(time, 0ns, 0V, 5ns, 1V, 10ns, 2V, 20ns, 0V, 30ns, 1.5V)

 See Also

Simulator Expressions

106

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), exp_pulse()
(expsim), pulse() (expsim), pwlr() (expsim), ramp() (expsim), step() (expsim)

 Notes/Equations

This expression creates a time-periodic piecewise linear pulse train. It can be used to
create a current or voltage pwl pulse using the ItUserDef or VtUserDef time domain
sources. Alternately, the built-in time domain current or voltage source component, ItPwl
or VtPwl can be used.
The piecewise linear values versus time points are specified as (Ti, Vi) pairs. A minimum
of one time-value pair should be specified. Each pair specifies a value for a time=Ti. The
intermediate values at time points that are not specified are interpolated.
The output is calculated as follows:

 Figure: The pwl() Function

 pwlr()

Simulator Expressions

107

Piecewise-linear repeated function

 Syntax

pwl(time, Ncycles, T1, V1, T2, V2, ..., Tn, Vn)

 Arguments

Name Description Default Range Type Required

time program time variable None (0:∞) Real Yes

Ncycles number of cycles that waveform is to be repeated 1 [1:∞) Integer Yes

T1, T2, ..., Tn † time points None (0:∞) Real Yes

V1, V2, ..., Vn † value at time points t1, t2, ..., tn None (-
∞:∞)

Real Yes

† a minimum of one time-value pair should be specified

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 200ns, MaxTimeStep = 50ps

This expression creates a time-periodic piecewise linear pulse repeating every

30ns:

value = pwlr(time, 5, 0ns, 0V, 5ns, 1V, 10ns, 2V, 20ns, 0V, 30ns, 1.5V)

 See Also

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), exp_pulse()
(expsim), pulse() (expsim), pwl() (expsim), ramp() (expsim), step() (expsim)

 Notes/Equations

This expression creates a time-periodic piecewise linear pulse train, which is repeated for
specified number of cycles. It can be used to create a current or voltage pwl pulse using
the ItUserDef or VtUserDef time domain sources. Alternately, the built-in time domain
current or voltage source component, ItPwl or VtPwl can be used.
The piecewise linear values versus time points are specified as (Ti, Vi) pairs. A minimum
of one time-value pair should be specified. Each pair specifies a value for a time=Ti. The
intermediate values at time points that are not specified are interpolated.
The output is calculated as follows:

 Figure: The pwlr() Function

Simulator Expressions

108

 ramp()

Ramp function

 Syntax

ramp(time)

 Arguments

Name Description Default Range Type Required

time program variable
time

0 [0:∞) Real Yes

 Examples

The following example assumes that a transient simulation was done with

StartTime=0, StopTime=3ns and MaxTimeStep=50ps.

value=ramp(time)

produces a ramp pulse with value equal 0 at time equal 0, and time at time > 0

Simulator Expressions

109

 See Also

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), exp_pulse()
(expsim), pulse() (expsim), pwl() (expsim), pwlr() (expsim), step() (ael)

 Notes/Equations

This expression creates a ramp function. It can be used to create a current or voltage
ramp wave using the ItUserDef or VtUserDef time domain sources.
The output is calculated as follows:

 Figure: The ramp() Function

 rect()

Rectangular pulse function

 Syntax

rect(x0, tc, td)

 Arguments

Simulator Expressions

110

Name Description Default Range Type Required

x0 program time or freq variable None [0:∞) Real Yes

tc center time None (-
∞:∞)

Real Yes

td duration None (-
∞:∞)

Real Yes

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 400ps, MaxTimeStep = 1ps

This expression produces a rectangular pulse:

value = rect(time, 100ps, 100ps)

 See Also

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), exp_pulse()
(expsim), pulse() (expsim), pwl() (expsim), pwlr() (expsim), ramp() (expsim)

 Notes/Equations

The function rect() creates a rectangular pulse of variable Time centered at time tc with
duration td. It can be used to create a current or voltage rectangular pulse using the
ItUserDef or VtUserDef time domain sources. Alternately it can be used in other
expressions.
The output is calculated as follows:
For td > 0:

For td< 0:

 Figure: The rect() Function

Simulator Expressions

111

 sffm()

Single frequency FM

 Syntax

sffm(time, Offset, Amplitude, CarrierFreq, ModIndex, SignalFreq)

 Arguments

Name Description Default Range Type Required

time Program variable time None [0:∞) Real Yes

Offset Offset 0.0 [0:∞) Real No

Amplitude Amplitude of signal 1.0 [0:∞) Real No

CarrierFreq Carrier Frequency 1/Tstop
†

[0:∞) Real No

ModIndex Modulation Index 0.0 [0:∞) Real No

SignalFreq Signal Frequency 1/Tstop
†

[0:∞) Real No

† Where Tstop is StopTime or Envelope Stop

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 3ns, MaxTimeStep = 50ps

Simulator Expressions

112

This expression creates SFFM pulses repeating periodically at every 1ns

1.

until 3ns:

Vsffm = sffm(time, 0, 2, 1GHz)

This expression creates a SFFM pulse using default values for the arguments

2.

not listed in the function:

Vsffm_default = sffm(time)

Offset=0, Amplitude=1, Carrier_freq=1/Tstop, Mod_Index=0.0,

Signal_freq=1/Tstop

 See Also

sffm() (expsim)

 Notes/Equations

The sffm() function voltage value is calculated as follows:

where fc is carrier frequency, and fs is signal frequency

 step()

Step function

 Syntax

step(time)

Simulator Expressions

113

 Arguments

Name Description Default Range Type Required

t program time
variable

None (-
∞:∞)

Integer,
real

Yes

 Examples

This example assumes that a transient simulation is performed using:

StartTime = 0, StopTime = 2ns, MaxTimeStep = 50ps

This expression produces a step pulse with value = 0.5 at time = 0, 1 at time >

0:

value = step(time - tau)

where tau = 1.0ns

 See Also

cos_pulse() (expsim), damped_sin() (expsim), erf_pulse() (expsim), exp_pulse()
(expsim), pulse() (expsim), pwl() (expsim), pwlr() (expsim), ramp() (expsim)

 Notes/Equations

This expression creates a step function. It can be used to create a current or voltage step
wave using the ItUserDef or VtUserDef time domain sources.
The output is calculated as follows:

 Figure: The step() Function

Simulator Expressions

114

Note
The function name step() is used for more than one type of expression. For comparison, see the
Measurement Expression step() Measurement (expmeas) and the AEL Function step() Function (ael). Also,
for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

Simulator Expressions

115

 Utility Functions for Simulator Expressions
This section describes the utility functions in detail. Utility Functions are used for activities
such as formatting, printing information to the status screen, etc. The functions are listed
in alphabetical order.

echo() (expsim)
gridSmithChart() (expsim)
limit warn() (expsim)
sprintf() Expression (expsim)
strcat() Expression (expsim)
value() (expsim)

 echo()

echo returns value of a string variable

 Syntax

echo(Value)

 Arguments

Name Description Default Range Type Required

Value Variable or value that is to be echoed None None Variable or
String

Yes

 Examples

sVal=value(10.23) returns real number as a string "10.23"

echoVal=echo(sVal) returns "10.23"

installDir=echo("$HPEESOF_DIR") returns the product installation directory

 See Also

value() (expsim), sprintf() (expsim)

 Notes/Equations

The echo function is used to echo a string argument to the terminal and returns it as a
value. It can specifically be used to echo System Environment variables such as HOME,
TMP, HPEESOF_DIR, etc. The returned string text can then be printed in the data display.
This function is similar to the Operating System echo function.in
 gridSmithChart()

Generates list of points on Smith Chart based on selected grid type and additional isolated
points.

 Syntax

Simulator Expressions

116

gridPts = gridSmithChart(numGridPts, [gridCenter], [gridRadius], [gridType], [extraPts])

 Arguments

Name Description Default Range Type Required

numGridPts Number of points
covering primary grid
area.

None 0:1000 Integer Yes

gridCenter Center of grid on Smith
Chart.

0 + j*0 [0:1.0] Complex No

gridRadius Radius of coverage on
Smith Chart from origin.

1.0 [0:1.0] Real No

gridType Type of grid coverage
required.

"Uniform" {"Uniform","Polar","Rectangular"} String No

extraPts Additional points explictly
required on grid.

None [0:1.0] Complex,
Real, Integer

No

 Examples

list1 = gridSmithChart(100) - lists 100 uniformly spaced points covering entire

Smith Chart.

list2 = gridSmithChart(100,0.20+j*0.15) - lists 100 uniformly spaced points

centered at (0.2,0.15)

list3 = gridSmithChart(100,,0.65) - lists 100 uniformly spaced points covering

the Smith Chart upto magnitude 0.65 from the origin.

list4 = gridSmithChart(100,,,"Polar") - lists 100 points in polar pattern

covering entire Smith Chart.

list5 = gridSmithChart(100,,,,makearray(2,polar(0.12,34)) - adds polar(0.12,34)

to the default grid.

 limit_warn()

Limits the value to default, mininimum or maximum value, issues a warning
and returns the limited value.

 Syntax

limit_warn(Parameter, MinValue, MaxValue, Default, Name)

 Arguments

Name Description Default Range Type Required

Parameter Parameter to be limited None (-∞:∞) Integer,
Real

No

MinValue minimum value for the
parameter

None [-LargestReal:LargestReal]
†

Integer,
Real

No

MaxValue maximum value for the
parameter

LargestReal [-LargestReal:LargestReal]
†

Integer,
Real

No

Default default value for the parameter -
LargestReal

(-∞:∞) Integer,
Real

No

Name name of parameter None None String No

† LargestReal = 1.79769313486231e+308

Simulator Expressions

117

 Examples

Let's assume that a circuit has a resistor R1. If the value of the resistor is

to be limited by a minimum value of 10 ohms, a maximum value of 49 ohms and a

default of 40 ohms, then it can be accomplished by setting the parameter R of

the resistor as:

Rval = 50

R = limit_warn(Rval, 10, 49, 30, "R1 value")

will display a warning "While evaluating expression `R1.R`: `R1 value limited

to 49`

 Notes/Equations

This function is used to limit the value of a parameter to a default, minimum or maximum
value. If the first parameter value is not set, then the value of the parameter is set to
Default .
If MinValue is set, and if the value of the parameter is less than the MinValue, then the
value is set to MinValue .
If MaxValue is set, and if the value of the parameter is greater than the MinValue, then
the value is set to MaxValue .
 sprintf()

Formatted print utility

 Syntax

sprintf(Format, Variable)

 Arguments

Name Description Default Range Type Required

Format Format of string in
C language syntax

None "%d,%f,%g,%e,%s,%c\\n
t"

String Text Yes

Variable Variable that is to
be formatted

None None Integer, Real, Complex, String
or Integer/Real/Complex Array

Yes

 Examples

iVal = 10

rVal = 10.23

cVal = 1+j*2

sVal = "one"

rA = makearray(1, 1, 2.1, 3)

cA = makearray(2, 1+j*1, 2+j*2, 3+j*3)

fmtI = sprintf("Integer value is %d", iVal) returns text "Integer value is 10"

fmtR = sprintf("Real value is %g", rVal) returns text "Real value is 10.23"

Simulator Expressions

118

fmtC = sprintf("Complex value is (%g+j%g)", cVal) returns text "Complex value

is (1+j2)"

fmtS = sprintf("String value is %s", sVal) returns text "String value is one"

fmtr_rA = sprintf("%g", rA) returns text "1 2.1 3"

fmtr_cA = sprintf("%g+j%g", cA) returns text "1+j1 2+j2 3+j3"

 See Also

value() (expsim)

 Notes/Equations

The sprintf() function is used to format a Simulator Expression variable into string or1.
text format. It can be used to format data of integer, real, complex, string, and array
types. The returned string text can then be printed in the data display or output to
the console using the system function with an echo command.
The sprintf() function is similar to the C function sprintf with certain restrictions. Only2.
format %d, %f, %g, %e, and %s are supported. Only one variable can be formatted.
For example, rVals=sprintf("%g %g", 10.1, 20.2) is not permitted.

Note
The function name sprintf() is used for more than one type of expression. For comparison, see the AEL
Function sprintf() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 strcat()

Concatenates a string or array and returns a string or an array

 Syntax

strcat(A0,A1,A2, ...)

 Arguments

Name Description Default Range Type Required

A0,A1,A2,... strings or arrays to be concatenated None None String Yes

 Examples

iVal="10"

rVal="10.23"

cVal="1+j*2"

sVal="one"

fmtI=strcat("Integer value is ", iVal) returns text "Integer value is 10"

fmtR=strcat("Real value is ", rVal) returns text "Real value is 10.23"

fmtC=strcat("Complex value is (", cVal,")") returns text "Complex value is

(1+j2)"

fmtS=strcat("String value is ", sVal) returns text "String value is one"

Simulator Expressions

119

 Notes/Equations

The strcat() function is used to concatenate any number of strings, or arrays of the1.
same type. The arguments must all be of the same type, i.e. if the first argument is a
real array, the rest of the arguments to be concatenated must be real arrays as well.
The strcat() function cannot be used to concatenate string arrays.2.

Note
The function name strcat() is used for more than one type of expression. For comparison, see the the AEL
Function strcat() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 value()

Prints the value of a Simulation Expression variable representing an integer, real, complex
as a string

 Syntax

value(Value)

 Arguments

Name Description Default Range Type Required

Value Value that is to be
printed

None None Integer, Real, Complex, String, or Array † Yes

† Supports integer, real and complex arrays. For string arrays use the sprintf() function.

 Examples

rA = makearray(1, 1, 2, 3) returns an array (1, 2, 3)

value_rA = value(rA) returns "123"

cA = makearray(2, 1+j*1, 2+j*2, 3+j*3) returns a complex array (1+j*1, 2+j*2,

3+j*3)

value_cA = value(cA) returns (1,1)(2,2)(3,3)

 See Also

echo() (expsim), sprintf() (expsim)

 Notes/Equations

The value() function is used to format a Simulator Expression variable in text format. The
returned string text can then be printed in the data display.

	 Introduction to Simulator Expressions
	 Using Simulator Expressions in Advanced Design System
	 Data Access Functions For Simulator Expressions
	 Harmonic Balance Functions for Simulator Expressions
	 HSPICE Compatibility Functions
	 Math Functions for Simulator Expressions
	 S-Parameter Analysis Functions for Simulator Expressions
	 Transient Source Functions
	 Utility Functions for Simulator Expressions

