
 



User-Defined Models

1

Advanced Design System 2011

September 2011
User-Defined Models



User-Defined Models

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl


User-Defined Models

3

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd


User-Defined Models

4

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack  UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org ). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads  Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads


User-Defined Models

5

to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/


User-Defined Models

6

  Building User-Compiled Analog Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
  About User-Compiled Model Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
  Creating Linear Circuit Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
  Creating Nonlinear Circuit Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
  Creating Transient Circuit Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
  Custom Modeling with Symbolically-Defined Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
  Custom Modeling with Frequency-Domain Defined Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
  Building Signal Processing Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
  Writing Component Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
  Data Types for Model Builders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
    Porting UC Berkeley Ptolemy Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
  User-Defined Models API Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

  active_noise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
  add_lin_n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
  add_lin_y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
  add_nl_gc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
  add_nl_iq  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
  add_tr_capacitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
  add_tr_gc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
  add_tr_inductor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
  add_tr_iq  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
  add_tr_lossy_inductor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
  add_tr_mutual_inductor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
  add_tr_resistor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
  add_tr_tline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
  dump_params  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
  ee_compute_n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
  ee_compute_y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
  ee_post_analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
  ee_pre_analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
  first_frequency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
  first_iteration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
  get_ucm_num_external_nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
  get_ucm_num_of_params  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
  get_ucm_param_complex_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
  get_ucm_param_data_type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
  get_ucm_param_int_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
  get_ucm_param_name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
  get_ucm_param_num_repeats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
  get_ucm_param_ptr  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
  get_ucm_param_real_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
  get_ucm_param_string_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
  get_ucm_param_vector_complex_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
  get_ucm_param_vector_int_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
  get_ucm_param_vector_real_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
  get_ucm_param_vector_size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
  get_delay_v  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
  get_params  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
  get_temperature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
  get_tr_time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
  get_user_inst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



User-Defined Models

7

  is_ucm_repeat_param  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
  load_elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
  load_elements2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
  multifile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
  passive_noise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
  print_ucm_param_value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
  send_error_to_scn  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
  send_info_to_file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
  send_info_to_scn  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
  s_y_convert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
  verify_senior_parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280



User-Defined Models

8

 Building User-Compiled Analog Models
Note
User-Compiled Models cannot be created using Schematic view.

User-defined element models are implemented in ANSI-C code. The user-written code is
then compiled and linked with supplied object code to make a dynamically loaded shared
library. While the equation and parametric circuit capabilities included in the circuit
simulators can be used to effectively alter an element or network response through its
parameters, the user-compiled model feature allows you access to state vector voltages
that affect the model's response currents and charges.

The analysis code for user-compiled models can be written to influence its response
depending on its parameters, stimulus controls, analysis type, and pin voltages. The user-
defined code can make use of many built-in element models.

Creating a model consists of four main steps:

Defining the parameters whose values will be entered from the schematic. See,
Defining Model Parameters
Defining the symbol and the number of pins. See, Working with Symbols
Writing the C or C++ code itself
Compiling. See, Compiling the Model

When appropriately coded, these elements can be used in linear, nonlinear (Harmonic
Balance), transient, and Circuit Envelope simulations.

User-Compiled Model example can be found at ADS
examples/Tutorial/UserCompiledModel_wrk.

Note
To use this tool, you must have the appropriate C_+ compiler installed on your computer. For details,
refer to the installation documentation for your platform.

 Working with Symbols

UserCompiled Model has symbol view only. A UserCompiled Model symbol can be created,
viewed or edited with ADS standard symbol generation tool.

Follow the steps below to generate a symbol for a new UserCompiled Model for example
myModel

From ADS main window, choose File > New > Symbol or click  on the tool bar to1.
open New Symbol dialog box.
Specify the Cell name as myModel.2.
Click OK to open the Symbol view window.3.
Define the symbol. Refer to Working with Symbols (usrguide).4.
Click Save AEL file followed by OK to save the symbol.5.

To open the symbol for an existing UserCompiled Model for example myModel, choose File



User-Defined Models

9

> Open > Symbol from the ADS Main window.

 Defining Model Parameters

UserCompiled Model parameters can be defined from File > Design Parameters in the
model symbol view window. For more information, refer to Create Item (usrguide).

 Model File Requirements

Schematic related files are required for both UserCompiled Model compilation and
simulation. To compile a UserCompiled Model successfully, you need to have model
implementation related files. To use a UserCompiled Model in a simulation, you need to
have simulation related files.

 Required Files

The following table lists the required files associated with a user-compiled model using the
model name MyModel as an example.

File Name Description

Schematic related files Schematic related files symbol definition and itemDef.ael are placed in the
current_workspace/current_library/_MyModel_ sub-directory.

itemDef.ael Model parameter definition. Please refer to Defining Model Parameters for how to
create or modify the file.

Model implementation related files These files are placed in the current workspace
{{userCompiledModel/source}} directory. †

MyModel.c This is the model implementation. Model behaviors are defined in this file. The file
$HPEESOF_DIR/modelbuilder/lib/cui_circuit.template can be used as a template.

MyModel_h.c or
MyModel_h.cxx

Contains the model data structure declarations. The ADS Model Builder interface
generates the file based on the compile option settings when the Compile button
is selected. MyModel_h.c is generated by ADS if C compiler is chosen in compile
option, otherwise MyModel_h.cxx is generated.

MyModel_DYNAMIC.cxx This file is used to build device database. If dynamic link is selected (.dll, .so), the
ADS Model Builder interface generates the file based on the models selected. The
template is available at $HPEESOF_DIR/modelbuilder/lib.

userdefs.h Contains ADS internal data structure declarations. This should not be modified.
The template is available at $HPEESOF_DIR/modelbuilder/lib.

makefile This is the makefile. The ADS Model Builder interface generates the file based on
the compile option settings. The template is available at
$HPEESOF_DIR/modelbuilder/lib.

user.mak The user-customized make options should be added in this file since makefile
might be overwritten by the ADS Model Builder interface when the Compile button
is selected. The template is available at $HPEESOF_DIR/modelbuilder/lib.

Simulation related files The dynamic linked shared libraries and device database file are placed under the
current workspace's userCompiledModel/lib.$SIMARCH.

MyModel.so (Linux,
Solaris)MyModel.dll
(Windows)

The user-compiled model's dynamically-loaded shared library.

deviceidx.db Device database file. Contains device and shared library mapping information.

 C-Code File Relationship

file:chs/pdf_print_view/modbuild/User-Defined_Models.html#Defining Model Parameters


User-Defined Models

10

The following figure uses MyModel_h.c as an example, and shows the C-code file
relationship:

 C-code File Relationship

 Using the User-Compiled Model

The following topic describes how to use the Model Development Kit.

 Opening a Model

Follow the steps below to open Model Development Kit dialog:

Open the model symbol view window. For information on symbol view, refer to1.
Working with Symbols.
From the symbol view window, choose Tools > User Compiled Model > Open2.
User Compiled Model to open Model Development Kit dialog box.
If the model is an existing model, the dialog window is initialized based on model
information defined in MyModel_h.c(xx) header file. If the model is a new model, the
dialog window is initialized with default values.

The following figure displays the Model Development Kit:



User-Defined Models

11

The following table describes the UCM Model Development parameter details:

 UserCompiled Model Development Kit Parameters

Setup Dialog
Name

Description

Component
name

The UserCompiled Model name. It is same as symbol name and not editable.

Model

Model type Linear or Nonlinear. Select linear only when the model is a linear device and there in no
internal node. Nonlinear should be selected if the model is nonlinear or there is internal node
in the model. Linear is the default value. Define model behaviors in compute_* functions for
a linear model type device. Define model behaviors in analyze_* functions for a nonlinear
model type device.

No. of internal
nodes

Number of internal nodes. The field is disabled if the model type is linear.

Code options

Create new
code template

Click to copy model code template to
<current_workspace>/userCompiledModel/source/MyModel.c

where, MyModel is the model name.

Edit model code Click to open up the model source code MyModel.c in an editor.



User-Defined Models

12

Use user-
defined pre-
analysis
function

If enabled, the simulator calls pre_analysis (modbuild) function during the circuit setup. The
function is called only once so it is where the code for one time initialization should go. The
default value is enabled.

Use user-
defined post-
analysis
function

If enabled, the simulator calls post_analysis (modbuild) function right before exit. Please
note post_analysis is executed by command-line simulations, ignored by ADS simulations.
The default value is enabled.

Use user-
defined modify-
param function

If enabled, the simulator calls modify_param (modbuild) function whenever a model
parameter value changes. The default value is enabled.

Use user-
defined noise
analysis
function

If enabled, user-defined analyze_ac_n (modbuild) function is called in a linear simulation.
The default value is enabled.

Use user-
defined
transient
function

If enabled, user-defined analyze_tr (modbuild) function is called in a Transient simulation.
The default value is disabled.

No. of inductors Number of inductors in the model. It is needed only when user-defined transient function is
enabled. In analyze_tr (modbuild) function, inductor must be added using one of the
following function add_tr_inductor (modbuild), add_tr_lossy_inductor (modbuild) or
add_tr_mutual_inductor (modbuild). The total number of calls to add_tr_inductor,
add_tr_lossy_inductor and 2* add_tr_mutual_inductor functions must match the value
given in this field.

Use user-
defined fix
transmission
function

If enabled, user-defined fix_tr (modbuild) function is called in a Transient simulation. The
default value is disabled.

No. of
transmission
lines

Number of transmission lines in the model. It is needed only when both user-defined
transient function and user-defined transmission function are enabled. In fix_tr (modbuild)
function, transmission lines must be added through function add_tr_tline (modbuild).
Number of calls to add_tr_tline function must match the value given in this field.

Compile
options

Active libraries Use the drop-down list to select the appropriate library from the list of available libraries.

UserCompiled
models

List of all available UserCompiled Models under the selected library.

Add >> Add the selected item from UserCompiled Model in the left side of UserCompiled models
window to the right side in Additional UserCompiled models to be linked .

<< Remove Removes a selected item from the list under Additional UserCompiled models to be linked.

Additional
UserCompiled
models to be
linked

Additional models to be included in the dynamically loaded shared library.

Dynamic link
library name

The shared library name created after a successful compilation. It is created under
userCompiledModel/lib.$SIMARCH subdirectory of the current workspace.

Compiler Select the compiler used for compilation. If C compiler is selected, *.c extension is used,
otherwise *.cxx extension is used for automatically generated header file.

Set debug flag
on

If you check this box, the debug flag is enabled. The object code will include debug
information enabling you to step through the code when the debugger is invoked. Default is
checked.

Compile Click to start compilation. Compilation status is shown in a new window. The object files are
written to userCompiledModel/source/obj.$SIMARCH subdirectory. The shared library and



User-Defined Models

13

device index file are created in userCompiledModel/lib.$SIMARCH subdirectory.

OK Click to save all specified data in the dialog box and dismiss it. The file MyModel_h.c(xx) is
generated based on data specified in the dialog box.

Apply Click to save all specified data in the dialog box. The file MyModel_h.c(xx) is generated
based on data specified in the dialog box.

Cancel Cancels all specified data in this box and dismiss the dialog box.

 Deleting a Model

To permanently delete an existing user-compiled model, open the model symbol view
window. In the Symbol view, choose Tools > User-Compiled Model > Delete User-
Compiled Model.

 Releasing a Model License

To release UserCompiled Model license, open the model symbol view window. In the
Symbol view, choose Tools > User-Compiled Model > Release User-Compiled Model
License.

 

 Compiling the Model

In order to compile your circuit model, you must first ensure that you have the correct
compiler version installed. For information on the compiler version required for model
development, refer to the section: Before You Begin > Check the System Requirements in
your specific installation documentation:

UNIX and Linux Installation (install)
Windows Installation (instalpc)

You will also need to ensure that you add the path to where the correct compiler is
installed to the beginning of your PATH environment variable. For example, if you are
using Linux and you have installed your C compiler under /opt/gcc/bin, then you would set
your PATH as follows:

export PATH=/opt/gcc/bin:$PATH

Compiler environment variable setup on Windows is more complicated. Please refer to
Microsoft Visual Studio documentation for details. If the compilation is done through Model
Development Kit, the kit takes care of Visual Studio .NET compiler environment variable
setup for users.

 Determining $SIMARCH

When compiling models, the resulting files are saved in directories using names associated
with the platform architecture on which you are working. When ADS is started in 32-bit
mode, the model can be compiled and linked only in 32-bit mode. When ADS is started in
64-bit mode, the model can be compiled and linked only in 64-bit mode. In 32-bit mode,
the $SIMARCH values are win32, linux_x86, or sun_sparc. For models compiled in 64-bit
mode the $SIMARCH values can be win32_64, linux_x86_64, or sun_sparc_64. These may



User-Defined Models

14

change in the future.

 Compilation Options

UserCompiled Model compilation can be done from command line or through Model
Development Kit.

 Compile from the Model Development Kit

The Model Development Kit can significantly simplify model developers’ implementation
cycle. The development kit can do the following for model developers:

Copy model source code template over. Developers only need to implement model
behaviors in compute_y (modbuild), or analyze_lin (modbuild) etc. functions.
Generate header files and make file required for compilation.
Set up environment variables for compilation on Windows.
Compile the model to a shared library.
Generate device loading index file.
Model Development Kit uses <current_workspace>/userCompiledModel/source as
working directory. If the directory doesn’t exist, the kit creates one. The directory is
where the kit writes automatically generated files and from where the kit looks for
the model source code. In order to locate files required for compilation, rules for file
name convention and location need to be followed. For example, the model being
worked on is called MyModel
MyModel_h.c (for C compiler) or MyModel_h.cxx (for C++ compiler) - header file
automatically generated by the kit. It should be located at
<current_workspace>/userCompiledModel/source directory.
MyModel.c - Model source code which defines the model behavior. It should be
located at <current_workspace>/userCompiledModel/source directory. The file is
included by MyModel_h.c(xx) file.
MyModel*_DYNAMIC.cxx - C++ file which defined device loading functions. MyModel*
here is the shared library name which can be defined in Model Development Kit
dialog. This file is automatically generated by the kit. It is located at
<current_workspace>/userCompiledModel/source directory.

After a successful compilation, the Model Development Kit generates the following files in
<current_workspace>/userCompiledModel/lib.$SIMARCH directory:

MyModel*.so(Unix) or MyModel*.dll(Windows) - shared library
deviceidx.db - device index database file

 Building the User-Compiled Model from the Command Line

You can manually build the program from the command line. To compile a user-defined
model from the command line, $HPEESOF_DIR must be set and $HPEESOF_DIR/bin must
be in $PATH.

SIMARCH must also be set before building the program from the command line. To help
you set SIMARCH, you can source bootscript.sh making sure to use the correct syntax for
your shell on UNIX. For example, for ksh, enter



User-Defined Models

15

*. bootscript.sh*

If you want to build a 32-bit binary on a 64-bit system, you must set EESOF_64BIT to 0
before sourcing bootscript.sh. For example, for ksh, enter

{*}export EESOF_64BIT=0*

*. bootscript.sh*

If you want to switch back and forth between building 32-bit and 64-bit binaries, it is
recommended that you use two terminal windows to avoid switching between binaries
within one window.

Before proceeding with the compile and link, you must make sure that all required files
are available. These files are autogenerated or copied by ADS if you build the user-
compiled model from ADS. If you cannot use ADS to autogenerate those files, you can
copy the files manually from the $HPEESOF_DIR/modelbuilder/lib directory to the
./usercompiledModel/source directory under the current local workspace. You may also
need to modify some of the files first. Files Required to Compile Model from Command
Line lists the required files and whether modification is needed.

 

 Files Required to Compile Model from Command Line

File Name Required Modification

makefile Modification is needed. See the comments in the template makefile which is in
$HPEESOF_DIR/modelbuilder/lib.

user.mak No modification is needed except to customize the compile or link options.

userdefs.h No modification is needed.

MyModel_DYNAMIC.cxx Required only for dynamic link user-compiled model. This file is only an example;
modification is required before using.

 Creating a Dynamic Link Model

To create a dynamic link model, the file <model_name> _DYNAMIC.cxx is required
(<model_name> is the name of your model). If a generated version of this file is not
available, a template is available for you to modify according to the requirements. The
template contains comments to help you with the modification. Copy the file
MyModel_DYNAMIC.cxx from the $HPEESOF_DIR/modelbuilder/lib directory to the
./usercompiledModel/source directory in the current workspace directory. The template
must be customized since it cannot be used as it is. See the comments in the template for
instructions about customizing the file. After the required files are in place, run the
compile command.

The compile command with options is:

hpeesofmake [debug=1]

The debug=1 option tells the compiler to compile your source code with debug



User-Defined Models

16

information.

 Cleaning Out Previous Compilations

The command to remove files created during a previous compilation is:

hpeesofmake clean

 

 Accessing Dynamically Loaded Devices

When you create a dynamically-loaded device from ADS, everything is handled
automatically. However a dynamically-loaded device, by default, is only accessible within
the workspace in which it is created. The procedure that follows describes how to make a
device available to other workspace or users.

The simulator has a default list of directories to search, when looking for dynamically-1.
loaded devices, as follows:

../networks$HOME/hpeesof/circuit/lib.$SIMARCH
$HPEESOF_DIR/custom/circuit/lib.$SIMARCH
$HPEESOF_DIR/circuit/lib.$SIMARCH

Note
For information about $SIMARCH, see Determining $SIMARCH.

These directories are searched in the order listed. Change the default path by setting
the variable EESOF_MODEL_PATH in either of the following files:

$HPEESOF_DIR/custom/config/hpeesofsim.cfg
$HOME/hpeesof/config/hpeesofsim.cfg

For example (the default setting), see the entry in:

$HPEESOF_DIR/config/hpeesofsim.cfg
Copy the dynamically-loaded device to one of the directories listed in2.
EESOF_MODEL_PATH (see step 1).
In the directory where the dynamically-loaded device was copied, the following3.
command must be executed:

hpeesofsim -X

This will start the simulator, but instead of running a simulation, the current directory
will be scanned for dynamically-loaded devices, and an index file ( deviceidx.db) will
be created. Copying a dynamically-loaded device to a directory is not enough. The
directory dynamically-loaded device index must also be updated to include the new
device. If this is not done, the simulator will be unable to locate the dynamically-
loaded device. No simulator licenses of any type are required for this.



User-Defined Models

17

Note
To run hpeesofsim, you must have $HPEESOF_DIR/bin in $PATH, and you must also have set the
appropriate environment variables to tell your system about the ADS shared libraries/DLLs and
device libraries. For information about setting these environment variables, refer to ADS Simulator
Input Syntax (cktsim) in Using Circuit Simulators (cktsim).



User-Defined Models

18

 About User-Compiled Model Code
 An unlimited number of user-defined elements in any number of C modules can be
written, compiled and linked to your circuit simulator program. Linear elements can have
up to 99 external pins, while nonlinear and transient elements can have unlimited number
of external pins and internal nodes.

An element without external pins is treated as a Model Form that has no electrical
characteristics. Other elements can refer to this Model Form to obtain parameter values.

Element names and parameter keywords are limited to alphanumeric characters and the
underscore character. Names cannot begin with a numeric character. In addition, a
leading underscore is not recommended as this can interfere with the built-in variables.
Any number of parameters of arbitrary type (integer, real, string or Model Form reference)
are allowed for each element. A Model Form reference can refer to either a built-in or a
user-defined Model Form.

For use in DC and frequency-domain simulations, an element can have either a linear or
nonlinear model. Either type of element can have a transient model for use in a Transient
simulation.

Linear and noise analysis responses of elements are computed in the frequency domain.
The linear response can be computed either in complex scattering matrix or admittance
matrix form. The noise response must be computed in complex current correlation matrix
form. A user-defined linear element can call most any existing linear element to obtain its
response.

Pre- and post-analysis entry points during program execution are provided to enable such
calls and to perform special operations, such as data file reading and memory
allocation/de-allocation.

Nonlinear element response is computed in the time domain at a sequence of time
samples. Time-to-frequency transformations are computed in the circuit simulator engine
and are transparent to the user. Element response is characterized by a set of
instantaneous (nonlinear) currents out of each pin, nonlinear charges at each pin and their
respective derivatives, all determined by applied pin voltages.
The user's computation functions cannot call other nonlinear elements for their responses.
Element models with time-delay dependencies are supported.

Transient element response is computed in the time domain. Element response is
characterized by a set of instantaneous (nonlinear) currents out of each pin, nonlinear
charges at each pin and their respective derivatives, all as determined by applied pin
voltages. Transient computation functions cannot call other elements (except for ideal
resistors, capacitors, inductors and transmission lines) for their responses.

Convolution element response can be computed in two ways. One way is to use a linear
model frequency response function so that the circuit simulation engine can compute the
time-domain impulse response. Alternatively, specific nonlinear transient element
response code can be used.



User-Defined Models

19

User-Compiled Model data structures and APIs are explained here. For data structure
diagrams, and User-Defined Models API list, refer to User-Defined Models API Reference
(modbuild).

 

 Macro Definitions

 Interfacing to the simulator code requires the use of certain ADS defined public C
symbols in user-defined element modules. The remainder of this section describes the
supplied  userdefs.h file that contains these symbols  (macros, interface data structure
typedefs, and function declarations). Note that the Model Development Kit interface will
automatically generate most of these functions and that the header file will automatically
be included.

Success or failure of a typical interface function call is determined by its return value, 1 for
success and 0 for failure. Therefore, the 'boolean' typedef and these macros are provided.
Although this boolean type is integer-valued, only TRUE and FALSE values should be
associated with it.

#define FALSE           0

#define false           0

#define TRUE            1

#define true            1

typedef int boolean;

Four macros define the Boltzmann constant  (Joules/Kelvin), the charge of an electron
(Coulombs), the negative of absolute zero temperature (Celsius), and the standard noise
reference temperature (Kelvin). The noise-current correlation parameters returned by an
element's noise analysis function must be normalized to FOUR_K_TO --these parameters
have admittance dimensions.

/* define some physical constants */

#define   BOLTZ            1.380658e-23

#define   CHARGE           1.60217733e-19

#define   CTOK             273.15

#define   NOISE_REF_TEMP   2    90.0  /* standard noise reference temperature, in Kelvin */

#define   FOUR_K_TO        (4.0*BOLTZ*NOISE_REF_TEMP) /* noise normalization 4kToB, B=1 Hz */

This macro obtains the number of items in an array definition at compile time.

#define siz(thing) (sizeof(thing)/sizeof(*thing))

For clarity, an argument passed by reference can be prefixed by one of these macros in an
ANSI function definition and prototype declaration.

#define IN    /* input argument to function */

#define OUT   /* output argument: modified/set by function */

#define INOUT /* argument used and modified by function */

#define UNUSED   /* unused argument */

The following C macros replace corresponding Series IV functions, which returned scale



User-Defined Models

20

factors to convert a parameter value to SI. In ADS, parameter data are always considered
to be in SI; hence these macros always return 1.0, and are meant only for Series IV
compatibility.

#define get_funit(eeElemInst)  1.0 /* freq unit */

#define get_runit(eeElemInst)  1.0 /* resistance unit */

#define get_gunit(eeElemInst)  1.0 /* conductance */

#define get_lunit(eeElemInst)  1.0 /* inductance */

#define get_cunit(eeElemInst)  1.0 /* capacitance */

#define get_lenunit(eeElemInst)  1.0 /* length unit */

#define get_tunit(eeElemInst)  1.0 /* time unit */

#define get_angunit(eeElemInst)  1.0 /* angle unit */

#define get_curunit(eeElemInst)  1.0 /* current unit */

#define get_volunit(eeElemInst)  1.0 /* voltage unit */

#define get_watt(eeElemInst, power)  (power) /* power unit */

 

 Data Structures

 COMPLEX

Linear response modeled in the frequency domain is complex, so the COMPLEX type is used
for admittance (Y), scattering (S), and noise current-correlation parameters.

typedef struct

{

   double real;

   double imag;

}

COMPLEX;

 DataTypeE

 Each element parameter has a specific type.

typedef enum

{

   NO_data = -1,     /* unspecified */

   REAL_data = 0,

   INT_data = 1,

   MTRL_data = 2,   /* for parameter referring to an instance */

   STRG_data = 3,

   CMPLX_data = 4,

   INT_VECTOR_data,

   REAL_VECTOR_data,

   CMPLX_VECTOR_data,

   REPEAT_param

}

DataTypeE;

 UserParamType

 Each element parameter definition consists of a keyword string and type.

typedef struct {

   char  * keyword;



User-Defined Models

21

   DataTypeE  dataType

}

UserParamType;

 UserParamData

The parameter values of an item are obtained in an array of the UserParamData type.
dataType is the discriminator tag to determine the actual value of the union. For example,
if it is MTRL_data, value.eeElemInst will refer to a substrate or model form.

typedef struct

{

   DataTypeE   dataType;

   union

   {

       double dVal;   /* for REAL_data */

       int iVal;   /* for INT_data */

       void *eeElemInst;   /* for MTRL_data */

       char *strg;   /* for STRG_data */

       void *data;   /* for vector data or repeated parameter */

   }value;

} UserParamData;

 NParType

This type can be used specifically for 2-port elements if the conventional 2-port noise
parameters are available.

typedef struct

{

   double nFmin;   /* Noise Figure (dB) */

   double magGamma;   /* opt. source Gamma magnitude */

   double angGamma;   /* opt. source Gamma phase(radians) */

   double rnEff;   /* Effective normalized noise resistance */

   double rNorm;   /* Normalizing resistance (ohms) */

} NParType;

 UserElemDef

UserElemDef is the most important data structure which contains the model information
and function pointers.

typedef struct _UserElemDef UserElemDef;

struct _UserElemDef

{

 char *name;   /* Element name. Not to exceed 8 characters */

 int  numExtNodes; /* Number of external nodes, max. 20 for linear element */

 int  numPars;     /* Number of parameters for this element */

 UserParamType *params;   /* parameter array */

 /* pre-analysis function: called after element item parsed successfully */

 boolean (*pre_analysis)(INOUT UserInstDef *pInst);

 /* Linear analysis function: called once for each new frequency point.

  * Must return the item's admittance matrix in yPar array.

  * Only used by linear element. For nonlinear element, the pointer should be NULL */

 boolean (*compute_y)(IN UserInstDef *pInst, IN double omega, OUT COMPLEX *yPar);

 /* Linear noise-analysis function: called once for each new frequency point.

 Must return the item's noise-current correlation admittance, normalized to

 FOUR_K_TO in nCor array. NULL if noiseless    */

 boolean (*compute_n)(IN UserInstDef *pInst, IN double omega, IN COMPLEX *yPar, OUT COMPLEX

*nCor);



User-Defined Models

22

 /* post-analysis: called before the simulation finishes. It is only used by command line

    simulations, not ADS simulations */

 boolean (*post_analysis)(INOUT UserInstDef *pInst);

 UserNonLinDef *devDef;          /* User's nonlinear device definition (NULL if linear) */

 struct _SeniorType *seniorInfo; /* Senior user defined type and data (arbitrary) */

 UserTranDef *tranDef;           /* User's transient definition; NULL if none */

 /* The following information is new beginning with ADS 2003C */

 /* If the following is defined in _UserElemDef, load_elements2() should be called from the

model

    booting function boot_senior_MyModel() instead of load_elements() */

 int  version;

 /* The modify_param function is called when any of the device parameter values change */

 BOOLEAN (*modify_param)(INOUT UserInstDef *pInst);

};

 UserNonLinDef

A nonlinear element must contain additional device information in a static area of type
UserNonLinDef (described later); the pointer UserElemDef->devDef must point to it.
The seniorInfo field is of arbitrary type, and can be used for any extra user-defined
data/description that is of no concern to the simulator.

typedef struct _UserNonLinDef UserNonLinDef;

struct _UserNonLinDef

{

 int numIntNodes; /* # internal nodes of device */

 /* Evaluate linear part (Y-pars) of device model */

 boolean (*analyze_lin)(IN UserInstDef *pInst, IN double omega)

 /* Evaluate nonlinear part of device model:

  * nonlinear current out of each pin, nonlinear charge at each pin

  * derivative (w.r.t. pin voltage) of each nonlinear pin current, i.e. nonlinear conductance

g,

  * derivative (w.r.t. pin voltage) of each nonlinear pin charge, i.e. nonlinear capacitance c

  */

 boolean (*analyze_nl)(IN UserInstDef *pInst, double *pinVoltage);

 /* Evaluate small-signal AC model: compute total (linear+linearized) Y-pars of device    */

 boolean (*analyze_ac)(IN UserInstDef *pInst, IN double *pinVoltage, IN double omega);

 struct _SeniorModel *modelDef;  /* user-defined Senior MODEL (arbitrary) */

 /* Evaluate bias-dependent linear noise model: compute total (linear+linearized) noise-current

    correlation parameters (normalized to FOUR_K_TO, siemens) of device   */

 boolean (*analyze_ac_n)(IN UserInstDef *pInst, IN double *pinVoltage, IN double omega);

};

 UserTranDef

 A transient response for an element can be defined in a structure of type UserTranDef
(described later); the pointer UserElemDef->tranDef must point to the structure. A
transient response function can be defined for either a linear or nonlinear element.

numIntNodes is an arbitrary number of nodes internal to the element. In its model, the
element must compute the contributions at all its pins, which are ordered and numbered
(starting at zero) with the external pins first, followed by internal pins. If a UserNonLinDef
type is defined for the element, the numIntNodes in that structure must match this
definition.

Special routines are available to simplify the use of ideal resistors, capacitors, inductors,
and transmission lines within a transient element. For the circuit simulator engine to
perform the appropriate allocations, the number of these elements (except resistors) must
be predefined using numCaps, numInds, and numTlines.
 



User-Defined Models

23

 The analyze_tr function must compute and load the instantaneous time domain response
of the element, using the element's pin voltages as inputs. The passed array pinVoltage
contains the instantaneous voltages at both the external and internal pins.

If P is the total number of pin voltages, formulate nonlinear current and charges at each
pin n as follows:

rn (t) = f (v0(t),v1(t),..., vP-1 (t)) where rn is the current out of the pin or charge
response. These responses and their voltage derivatives (nonlinear conductances and
capacitances) must be computed and loaded using the add_tr_iq and add_tr_gc
functions, respectively. Note that the derivatives are used to help converge to a solution,
therefore the simulator may reach a solution even if they are not exact. However, under
certain simulation conditions, inexact derivatives may cause convergence problems. Also,
for convergence reasons, they should be continuous.
 
The fix_tr function is called just before transient analysis begins. Its only purpose is to
set up ideal transmission lines for the user. Using the add_tr_tline function, transmission
line nodes and physical constants are defined. Once the transmission line is defined here,
time-domain analysis of it is performed automatically without any further action by the
user in the analyze_tr function.

typedef struct _UserTranDef UserTranDef;

struct _UserTranDef

{

   int     numIntNodes;   /* internal nodes of device */

   int     numCaps;     /* number of explicit capacitors */

   int     numInds;     /* number of explicit inductors */

   int    numTlines;    /* number of explicit transmission lines */

   boolean useConvolution;   /* use linear response for convolution */

   /* Evaluate transient model

    * nonlinear currents out of each pin,

    * nonlinear charge at each pin,

    * derivative (w.r.t. pin voltage) of each nonlinear pin current, i.e. nonlinear conductance

g,

    * derivative (w.r.t. pin voltage) of each nonlinear pin charge, i.e. nonlinear capacitance

c

    */

   boolean (*analyze_tr)(IN UserInstDef *pInst, IN double *pinVoltage);

   /* Pre-transient analysis routine used to allocate, compute and connect ideal transmission

      lines   */

   boolean (*fix_tr)(IN UserInstDef *pInst);

};

 UserInstDef

Each user-defined item placed in a design is represented in the ADS Simulator by the item
type UserInstDef. All the fields, except seniorData, in an item are set up by ADS
Simulator and must not be changed. seniorData can refer to arbitrary data and is meant
to be managed by user code exclusively.

typedef struct _UserInstDef UserInstDef;

struct _UserInstDef

{

   char *tag;   /* item name */

   UserElemDef *userDef;   /* access to user-element definition */

   UserParamData *pData;   /* item's parameters */



User-Defined Models

24

   void *eeElemInst;   /* EEsof's element item */

   void *eeDevInst;   /* EEsof's nonlinear device item */

   void *seniorData;   /* data allocated/managed/used only by Senior module (arbitrary) */

};

 Function Pointers for analysis

 

 pre_analysis

 Each user-element definition is of the UserElemDef type. The pre_analysis function is
useful for one-time operations such as parameter type checking, allocating memory, and
reading data files. This routine is called for all types of analysis.

boolean (*pre_analysis)(INOUT UserInstDef *pInst);

 post_analysis

Note that a nonlinear or parametric subnetwork instantiation will be flattened (expanded)
in the parent network. If there are two or more uses of a given subnetwork, each
occurrence will result in the pre-analysis function (and post-analysis function) being
called. The function must be written to properly manage such actions as reading data files
and allocating memory.

boolean (*post_analysis)(INOUT UserInstDef *pInst);

 

 compute_y

The compute_y function must be defined for linear models. It loads the nodal admittance
matrix parameters at frequency omega radians/sec into the passed yPar array. When
frequency is zero, a value of 1 is passed to omega. This function can call ee_compute_y
(described later) to use another element's admittance parameters.

boolean (*compute_y)(IN UserInstDef *pInst, IN double omega, OUT COMPLEX *yPar);

 compute_n

The compute_n function is used by linear model noise analyis. It must load the normalized
nodal noise current correlation parameters (Siemens, normalized to FOUR_K_TO ) into the
passed nCor array at frequency omega radians/sec and the element admittance
parameters, yPar. It can call ee_compute_n (described later) to make use of another
element's admittance and noise correlation matrices.

boolean (*compute_n)(IN UserInstDef *pInst, IN double omega, IN COMPLEX *yPar, OUT COMPLEX

*nCor);



User-Defined Models

25

 

 analyze_lin and analyze_nl

analyze_lin must be defined for nonlinear models. It loads only the linear part (complex
admittances) of the nonlinear element in the frequency domain. Each admittance must be
loaded by calling the primitive add_lin_y function. For a branch admittance between
nodes (i, j), 4 calls are needed: +Y for (i, i), (j, j) and -Y for (i, j) and (j, i). analyze_lin
can use ee_compute_y to take advantage of pre-existing linear elements. analyze_nl must
compute and load the nonlinear response, using the element's pin voltages as input. The
passed array pinVoltage contains instantaneous values; however, delayed voltage
differences can be obtained using the get_delay_v function.

boolean (*analyze_lin)(IN UserInstDef *pInst, IN double omega);

If P is the total number of pin voltages, formulate non-zero nonlinear current and charge
at each pin n as follows:

rn (t) = f (v0 (t), v1(t),..., vP-1(t), vk(t-*k), vl(t-*l),...) where rn is the pin current or
charge response,

*k, *l... are ideal delays, independent of the voltages. These responses and their
derivatives with respect to voltage (nonlinear conductances, capacitances) must be
computed and loaded using the add_nl_iq and add_nl_gc functions, respectively. Note
that the derivatives help the simulator to converge to a solution, but do not affect the
steady-state nonlinear response-therefore they may work even if not exact. However,
under certain simulation conditions in-exact derivatives may cause convergence problems.
However, for noise analysis they should be accurate, and for convergence they should be
continuous.

boolean (*analyze_nl)(IN UserInstDef *pInst, double *pinVoltage);

 analyze_ac

In a linear simulation, a nonlinear element must contribute its small-signal linearized
response; this is done through the analyze_ac function. The linear part can be loaded by
calling the element's analyze_lin function. The linearized part is just the nonlinear
conductances and capacitances computed above simply converted to admittances at
angular frequency omega and loaded into the circuit matrix using add_lin_y.

BOOLEAN (*analyze_ac)(IN UserInstDef *pInst, IN double *pinVoltage, IN double omega);

 

 analyze_ac_n

Noise contribution of a nonlinear element in a linear simulation is added through the
analyze_ac_n function. The linear and linearized noise correlation parameters are loaded



User-Defined Models

26

using the primitive add_lin_n function. The linearized portion can include shot, flicker, and
burst noise contributions.

The modelDef field is of arbitrary type and can be used for any extra user-defined
nonlinear model data/description that is of no concern to the simulator.

BOOLEAN (*analyze_ac_n)(IN UserInstDef *pInst, IN double *pinVoltage, IN double omega);

 

 modify_param

The modify_param function is called only when a model parameter value changes. The
computation of parameter dependent user data can be performed here. This improves the
performance of the model parameter sweep or optimization.

If the function exists as a member of the struct _UserElemDef, the device loading
function load_elements2() should be called from boot_senior_MyModel() instead of
load_elements().

BOOLEAN (*modify_param)(INOUT UserInstDef *pInst);

 Defining Model with Variable Number of External Nodes

When "NumExtNodes" parameter is defined, the user-defined model can accept variable
number of nodes.

The function below can be used to get number of external node.

int get_ucm_num_external_nodes( const UserInstDef* userInst );

Even though there is no need to duplicate the implementation for each node configuration,
symbol and parameter AEL definition still needs to be defined for each node configuration
individually.

For example, Transmission line My_TLIN2(2-terminal) and My_TLIN4(4-terminal) share
the same model implementation. The model name is "My_TLIN" in the model
implementation. My_TLIN2 and My_TLIN4 need to have their own symbol definitions and
parameter AEL definitions. My_TLIN2's parameter definition is like:

create_item( "My_TLIN2",    // component name

            "My ideal 2-Terminal Transmission Line", // description

            "My_TLIN_",    // prefix for the instance name

            0,   // attribute

            -1,  // priority

            "Component Parameters", // component dialog name

            NULL,  // Dialog data

            "ComponentNelistFmt"   // netlist format

            "My_TLIN",   // component netlist name

            "ComponentAnnotFmt",  // display format



User-Defined Models

27

            "",   // Symbol name

            0,  // no artwork

            NULL, // no artwork data

            0,  // no extra attribute

            create_parm( "NumExtNodes", "Number of external nodes", PARM_INT|PARM_NOT_EDITED,

                         "StdFormSet", -1, prm( "StdForm", "2" ) ),

            // ... more create_parm( ) for other parameters

           )

Note:

Component netlist name should be "My_TLIN" here, the same as the model name in
the implementation.
"NumExtNodes" need to be a model parameter. It is highly recommended to set the
default value to the number of nodes and set PARM_NOT_EDITED attribute to
prevent it from being modified.

 

 Referencing Data Items

 A user-defined element parameter can be a reference to an ADS or a User-Defined item.

As an example, if you are creating a microstrip element and need an MSUB reference, the
third parameter, for example, can be "MSUB" of data type "MTRL_data", the array entry
userInst->pData[2] will be such that pData[2].value.eeElemInst points to the referred
MSUB item in the circuit. The MSUB parameters can then be obtained through a
get_params call:

get_params(userInst->pData[2].value.eeElemInst, mData)

This will copy the MSUB parameters (ccdist) into mData, which is an array of
UserParamData elements:



User-Defined Models

28

Index Name Description Units

0 Er Relative dielectric constant  

1 Mur Relative permeability.  

2 H Substrate thickness. mil

3 Hu Cover height. mil

4 T Conductor thickness. mil

5 Cond Conductor conductivity. Siemens/meter

6 TanD Dielectric Loss Tangent.  

7 Rough Conductor surface roughness.  

8 RoughnessModel Conductor surface roughness model.
1: Hammerstad
2: Multi-level hemisphere (default).

 

9 Bbase Conductor surface roughness: tooth base width. mil

10 Dpeaks Conductor surface roughness: distances between tooth peaks. mil

11 L2Rough Conductor surface roughness: height protrusions of level 2. mil

12 L2Bbase Conductor surface roughness: tooth base width of level 2. mil

13 L2Dpeaks Conductor surface roughness: distances between tooth peaks of
level 2.

mil

14 L3Rough Conductor surface roughness: height protrusions of level 3. mil

15 L3Bbase Conductor surface roughness: tooth base width of level 3. mil

16 L3Dpeaks Conductor surface roughness: distances between tooth peaks of
level 3.

mil

17 reserved   

18 FreqForEpsrTanD Frequency at which Er and TanD are measured. Hertz

19 DielectricLossModel Dielectric loss model
0: Frequency independent
1: Svensson/Djordjevic (default).

 

20 HighFreqForTanD High end frequency in the Svensson/Djordjevic model. Hertz

21 LowFreqForTanD Low end frequency in the Svensson/Djordjevic model. Hertz

into mData[0...21] locations. The mData array must be dimensioned large enough to hold
all the referenced item's parameters (22, in the case of MSUB parameters). If a parameter
value is not set or available, the `dataTypeE' enum value will be NO_data.

Important Note
Substrates, such as MSUB, can contain a differing number of parameters mentioned above, especially
between different versions of ADS. Because of this, you must allocate the mData array to 22 elements or
larger. However, as ADS does not currently contain a method of determining the minimum required size
for mData, it is recommended that you allocate an mData array with at least 100 elements (ADS 2011
requires a minimum of 22 elements, but ADS 2009UR1 required only 13 elements). This should be large
enough to hold all substrate parameters, now and in the future. Note that, if you do not allocate a
sufficiently large mData array, your code may cause the simulator to abort (possibly with a "Segmentation
violation" error).



User-Defined Models

29

Note
The above MSUB array definition applies to ADS 2011.01 and later. For ADS 2009UR1 and earlier, only the
first eight items are guaranteed to exist, as some of the above parameters exist only in ADS 2011.01 and
later. Attempting to access elements 8 and up in ADS 2009UR1 and older is not guaranteed to work.
However, in ADS 2009UR1, you must still provide an mData array of size 13 or larger when calling
get_params tp obtain MSUB parameters.

If the referenced item which is an instance of a user-defined model, then you can obtain a
pointer to the user item as follows:

refInst = get_user_inst( modelInstName )

The function get_user_inst will return NULL if the passed argument is not a user-defined
item. An example can be found in "Res" model defined in
examples/Tutorial/UserCompileModel_wrk.

 Querying User-Defined Element Parameters

For user-defined element parameters, supported data types are integer, real, complex,
string, integer array, real array and complex array.

Parameter can have more than one entry. For example, Freq[1] can be used for
fundamental frequency, and Freq[2] can be used for frequency at 2nd harmonic. This kind
of parameter is called repeated parameter. The attribute for repeat parameter is defined
in the model parameter definition itemdef.ael file by create_parm( ) function. The
PARM_REPEATED bit has been set in the third argument of the create_parm( ) function.
For example, "Freq" parameter:

create_parm("Freq","Frequency",PARM_REPEATED|PARM_REAL,"StdFormSet",-1,prm("",

prm("StdForm","1e9"))))

Parameter value can be an array. "list" function is used to define array value. For
example, Coefficient=list(0.1, 0.2, 0.3).

Parameter values are stored in userInst->pData[paramIndex].value which is a union.
Parameter data type is needed to access union data properly. The following interfaces are
provided for easy parameter value access. Please note in some old UserCompiled model
implementations, macros are defined to access parameter values. This approach doesn't
work for repeated parameter and parameter with array value. Using parameter query
interfaces listed below is highly recommended. Examples are provided in
example/Tutorial/UserCompiledModel_wrk.

The function below returns number of parameters.

int get_ucm_num_of_params( const UserInstDef *userInst );

The function below returns the pointer to the parameter by parameter index, and repeat
index if the parameter is repeated parameter. Note that both parameter index and repeat
index start from zero. For example, Freq is the first parameter, then for Freq[1],
parameter index is 0, and repeat index is 0. For non-repeated parameter, please set



User-Defined Models

30

repeat index to -1.

const SENIOR_USER_DATA* get_ucm_param_ptr( const UserInstDef* userInst,

                               int paramIndex, char* errorMsg, int repeatIndex );

The function below returns parameter name. Note that parameter index starts from 0.

const char* get_ucm_param_name( const UserInstDef* userInst, int paramIndex );

The function below returns true if the parameter is repeated parameter, otherwise it
returns false.

BOOLEAN is_ucm_repeat_param( const UserInstDef* userInst, int paramIndex );

The function below returns the number of entries of the repeated parameter. For example
we have Freq[1], and Freq[2], then the number of repeats is 2.

int get_ucm_param_num_repeats( const UserInstDef* userInst, int paramIndex);

The function below returns parameter data type.

DataTypeE get_ucm_param_data_type( const SENIOR_USER_DATA *param );

Functions below can be used to query parameter with single value. Using corresponding
function based on parameter data type. "param",the pointer to the parameter can be
obtained from get_ucm_param_ptr( ). Before using parameter value, please check
"status" in case the query fails for a reason. If the query fails, the error message is
returned in errorMsg.

int get_ucm_param_int_value( const SENIOR_USER_DATA *param, BOOLEAN* status, char* errorMsg );

double get_ucm_param_real_value( const SENIOR_USER_DATA *param, BOOLEAN* status, char* errorMsg

);

Complex get_ucm_param_complex_value( const SENIOR_USER_DATA *param, BOOLEAN* status, char*

errorMsg );

const char* get_ucm_param_string_value( const SENIOR_USER_DATA *param, BOOLEAN* status, char*

errorMsg );

The function below returns parameter value array size. If the parameter value is not a
vector, zero is returned. "param", the pointer to the parameter can be obtained from
get_ucm_param_ptr( ).

int get_ucm_param_vector_size( const SENIOR_USER_DATA *param );

Functions below can be used to query parameter with vector value. Using corresponding
function based on parameter data type. "param", the pointer to the parameter can be
obtained from get_ucm_param_ptr( ). "index" is the index in the vector and it starts from
0. Before using parameter value, please check "status" in case the query fails for a
reason. If the query fails, the error message is returned in errorMsg.



User-Defined Models

31

int get_ucm_param_vector_int_value( const SENIOR_USER_DATA *param, int index, BOOLEAN* status,

char* errorMsg );

int get_ucm_param_vector_real_value( const SENIOR_USER_DATA *param, int index, BOOLEAN* status,

char* errorMsg );

int get_ucm_param_vector_complex_value( const SENIOR_USER_DATA *param, int index, BOOLEAN*

status, char* errorMsg );

The function outputs each parameter value to *fp. "param",the pointer to the parameter
can be obtained from get_ucm_param_ptr( ). The function is provided for debug purpose.

void print_ucm_param_value( FILE *fp, const SENIOR_USER_DATA *param );

The get_params function, below, loads parameter values of the item whose name is
defined by eeElemInst into pData, which must be big enough to store all parameters. It is
used to obtain other referenced item (such as model substrate) parameters. It returns
TRUE if successful, FALSE otherwise. It doesn't work for repeated parameter or parameter
with vector value.

BOOLEAN get_params (IN void*eeElemInst, OUT UserParamData *pData);

The dump_params function, below, obsolete, prints out the instance eeElemInst's
parameter names and values to stderr. This function should only be used for debugging
purposes. The function returns TRUE if successful, FALSE otherwise. It doesn't work for
repeated parameter or parameter with vector value.

BOOLEAN dump_params(IN void *eeElemInst);

  

 Displaying Error/Warning Messages

 You can flag errors within a function in a user-defined element module and send
messages to the Simulation/Synthesis panel. You can also write helpful status and debug
messages to the Status/Summary panel. The following functions can be used for sending
the message to respective locations:

extern void send_error_to_scn (char ) / writes message to Errors/Warnings panel*/

extern void send_info_to_scn (char *) /*writes message to Status/Progress panel */

The argument of these functions is a character pointer that is the error message string.

Examples:

send_error_to_scn("divide-by-zero condition detected");

send_info_to_scn("value of X falls outside its valid range");

 



User-Defined Models

32

 Booting All Elements in a User-Defined Element File

 In order to keep the code modular, each user-defined element file can contain at most a
single external/public symbol definition; this is the booting function, usually named
boot_abc for a module named abc.c:

boolean boot_abc(void)

This function is called once per module-at program bootup. If the ModelBuilder interface is
used, only one model per file is allowed. However, multiple files can be combined into one
larger module by the user. The call to boot the module must be included in the self-
documented userindx.c file at the appropriate location. The module's file name must be
added to the user.mak USER_C_SRCS definition.

All user-defined elements in the module can be defined in a static (with module-scope)
UserElemDef array and booted by calling the provided function load_elements() or
load_elements2() from boot_abc.
The load_elements() function should be used when the version and ( *modify_param ) are
not defined as members of the struct_UserElemDef.

extern boolean load_elements (UserElemDef *userElem, int numElem);

The load_elements2() function was introduced after ADS 2003C. This function should be
used when the version and ( *modify_param ) are defined as members of the
struct_UserElemDef.

extern boolean load_elements2 (UserElemDef *userElem, int numElem);

If necessary, you can include code for technology/data file reading, as well as for
automatic AEL generation, in the boot function.

 Using Built-In ADS Linear Elements in User-Defined Elements

A user-defined element can call an ADS linear element to obtain the latter's COMPLEX Y
and noise-correlation parameters. However, nonlinear devices, model items, and
independent sources cannot be called in a user-defined element module. The relevant
functions in the interface to support this feature are described below:  

 ee_pre_analysis

This function is usually called from the user-defined element's pre_analysis function. It
returns a pointer to an allocated ADS item if successful, NULL otherwise. This pointer must
be saved (possibly with the user-defined element item, in its seniorData field) and passed
to ee_compute_y or ee_compute_n.

extern void *ee_pre_analysis (char *elName, UserParamData *pData);



User-Defined Models

33

 ee_compute_y

This function allows access to Advanced Design System elements for linear analysis. Note
that parameter data pData must be supplied in SI units, where applicable. They return
TRUE if successful, FALSE otherwise. To determine parameter order, execute the simulator
binary (hpeesofsim) using the -h flag and the name of the parameter (e.g.,
$HPEESOF_DIR/bin/ hpeesofsim -h MLIN ).
The function below obtains N×N COMPLEX Y-parameters of the N-node (excluding ground)
ADS element item in the user-supplied yPar array at frequency omega radians/sec. It
returns TRUE if successful, FALSE otherwise.

extern boolean ee_compute_y (void *eeElemInst, UserParamData *pData, double omega, COMPLEX

*yPar);

 ee_compute_n

Thes function allows access to Advanced Design System elements for noise analysis. Note
that parameter data pData must be supplied in SI units, where applicable. They return
TRUE if successful, FALSE otherwise.

The function obtains the N×N COMPLEX Noise correlation matrix parameters, given omega
and the N×N COMPLEX Y-pars. It returns TRUE if successful, FALSE otherwise.

extern boolean ee_compute_n (void *eeElemInst, UserParamData *pData, double omega, COMPLEX

*yPar, COMPLEX *nCor);

 ee_post_analysis

extern boolean ee_post_analysis (void *eeElemInst);

 Other Utililty APIs

The get_temperature function, below, returns the value of the ADS global variable temp in
kelvin.

extern double get_temperature(void);

These functions are useful to indicate program status in various stages of execution, such
as during module boot-up, element analyses, and pre- or post-analysis.

extern void send_info_to_scn (IN char *msg); /* write msg to Status/Progress window */

extern void send_error_to_scn (IN char *msg); /* write msg to Errors/Warnings window */

In nonlinear analyses, for each set of independent input values (bias, frequency, power, or
swept variable), ADS simulator attempts to find the steady state solution iteratively. In
each iteration, nonlinear parts of all element items, including user-defined items, are
evaluated. This function returns TRUE whenever the first iteration is in progress. It is most



User-Defined Models

34

useful for parameter range checking, which is sufficient to do at the first iteration.

extern boolean first_iteration (void);

This function returns TRUE whenever the circuit is being analyzed at the first point in a
frequency plan. Note that this can happen many times in one simulation command for
example, if there is another swept variable, or if an optimization/yield analysis is
requested.
If a one-time-only operation is to be performed per circuit, the pre_analysis function is
recommended instead of this function.

extern boolean first_frequency (void);

The function below can be used to find the location of a data file based on the ADS
variable SIM_FILE_PATH which is defined in the hpeesofsim.cfg configuration file. The
function returns the file name together with its absolute path if the file is found. Otherwise
the function returns NULL.

extern const char* locate_data_file( const char* fileName );

The function below computes the normalized complex noise correlation matrix for a
passive element, given its Y-pars, operating temperature and number of pins.

extern boolean passive_noise (IN COMPLEX *yPar, IN double tempC,

                             IN int numNodes, OUT COMPLEX *nCor);

The function below computes the normalized complex noise correlation 2*2 matrix for an
active 3-terminal, 2-port element/network, given its Y-pars and measured noise
parameters. Note that if numFloatPins is 2, the common (reference) third terminal is
ground.

extern boolean active_noise (IN COMPLEX *yPar, IN NParType *nPar,

                            int numFloatPins, OUT COMPLEX *nCor);

The function below must be called (usually from nonlinear model's analyze_lin and
analyze_ac procedure) to add the linear complex Y-parameter (iPin, jPin) branch
contribution. This call must be done even for linear capacitive branches at DC (omega =
0), this will establish the Jacobian matrix entry location for subsequent non-zero harmonic
omega.

extern boolean s_y_convert (IN COMPLEX *inPar, OUT COMPLEX *outPar, IN int direction,

                           IN double rNorm, IN int size);

extern boolean add_lin_y (INOUT UserInstDef *userInst, IN int iPin,

                         IN int jPin, IN COMPLEX y);

The function below must be called (from nonlinear model's analyze_ac_n function) to add



User-Defined Models

35

the complex noise-current correlation term iNcorr (Siemens, normalized to FOUR_K_TO)
from the (iPin, jPin) branch.

extern boolean add_lin_n (INOUT UserInstDef *userInst, IN int iPin,

                         IN int jPin, IN COMPLEX iNcorr);

The function below must be called (from nonlinear model's analyze_nl function) to add
the nonlinear conductance and capacitance contribution for the (iPin, jPin) branch.

extern boolean add_nl_gc (INOUT UserInstDef *userInst, IN int iPin,

                         IN int jPin, IN double g, IN double c);

The function below must be called (from nonlinear model's analyze_nl function) to add
the nonlinear current and charge contribution at the device pin iPin.

extern boolean add_nl_iq (INOUT UserInstDef *userInst, IN int iPin,

                         IN double current, IN double charge);

The function below can be called (from nonlinear model's analyze_nl function) to get tau
seconds delayed (iPin, jPin) voltage difference. Note that tau must not be dependent on
device pin voltages--it is an ideal delay.

extern boolean get_delay_v (INOUT UserInstDef *userInst, IN int iPin, IN int jPin,

                           IN double tau, OUT double *vDelay);

Any transient support function that follows can use ground as a pin by using this special
macro:

\#define GND \-1

The function below can be called (from the transient model's analyze_tr function) to
obtain the current time value, in seconds, of the transient analysis.

extern double get_tr_time (void);

The function below must be called (from the transient model's analyze_tr function) to add
the nonlinear conductance and capacitance contribution for the (iPin, jPin) branch.

extern boolean add_tr_gc (INOUT UserInstDef *userInst, IN int iPin, IN int jPin, IN double g,

IN double c);

The function below must be called (from the transient model's analyze_tr function) to add
the nonlinear current and charge contribution at the device pin iPin.

extern boolean add_tr_iq (INOUT UserInstDef *userInst, IN int iPin,

                         IN double current, IN double charge);



User-Defined Models

36

The function below can be called (from the transient model's analyze_tr function) to add
a resistor of rval Ohms between pin1 and pin2. The contribution of this resistor need not
be included in the other calculated currents, charges and derivatives. If rval is less than
10^-6^, rval is set equal to 10^-6^.

extern boolean add_tr_resistor (INOUT UserInstDef *userInst, IN int pin1,

                               IN int pin2, IN double rval);

The function below can be called (from the transient model's analyze_tr function) to add
a capacitor of cval Farads between pin1 and pin2. The contribution of this capacitor need
not be included in the other calculated currents, charges and derivatives. If cval is zero,
an open circuit will exist between pin1 and pin2.

extern boolean add_tr_capacitor (INOUT UserInstDef *userInst, IN int pin1, IN int pin2,

                                IN double cval);

 
The function below can be called (from the transient model's analyze_tr function) to add
an inductor of lval Henries between pin1 and pin2. The contribution of this inductor need
not be included in the other calculated currents, charges and derivatives. If lval is zero, a
short circuit will exist between pin1 and pin2.

extern boolean add_tr_inductor (INOUT UserInstDef *userInst, IN int pin1, IN int pin2,

                               IN double lval);

 
The function below can be called to simplify the work for adding a lossy inductor. One
more argument is passed to the function which is the resistance rval Ohms of the
inductor.

extern boolean add_tr_lossy_inductor (INOUT UserInstDef *userInst, IN int pin1, IN int pin2,

                                     IN double rval, IN double lval);

 
The function below can be called to add mutual inductance with coupling coefficient of
kval between the inductor ind1 and the inductor ind2.

extern boolean add_tr_mutual_inductor (INOUT UserInstDef *userInst, IN int ind1, IN int ind2,

IN double kval);

add_tr_inductor () or add_tr_lossy_inductor () must be added before the mutual
inductance is added. ind1 and ind2 are the values returned from add_tr_inductor () or
add_tr_lossy_inductor (). add_tr_inductor() and add_tr_lossy_inductor() return a
positive integer upon the successful completion. The integer is the inductor index which
can be passed to add_tr_mutual_inductor() as an inductor ID. 0 is returned when the
function call fails. Here is an example:



User-Defined Models

37

int ind1, ind2;

boolean status = TRUE;

ind1 = add_tr_lossy_inductor(userInst, 0, 2, R1, L1);

ind2 = add_tr_lossy_inductor(userInst, 1, 3, R2, L2);

if( ind1 && ind2 )

status = add_tr_mutual_inductor(userInst, ind1, ind2, K12);

else

status = FALSE;

The function below can be called (from the transient model's fix_tr function) to add an
ideal transmission line. The impedance of the line is z0 Ohms and the propagation delay
time of the line is td seconds. The loss parameter is used to describe the voltage
attenuation on the line; a loss of 1.0 specifies a lossless line; a loss of 0.5 specifies an
attenuation of 6 dB. The time domain simulation of this transmission line will be computed
automatically with no further action by the user in the analyze_tr function.

extern boolean add_tr_tline (INOUT UserInstDef *userInst, IN int pin1,

IN int pin2, IN int pin3, IN int pin4, IN double z0, IN double td,

IN double loss);

 
  



User-Defined Models

38

 Creating Linear Circuit Elements
This section describes creating linear elements through the use of examples. A linear
element differs from a nonlinear element in that a linear element contains only linear
elements while a nonlinear element can contain both linear and nonlinear elements.

  

 Deriving S-Parameter Equations

One way to characterize a circuit element is by its S-parameters. To help you derive the
S-parameters, refer to the following book: Microwave Transistor Amplifiers by Guillermo
Gonzalez (Englewood Cliffs: Prentice-Hall, Inc., 1984).

Begin the process of deriving the S-parameters by examining the circuit configurations
shown in the following schematic. Although this example shows 2-port S-parameters, the
technique is the same for elements with a greater number of ports.

 Figure1: 2-port network

 

Alternative, but equivalent, expressions for S11 and S22 are

S11 = (Z1 − ZO)/(Z1 + ZO)

S22 = (Z2 − ZO)/(Z2 + ZO)

where

ZO is the normalizing impedance for the circuit (usually 50 ohms)
Z1 is the impedance looking into port 1 when port 2 is terminated with ZO
Z2 is the impedance looking into port 2 when port 1 is terminated with ZO

For example, consider a grounded pi-section resistive attenuator as shown in the following
schematic.

 Figure2: Schematic for pi-section resistive attenuator



User-Defined Models

39

 

Inserting the schematic shown above into the 2-port network results in the following
schematic.

 Figure3: Resulting circuit schematic

 

Using the schematic above, the following relations are defined:

YA1 = 1.0/R3 + 1.0/ZO
ZA1 = 1.0/YA1
ZB1 = R2 + ZA1

Because the network is symmetrical, the following relations also hold:

YA2 = 1.0/R1 + 1.0/ZO
ZA2 = 1.0/YA2
ZB2 = R2 + ZA2

From the definition of Z1 and Z2:

Z1 = (R1• ZB1)/(R1 + ZB1)
Z2 = (R3 • ZB2)/(R3 + ZB2)

The S-parameters are obtained from the following equations:

S11 = (Z1 − ZO)/(Z1 + ZO)

S22 = (Z2 − ZO)/(Z2 + ZO)

S12 = S21 = (2.0 / ZO)/(1.0 / ZA1+1.0 / ZA2 + R2 / (ZA1• ZA2))



User-Defined Models

40

These basic equations are sufficient to write the C function for the element.

   

 Deriving Y-Parameter Equations

Y-parameters equations can be used to describe a user-defined element as an alternative
to S-parameter equations. The following schematic shows Y-parameters for a resistor
connected between two ports; Y-parameter definitions follow the figure.

 Figure4: Y-parameters for a 2-port resistor connection

 
In general,

With V2 equal to zero, V1 = I1 R, which is also equal to −I2 R. Y11 reduces to 1/R and Y21

to −1/R. Setting V1 to zero, V2 = I2 R =−I1 R. The expressions for Y22 and Y12 are 1/R

and −1/R, respectively. The resultant Y-parameter matrix is:

The following code is a portion of the example file:

/***************************************************************************

/

# define EPS 1.0e-8

/*

* This example shows direct Y-parameter loading, instead of S-parameters.

* For some elements, admittance parameters are easier to derive than

* scattering parameters. For a series resistor, the admittance matrix is

* as follows:

*                         | g -g|

*                   |Y| = |-g    g|   where g = 1 / R



User-Defined Models

41

*

* ELEMENT U2PD Id n1 n2 R=#

*/

static boolean u2pd_y(

UserInstDef *userInst,

double omega,

COMPLEX *yPar)

{

  double res, cond;

   res = userInst->pData->value.dVal * get_runit(userInst->eeElemInst);

   if (res < EPS)

      res = EPS;

   cond = 1.0 / res;

   yPar[0].real = yPar[3].real = cond;

   yPar[1].real = yPar[2].real = -cond;

   yPar[0].imag = yPar[1].imag = yPar[2].imag = yPar[3].imag = 0.0;

   return TRUE;

}

#undef EPS

/***************************************************************************

/

  

 Coding a Linear Element

Your circuit simulator includes examples of linear user-compiled models. You can follow
the same style in your modules. You can define only one model per module. Every model
includes a *_h.c file, which contains macros, type definitions, and interface function
declarations. If you are interested you can study this file to learn how dialog box settings
map to the c-code. Note that the file is automatically generated so any changes made
directly to the file will be lost.

To create a linear element, perform the following steps:

Define the element from the parameters page and define the number of external pins1.
from the Symbol View (accessed from the Model Code tab).
Write the function to return the linear response. The linear behavior is characterized2.
by a linear analysis function that you will write; this corresponds to the compute_y
function pointer in the UserElemDef structure (already defined in the template code
file):

boolean (*compute_y)(UserInstDef *pInst, double omega, COMPLEX

*yPar)

This function must return TRUE if successful, FALSE otherwise. This function should be
capable of working at ω = 0, especially if it is used for convolution. You can use Y-
parameters directly, or compute S-parameters and call the supplied s_y_convert
function to obtain Y-parameters:

extern boolean s_y_convert(COMPLEX *inPar, COMPLEX *outPar, int

direction, double rNorm, int size)

   Write the function to return the linear noise response. The linear noise behavior is3.
characterized by a noise analysis function; this corresponds to the compute_n function
pointer (already defined in the template code file):



User-Defined Models

42

boolean (*compute_n)(UserInstDef *pInst, double omega, COMPLEX

*yPar, COMPLEX *nCor);

It must compute the N×N COMPLEX noise correlation matrix using the passed
arguments omega and yPar array. The Code Options dialog box setting will set this to
NULL if the element is noiseless. The function must return TRUE if successful, FALSE
otherwise.
Thermal noise generated by a user-defined passive n-port element (where n is
between 1 and 20) at some element temperature tempC deg. Celsius can be included
in the nodal noise analysis of the parent network by calling the provided function:

boolean passive_noise(COMPLEX *yPar, double tempC, int numNodes,

COMPLEX *nCor)

from the element's compute_n function.
For an active 3-terminal 2-port element, if the conventional 2-port  noise parameters
(minimum noise figure, optimum source reflection coefficient, effective noise
resistance) are available through a measured data file, the 2 × 2 COMPLEX noise
correlation matrix required by compute_n can be obtained using the provided
function:

boolean active_noise (COMPLEX *yPar, NParType *nPar, int

numFloatPins, COMPLEX *nCor)

numFloatPins is either 3 for floating reference pin, or 2 for grounded reference pin.
You must fill the noise parameters into the nPar structure.
If the element needs special pre-analysis processing, such as reading4.
data/technology files, the pre_analysis pointer must be set to an appropriate
processing function. The Code Options dialog box value will determine whether this
pointer is set to NULL or to the pre_analysis function. The function must return TRUE
if successful, FALSE otherwise.
Before the beginning of a new circuit analysis, you must write the function for any5.
cleanup or post-processing required by the element (such as freeing memory or
writing an output file) and set the Post-Analysis Function check box in the Code
Options dialog. The function must return TRUE if successful, FALSE otherwise.
To allow detailed or extra information in your user-defined element definition, the6.
pointer field seniorData can be used to point to an arbitrary structure.

  

 Pi-Section Resistive Attenuator

The steps in the preceding section Coding a Linear Element are described for the grounded
pi-section resistive attenuator example U2PA in the following sections.

 

 Element Definition



User-Defined Models

43

The array U2PA (with static or module scope) defines the parameters of the U2PA
element. The c code is automatically generated by the information in the dialog box.

The corresponding c-headers are automatically generated:

#define R1_P  userInst->pData[0].value.dVal

#define R2_P  userInst->pData[1].value.dVal

#define R3_P  userInst->pData[2].value.dVal

static UserParamType

U2PA_parms[] =

{

{"R1", REAL_data},  {"R2", REAL_data},  {"R3", REAL_data}

};

static UserElemDef U2PA_ELEMENTS[] =

{

 "U2PA",   /* modelName */

 NUM_EXT_NODES,          /* # of external nodes */

 siz(U2PA_PARMS),   /* # of parameters */

 U2PA_PARMS,   /* # of parameter structure */

 PRE_ANALYSIS_FCN_PTR,   /* pre-analysis fcn ptr */

 COMPUTE_Y_FCN_PTR,      /* Linear model fcn ptr */

 COMPUTE_N_FCN_PTR,      /* Linear noise model fcn ptr */

 POST_ANALYSIS_FCN_PTR,  /* post-analysis fcn ptr */

 NULL,                /* nonlinear structure ptr */

 NULL,                   /* User-defined arb. data structure */

};

It is up to the user to write the appropriate code for the compute_y and compute_n
functions.

 

 Defining Variables



User-Defined Models

44

Begin by defining the variables and their data types. The S-parameter equations derived
in Resulting circuit schematic provide the basis for the needed variables. The equations
are repeated here:

YA1 = 1.0/R3 + 1.0/ZO
ZA1 = 1.0/YA1
ZB1 = R2 + ZA1
YA2 = 1.0/R1 + 1.0/ZO
ZA2 = 1.0/YA2
ZB2 = R2 + ZA2
Z1 = (R1 × ZB1)/(R1 + ZB1)
Z2 = (R3 × ZB2)/(R3 + ZB2)
S11 = (Z1 - ZO)/(Z1 + ZO)

S22 = (Z2 - ZO)/(Z2 + ZO)

S12 = S21 = (2.0 / ZO)/(1.0 / ZA1+1.0 / ZA2 + R2/(ZA1 • ZA2))

The resulting declarations are:

double YA1, YA2;

double ZA1, ZA2, ZB1, ZB2;

double Z1, Z2;

COMPLEX S[4];

 

 Implementing S-Parameter Equations

Implement the equations by performing the following steps:

The parameters are available via macro definitions as the parameter name, with an1.
appended _P:
R1 = R1_P;
R2 = R2_P;
R3 = R3_P;
Include code to check the resistance values and protect against division by zero.2.
In this example, the expressions YA1 and YA2 demonstrate the need to check data
values. If R1 or R3 has a value of zero, a fatal division by zero error condition will
result.
To protect against division by zero, limit the lower value of all input parameters to an
arbitrarily low value. For easy use, assign the value to a C macro, for example, EPS to

mean 10-8.

#define EPS 1.0E-8

if (R1 < EPS)

        R1 = EPS;

if (R2 < EPS)

        R2 = EPS;

if (R3 < EPS)

        R3 = EPS;



User-Defined Models

45

Insert code to define the equations. Note that the 2×2 Y-parameters to be returned3.
in the yPar[0..3] locations must be in row order, for example, Y11, Y12, Y21 and Y22.

S[3].imag = S[2].imag = S[1].imag = S[0].imag = 0.0; /* imag part */

YA1 = 1.0 / R3 + 1.0 / ZO;

ZA1 = 1.0 / YA1;

ZB1 = R2 + ZA1;

Z1 = (R1 * ZB1) / (R1 + ZB1);

S[0].real = (Z1 - ZO) / (Z1 + ZO); /* S11 real */

YA2 = 1.0 / R1 + 1.0 / ZO;

ZA2 = 1.0 / YA2;

ZB2 = R2 + ZA2;

Z2 = (R3 * ZB2) / (R3 + ZB2);

S[3].real = (Z2 - ZO) / (Z2 + ZO); /* S22 */

S[2].real = S[1].real = (2.0/ZO) /

(1.0/ZA1 + 1.0/ZA2 + R2/(ZA1 * ZA2));

/* convert S[2x2] -> yPar[2x2] */

return s_y_convert(S, yPar, 1, ZO, 2);

return status;

  

 Adding Noise Characteristics

 The noise analysis function pointer compute_n for passive elements in this example is set
to thermal_n, which computes thermal noise of the element item at the simulator default
temperature of 27.0°C, as shown below.

#define STDTEMP 27.0

/*

* Thermal noise model at default temperature (27.0 deg.C) for any

* n-terminal linear element

*/

static boolean thermal_n(

     UserInstDef *userInst,

     double omega,

     COMPLEX *yPar,

     COMPLEX *nCorr)

{

     UserElemDef *userDef = userInst->userDef;

     return passive_noise(yPar, STDTEMP, userDef->numExtNodes, nCorr);

}

The passive_noise function uses the supplied N×N Y-parameters of an N-terminal
element and temperature to compute the N×N complex noise correlation matrix.

It is possible to compute thermal noise at variable temperatures by adding a temperature
parameter, which could be either REAL_data or a MTRL_data reference, to the element
definition.

The next step is compiling and linking the C code. Refer to Building User-Compiled Analog
Models (modbuild).

  

 Transmission Line Section

This example will show how to derive an S-parameter matrix for a general transmission



User-Defined Models

46

line section, then show how to apply this to the case of a coaxial cable. The end result will
be an element that can produce an S-parameter matrix given physical dimensions.

 

 Deriving an S-Parameter

The ABCD matrix for a general section of lossless transmission line is:

From Microwave Transistor Amplifiers by G. Gonzalez, the conversion from an ABCD to an
S-matrix is as follows:

where:

and

.

Define  as . Then .
When the mathematical equations are worked out, this leaves:



User-Defined Models

47

and

 

 Separating the Expressions

Because we need S-parameters in a real-imaginary format, we need to separate these
expressions into their real and imaginary parts by applying their complex conjugate:

This multiplication yields:

and



User-Defined Models

48

This multiplication yields:

Note that the expressions all have the same denominator, which makes them easier to
code.

  

 Algorithms

Let us go through an algorithm with an example to ensure that it is correct.

Take Z = 50 Ω, Zo = 50 Ω, and L = l. Then βL = 2 π. This yields:

Another example: Z = Zo = 50 Ω, β L = π /2 (90o )



User-Defined Models

49

The preceding expressions can be used with any transmission line section as long as b
(the propagation constant), Z (the impedance), and L (the length) are known.

  

 Applying a Problem to the Coaxial Cable Section

The impedance of a coaxial cable is defined by:

where:

Z = impedance

 = characteristic impedance of dielectric = 
B = outside diameter
A = inside diameter

The propagation constant is defined by:

Therefore, the required parameters are A, B, L, and Er.

The U2PB example in U2PB.c is an implementation of the above. The relevant defining



User-Defined Models

50

data structures are shown below:

static UserParamType

U2PB_parms[] =

{

{"A", REAL_data},  {"B", REAL_data},  {"L", REAL_data},

{"K", REAL_data}

};

static UserElemDef U2PB_ELEMENTS[] =

{

 "U2PB",   /* modelName */

 NUM_EXT_NODES,          /* # of external nodes */

 siz(U2PB_PARMS),   /* # of parameters */

 U2PB_PARMS,   /* # of parameter structure */

 PRE_ANALYSIS_FCN_PTR,   /* pre-analysis fcn ptr */

 COMPUTE_Y_FCN_PTR,      /* Linear model fcn ptr */

 COMPUTE_N_FCN_PTR,      /* Linear noise model fcn ptr */

 POST_ANALYSIS_FCN_PTR,  /* post-analysis fcn ptr */

 NULL,                /* nonlinear structure ptr */

 NULL,                /* User-defined arb. data structure */

};

The a, b, len, and k values are obtained from the circuit through the automatically defined
macros:

a = A_P;
b = B_P;
len = L_P;
k = K_P;

To prevent the program from crashing, some error trapping must be done: a is checked to
be positive; b is checked to be greater than a ; and, k is checked to be greater than or
equal to 1.

if (a <= 0.0 || b <= a || k < 1)

{

  (void)sprintf(ErrMsg, "u2pb_y(%s): invalid params: A=%g,

  B=%g,K=%g",userInst->tag, a, b, k);

  send_error_to_scn(ErrMsg);

  return FALSE;

}

 

 Calculating Remaining Expressions

The impedance and wave number are then calculated:

eta = sqrt(MU0/EPS0/k);
vphase = 1.0 / sqrt(MU0 * EPS0 * k);
betal = omega * len / vphase;
z = eta * log(b / a) / 2.0 / PI;

The remaining expressions calculate the S-matrix:

zzo= z / ZO;
zoz= ZO / z;



User-Defined Models

51

arg1= zzo - zoz;
arg2= zzo + zoz;
denom = 4.0 * sqr (cos(betal)) + sqr (sin(betal)) * sqr (arg2);
res11 = sqr (sin(betal)) * (sqr(zzo) -sqr (zoz)) / denom;
ims11 = 2.0 * sin(betal) * cos (betal) * arg1 / denom;
res21 = 4.0 * cos(betal) / denom;
ims21 = -2.0 * sin(betal) * arg2 / denom;
S[3].real = S[0].real = res11; (defines S11 .real, S22 .real)
S[3].imag = S[0].imag = ims11; (defines S11 .imag, S22 .imag)
S[2].real = S[1].real = res21; (defines S12 .real, S21 .real)
S[2].imag = S[1].imag = ims21; (defines S12 .imag, S21 .imag)

 

 Adding Noise Characteristics

Because the U2PB coaxial section is lossless, it is also noiseless; therefore, the Noise
Analysis Function check box in the Model Kit Development dialog box is not selected.

The next step is compiling and linking the C-code. See Building User-Compiled Analog
Models (modbuild).
  



User-Defined Models

52

 Creating Nonlinear Circuit Elements
This section describes creating nonlinear circuit elements. Nonlinear user-defined element
modeling described in this section is applicable to steady-state analysis only. Refer to
Creating Transient Circuit Elements (modbuild), for information on modeling the transient
response.

 

 Requirements for Creating Nonlinear Elements

A nonlinear circuit element is characterized as follows:

a linear part
a nonlinear part
a bias-dependent small-signal ac part
a bias-dependent noise part

The first two are mutually exclusive partitions of the element model, while the small-signal
part is a combination. All parts can use parameter data of the element item as well as
those of any referenced items in the circuit.

The parts are coded as the following function entries in the element's device definition:

analyze_lin
analyze_nl
analyze_ac
analyze_ac_n

 

 Linear Part

 The linear part is computed in frequency domain. The user code must compute the
branch admittances in the same way as in the linear element case (Refer to Creating
Linear Circuit Elements (modbuild)). The difference here is in the loading of the circuit
nodal admittance matrix, which must be done through the add_lin_y function call for each
contribution separately. The analyze_lin function is called once for every sweep
(frequency, power, swept variable) value. The function can be set to NULL if the element is
completely nonlinear.

 

 Nonlinear Part

The nonlinear part is evaluated on a sample-by-sample basis of time domain pin voltages.
The device's analyze_nl function must compute the instantaneous nonlinear currents,
charges, and their voltage derivatives. Given the user item pin voltages-in the order of
external followed by internal-the user-written code computes the nonlinear charges at



User-Defined Models

53

each pin and the nonlinear currents out of each pin.

The partial derivatives of these nonlinear quantities with respect to each pin voltage are
then computed to formulate conductances and capacitances to load into the circuit
Jacobian matrix. In nonlinear analyses, the derivatives influence the rate of convergence,
but have no effect on the final steady-state solution. In addition to the instantaneous
voltages, delayed pin voltages can be obtained through the get_delay_v function.

You may keep any static/intermediate computed data (data invariant over subsequent
time samples and iterations) with the particular element item itself. Functions within ADS
perform the required time-to-frequency transformations.

 

 AC Part

The ac part linearizes the element model around the dc bias point, and returns the small-
signal frequency domain admittance and normalized noise correlation parameters.

The dc bias is determined for the entire flattened circuit, including nonlinear user element
items, whose linear and nonlinear parts would be computed as above. Then the device's
analyze_ac function is called to load the device admittances for all its branches (including
internal) into the circuit nodal admittance matrix. If the conductances and capacitances
are frequency independent, this will be a combination of the analyze_lin and linearized
analyze_nl functions.

The analyze_ac_n function must load the bias-dependent noise current correlation
parameters (normalized to FOUR_K_TO ) using the interface function add_lin_n . It is called
only if a noise measurement is required in a test bench.

The UserElemDef declaration for a nonlinear element has the compute_y function
automatically set to NULL .

 User-defined P-N Diode Model  

 This example shows how to create a nonlinear model of a P-N diode. The result is a set of
functions (available in the example PNDIODE that provide a simplified model of the ADS
DIODE element.

The model shown in the following schematic is used for the PNDIODE element.

 Figure: PNDIODE element model



User-Defined Models

54

 

 

 Defining a Nonlinear Element

For simplicity, all diode parameters are defined with the element itself in the
UserParamType array PNDIODE , instead of an indirect, shareable model form reference (in
Series IV these were referred to as data items). These definitions are entered in the
Parameters tab dialog box:



User-Defined Models

55

The associated declarations are automatically generated in the PNDIODE_h.c file:

static UserParamType

PNDIODE_parms[] =

{

 {"AREA", REAL_data},  {"IS", REAL_data},  {"RS", REAL_data},

 {"N", REAL_data},  {"TT", REAL_data},

 {"CJO", REAL_data},  {"VJ", REAL_data},

 {"M", REAL_data},  {"EG", REAL_data},

 {"XTI", REAL_data},  {"KF", REAL_data},

 {"AF", REAL_data},  {"FC", REAL_data},

 {"BV", REAL_data},  {"IBV", REAL_data},

 {"FFE", REAL_data}

};

The associated AEL create_item declarations are also generated in the PNDIODE.ael file.

The three function entries required in a user nonlinear device definition are declared
automatically:



User-Defined Models

56

static boolean analyze_lin(UserInstDef *userInst, double omega);

static boolean analyze_nl(UserInstDef *userInst, double *vPin);

static boolean analyze_ac(UserInstDef *userInst, double *vPin, double omega)

The diode has one internal pin between the linear RS and the nonlinear R || C
representing the junction. The device definition is (again, automatically-generated):

#define ANALYZE_NL_FCN_PTR      analyze_nl

#define ANALYZE_LIN_FCN_PTR     analyze_lin

#define ANALYZE_AC_FCN_PTR      analyze_ac

#define NUM_NONLINEAR_INT_NODES 1

#define ANALYZE_AC_N_FCN_PTR    NULL

static UserNonLinDef

ANALYZE_NL_DEF_PTR =

{

 NUM_NONLINEAR_INT_NODES,   /* numIntNodes */

 ANALYZE_LIN_FCN_PTR,       /* analyze_lin() */

 ANALYZE_NL_FCN_PTR,        /* analyze_nl() */

 ANALYZE_AC_FCN_PTR,        /* analyze_ac() */

 NULL,                      /* Nonlin modelDef (user can change) */

 ANALYZE_AC_N_FCN_PTR,      /* analyze_ac_n() */

};

The entry for the diode element definition itself is completed, using its parameters and
device definition:

#define NUM_EXT_NODES           2

#define ANALYZE_NL_DEF_PTR      analyze_nl_def_ptr

#define COMPUTE_Y_FCN_PTR       NULL

#define PRE_ANALYSIS_FCN_PTR    NULL

#define POST_ANALYSIS_FCN_PTR   NULL

#define ANALYZE_TR_FCN_PTR      NULL

#define ANALYZE_AC_N_FCN_PTR    NULL

#define COMPUTE_N_FCN_PTR       NULL

#define PNDIODE_PARMS                 PNDIODE_parms

#define PNDIODE_ELEMENTS              PNDIODE_elements

static UserElemDef PNDIODE_ELEMENTS[] =

{

 "PNDIODE",   /* modelName */

 NUM_EXT_NODES,          /* # of external nodes */

 siz(PNDIODE_PARMS),   /* # of parameters */

 PNDIODE_PARMS,   /* # of parameter structure */

 PRE_ANALYSIS_FCN_PTR,   /* pre-analysis fcn ptr */

 COMPUTE_Y_FCN_PTR,      /* Linear model fcn ptr */

 COMPUTE_N_FCN_PTR,      /* Linear noise model fcn ptr */

 POST_ANALYSIS_FCN_PTR,  /* post-analysis fcn ptr */

 &ANALYZE_NL_DEF_PTR,    /* nonlinear structure ptr */

 NULL,                   /* User-defined arb. data structure */

};

Implementation of the preceding functions is described next. (Error message reporting,
while useful for debugging, is not shown below.) The C macros conveniently centralize
parameter indexing:

#define AREA_P  userInst->pData[0].value.dVal

#define IS_P  userInst->pData[1].value.dVal

#define RS_P  userInst->pData[2].value.dVal

#define N_P  userInst->pData[3].value.dVal

#define TT_P  userInst->pData[4].value.dVal

#define CJO_P  userInst->pData[5].value.dVal



User-Defined Models

57

#define VJ_P  userInst->pData[6].value.dVal

#define M_P  userInst->pData[7].value.dVal

#define EG_P  userInst->pData[8].value.dVal

#define XTI_P  userInst->pData[9].value.dVal

#define KF_P  userInst->pData[10].value.dVal

#define AF_P  userInst->pData[11].value.dVal

#define FC_P  userInst->pData[12].value.dVal

#define BV_P  userInst->pData[13].value.dVal

#define IBV_P  userInst->pData[14].value.dVal

#define FFE_P  userInst->pData[15].value.dVal

The linear contribution is just from the series resistor RS between pins 0 and 1. This is
coded in the analyze_lin function. This function is also called from the small-signal
analyze_ac function described later.

/*--------------------------------------------------------------------*/

static boolean add_y_branch(

  UserInstDef *userInst,

  int n1,

  int n2,

  COMPLEX y)

{

  boolean status = TRUE;

  status = add_lin_y(userInst, n1, n1, y) &&

           add_lin_y(userInst, n2, n2, y);

  if (status)

  {

     y.real = -y.real; y.imag = -y.imag;

     status = add_lin_y(userInst, n1, n2, y) &&

              add_lin_y(userInst, n2, n1, y);

  }

  return status;

}

/*--------------------------------------------------------------------*/

static boolean analyze_lin (

  UserInstDef *userInst,

  double omega)

{

  boolean status;

  COMPLEX y;

  UserParamData *pData = userInst->pData;

   y.real = y.imag = 0.0;

   if (RS_P > RMIN)

    y.real = AREA_P / RS_P;

   else

    y.real = GMAX;

   status = add_y_branch(userInst, 0, 2, y);

   if (!status)

   {

      (void)sprintf(ErrMsg, "analyze_lin(%s) -> add_lin_y() failed", userInst->tag);

     send_error_to_scn(ErrMsg);

   }

   return status;

}

The nonlinear device model is coded as a common function ( diode_nl_iq_gc that follows)
so that it can be called from both analyze_nl and analyze_ac . It computes the nonlinear
junction charge, current and their derivatives with respect to the junction voltage.

static void diode_nl_iq_gc (

 UserInstDef *userInst, /* Changed from SIV to be consistent w/CUI */

 double *vPin,

 double *id,

 double *qd,

 double *gd,

 double *capd)

{



User-Defined Models

58

 double vd, csat, vte, evd, evrev;

 double exparg;

 double fcpb, xfc, f1, f2, f3;

 double czero, arg, sarg, czof2;

 UserParamData *pData = userInst->pData;

 csat = IS_P * AREA_P;

 vte = N_P * VT;

 vd = vPin[2] - vPin[1]; /* junction voltage */

/*

 * compute current and derivatives with respect to voltage

 */

 if ( vd >= -5.0*vte )

 {

   if (vd/vte < 40.0)

   {

   evd = exp(vd/vte);

   *id = csat * (evd - 1.0) + GMIN * vd;

   *gd = csat * evd / vte + GMIN;

 }

 else

 {

   /* linearize the exponential above vd/vte=40 */

   evd = (vd/vte+1.0-40.0)*exp(40.0);

   *id = csat * (evd - 1.0) + GMIN * vd;

   *gd = csat * exp(40.0) / vte + GMIN;

 }

}

 else

{

   *id = -csat + GMIN * vd;

   *gd = -csat / vd + GMIN;

   if ( BV_P != 0.0 && vd <= (-BV_P+50.0*VT) )

   {

     exparg = ( -(BV_P+vd)/VT < 40.0 ) ? -(BV_P+vd)/VT : 40.0;

     evrev = exp(exparg);

     *id -= csat * evrev;

     *gd += csat * evrev / VT;

   }

 }

/*

* charge storage elements

*/

fcpb = FC_P * VJ_P;

czero = CJO_P * AREA_P;

if (vd < fcpb)

{

   arg = 1.0 - vd / VJ_P;

   sarg = exp(-M_P * log(arg));

   *qd = TT_P * (*id) + VJ_P * czero * (1.0 - arg * sarg)

   / (1.0 - M_P);

   *capd = TT_P * (*gd) + czero * sarg;

 }

 else

 {

   xfc = log(1.0 - FC_P);

  /* f1 = vj*(1.0-(1.0-fc)^(1.0-m))/(1.0-m)  */

   f1 = VJ_P * (1.0-exp((1.0-M_P)*xfc)) / (1.0-M_P);

  /* f2 = (1.0-fc)^(1.0+m)  */

   f2 = exp((1.0+M_P)*xfc);

  /* f3=1.0-fc*(1.0+m)  */

   f3 = 1.0 - FC_P * (1.0+M_P);

   czof2 = czero / f2;

   *qd = TT_P * (*id) + czero * f1 + czof2 * (f3 * (vd - fcpb) +

   (M_P / (VJ_P + VJ_P)) * (vd * vd - fcpb * fcpb));

   *capd = TT_P * (*gd) + czof2 * (f3 + M_P * vd / VJ_P);

 }

} /* diode_nl_iq_gc() */

The following equation is used for the diode current  in the forward bias mode.

For :



User-Defined Models

59

The derivative of the diode current with respect to the junction voltage is:

For , the exponential is linearized to prevent numerical overflow:

For the case Vd < FC • VJ, the total charge and large-signal incremental capacitance

expressions are:

The analyze_nl function that follows loads the nonlinear currents, charges at each pin,
and the nonlinear conductances, capacitances for each branch. Note that each G, C
component has four Jacobian matrix contributions, two diagonals and two off-diagonals.

static boolean analyze_nl (

 UserInstDef *userInst,

 double *vPin)

{

 double id, gd; /* current, conductance */

 double qd, capd; /* charge, capacitance */

 boolean status;

 char *pMsg = NULL;

 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);

 /*

  * load nonlinear pin currents out of each terminal and

  * nonlinear charges at each terminal.

  */

 status = add_nl_iq(userInst, 1, -id, -qd) &&

          add_nl_iq(userInst, 2, id,  qd);

 if (!status)

 {

   pMsg = "add_nl_iq()";

   goto END;

}

/* Add nonlinear conductance, capacitance

 *   0      1   2

 *   0

 *   1      Y   Y

 *   2      Y   Y



User-Defined Models

60

 */

 status = add_nl_gc(userInst, 1, 1,  gd, capd) &&

          add_nl_gc(userInst, 1, 2, -gd, -capd ) &&

          add_nl_gc(userInst, 2, 1, -gd, -capd ) &&

          add_nl_gc(userInst, 2, 2,  gd,  capd);

 if (!status)

  pMsg = "add_nl_gc()";

END:

 if (pMsg)

 {

 (void)sprintf(ErrMsg, "Error: PNDIODE: analyze_nl(%s) -> %s", userInst->tag, pMsg);

  send_error_to_scn(ErrMsg);

 }

 return status;

} /* analyze_nl() */

The analyze_ac function that follows characterizes the PNDIODE's bias-dependent small-
signal ac behavior. It calls analyze_lin to load the linear part, then loads the linearized
admittances obtained from the nonlinear junction conductance and capacitance at the DC
bias point.

static boolean analyze_ac (

 UserInstDef *userInst,

 double *vPin,

 double omega)

 {

 COMPLEX y;

 double id, gd; /* current, conductance */

 double qd, capd; /* charge, capacitance */

 boolean status;

 /*

  * Add linearized conductance, susceptance

  *      0   1   2

  *   0  G       G

  *   1      Y   Y

  *   2  G   Y   Y

  */

 if (!analyze_lin(userInst, omega))

 return pw;

 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);

 y.real = gd; y.imag = omega * capd;

 status = add_y_branch(userInst, 1, 2, y);

 if (!status)

 {

  (void)sprintf(ErrMsg, "Error: PNDIODE: analyze_ac(%s) -> add_lin_y", userIns t->tag);

  send_error_to_scn(ErrMsg);

 }

 return status;

} /* analyze_ac() */

The analyze_ac_n function that follows models the PNDIODE's noise behavior in a linear
analysis. It loads the device's thermal noise, and its bias-dependent shot and flicker noise
contributions through the interface primitive function add_lin_n . The static function
add_n_branch loads a branch contribution symmetrically into the circuit's indefinite noise-
current correlation matrix.

/*--------------------------------------------------------------------*/

static boolean add_n_branch(

 UserInstDef *userInst,

 int n1,

 int n2,

 COMPLEX iNcorr)

 {

 boolean status = TRUE;

 status = add_lin_n(userInst, n1, n1, iNcorr) &&



User-Defined Models

61

 add_lin_n(userInst, n2, n2, iNcorr);

 if (status)

 {

 iNcorr.real = -iNcorr.real; iNcorr.imag = -iNcorr.imag;

 status = add_lin_n(userInst, n1, n2, iNcorr) &&

 add_lin_n(userInst, n2, n1, iNcorr);

 }

 return status;

}

/*--------------------------------------------------------------------*/

static boolean analyze_ac_n (

 UserInstDef *userInst,

 double *vPin,

 double omega)

{

 double id, gd; /* current, conductance */

 double qd, capd; /* charge, capacitance */

 boolean status;

 COMPLEX thermal, dNoise; /* noise-current correlation admittance */

 double kf, gs, tempScale;

 char *pMsg = NULL;

 UserParamData *pData = userInst->pData;

 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);

 tempScale = DEV_TEMP / NOISE_REF_TEMP;

 dNoise.imag = thermal.imag = 0.0;

 if (RS_P > RMIN)

 gs = AREA_P / RS_P;

 else

 gs = GMAX;

 thermal.real = tempScale * gs;

 id = fabs(id);

 kf = fabs(KF_P);

 /* shot noise */

 dNoise.real = 2.0 * CHARGE * id;

 /* flicker noise */

 if (id > 0.0 && omega > 0.0 && kf > 0.0)

 dNoise.real += kf * pow(id, AF_P) * pow(omega/TWOPI, -FFE_P);

 dNoise.real /= FOUR_K_TO;

 status = add_n_branch(userInst, 0, 2, thermal) &&

 add_n_branch(userInst, 1, 2, dNoise);

 if (!status)

 pMsg = "add_lin_n()";

 if (pMsg)

 {

 (void)sprintf(ErrMsg, "Error: analyze_ac_n(%s) -> %s", userInst->tag, pMsg);

 send_error_to_scn(ErrMsg);

 }

return status;

} /* analyze_ac_n() */

The next step is compiling and linking the code. Refer to Creating the Code and Compiling
the Model (modbuild).

 Referencing Data Items  

Refer to Referencing Data Items (modbuild).

 Displaying Error/Warning Messages  

Refer to Displaying Error/Warning Messages (modbuild).
 



User-Defined Models

62

 Creating Transient Circuit Elements
This section describes the steps necessary for creating transient circuit elements.

 

 Requirements for Creating Transient Elements

 A transient model can be created for either a linear or nonlinear element. A transient
element can have additional nodes internal to the element, as specified by the value of
numIntNodes (set in the Code Options dialog field No. of internal nodes under the
Transient Function check box. If a nonlinear model (using UserNonLinDef) is defined for
the element, the numIntNodes in that structure must match this definition.

Special routines are available to simplify the use of ideal resistors, capacitors, inductors,
and transmission lines within a transient element. For all but resistors, the number of
these elements must be predefined using numCaps, numInds, and numTlines so the circuit
simulator engine can perform the appropriate allocations. These values are entered in the
appropriate fields in the Code Options dialog box.

The time-domain response is evaluated from the instantaneous pin voltages. The device's
analyze_tr function must compute the instantaneous nonlinear currents, charges and
their voltage derivatives. Given the instantaneous user item pin voltages (external first,
followed by internal, starting at zero), the user-defined code computes the nonlinear
charges at each pin and the nonlinear currents out of each pin. The partial derivatives of
these nonlinear quantities with respect to each pin voltage are then computed to
formulate conductances and capacitances to load into the circuit Jacobian matrix.

If P is the total number of pin voltages, formulate nonlinear current and charge at each
pin n as follows:

rn (t) = f (v 0 (t), v1 (t), ..., vP-1 (t))

where rn is the pin current or charge response.

These responses and their voltage derivatives (nonlinear conductances and capacitances)
must be computed and loaded using the add_tr_iq and add_tr_gc functions, respectively.

  

 Using Resistors, Capacitors, and Inductors

Special routines are available to simplify the use of ideal resistors, capacitors, inductors,
and transmission lines within a transient element. These routines can be called from
within the user-written analyze_tr function. For all but resistors, the number of these
elements must be predefined using numCaps, numInds and numTlines, so the circuit
simulator engine can perform the appropriate allocations.



User-Defined Models

63

If the requested number of elements is not used, an error message is generated and the
analysis fails. The following code example could be used within an analyze_tr function to
implement a transient model for the element model shown in the following figure.
Naturally, values for these components could be calculated from the UserInstDef
parameters that are passed into the function.

boolean example1_tr (UserInstDef *pInst, double *vPin)

{

 boolean status;

 status = add_tr_resistor(pInst, 0, 2, 50.0) &&

add_tr_resistor(pInst, 2, GND, 1000.0) &&

 add_tr_capacitor(pInst, 2, 1, 10.0e-12) &&

add_tr_inductor(pInst, 2, 1, 5.0e-9);

 return status;

}

 Figure1: Element model for transient analysis

 

  

 Using Transmission Lines

The fix_tr function is called just before transient analysis begins. Its only purpose is to
set up ideal transmission lines for the user. Using the add_tr_tline function, transmission
line pins and physical constants are defined. All four terminals of the transmission line are
available to the user (See the following figure). Once the transmission line is defined here,
time-domain analysis of it is performed automatically without any further action by the
user in the analyze_tr function.

 Fiure2: Four transmission line terminals

 



User-Defined Models

64

The following code sample places a lossless 50Ω transmission line with a 100 psec delay
between pins 0 and 1. An analyze_tr function is still required, even though it doesn't do
anything-it should simply return TRUE.

boolean example2_fix (UserInstDef *pInst)

{

 boolean status;

     status = add_tr_tline(pInst, 0, 1, GND, GND, 50.0, 100.0e-12, 1.0);

    return status;

};

boolean example2_tr (UserInstDef *pInst, DOUBLE *vPIn)

{

   return TRUE;

}

 

 User-defined P-N Diode Model

This section shows how to extend the P-N diode example created in Creating Nonlinear
Circuit Elements (modbuild) for use in a transient model. Only the new code and
modifications required to extend this element to a transient model are listed below. The
code for this model is available in the example PNDIODE. The model shown in the following
figure is used for the PNDIODE element.

 Figure3: PNDIODE element model

 

  

 Defining the Transient Device

A prototype for the transient analysis function is required and is automatically generated
in the PNDIODE_h.c file when the Transient Function check box is selected in the Code
Options dialog box.

#define ANALYZE_TR_FCN_PTR     analyze_tr

static boolean analyze_tr(UserInstDef *userInst, double *vPin);

A UserTranDef structure is defined for transient.



User-Defined Models

65

#define ANALYZE_TR_DEF_PTR    analyze_tr_def_ptr

static UserTranDefstatic UserTranDef

ANALYZE_TR_DEF_PTR =

{

NUM_TRANSIENT_INT_NODES,    /* numIntNodes */

 NUM_TRANSIENT_CAPS,     /* numCaps */

 NUM_TRANSIENT_INDS,      /* numInds */

 NUM_TRANSIENT_TLS,       /* numTlines */

 USE_CONVOLUTION,      /* useConvolution */

 ANALYZE_TR_FCN_PTR,       /* analyze_tr */

 FIX_TR,        /* fix_tr */

};

In the UserElemDef, a pointer to the DIODE_TR structure is added at the end via a macro.

#define ANALYZE_TR_DEF_PTR      analyze_tr_def_ptr

static UserElemDef PNDIODE_ELEMENTS[] =

{

 "PNDIODE",   /* modelName */

  ..

 &ANALYZE_NL_DEF_PTR,    /* nonlinear structure ptr */

 NULL,                   /* User-defined arb. data structure */

 &ANALYZE_TR_DEF_PTR,    /* transient fcn ptr */

}

 

 Transient Analysis Function

The analysis routine diode_nl_iq_gc that was written for the nonlinear model (Refer to
Creating Nonlinear Circuit Elements (modbuild)) can also be used for the transient model.
Add to this the contribution of the series resistance and the model is complete. The
analyze_tr function that follows calls the diode_nl_iq_gc function for the nonlinear
contribution and loads them into the matrix, and then uses add_tr_resistor to include
the contribution of the series resistance.

static boolean analyze_tr(

 UserInstDef *userInst,

 double      *vPin)

{

 UserParamData *pData = userInst->pData;

 char *pMsg = NULL;

 boolean status;

 double id, qd, gd, capd, rs;

/* compute the nonlinear portion */

 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);

 status = add_tr_iq(userInst, 2,  id,  qd) &&

          add_tr_iq(userInst, 1, -id, -qd);

 if (status == FALSE) goto END;

 status = add_tr_gc(userInst, 2, 2,  gd,  capd) &&

          add_tr_gc(userInst, 2, 1, -gd, -capd) &&

          add_tr_gc(userInst, 1, 2, -gd, -capd) &&

          add_tr_gc(userInst, 1, 1,  gd,  capd);

 if (status == FALSE) goto END;

/* series resistance */

 if (AREA_P > 0.0)

     rs = RS_P / AREA_P;

 else

     rs = 0.0;

 status = add_tr_resistor(userInst, 0, 2, rs);

END:

if (pMsg)

{



User-Defined Models

66

 (void)sprintf(ErrMsg, "Error: PNDIODE: analyze_tr(%s) -> %s", userInst->tag, pMsg);

 send_info_to_scn(ErrMsg);

}

return status;

} /* analyze_tr() */

The next step is compiling and linking the code. Refer to Building User-Compiled Analog
Models (modbuild).

 Referencing Data Items  

Refer to Referencing Data Items (modbuild).

 Displaying Error/Warning Messages  

Refer to Displaying Error/Warning Messages (modbuild).
 



User-Defined Models

67

 Custom Modeling with Symbolically-
Defined Devices
This section presents a powerful capability of Advanced Design System: the ability to
create a user-defined nonlinear component which can simulate both the large-signal and
small-signal behavior of a nonlinear device, without the use of source code.

   

The symbolically-defined device (SDD) is an equation-based component that enables you
to quickly and easily define custom, non-linear components. These components are multi-
port devices that can be modeled directly on a schematic. You define an SDD by specifying
equations that relate port currents, port voltages, and their derivatives. Equations can
also reference the current flowing in another device. Once a model is defined, it can be
used with any circuit simulator in Advanced Design System. Derivatives are automatically
calculated during the simulation.

Before the SDD, the techniques that were available for modeling nonlinear devices were
either limited or cumbersome. One technique was to model the device equations using
discrete components-usually resistors, capacitors, inductors, and controlled sources. Since
most simulators restrict these devices to be linear, this approach could be used to model
only the small-signal (AC) behavior of the nonlinear device, and you could not achieve an
accurate DC simulation or harmonic balance simulation. A second approach would be to
use measured data, typically S-parameters, to model the device, but this approach, too,
modeled only small-signal behavior.

The only technique previously available to develop a model that simulated both the large-
signal and small-signal behavior of a nonlinear device required writing source code, which
was a lengthy task. For example, a typical BJT model would require over 4500 lines of
code, and could take an experienced engineer well over a month to write and debug.
There also is the requirement that the simulator be linked to your compiled code.

By comparison, the SDD offers a simple, fast way to develop and modify complex models.
Equations can be modified easily, and simulation results can be compared to measured
data within Advanced Design System.

The SDD can also model high-level circuit blocks such as mixers or amplifiers. By using a
single, high-level component instead of a subcircuit of low-level devices, simulations run
more quickly. If second- and third-order effects of low-level subcircuits need to be
analyzed, the SDD can be modified to develop a more comprehensive implementation of
the circuit.

The examples in this section start with a simple nonlinear resistor, then more complex
devices, like the Gummel-Poon charge-storage model of the bipolar junction transistor,
are described. With the techniques used to develop these models, you can develop your
own, custom, nonlinear components.

This section has the following sections:



User-Defined Models

68

Writing SDD Equations explains how to write the equations that define an SDD.
Adding an SDD to a Schematic describes how to add an SDD to a schematic and
enter equations.
SDD Examples show how to use SDDs to define a wide range of nonlinear circuit
components.
Modified Nodal Analysis is a discussion of modified nodal analysis and branch
equations.
Error Messages lists SDD error messages and their meaning.

Detailed knowledge of microwave and RF circuit theory and of building and analyzing
circuits using Advanced Design System is assumed.

  

 Writing SDD Equations

The symbolically-defined device is represented on the circuit schematic as an n -port
device, with up to 10 ports. The equations that specify the voltage and current of a port
are defined as functions of other voltages and currents. An example of a 2-port SDD is
shown here.

 

 The schematic symbol for a two-port SDD

    

 Port Variables   

For each port on the SDD, there are voltage and current port variables. A variable begins
with an underscore, followed by v (for voltage) or i (for current), and the port number. For
example, current and voltage variables for port one are _i1 and _v1, respectively. You can
rename variables to better suit the device being modeled. In text, vn and in are used to

refer to _vn and _in.

By convention, a positive port current flows into the terminal marked +.

    

 Defining Constitutive Relationships   with Equations



User-Defined Models

69

 A well-defined n port is described by n equations, called constitutive relationships, that
relate the n port currents and the n port voltages. For linear devices, the constitutive
relationships are often specified in the frequency domain (for example, as admittances),
but since the SDD is used to model nonlinear devices, its constitutive relationships are
specified in the time domain.

The constitutive relationships may be specified in either explicit or implicit
representations.

 

 Explicit Representation

 With the explicit representation, the current at port k is specified as a function of port
voltages:

An example of an explicit equation is:

In this example, the current at port 1 is calculated by dividing the voltage at port 1 by 50.

Note
Each port of the SDD must have at least one equation. For an unused port n, apply the equation I[ n,0] =
0.0 (an open circuit) to the unused port.

Note
Although not often utilized in standard circuit models, the explicit equation defining the ik port current can

actually be a function of any of the port voltages and any of the other port currents for ports that are
defined with implicit equations. Since port k is being defined with an explicit equation, the ik port variable

is not available and so cannot be used to implicitly define ik.

 

 Implicit Representation

 The implicit representation uses an implicit relationship between any of the port currents
and any of the port voltages:

An example of an implicit equation is:



User-Defined Models

70

This equation is part of the Gummel-Poon example.

If you want to use the current variable ( _in ) of a port in another equation, you must
define the port using an implicit equation.

A procedure for how to enter equations is in the section Adding an SDD to a Schematic.

 

 Explicit Versus Implicit Representations

The explicit representation is a voltage-controlled representation and can implement only
voltage-controlled expressions. The implicit representation has no such restriction. It can
model equations that are voltage-controlled, current-controlled, or use some other
control.

Although implicit equations have no restrictions, explicit equations are more "natural" and
more efficient. The explicit representation is more natural simply because many models
are expressed in the voltage-controlled form i = f(v). The corresponding implicit equation
is i - f(v) = 0, which is less intuitive.

Explicit equations use standard nodal analysis, that is, the sum of the currents entering
and exiting a node equal zero. Implicit equations use modified nodal analysis, which adds
a branch equation and makes i k available as a variable. For more information on modified
modal analysis, refer to the section Modified Nodal Analysis.

The explicit representation is more efficient during a simulation because it is a voltage-
controlled representation and, therefore, does not create any new variables in the
modified nodal equations. With implicit equations, for every port that uses an implicit
representation, the port current is appended to the list of branch currents and the port
equation is appended to the modified nodal analysis equations. The result is a larger
system of equations with a larger number of unknowns (for a discussion of modified nodal
analysis and branch equations, see the section Modified Nodal Analysis).

In general, you should use the implicit representation only when the explicit
representation is insufficient. For example, for a given port n, the port current variable _in
can be used in other equation s only if port n is defined with an implicit equation.

 

 Continuity

 Many of the circuit-solving algorithms used by the simulator are based on the Newton-
Raphson algorithm. Consequently, constitutive relationships should conform to the
following:



User-Defined Models

71

The functions must be continuous with respect to v and i.
Ideally, the functions should be differentiable with respect to v and i, but it is not
required.
It is desirable if the derivatives are continuous with respect to v and i, but this is not
necessary, for example, a step discontinuity in the derivative is often acceptable.

An example where these considerations are important is piecewise-defined devices where
the constitutive relationship changes depending on the region of operation. The
constitutive relationships should be carefully pieced together to ensure continuous
derivatives at the region boundaries. An example is given in Full Model Diode, with
Capacitance and Resistance.

Although continuous derivatives are not required, if a constitutive relationship does not
have continuous derivatives, the simulator may have trouble converging, even at low
power levels. If you are having convergence problems with an SDD, the continuity of
derivatives is the first thing to check.

    

 Weighting Functions   

A weighting function is a frequency-dependent expression used to scale the spectrum of a
port current.Weighting functions are evaluated in the frequency domain.

There are two predefined weighting functions. Weighting function 0 is defined to be
identically one. It is used when no weighting is desired. Weighting function 1 is defined as
jw and is used when a time derivative is desired.

You can define other weighting functions, starting with the number 2. Weighting functions
must be defined in the frequency domain. Weighting functions can, for example,
correspond to time delay or to a low-pass or high-pass filter. An example of a time delay
weighting function is:

Be aware that the SDD will be evaluated at DC, so a user-defined weighting function
should be well behaved at jω=0. For example, you might want to use a weighting function
of 1/jω to perform time integration, but this will cause a divide-by-zero error at DC.

For information on how to enter weighting functions as part of an SDD definition, refer to
Defining a Weighting Function.

 

 Weighting Function Example

To understand how the weighting functions are used, this example outlines the steps
taken to evaluate the port current of an SDD during a harmonic balance simulation.

For simplicity, consider a one-port SDD with an explicit representation for port one:



User-Defined Models

72

I[1,1] = f(_v1)

where f is some nonlinear function.

During a harmonic balance simulation, the simulator supplies the SDD with the spectrum
V1(ω) of the port voltage and asks the SDD for the spectrum I1(ω) of the corresponding
port current. To evaluate the current, the SDD performs four steps:

Perform an inverse Fourier transform on the voltage spectrum V1(ω) to obtain a1.
(sampled) time waveform v1(t).
Evaluate the nonlinearity f point by point along the time waveform. The result is the2.

(sampled) time waveform .

Perform a Fourier transform on the time waveform to obtain its spectrum .3.
Scale the components of this spectrum using the weighting function to obtain the4.

spectrum  of the port current.

Note
The nonlinearity is evaluated in the time domain. The weighting function is evaluated in the
frequency domain.

Since multiplication by jω in the frequency domain is equivalent to time
differentiation in the time domain, in this example, the current is:

You will see this result used in Nonlinear Capacitors and Nonlinear Inductors, where
the weighting function 1 is used to implement nonlinear capacitors and inductors.

 

 Controlling Currents

 Not only can the equations for an SDD be written in terms of its own port voltages and
currents, an SDD can also be set up to reference the current flowing in another device.
The devices that can be referenced are limited to either voltage sources or current probes
in the same network. For instructions on how to define a controlling current, refer to the
section Defining a Controlling Current. An example appears in Controlling Current,
Instantaneous Power.

    

 Specifying More than One Equation for a Port   

 It is possible to specify more than one expression for a port, but they must be either all
implicit or all explicit expressions. And, each port must have at least one equation. When



User-Defined Models

73

more than one expression is given for a port, the SDD calculates a separate spectrum for
each expression. Each spectrum is weighted by the weighting function specified for that
expression. The SDD then sums up the individual spectra to get the final spectrum.
Explicit and implicit examples follow.

 

 Explicit Cases

The two SDD equations

I[1,0] = f1(_v1)
I[1,0] = f2(_v1)

and

I[1,0] = f1(_v1) + f2(_v1)

are equivalent and implement

The SDD equations

I[1,0] = f1(_v1)
I[1,1] = f2(_v1)

implement

 

 Implicit Cases

The two SDD equations

F[1,0] = f1(_v1, _i1)
F[1,0] = f2(_v1, _i1)

and

F[1,0] = f1(_v1, i1) + f2(_v1, _i1)

are equivalent and implement



User-Defined Models

74

In the case of an implicit representation, if there is only one expression for a port or,
equivalently, more than one expression for a port but all the expressions use the same
weighting function, do not use a weighting function other than 0. To see this, assume that
in the previous example the weighting function is not weighting function number 0 but is
the user-defined function H(ω). Then in the frequency domain, the implicit equation
becomes

which is equivalent to

Here, upper-case letters are used to indicate frequency-domain values, and this assumes
that the weighting function does not evaluate to zero at a frequency of interest.
You would want to use a weighting function other than 0 with an implicit representation
when two or more expressions are used for a port and different weighting functions are
used by the expressions. For example, the SDD equations in this example:

F[1,0] = f1(_v1,_i1)
F[1,1] = f2(_v1, _i1)

implement

 

 Using an SDD to Generate Noise

An SDD generates noise in all four types of noise analysis: linear (AC and S-parameter),
harmonic balance (mixer and phase noise), transient noise, and Circuit Envelope noise. If
you want to add 1/f noise to a current source, consider using a standard current noise
source and set its value with an equation so it is a function of frequency:

In = 1e-12 + 1e-6/(freq+1)

In the denominator, the 1 is added so that the equation is not divided by zero when
freq=0.

 

 Summary

The SDD is an n -port device.
For port n, the voltage is denoted _vn. The current is denoted _in. Positive current
flows into the terminal marked +.
The explicit representation is useful for voltage-controlled nonlinearities:



User-Defined Models

75

The implicit representation is useful for the general nonlinearity:

Weighting functions are used to give a frequency weighting to a spectrum. Weighting
function number 0 corresponds to no (that is, unity) weighting. Weighting function
number 1 corresponds to jω and is used to implement a time derivative.
SDD equations can reference the current flowing in voltage sources or current probes
in the same network.
When more than one expression is given for a port, each expression is evaluated,
converted into a spectrum, and weighted separately from the others. The resulting
spectra are added together to get the final spectrum.
An SDD generates noise in all four types of noise analysis.

 

 Adding an SDD to a Schematic

 SDDs can be added to a schematic in the same way as other components are added and
connected to a circuit. This section describes the mechanics of adding an SDD component
to a schematic and defining it.
To add an SDD:

From the Component Palette List, choose Eqn-based Nonlinear.1.
Select the SDD with the desired number of ports, add it to the schematic, and return2.
to select mode.
Double-click the SDD symbol to edit the component.3.
The equations that define the SDD are entered as parameters in the Select4.
Parameters list. The left side of an equation identifies the type of equation, the port it
is applied to, and the weighting function. Select the equation you want to edit. (Note
the buttons below the list to add, cut, and paste equations as necessary.)

Under Parameter Entry Mode, specify the type of equation: implicit, or explicit. For5.
more information on the types of equations, refer to the section Defining Constitutive
Relationships with Equations.
In the Port field, enter the number of the port that you want the equation to apply to.6.
In the Weight field, enter the weighting function that you want to use. Predefined7.
weighting functions are 0 (the equation is multiplied by 1) and 1 (the equation is
multiplied by jw ). For more information on weighting functions, refer to the section
Weighting Functions. For information on the procedure for adding a different
weighting function to an SDD, refer to the section Defining a Weighting Function.
In the Formula field, enter the equation. For long equations, click More for a larger8.
entry area.
Click Apply to update the equation.9.
Add and edit other equations for other ports as desired.10.



User-Defined Models

76

Click OK to accept the changes and dismiss the dialog box.11.

 

 Defining a Controlling Current

 The equations for an SDD can be written in terms of the current flowing in another
device. For example, you can use the current flowing through a voltage source as part of
an SDD equation. You can specify only the current through devices that are either voltage
sources or current probes as control currents, and they must be in the same network as
the SDD. To specify a current as a control current, you enter the instance name of the
device in the C[] parameter of the SDD. For example, to use the current flowing through a
voltage source called SRC1, you would set the current parameter C[1] to SRC1. The SDD
equations use the variable _c1 to refer to this current.

To define a controlling current:

Double-click the SDD component to open the Edit Component dialog box.1.
Select C[1]= in the Select Parameters list.2.
Choose String and Reference as the parameter entry mode; File based should not be3.
used. In the C[Repeated] field, type the instance name of the device.
An example of a parameter definition is shown here.

To add another controlling current, select C[1] and click Add. The parameter C[2]4.
appears in the parameter list. You can define this parameter for another current.
Click Apply to update the SDD definition.5.
To use the controlling current in an equation, type c _n in your SDD equation, for6.
example, _v2 + _v1*_c1.
Click OK to accept the changes and dismiss the dialog box.7.

 

 Defining a Weighting Function

 A weighting function is a frequency-dependent expression that is used to scale the
spectrum of a port current. Weighting functions are evaluated in the frequency domain.
Predefined weighting functions are 0 (the equation is multiplied by 1) and 1 (the equation
is multiplied by jw ). You can define your own weighting functions.
To define a weighting function:

Double-click the SDD component to open the Edit Component dialog box.1.
Select any equation in the Select Parameters list.2.
Click Add. The new equation is automatically selected.3.
From the Parameter Entry Mode list, choose Weighting. Note that an H appears on4.
the left side of the equation to denote it is a weighting function.
In the Weight field, enter a value greater than 1. Each weighting function must have5.



User-Defined Models

77

a unique value.
In the Formula field, enter the weighting function.6.
Click Apply to update the SDD definition.7.
Click OK to accept the changes and dismiss the dialog box.8.

    

 SDD Examples   

This section offers the following detailed examples that show how to use symbolically-
defined devices to define a wide range of nonlinear circuit components. The examples
include:

Nonlinear Resistor
Ideal Amplifier Block
Ideal Mixer
Nonlinear Capacitors
Full Model Diode, with Capacitance and Resistance
Nonlinear Inductors
Controlling Current, Instantaneous Power
Gummel-Poon BJT

You can find most of these examples in the software under the Examples directory in this
location:

Tutorial/SDD_Examples_wrk/networks

 

 Nonlinear Resistor

  This section describes how to use SDDs nonlinear resistors with a cubic nonlinearity
example. This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/networks/Cubic

The nonlinear two-terminal resistor with constitutive relationship

exhibits a negative resistance for small v, and is widely used in the study of oscillation
theory. This two-terminal device can be modeled using a one-port SDD, shown below.
Since this is a voltage-controlled resistor, the SDD is defined using an explicit equation.



User-Defined Models

78

With this setup, note the following points:

This constitutive relationship specifies the current of port 1, and it is written as a
function of the voltage at port 1.
The Weight field is set to 0 to indicate that the weighting function is identically 1.

Results of DC and harmonic balance simulations on this component are shown in the
following figure.

 

 Simulation Results For the Nonlinear Cubic Resistor

The data displays show:

A DC plot of current versus voltage showing the cubic nature of the resistor.
The spectrum of the resistor current when a 1MHz, 3 V sinusoidal waveform is
applied across the resistor. Note that the fundamental and the third harmonic are the
only non-zero terms.
Current versus time with the same waveform applied at the input.

 

 Ideal Amplifier Block



User-Defined Models

79

 This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/networks/NonlinearAmp

A simple large-signal model for the gain of an ideal amplifier block can be expressed as

where:

vi is the input voltage

vo is the output voltage

Vs is the power supply voltage

A is the gain in the linear region

This relationship has the characteristics that the gain is A for small vi, and that vo

saturates at ±Vs, as shown in the following figure (a).

The amplifier is a two-port device, so one more equation is required to specify the
constitutive relationship. In the case of the following figure (a), where the ideal amplifier
has infinite input resistance and zero output resistance, you could use the above equation

and the equation  to define the constitutive relationship.

To model the amplifier as shown in the following figure (b), with finite input resistance Ri

and non-zero output resistance Ro, the equations will be different. The SDD in this

example is based on this model.

 

 Equivalent Circuit Model for an Ideal Saturating Amplifier

Current through the input resistance Ri can be expressed as:

You could use this equation directly as the equation for port 1, but then it would be
impossible to set Ri= . So, rewrite the explicit equation for port 1 using input



User-Defined Models

80

conductance Gi instead:

For port 2, the non-zero output resistance Ro is included in the model by adding a term to

the equation  to account for the voltage drop across the output
resistance:

Note
We can use the port 2 current in this equation because the equation for port 2 is an implicit equation.
Recall that when the equation for port n is implicit, the simulator appends the current through port n to
the list of unknowns and, therefore, the value of _in is available.

This model of an ideal amplifier as two-port SDD with the mixture of explicit and implicit
equations is shown below.

Note the following points:

There are several parameters whose values are set by the user then passed to the
device: G i (input conductance), A (gain), Vs (saturated output voltage), and Ro

(output resistance).
_v1, _v2, and _i2 are assigned to variables ( vi, vo, and io, respectively), and the
variables are used in the SDD equations.
The final form of the implicit equation for port 2 is written so that it equates to zero.

The SDD is simulated in the cell TestAmp. DC and harmonic balance simulation results are
shown in the following figure.

The first plot is a DC plot of vo versus vi.

The second plot is harmonic balance results showing output power and gain as the
amplifier saturates.



User-Defined Models

81

 

 Simulation Results for the Ideal Saturating Amplifier

 

 Ideal Mixer

 This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/networks/IdealMixer

The equivalent circuit for an ideal mixer is shown in the following figure.

 

 Equivalent Circuit for an Ideal Mixer



User-Defined Models

82

 Equivalent Circuit for an Ideal Mixer

The ideal mixer is a three-port device, so three equations are required to define its
constitutive relationship. Based on the circuit above, the following three equations can be
used to represent the current at each port:

irf = vrf /Z

ilo = vlo /Z

iif = (vif − vrf vlo )/Z

These equations are voltage-controlled and can be implemented using explicit SDD
equations. The SDD is shown next.

In this setup _v1, _v2, and _v3 were used in the equations. Each port has a named node,
so the voltages will appear in the data display.

 

 RF-LO-IF Example

An RF input of 1V at 3 GHz and an LO input of 1V at 4 GHZ yields an IF output of 0.25V at
1 GHz and 7 GHz, provided the IF output is matched (terminated in Z). The one scaling
down by a factor of two comes from the ideal mixing process, while the other comes from
the voltage being split over the two Zs.

The following figure shows the results of a transient analysis simulation of the mixer. It
shows the amplitude modulation effects in the time waveform of vif. For this simulation, v

rf is a sinusoid at 100 MHz with a DC offset, and vlo is a sinusoid at 2 GHz.



User-Defined Models

83

 

 Simulation Results for the Ideal Mixer

 

 Nonlinear Capacitors

 So far, all of the examples have dealt with nonlinear resistors. This section describes
nonlinear capacitors.
A nonlinear, voltage-controlled capacitor is defined in terms of its charge-voltage, or q - v,
relationship

For example, the q - v relationship for a linear two-terminal capacitor is

which, when differentiated with respect to time, yields the more familiar capacitor
equation

To use the SDD to model a nonlinear voltage-controlled capacitor, note that given a
nonlinear charge Q(v), the current is

This is a voltage-controlled expression for the current. It differs from the constitutive
relationship of a voltage-controlled resistor because it contains a time derivative.

The time derivative is implemented in the SDD by specifying weighting function number 1.
Weighting function number 1 is predefined as j ω which is the frequency-domain version



User-Defined Models

84

of the time derivative.

 

 Obtaining Charge From Capacitance

Often the equation for a nonlinear capacitor is specified not in terms of charge, but in
terms of a nonlinear capacitance C(v) where

Given this representation, the charge function is obtained by integrating the capacitance

where we have explicitly included the arbitrary constant of integration Q0.

If for some reason, the charge cannot be calculated, then the alternative technique
presented in Alternative Implementation of a Capacitor can be used to implement the
capacitor.

 

 Multi-port Capacitors

A nonlinear voltage-controlled two-port capacitor is usually defined by a capacitance
matrix

The capacitor currents are given by

The charge for a two-port capacitance is defined as the function Q(v1,v2) such that C(v1,
v2) is the derivative (that is, Jacobian) of Q(v1,v2). It follows that Q(v1,v2) exists if and
only if



User-Defined Models

85

and

If Q(v1,v2) does not exist, then the technique presented in Alternative Implementation of

a Capacitor can be used to implement the capacitor.

 

 Full Model Diode, with Capacitance and Resistance

 This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/networks/SDD_Diode

Capacitance. The junction capacitance of a reverse-biased pn diode may be written as

The subscript r signifies reverse bias.

To develop this expression into an equation that can be used in an SDD, you integrate
Cr(v) with respect to v to get an expression for the charge:

where the arbitrary constant of integration is chosen so that Qr(Vo) = 0.

There is a limitation to this equation because it is valid only for v < Vo. Though it is useful
in applications where the diode is always reverse biased (for example, a varactor diode), it
is not suitable for a general harmonic-balance analysis (or a DC analysis, for that matter)
where the bias voltage may exceed Vo.

A better diode model has the charge model extended into the forward-biased region, plus
resistance. Capacitance is described next, followed by resistance and the SDD
implementation. Besides yielding a valuable result, this example also highlights some
useful techniques for ensuring the continuity of charge and its derivative.

To increase the range of operation of the model, you can extend the capacitance into the
region v > Vo using a linear extrapolation. To do this, choose α such that 0 < α <1.

Let the previous Cr (v) equation be valid for v < αVo, and for v < αVo use



User-Defined Models

86

where:

C'
r (v) is the derivative of Cr(v) with respect to v

The subscript f signifies forward bias
Cf is a linear extension of Cr that matches the value and slope of Cr at v = α Vo

This definition of Cf ensures that, when joined with Cr, the capacitance and its derivative
are continuous. The boundary between reverse and forward bias is chosen to be αVo
instead of Vo because the slope of Cr at Vo is infinite.

The next step is to integrate Cf (v) to obtain

where the constant of integration is chosen so that Qf(αVo) = Qr(αVo). This equation can
be rewritten as

The overall expression for the junction charge is given as

Note
Q(v) and its derivatives are guaranteed continuous due to the definition of Cf(v) and due to the choice of
the constant of integration for Qf(v).

Resistance. The equation for the resistive behavior of a pn junction is the ideal diode
equation

Thus, total diode current has two components, one from the ideal diode equation and one
from the charge. This is handled in the SDD by specifying two equations for the current of
port one, one using weighting function number 0 and the other using weighting function
number 1.

Implementation. The SDD implementation is shown next.



User-Defined Models

87

Note the following points:

The current in the diode is based on two SDD equations:
The first equation models the resistive behavior of the diode. It uses expressions
listed in the Var Eqn component under Current equations. These include the
variables max_exp, max_arg, the function exp_soft(x), and the variable Vt.
They determine what value Is is multiplied by. exp_soft is the soft exponential
function and is used to prevent overflow problems when taking the exponent of
a large number. It is the same as a normal exponential except it becomes a
linear extrapolation when its argument is such that the normal exponential
would exceed max_exp.
The second equation models the charge. It uses the expressions listed in the Var
Eqn component under Charge equations. The value of _v1 is passed to the
function Q(v), where it is evaluated and the result is returned to the SDD. There
are several parameters with user-defined values, which also enter into the
calculations: Is (), Co (), Vo (), and alpha () (these value are passed from
TestDiode ).

A weighting function is used in the second SDD equation. It is important to
understand how the weighting function is used by the SDD and is reviewed here.

The spectrum for the port voltage _v1 is inverse Fourier transformed into the
time domain.
The constitutive relation (in this case, -2*C0*sqrt(V0*(V0-vv) ) is evaluated
point-by-point in the time domain.
The resulting waveform (which is the charge for port one) is Fourier transformed
into the frequency domain.
The weighting function (in this case, jw ) is applied in the frequency domain.
The result is the spectrum of the port current _i1.

When two explicit equations are specified for a single port, the SDD calculates a
spectrum representing the (weighted) result of the first equation, calculates a
spectrum representing the (weighted) result of the second equation, and then sums
the two spectra to get the final spectrum for the port current.

The SDD is simulated in the cell TestDiode. This design uses the diode capacitance as the



User-Defined Models

88

C in an RC circuit. It also allows the independent adjustment of the diode bias voltage.
The following figure shows the frequency response of the RC circuit as the bias voltage is
varied fro -1 to 2 V.

 

 Full Varactor Diode Model Results with C0 = 1 pF, V0 = 0.65V, and α = 0.7

 

 Nonlinear Inductors

 A nonlinear current-controlled inductor is defined in terms of its flux-current, or φ -i,
relationship

For example, the φ-i relationship for a linear two-terminal inductor is

which, when differentiated with respect to time, yields the more familiar inductor equation

To model a current-controlled nonlinear inductor, differentiate

with respect to time to obtain



User-Defined Models

89

which can be rewritten as

This expression can be implemented using an implicit representation.
For example, the SDD implementation for the nonlinear inductor specified by

is

Note
This is a good example of a case when using weighting functions with the implicit representation makes
sense.

Note that Advanced Design System also includes a built-in nonlinear inductor ( NonlinL )
available from the Eqn Based-Nonlinear component palette.

 

 Obtaining Flux From Inductance

Often the equation for a nonlinear inductor is specified not in terms of flux, but in terms of
a nonlinear inductance L(i) where

Given this representation, the flux function is obtained by integrating the inductance



User-Defined Models

90

where we have explicitly included the arbitrary constant of integration φ0.

 

 Controlling Current, Instantaneous Power

 This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/networks/RemCC

This example illustrates how to use a current as part of an SDD equation, where the
current is from another device in the circuit. For more background on controlling currents
and how to implement them, refer to Controlling Currents and Defining a Controlling
Current.

In this example, an SDD is used to calculate the instantaneous power dissipated through
resistor R1. The circuit containing R1 is shown here.

Making the power calculation requires both the voltage across R1 and the current through
R1. These values are supplied to the SDD in the following manner:

The voltage across R1, labeled Vdd, is applied to port 1 of the SDD. Note that the
current at this port is set to zero.
The current through R1 is specified by using the current through the voltage source
Vdds, and reversing polarity. Recall that only the current through either a voltage
source or current probe can be used as a controlling current. The instance name of
the component is used to specify the controlling current, as shown in the SDD
illustration. In a more complex circuit, you might consider adding a current probe.
Although the equation to find power dissipated in R1 is simply Vdd* -_c1, it must be
written in a form that is suitable for the SDD. The first step is to substitute _v1 for
Vdd. Then note that if:

_v2 = -_v1*_c1

and by using an implicit equation, the equation



User-Defined Models

91

_v2 + _v1*_c1

can be used to define port 2 of the SDD. Then use a named node ( Vpow ) to save
the power to the dataset.The graphs of Vdd and the instantaneous power Vpow are
shown below.

 

 Gummel-Poon BJT

 This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/networks/GumPoon

The following figure shows the equivalent circuit model for the Gummel-Poon bipolar
junction transistor (BJT). The associated current and capacitance equations follow.



User-Defined Models

92

 

 Equivalent Circuit Model for the Gummel-Poon BJT

Note
The Gummel-Poon model shown here is only an illustrative example of SDD. For a Gummel-Poon
BJT model that is fully tested and qualified, please use the Devices-BJT component palette in
Advanced Design System.

 

 Current Equations

where



User-Defined Models

93

 

 Capacitance Equations

where

Note : Junction capacitances of the form

change to the form



User-Defined Models

94

when v > FcVo. Here, 0 < Fc < 1.

 

 Adding the Nonlinear Base Resistance

In the full Gummel-Poon model, the base resistance Rbb is a nonlinear resistance that

depends on ib. When the base resistance is nonlinear, it cannot be modeled by a discrete

resistor-it must be included in the SDD equations.

The constitutive relationships are:

 

 Adding the Split Base-Collector Charge

Now that the nonlinear base resistance has been modeled, adding the split base-collector
capacitance is straight-forward. First, modify the equation for Qb2 to account for Xcjc.
Second, insert the equation for Qb1. Finally, add the time derivative of Qb1 to ib and
subtract it from ic:

 

 SDD Implementation



User-Defined Models

95

This implemented SDD is under the Examples directory in the following location:

Tutorials/SDD_Examples_wrk/GumPoon

For optimal viewing, you should open the cell. The components and equations are shown
below.



User-Defined Models

96

Note the following points.

Each port has two equations, one for the current and one for the charge.
The capacitance equations were integrated to obtain charge equations:

The integration is simplified for the first term of Cbe since the first term is a
partial derivative, the integration and partial derivative effectively cancel.
The integration is simplified for the first term in Cbc since the first term is an
exponential, and integration of an exponential is another exponential.
The other charges are similar in form to the charge given earlier in the section,
Full Model Diode, with Capacitance and Resistance.

The diode() and charge() functions are used to make the equations more readable
and to eliminate the duplication of common expressions.
Except for one difference, the SDD BJT presented here is identical to the compiled
BJT model built-in to the simulator (in the simulator, the values of Vje and Vjc are
adjusted to reflect the bandgap characteristics of silicon).
The SDD BJT uses about 55 equations. The built-in BJT model requires over 4500
lines of C code.
The SDD BJT was written in about one day, and debugged in about one day. The
built-in BJT model required about two weeks to write and another two weeks to
debug.

 



User-Defined Models

97

 Examples Summary

A voltage-controlled nonlinear resistor is described by its i-v relation

A two-terminal voltage-controlled nonlinear resistor i = I(v) is implemented by
I[1,0] = _v1
A general nonlinear resistor is described by an implicit i-v relation

A general two-terminal nonlinear resistor f(i,v) = 0 is implemented by
I[1,0] = f(_i1, _v1)
A voltage-controlled nonlinear capacitor is described by its q-v relation

A two-terminal voltage-controlled nonlinear capacitor q = Q(v) is implemented by
I[1,1] = Q(_v1)
A two-terminal voltage-controlled device with resistance i = I(v) and charge q = Q(v)
is implemented by
I{[1,0] = I(_v1)
I[1,1] = Q(_v1)
If a capacitor is specified by a nonlinear capacitance C(v) where

then the corresponding charge is given by

where Qo is the arbitrary constant of integration.
A current-controlled nonlinear inductor is described by its φ-i relation
_
_ * A two-terminal current-controlled nonlinear inductor φ = Φ(i) is implemented by
I[1,0] = _v1
I[1,1] = -phi(_i1)
If an inductor is specified by a nonlinear inductance L(i) where

then the corresponding flux is given by

where Φo is the arbitrary constant of integration.
SDD models are easier to write and debug than compiled models, but they are less
efficient during a simulation.

     

 Modified Nodal Analysis    

 Advanced Design System uses nodal analysis to form the circuit equations. Nodal analysis
is based on Kirchoff's current law (KCL) which states that for each node, the sum of the
currents incident to the node is zero.

Suppose a circuit has n+1 nodes and b branches. Let i be the vector of branch currents.



User-Defined Models

98

Then KCL can be expressed by the equation

Ai = 0

where A is an n x b matrix called the node incidence matrix. The entries in A are given by

In nodal analysis, KCL is not applied to the ground node (such an equation yields no
independent information) which explains why A has only n rows. If all the devices in the
circuit are voltage controlled, that is, if the port currents of each device are completely
determined by the port voltages of that device, then the branch current vector i can be
written as

i = g(v)

where v represents the vector of n node voltages and g is a map from IRn to IRb.
Substituting this equation into the KCL equation yields the node analysis equation

G(v) = 0

where G is a map from IRn to IRn defined by G(v)= Ag(v).
When a circuit contains devices that are not voltage controlled (a voltage source or an
inductor, for example), it is impossible to write KCL in terms of the node voltages alone-
some additional variables must be used. In modified nodal analysis, the branch currents of
the non-voltage-controlled devices are retained as variables. Thus KCL can be written as

where ib is the vector of the nb branch currents of the non-voltage-controlled devices and G
is a map from!modbuild-06-1-102.gif!

1 to IRn. Since there are now n equations in n+nb unknowns, nb additional equations

must be appended to the node equations. These additional equations are the constitutive
relationships of the nb non-voltage-controlled branches

The resulting augmented nodal equations are the modified nodal analysis equations

  

 Alternative Implementation of a Capacitor

 Suppose you have a nonlinear capacitance that cannot be integrated to get the
corresponding charge function. One example is a capacitance that is table-driven from
experimentally obtained data. Another case is a two-port capacitor



User-Defined Models

99

where there does not exist a charge Q(v1, v2) such that C(v1, v2) is the Jacobian of Q(v1,
v2). In these cases, the capacitor can still be implemented using an SDD. Consider the
one-port nonlinear capacitance C(v). By definition,

There is no way to implement this equation directly using an SDD because it involves the
product of a derivative. To bypass this problem, create an intermediate variable dv_dt =
dv/dt. Then the capacitor is described by the equations
i = C(v) dv_dt

There is one problem with implementing these equations directly. In the frequency
domain, the time derivative of v is
dv_dt = j2πfv.

Considering harmonic frequencies, f can be as high as 500 GHz. With such a large value of
f, a 1µV change in v produces a 3 MV change in dv_dt. This high sensitivity can cause
convergence difficulties for the system. To eliminate the problem, scale by a nominal
frequency value of 1 GHz.
fnom = 1GHz

i = C(v) fnom dv_dt

Note that even though i is proportional to fnom dv_dt, i is not overly sensitive to dv_dt
because fnom is multiplied by C(v) which is typically on the order of 1/fnom.

The scaled formulation of the capacitance is implemented by the SDD using the following
equations:

I[[1,0] = C(v)*f_nom*dv_dt
F[2,0] = −dv_dt
F[2,1] = v/f_nom

and these VAR equations:

v = _v1
dv_dt = _v2
f_nom = 1 GHz
C(v) = 1pf*exp(v)

This SDD can be found in Examples/Tutorials/SDD_Examples_wrk as SDD_cap. An
alternate implementation, SDD_cap2, can also be found in the workspace.



User-Defined Models

100

   

 Error Messages  

If an SDD has not been implemented correctly, it will generate errors. The errors will be
similar to the ones listed here.

Expression error: [ error __ message ].

An error has occurred while parsing or differentiating an expression.

h[0] and h[1] are predefined.

Weighting functions 0 and 1 have been redefined. This is not allowed.

Illegal state variable `_in'.

_in has been used, but there are not n ports.

Illegal state variable `_vn'.

_vn has been used, but there are not n ports.

Improper frequency dependence in sdd `f' parameters.

One or more of the implicit relationships depends on freq or omega. Frequency
dependence is not allowed.

Improper frequency dependence in sdd `i' parameters.

One or more of the explicit relationships depends on freq or omega. Frequency
dependence is not allowed.

Port equation cannot be both i and f type.

At least one of the ports has both an explicit and an implicit expression. If more



User-Defined Models

101

than one expression is used for a port, all expressions for the port must be of
the same type, that is, all explicit or all implicit.

Port n is missing a corresponding equation.

No constitutive relationship has been specified for port n.

SYM error: [ error message ].

An error has occurred while evaluating an SDD expression or its derivative.
(SYM is the name of the system symbolic expression handler.)

 



User-Defined Models

102

 Custom Modeling with Frequency-
Domain Defined Devices
As CAE plays a larger role in the design cycle of RF and microwave circuits and
subsystems, it is important for CAE design systems to satisfy the modeling needs of the
engineer at both the device level and the subsystem level. As communication applications
continue to increase, it is no longer possible to satisfy all modeling needs with standard,
preconfigured models. Thus, Advanced Design System enables users to define their own
nonlinear models, in either the time domain or the frequency domain.

For working in the time domain, the symbolically defined device (refer to Custom Modeling
with Symbolically-Defined Devices (modbuild)) enables users to specify nonlinear models
directly on the circuit schematic, using algebraic relationships for the port voltages and
currents. It works very well for creating many nonlinear device models, but it can be
cumbersome for describing the nonlinear, behavioral, frequency-domain operation of the
type of subsystems used in RF and microwave communication systems.

To address this need, the frequency-domain defined device (FDD) was developed. The
FDD enables you to directly describe current and voltage spectral values in terms of
algebraic relationships of other voltage and current spectral values. This simplifies
development of non-linear, behavioral models that are defined in the frequency domain.
The FDD is ideal for modeling a variety of devices, such as modulators and demodulators,
phase lock loop components, and more.

The FDD includes capabilities that make it well suited for modeling  digital communication
subsystems, which often behave in ways that cannot be adequately modeled as time-
invariant. Clocked systems, sampled systems, TDMA pulsed systems, and digitally-
controlled systems are common, even in the RF and microwave area, and behavioral
models must be able to include these effects. So, in addition to its frequency-domain
modeling attributes, the FDD also enables you to define trigger events, to sample the
voltages and currents at trigger events, and to generate outputs that are arbitrary
functions of either the time of the trigger or of the complex spectral voltage and current
values at these trigger events.

  While the SDD is the user-defined model of choice for modeling at the device and
component level where physics dictates that responses are a function of the instantaneous
port variables, the FDD is preferable for nonlinear, behavioral modeling in both the
frequency and time domains.

Before continuing this section, you should be familiar with the SDD. This section assumes
knowledge of several topics that are presented in the discussion of SDDs, such as port
variables and explicit and implicit equations. For more information, refer to Custom
Modeling with Symbolically-Defined Devices (modbuild).

 

 Signal Models and Sources

    To fully understand how FDD models work and what they can do, some understanding



User-Defined Models

103

of how the simulator models signals in the different simulation analyses is necessary.
While the descriptions that follow use voltages, either voltage or current signals can be
used.

In DC analyses, a node voltage is simply expressed as a constant V for all time. Its
frequency spectrum is simply an impulse at DC with a value of V.

In transient and convolution analyses, a node voltage is still a single variable, but it is now
a time-varying variable V(t), which can theoretically represent any type of signal from DC
up to the Nyquist bandwidth (.5/Tstep). These signals can be periodic, transient, or
random signals. The spectrum of this signal can be computed with Fourier transform
techniques.

 In harmonic balance analyses, a node voltage is represented by a discrete spectrum in
the frequency domain. This limits the signal types to quasi-periodic signals, and, given
memory limitations, to a relatively few number of discrete frequencies. The time-domain
waveform can be computed by Fourier transform techniques, based on the equation
below.

The set of harmonic frequencies is defined by the user entering a set of fundamental
frequencies, with an order for each tone. A maximum order parameter is also required for
limiting the number of mixing tones that are included in the set of harmonic frequencies.
For each of these frequencies, each node voltage has a constant value associated with it,
signifying the amplitude and phase of the periodic sinusoid at that frequency.

These frequencies are referenced by fundamental frequency indices, in the following
manner:

Given the indices [ m, n ], the corresponding frequency is m*freq1 + n*freq2, where
freq1 and freq2 are fundamental frequencies.

For example, consider a two-fundamental simulation, with fundamental frequencies freq1
and freq2 defined as 1GHz and 900 MHz, respectively. The frequency component at 1 GHz
would have indices of [1,0]. The 900 MHz frequency component would have indices of
[0,1]. 100 MHz would have an index of [1,-1], and [2,-1] would be one of the intermod
terms at 1.1 GHz. Note that [0,0] refers to DC. Indices of [-1,1] reference -100 MHz and
its spectral values would be equal to the complex conjugate of those at 100 MHz.

A three-fundamental frequency system requires three indices [ m, n, o ] to define a
unique frequency component.

 In Circuit Envelope analyses, a node voltage is represented by a time-varying, frequency-
domain spectrum. As in harmonic balance, a set of harmonic frequencies is user-defined.
But here, the spectral amplitude and phase at each of these frequencies can vary with
time, so the signal it represents is no longer limited to a constant sinusoid. Each of these
harmonic frequencies is the center frequency of a spectrum; the width of each spectrum is



User-Defined Models

104

±.5/Tstep. The bandlimited signal within each of these spectra can contain multiple
periodic, transient, or random tones. The actual time-domain waveform is now
represented by the following equation.

Since each time-varying spectrum V k (t) can be thought of as a modulation waveform of
the center frequency fk, these are often referred to as envelopes. This does not imply that

there must actually be a frequency component at the center frequency, see the following
table for examples. Note there are N+1 of these spectra. The one at DC (also referred to
as the baseband component) is limited to a bandwidth of 0.5/Tstep and must always be
real. The other N spectra have a double-sided bandwidth of 1/Tstep and are usually
complex.

 

 Example Signals for Spectrum around fk

# Formula Description

1 Vk=1 Constant cosine cos(2*pi*fk*time)

2 Vk=exp(-j*pi/2) or polar(1,-90) or -j Constant sine sin(2*pi*fk*time)

3 Vk=A*exp(j*(2*pi*fm*time+B)) One tone (SSB) A*cos(2*pi*(fk+fm)*time+B)

4 Vk=A*exp(j*B); freq=1.1 GHz 1 Same as (3) (assuming fk + fm = 1.1 GHz)

5 Vk=2*cos(2*pi*fm*time) Two tone (AM suppressed carrier)

6 Vk=exp(j*2*pi*fm*time) + exp(-
j*2*pi*fm*time)

Same as (5)

7 Vk=pulse(time,...); freq=fk+fm 1 Pulsed RF at a frequency of fk + fm

8 Vk= -step(time - delay) A negative cosine wave, gated on at t=delay

9 Vk = (vreal(time)+j*vimag(time))*
exp(j*2*pi*fm*time)

I/Q modulated source centered at fk+fm. (vreal(), vimag()
user-defined functions)

10 Vk=(1 + vr1) * exp\(j*2*pi*vr2) Amplitude and noise modulated source at fk. (vr1. vr2
user-defined randtime functions)

11 Vk=exp(j*2*pi*(-f0 + a0*time/2)*time) Chirped FM signal starting at fk-f0, rate a0

1. _freq_ is defined in the paragraph below.

 The envelope waveform V k (t) has many useful properties. For example, to find the
instantaneous amplitude of the spectrum around fk at time ts, you simply compute the

magnitude of complex number V k (t s ). Similarly, the phase, real, and imaginary values
of instantaneous modulation can be extracted by simply computing the phase, real, and
imaginary values of V k (t s ). Note this is only extracting the magnitude of the
modulation around fk. It is not including any of the spectral components of adjacent fk-1 or

fk+1 spectra, even if these spectra actually overlap. If this fk spectrum has multiple tones

inside of it, then this demodulation does include their effects.



User-Defined Models

105

This simple technique does not allow demodulating only one of the tones inside this fk
spectrum and excluding the other tones in the fk spectrum. To accomplish this, the

desired tone must first be selected by using an appropriate filter in the circuit simulation.
Also note that since the baseband (DC) spectrum represents a real signal and not a
complex envelope, its magnitude corresponds to taking the absolute value, and its phase
is 0 or 180 degrees.

  

 Defining Sources

 To define a source for Circuit Envelope, you first identify in which spectral envelope the
signal belongs. This will typically be the fundamental of one of the frequencies specified in
the analysis. Most frequency-domain sources have a single frequency parameter that can
be specified. When these sources are used in a harmonic balance or Circuit Envelope
simulation, the simulator will determine which of the analysis frequencies is the closest to
the source frequency, and if it is close enough, will internally assign it the corresponding
set of indices. A Circuit Envelope simulation will also determine the frequency offset from
the analysis frequency and automatically shift the signal accordingly. This frequency offset
can be up to ±0.5/Timestep. If the source frequency is too far away from any analysis
frequency, then its output is set to 0.0 for that analysis and a warning is generated.

Regarding the equations used to define an output from these sources, instead of having to
define a fundamental frequency and an SSB frequency offset modulation as in source
example 3 in Example Signals for Spectrum around fk, the simpler format of example 4 is
now possible. In addition, these frequency-defined sources are also directly compatible
with simple transient analysis.

 

 The Frequency-Domain Defined Device

 This section describes the equations and parameters of the FDD. A procedure for adding
an FDD to a schematic is in the section Adding an FDD to a Schematic. For examples of
FDDs developed into models, refer to the section FDD Examples.

The frequency-domain defined device is represented on the circuit schematic as an n-port,
along with equations specifying the relationships between the spectral port variables. An
example of a 2-port FDD is shown here.

By usual convention, a positive port current flows into the terminal marked +.

 



User-Defined Models

106

 Retrieving Values from Port Variables

    The variables of interest at a given port are the port spectral voltages and port spectral
currents. Spectral voltages and currents can be obtained using the functions _sv(), _si(),
_sv_d(), and _si_d(), which are described in the following table, and used in conjunction
with equations, which are described in the section Defining Constitutive Relationships with
Equations. The _sv() and _si() functions return voltage or current values for a specific port
and for a specific frequency. You choose the port by port number, and you choose the
frequency using a frequency index. The index is either:

The index to an FDD carrier frequency and its harmonics
A set of indices that reference the frequencies of a harmonic balance analysis

 For information on FDD carrier frequencies and indexing, refer to the section Specifying
Carriers with the Freq Parameter. For a description of frequency indices from a harmonic
balance analysis, refer to the section Signal Models and Sources.

As an example, to access the spectral voltage at port 1 for the second harmonic of the
first fundamental frequency, use the function _sv(1,2). Similarly, to access the port n
current at the frequency with indices [h1,h2,h3], use the function _si(n, h1, h2, h3). Both
of these functions return single complex values at each time point, unless the specified
envelope is baseband, in which case the value is real. The underscore in the function
names is used so as to not conflict with user-defined functions, and to signify that these
functions only have meaning within the context of evaluating the FDD device. They cannot
be used to directly generate output variables, for example.

 The _sv() and _si() functions return the present value of the specified spectral envelope.
For transient, convolution, or Circuit Envelope simulations, it is also desirable to access
past values of the spectral port variables. This can be done using the _sv_d() and _si_d()
functions, which are described in the following table. These functions have a delay
parameter. For example, to find the value of the port 2 voltage at the [2,-1] intermod
frequency 10 µsec ago, use _sv_d(2, 10us, 2,- 1).

 Functions for Accessing Spectral Ports and Currents

Name Description

_sv(port, findex)1 Returns the spectral voltage for the specified port at the specified frequency index.

_si(port, findex) Returns the spectral current for the specified port at the specified frequency index.

_sv_d(port, delay,
findex)

Returns a past value of spectral voltage for the specified port and time delay at the
specified frequency index.

_si_d(port, delay,
findex)

Returns a past value of spectral current for the specified port and time delay at the
specified frequency index.

1 findex can refer either to the index of an FDD carrier frequency as defined with the freq parameter and its
harmonics or a set of indices that reference the fundamental frequencies of a harmonic balance analysis.

The delay values in the _sv_d() and _si_d() functions can be variables that change during
the simulation. However, these delay variables must have their maximum value at time
t=0. This is to allow proper initialization of the required history buffers. This criteria can
usually be met with an expression such as



User-Defined Models

107

fdd_delay = if (time = 0) then max_delay else variable_delay endif.

where max_delay is some reasonable value that the variable_delay is known to never
exceed.

Also, FDDs require that all state variable dependencies that will ever exist must exist at
time = 0. For example, the following equation describes a discrete accumulation
operation, with a reset to 0 at time = 0:

v[2,0] = if (time = 0) then 0.0 else _sv_d(2,timestep) + _sv(1,0) endif

However, it must be modified to work with the FDD so that both state variable
dependencies as well as the maximum delay at time = 0. The following satisfies this
criteria by adding an insignificant portion to the time = 0 value.

next_state = _sv_d(2,timestep) + _sv(1,0)

v[2,0] = if (time = 0) then 0.0 + next_state*1.0e-100 else next_state endif

 

 Defining Constitutive Relationships with Equations

     An unlimited number of equations can be used to define constitutive relationships
between the port voltages and port currents. There are two basic types of equations
allowed, current equations and voltage equations. Their basic format is:

i[port, findex] = f(_sv(),_sv_d(),_si(),_si_d())

v[port, findex] = f(_sv(),_sv_d(),_si(),_si_d())

The equations can be listed in any order, and more than one equation can be used for a
single port, but each port must have at least one equation.

Note the use of indices on the left side of the equations. This is similar to the use of
indices in the _sv() and other functions that were previously described, they can be can be
either the index to an FDD carrier frequency and its harmonics or a set of indices that
reference the frequencies of a harmonic balance analysis. Indices are discussed in the
sections Signal Models and Sources and Specifying Carriers with the Freq Parameter.

In order for a port current to be used on the right side of an equation, at least one voltage
equation for that port must be defined. It does not matter which harmonic indices are
used for this. Normally, the simulator does not generate current-state variables, only node
voltage-state variables. This is sufficient as long as the devices are modeled as voltage-
controlled current sources. This is also the most efficient method in terms of speed and
memory. However, current-controlled sources can be generated but the simulator requires
an additional equation to define this current. The presence of a voltage equation signifies
this to the simulator. In general, the voltage equations should only be used when the
voltage-controlled current equations are insufficient. Refer to Modified Nodal Analysis
(modbuild), for more detail.



User-Defined Models

108

While the SDD has truly implicit equations of the form f(_v1,...,_vn,_i1,...,_in)=0 the FDD
does not. However, the equivalent effect can be generated by adding the left side to the
right side of the voltage equations. For example,

v[2,1,0]=f(_sv(1,0),_si(2,1,0))+_sv(2,1,0)

has effectively generated the implicit equation f(...) = 0. The FDD is different in this
respect in order to solve the problem of how to define the voltage at all unspecified
spectral frequencies. The above voltage equation also generated a number of additional
implied equations that say

v[2,all other harmonic indices] = 0.0.

Note that all equations for the same spectral port variable are effectively added together,
so if you also define an equation for another spectral frequency at the same port (i.e.,
v[2,0] = vcalc), this additional implied equation that sets the voltage to zero is ignored.

For a procedure on how to add current and voltage equations to an FDD, refer to the
section Defining Current and Voltage Equations.

 

 Continuity

   As with any Newton-Raphson based circuit-solving algorithm, the constitutive
relationships should be differentiable with respect to each of the specified spectral
voltages and currents, and these derivatives should be continuous. Discontinuous
derivatives may cause the simulator to have trouble converging.

 One possible technique to improve convergence, or to circumvent the above limitations,
is to add delay between the input and output using the _sv_d() or _si_d() functions. If this
delay is greater than the simulation timestep, then the derivative information is no longer
needed or used. If this delay is acceptable behavior for the model, simulation speed can
be improved.

Large step discontinuities in the time-domain functions can also create convergence
problems, either taking longer to solve or possibly causing convergence failure. Although
having continuous derivatives with respect to time is not as important as having
continuous derivatives with respect to the spectral port variables, care should be taken
when using abrupt time functions.

 

 Specifying Carriers with the Freq Parameter

  The FDD has a repeatable freq[n] parameter, which can be used to define one or more
carrier frequencies. The [n] is used to identify each carrier, for example, freq[1]=100 MHz
, freq[2]= 350 MHz, freq[3]=800 MHz. If carrier frequencies are defined for the FDD, you
can reference them using _sv() and related functions in order to collect voltages and
currents at carrier frequencies and their harmonics.



User-Defined Models

109

The syntax to reference these carrier frequencies defined in the FDD components is to set
the first index parameter equal to the negative of the carrier frequency number [n]. The
optional second index parameter specifies the harmonic of that carrier frequency. If
nothing is specified for the second index parameter, then a default of 1 is used. For
example, if an FDD has defined freq[3]=800 MHz, then _sv(1,-3,3) specifies the port 1
spectral voltage at the envelope closest to 2.4GHz. Here -3, indicates that freq[3] defined
in the FDD component will be used and 3 indicates that the 3rd harmonic of the freq[3]
value is desired. Thus 3* freq[3] =2.4 GHz. If there is no analysis frequency close enough
to 2.4 GHz (within 0.5/Timestep for Circuit Envelope), then this function simply returns
0.0 and generates a warning.

Also, if an FDD has defined freq[3]=800 MHz, then _sv(1,-3) specifies the port 1 spectral
voltage at the envelope closest to 800 MHz. Here, -3 indicates that freq[3] defined in the
FDD component will be used. And since nothing is specified for the second index
parameter, 1 can be used. Thus 1* freq[3] =800 MHz.

Note that _sv(1,3,3) would be unaffected by the carrier frequency parameters ( freq[n] )
defined in the FDD component since the first index number is positive (3). However, it
would still refer to the envelope at 3*_freq1 + 3*_freq2, where _freq1 to _freq12 are
predefined variables that are set to the fundamental frequencies defined by the analysis.

The FDD freq parameter behaves differently than the source freq parameter (referred to
in the section Defining Sources) in that any acceptable offset frequency between the
carrier frequency and envelope center frequency is ignored. For example, given an
envelope analysis with a fundamental frequency of 0.5 GHz, a timestep of 1µsec, and FDD
freq[1] = 500MHz and freq[2]=500.1MHz, then _sv(1,-1) and _sv(1,-2) would return the
same value, the port 1 spectral voltage at 500 MHz. (If timestep is changed to 1µsec, then
_sv(1,-2) would return 0.0.)

Note that it is not possible to reference a mixing product of multiple carrier frequencies. If
this is desired, then an additional carrier frequency equal to the desired mixing product
frequency must be defined. For an example, refer to the mixer example in the section
Mixer.

For a procedure on how to add freq parameters to an FDD, refer to the section Defining
Frequency Parameters.

 

 Creating Output Harmonics

 If you are creating a model with the capability to output a large number of harmonics,
the _harm variable can be used with the FDD to develop a such a model. The _harm
variable, unlike most of the functions described in this section, is not restricted to use in
FDDs only.

Using the _harm variable, voltage and current source harmonic values can be
parametrically defined. Anytime the large signal voltage or current is defined with an
expression using _harm, the device will automatically index the value of _harm from 0 to
the maximum value needed for the present analysis. The expression is then re-evaluated



User-Defined Models

110

for each value of _harm to determine the spectral content at a frequency equal to
_harm*frequency determined by the parameter indices.

The variable _harm is used in the function below, which implements a pulse source:

parameters VPEAK=1 V DUTYCYCLE=30 FREQ=1 GHz HARMONICS=16
ivs:CMP79 1 2 freq=Freq v[1]=A(_harm)
Blackman(n,M) = (0.42 + 0.50*cos(PI*n/M) + 0.08*cos(2*PI*n/M))*step(M-n)
A(k)=2*VPEAK*DUTYCYCLE/100*sinc(k*pi*DUTYCYCLE/100)*(-1)^k
* Blackman(k,Harmonics+1)*step(_harm)

The variable _harm has no set maximum harmonic limitation. The value of _harm will
automatically be incremented out to the maximum value available for the present
analysis.
This automatic indexing also works in baseband envelope and transient. The variable is
incremented until it either reaches 1000 or until its amplitude has become insignificant for
several consecutive harmonics.

In non-baseband envelope, the maximum harmonic will also be limited if the source's
harmonic falls outside the envelope bandwidth. For example, if the analysis fundamental is
1MHz with a timestep of 1µsec (+/-500Hz envelope bandwidth) and the source
fundamental frequency is 1MHZ + 100Hz, then the 6th harmonic falls outside the
envelope bandwidth and the spectrum is truncated, even if the analysis order is 31. Also,
anytime a spectrum is truncated in harmonic balance, it remains truncated even if higher
order spectral tones may exist, for example, if another fundamental existed at
10MHz+1kHz, the spectral source would not add energy there even though it is at the
10th harmonic of the source.

Note that the frequency value is determined by the frequency defined in the parameter
indices. In the above case, for example, v[1,2] = A(_harm) would have defined a pulse
waveform whose fundamental frequency is the second harmonic of Freq. The equation
v[0,1,2] = A(_harm) will define a waveform whose fundamental frequency is ( 1 *_freq1
+ 2*_freq2 ) where the _freqN variables are the fundamental frequencies defined by the
analysis. At the netlist level, multiple different spectrum can be defined in one source, but
each one will add the DC ( _harm=0 ) value.

 

 Limitations

In general, you should avoid using a fundamental frequency of 0 Hz. The _harm
parameter is not supported for the small signal spectral parameters.

There is no simulator variable available to determine what the maximum number of
harmonics is for a particular case. This can make windowing a little difficult, since a
parameter must be used or passed to the model to set the window bandwidth.

 

 Defining an FDD Spectrum



User-Defined Models

111

The parametric definition of output spectrum using the _harm index also works with the
FDD. This example defines a VCO:

parameters Kv=1khz FUND=1 Rout=50 ohm PFUND=0 dBm Harmonic=
fdd:CMP2 _NET00005 0 out 0 i[1,0]=0
i[2,f1,f2,f3]=a*Harmonic*exp(j*_harm*b)*step
(_harm)
a = -dbmtoa(PFUND, a_Rout)
a_Rout = max(Rout,0.1)
b = 1000*_sv_d(1,timestep,0)-pi/2
f1 = if (FUND = 1) then 1 else 0 endif
f2 = if (FUND = 2) then 1 else 0 endif
f3 = if (FUND = 3) then 1 else 0 endif
C:CMP3 0 _NET00005 C=1/(2*pi*Kv)
vco_harm:CMP1 vin vout Kv=1khz FUND=1 Rout=50 ohm PFUND=0 dBm
Harmonic=fharm
fharm = sinc(_harm*pi*.25)/sinc(pi*.25)

In this example, the user has entered the equation for the spectrum of a 25% duty cycle
square wave using the _harm index, which can generate as many harmonics as can be
supported by the present analysis. The fundamental power is still separately defined so
this spectrum is relative to that and the value for _harm=1 should be 1.0.

This method of harmonic indexing in the FDD is meant primarily for defining multiple
spectral outputs dependent on the same spectral input. But the _harm index can also be
used to change which spectral input is used for each spectral output. An example is
i[2,1]=_sv(2,_harm)/50, which adds a 50 ohm load at all the harmonics of fund1,
including DC. Note that this example is to illustrate the capability, it is inefficient
compared to using a resistor. Another example is i[2,1] =
_sv(1,0,_harm)/mag(_sv(1,0,1)+tinyreal)/Rout, which outputs an entire fund1 spectrum
at port 2, based on the port 1 fund2 spectrum, and limits each spectral component by the
fund2 fundamental magnitude.

Note there is no capability in the FDD to allow automatic outputting of all spectral tones.
The _harm index is essentially limited to harmonics of the frequency specified by the
parameter indices. Additional parameters and equations have to be used to cover
additional fundamentals and intermods. An example of this is in the section Mixer.

 

 Using Arrays

Sometimes you may want a flexible number of spectral tones, but no simple equation is
available for this. Arrays can be used in this case, and unlike the harmlist parameter, a
separate parameter with separate supporting code is not required. Care must be taken to
avoid having the indexes exceed the array bounds, or an error will occur. For this reason,
a length() function is available to return the length of an array. The following VCO
example shows a possible usage. Also, note that the Harmonics input parameter is a list of
complex numbers representing the relative level of all the desired harmonics, for example,
list(.1, .02_j*.01).



User-Defined Models

112

parameters Kv=1khz Freq=1GHz P=-j*dbmtow(0) Rout=50 Ohm
Delay=timestep Harmonics=
; Y_Port is used as voltage to current converter
_Y_Port:CMP1 in 0 NET00005 0 Y[2,1]=-.001
; This capacitor performs the integration function
C:CMP3 0 _NET00005 C=1/(2*pi*Kv)
; This switch resets the integrating capacitor voltage to 0 at time = 0
ResetSwitch:CMP4 0 _NET00005
; This FDD is a programmable harmonic current source with a phase modulation
input
FDD:CMP2 _NET00005 0 out 0 I[1,0]=0 I[2,-1]=a*exp(j*b)
I[2,-1]=if (_harm > 1 and _harm <= Hmax+1) then a*Harmonics[_harm-
1]*exp(j*_ha
rm*b)
else 0.0 endif Freq[1]=Freq
Hmax = length(Harmonics)
Pdbm=30.0 + 10.0*log(mag(P) + tinyreal)
a = -dbmtoa(Pdbm, Rout)*exp(j*phaserad(P))
b = 1000*_sv_d(1,Delay,0)
R:CMP5 out 0 R=Rout

In this case, the model was hard-coded to expect an array. A more general solution might
use the above VCO example, but this would require the user to limit the array bounds
access, since accessing out of bounds will cause an error.

vcodata=makearray(0,1,2,.5,.25*j,.125,-.0625,-j*.03125,.015625)
xyz = if (_harm < length(vcodata) then vcodata[_harm] else 0.0 endif
vco_harm:CMP1 vin vout Kv=1khz FUND=1 Rout=50 ohm PFUND=0 dBm
Harmonic=xyz

While this could be used to simplify the harmlist implementation, harmlist may be more
efficient.

 

 Trigger Events

  The FDD enables you to define trigger events. Up to 31 triggers can be defined. Anytime
the value of the trigger expression is equal to a number other than zero, a trigger event is
declared for the corresponding trigger. Each trigger keeps a count of the number times
the trigger occurred and the time of its last trigger. The trigger time is defined as the time
value of the current simulation point plus the value of the expression. Therefore the value
of the expression should normally be the time of the trigger relative to the current time
value. The value of this trigger expression should be limited to -timestep and -2*timestep.
This is explained further in the section Accessing Port Variables at Trigger Events.

Three built-in functions have been defined to provide access to trigger information, they
are described in the following table. Again, the underscore is used as part of the name,
signifying that these functions only have meaning within the context of an FDD instance,
and are not valid elsewhere.



User-Defined Models

113

 Functions available to access trigger information

Name Description

_to(N) Returns 1 if trigger N occurred at this time point, else 0

_tn(N) Returns the accumulated number of trigger N events

_tt(N) Returns the absolute time in seconds of last trigger N event

Another function is available to detect threshold crossings and to generate the proper
trigger expression values, which is shown in Function to generate a trigger event. Note
that the threshold crossings are based only on the DC (baseband) spectral voltage at the
specified port. The actual time crossing is computed based on linear interpolation between
adjacent time points, so the actual accuracy will depend on both the size of the time step
and the rate of change of the slope of the signal.

 Function to generate a trigger event

Another function is available to detect threshold crossings and to generate the proper
trigger expression values, which is shown in to generate a trigger event. Note that the
threshold crossings are based only on the DC (baseband) spectral voltage at the specified
port. The actual time crossing is computed based on linear interpolation between adjacent
time points, so the actual accuracy will depend on both the size of the time step and the
rate of change of the slope of the signal.

Name Description

_xcross(P,
Vthresh,
direction)

Returns 0 if no threshold crossing occurred, otherwise returns its relative time, a value
between (-1 and -2)*timestep. A threshold crossing occurs if the baseband voltage at port P
passes through the value Vthresh in the specified direction. A positive direction number
implies a positive edge; a negate number a negative edge; a direction number of 0 implies
either positive or negative edge. No hysteresis exists.

For a procedure on how to add trigger parameters to an FDD, refer to the section Defining
Triggers.

 

 Output Clock Enables

 Normally all of the FDD voltages and currents are re-evaluated at every time sample. It is
possible, though, to enable the output of a given port to change only when a specified
trigger, or a set of specified triggers, occurs. This is done using the clock enable
parameter, ce[n]=value. [n] specifies the port where the clock enable will be applied.
value is a binary value that is set using the bin() function, where the Nth bit corresponds
to whether this port should be enabled by the Nth trigger. For example, if you want the
output of port n to be updated whenever either trigger 1 or trigger 3 occur, you would
enter a value of bin(101) or 5 for the clock enable parameter. Clock enables can be used
when it is necessary to update computed values only at certain time points. Sample-and-
holds are one obvious application, refer to the example in the section Sample and Hold. 

For a procedure on how to add clock enable parameters to an FDD, refer to the section
Defining Clock Enables.

 



User-Defined Models

114

 Accessing Port Variables at Trigger Events

    Now that it is possible to generate trigger events at threshold crossings, it is desirable
to be able to determine the spectral port voltages and currents at the point in time that
this trigger occurred. Linear magnitude and phase interpolation is used to compute values
at times between adjacent simulator time points, and again, the accuracy depends on the
rate of change of the input envelope waveform. The four functions that are used to do this
are described in Functions to access port variables at trigger events.

 Functions to access port variables at trigger events

Name Description

_sv_e(P,N,indices) Return the port P spectral voltage envelope at the last trigger N time

_si_e(P,N,indices) Return the port P spectral current envelope at the last trigger N time

_sv_bb(P,N) Return the total, real voltage of port P at the last trigger N time

_si_bb(P,N) Return the total, real current entering port P at the last trigger N time

The _sv_e() function is very similar to _sv_d(), which is described in [ Functions for
Accessing Spectral Ports and Currents |Custom Modeling with Frequency-Domain Defined
Devices#1104151]. By default, though, past history for the _sv_e() function is only saved
for the last 2 timesteps. Therefore, the event they refer to must have just occurred, and
cannot delay back an arbitrary amount of time. If a triggered voltage value is desired at a
much later point in time, then it should be sampled and held using a combination of the
above functions and the clock enable previously discussed.

All of the spectral port variable functions discussed so far return only the complex value of
the single specified envelope. (If the indices are 0, then the real baseband value is
returned.) The broadband functions _sv_bb() and _si_bb() functions, though, perform an
inverse Fourier transform of all of the spectral voltages or currents at the specified event
time, and return the real value. Note that if this value is computed at every time step, it
will generate an aliased, undersampled waveform, since the time step in Circuit Envelope
is typically much less than the period of the various envelope center frequencies.

  

 Delaying the Carrier and the Envelope

 With exception of the _sv_bb() and _si_bb() functions, all of the other spectral port
variable functions return the envelope information. This is true even with the delayed and
event versions. If it is necessary to delay both the envelope and the carrier, then an
additional term must be added to account for the carrier phase shift. For example, if the
fundamental signal is

Vk(t)*exp(j*2*pi*fc*t)

then

i[2,1]=_sv_d(1,1usec,1)

generates a current equal to



User-Defined Models

115

Vk(t-1 m sec)*exp(j*2*pi*fc*t)

To generate a true coherent delay with the FDD, you would have to modify the equation to

i[2,1]=_sv_d(1,1usec,1)*exp(-j*2*pi*fc*1usec)

or to something similar. Of course, if only a fixed delay is desired, there are linear
elements that are more suitable for this application than the FDD.

  

 Miscellaneous FDD Functions

 There are three remaining functions that are available in the FDD for time-domain
operations, and are described in Miscellaneous FDD Functions. They were incorporated
into the FDD because they required that state history be maintained. The functions
correspond to a basic counter and to a linear feedback shift register. These functions are
valid only when used in an FDD.

Name Description

_divn(T,N,N0), Returns the value of a counter, clocked every time trigger T occurs, decrementing from N
to 0. N0 is initial time = 0 value.

_lfsr(T,
seed,taps)

Returns the value of a linear feed back shift register that is clocked every trigger T. seed is
the initial value of the register. taps are the binary weights of the bits that are fed back
using modulo 2 math.

_shift_reg(T,M,
N, In)

Returns the value of a multi-mode shift register that is clocked every trigger T, has N bits,
and with an input equal to In.
M = 0: LSB first, Serial In, Parallel Out
M = 1; MSB first, Serial In, Parallel Out
M = 2; LSB first, Parallel In, Serial Out
M = 3; MSB first, Parallel In, Serial Out

  

 Defining Input and Output Impedances

 With the SDD, it is very straight-forward to include the input and output resistances in
the basic equations. For example, i[1]=_v1/50 simply defines a 50 ohm input resistance.
This is not as simple with the FDD, since each equation only defines the relationship for a
single output spectrum. Thus, i[1,1,0] = _sv(1,1,0)/50 defines a 50 ohm input resistance,
but only for the fundamental spectral envelope. The input resistance for the other spectral
components is still infinite, which is the equivalent of being undefined. This becomes more
problematic at the output. It is possible to define the output current and output resistance
for a single spectral envelope, but to leave the other spectral envelopes undefined. This
may create an ill-defined circuit, creating a singular matrix error due to an undefined
voltage at certain spectral frequencies. These problems are best circumvented by using
actual resistors external to the FDD. Of course, if the resistance for certain spectral
envelopes is different from this external value, that difference can be included in the
defining spectral port equations.

  



User-Defined Models

116

 Compatibility with Different Simulation Modes

 The FDD is not fully compatible with all the different circuit analysis modes of Advanced
Design System. Since DC, AC, transient, and convolution analyses only define the
baseband variables, any use of non-baseband spectral envelopes (harmonic indices not
equal to 0) are ignored in these analyses and the voltages and currents for these spectral
frequencies are set to 0.
Similarly, DC, AC, and harmonic balance analyses are steady-state analyses and time is
always equal to 0, so any time-varying functions are evaluated at time=0 and accessing
delayed voltages is the same as accessing the present voltage. The concept of generating
time trigger events, of course, is valid only in transient, convolution, and Circuit Envelope
modes of operation.

    

 Components Based on the FDD

 A variety of circuit components in Advanced Design System are based on the FDD. Some
of these components are:

Tuned modulators and demodulators
Phase lock loop components
Counter, time, and waveform statistics probes
Sampler

Many of these models operate on a few (often just one) of the input spectral frequencies,
and in turn output just one, or a few, different spectral frequencies. This is consistent with
the desired, or measured, primary frequency-domain behavior, and simulations can be
performed quite efficiently since all operations are done directly in the frequency domain.

In cases where a model must include second and third-order interactions with other
spectral frequency components, and the underlying nonlinearity is an algebraic function of
the time-domain voltages and currents, the FDD may become too tedious to generate all
of the frequency-domain equations that define the multiple interactions, and a broadband
model (which can be developed using the SDD) may be the preferred model.

The FDD spectral models, in general, will not function with AC and transient  analyses.
These limitations are noted where the components are documented in Introduction to
Circuit Components (ccsim).

 

 Adding an FDD to a Schematic

 FDDs can be added to a schematic in the same way as other components are added and
connected to a circuit. This section describes the mechanics of adding an FDD component
to a schematic and defining it.
To add an FDD:

From the Component Palette List, choose Eqn-based Nonlinear.1.



User-Defined Models

117

Select the FDD with the desired number of ports, add it to the schematic, and return2.
to select mode.
Double-click the FDD symbol to edit the component.3.
FDD parameters are entered in the Select Parameters list. The parameter is on the4.
left side of the equation. It identifies the type of parameter, the port it is applied to,
and, where appropriate, the harmonic index. Select the parameter you want to edit.
(Note the buttons below the list to add, cut, and paste parameters as necessary.)

Under Parameter Entry Mode, specify the type of parameter to be defined: current,5.
voltage, frequency, trigger, or clock enable. Instructions for defining each type
of parameter follow.
Once a parameter is defined, click Apply to update.6.
Add and edit other parameters as desired.7.
Click OK to accept the changes and dismiss the dialog box.8.

 

 Defining Current and Voltage Equations

 Current and voltage equations are the two basic types of equations for defining
constitutive relationships between the port voltages and port currents. For more
information about these equations, refer to the section Defining Constitutive Relationships
with Equations.

To define current or voltage equations:

Double-click the FDD component to open the Edit Component dialog box.1.
By default, a current equation appears in the Select Parameters list. Select this2.
equation.
From the Parameter Entry Mode list, choose either Current or Voltage. For current3.
equations, an I appears on the left side of the equation; for voltage equations, a V is
displayed.
In the Port field, enter the number of the port that you want the equation to apply to.4.
In the Harmonic indices field, enter the harmonic index that the equation applies to,5.
either an absolute index, or a locally-defined carrier frequency, in which case the first
index must be negative.
In the Formula field, enter the expression that defines the current or voltage.6.
Click Apply to update the equation.7.
To add another equation, click Add and repeat steps 3-7.8.
Click OK to accept the changes and dismiss the dialog box.9.

 



User-Defined Models

118

 Defining Frequency Parameters

  The freq parameter can be used to define one or more carriers for an FDD. For more
information about the freq parameter, refer to the section Specifying Carriers with the
Freq Parameter.

To define a frequency parameter:

Double-click the FDD component to open the Edit Component dialog box.1.
Select any parameter in the Select Parameters list.2.
Click Add. The new parameter is automatically selected.3.
From the Parameter Entry Mode list, choose Frequency. The left side of the equation4.
is changed to Freq[n], where n is an index indicating that it is the nth frequency
parameter defined for the FDD.
In the Index field, enter the index that identifies the frequency.5.

Note
This index is used only to specify which frequency parameter to use when more than one envelope
is specified for an FDD. It does not specify a frequency offset.

In the Formula field, enter the expression that defines the frequency.6.
Click Apply to update the parameter.7.
Click OK to accept the changes and dismiss the dialog box.8.

 

 Defining Triggers

 Up to 31 triggers can be defined for a single FDD. Any time the value of the trigger
expression is equal to a value other than zero, a trigger event is declared for that trigger.
Each trigger keeps a count of the number of times the trigger occurred and the time of the
last trigger. For more information about triggers, refer to the section Trigger Events.

To define a trigger:

Double-click the FDD component to open the Edit Component dialog box.1.
Select any equation in the Select Parameters list.2.
Click Add. The new equation is automatically selected.3.
From the Parameter Entry Mode list, choose Trigger. The left side of the equation is4.
changed to Trig[n], where n identifies the trigger.
In the Index field, enter the value that identifies the trigger, 1-31.5.
In the Formula field, enter the expression that defines the trigger event.6.
Click Apply to update the parameter.7.
Click OK to accept the changes and dismiss the dialog box.8.

 

 Defining Clock Enables

 Clock enables restrict FDD voltages and currents to change only when a specified trigger,
or a set of specified triggers, occurs. This is done by setting the clock enable of the
desired port to a binary value, where the Nth bit corresponds to whether this port should



User-Defined Models

119

be enabled by the Nth trigger. For more information, refer to the section Output Clock
Enables.

To define a clock enable:

Double-click the FDD component to open the Edit Component dialog box.1.
Select any equation in the Select Parameters list.2.
Click Add. The new equation is automatically selected.3.
From the Parameter Entry Mode list, choose Clock Enable. The left side of the4.
equation is changed to ce[n].
In the Port field, enter the number of the port that you want the clock enable to5.
apply to.
In the Formula field, enter the binary expression using the bin() function, where the6.
Nth bit corresponds to whether this port should be enabled by the Nth trigger. For
example, if you want port n output to be updated whenever either trigger 1 or trigger
3 occur, you would enter a value of bin(101) or 5 for the clock enable parameter.
Click Apply to update the parameter.7.
Click OK to accept the changes and dismiss the dialog box.8.

 

 FDD Examples

 This section offers the following examples that show how to use frequency-domain
defined devices to define a variety of nonlinear circuit components. The examples include:

IQ Modulator

Mixer

Sample and Hold

You can find these examples in the software under the Examples directory in this location:
Tutorials/FDD_Examples_wrk/networks

 

 IQ Modulator

 This example is under the Examples directory in the following location:

Tutorials/FDD_Examples_wrk/IQ_modulator

This is a simple, IQ modulator. The input signal is at port 1. The I and Q data (baseband,
time-domain signals) are made available at ports 3 and 4, respectively.



User-Defined Models

120

Note the following points:

I data is the baseband time-domain signal and is applied to port 3.
Q data is the baseband time-domain data and is applied to port 4.
The current equations for ports 1, 3, and 4 set the current at these ports to zero.
These ports are treated as open circuits at all frequencies.
The voltage equation at port 2 equates the spectral voltage at port 2 at frequency
Freq[1] to the baseband spectral voltage at port 3 (the I signal) plus j times the
baseband spectral voltage at port 4 (the Q signal) multiplied by the spectral voltage
at port 1 at frequency Freq[1].
Note the use of -1 in the left side of the voltage equation and in the function _sv(1, -
1). The minus sign is required when referring to the index of a carrier defined using
the Freq parameter, in this case, the index 1 that identifies Freq[1].
Freq[1] is a user defined parameter whose value is passed to the FDD.

The cell IQmodTest shows this device under test. I and Q modulation are applied to ports
3 and 4. A 1 V, 1 GHz signal is applied to the input. The modulated output is shown here.



User-Defined Models

121

 

 Mixer

 This example is under the Examples directory in the following location:

Tutorials/FDD_Examples_wrk/FDDmixer

This is a simple, ideal mixer. It models upconversion, downconversion, LO leakage, RF
leakage, and conversion gain compression with increasing LO amplitude



User-Defined Models

122

.
Note the following points:

Like the IQ modulator example, ports 1 and 3 are open circuits for all frequencies.
The signal at port 2 has four spectral components, which are defined with four
current equations. The equations define:

LO leakage at frequency FLO
RF leakage at frequency FRF
The upconverted signal FLO+FRF
The downconverted signal, which is the magnitude of FLO - FRF

Note the use of minus signs in the left side of the current equations. The minus sign
is required when referring to the index of a carrier defined using the Freq parameter.
In this case, -1, -2, -3, and -4 each refer to Freq[1], Freq[2], Freq[3], and Freq[4],
respectively.
The use of minus signs in the right side of the current equations is necessary because
the equations define positive current flowing into each port of the FDD. Thus, the
minus sign changes the direction of positive current.
The variables Rout, FLO, and FRF are user-defined parameters whose values are
passed to the FDD.

The cells FDDmixerTest and FDDmixerTestEnv show the mixer under test in a harmonic
balance simulation and Circuit Envelope simulation, respectively. One result of the Circuit
Envelope simulation is shown here.



User-Defined Models

123

 

 Sample and Hold

 This example is under the Examples directory in the following location:

Tutorials/FDD_Examples_wrk/networks/SampleHold

This is a simple sample and hold device. The FDD samples the input data, in this case, a
sine wave, once per rising edge of the clock, then holds the value so that the current is
constant at the output. 20 samples are take per period of the input signal.

This example also uses the trigger and clock enable features of the FDD.

Note the following points:

Ports 1 and 3 are open circuits for all frequencies.
The current equation for port 2 is based on the function _sv_bb(port, trigger). This
function, when passed a port number and trigger index, returns the total, real
voltage at the port, at the last time the trigger occurred. So the current at port 2 is
equal to the total, real voltage at port one at the last time trigger 1 occurred, divided
by 50 ohms.



User-Defined Models

124

The trigger parameter is based on the function _xcross(port, threshold, direction).
Given the values that are passed to this function here (3, 0.5, and 1), a trigger
occurs if the baseband voltage at port 3 passes through 0.5 V, in the positive
direction. For more information on triggers, refer to the section Trigger Events.

The clock enable parameter, Ce, enables the output of a port to change only when a
specified trigger occurs. In this instance, it means that the output at port 2 will
change only when trigger 1 occurs. This produces the "hold" effect of the sample and
hold device. The trigger indices must be specified in binary format. For more
information, refer to the section, Output Clock Enables.

 



User-Defined Models

125

 Building Signal Processing Models
ADS Ptolemy provides rich libraries of component models in Advanced Design System
(ADS). However, you might want to create your own C++ component models to add to
these libraries. ADS Ptolemy includes the Model Development Kit, a feature that allows
you to create, compile, and link your models into ADS Ptolemy.

Once the shell of your model is built, the body of the model (the algorithm) will have to be
written. To do this, you will need an understanding of the ADS Ptolemy Preprocessor
Language, described in Writing Component Models (modbuild).

Note
Definitions for UC Berkeley Ptolemy terms, such as star and particle, are given in the ADS Ptolemy
Simulation (ptolemy) documentation.

 

 Advanced Model Building Functions

This section describes processes that provide you with the full features available in ADS
Ptolemy models. This functionality, includes:

Inheritance of model inputs, outputs, states, data, and methods from another star.
These inherited properties are important for code reuse, increased code robustness,
increased code quality, decreased code size, and reduced code testing requirements.
Model states that use the enumerated type. These enumerated states are important
for defining explicit state options at the design environment level.
Model states that are hidden from the design environment. These hidden states are
useful for local model parameter definitions.
More detailed and flexible auto generation of AEL, bitmaps, and symbols required at
the design environment level.
Models that set the vendor field.

This section first walks you through developing a simple model and then provides more
detail on certain topics.

  

 Prerequisites to Model Development

Your UNIX or Windows system must have the appropriate C++ development software
installed. For specific compiler requirements, see the system requirements table in the
ADS installation documentation for the platform you are using:

For UNIX, see Before You Begin UNIX and Linux Installation (install).
For Windows, see Before You Begin Windows Installation (instalpc).
  

 Creating a Simple Model Library



User-Defined Models

126

 

 In UNIX Set the HPEESOF_DIR and PATH Environment Variables

Set the HPEESOF_DIR environment variable to wherever you've installed ADS.1.
Add the $HPEESOF_DIR/bin directory to your PATH.2.

 In Windows Use the Ptolemy Modelbuilder Shell

To activate the Ptolemy Modelbuilder Shell select: Programs > Advanced Design
System > ADS Tools > Ptolemy Modelbuilder Shell from the Windows Start menu.

The advantage of using this window is that it automatically sets $HPEESOF_DIR and adds
$HPEESOF_DIR/bin to the beginning of your path environment variable.

Alternatively, you can set the needed variables manually in the Command Prompt window
using the Set command.

Set the HPEESOF_DIR environment variable to wherever you've installed ADS.1.
Add the %HPEESOF_DIR%\bin directory to your PATH.2.
Call VCVARS32.BAT (located in the VC\bin directory of your Microsoft Visual Studio3.
installation).

 

 Set Up the Modelbuilder Directory

A model build area can contain any number of libraries and star libraries. Each star library
can contain many stars. Change directory to your home directory, and we'll create a
model build area with a single star library for this tutorial:

hpeesofmb

The hpeesofmb command will create a directory called adsptolemy and copy some files
there. Inside the adsptolemy directory are two files, makefile and make-defs which you
shouldn't edit. Only one directory, src, exists at the beginning, which is where the source
code for your libraries and stars will go.

Note
On Windows systems only, ADS mounts $HPEESOF_DIR\tools\bin to /bin as part of the hpeesofmb and
hpeesofmake commands. If you have already mounted /bin to another directory, you should be aware
that ADS will unmount it. If you do not have a /bin directory, a warning message may be displayed
regarding the absence of the /bin directory. This message can be ignored, however.

If you have a work area that was generated using the Ptolemy Modelbuilder prior to the
ADS 2011 release, you must clean up and update your makefiles. To do this, do the
following:

cd <dirname>

rm mk/*

cd ..



User-Defined Models

127

hpeesofmb -clean <dirname>

where <dirname> is the directory name where your model area was originally created
using hpeesofmb, usually adsptolemy.

The src directory can be arbitrarily deep so that you can keep many star libraries and
regular libraries in one model build area. In this example, we'll create a star library
directly in src. A later section explains how to create more complicated src area.

 

 Write a Model

We provide the code for many of our stars for you to look at in the directory doc/sp_items
in the ADS installation. We'll copy the Sin star into the src area and edit it for our
purposes:

In UNIX:

cd adsptolemy/src
cp $HPEESOF_DIR/doc/sp_items/SDFSin.pl SDFMySin.pl
vi SDFMySin.pl

and in Windows:

cd adsptolemy\src
copy %HPEESOF_DIR%\doc\sp_items\SDFSin.pl SDFMySin.pl
edit SDFMySin.pl

Change the name of the star. Find the line which says name {Sin}, and change it to name
{MySin}. Change the code if you wish. For example, the star could compute sin()+1 by
changing the go routine to:

output%0 << sin (double(input%0))+ 1;

Change the location of the star. Find the line which says location {Numeric Math} and
change it to location {My Stars}.

Star files are named according to the convention <Domain><Name>.pl. The MySin star is
in the SDF domain. The pl extension stands for Ptolemy Language.

 Edit the make-defs  

Every directory under src must contain a make-defs file. For this simple star, the default
make-defs is almost correct. You need to find the line which says PL_SRCS= and change it
to

PL_SRCS = SDFMySin.pl

 Build the Shared Library  



User-Defined Models

128

To build a shared library and install it into your build area, you need to run hpeesofmake.

Note
To build models for 64-bit platforms, you should use hpeesofmake64 instead of hpeesofmake. For more
information, refer to Building Models for 64-Bit Platforms.

Change directory back to the Modelbuilder area (your adsptolemy directory) and run this
command:

hpeesofmake "debug=1"

Note
Due to changes in ADS 2011, if you have any shared libraries that were generated using the hpeesofmake
command prior to the ADS 2011 release, you have to regenerate them using the ADS 2011 hpeesofmake
command. To do this, refer to Set Up the Area to Build Models, for details on how to run hpeesofmake -
clean. If you fail to do this, your older shared libraries will not work in ADS 2011.

You must use hpeesofmake (which is actually GNU make) for all make commands---never
make or nmake. The only exception is if you're developing in Windows with the Cygnus
GNU-WIN32 tools. Refer to the later section Platform-Specific Issues for more details.

Building the shared library will take some time. If you do a listing of the adsptolemy
directory, you'll see two new directories, lib.arch and obj.arch, where arch is an
abbreviation for your architecture, e.g. win32.

To keep your src directory tidy, all compiled files are placed in an equivalent area in obj.
arch. The libraries that will be needed by the simulator are placed in lib.arch. Since
architecture dependent files are placed in different directories, you can do development
for multiple architectures in one model build area.

The "debug=1" option above causes the library to be built as code that can be debugged.
It is built as optimized code without it. You can also add the line debug=1 to your make-
defs to always build code that can be debugged.

Note
On Windows, do not use "debug=1" with hpeesofmake to share user compiled models with other users
that do not have Microsoft Visual Studio installed.

 

 Create the Library

To use your star in the Signal Processing schematic, you must generate the associated
AEL, bitmap, and symbol and create the library that can be loaded into ADS. Run this
command from your Modelbuilder area (your adsptolemy directory):

hpeesofmake oalib

ADS will briefly appear to create the library. Please do not close any ADS windows - they will disappear
automatically after ADS is done.



User-Defined Models

129

On UNIX you must set DISPLAY as if you were running ADS for this step to work.

The AEL code describes your model to the ADS design environment. You must regenerate
AEL whenever you change an exterior aspect of your model, for example, its name, ports,
parameters, or location.

The bitmap is the picture of your model which appears in the palette on the left side of the
design environment. The symbol is the picture which actually gets placed in the
schematic.

The bitmaps and symbols created by the make system are simple but you can edit them
further. They will be the right size and have the appropriate number and type of pins.
Symbols can be edited in ADS. Bitmaps can be edited with the bitmap program in UNIX or
the Paint program in Windows.

The build system will not overwrite existing symbols or bitmaps; it will only create symbols and bitmaps
for the stars which you have added since the last time you ran it. If you want to force the creation of a
particular bitmap or symbol, manually remove the appropriate file.

 Simulate Your Model  

Before starting ADS, set the ADSPTOLEMY_MODEL_PATH environment variable to point to
your model build area. The simulator uses this variable to find your libraries and bitmaps.
The variable is a colon delimited path in UNIX and a semicolon delimited path in Windows.
For this example, set it to $HOME/adsptolemy in UNIX or c:\users\default\adsptolemy in
Windows.

Now start ADS. You'll need to add the component library created under oalibs directory in
the model build area to your workspace and then you'll see your star on the palette and in
the component browser under wherever you set the location field above.

You can rebuild your shared library while ADS is running if you first choose Simulate >
Stop and Release Simulator.

 

 Sharing Your Stars

Other users can simulate designs with your models by adding your directory to their
ADSPTOLEMY_MODEL_PATH. If you are not on the same network, you can send them the
entire contents of your model build area, minus the src and mk directories if you wish to
protect those directories. You can also send them the .pl files and the make-defs and ask
them to recompile your models.

  

 The src Directory and make-defs in More Detail

If you are trying for the first time to create a user-defined model for ADS Ptolemy
Simulation in ADS, please review the introductory information above beginning with
Building Signal Processing Models.



User-Defined Models

130

In a customized .pl file, there should be a statement that defines which library/palette
group the user-defined model should go to. The statement location{MyStars} is just for
this purpose. By defining location{MyStars}, it means that the user-compiled model will
be found in the palette group called MyStars, and it will also be found in the library
category MyStars in the library browser. You can also use the statement as
{Numeric,MyStars}. By doing this the palette group will show up as Numeric MyStars. In
the library browser, the MyStars category will become a subgroup below the group
Numeric.

It is acceptable to have many .pl files in the src directory. The file structure in the
adsptolemy directory in your home directory has nothing to do with which library/palette
group the user-defined model resides in.

It is possible to create sub-folders below the adsptolemy/src directory. You can create a
hierarchy of locations for different sets of models. For example, you can create a structure
such as,

directory subdirectories

adsptolemy/src /my_lib1

 /my_lib2

 /my_lib3

 /my_lib4

Then you can place different sets of .pl files into the various subdirectories my_lib1
through my_lib4. To compile these models, each my_libx directory should have a file
called make-defs. You can copy the make-defs from the adsptolemy/src level into the sub-
driectories my_lib1, my_lib2, etc. When these .pl files are in place, there are four things
you must do to prepare them for compilation:

Each .pl file, defines a palette/library group for the user-defined
model using the location{} statement.

In the make-defs file in the src level, make sure that the variable PL_SRCS is equal to
blank spaces.

In the make-defs file in the src level, make sure to add the variable

DIRS = my_lib1 my_lib2 my_lib3 my_lib4

This defines that all the .pl files in the sub-directories my_libx will be compiled.

In the make-defs file in each sub-directory such as my_lib1, list the .pl files within
that directory in the variable PL_SRCS. For example,

PL_SRCS = model1 model2 model3

In the make-defs file in each sub-directory, such as my_lib1, the variable STAR_MK
must be assigned a unique library name. For example in the make-defs file in the
sub-directory my_lib1, you can have STAR_MK = usermodels_my_lib1.
In the make-defs file in the sub-directory my_lib2, one can have



User-Defined Models

131

STAR_MK = usermodels_my_lib2, etc.

Once you have done the above, use the procedure in Creating a Simple Model Library
above to compile all the models in the sub-directories.

Note
When a hierarchical structure is defined such as one defined above, the any .pl files in the src level will not
be compiled. Even if the make-defs file in the src level have defined these .pl files in the PL_SRCS
variable.

The model creation procedure above includes a comment about star libraries and
conventional libraries. The difference between them is as follows:

star library refers to a sub-directory below the src level, which contains .pl files. A
star basically means a model that can be placed in an ADS design window. A .pl file is
a source file that describes the model which is written in a C-like language called
Ptolemy language.
conventional library refers to a subdirectory below the src level, which contains .c
files. These are standard C source which can be referenced by other .pl files in
another sub-directory under src so that algorithms written originally in C can be used
directly in a user-defined Ptolemy model.

Star library name, conventional library name, names of sub-directories under the src
level, and library names assigned to STAR_MK variables in make-defs files in sub-
directories under src do not determine where a model will be located in the palette/library
browser. The location{} statement in the .pl defines the name of the palette/library group
in which the user-defined model can be found.

 Variables  

As mentioned above, the src directory can have arbitrary depth. The build system will
recurse over your entire tree. Each directory must have a make-defs file; the makefile is
built automatically from this file.

Directories containing other directories should define the DIRS variable in their make-defs
to a space-separated list of the directories to recurse into. For example, if your src
directory contains two directories, foo and bar, the contents of the make-defs in the src
directory would be:

DIRS = foo bar

Two kinds of libraries can be built by the build system: star libraries and conventional
libraries. To build a star library, set the PL_SRCS variable to a space-separated list of your
.pl files and the STAR_MK variable to the name of the star library. For example, part of a
make-defs that builds a star library with two models might be:

STAR_MK = myfilter
PL_SRCS = filter1.pl filter2.pl

To build a conventional library, set the SRCS variable to a space-separated list of your .c,
.cc, and .cxx files and the PTLIB variable to the name of the library. The STAR_MK and
PTLIB variables are mutually exclusive.



User-Defined Models

132

You can set other make-defs variables in order to control compilation and linking. Append
compilation flags to the variables CPPFLAGS, CFLAGS, and CXXFLAGS to affect
preprocessing, C compilation, and C++ compilation. Since all stars are written in C++,
use the CXXFLAGS to control star flags. For example,

CPPFLAGS += -DFAST
CFLAGS += -O4
CXXFLAGS += -O4

Add to the include path by adding directories to the variable INCLUDEPATH, a space-
separated list. Additional objects can be linked into your library by appending to the OBJS
variable. Additional sources can be compiled and linked in by appending to the SRCS
variable. For example,

INCLUDEPATH += /libtree/headers
SRCS += myutilties.c moreutilities.cxx
OBJS += /libtree/objs/tree$(OBJSUFFIX)

OBJSUFFIX will expand to .o on Unix and .obj on Windows1.
Linking is manipulated with the variables LIBSPATH, LIBS, and LIBSOPTION. Similar
to INCLUDEPATH, LIBSPATH is a space-separated list of directories where the linker
should look for libraries. LIBS is a list of the libraries themselves. LIBSOPTION allows
any arbitrary flags to be added to the link. For example,
LIBSPATH += /libtree/libs
LIBS += tree m
The tree library and the math library are linked in by the above.2.
Because the make system will automatically set appropriate values for most of the
variables, you should almost always append to the variable with += rather than
setting it with =.

 

 Dependencies

You must tell the make system on which ADS libraries your library depends. This will
cause the make system to add the appropriate directories to your include path. In
addition, the library will be built in such a way that the dependent libraries are loaded
along with your library.

To use any of the ADS headers in adsptolemy/src, you must set a particular make-defs
variable to 1. Each directory has a corresponding variable according to the table:

 Dependencies



User-Defined Models

133

Directory make-defs Variable

adsptolemy-kernel/compat (always included)

adsptolemy-kernel/kernel KERNEL

numeric/kernel SDFKERNEL

numeric/base/stars SDFSTARS

numeric/dsp/stars SDFDSP

numeric/libptdsp PTDSP

timed/kernel TSDFKERNEL

timed/base/stars TSDFSTARS

matrix/base/stars SDFMATRIX

fixpt-analysis/base/stars SDFFIX

controls-displays/tcltk/ptklib PTK

controls-displays/tcltk/stars SDFTK

instruments/stars SDFINSTKERNEL

At a minimum, you will need to set the variable corresponding to the do main for which
you are building stars: SDFKERNEL for SDF and TSDFKERNEL for TSDF. Dependencies are
transitive so if you depend on A, and A depends on B, the make system will require you to
depend on both A and B.
When the SDFINSTKERNEL is set in the make-defs file (SDFINSTKERNEL=1), it will include
the SDFInstrument.h header file with the other dependencies at compilation.

ADS provides the code for many ADS Ptolemy stars in the doc/sp_items directory. These
are the stars for which you can click the C++ Code button in the Signal Processing
Components documentation. To derive a star of your own from one of these, find the
header of the star in one of the above locations, and set the appropriate variable.

  

 Debugging Your Model

Debugging a program that loads dynamic libraries at run time is a more difficult task than
debugging a conventional program. The symbol tables for the dynamic libraries must be
manually loaded before the debugger can set break points in those libraries. You must
have compiled your code with the debug flag on as explained earlier.

Before you start debugging, you'll need to be able to run simulations from the command
line, outside of ADS.

 

 Running Simulations from the Command Line

Each time you simulate from ADS, a file called netlist.log is created in your workspace
directory. This file completely describes your schematic and can be passed to the
simulator on the command line. Note that the format of this file is not guaranteed to
remain the same in future versions of ADS.

Before you can execute the simulator, certain environment variables must be set so that



User-Defined Models

134

the simulator can find all its shared libraries. When you ran hpeesofmb, two scripts called
mbsetvars and mbsetvars64 (mbsetvars.bat and mbsetvars64.bat on Windows) were
created in the bin directory.
Under UNIX, you will have to evaluate their output to set the appropriate variables.
Assuming you're building models in your home directory, type:

cd ~/adsptolemy/bin
eval `./mbsetvars -u` (if you are building 32-bit libraries and are using
sh/bash/ksh shell)
eval `./mbsetvars -c` (if you are building 32-bit libraries and are using csh/tcsh
shell)
eval `./mbsetvars64 -u` (if you are building 64-bit libraries and are using
sh/bash/ksh shell)
eval `./mbsetvars64 -c` (if you are building 64-bit libraries and are using
csh/tcsh shell)

Under Windows, the scripts are .bat files so you can run them directly:

cd c:\users\default\adsptolemy\bin
mbsetvars (if you are building 32-bit libraries)
mbsetvar64 (if you are building 64-bit libraries)

The mbsetvars scripts have the path to your model build area encoded in them, so you
should not use these scripts from a different model build area. If you move the model
build area, regenerate the scripts by removing them and then running the hpeesofmb
command again.

Now you should be able to run your simulation from the command line by moving to your
workspace's data subdirectory and running:

hpeesofsim ../netlist.log

 Debugging Under Windows  

After running the mbsetvars script to set the needed variables, start the Visual C++
(Visual Studio 2008) Debugger from the command line with the devenv command. If you
start it from the Start menu, it will not work because it will not inherit the environment
variables set by mbsetvars.

From the File menu, choose Open Solution.1.
In the Open Solution dialog box, click the Files of type list box and choose Executable2.
Files.
Locate the executable (hpeesofsim.exe) from the bin directory of the ADS installation3.
and click OK. This creates a temporary solution that contains the executable. Before
using an execution command (such as Start ), you must save the solution.
From the Project menu, select hpeesofsim Property Pages. On the property page, set4.
the Working Directory to your ADS workspace/data directory and set the Command
Arguments to ..\netlist.log.
Set breakpoint and debug the newly created model.5.

 



User-Defined Models

135

 Debugging Under UNIX

After evaluating the output of the mbsetvars script to set the needed variables, start the
debugger on the bin/hpeesofsim binary. On Solaris, use the regular debugger, dbx. On
Linux, use the GNU gdb.

The GNU gdb supports deferred breakpoints setting for future shared libraries loading.
This will let users to set breakpoints after the debugger has started but before loading any
user shared libraries. Run the simulator in your workspace's data directory with an
argument of ../netlist.log. The debugger will stop when any breakpoint is reached.

With dbx, the debugger needs to know that a program will use a library when it runs in
order to set breakpoints. Simply run the simulator with an argument of ../netlist.log once
and the debugger will capture the list of loaded libraries. The libraries will remain loaded
after the simulator process ends and you can set breakpoints in them before rerunning the
program for debugging.

 STL  

Advanced Design System uses and ships STLport (http://www.stlport.org/\ ) to support
ANSI C++ Standard Library on multiple platforms. Models built using Ptolemy
Modelbuilder will always be linked with STLport. The following sections describe some
rules regarding the use of STLport.

 Namespace std

 

The std namespace is supported by STLport, which means anything defined in std
namespace will be using STLport implementation rather than the native compiler
implementation. That includes iostream, string, list, vector, etc. Due to a problem on
HPUX compiler, iostream may output incorrect data. The work around is to explicitly put

using namespace std;

in the source code AND use std::cerr, std::cout with std:: prefix.

To avoid conflict with old native compiler implementation of iostream, etc., always use the
correct non .h #include header files, that is, <iostream> instead of <iostream.h>.

In the case of a ptolemy pl file, the following example code shows how to set the
namespace std.

defstar {

       name { testModel }

       .

       .

       code { using namespace std; }

       .

       .

http://www.stlport.org/
http://www.stlport.org/


User-Defined Models

136

}

This way, only the generated .cc file will have namespace std set. It is not a good practice
to have namespace defined in the .h file because derived class including the .h should
define the use of namespace on their own. If the class definition requires the use of std,
such as data member using STL list, etc., you can use the following example code to set
the namespace in the .h file.

defstar {

       name { testModel }

       .

       .

       header { using namespace std; }

       .

       .

}

 

 Linking with Third Party library

If the third party library is built with STLport, there should be no problem linking in with
models built using Ptolemy Modelbuilder. A problem exists when the third party library is
built without using STLport.

Passing of std:: data types across libraries with different STL implementations is not
allowed.
Classes with std:: data members in native STL libraries cannot be linked in and used
in Advanced Design System, for example, ThirdParty.h

#include <list>

    class myClass {

        myclass();

        ~myclass();

         void push(int a);

         int pop();

    protected:

        list<int> i;

    };

If myClass is built without using STLport, it will not work when a model built using
Ptolemy Modelbuilder is referencing myClass directly. It is due to the use of list in
std::. The workaround is to write a wrapper class to wrap around myClass so that it
does not define any STL, or std:: constructs in the header file and build this new
wrapper class without using STLport. As an example of ThirdParty.h, a
ThirdPartyWrapper.h will appear as follows:

class myClass;  //forward declaration

    class myClassWrapper {

        myClassWrapper();

        ~myclassWrapper();

        void push(int a);

        int pop();

    protected:

        myClassWrapper* myC;

    };

A Model using Ptolemy Modelbuilder can now link with this wrapper library to use the



User-Defined Models

137

class. For example:

defstar {

        name { myModel }

        domain { SDF }

        hinclude { "ThirdPartyWrapper.h" }

        protected {

            MyClassWrapper mcw;

        }

        constructor {

            mcw.push(0);

        }

              .

              .

}

  

 Platform-Specific Issues

 

 Building Models for 64-Bit Platforms

The 64-bit platforms that ADS Ptolemy supports are Windows, Linux and Solaris. To build
on these platforms, you should use hpeesofmake64 instead of hpeesofmake.

On Solaris, if you want to support both 32-bit and 64-bit simulations, you should also run
hpeesofmake install to build the required 32-bit libraries.

On 64-bit Linux platforms, to build 32-bit libraries use the command:
hpeesofmake "CXX=g++ -m32"

 

 Windows

Use the Ptolemy Modelbuilder Shell to build 32-bit libraries and the Ptolemy Modelbuilder
Shell (64 bit) to build 64-bit libraries.

Make sure that you are pointing to the 32-bit compiler to build 32-bit libraries and to the
64-bit compiler to build 64-bit libraries.

The build system under Windows uses the Cygnus GNU-Win32 tools internally. You may
build with a normal MS-DOS shell, the MKS toolkit, or the Cygnus GNU-Win32 tools.
If you use either of the first two, you should use hpeesofmake as the documentation
describes. But if (and only if) you have the Cygnus tools installed and are building under
the Cygnus bash shell, you should use the make command to build.

 Windows Vista and Windows 7

On Windows Vista and Windows 7, you must have Administrative rights with User Account
Control (UAC) disabled.



User-Defined Models

138

Consult Windows Vista or Windows 7 help to disable UAC.

 UNIX

On UNIX you must set DISPLAY as if you were running ADS in order to create the
ADS2011 library with your components, since that step requires running ADS.

 

 Operating System Defined Types

In order to separate the use of INT, FLOAT, etc. and the OS defined types, AgilentPtolemy
namespace is defined. If you are using a named Ptolemy type in your code, you will need
to use it in an AgilentPtolemy namespace, such as AgilentPtolemy::DataType,
AgilentPtolemy::INT, AgilentPtolemy::FLOAT, etc. For an example of how the
AgilentPtolemy namespace is used, refer to the SDFSimpleNumericSink (modbuild)
example.
 



User-Defined Models

139

 Writing Component Models
As described in Building Signal Processing Models (modbuild), you can build your own
component models to supplement the large libraries included with ADS Ptolemy. This
section describes how to write the body of these models, and includes:

Using the ADS Ptolemy Preprocessor Language
Writing C++ Code for Stars
Writing Timed Components
Writing Sink Models

 

 Using the ADS Ptolemy Preprocessor Language

Since the stars in ADS Ptolemy were designed to be as generic as possible, many
complicated functions can be realized by a galaxy. Even so, no star library can possibly be
complete. You may have to design your own stars. The ADS Ptolemy preprocessor
language makes this easier.

The ADS Ptolemy preprocessor was created to make it easier to write and document star
class definitions to run under ADS Ptolemy. Instead of writing all the class definitions and
initialization code required for an ADS Ptolemy star, the user can concentrate on writing
the action code for a star and let the preprocessor generate the standard initialization
code for portholes, states, etc. The preprocessor generates standard C++ code, divided
into three files:

A header file with a .h extension.
An implementation file with a .cc extension.
An xml file with a .pl.xlm extension for auto-documentation generation.

 

 Rectangular Pulse Star Example

To make things clear, let's start with an example: a rectangular pulse star in the file
SDFRect.pl. See SDFRect.pl File. This is the code for an actual star. The code for more
examples can be found in $HPEESOF_DIR/doc/sp_items for UNIX systems or
%HPEESOF_DIR/doc/sp_items for PC platforms.

From the file SDFRect.pl, the model building process creates the files SDFRect.h,
SDFRect.cc, and SDFRect.pl.xml. The names are determined by concatenating the domain
and name fields. These files define a class named SDFRect. The example code is as
follows:

defstar {

       name { Rect }

       domain { SDF }

       desc { Rectangular pulse output }

       explanation {



User-Defined Models

140

Generate a rectangular pulse of height "height" (default 1.0).

and width "width" (default 8).  If "period" is greater than zero,

then the pulse is repeated with the given period.

       }

       version { @(#) $ $Revision: 1.18 $ $Date: 2001/03/23 22:19:18 $ }

       ucb-version {@(#)SDFRect.pl     2.10 6/25/96}

       author {your_name}

       copyright {

Copyright (c) Agilent Technologies 2001

Copyright (c) 1990-1995 The Regents of the University of California.

All rights reserved.

See the file $ROOT/ucb-copyright for copyright notice,

limitation of liability, and disclaimer of warranty provisions.

       }

       vendor { AgilentEEsof }

       location { Numeric, Sources }

       output {

               name { output }

               type { float }

       }

       defstate {

               name { Height }

               type { float }

               default { 1.0 }

               desc { height of rectangular pulse }

       }

       defstate {

               name { Width }

               type { int }

               default { 8 }

               desc { width of rectangular pulse }

       }

       defstate {

               name { Period }

               type { int }

               default { 0 }

               desc { if greater than zero, repetition period of pulse stream}

       }

       defstate {

               name { Count }

               type { int }

               default { 0 }

               desc { Internal counting state. }

               attributes { A_NONSETTABLE|A_NONCONSTANT }

       }

       setup {

               Count = 0;

       }

       go {

               double t = 0.0;

               if (int(Count) < int(Width)) t = Height;

               output%0 << t;

               Count = int(Count) + 1;

               if (int(Period) > 0 && int(Count) >= int(Period)) Count = 0;

       }

}

 

 SDFRect.pl File

Only one type of declaration may appear at the top level of an ADS Ptolemy language file:
a defstar, used to define a star. The defstar section is itself composed of subitems that
define various attributes of the star. All subitems are of the form:

keyword {body}

where the body may itself be composed of sub-subitems, or may be C++ code (in which
case the ADS Ptolemy language preprocessor checks it only for balanced curly braces).



User-Defined Models

141

Note that the keywords are not reserved words. They may also be used as identifiers in
the body.

 

 Items Defining a defstar

The following table provides an alphabetical list of the items that can appear in a defstar
directive, including a summary of directives.
 

 Summary of Items Used to Define a Star

Keyword Summary Required More Information

acknowledge The names of other contributors to the star No acknowledge

attributes Attributes for the star No attributes (for
Stars)

attributes Attributes for PortHoles No attributes (for
PortHoles)

attributes Attributes for the States No attributes (for
States)

author The name(s) of the author(s) No author

begin C++ code to execute at start time, after __ the schedule setup No begin

ccinclude Specify other files to include in the .cc file No ccinclude

code C++ code to include in the .cc file outside the class definition No code

conscalls Define constructor calls for members of the star class No conscalls

constructor C++ code to include in the constructor for the star No constructor

copyright Copyright information to include in the generated code No copyright

derived Alternate form of derivedfrom No derived

derivedfrom The base class, which may also be a star No derivedfrom

desc Alternate form of descriptor No desc

descriptor A short summary of the functionality of star No descriptor

destructor C++ code to include in the destructor for the star No destructor

domain The domain and the prefix of the name of a class Yes domain

explanation Full documentation optionally using troff, _eqn_, and _tbl_
formats

No explanation

footnotes Optional field to include some footnotes No footnotes

go C++ code to execute when the star fires No go

header C++ code to include in the .h file, before the class definition No header

hinclude Specify other files to include in the .h file No hinclude

htmldoc Full documentation optionally using troff, _eqn_ , and _tbl_
formats

No htmldoc

inmulti Define a set of inputs No inmulti

input Define an input to the star No input

location Component library (palette) name where user will find the star No location



User-Defined Models

142

method Define a member function for the star class No method

name The name of the star and the root of the name of the class Yes name

outmulti Define a set of outputs No outmulti

output Define an output from the star No output

private Define private data members of the star class No private

protected Defined protected data members of the star class No protected

public Define public data members of the star class No public

range Define range of the parameter No range

setup C++ code to execute at start time,  before the scheduler setup No setup

state Define a state or parameter No state

symbol Associate symbol to a parameter for better documentation No symbol

version Version number and date No version

wrapup C++ code to invoke at the end of a run (if no error occurred) No wrapup

vendor Name of company that authors component. All shipped with
ADS Ptolemy are marked Agilent EEsof

No vendor

Indicates a minimum set of the most useful items.

 
An alternate form for the state directive is defstate. The subitems of the state directive
are summarized in the following table, together with subitems of other directives.

 Directive Subitem



User-Defined Models

143

Items Subitems and Descriptions Required Page

inmulti, input name (Name of port or group of ports)
type (Data type of input and output
particles)
descriptor  (Summary of function of the
input)
numtokens  (Number of tokens consumed
by  the port; useful only for dataflow
domains)

Yes
No
No
No

inmulti,
input

method, virtual method, inline method,
pure virtual method,inline virtual
method

name  (Name of the method)
access  (Private, protected, or public)
arglist  (Arguments to the method)
type  (Return type of the method)
code  (C++ code defining the method)

Yes
No
No
No
If not
pure

method

outmulti, output name  (Name of port or group of ports)
type  (Data type of output particles)
descriptor  (Summary of the functions of
output)
numtokens  (Number of tokens produced by
port; useful only for dataflow designs)

Yes
No
No
No

outmulti,
output

state name  (Name of the state variable)
type  (Data type of the state variable)
default   (Default initial value; always a
string)
descriptor  (Summary of function of state)
attributes  (State attributes for simulator)
units  (Type of dimensional units associated
with state)
enumlist  (list of enumeration options)
enumlabels  (list of alternate names for
enumeration options)
extensions (list of file extensions for a
filename state - default is txt)

Yes
Yes
No
No
No
No
No
No
No

state

In the text that follows, items are listed in the order in which they typically appear in a
star definition (although they can appear in any order). In this list, syntax and descriptive
notes are also included.

 

 name

Required item. Syntax:

name {identifier}

Together with the domain, this item provides the name of the class to be defined and the
names of the output files. Case is important in the identifier.

 

 domain

Required item, specifying the domain, such as SDF or TSDF. Syntax:



User-Defined Models

144

domain {identifier}

where identifier specifies the domain (again, case is important).

 

 derivedfrom

This optional item indicates that the star is derived from another star. Syntax:

derivedfrom {identifier}

where identifier specifies the base star. The .h file for the base class is automatically
included in the output .h file, assuming it can be located (you may need to add -I options
to the makefile).
For example, the LMS star in the SDF domain is derived from the FIR star. The full name
of the base class is SDFFIR, but the derivedfrom statement allows you to say either

derivedfrom {FIR}

or

derivedfrom {SDFFIR}

The derivedfrom statement may also be written derivedFrom or derived. Note that it is not
possible to derive stars across domains.

 

 descriptor

This optional item defines a short description of the class. This description is displayed by
the Advanced Design System design environment for this star in the Library list. It has the
syntax

descriptor {text}

where text is simply a section of text that will become the short descriptor of the star. You
can also write desc instead of descriptor. A principal use of the short descriptor is to get
on-screen help. The following are legal descriptors:

desc {A one line descriptor.}

or

desc {A multi-line descriptor. The same line breaks and spacing will be used
when the descriptor is displayed on the screen.}

By convention, in these descriptors, references to the names of states, inputs, and
outputs should be enclosed in quotation marks. If the descriptor seems to get long,



User-Defined Models

145

augment it with the explanation or htmldoc directive, explained below. However, it should
be long enough so that it is sufficient to explain the function of the star.

 

 version

This optional item contains entries as follows.

version {@(#) $Source: <dir>/my_model.pl $ $Revision: number $ $Date:
YR/MO/DA $}

where the <dir> is the source code control directory, the number is a version number,
and the YR/MO/DA is the version date.

 

 author

This optional entry identifies the author or authors of the star. Syntax:

author {author1, author2 and author3}

Any set of characters between the braces will be interpreted as a list of author names.

 

 acknowledge

This optional entry attaches an acknowledgment section to the documentation. Syntax:

acknowledge {arbitrary single line of text}

  

 attributes (for Stars)

This optional entry defines star attributes with syntax:

attributes {attribute | attribute | ...}

where attributes are separated by the symbol |.
The only possible attribute is:

S_HIDDEN The star is invisible in the design environment. This is typically used
for stars that are used only as base stars for other stars.

By default, a star is visible.

  



User-Defined Models

146

 attributes (for PortHoles)

This optional entry defines PortHole attributes with syntax:

attributes {attribute | attribute | ...}

where attributes are separated by the symbol |.
Possible attributes are:

P_HIDDEN The port is invisible in the design environment.
P_VISIBLE The port is visible in the design environment.
P_OPTIONAL The port can be left unconnected. Note, the star code should not
read data if the port is not connected. To test whether a port is connected or
not, call the function Port_Name. far(), where Port_Name is the name of the
port. If the function returns a NULL pointer, the port is not connected, otherwise
it is connected.
P_REQUIRED The port is required to be connected.

By default, all PortHoles are visible and require a connection. Note that the simulator will
connect BlackHole models to any unconnected output PortHoles. The BlackHole model
itself is hidden.

  

 attributes (for States)

This optional entry defines state attributes with syntax:

attributes {attribute | attribute | ...}

where attributes are separated by the symbol |.
Possible attributes are:

A_CONSTANT The state is constant during execution of the star.
A_NONCONSTANT The state can change during the execution of the star.
A_SETTABLE The state is visible in the design environment.
A_NONSETTABLE The state is invisible in the design environment.
A_SWEEPABLE The state can be optimized or swept.
A_NONSWEEPABLE The state can neither be optimized nor swept.
A_SCHEMDISPLAY The state is visible and editable on the ADS schematic.
A_NOSCHEMDISPLAY The state is visible and editable only in the Edit
Component Parameter dialog box.

By default a State is constant, settable, sweepable, and displayed on the schematic.

 

 copyright

This optional entry attaches a copyright notice to the .h, .cc, and .t files. Syntax:



User-Defined Models

147

copyright {copyright information}

For example, we use the following:

copyright {Copyright (c) Agilent Technologies 2000. All rights reserved.}

The copyright can span multiple lines, just like a descriptor.

 

 location

This optional item is the name of the schematic library in which the user will find the star.
Syntax:

location {<main libraryname,>libraryname}

where libraryname is the location of the star in the Advanced Design System design
environment Signal Processing schematic and under Help > Topic and Index >
Components> Signal Processing. The optional main libraryname is a super location
followed by a comma. For example:

location {Signal Processing Library}
location {Numeric, Sources}

No more than two levels is allowed in the hierarchy.

 

 explanation

This optional item is used to give a longer explanation of the star's function. Syntax:

explanation {
body
}

 

 footnotes

This field is an optional field to include some footnotes in the pl file. There should be only
one footnotes section per pl file. For Example.

defstar {

    name { _Clock }

    domain { TSDF }

    derivedfrom { basesource }

     footnotes  {

         dagger.gif  This parameter must satisfy the condition Tstep

lt_equal.gif

min (DutyCycle * Period, (1-DutyCycle) * Period)



User-Defined Models

148

    }

    .

    defstate {

    name { DutyCycle }

       range { (0,1)  dagger.gif }

       type {float }

       default { 0.5 }

       desc { clock duty cycle }

           }

           .

}

 

 range

This is an optional field for each state parameter. Developers can utilize this field to
specify the range of a parameter. The following is how a developer specifies the range of
the "Delay" parameter in the component TSDF_DelayRF.pl file.

defstar {

           name { _DelayRF }

           desc { Time delay }

                       .

                       .

           defstate {

           name { Delay }

            *range*  { {-1} or [Tstep,inf) }

           type { float }

                       .

                       .

}

The above range statement means the Delay can be -1 or any number between Tstep and
positive infinity, including Tstep.

The following is the parsing rule for Range Syntax, the bold face means actual reserved
keywords. The rule was originally from Verilog-A syntax and has been modified to include
more complicated usage, such as set syntax.

ptolemy_range ::=

            ptolemy_range or value_range_specifier

value_range_specifier ::=

            start_paren expression1 , expression2 end_paren

           | { comma_separate_list }

comma_separate_list ::=

            comma_separate_list , const_expression

           | const_expression

start_paren ::=

            [

           | (

end_paren ::=

            ]

           | )

expression1 ::=

           constant_expression | -inf

expression2 ::=

           constant_expression | inf

 

 Examples



User-Defined Models

149

· {-1} or (0, inf)

· {1, 2, 4, 8, 16}
· (-inf , inf)

· [ LE+PL+TE , inf)

 

 symbol

This field is an optional field for each state parameter to aid the documentation process. A
developer can use this field to give a symbol to a particular parameter state. That symbol
can later be used in equations to better explain the functionality of a component in the
documentation.

 

 Example

defstate {

               name { Phase }

               symbol  { theta.gif  }

               range{ (-inf,inf) }

               type { float }

               default { 0 }

               desc { reference phase in degrees }

               units { ANGLE_UNIT }

       }

 

 htmldoc

This optional item is used to give a longer explanation of the star's function. Syntax:

explanation {
body
}

 

 state

This optional item is used to define a state or parameter. The following is an example of a
state definition: 

state {

     name {gain}

     type {int}

     default {1.0}

     units {UNITLESS_UNIT}

     desc {output gain}

     attributes {A_CONSTANT | A_SETTABLE}

}



User-Defined Models

150

The following ten types of subitems may appear in a state definition, in any order: name,
type, default, desc, units, enum, enumlist, enumlabel, extensions, attributes.

The name field (required) is the name of the state.
The type field (required) is its type, which may be one of  int,  float,  string,  
complex,  fix,  intarray,  floatarray,  complexarray,  precision,  stringarray,  filename,
 enum, query, or boolean. Case is ignored for the type argument.
The  default field (optional) specifies the default initial value of the state. Its
argument is either a string (enclosed in quotation marks) or a numeric value. The
preceding entry could equivalently have been written:

default { "1.0" }

Furthermore, if a particularly long default is required, as for example when initializing
an array, the string can be broken into a sequence of strings. The following example
shows the default for a ComplexArray.
 default {

"(-.040609,0.0) (-.001628,0.0) (.17853,0.0) (.37665,0.0)"

"(.37665,0.0) (.17853,0.0) (-.001628,0.0) (-.040609,0.0)"

}

For   complex states, the syntax for the default value is (real, imag) where real and imag
evaluate to integers or floats.

The precision state is used to give the precision of  fixed-point values. These values may
be other states or may be internal to the star. The default can be specified in either of two
ways: 

Method 1 : As a string like "3.2", or more generally " m.n ", where m is the number of
integer bits (to the left of the binary point) and n is the number of fractional bits (to the
right of the binary point). Thus length is m + n.

Method 2: A string like "24/32" which means 24 fraction bits from a total length of 32.
This format is often more convenient because the word length often remains constant
while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at
least one.

For  enum states, the default value may only be one of the values listed in the enumlist
field, in quotes ("value").

For  filename states, the default value is the name of a file.

Units, such as MHz, msec, etc., can also be used in the default field, e.g., {"3 msec"}.
However, this is not recommended since the value will not be displayed properly on the
Schematic when the user changes the Units Scale Factors from the Options > Preferences
> Units/Scale tab.

Expressions can also be used to set the default value. For example, the default field of a
float state can be {"sin(0.3)"} or the default field of a complex state can be {"polar(3.2,



User-Defined Models

151

1.13)"}.

An example of the default field for each type is shown in the following table.

The desc ( or  descriptor ) field, which is optional but highly recommended, attaches
a descriptor to the state. The same formatting options are available as with the star
descriptor.
The  attributes field (optional) specifies state attributes. At present, four attributes
are defined for all states:  A_CONSTANT,  A_SETTABLE, A_SWEEPABLE, and
A_SCHEMDISPLAY (along with their complements  A_NONCONSTANT,  
A_NONSETTABLE, A_NONSWEEPABLE, and A_NOSCHEMDISPLAY). If a state has the
A_CONSTANT attribute, then its value is not modified by the run-time code in the
star (it is up to you as the star writer to ensure that this condition is satisfied).

 Default Fields

Type Example Default

int default {3}

float default {3}

fix default {1.25}

complex default {"(1.25, 2.5)"}

string default {"string value"}

precision default {"24/32"}

enum default {"value 1"}

filename default {"/user/abc/xyz/lmn.txt"}

intarray default {1, 2, 4, 7, 9}

floatarray default {1.25, 3.50, 6.75}

complexarray default {"(1.25, 2.5) (2.4. -2.3) (-1.2, -2.2)"}

stringarray default {"Button1" "Button 2"}

States with the A_NONCONSTANT attribute may change when the star is run. If a state
has the A_SETTABLE attribute, then user interfaces will enable the user to enter values for
this state. States without this attribute are not presented to the user; such states always
start with their default values as the initial value.

If a state has the A_SWEEPABLE attribute, its value can be swept and/or optimized using
the appropriate simulation controllers. On the other hand, the A_NONSWEEPABLE
attribute does not allow sweeping and/or optimizing the state's value.

The A_SCHEMDISPLAY attribute is only used for states that are A_SETTABLE. If a state
has the A_SCHEMDISPLAY and A_SETTABLE attributes set, the state will be shown on the
ADS schematic. If a state has the A_NOSCHEMDISPLAY and A_SETTABLE attributes set,
the state will only be shown in the Edit Component Parameter dialog box.

Note that of all the attributes only A_SCHEMDISPLAY and A_NOSCHEMDISPLAY can be
modified by the user for a specific instance of a component. This is done in the Edit
Component Parameters dialog box by setting the "display parameter on schematic" flag
appropriately.



User-Defined Models

152

If no attributes are specified, the default is
A_CONSTANT|A_SETTABLE|A_SCHEMDISPLAY|A_SWEEPABLE. Thus, in the above
example, the attributes directive is unnecessary.

The units field (optional) identifies the set of dimensional scale factors to be
associated with this state at the schematic level in Advanced Design System. By
default, the value of this field is UNITLESS_UNIT, which results in no scale factor
association at the schematic level. Other unit options are shown in the following
table.

 Unit Options

Option Function

FREQUENCY_UNIT Results in use of frequency unit scale factors at the schematic level (GHz, MHz,
etc.). The state in the code will receive a value in terms of Hz.

TIME_UNIT Results in use of time unit scale factors at the schematic level (usec, msec, etc.).
The state in the code will receive a value in terms of sec.

ANGLE_UNIT Results in use of degree angle units at the schematic level. The state in the code
will receive a value in terms of degree.

POWER_UNIT Results in use of power scale and conversion factors at the schematic level (W,
mW, dBm, dBW, etc.). The state in the code will receive a value in terms of W.

DISTANCE_UNIT Results in use of distance unit scale factors at the schematic level (m, km, mile,
etc.). The state in the code will reveal a value in terms of m.

LENGTH_UNIT Results in use of length scale and conversion factors at the schematic level (m,
mm, cm, in, ft, etc.). The state in the code will receive a value in terms of m.

RESISTANCE_UNIT Results in use of resistance scale factors at the schematic level (Ohm, KOhm,
MOhm, etc.). The state in the code will receive a value in terms of Ohm.

CAPACITANCE_UNIT Results in use of capacitance scale factors at the schematic level (F, uF, pF, etc.).
The state in the code will receive a value in terms of F.

INDUCTANCE_UNIT Results in use of inductance scale factors at the schematic level (H, mH, uH,
etc.). The state in the code will receive a value in terms of H.

CONDUCTANCE_UNIT Results in use of conductance scale factors at the schematic level (S, mS, uS,
etc.). The state in the code will receive a value in terms of S.

VOLTAGE_UNIT Results in use of voltage scale factors at the schematic level (V, mV, uV, etc.).
The state in the code will receive a value in terms of V.

CURRENT_UNIT Results in use of current scale factors at the schematic level (A, mA, uA, etc.).
The state in the code will receive a value in terms of H.

DB_GAIN_UNIT Results in use of dB gain scale factors at the schematic level. The state in the
code will receive a value in terms of dB.

TEMPERATURE_UNIT Results in use of Celsius temperature scale factors at the schematic level. The
state in the code will receive a value in terms of Celsius.

The enumlist field is required when the state type is enum. The enumlist field is a
comma separated list of strings.

enumlist {value 1, value 2, value 3}
Quotes around strings are optional. Spaces and other non-alphanumeric
characters can be used. However, when referencing an enum value in the



User-Defined Models

153

code for the star, all non-alphanumeric characters must be replaced with an
underbar (_). For example, "value 1" should be referenced as "value_1".

The enumlabels field is optional and available for use only when the state type is
enum. The enumlabels field contains name abbreviations for each enumlist value.
The alternate names are for use only at the schematic level in Advanced Design
System as a short mnemonic for the full enumeration value.

enumlabels {v1, v2, v3}

The label v1 is used only as an abbreviation for value 1.
Two very commonly used enums are predefined: query with enumlist {NO, YES} and
boolean with enumlist {FALSE, TRUE}. Below is an example showing their use:

state {

     name {periodic}

     type {query}

     default {YES}

}

Multiple defaults parameter with Enum is a feature that enables developers to define
non-Enum parameters, such as floating point and integer values, to provide multiple
predefined values and user editable values.
Keywords: type, enumlist and enumlabels are used to correctly define a parameter
with multiple defaults. The following shows a simple example.

defstar {

       name {MyTest}

       domain {TSDF}

       desc { My Constant output }

       vendor { AgilentEEsof }

       location { Numeric, Sources }

       output {

              name {output}

              type {float}

       }

       defstate {

                name {FCarrier}

                type  { float }

                enumlist  { ARFCON_1_10, ARFCON_2_20, ARFCON_3_30 }

                enumlabels  { 10 MHz, 20 MHz, 30 MHz }

                default { ARFCON_2_20 }

                units { FREQUENCY_UNIT }

                desc { value }

       }

       go {

                output%0 << double(FCarrier);

       }

}

where:
type is used to define the type of the parameter.
enumlist is used to define the list of names associated to the default values.
enumlabels is used to list the values.
Both enumlist and enumlabels use commas to separate individual items.
The filename state is just like a string state, except that the dialog box for a filename
state can bring up a file browser for file selection. The extensions field can be
specified for a filename state to list the valid extensions for the selected file. From a
pull-down menu in the dialog box, you can select the files with certain extensions
from the extensions field to be listed in the browser. If extensions is not specified or



User-Defined Models

154

is empty, the default extension used to list files in the browser is txt.

Mechanisms for accessing and updating states in C++ methods associated with a star are
explained in the following list of keywords and in the sections States and Array States.

   

 input, output, inmulti, outmulti

These optional items are used to define a porthole, which may be an input, output
porthole or an input, output multiporthole. Bidirectional ports are not supported. Like state
, it contains subitems. The following is an example: 

input {

     name {signalIn}

     type {complex}

     numtokens {2}

     desc {A complex input that consumes 2 input particles.}

}

Here, name specifies the porthole name. This is a required item.

The keyword type specifies the particle type. The scalar types are  int,    float,  fix,  
complex,  message, or  anytype. Again, case does not matter for the type value. The
matrix types are  int_matrix,  float_matrix,  complex_matrix, and  fix_matrix. The type
item may be omitted. The default type is anytype. For more information on all of these,
refer to Data Types for Model Builders (modbuild). The  numtokens keyword (it may also
be written num or numTokens ) specifies the number of tokens consumed or produced on
each firing of the star. This only makes sense for certain domains (SDF and TSDF). In
such domains, if the item is omitted, a value of one is used. For stars where this number
depends on the value of a state, it is preferable to leave out the numtokens specification
and to have the setup method set the number of tokens. (In the SDF and TSDF domains,
this is accomplished with the  setSDFParams method.) This item is used primarily in the
SDF and TSDF domains, and is discussed further in the documentation of these domains.

There is an alternative syntax for the type field of a porthole. This syntax is used in
connection with ANYTYPE to specify a link between the types of two portholes. The syntax
is:

type {= name }

where name is the name of another porthole. This indicates that this porthole inherits its
type from the specified porthole. For example, here is a portion of the definition of the
SDF Fork star:

input {

       name{input}

       type{ANYTYPE}

}

outmulti {

       name{output}

     type{= input}

       desc{type is inherited from the input}



User-Defined Models

155

}

  

 constructor

This optional item enables the user to specify extra C++ code to be executed in the
constructor for the class. This code will be executed after any automatically generated
code in the constructor that initializes portholes, states, etc. The syntax is:

constructor {body}

where body is a piece of C++ code. It can be of any length. Note that the constructor is
invoked only when the class is first instantiated; actions that must be performed before
every simulation run should appear in the setup or begin methods, not the constructor.

  

 conscalls

With this optional item, you might have data members in your star that have  constructors
requiring arguments. These members would be added by using the public, private, or
protected keywords. If you have such members, the conscalls keyword provides a
mechanism for passing arguments to the constructors of those members. Simply list the
names of the members followed by the list of constructor arguments for each, separated
by commas if there is more than one. The syntax is:

conscalls {member1(arglist), member2(arglist)}

Note that member1, and member2 should have been previously defined in a public,
private, or protected section. (See the subsequent descriptions of these keywords.)

  

 destructor

This optional item inserts code into the destructor for the class. The syntax is:

destructor {body}

You generally need a destructor only if you allocate memory in the constructor, begin
method, or setup method; termination functions that happen with every run should
appear in the wrapup function. ( Wrapup is not called if an error occurs. See subsequent
description of the wrapup keyword.) The optional keyword inline may appear before
destructor. If so, the destructor function definition appears inline, in the header file. Since
the destructor for all stars is virtual, this is only a win when the star is used as a base for
derivation.

  

 setup



User-Defined Models

156

This optional item defines the setup method, which is called every time the simulation is
started, before any  compile-time scheduling is performed. The syntax is:

setup {body}

The optional keyword inline may appear before the setup keyword. It is common for this
method to set parameters of input and output portholes, and to initialize states. For an
explanation of the code syntax for doing this, refer to the section,Reading Inputs and
Writing Outputs. In some domains, with some targets, the setup method may be called
more than once during initiation. You must keep this in mind if you use it to allocate or
initialize memory.

  

 begin

This optional item defines the begin method, which is called every time the simulation is
started, but after the scheduler setup method is called (that is, after any  compile-time
scheduling is performed). The syntax is:

begin {body}

This method can be used to allocate and initialize memory. It is especially useful when
data structures are shared across multiple instances of a star. It is always called exactly
once when a simulation is started.

  

 go

This optional item defines the action taken by the star when it is fired. The syntax is:

go {body}

The optional keyword inline may appear before the go keyword. The go method will
typically read input particles and write outputs, and will be invoked many times during the
course of a simulation. For an explanation of the code syntax for the body, refer to the
section, Reading Inputs and Writing Outputs.

  

 wrapup

This optional item defines the wrapup method, which is called at the completion of a
simulation. The syntax is:

wrapup {body}

The optional keyword inline may appear before the wrapup keyword. The wrapup method
might typically display or store final state values. For an explanation of the code syntax



User-Defined Models

157

for doing this, refer to the section, Reading Inputs and Writing Outputs. Note that the
wrapup method is not invoked if an error occurs during execution. Thus, the wrapup
method cannot be used reliably to free allocated memory. Instead, you should free
memory from the previous run in the setup or begin method, prior to allocating new
memory, and in the destructor.

  

 public, protected, private

These optional items enable you to declare extra members for the class with the desired
protection. The syntax is:

protkey {body}

where protkey is public, protected, or private. Example, from the XMgraph star:

protected {

     XGraph graph;

     double index;

}

This defines an instance of the class XGraph, defined in the ADS Ptolemy kernel, and a
double-precision number. If any of the added members require arguments for their
constructors, use the conscalls item to specify them.

    

 ccinclude, hinclude

These optional items cause the .cc file, or the .h file, to #include extra files. A certain
number of files are automatically included, when the preprocessor can determine that they
are needed, so they do not need to be explicitly specified. The syntax is:

ccinclude {inclist}
hinclude {inclist}

where inclist is a comma-separated list of include files. Each filename must be surrounded
either by quotation marks or by < and > (for system include files like <math.h> ).

  

 code

This optional item enables the user to specify a section of arbitrary C++ code. This code is
inserted into the .cc file after the include files, but before everything else; it can be used
to define static non-class functions, declare external variables, or anything else. The
outermost pair of curly braces is stripped. The syntax is:

code {body}



User-Defined Models

158

  

 header

This optional item enables the user to specify an arbitrary set of definitions that will
appear in the header file. Everything between the curly braces is inserted into the .h file
after the include files but before everything else. This can be used, for example, to define
classes used by your star. The outermost pair of curly braces is stripped.

  

 method

This optional item provides a fully general way to specify an additional method for the
class of star that is being defined. Here is an example:

virtual method {

     name {exec}

     access {protected}

     arglist {"(const char* extraOpts)"}

     type {void}

     code {

           // code for the exec method goes here

     }

}

An optional function type specification may appear before the method keyword, which
must be one of the following:

virtual
inline
pure
pure virtual
inline virtual

The virtual keyword makes a virtual member function. If the pure virtual keyword is given,
a pure virtual member function is declared (there must be no code item in this case). The
function type pure is a synonym for pure virtual. The inline function type declares the
function to be inline.
The following are the method subitems:

name (Name of the method; required item).
access (Level of access for the method, one of public, protected, or private. If the
item is omitted, protected is assumed.
arglist (Argument list, including the outermost parentheses, for the method as a
quoted string. If this is omitted, the method has no arguments.)
type (Return type of the method. If the return type is not a single identifier, you
must put quotes around it. If this is omitted, the return type is void; no value is
returned).
code (C-code that implements the method. This is a required item, unless the pure
keyword appears, in which case this item cannot appear.

 



User-Defined Models

159

 vendor

This optional item provides a way of specifying the source of a given star. For example,
{Agilent EEsof} declares that Agilent EEsof is the provider of the model. This field is
displayed in the Advanced Design System browser.

 

 Writing C++ Code for Stars

This section assumes a knowledge of the C++ language. For those new to the language,
we recommend "The C++ Programming Language, Third Edition," by Bjarne Stroustrup
(from Addison-Wesley).

C++ code segments are an important part of any star definition. They can appear in the
setup, begin, go, wrapup, constructor, destructor, exectime, header, code, and method
directives in the ADS Ptolemy preprocessor. These directives all include a body of arbitrary
C++ code, enclosed by curly braces, " {" and " }". In all but the code and header
directives, the C++ code between braces defines the body of a method of the star class.
Methods can access any member of the class, including portholes (for input and output),
states, and members defined with the public, protected, and private directives.

 

 The Structure of an ADS Ptolemy Star

In general, the task of an ADS Ptolemy star is to receive input particles and produce
output particles. In addition, there may be side effects (reading or writing files, displaying
graphs, or even updating shared data structures). As for all C++ objects, the constructor
is called when the star is created, and the destructor is called when it is destroyed. In
addition, the setup and begin methods, if any, are called every time a new simulation run
is started, the go method (which always exists, except for stars like BlackHole and Null
that do nothing) is called each time a star is executed, and the wrapup method is called
after the simulation run completes without errors.

 

 Messaging Guidelines for Star .pl Files

This section provides guidelines for creating messages for display in the Advanced Design
System Status window (as is done for all Agilent EEsof stars). Messages are needed to
communicate status, warning, and error information. Examples of messages used in star
files can be seen in the pl files located at $HPEESOF_DIR/doc/sp_files. All messages use
methods from the ADS Ptolemy Error class and have the general form:

Error::<type>(<argument_list>);
where
<t ype > = message for communicating status information
< type > = warn for communicating warning information



User-Defined Models

160

< type > = initialization for communicating error during simulation initialization
and setup
< type > = abortRun for communicating an error that will end the simulation
< argument_list > = argument list for the specific Error class method

An additional method for state range error reporting has the form:

<state_name>::rangeError(<argument_list>);
where
< state_name > = name of the state
< argument_list > = argument list for the specific Error class method

 

 Status Messages

Status messages do not have any specific starting token in the argument list and allow the
simulation to conclude. Status messages are typically used in the setup() and go()
methods. Status messages can be created using the Error::message() methods. These
methods have the following prototypes:

Error::message(const char *, const char * = 0, const char * = 0);
Error::message(const NamedObj&, const char *, const char * = 0, const char *
= 0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.

 

 Warning Messages

Warnings have their messages automatically prefixed with the token Warning:, and allow
the simulation to conclude. Warning messages are typically used in the setup() and go()
methods. They can be created using the Error::warn() methods. These methods have the
following prototypes:

Error::warn(const char *, const char * = 0, const char * = 0);
Error::warn(const NamedObj&, const char *, const char * = 0, const char * =
0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.

 

 Error Messages

Errors have their messages automatically prefixed with the token ERROR:, and result in



User-Defined Models

161

stopping the simulation. Error messages used before the go() method are called during a
simulation and should not cause the simulation to stop until after the completion of the
simulation initialization and setup.
During the setup() method, state values should be checked for any value range error. If
an error exists in the state value, the State::rangeError() method should be used:

<state_name>.rangeError(const char *);

where the const char * is a string that defines the required state range.
Examples:

FCarrier.rangeError(">= 0.0");
Top.rangeError("> Bottom");

If an error other than this state range error occurs during the initialization process, the
Error::initialization() methods should be used. These methods have the following
prototypes:

Error::initialization(const char *, const char * = 0, const char * = 0);
Error::initialization(const NamedObj&, const char *, const char * = 0, const char
* = 0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.

Error messages used in the go() method will not cause the simulation to stop until after
the current go() method is complete.

These error messages can be created using the Error::abortRun() methods. These
methods have the following prototypes:

Error::abortRun(const char *, const char * = 0, const char * = 0);
Error::abortRun(const NamedObj&, const char *, const char * = 0, const char *
= 0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.

 

 Reading Inputs and Writing Outputs

The precise mechanism for references to input and output portholes depends somewhat
on the domain. This is because stars in the domain XXX use objects of class InXXXPort
and OutXXXPort (derived from  PortHole ) for input and output, respectively. The
examples used here are for the SDF (or TSDF) domain. See the appropriate domain
section __ for variations that apply to other domains.

 



User-Defined Models

162

 PortHoles and Particles

In the SDF (TSDF) domain, normal inputs and outputs become members of type
InSDFPort ( InTSDFPort) and  OutSDFPort (OutTSDFPort) after the preprocessor is
finished. These are derived from base class PortHole. For example, given the following
directive in the defstar of an SDF ( TSDF ) star,
 

input {

     name {in}

     type {float}

}

a member named in, of type InSDFPort (InTSDFPort), will become part of the star.

We are not usually interested in directly accessing these porthole classes, but rather wish
to read or write data through the portholes. All data passing through a porthole is derived
from base class  Particle. Each particle contains data of the type specified in the type
subdirective of the input or output directive.

The operator % operating on a porthole returns a reference to a particle. Consider the
following example:

go {

     Particle& currentSample = in%0;

     Particle& pastSample = in%1;

     ...

}

The right-hand argument to the % operator specifies the delay of the access. A zero
always means the most recent particle. A one means the particle arriving just before the
most recent particle. This also applies to outputs. Given an output named out, the
particles that are read from in can be written to out in the same order as follows:

go {

     ...

     out%1 = pastSample;

     out%0 = currentSample;

}

This works because out%n returns a reference to a particle, and hence can accept an
assignment. The assignment operator for the class Particle is overloaded to make a copy
of the data field of the particle.

Operating directly on class Particle, as in the above examples, is useful for writing stars
that accept anytype of input. The operations don't need to concern themselves with the
type of data contained by the particle. But it is far more common to operate numerically
on the data carried by a particle. This can be done using a cast to a compatible type. For
example, since in above is of type float, its data can be accessed as follows:

go {



User-Defined Models

163

     Particle& currentSample = in%0;

     double value = double(currentSample);

     ...

}

or more concisely,

go {

     double value = double(in%0);

     ...

The expression double(in%0) can be used anywhere that a double can be used. In many
contexts, where there is no ambiguity, the conversion operator can be omitted:

double value = in%0;

However, since conversion operators are defined to convert particles to several types, it is
often necessary to indicate precisely which type conversion is desired.
 To write data to an output porthole, note that the right-hand side of the assignment
operator should be of type Particle, as shown in the above example. An operator << is
defined for particle classes to make this more convenient. Consider the following example:

go {

     float t;

     t = some value to be sent to the output

     out%0 << t;

}

Note the distinction between the << operator and the assignment operator. The latter
operator copies Particles, the former operator loads data into particles. The type of the
right-side operand of << may be int, float, double, Fix, Complex or Envelope. Note that
the Envelope data class includes the matrix data types. The appropriate type conversion
will be performed. For more information on the Envelope and Message types, refer to Data
Types for Model Builders (modbuild).

 

 SDF (TSDF) PortHole Parameters

In the preceding example, where in%1 was referenced, some special action is required to
tell ADS Ptolemy that past input particles are to be saved. Special action is also required
to tell the SDF ( TSDF ) scheduler how many particles will be consumed at each input and
produced at each output when a star fires. This information can be provided through a call
to setSDFParams ( setTSDFParams ) in the method.  This has the syntax:

setup {

     name.setSDFParams(multiplicity, past)

}

where name is the name of the input or output porthole, multiplicity is the number of
particles consumed or produced, and past is the maximum value that offset can take in
any expression of the form name%offset. For example, if the go {{}} method references
name%0 and name%1, then past would have to be at least one. It is zero by default.



User-Defined Models

164

 

 Multiple PortHoles

 Sometimes a star should be defined with n input portholes or n output portholes, where n
is variable. This is supported by the class MultiPortHole,  and its derived classes. An object
of this class has a sequential list of PortHoles. For SDF ( TSDF ), we have the specialized
derived class MultiInSDFPort (MultiInTSDFPort), which contains  InSDFPorts (InTSDFPorts)
and  MultiOutSDFPort (MultiOutTSDFPort ), which contains  OutSDFPorts ( OutTSDFPorts).

Defining a multiple porthole is easy, as illustrated below:  

defstar {

     ...

     inmulti {

     name {input_name}

     type {input_type}

     }

     outmulti {

     name {output_name}

     type {output_type}

     }

     ...

}

To successively access individual portholes in a MultiPortHole, the MPHIter iterator class
should be used. Consider the following code segment from the definition of the SDF  Fork
(TSDF Fork) star:

input {

     name{input}

     type{ANYTYPE}

}

outmulti {

     name{output}

     type{= input}

}

go {

     MPHIter nextp(output);

     PortHole* p;

     while ((p = nextp++) != 0)

           (*p)%0 = input%0;

}

A single input porthole supplies a particle that gets copied to any number of output
portholes. The type of the output MultiPortHole is inherited from the type of the input. The
first line of the go method creates an MPHIter iterator called nextp, initialized to point to
portholes in output. The ++ operator on the iterator returns a pointer to the next porthole
in the list, until there are no more portholes, at which time it returns NULL. So the while
construct steps through all output portholes, copying the input particle data to each one.

Consider another example, taken from the SDF  Add star:

inmulti {

     name {input}

     type {float}



User-Defined Models

165

}

output {

     name {output}

     type {float}

}

go {

     MPHIter nexti(input);

     PortHole *p;

     double sum = 0.0;

     while ((p = nexti++) != 0)

           sum += double((*p)%0);

     output%0 << sum;

}

Again, an MPHIter iterator named nexti is created and used to access the inputs.

The  numberPorts method of class MultiPortHole, which returns the number of ports, is
occasionally useful. This is called simply as portname.numberPorts(), and it returns an int.

 

 Type Conversion

 The  type conversion operators and << operators are defined as virtual methods in the
base class  Particle. There are never really objects of class Particle in the system. Instead,
there are objects of class  IntParticle,  FloatParticle,  ComplexParticle, and FixParticle,
which hold data of type int, double (not float), Complex, and Fix, respectively. (There are
also  MessageParticle and a variety of matrix particles). The conversion and loading
operators are designed to do the right thing when an attempt is made to convert between
mismatched types.

Clearly we can convert an int to a double or  Complex, or a double to a Complex, with no
loss of information. Attempts to convert in the opposite direction work as follows:
conversion of a Complex to a double produces the magnitude of the complex number.
Conversion of a double to an int produces the greatest integer that is less than or equal to
the double value. There are also operators to convert to or from float and Fix. Each
particle also has a virtual  print method, so a star that writes particles to a file can accept
anytype.

 

 States

 A state is defined by the state directive. The star can use a state to store data values,
remembering them from one invocation to another. States differ from ordinary members
of the star (defined by the public, protected, and private directives) in that they have a
name, and can be accessed from outside the star in systematic ways. For instance, the
Advanced Design System design environment enables you to set any state with the  
A_SETTABLE  attribute to some value prior to a run; this is done via the on schematic
value entry or the Edit Component dialog. The state attributes are set in the state
directive.

A state may be modified by the star code during a run. To mark a state as one that gets
modified during a run, use the attribute  A_NONCONSTANT. There is currently no
mechanism for checking the correctness of these attributes.



User-Defined Models

166

All states are derived from the base class State, defined in the ADS Ptolemy kernel. The
derived state classes currently defined in the kernel are  FloatState,  IntState,  
ComplexState,  StringState,  FileNameState,  FloatArrayState,  IntArrayState,  
ComplexArrayState,  StringArrayState, EnumerationState, and PrecisionState.

A state can be used in a star method in the same way as the corresponding predefined
data types. As an example, suppose the star definition contains the following directive:

state {

     name {myState}

     type {float}

     default {1.0}

     descriptor {Gain parameter.}

}

This will define a member of class FloatState with default value 1.0. No attributes are
defined, so A_CONSTANT and A_SETTABLE, the default attributes, are assumed. To use
the value of a state, it should be cast to type double, either explicitly by the programmer
or implicitly by the context. For example, the value of this state can be accessed in the go
method as follows:

go {

     output%0 << double(myState) * double(input%0);

}

The references to input and output are explained above. The reference to myState has an
explicit cast to double ; this cast is defined in the FloatState class. Similarly, a cast to int
is available for IntState, to Complex for ComplexState,  and to const char* for Stringstate
). In principle, it is possible to rely on the compiler to automatically invoke this cast.
However, note the following warning.

Explicit casting should be used whenever a state is used in an expression. For example,
from the setup method of the SDFChop star, in which use_past_inputs is an integer state,

if (int(use_past_inputs))

   input.setSDFParams(int(nread),int(nread)+int(offset)-1);

else

   input.setSDFParams(int(nread),int(nread)-1);

Note that the type Complex  is not a fundamental part of C++. We have implemented a
subset of the Complex class as defined by several library vendors. We use our own
version for maximum portability. Using the ComplexState class automatically ensures the
inclusion of the appropriate header files. A member of the Complex class can be initialized
and operated upon any number of ways. For details, refer to the section, The Complex
Data Type (modbuild) in Data Types for Model Builders (modbuild).

A state may be updated by ordinary assignment in C++, as in the following lines:

double t = expression;
myState = t;

This works because the FloatState class definition has overloaded the assignment operator



User-Defined Models

167

( = ) to set its value from a double. Similarly, an IntState can be set from an int, and a
StringState can be set from a char* or const char*.

 

 Array States

The ArrayState   classes ( FloatArrayState, IntArrayState and ComplexArrayState )  are
used to store data arrays. For example,

state {

     name {taps}

     type {FloatArray}

     default {"0.0 0.0 0.0 0.0"}

     descriptor {An array of length four.}

}

defines an array of type double with dimension four, with each element initialized to zero.
Quotes must surround the initial values. Alternatively, you can specify a file name with the
prefix <.  If you have a file named foo that contains the default values for an array state,
you can write:

default {"< foo"}

where the file foo must be located in the current workspace data subdirectory. If not in
the subdirectory, then the filename must include the full directory path as a prefix. For
instance:

default {"< ~/user_name/directory/foo"}

The format of the file is also a sequence of data separated by spaces (or new lines, tabs,
or commas). File input can be combined with direct data input as in:

default {"< foo 2.0"}
default {"0.5 < foo < bar"}

A repeat notation is also supported for ArrayState objects: the two value strings

default {"1.0 [5]"}
default {"1.0 1.0 1.0 1.0 1.0"}

are equivalent. Any integer expression may appear inside the brackets []. The number of
elements in an ArrayState can be determined by calling its size method. The size is not
specified explicitly, but is calculated by scanning the default value.

As an example of how to access the elements of an ArrayState, suppose fState is a
FloatState and aState is a FloatArrayState. The access points, like those in the following
lines, are routine:

fState = aState[1] + 0.5;
aState[1] = (double)fState * 10.0;
aState[0] = (double)fState * aState[2];



User-Defined Models

168

For a more complete example of the use of FloatArrayState, consider the FIR star defined
below. Note that this is a simplified version of the SDF FIR star and does not permit
interpolation or decimation.

defstar {

     name {FIR}

     domain {SDF}

     desc {

A Finite Impulse Response (FIR) filter.

     }

     input {

     name {signalIn}

     type {float}

     }

     output {

     name {signalOut}

     type {float}

     }

     state {

     name {taps}

     type {floatarray}

     default {      "-.04 -.001 .17 .37 .37 .17 -.0018 -.04" }

     desc {Filter tap values.}

     }

     setup {

     // tell the PortHole the maximum delay we will use

     signalIn.setSDFParams(1, taps.size() - 1);

     }

     go {

     double out = 0.0;

     for (int i = 0; i < taps.size(); i++)

     out += taps[i] * double(signalIn%i);

     signalOut%0 << out;

}

}

Notice the setup method; this is necessary to allocate a buffer in the input PortHole large
enough to hold the particles that are accessed in the go method. Notice also the use of
the size method of the FloatArrayState .

   

 Modifying PortHoles and States in Derived Classes  

When one star is derived from another, it inherits all the states of the base class star.
Sometimes we want to modify some aspect of the behavior of a base class state in the
derived class. This is done by placing calls to member functions of the state in the
constructor of the derived star. Useful functions include  setInitValue to change the default
value, and  setAttributes and  clearAttributes to modify attributes.

When creating new stars derived from stars already in the system, you will often also wish
to customize them by adding new  ports or  states. In addition, you may wish to remove
ports or states. Although, strictly speaking, you cannot do this, you can achieve the
desired effect by simply hiding them from the user.

The following code will hide a particular state named statename from the user: 

constructor {



User-Defined Models

169

     statename.clearAttributes(A_SETTABLE);

}

Thus, when the user observes the available states for this star in the Advanced Design
System design environment, statename will not appear as one of the star parameters. Of
course, the state can still be set and used within the code defining the star.

The same effect can be achieved with outputs or inputs. For instance, given an output
named output, you can use the following code: 

constructor {

     output.setAttributes(P_HIDDEN);

}

This means that when you create an icon for this star, no terminal appears for this port.
This is most useful when output is a multiporthole, because there will then be zero
instances of the individual portholes.

This technique can also be used to hide individual portholes. However, it must be used
with caution because the porthole still remain. Most domains do not allow disconnected
portholes, and will flag an error. You can explicitly connect the port within the body of the
star.

 Writing Timed Components   

Writing Timed components using hpeesoflang is almost identical to writing any other star.
Following are the primary points of distinction:

Receiving Timed data
To receive the data field of the Timed data via input TSDFPortHole, use the following
method:

Complex InTSDFPort::getIQData(int n)

where n is the current value of the input stream. For example, if the Timed input port
is named in, then

in.getIQData(0)

returns a complex number, which is the current I and Q members of the Timed
particle.
Similarly, the methods

int InTSDFPort::getFlavor(int)

and

double TSDFPortHole::getCarrierFrequency(int)

return the Flavor and Fc associated with incoming Timed particle.
Sending data
As described in the preceding section Reading Inputs and Writing Outputs, the



User-Defined Models

170

operator << is used to load the output port with Timed data. For example, given the
Timed ports out1, out2, the following will output Baseband and ComplexEnv flavor
Timed data at out1 and out2 ports. Note that the other attributes of Timed particle
are set by the engine.

go{

double x;

Complex z;

................

out1%0 << x;

out2%0 << z;

     }

Fc propagation
When a TSDF star is changing (or re-setting) the carrier frequency Fc, a TSDFStar
method should be used in the star setup as follows:

TSDFStar::propagateFc(double fc)

If this method is not explicitly used, the virtual method is used, which sets the output
carrier frequency equal to the maximum input carrier frequency.
Example of Writing Timed Components

method {
name {propagateFc}
access {protected}
arglist {"(double *fcin)"}
type {void}
code {
output.setCarrierFrequency(dummy);
}
}

TStep propagation
When a TSDF star is changing or re-setting the TStep (for example a source), a
TSDFStar method should be used in the star setup, as follows:

TSDFPortHole::setTimeStep(double tstep)
ComplexToTimed Converter example

defstar {

     name {CxToTimed}

     domain {TSDF}

     desc {Converts a Complex signal to Timed. Given the

     complex number (a+bj) at input, the output is a

     ComplexEnv Timed signal

     {(I + jQ),fc} where I=a, Q=b and fc is a parameter.}

     copyright {Copyright (c) Agilent Technologies 2000}

     attributes {S_HP}

     location {Signal Converters}

     input {

           name {input}

           type {Complex}}

     output {

           name {output}

           type {timed}}

defstate {

                 name {TStep}

                 type {float}

                 default {0.0}



User-Defined Models

171

                 desc {Output time step}

                 units {TIME_UNIT}

                 attributes {A_SETTABLE|A_NONCONSTANT}}

defstate {

                 name {FCarrier}

                 type {float}

                 default {-1.0}

                 desc {Output Carrier frequency}

                 units {FREQUENCY_UNIT}

                 attributes {A_SETTABLE|A_NONCONSTANT}}

setup {

                 if (double(TStep) < 0.)

                       TStep.rangeError(">= 0");

                 output.setTimeStep((double)TStep);

                 output.setCarrierFrequency((double)FCarrier);

}

// for Fc propagation, overriding the virtual TSDFStar::propagateFc()

method {

name {propagateFc}

access {protected}

arglist {"(double *fcin)"}

type {void}

code {

     output.setCarrierFrequency(dummy);}

}

     go {

           output%0 << (Complex)(input%0);

     }}

 

 Programming Examples

The following star has no inputs, just an output. The source star generates a linearly
increasing or decreasing sequence of float particles on its output. The state value is
initialized to define the value of the first output. Each time the star go method fires, the
value state is updated to store the next output value. Hence, the attributes of the value
state are set so that the state can be overwritten by the star's methods. By default, the
star will generate the output sequence 0.0, 1.0, 2.0, etc. 

defstar {

     name {Ramp}

     domain {SDF}

     desc {

Generates a ramp signal, starting at "value" (default 0)

with step size "step" (default 1).

     }

     output {

           name {output}

           type {float}

     }

     state {

           name {step}

           type {float}

           default {1.0}

           desc {Increment from one sample to the next.}

     }

     state {

           name {value}

           type {float}

           default {0.0}

           desc {Initial (or latest) value output by Ramp.}

           attributes {A_SETTABLE|A_NONCONSTANT}

     }

     go {

           double t = double(value);



User-Defined Models

172

           output%0 << t;

           t += step;

           value = t;

     }

}

The next example is the Gain star, which multiplies its input by a constant and outputs the
result:

defstar {

     name { {anchor:1105762:index:Gain (SDF block)}Gain}

     domain {SDF}

     desc {Amplifier: output is input times "gain" (default 1.0).}

     input {

           name {input}

           type {float}

     }

     output {

           name {output}

           type {float}

     }

     state {

           name {gain}

           type {float}

           default {"1.0"}

           desc {Gain of the star.}

     }

     go {

           output%0 << double(gain) * double(input%0);

     }

}

The following example of the Printer star illustrates multiple inputs, ANYTYPE inputs, and
the use of the print method of the Particle class.

defstar {

     name {{anchor:1105765:index: Printer (SDF block)}Printer}

     domain {SDF}

     inmulti {

           name {input}

           type {ANYTYPE}

     }

     state {

           name {fileName}

           type {string}

           default {"<cout>"}

           desc {Filename for output.}

     }

     hinclude {"pt_fstream.h"}

     protected {

           pt_ofstream *p_out;

     }

     constructor {p_out = 0;}

     destructor {LOG_DEL; delete p_out;}

     setup {

           delete p_out;

           p_out = new pt_ofstream(fileName);

     }

     go {

           pt_ofstream& output = *p_out;

           MPHIter nexti(input);

           PortHole* p;

           while ((p = nexti++) != 0)

                 output << ((*p)%0).print() << "t";

           output << "n";

     }

}



User-Defined Models

173

This star is polymorphic  since it can operate on any type of input. Note that the default
value of the output filename is <cout>, which causes the output to go to the standard
output.

  

 Preventing Memory Leaks in C++ Code

Memory leaks occur when new memory is allocated dynamically and never deallocated. In
C programs, new memory is allocated by the malloc or calloc functions, and deallocated
by the free function. In C++, new memory is usually allocated by the new operator and
deallocated by the delete or the delete [] operator. The problem with memory leaks is that
they accumulate over time and, if left unchecked, may cripple or even crash a program.
Agilent EEsof has taken extensive steps to eliminate memory leaks in the ADS Ptolemy
software environment by implementing the following guidelines and by tracking memory
leaks with Purify (a commercial tool from Pure Software, Inc.).

One of the most common mistakes leading to memory leaks is applying the wrong
delete operator. The delete operator should be used to free a single allocated class or
data value, whereas the delete [] operator should be used to free an array of data
values. In C programming, the free function does not make this distinction.
Another common mistake is overwriting a variable containing dynamic memory
without freeing any existing memory first. For example, assume that thestring is a
data member of a class, and in one of the methods (other than the constructor),
there is the following statement:

thestring = new char[buflen];

This code should be

delete [] thestring;
thestring = new char[buflen];

Using delete is not necessary in a class' constructor because the data member would
not have been previously allocated.
In writing ADS Ptolemy stars, the delete operator should be applied to variables
containing dynamic memory in both the star's setup and destructor methods. In the
star's constructor method, the variables containing dynamic memory should be
initialized to zero. By freeing memory in both the setup and destructor methods, one
covers all possible cases of memory leaks during simulation. Deallocating memory in
the setup method handles the case in which the user restarts a simulation, whereas
deallocating memory in the destructor covers the case in which the user exits a
simulation. This includes the cases that arise when error messages are generated.
Another common mistake is not paying attention to the kinds of strings returned by
functions. The function savestring returns a new string dynamically allocated and
should be deleted when no longer used. The expandPathName, tempFileName, and
makeLower functions return new strings, as does the Target::writeFileName method.
Therefore, the strings returned by these routines should be deleted when they are no
longer needed, and code such as

savestring(expandPathName(s))



User-Defined Models

174

is redundant and should be simplified to

expandPathName(s)

to avoid a memory leak due to not keeping track of the dynamic memory returned by
the function savestring.
Occasionally, dynamic memory is used when local memory could have been used
instead. For example, if a variable is only used as a local variable inside a method or
function, and the value of the local variable is not returned or passed to outside the
method or function, then it is better to simply use local memory. For example, the
sequence

char* localstring = new char[len + 1];
if (person == absent) return;
strcpy(localstring, otherstring);
delete [] localstring;
return;

could easily return without deallocating localstring. The code should be rewritten to
implement either the StringList or InfString class; for example:

InfString localstring;
if (person == absent) return;
localstring = otherstring;
return;

Both StringList and InfString can manage the construction of strings of arbitrary size.
When a function or method exits, the destructors of the StringList and InfString
variables are automatically called, which deallocates their memory. Casts that
convert StringList to a const char* string and InfString to a const char* or a char*
string are defined, so that instances of the StringList and InfString classes can be
passed as is into routines that take character array (string) arguments. The following
is a simple example of the function that builds an error message into a single string:

StringList sl = msg;
sl << file << ": " << sys_errlist[errno];
ErrAdd(sl);

The errAdd function takes a const char* argument, so sl is automatically converted to
a const char* string by the C++ compiler.
Instead of using the new and delete operators, it is tempting to use constructs like:

char localstring[buflen + 1];

in which buflen is a variable. This is because the compiler will then automatically
handle memory deallocation. Unfortunately, this syntax is a Gnu extension and is not
portable to other C++ compilers. Instead, the StringList and InfString classes should
be used, as in the previous example involving localstring.
Sometimes the return value from a routine that returns dynamic memory is not
stored and, therefore, the pointer to the dynamic memory gets lost. This occurs, for



User-Defined Models

175

example, in nested function calls. Code such as

puts(savestring(s));

should instead be written as

const char* newstring = savestring(s);
puts(newstring);
delete [] newstring;

Several features in ADS Ptolemy, especially in the schedulers and targets, rely on the
hashstring function, which returns dynamic memory. This dynamic memory,
however, should not be deallocated because it may be reused by other calls to
hashstring. It is the responsibility of the hashstring function to deallocate any
memory it has allocated.

  

 ADS Ptolemy pl File Template

The following is a pl file template:

adsptolemy Star coding template

defstar {

name {my_model}      //  Limit length to one line 30 characters maximum

//  No spaces. Only alpha-numeric characters and underbar.

//  Name should be constructed as one or more concatenated

// word segments with each word segment beginning with a capital letter.

domain {SDF} // or TSDF

desc {my_model_name}   //  Limit length to one line of 50 characters maximum

//  This description should be a short phrase defining the star

//  Do not use a period followed by a space; ". "

//  The period followed by a space is recognized by adsptolemy

//  as the end of the descriptions to be displayed in AEL

//  A detailed model explanation should be placed in the

//  explanation {} field

version {@(#) $Source:

/wlv/src/sp100/source/ptolemy/src/domains/sdf/stars/SDFmy_model.pl $

$Revision: 1.0  $ $Date: 1997/10/28 16:26:58 $}

// This version field to be changed as needed for HMS source code control by the user

author {Author's name}

acknowledge {arbitrary single line of text to acknowledge others}

location {my_model_library_location} // Name of Library used in the Schematic

attributes {S_USER} // or S_HIDDEN

derivedfrom {base_star_name} //  Optional: delete if not used

copyright {

Copyright (c) Agilent Technologies 2000

All rights reserved.

}

explanation {my_model_explanation}  

//  Use as many lines as needed to describe the star, it's purpose,

//  algorithm, application, references, or other information to

//  document this component

// Define a defstate for each parameter

defstate {

    name {my_state_name} //  Limit length to one line 30 characters maximum

                         //  No spaces. Only alpha-numeric characters and underbar.

                         //  Name should be constructed as one or more word segments

                         //  with each word segment beginning with a capital letter.

    type {my_state_type} // Options: int, fix, float, complex, string, precision,

                         //  intarray, fixarray, floatarray, complexarray, stringarray

                         //  For the enum state, see the next defstate{} example

//  For the filename state, see the following defstate{} example



User-Defined Models

176

default {my_state_default_value}

            //  Example int:                 1

            //  Example float:              1.25

            //  Example fix:                 1.25

            //  Example complex:         "(1.25, 2.5)"

            //  Example string:             "my string"

            //  Example precision:       2.14

            //  Example intarray:          1, 2, 3, 6, 9

            //  Example float array:      1.25, 3.50, 6.75

            //  Example complexarray:   "(1.25, 2.5) (2.4, -2.3) (-1.2, -2.2)"

            //  Example stringarray:      "Button 1"  "Button 2"

     units {UNITLESS_UNIT}   

            //  Options: STRING_UNIT, UNITLESS_UNIT,

            //  FREQUENCY_UNIT, TIME_UNIT, ANGLE_UNIT

            //  Note: ANGLE_UNIT for phase in degrees

            //  Other units are available for resistance, length, etc., but might

            //  not be relevant to numeric stars

    desc {my_state_description}    

            //  Begin with a short phrase defining this state and ending with

            //  a period and a space. This initial sentence will be used in the

            //  AEL for this star. This initial sentence may be followed

            //  with additional content to describe this state and its use

    attributes {A_SETTABLE | A_NONCONSTANT}

            //  These attributes are for states the for use at the schematic

            //  level. If a state is to be hidden from the schematic, it can be

            //  listed as A_NONSETTABLE | A_NONCONSTANT

}

// Define a defstate for each parameter; example for enumerated state

defstate {

    name {my_state_name} //  Limit length to one line 30 characters maximum

                         //  No spaces. Only alpha-numeric characters and underbar.

                         //  Name should be constructed as one or more word segments

                         //  with each word segment beginning with a capital letter.

    type {enum}          // enumerated state

    default {"option1"}  // default in quotes

    desc {my_state_description}              

           //  Same notes as for the state description apply

    enumlist { option 1, option 2}           

           //  enumerated list separate with commas

           //  each enumeration may contain spaces, underbar or other

           //  alpha-numeric characters, but none other

           //  Code may be reference the enumeration by use of the option

           //  with spaces replaced by underbars.

           //  Example: if (my_enum_name == option_1) {

           //       ... code here ...

           //       }

    enumlabels { opt 1, opt 2}        

           //  an abbreviation of the enumlist options, used during AEL

           //  generation

    attributes {A_SETTABLE|A_NONCONSTANT}

           //  These attributes are for states the for use at the schematic

           //  level. If a state is to be hidden from the schematic, it can be

           //  listed as A_NONSETTABLE | A_NONCONSTANT

}

// Define a defstate for each parameter; example for file name state

defstate {

    name {my_state_name} //  Limit length to one line 30 characters maximum

                         //  No spaces. Only alpha-numeric characters and underbar.

                         //  Name should be constructed as one or more word segments

                         //  with each word segment beginning with a capital letter.

    type {filename}      // file name state

    default {"xyz.ext1"} // default in quotes

    desc {my_state_description}              

           //  Same notes as for the state description apply

    extensions { ext1, ext2, ext3 }           

           // extension list separate with commas

           //  each extension may contain underbar or other

           //  alpha-numeric characters, but none other

    attributes {A_SETTABLE|A_NONCONSTANT}

           //  These attributes are for states the for use at the schematic

           //  level. If a state is to be hidden from the schematic, it can be

           //  listed as A_NONSETTABLE | A_NONCONSTANT

}

port_type {     //  Options:   input, output, inmulti, outmulti



User-Defined Models

177

               //  See programmers documentation for the use of each port_type

   name {port_name}

   type {port_type}   

//  When Domain == SDF:

//Options: int, float, fix, complex, message, int_matrix_env,

        //   float_matrix_env, complex_matrix_env, fix_matrix_env,

        //   anytype

// When Domain == TSDF:

// Options: timed

   desc {port_desc}

}

hinclude {

// Optional: delete if not used

// User specifies other files to include in the .h file

}

header {

// Optional: delete if not used

// User places C/C++ code to include in the .h file, before the class definition

}

ccinclude {

// Optional: delete if not used

// User inserts .cc include files here in quotes with comma separators. Example:

// "file1.cc","file2.cc","file3.cc"

}

private {

// Optional: delete if not used

// Define private data members of the star class

}

protected {

// Optional: delete if not used

// Define protected data members of the star class

}

constructor {

// Optional: delete if not used

// Called when instance created.

// Allows user to specify extra C/C++ code to be executed in the constructor

// for the class.

// This field can initialize the public data member that indicates delays associated

// with input pins

}

conscalls {

// Optional: delete if not used

// Used when data members have constructors and require arguments.

// These members would be added by using the public, private, or

// protected keywords. If such members exist, conscalls provides

// the user with a mechanism for passing arguments to the

// constructors of those members. Example:

// member1(arglist), member2(arglist)

}

setup {

// Optional: delete if not used

// C/C++ code to execute at start time, before the scheduler setup.

// Check each state value for validity

// Example: if (double(state_name) < 0.5) {

//                      state_name.rangeError(">= 0.5");

//                  }

// See also messaging guidelines for status messages, warning messages,

// error messages

}

begin {

// Optional: delete if not used

// C/C++ code to execute at start time, after the scheduler setup.

}

go {

// User supplied C/C++ code here

//

}

wrapup {

// Optional: delete if not used

// C/C++ code to invoke at the end of a run (if no error occurred)

}

destructor {

// Optional: delete if not used

// User C/C++ code to include in the destructor for the star

}



User-Defined Models

178

method {

// Optional: delete if not used

// Define a member function for the star class

// Can also substitute for method:

// virtual method, inline method, pure method, pure virtual method,

// inline virtual method

// name {user defined name}

// access {either private, protected, or public}

// arglist {"(arguments in quotes)"}

// type {the return type of the method}

// code {C/C++ code defining the method}

}

code {

// Optional: delete if not used

// C/C++ code to include in the .cc file outside the class definition

}

}

  

 Writing Sink Models

Sinks are models with inputs but no outputs. The main use of sinks is to write data to files
(ASCII, dataset, etc.). The data written to the file could be the raw data collected from the
sink's inputs, or the sink's collected data can be processed and then written to the file.
The processing of the data can be done during the simulation (in the go method of the
sink) or after the simulation has finished (in the wrapup method of the sink).

In order to write a sink model, you first need to understand the concept of a task. In
addition, you need to learn how to use tasks and how to write data to a dataset. The
following sections describe these concepts and give simple examples showing how they
are used.

 

 Understanding Tasks

A task is something that needs to be completed before the simulation can finish. In other
words, you can think of a task as something that controls the simulation by keeping it
running or by causing it to terminate. The simulator keeps a list of all the tasks that have
not completed, called the TaskList, and as long as there are tasks in this list it will
continue to run the simulation. The simulation terminates as soon as the TaskList
becomes empty.

Any model can add/remove tasks to/from the TaskList at any time during the simulation.
However, tasks are particularly useful when used in source or sink models. All ADS
Ptolemy sinks and a few sources (the ones that generate a finite amount of data, such as
the file-based ones) use tasks to control how long the simulation will run. Some of the
Interactive Control and Displays components also use tasks.

For example, a file-based source adds a task to the TaskList at the beginning of the
simulation and removes it when it has reached the end of the file it reads. This way (and if
no other component has added a task to the TaskList) you can guarantee that the
simulation will run as long as there is data in the file being read.

On the other hand, sinks typically add a task to the TaskList at the beginning of the



User-Defined Models

179

simulation and remove it when they have collected all the data they need. The time a sink
removes its task from the TaskList is usually known before the simulation starts (almost
all sinks have a Stop parameter). However, there are sinks that decide when to remove
their tasks while the simulation is running. Examples of such sinks are the BER sinks
(berIS, berMC, berMC4), which keep track of the relative variance of their BER estimate
and remove their tasks when the variance falls below a user-specified value. The
SimpleBERSink shown in the section SDFSimpleBERSink is another example of such a
sink.

 

 Sink Coding Methodology

Every sink needs to define an object of the class SinkControl in the private, protected, or
public section of its .pl file. This will require that the TargetTask.h header file is listed in
the hinclude section of the .pl file and that the variable KERNEL (or another variable that
automatically sets KERNEL to 1, such as SDFKERNEL, TSDFKERNEL) is set to 1 in the
corresponding make-defs file. The SinkControl object should call its initialize function in
the begin section. The go section should look like:

go {
if (sinkControl.collectData()) {
// all the sink go code should be entered here.
}
}

where sinkControl is an object of type SinkControl.

Let's look into what all the above means in more detail. A SinkControl object is an object
that can add/remove a single task to/from the TaskList. In addition, it has an internal
timer/counter to keep track of some notion of the simulation time. A SinkControl object
needs to be initialized before it can be used. This is done by calling its initialize function.
There are two overloaded versions of this function:

i) initialize( Block& master, double start_value, double stop_value, double step_value )

ii) initialize( Block& master, double start_value, double step_value )

The first argument in both cases must always be *this, where this is the pointer to the
sink object itself. The choice of which initialize function is called will determine the way the
sink behaves:

When the first initialize function is called, the SinkControl object will add a task to the1.
TaskList and reset its internal timer/counter to 0. Then every time the collectData
function is called, it increments the timer/counter by step_value and returns 1
(TRUE) if the timer/counter (before being incremented) was between start_value and
stop_value. It returns 0 (FALSE) otherwise. When the timer/counter reaches
stop_value the task is automatically removed from the TaskList. If you want to
remove the task from the TaskList before stop_value is reached, you can do so by
calling the stopControl function. This is used in the BER sinks (see example
SimpleBERSink at the end of this section) where stopControl is called when some



User-Defined Models

180

condition is satisfied. Although in this case you might want to ignore stop_value
completely, it still makes sense to define it as an upper limit of how long the
simulation will run just in case the condition that needs to be satisfied before
stopControl is called is never satisfied. If you are absolutely certain that the condition
you are using will be satisfied, and do not know what value to use for stop_value, use
a very large value, e.g., 1.0e20. When calling this initialize function, start_value must
be greater than or equal to 0, stop_value must be greater than or equal to
start_value, and step_value must be greater than 0. If these conditions are not
satisfied the simulation will abort.
When the second initialize function is called, the SinkControl object will not add a2.
task to the TaskList. Therefore, the sink will not control how long the simulation will
run. The timer/counter is still reset to 0. When collectData is called, it increments the
timer/counter by step_value and returns 1 (TRUE) if the timer/counter (before being
incremented) was greater than or equal to start_value. In this mode of operation, the
sink can be used to collect all the data from a simulation controlled by some other
sink or source. This may be useful for large, multirate designs, where you do not
know the rates at the points where you want to collect the data. If the sink's
SinkControl object is initialized using the first initialize function and start_value,
stop_value are not selected appropriately, the design might end up simulating a lot
more than it should. By setting only one sink to control the simulation and letting the
others collect data as long as the simulation runs, you can guarantee that the data
collected in all sinks will correspond time-wise to the data collected in the sink that
controlled the simulation. Another case where this mode of operation is useful is
when the input signal for a simulation is read from a file and the amount of data in
the file is not known. By setting only the source to control the simulation, you can
"force" the sinks to collect the right amount of data no matter how much data there
is in the file. When calling this initialize function, start_value must be greater than or
equal to 0 and step_value must be greater than 0. If these conditions are not
satisfied, the simulation will abort.

 

 Useful Notes/Hints

A sink model need not operate in only one of the two ways described above.
Parameters can be used to decide how the sink's SinkControl object is initialized. For
example, this is the purpose of the ControlSimulation parameter of the NumericSink
and TimedSink models. Also see the examples in the section Examples of Sink Models.

When a sink is to be used with numeric data, it is recommended to use 1 as the
step_value when calling the initialize function. When a sink is to be used with timed
data, it is recommended to use the simulation time step (obtained by calling
input.getTimeStep(), where input is the name of the input port) as the step_value
when calling the initialize function.
It is recommended that you only write uni-rate sink models, that is, sinks that only
read one sample from their inputs every time they are fired.
A sink that needs to post-process the data it collects, that is, it just stores the data in
some array during go and processes it in wrapup, must always be initialized using the
first initialize function. Otherwise, you will not know how much memory needs to be
allocated for the array that will store the collected data during go. Examples of sinks
like that are the SpectrumAnalyzer, EVM, and refer to SDFMedianSink. A sink that



User-Defined Models

181

can process the collected data in go can be initialized in either of the two ways
described above.

Two other useful functions of the SinkControl class are the time and index functions,
which return the current value of the SinkControl object's internal timer/counter. The
time function returns a double and it should be used with timed data, whereas the
index function returns an int and it should be used with numeric data. These
functions are typically used as the value of the independent variable for data written
to a dataset.
The "Data collection is XX.X% complete" messages displayed in the Status/Summary
window are automatic (there is nothing extra you need to do in order to get these
messages printed out). However, if you want to print more status information you
can use the Error::warn() or Error::message() methods. The Error::warn() method
sends messages to the Simulation/Synthesis messages window, whereas the
Error::message() method sends messages to the Status/Summary window.
For more details on these methods, refer to Messaging Guidelines for Star .pl Files in
this section. Refer to SDFSimpleBERSink for an example of how the Erorr::message()
method can be used.

  

 Writing Data to a Dataset

If the sink model needs to write data to a dataset, it needs to make use of the SimData
class. Not all sinks write data to a dataset. For example, the Printer sink writes data to an
ASCII file. To use the SimData class you need to define a pointer to an object of this class
in the private, protected, or public section of the sink's .pl file. This will require that the
SimData.h header file is listed in the ccinclude section of the .pl file and that the variable
KERNEL (or another variable that automatically sets KERNEL to 1, such as SDFKERNEL,
TSDFKERNEL) is set to 1 in the corresponding make-defs file.

The SimData class is an abstract class so only pointers to it can be defined. If you define
an object of this class in your sink model, your model will not even compile. The compiler
will error out with an error message similar to the ones below:

SimData : cannot instantiate abstract class (Windows)
Cannot declare a member of the abstract type SimData (Sun)
A class member may not be declared with an abstract class type (HP-UX)

What follows describes the use of the functions of the SimData class. While reading the
following paragraphs keep in mind that data written to a dataset always has a dependent
and independent variable associated with it.

newSimData (Block *starP ). This is not a function of the SimData class but it must
be called in order to initialize the pointer to the SimData class. This must be done
before the pointer can be used. The argument of this function must always be this,
where this is the pointer to the sink object itself. For example, if you have defined a
pointer to an object of type SimData and its name is dataP, then the following piece
of code should precede any use of dataP:
dataP = newSimData(this);

setIndepVar( const char *name, AgilentPtolemy:: DataType type, State::Unit unit ) is



User-Defined Models

182

used to set a name, type and unit for the independent variable of the data. The value
of type can be AgilentPtolemy::INT (the independent variable will be of integer type;
typically used for numeric data) or AgilentPtolemy::FLOAT (the independent variable
will be of double type; typically used for timed data). The value of unit can be
State::UNITLESS_UNIT (the independent variable will have no associated unit;
typically used for numeric data), State::TIME_UNIT (the independent variable will
represent time; typically used for timed data), or State::FREQUENCY_UNIT (the
independent variable will represent frequency; typically used for spectrum data).
setDepVar( const char *name, AgilentPtolemy:: DataType type, State::Unit unit ) is
used to set a name, type and unit for the dependent variable of the data. The value
of type can be AgilentPtolemy::INT (the dependent variable will be of integer type),
AgilentPtolemy::FLOAT (the dependent variable will be of double type), or
AgilentPtolemy::COMPLEX (the dependent variable will be of complex type). The
AgilentPtolemy::FIX data type, as well as all the AgilentPtolemy::MATRIX data types,
are not supported. The value of unit can be State::UNITLESS_UNIT (the dependent
variable will have no associated unit; typically used for numeric data),
State::VOLTAGE_UNIT (the dependent variable will represent voltage; typically used
for timed data), or State:: POWER_UNIT (the dependent variable will represent
power in dBm; typically used for spectrum data). A unique name must be selected for
the name of the dependent variable. A way to obtain a unique name is to call the
fullName() function which returns the instance name of the sink, for example N1 or
X1.N1 (if the sink is inside a subnetwork with instance name X1).
setDepVar(const char *baseName, const char *suffix, AgilentPtolemy:: DataType
type, State::Unit unit) is an overloaded version of the setDepVar function that can be
used to give the dependent variable the name baseName.suffix. This is useful when a
sink writes multiple variables to the dataset.
setAutoPlotType(const int &type) can be used to automatically plot data at the end of
the simulation. If the value of 0 is passed, no automatic plotting occurs. If the value
of 1 is passed, a rectangular plot is automatically plotted at the end of the simulation.
addAttribute(const char *name, int value) and addAttribute(const char *name,
double value) can be used to associate integer or double attributes with the data. For
example, the TimedSink uses this function to associate a characterization frequency
with its data. To retrieve the value of an attribute in the Data Display window, you
have to use the function get_attr(sinkName, attributeName), e.g., char_freq =
get_attr(T1, "fc").
sendData(x, y) (six overloaded versions) is used to send data to the dataset.

Typically, a sink handles only one type of data. However, there is no such limitation. A
sink can be written to handle any type of data by declaring its input to be of type
ANYTYPE. To get the type of data that the sink has received in a particular simulation, the
method PortHole::resolvedType() can be called. Then according to the value this method
returns, you can call the setDepVar() and sendData() methods with the appropriate
arguments to handle the specific data type the sink has received. Refer to the example
SDFSimpleNumericSink, which can handle AgilentPtolemy::INT, AgilentPtolemy::FLOAT,
and AgilentPtolemy::COMPLEX data.

  

 Examples of Sink Models

This section lists five examples of sink models:



User-Defined Models

183

SDFSimpleNumericSink.html
TSDFSimpleTimedSink.html
SDFSimpleBERSink.html
SDFMeanVarianceSink.html
SDFMedianSink.html

These examples can be found in the directory doc/sp_items under your ADS installation
directory. Open each file to see the complete C code for that example.

The source code for these sinks can be found in the directory doc/sp_items under your
ADS installation directory. The names of the source files are:

SDFSimpleNumericSink.pl
TSDFSimpleTimedSink.pl
SDFSimpleBERSink.pl
SDFMeanVarianceSink.pl
SDFMedianSink.pl.

The make-defs file used to compile these models is also found in the same directory.

The first two examples, SimpleNumericSink and SimpleTimedSink, are sinks that just
write the raw data they collect to the dataset. The SimpleBERSink is a sink that processes
the collected data in its go method and writes data in the go as well as the wrapup
method. The MeanVarianceSink processes the data in go and writes the results in wrapup.
The MeadianSink is an example of a post-processing sink; it just collects the data in go
and does all the processing as well as writes the results to the dataset in the wrapup
method.
  



User-Defined Models

184

 Data Types for Model Builders
Stars communicate by sending objects of type Particle. A basic set of types, including
scalar and array types, built on the Particle class, is built into the ADS Ptolemy kernel.
Since all of these particle types are derived from the same base class, it is possible to
write stars that operate on any of them (by referring only to the base class). It is also
possible to define new types that contain arbitrary C++ objects.

There are currently eleven key data particle types defined in the ADS Ptolemy kernel.
There are four numeric scalar types-complex, fixed-point, double precision floating-point,
and integer-described in the section Scalar Numeric Types. The fixed-point scalar type has
two forms, UCB (University of California at Berkeley) fixed-point and Agilent fixed-point.
The Agilent fixed-point is a superset of the UCB Ptolemy fixed-point.

ADS Ptolemy supports user-defined types-using the class Message, described in the
section Defining New Data Types. Each of the scalar numeric types has an equivalent
matrix type, which uses a more complex version of the user-defined type mechanism;
these are described in the section The Matrix Data Types.

With ADS Ptolemy, you may write stars that will read and write particles of any type; this
mechanism is described in the section Writing Stars That Manipulate Any Particle Type.
There is also the timed signal type with two forms, Baseband and Complex Envelope,
described in the section, Timed Particle Signal Type.

 

 Scalar Numeric Types

There are four scalar numeric data types defined in the ADS Ptolemy kernel: complex,
fixed-point, double precision floating-point, and integer. All of these can be read from and
written to portholes as described in the section Reading Inputs and Writing Outputs
(modbuild). The floating-point and integer data types are based on the standard C++
double and int types, and need no further explanation. To support the other two types,
the ADS Ptolemy kernel contains a Complex class and a Fix class, which are described in
the remainder of this section.

  

 The Complex Data Type

The Complex data type in ADS Ptolemy contains real and imaginary components, each of
which is specified as a double precision floating-point number. The notation used to
represent a complex number is a two-number pair: ( real, imaginary ). For example,
(1.3,-4.5) corresponds to the complex number 1.3 - 4.5j.  Complex implements a subset
of the functionality of the complex number classes in the cfront and libg++ libraries,
including most of the standard arithmetic operators and a few transcendental functions.

  

 Constructors



User-Defined Models

185

Complex()

Create a complex number initialized to zero-that is, (0.0, 0.0). For example,
Complex C.

Complex(double real, double imag)

Create a complex number whose value is ( real, imaginary ). For example,
Complex C(1.3,-4.5).

Complex(const Complex& arg)

Create a complex number with the same value as the argument (the copy
constructor). For example, Complex A(complexSourceNumber).

  

 Basic Operators

The following list of arithmetic operators modify the value of the complex number. All
functions return a reference to the modified complex number ( *this ).

Complex& operator = (const Complex& arg)
Complex& operator += (const Complex& arg)
Complex& operator -= (const Complex& arg)
Complex& operator *= (const Complex& arg)
Complex& operator /= (const Complex& arg)
Complex& operator *= (double arg)
Complex& operator /= (double arg)

There are two operators to return the real and imaginary parts of the complex number:

double  real() const
double  imag() const

 

 Non-Member Functions and Operators

The following one- and two-argument operators return a new complex number:

Complex operator  + (const Complex& x, const Complex& y)
Complex operator  - (const Complex& x, const Complex& y)
Complex operator  * (const Complex& x, const Complex& y)
Complex operator * (double x, const Complex& y)
Complex operator * (const Complex& x, double y)
Complex operator  / (const Complex& x, const Complex& y)
Complex operator / (const Complex& x, double y)
Complex operator - (const Complex& x)



User-Defined Models

186

Return the negative of the complex number.

Complex  conj (const Complex& x)

Return the complex conjugate of the number.

Complex  sin(const Complex& x)
Complex  cos(const Complex& x)
Complex  exp(const Complex& x)
Complex  log(const Complex& x)
Complex  sqrt(const Complex& x)
Complex  pow(double base, const Complex& expon)
Complex pow(const Complex& base, const Complex& expon)

Other general operators:

double  abs(const Complex& x)

Return the absolute value, defined to be the square root of the norm.

double  arg(const Complex& x)

Return the value arctan(x.imag()/x.real()).

double  norm(const Complex& x)

Return the value x.real() * x.real() + x.imag() * x.imag().

double  real(const Complex& x)

Return the real part of the complex number.

double  imag(const Complex& x)

Return the imaginary part of the complex number.

Comparison Operators:

int operator != (const Complex& x, const Complex& y)
int operator == (const Complex& x, const Complex& y)  

   

 The Fixed-Point Data Type  

The fixed-point data type is implemented in ADS Ptolemy by the  Fix class. The former
supports a two's complement representation of a finite precision number. The latter
supports a two's complement and an unsigned representation of a finite precision number.
In fixed-point notation, the partition between the integer part and the fractional part, the
binary point, lies at a fixed position in the bit pattern. Its position represents a trade-off
between precision and range. If the binary point lies to the right of all bits, then there is



User-Defined Models

187

no fractional part.

The fixed-point number has a form specified by arithmetic type (ArithType: 2's
complement or unsigned), bitwidth, and number of fractional bits. The bitwidth and
number of fractional bits compose the precision of the fixed-point number. The precision is
specifiable with either of these two forms:

x.y or y/n
where
x = number of integer bits (including sign bit) to the left of the decimal point
y = number of fractional bits to the right of the decimal point
n = total number of bits (bitwidth)

Fixed-point operations include consideration of overflow type (wrapped, saturate,
saturate-to-zero) and quantization type (round or truncate).

ADS Ptolemy Fix class is an extension of the UCB Fix class. The distinction between the
UCB and Agilent fixed-point data types is as follows. Note that a distinction is made
between Synthesizable DSP components (such as those found in the Numeric
Synthesizable library) and those that are not.

 Fix Data Type Properties

Attributes for Fix Data
Type

UCB Fixed-Point Stars Agilent Fixed-Point Stars

ArithType, default 2's complement 2's complement

ArithType, options. 2's complement Synthesizable DSP-2's complement, unsigned
Non-synthesizable DSP-2's complement

Precision, max bit width 32 256

Overflow handler, default saturate Synthesizable DSP-wrapped
Non-synthesizable DSP- saturate

Overflow handler, options wrapped, saturate, saturate-
to-zero

Synthesizable DSP-wrapped, saturate
Non-synthesizable DSP-wrapped, saturate,
saturate-to-zero

RoundFix, default truncate truncate

RoundFix, options. round, truncate round, truncate

Generates Verilog or VHDL No Synthesizable DSP-Yes
Non-synthesizable DSP-No

 

 Constructing Fixed-Point Variables

Variables of type Fix are defined by specifying the word length and the position of the
binary point. At the user-interface level, precision is specified either by setting a fixed-
point parameter to a (value, precision) pair, or by setting a  precision parameter. The
former gives the value and precision of some fixed-point value, while the latter is typically
used to specify the internal precision of star computations. In either case, the syntax of
the precision is either x.y or m/n, where x is the number of integer bits (including the sign
bit), y and m are the number of fractional bits, and n is the total number of bits. Thus, the
total number of bits in the fixed-point number (also called its length ) is x + y or n. For



User-Defined Models

188

example, a fixed-point number with precision 3.5 has a total length of 8 bits, with 3 bits to
the left and 5 bits to the right of the binary point.

At the source code level, methods working on Fix objects either have the precision passed
as an x.y or m/n string, or as two C++ integers that specify the total number of bits and
the number of integer bits including the sign bit (that is, n and x ). For example, suppose
you have a star with a precision parameter named precision. Consider the following code:

Fix x = Fix(((const char *) precision));

if (x.invalid())

      Error::abortRun(*this, "Invalid precision");

The precision parameter is cast to a string and passed as a constructor argument to the
Fix class. The error check verifies that the precision was valid.

There is a maximum value for the total length of a  Fix object which is 256 bits. Numbers
in the Fix class represented using  two's complement notation have the  sign bit stored in
the bits to the left of the  binary point. There must always be at least one bit to the left of
the binary point to store the sign for two's complement arithmetic type.

In addition to its value, each Fix object contains information about its precision and error
codes indicating  overflow,  divide-by-zero, or  bad format parameters. The error codes
are set when errors occur in constructors or arithmetic operators. There are also fields to
specify:

 Whether  rounding or  truncation takes place when other Fix values are assigned to
it-truncation is the default;
The response to an overflow or  underflow on assignment-the default is  saturation
for UCB fixed-point, and wrapped for Agilent fixed-point (see Assignment and
Overflow Handling).

    

   Fixed-Point States

State variables can be declared as either Fix or FixArray. The precision is determined by
an associated precision state using either of two syntaxes:

Specifying only a value in the dialog box creates a fixed-point number with the
default length of 32 bits, and with the position of the binary point set as required to
store the integer value. For example, the value 1.0 creates a fixed-point object with
precision 2.30, and the value 0.5 creates one with precision 1.31.
Specifying both a value and a precision creates a fixed-point number with the
stipulated precision. For example, for "( value, precision )" = "(2.546, 3.5)", a fixed-
point object is created by casting the double 2.546 to a Fix with precision 3.5. Note
that it is mandatory to use parenthesis when specifying "( value, precision )" in the
dialog box.

  

 Fixed-Point Inputs and Outputs



User-Defined Models

189

Fix types are available in ADS Ptolemy as a type of particle. The automatic conversion
from an int or a double to a Fix takes place using the Fix::Fix(double) constructor, which
makes a Fix object with the default word length of 32 bits and the number of integer bits
as required by the value. For instance, the double 10.3 will be converted to a Fix with
precision 5.19, since 5 is the minimum number of bits needed to represent the integer
part, 10, including its sign bit. However, there is no automatic conversion to the ADS
Ptolemy Fix type for use with synthesizable DSP components. The user must explicitly cast
an int or double particle to a synthesizable fix particle using a Signal Converter (
FloatToFixSyn ).

To use the Fix type in a star, the type of the portholes must be declared as fix.

Stars that receive or transmit fixed-point data have parameters that specify the precision
of the input and output in bits, as well as the overflow behavior. Here is a simplified
version of the  SDFAddFix star, configured for two inputs:

defstar {

     name {AddFix}

     domain {SDF}

     derivedFrom{SDFFix}

     input {

           name {input1}

           type {fix}

     }

     input {

           name {input2}

           type {fix}

     }

     output {

           name {output}

           type {fix}

     }

     defstate {

           name {OutputPrecision}

           type {precision}

           default {2.14}

     desc {

           Precision of the output in bits and precision of the accumulation.

           When the value of the accumulation extends outside of the precision,

           the OverflowHandler will be called.

     }

}

Note that the real AddFix star supports any number of inputs. By default, the precision
used by this star during the addition will have 2 bits to the left of the binary point and 14
bits to the right. Not shown here is the state OverflowHandler, inherited from the SDFFix
star, which defaults to saturate -that is, if the addition overflows, then the result
saturates, pegging it to either the largest positive or negative number representable. The
result value, sum, is initialized by the following code:

protected {

     Fix sum;

}

begin {

     SDFFix::begin();

     sum = Fix(((const char *) OutputPrecision));

     if (sum.invalid())

           Error::abortRun(*this, "Invalid OutputPrecision");

     sum.set_ovflow(((const char*) OverflowHandler.enumString ((int) OverflowHandler)));



User-Defined Models

190

     if (sum.invalid())

           Error::abortRun(*this, "Invalid OverflowHandler");

}

The begin method checks the specified precision and overflow handler for correctness.
Then, in the go method, we use sum to calculate the result value, thus guaranteeing that
the desired precision and overflow handling are enforced. For example,

go {

     sum.setToZero();

     sum += Fix(input1%0);

     checkOverflow(sum);

     sum += Fix(input2%0);

     checkOverflow(sum);

     output%0 << sum;

}

(The checkOverflow method is inherited from SDFFix.) The protected member sum is an  
uninitialized  Fix object until the begin method runs. In the begin method, it is given the
precision specified by OutputPrecision. The go method initializes it to zero. If the go
method had instead assigned it a value specified by another Fix object, then it would
acquire the precision of that other object-at that point, it would be  initialized.

 

 Assignment and Overflow Handling

Once a Fix object has been initialized, its precision does not change as long as the object
exists. The assignment operator is overloaded so that it checks whether the value of the
object to the right of the assignment fits into the precision of the left object. If not, then it
takes the appropriate overflow response and sets the overflow error bit.

If a Fix object is created using the constructor that takes no arguments, as in the
protected declaration above, then that object is an uninitialized Fix; it can accept any
assignment, acquiring not only its value, but also its precision and overflow handler.

The behavior of a Fix object on an overflow depends on the specifications and the
behavior of the object itself. Each object has a private data field that is initialized by the
constructor; when there is an overflow, the overflow_handler looks at this field and uses
the specified method to handle the overflow. This data field is set to saturate by default,
and can be set explicitly to any other desired overflow handling method using a function
called set_ovflow(<keyword>). The keywords for overflow handling methods are: saturate
(default), zero_saturate, wrapped, and warning. With saturate, the original value is
replaced by the maximum (for overflow) or minimum (for underflow) value representable
given the precision of the Fix object. zero_saturate sets the value to zero.

 

 Explicitly Casting Inputs

In the above example, the first line of the go method assigned the input to the protected
member sum, which has the side-effect of quantizing the input to the precision of sum.
Alternatively, we could have written the go method as follows:



User-Defined Models

191

go {

     sum = Fix(input1%0) + Fix(input2%0);

     output%0 << sum;

}

The behavior here is significantly different: the inputs are added using their own native
precision, and only the result is quantized to the precision of sum.

Some stars enable you to select between these two different behaviors with a parameter
called  UseArrivingPrecision. If set to YES, the input particles are not explicitly cast; they
are used as they are; if set to NO, the input particles are cast to an internal precision,
which is usually specified by another parameter.

Here is the (abbreviated) source of the SDFGainFix star, which demonstrates this point:

defstar {

     name {GainFix}

     domain \{SDF\}

     derivedFrom {SDFFix}

     desc {

           This is an amplifier; the fixed-point output is the fixed-point input

           multiplied by the "gain" \(default 1.0\). The precision of "gain", the

           input, and the output can be specified in bits.

     }

     input {

           name {input}

           type {fix}

     }

     output {

           name {output}

           type {fix}

     }

     defstate {

           name {gain}

           type {fix}

           default {1.0}

           desc {Gain of the star.}

     }

     defstate {

           name {UseArrivingPrecision}

           type {int}

           default {"YES"}

           desc {

                 Flag indicating whether or no to use the arriving particles

                 as they are: YES keeps the same precision, and NO casts them

                 to the precision specified by the parameter "InputPrecision".

     }

     defstate {

           name {InputPrecision}

           type {precision}

           default {2.14}

           desc {

                 Precision of the input in bits. The input particles are only cast

                 to this precision if the parameter "ArrivingPrecision" is set to NO.

           }

     }

     defstate {

           name {OutputPrecision}

           type {precision}

           default {2.14}

           desc {

                 Precision of the output in bits. This is the precision that will

                 hold the result of the arithmetic operation on the inputs. When

                 the value of the product extends outside of the precision, the

                 OverflowHandler will be called.

     }



User-Defined Models

192

     protected {

           Fix fixIn, out;

     }

     begin {

           SDFFix::begin();

           if (! int(UseArrivingPrecision)) {

                 fixIn = Fix(((const char *) InputPrecision));

                 if(fixIn.invalid())

                 Error::abortRun(*this, "Invalid InputPrecision");

           }

           out = Fix(((const char *) OutputPrecision));

           if (out.invalid())

                 Error::abortRun(*this, "Invalid OutputPrecision");

     out.set_ovflow(((const char*) OverflowHandler.enumString

                 ((int) OverflowHandler)));

                 if(out.invalid())

                 Error::abortRun(*this, "Invalid OverflowHandler");

     }

     go {

           // all computations should be performed with out since

           // that is the Fix variable with the desired overflow

           // handler

           out = Fix(gain);

           if (int(UseArrivingPrecision)) {

                 out *= Fix(input%0);

           }

           else {

                 fixIn = Fix(input%0);

                 out *= fixIn;

           }

           checkOverflow(out);

           output%0 << out;

     }

     // a wrap-up method is inherited from SDFFix

     // if you defined your own, you should call SDFFix::wrapup()

}

Note that SDFGainFix star, like many other Fix stars, is derived from the star   SDFFix.
SDFFix implements commonly used methods and defines two states: OverflowHandler
selects one of four overflow handlers to be called each time an overflow occurs; and
ReportOverflow, if TRUE, causes the number and percentage of overflows that occurred
for that star during a simulation run to be reported in the wrapup method.

  

 Constructors

Fix()

Create a Fix number with unspecified precision and value zero.

Fix(int length, int intbits)

Create a Fix number to the left of the binary point with total word length of
length bits and intbits bits. The value is set to zero. If the precision parameters
are not valid, an error bit is internally set so that the invalid method returns
TRUE.

Fix(const char* precisionString)

Create a Fix number whose precision is determined by precisionString, with the
syntax leftbits.rightbits, where leftbits is the number of bits to the left of the



User-Defined Models

193

binary point and rightbits is the number of bits to the right of the binary point;
or rightbits/totalbits, where totalbits is the total number of bits. The value is set
to zero. If precisionString is not in the proper format, an error bit is internally
set so that the invalid method will return TRUE.

Fix(double value)

Create a Fix with the default precision of 24 total bits for the word length and
set the number of integer bits to the minimum needed to represent the integer
part of the number value. If the value given needs more than 24 bits to
represent, the value will be clipped and the number stored will be the largest
possible under the default precision (that is, saturation occurs). In this case, an
internal error bit is set so that the ovf_occurred method will return TRUE.

Fix(int length, int intbits, double value)

Create a Fix with the specified precision and set its value to the given value. The
number is rounded to the closest representable number given the precision. If
the precision parameters are not valid, then an error bit is internally set so that
the invalid method will return TRUE.

Fix(const char* precisionString, double value)

Same as the previous constructor except that the precision is specified by the
given precisionString instead of as two integer arguments. If the precision
parameters are not valid, then an error bit is internally set so that the invalid()
method will return TRUE when called on the object.

Fix(const char* precisionString, uint16* bits)

Create a Fix with the specified precision and set the bits precisely to the ones in
the given bits. The first word pointed to by bits contains the most significant 16
bits of the representation. Only as many words as are necessary to fetch the bits
will be referenced from the bits argument. For example: Fix("2.14",bits) will
only reference bits[0].

Fix(const Fix& arg)

Copy constructor. Produces an exact duplicate of arg.

Fix(int length, int intbits, const Fix& arg)

Read the value from the Fix argument and set to a new precision. If the
precision parameters are not valid, then an error bit is internally set so that the
invalid method will return TRUE when called on the object. If the value from the
source will not fit, an error bit is set so that the ovf_occurred method will return
TRUE.

 

 Functions to Set Or Display Information about the Fix Number



User-Defined Models

194

int len()  const

Returns total word length of the Fix number.

int intb()  const

Returns number of bits to the left of the binary point.

int precision()  const

Returns number of bits to the right of the binary point.

int overflow()  const

Returns the code of the overflow response type for the Fix number. The possible
codes are:
0 = ovf_saturate
1 = ovf_zero_saturate
2 = ovf_wrapped
3 = ovf_warning
4 = ovf_n_types

int roundMode()  const

Returns the rounding mode: 1 for rounding, 0 for truncation.

int signBit()  const

Returns TRUE if the value of the Fix number is negative, FALSE if it is positive or
zero.

int is_zero() 

Returns TRUE if the value of Fix is zero.

double max() 

Returns the maximum value representable using the current precision.

double min() 

Returns the minimum value representable using the current precision.

double value ()

The value of the Fix number as a double.

void setToZero ()

Sets the value of the Fix number to zero.



User-Defined Models

195

void set_overflow (int value)

Sets the overflow type.

void set_rounding (int value)

Sets the rounding type: TRUE for rounding, FALSE for truncation.

void initialize()

Discards the current precision format and set the Fix number to zero.

There are a few functions for backward compatibility:

void set_ovflow(const char*)

Sets the overflow using a name.

void Set_MASK(int value)

Sets the rounding type. Same functionality as set_rounding().

Comparison function:

int compare  (const Fix& a, const Fix& b)

Compares two Fix numbers. Return −1 if a < b, 0 if a = b, 1 if a > b.

The following functions are for use with the error condition fields:

int ovf_occurred ()

Returns TRUE if an overflow has occurred as the result of some operation like
addition or assignment.

int invalid ()

Returns TRUE if the current value of the Fix number is invalid due to it having an
improper precision format, or if some operation caused a divide by zero.

int dbz ()

Returns TRUE if a divide by zero error occurred.

void clear_errors ()

Resets all error bit fields to zero.

 



User-Defined Models

196

 Operators

Fix& operator = (const Fix& arg)

Assignment operator. If *this does not have its precision format set (that is, it is
uninitialized), the source Fix is copied. Otherwise, the source Fix value is
converted to the existing precision. Either truncation or rounding takes place,
based on the value of the rounding bit of the current object. Overflow results
either in saturation, "zero saturation" (replacing the result with zero), or a
warning error message, depending on the overflow field of the object. In these
cases, ovf_occurred will return TRUE on the result.

Fix& operator = (double arg)

Assignment operator. The double value is first converted to a default precision
Fix number and then assigned to *this.

The function of these arithmetic operators should be self-explanatory:

Fix& operator += (const Fix&)
Fix& operator -= (const Fix&)
Fix& operator *= (const Fix&)
Fix& operator *= (int)
Fix& operator /= (const Fix&)
Fix operator  + (const Fix&, const Fix&)
Fix operator - (const Fix&, const Fix&)
Fix operator  * (const Fix&, const Fix&)
Fix operator * (const Fix&, int)
Fix operator * (int, const Fix&)
Fix operator  / (const Fix&, const Fix&)
Fix operator  - (const Fix&) // unary minus
int operator == (const Fix& a, const Fix& b)
int operator != (const Fix& a, const Fix& b)
int operator >= (const Fix& a, const Fix& b)
int operator <= (const Fix& a, const Fix& b)
int operator > (const Fix& a, const Fix& b)
int operator < (const Fix& a, const Fix& b)

Notes:

These operators are designed so that overflow does not, as a rule, occur (the return
value has a wider format than that of its arguments). The exception is when the
result cannot be represented in a Fix with all 64 bits before the binary point.
The output of any operation will have error codes that are the logical OR of those of
the arguments to the operation, plus any additional errors that occurred during the
operation (like divide by zero).
The division operation is currently a cheat: it converts to double and computes the
result, converting back to Fix.
The relational operators ==, !=, >=, <=, >, < are all written in terms of a function:

int compare(const Fix& a, const Fix& b)



User-Defined Models

197

Returns -1 if a < b, 0 if a = b, and 1 if a > b. The comparison is exact (every bit
is checked) if the two values have the same precision format. If the precisions
are different, the arguments are converted to doubles and compared. Since
double values only have an accuracy of about 53 bits on most machines, this
may cause false equality reports for Fix values with many bits.

  

 Conversions

operator int() const

Returns the value of the Fix number as an integer, truncating towards zero.

operator float() const
operator double() const

Converts to a float or a double, creating an exact result when possible.

void complement ()

Replaces the current value by its complement.

 

 Fix Overflow, Rounding, and Errors

The Fix class defines the following enumerated values for overflow handling:

Fix::ovf_saturate
Fix::ovf_zero_saturate
Fix::ovf_wrapped
Fix::ovf_warning

These can be used as arguments to the set_overflow method, as in the following example:

out.set_overflow(Fix::ovf_saturate)

The member function

int overflow() const

returns the overflow type. This returned result can be compared against the above
enumerated values. Overflow types may also be specified as strings, using the following
method:

void set_ovflow(const char* overflow_type);
the overflow_type argument may be one of "saturate", "zero_saturate",
"wrapped", or "warning".



User-Defined Models

198

The rounding behavior of a Fix value may be set by calling:

void set_rounding(int value);

If the argument is false, or has the value Fix::mask_truncate, truncation will occur. If the
argument is nonzero (for example, if it has the value Fix::mask_truncate_round ),
rounding will occur. The older name Set_MASK is a synonym for set_rounding.

The following functions access the error bits of a Fix result:

int ovf_occurred() const
int invalid() const
int dbz() const

The first function returns TRUE if there have been any overflows in computing the value.
The second returns TRUE if the value is invalid, because of invalid precision parameters or
a divide by zero. The third returns TRUE only for divide by zero. 

  

 Defining New Data Types

The ADS Ptolemy  heterogeneous message interface provides a mechanism for stars to
transmit arbitrary objects to other stars. With this interface:

You can safely modify large messages without excessive memory allocation and de-
allocation.
You may copy large messages by using a  reference count mechanism, as in many
C++ classes (for example, string classes).
You may allocate existing stars to handle ANYTYPE message particles without change.
You can define your own message types with relative ease; no change to the kernel
is required to support new message types.

The Message type is understood by ADS Ptolemy to mean a particle containing a message.
There are three classes that implement the support for message types:

Message

The Message  class is the base class from which all other message data types
are derived. A user wishing to define an application-specific message type
derives a new class from Message.

Envelope

The Envelope  class contains a pointer to a "derived from" Message. When an
Envelope object is copied or duplicated, the new envelope simply sets its own
pointer to the pointer contained in the original. Several envelopes can thus
reference the same Message object. Each Message object contains a reference
count, which tracks how many Envelope objects reference it; when the last
reference is removed, the Message is deleted.



User-Defined Models

199

MessageParticle

The MessageParticle  class is a type of   Particle (like IntParticle, FloatParticle,
etc.); it contains an Envelope. Ports of type Message transmit and receive
objects of this type.

Class Particle contains five member functions for message support:

void getMessage(const Envelope&)

Receives a message.

void accessMessage(const Envelope&)const

Accesses the message, but does not remove it from the message particle.

<< operator(const Envelope&)

Loads an envelope's message into a particle.

<< operator(Message&)

Loads a message into a particle.

int isMessage() const

Returns TRUE if particle is a message.

The first four functions return errors in the base class; they are overridden in the
MessageParticle class with functions that perform the expected operation.

  

 Defining a New Message Class

Every user-defined message is derived from class Message and must be placed in the
AgilentPtolemy namespace. Certain virtual functions defined in that class must be
overridden; others may optionally be overridden. The following is an example of a user-
defined message type (see modelbuilder/examples/adsptolemy/message/Vector.h under
your ADS installation directory): 

#ifndef VECTOR_H_INCLUDED

#define VECTOR_H_INCLUDED

// Not required, unless compiling under g++. These directives will

// not effect other compilers.

#ifdef __GNUG__

#pragma interface

#endif

#include "Message.h"

#include "agilent_vectorDll.h"

/* Data type of the new message type. This variable name must be in

     all capital letters and placed in the AgilentPtolemy namespace.

     The ptlang preprocessor will convert the port type field into all

     capital letters.*/



User-Defined Models

200

namespace AgilentPtolemy {

DllImport extern const AgilentPtolemy:: DataType VECTOR;

}

// A vector of doubles. Example of a user defined data type in ADS

// Ptolemy.

class Vector:public Message {

public:

   // Default Constructor

   Vector();

   // Copy Constructor

   Vector(const Vector&);

   // Destructor

   ~Vector();

   // Return the data type of the Message

   AgilentPtolemy:: DataType type() const {

       return AgilentPtolemy::VECTOR;

   }

   // Dynamically allocate a Vector identical to this one

   Message* clone() const {

       Vector* newMessage = new Vector(*this);

       return newMessage;

   }

   // Output the data structure as a string

   StringList print() const;

   /********* Optional Type Conversion to Scalar ********/

   // Return the Norm as float

   operator int() const { return (int)norm(); }

   // Return the Norm as float

   operator Fix() const { return norm(); }

   // Return the Norm as float

   operator float() const { return float(norm()); }

   // Return the Norm as double

   operator double() const { return norm(); }

   // Return the Norm as Complex

   operator Complex() const { return norm(); }

   /********* Optional support for initializable delays ********/

   // Parse the init delay string

   void operator << (const StringState&);

   // Pass through methods for the other operators, otherwise c++

   // will hide the following methods

   //

   void operator << (int i) { ((Message&) *this) << i; }

   //

   void operator << (double i) { ((Message&) *this) << i; }

   //

   void operator << (const Complex& i) { ((Message&) *this) << i; }

   //

   void operator << (const Fix& i) { ((Message&) *this) << i; }

   /********** Vector methods ***********/

  // Return the Norm

   double norm() const;

   // Access a member of the vector

   inline double& operator[] (int i) {

       return vector[i];

   }

   // Access a member of the vector, const version

   inline const double& operator[] (int i) const {

       return vector[i];

   }

   // Resize the vector to a given length

   inline void resize(int i) {

       delete [] vector;

       if (i>0) {

           vector = new double[i];

           sz = i;

       }

       else {

           vector = NULL;

           sz = 0;

       }

   }

   // Return the size of this vector

   inline int size() const { return sz; }

private:



User-Defined Models

201

   // Vector data members

   // Array containing the data

   double *vector;

   // The size of the array

   int sz;

};

#endif /*VECTOR_H_INCLUDED*/

 

 Example: Using the Vector Message Class in a Custom Model

To build a new model using the Vector message type example:

Create new directory for model development as outlined in Building Signal Processing1.
Models (modbuild).
Copy the files SDFConst_V.pl, SDFVectToFloat.pl, SDFVectToMx.pl, Vector.h,2.
Vector.cc, and make-defs from the directory

$HPEESOF_DIR/modelbuilder/examples/adsptolemy/message

into the src directory of your model development area.
Compile the source code following the directions in Building Signal Processing Models3.
(modbuild).

This message object can contain a vector of doubles of arbitrary length. Some functions in
the class are arbitrary and you may define them in whatever way is most convenient;
however, there are some requirements:

The class must redefine the type method from class Message. This function returns a
string identifying the message type. This string should be identical to the name of the
class.
The class must define a  copy constructor, unless the default copy constructor
generated by the compiler (which does memberwise copying) will do the job.
The class must redefine the   clone method of class Message. Given that the copy
constructor is defined, the form shown in the example, where a new object is created
with the new operator and the copy constructor, will suffice.

In addition, you may optionally define  type conversion, initializable delay parsing and
printing functions if they make sense. If a star that produces messages is connected to a
star that expects integers (or floating values, or complex values), the appropriate type
conversion function is called. The base class, Message, defines the virtual conversion
functions int(), float(), and complex() and the printing method print() -see the file
Vector.cc in the modelbuilder/examples/adsptolemy/message directory of your ADS
installation for their exact types. The base class conversion functions assert a run-time
error, and the default print function returns a StringList reading:

<type>: no  print method

where type is whatever is returned by type().

By redefining these methods, you can make it legal to connect a star that generates
messages to a star that expects integer, floating, or complex particles, or you can connect



User-Defined Models

202

to a Printer star.

  

 Use of the Envelope Class

The Envelope class references objects of class Message or its derived classes. Once a
Message object is placed into an Envelope object, the Envelope takes over responsibility
for managing its memory, that is, maintaining reference counts and deleting the message
when it is no longer needed.

The constructor (which takes as its argument a reference to a Message), copy constructor,
assignment operator, and destructor of Envelope manipulate the  reference counts of the
reference's Message object. Assignment simply copies a pointer and increments the
reference count. When an Envelope destructor is called, the reference count of the
Message object is decremented; if it becomes zero, the Message object is deleted.
Because of this deletion, a Message must never be put inside an Envelope unless it was
created with the new operator. Once a Message object is put into an Envelope it must
never be explicitly deleted; it will "live" as long as there is at least one Envelope that
contains it.

It is possible for an Envelope to be empty. If it is, the  empty method will return TRUE,
and the data field will be NULL.

The type method of Envelope returns the datatype of the contained Message object. To
access the data, the following two methods are provided: 

The myData function returns a pointer to the contained Message-derived object.

Note The data pointed to by this pointer must not be modified, since other Envelope objects in the
program may also contain it. If you convert its type, always make sure that the converted type is a
pointer to const :

Envelope pkt;

(input%0).getMessage(pkt);

const MyMessageType& myMsg = *(const MyMessageType *)pkt.myData();

This ensures that the compiler will complain if you do anything illegal.

The writableCopy function also returns a pointer to the contained object, but with a
difference. If the reference count is one, the envelope is emptied (set to the  dummy
message) and the contents are returned. If the reference count is greater than one, a
clone of the contents is made (by calling its  clone() function) and returned; again
the envelope is zeroed (to prevent the making of additional clones later on).

In some cases, a star writer will need to keep a received Message object around between
executions. The best way to do this is to have the star contain a member of type
Envelope, and to use this member object to hold the message data between executions.
Messages should always be kept in envelopes so that you do not have to worry about
managing their memory.

  



User-Defined Models

203

 Use of the MessageParticle Class

If a porthole is of type Message, then its particles are objects of the class MessageParticle.
A MessageParticle is simply a particle whose data field is an Envelope, meaning that it can
hold a Message in the same way that Envelope objects do.

The principal operations on MessageParticle objects are << with an argument of either
type Envelope or Message to load a message into the particle, and  
getMessage(Envelope&) to transfer message contents from the particle into a user-
supplied message. The getMessage method removes the message contents from the
particle.

This " aggressive reclamation" policy (both here and in other places) eliminates references
to Message objects as soon as possible, thus minimizing the number of no-longer-needed
messages in the system and preventing writable Copy() from generating unnecessary
clones.

In cases where the destructive behavior of getMessage cannot be tolerated, an alternative
interface,  accessMessage(Envelope&), is provided. The accessMessage(Envelope&)
interface does not remove the message contents from the particle. Therefore, heavy use
of accessMessage in systems where large-sized messages may be present can cause the
amount of occupied virtual memory to grow (though all message will eventually be
deleted).

 

 The Matrix Data Types

The PtMatrix  class is the primary support for matrix types in ADS Ptolemy. PtMatrix is
derived from the Message class, and uses the various kernel support functions for working
with the Message data type as described in the previous section, Defining New Data Types.

This section describes the PtMatrix class and its use in writing stars and programs.

 

 Design Philosophy

The PtMatrix class implements two dimensional arrays. Four key classes are derived from
PtMatrix: ComplexMatrix, FixMatrix, FloatMatrix, and IntMatrix. (Note that FloatMatrix is a
matrix of C++ double s.)

A survey of the matrix classes implemented by programmers revealed two primary styles
of implementation: a vector of vectors and a simple array. Also highlighted were two entry
storage formats: column-major ordering, where all the entries in the first column are
stored before those of the second column, and row-major ordering, where the entries are
stored row-by-row, starting with the first row. Column-major ordering is how Fortran
stores arrays, whereas row-major ordering is how C stores arrays.

The ADS Ptolemy PtMatrix class stores data as a simple C array, and therefore uses row-
major ordering. Row-major ordering also seems more sensible for operations such as



User-Defined Models

204

image and video processing, though it might make it more difficult to interface ADS
Ptolemy's PtMatrix class with Fortran library calls. The limits of interfacing ADS Ptolemy's
PtMatrix class with other software is discussed in the section Public Functions and
Operators for the PtMatrix Class.

The decision to store data entries in a C array rather than as an array of vector objects
resulted in a greater effect on performance than that of using row-major versus column-
major ordering. Implementing a matrix class as an array of vector class objects has a
couple of advantages: referencing an entry may be faster, and it is easier to do operations
on a whole row or column of the matrix, depending on whether the format is an array of
column vectors or an array of row vectors.

An entry lookup in an array of row vectors requires two index lookups: one to find the
desired row vector in the array, and one to find the desired entry in that row. A linear
array, by contrast, requires a multiplication to find the location of the first element of the
desired row, and then an index lookup to find the column in that row. For example,
A[row][col] is equivalent to looking up &data + (row*numRows + col) if the entries are
stored in a C array data[], whereas it is *(&rowArray + row) + col if looking up the entry
in an array-of-vectors format. Although the array of vectors format has faster lookups, it
is also more expensive to create and delete the matrix. Each vector of the array must be
created in the matrix constructor, and then each vector must be deleted by the matrix
destructor. The array of vectors format also requires more memory to store the data and
the extra array of vectors.

Given the advantages and disadvantages of the two systems, the PtMatrix class was
designed to store data in a standard C array. ADS Ptolemy's environment is such that
matrices are constantly created and deleted as needed by stars; this negates much of the
speed gained from faster lookups.

 

 The PtMatrix Class

The PtMatrix base class is derived from the Message class so that you can use ADS
Ptolemy's Envelope class and message-handling system.

As explained previously, there are currently four data-specific matrix classes:  
ComplexMatrix ,  FixMatrix ,  FloatMatrix , and  IntMatrix . Each of these classes stores its
entries in a standard C array named data, which is an array of data objects corresponding
to the PtMatrix type: Complex, Fix, double, or int. These four matrix classes implement a
common set of operators and functions; in addition, the ComplexMatrix class has a few
special methods such as conjugate() and hermitian(), and the FixMatrix class has a
number of special constructors that allow you to specify the precision of the entries in the
matrix. Generally, all entries of a FixMatrix will have the same precision.

The matrix classes were designed to take full advantage of operator overloading in C++
so that operations on matrix objects can be written much like operations on scalar
objects. For example, the two-operand multiply operator * has been defined so that if A
and B are matrices, A * B will return a third matrix that is the matrix product of A and B.

 



User-Defined Models

205

 Public Functions and Operators for the PtMatrix Class

The functions and operators listed below are implemented by all matrix classes
(ComplexMatrix, FixMatrix, FloatMatrix, and IntMatrix) unless otherwise noted. The
symbols used are:

XXX which refers to one of Complex, Fix, Float, or Int
xxx which refers to one of Complex, Fix, double, or int

 

 Functions and Operators to Access Entries of the Matrix

xxx& entry(int i)

Example: A.entry(i).
Return the ith entry of the matrix when its data storage is a linear array. This
facilitates quick operations on every entry of the matrix without regard for the
specific (row, column) position of that entry. The total number of entries in the
matrix is defined to be numRows() * numCols(), with indices ranging from 0 to
numRows() * numCols() -1. This function returns a reference to the actual entry
in the matrix so that assignments can be made to that entry. In general,
functions intended to linearly reference each entry of a matrix A should use this
instead of the expression A.data[i] because classes derived from PtMatrix can
then overload the entry() method and reuse the same functions.

xxx* operator  [] (int row)

Example: A[row][column].
Return a pointer to the start of the row in the matrix's data storage. (This
operation is different from that of matrix classes defined as arrays of vectors, in
which the [] operator returns the vector representing the desired row.) This
operator is generally not used alone, rather it is used with the [] operator
defined on C arrays so that A[i][j] will give you the entry of the matrix in the ith
row and jth column of the data storage. The range of rows is from 0 to
numRows()-1 and the range of columns is from 0 to numCols()-1.  

  

 Constructors

XXXMatrix()

Example: IntMatrix A.
Create an uninitialized matrix. Row and column numbers are set to zero and no
memory is allocated for data storage.

XXXMatrix(int numRow, int numCol)

Example: FloatMatrix A(3,2).



User-Defined Models

206

Create a matrix with dimensions numRow by numCol. Memory is allocated for
data storage but the entries are uninitialized.

XXXMatrix(int numRow, int numCol, PortHole& p)

Example: ComplexMatrix(3,3,myPortHole).
Create a matrix of the given dimensions and initialize the entries by assigning to
them values taken from the porthole myPortHole. The entries are assigned in a
rasterized sequence so that the value of the first particle removed from the
porthole is assigned to entry (0,0), the second particle's value to entry (0,1),
etc. It is assumed that the porthole has enough particles in its buffer to fill all
the entries of the new matrix.

XXXMatrix(int numRow, int numCol, XXXArrayState& dataArray)

Example: IntMatrix A(2,2,myIntArrayState).
Create a matrix with the given dimensions and initialize the entries to the values
in the given ArrayState. The values of the ArrayState fill the matrix in rasterized
sequence so that entry (0,0) of the matrix is the first entry of the ArrayState,
entry (0,1) of the matrix is the second, etc. An error is generated if the
ArrayState does not have enough values to initialize the whole matrix.

XXXMatrix(const XXXMatrix& src)

Example: FixMatrix A(B).
This is the copy constructor. A new matrix is formed with the same dimensions
as the source matrix and the data values are copied from the source.

XXXMatrix(const XXXMatrix& src, int startRow, int startCol, int numRow, int numCol)

Example: IntMatrix A(B,2,2,3,3).
This special "submatrix" constructor creates a new matrix whose values come
from a submatrix of the source. The arguments startRow and startCols specify
the starting row and column of the source matrix. The values numRow and
numCol specify the dimensions of the new matrix. The sum startRow + numRow
must not be greater than the maximum number of rows in the source matrix;
similarly, startCol + numCol must not be greater than the maximum number of
columns in the source. For example, if B is a matrix with dimension (4,4), then
A(B,1,1,2,2) would create a new matrix A that is a (2,2) matrix with data values
from the center quadrant of matrix B, so that A[0][0] == B[1][1], A[0][1] ==
B[1][2], A[1][0] == B[2][1], and A[1][1] == B[2][2].

The following are special constructors for the FixMatrix class that enable the programmer
to specify the precision of the FixMatrix entries.

FixMatrix(int numRow, int numCol, int length, int intBits)

Example: FixMatrix A(2,2,14,4).
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits inputs.



User-Defined Models

207

FixMatrix(int numRow, int numCol, int length, int intBits, PortHole& myPortHole)

Example: FixMatrix A(2,2,14,4).
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits inputs and
initialized with the values that are read from the particles contained in the
porthole myPortHole.

FixMatrix(int numRow, int numCol, int length, int intBits, FixArrayState& dataArray)

Example: FixMatrix A(2,2,14,4).
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits inputs and
initialized with the values in the given FixArrayState.

  There are also special copy constructors for the FixMatrix class that enable the
programmer to specify the precision of the entries of the FixMatrix as they are copied from
the sources. These copy constructors are usually used for easy conversion between the
other matrix types. The last argument specifies the type of masking function (truncate,
rounding, etc.) to be used when doing the conversion.  

FixMatrix(const XXXMatrix& src, int length, int intBits,
int round)

Example: FixMatrix A(CxMatrix,4,14,TRUE).
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits arguments. Each
entry of the new matrix is copied from the corresponding entry of the src matrix
and converted as specified by the round argument.

 

 Comparison Operators

int operator == (const XXXMatrix& src)

Example: if(A == B) then ...
Return TRUE if the two matrices have the same dimensions and every entry in A
is equal to the corresponding entry in B. Return FALSE otherwise.

int operator != (const XXXMatrix& src)

Example: if(A != B) then ...
Return TRUE if the two matrices have different dimensions or if any entry of A
differs from the corresponding entry in B. Return FALSE otherwise.

  

 Conversion Operators

Each matrix class has a conversion operator so that the programmer can explicitly cast



User-Defined Models

208

one type of matrix to another (this casting is done by copying). It would have been
possible to make conversions occur automatically when needed, but because these
conversions can be quite expensive for large matrices, and because unexpected results
might occur if the user did not intend for a conversion to occur, we chose to require that
these conversions be used explicitly.

operator XXXMatrix () const

Example: FloatMatrix =A * (FloatMatrix)B.
Convert a matrix of one type into another. These conversions allow the various
arithmetic operators, such as * and +, to be used on matrices of different types.
For example, if A in the example above is a (3,3) FloatMatrix and B is a (3,2)
IntMatrix, then C is a FloatMatrix with dimensions (3,2).

 

 Destructive Replacement Operators

These operators are member functions that modify the current value of the object. In the
following examples, A is usually the lvalue ( *this ). All operators return *this:

XXXMatrix& operator = (const XXXMatrix& src)

Example: A = B.
This is the assignment operator: make A into a matrix that is a copy of B. If A
already has allocated data storage, then the size of this data storage is
compared to the size of B. If they are equal, then the dimensions of A are
simply set to those of B and the entries copied. If they are not equal, the data
storage is freed and reallocated before copying.

XXXMatrix& operator = (xxx value)

Example: A = value.
Assign each entry of A to have the given value. Memory management is handled
as in the previous operator. Warning: this operator is targeted for deletion. Do
not use it.

XXXMatrix& operator += (const XXXMatrix& src)

Example: A += B.
Perform the operation A.entry(i) += B.entry(i) for each entry in A. A and B must
have the same dimensions.

XXXMatrix& operator += (xxx value)

Example: A += value.
Add the scalar value to each entry in the matrix.

XXXMatrix& operator -= (const XXXMatrix& src)

Example: A -= B.



User-Defined Models

209

Perform the operation A.entry(i) -= B.entry(i) for each entry in A. A and B must
have the same dimensions.

XXXMatrix& operator -= (xxx value)

Example: A -= value.
Subtract the scalar value from each entry in the matrix.

XXXMatrix& operator *= (const XXXMatrix& src)

Example: A *= B.
Perform the operation A.entry(i) *= B.entry(i) for each entry in A. A and B must
have the same dimensions. Note: this is an elementwise operation and is not
equivalent to A = A * B.

XXXMatrix& operator *= (xxx value)

Example: A *= value.
Multiply each matrix entry by the scalar value.

XXXMatrix& operator /= (const XXXMatrix& src)

Example: A /= B.
Perform the operation A.entry(i) /= B.entry(i) for each entry in A. A and B must
have the same dimensions.

XXXMatrix& operator /= (xxx value)

Example: A /= value.
Divide each matrix entry by the scalar value. This value must be non-zero.

XXXMatrix&  operator identity()

Example: A.identity().
Change A to be an identity matrix so that each entry on the diagonal is 1 and all
off-diagonal entries are 0.

 

 Non-Destructive Operators (These Return a New Matrix)

XXXMatrix  operator - ()

Example: B = -A.
Return a new matrix such that each element is the negative of the source
element.

XXXMatrix  operator ~ ()

Example: B = ~A.
Return a new matrix that is the transpose of the source.



User-Defined Models

210

XXXMatrix  operator ! ()

Example: B = !A.
Return a new matrix that is the inverse of the source.

XXXMatrix  operator ^ (int exponent)

Example: B = A^2.
Return a new matrix that is the source matrix to the given exponent power. The
exponent can be negative, in which case it is first treated as a positive number
and the final result is then inverted. So A^2 == A*A and A^(-3) == !(A*A*A).

XXXMatrix  transpose()

Example: B = A.transpose().
This is the same as the ~ operator but called by a function name instead of as
an operator.

XXXMatrix  inverse()

Example: B = A.inverse().
This is the same as the ! operator but called by a function name instead of as an
operator.

ComplexMatrix  conjugate()

Example: ComplexMatrix B = A.conjugate().
Return a new matrix such that each element is the complex conjugate of the
source. This function is defined for the ComplexMatrix class only.

ComplexMatrix  hermitian()

Example: ComplexMatrix B = A.hermitian().
Return a new matrix that is the Hermitian Transpose (conjugate transpose) of
the source. This function is defined for the ComplexMatrix class only.

 

 Non-Member Binary Operators

XXXMatrix  operator + (const XXXMatrix& left, const XXXMatrix& right)

Example: A = B + C.
Return a new matrix that is the sum of the first two. The left and right source
matrices must have the same dimensions.

XXXMatrix operator + (const xxx& scalar, const XXXMatrix& matrix)

Example: A = 5 + B.
Return a new matrix that has entries of the source matrix added to a scalar



User-Defined Models

211

value.

XXXMatrix operator + (const XXXMatrix& matrix, const xxx& scalar)

Example: A = B + 5.
Return a new matrix that has entries of the source matrix added to a scalar
value. (This is the same as the previous operator but with the scalar on the
right.)

XXXMatrix  operator - (const XXXMatrix& left, const XXXMatrix& right)

Example: A = B - C.
Return a new matrix that is the difference of the first two. The left and right
source matrices must have the same dimensions.

XXXMatrix operator - (const xxx& scalar, const XXXMatrix& matrix)

Example: A = 5 - B.
Return a new matrix that has the negative of the entries of the source matrix
added to a scalar value.

XXXMatrix operator - (const XXXMatrix& matrix, const xxx& scalar)

Example: A = B - 5.
Return a new matrix such that each entry is the corresponding entry of the
source matrix minus the scalar value.

XXXMatrix  operator * (const XXXMatrix& left, const XXXMatrix& right)

Example: A = B * C.
Return a new matrix that is the matrix product of the first two. The left and right
source matrices must have compatible dimensions; for example, A.numCols()
== B.numRows().

XXXMatrix operator * (const xxx& scalar, const XXXMatrix& matrix)

Example: A = 5 * B.
Return a new matrix that has entries of the source matrix multiplied by a scalar
value.

XXXMatrix operator * (const XXXMatrix& matrix, const xxx& scalar)

Example: A = B * 5.
Return a new matrix that has entries of the source matrix multiplied by a scalar
value. (This is the same as the previous operator, but with the scalar value on
the right.)

 

 Miscellaneous Functions



User-Defined Models

212

int numRows()

Return the number of rows in the matrix.

int numCols()

Return the number of columns in the matrix.

Message*  clone()

Example: IntMatrix *B = A.clone().
Return a copy of *this.

 StringList print()

Example: A.print().
Return a formatted StringList that can be printed to display the contents of the
matrix in a reasonable format.

XXXMatrix&  multiply (const XXXMatrix& left, const XXXMatrix& right, XXXMatrix& result)

Example: multiply(A,B,C).
This is a faster 3-operand form of matrix multiply such that the result matrix is
passed as an argument in order to avoid the extra copy step involved when
writing C = A * B.

const char*  dataType()

Example: A.dataType().
Return a string that specifies the name of the matrix type. Available strings are
ComplexMatrix, FixMatrix, FloatMatrix, and IntMatrix.

int  isA(const char* type)

Example: if(A.isA("FixMatrix")) then ...
Return TRUE if the argument string matches the type string of the matrix.

  

 Writing Stars and Programs Using the PtMatrix Class

This section describes how to use the matrix data classes when writing stars. Some
examples are given here. For more examples, refer to the stars in
$PTOLEMY/src/domains/sdf/matrix/stars/*.pl and
$PTOLEMY/src/domains/sdf/image/stars/*.pl.

 

 Memory Management

The most important thing to understand about the use of matrix data classes in the ADS



User-Defined Models

213

Ptolemy environment is that stars designated to output the matrix in a particle should
allocate memory for the matrix, but never delete that matrix. Strange errors occur if the
star deletes the matrix before it is used by another star later in the execution sequence.
Memory reclamation is automatically performed by the  reference-counting mechanism of
the Message class.

 

 Naming Conventions

Stars that implement general-purpose matrix operations usually have names with the _M
suffix to distinguish them from stars that operate on scalar particles. For example, the
SDFGain_M star multiplies an input matrix by a scalar value and outputs the resulting
matrix. This is in contrast to SDFGain, which multiplies an input value held in a
FloatParticle by a double and puts that result in an output FloatParticle.

 

 Include Files

For a star to use the PtMatrix classes, it must include the file Matrix.h   in either its .h or
.cc file. If the star has a matrix data member, then the declaration

hinclude {"ADSPtolemy Matrix.h"}

needs to be in the Star definition. Otherwise, the declaration

ccinclude {"ADSPtolemyMatrix.h"}

is sufficient.

To declare an input porthole that accepts matrices, the following syntax is used: 

input {

     name {inputPortHole}

     type {FLOAT_MATRIX}

}

The syntax is the same for output portholes. The type field can be   COMPLEX_MATRIX,
FLOAT_MATRIX,   FIX_MATRIX, or  INT_MATRIX.

The icons created by ADS Ptolemy will have terminals  that are thicker and have larger
arrow points than the terminals for scalar particle types. The terminal colors follow the
pattern of colors for scalar data types (for example, blue represents Float and
FloatMatrix).

 

 Input Portholes

The syntax for extracting a matrix from the input porthole is:



User-Defined Models

214

Envelope inPkt;

(inputPortHole%0).getMessage(inPkt);

const FloatMatrix& inputMatrix =

     *(const FloatMatrix *)inPkt.myData();

The first line declares an Envelope, used to access the matrix. (For more details on the
Envelope class, see Use of the Envelope Class.) The second line fills the envelope with the
input matrix. Note that, because of the reference-counting mechanism, this line does not
make a copy of the matrix. The last two lines extract a reference to the matrix from the
envelope. It is up to the programmer to ensure that the cast agrees with the input port
definition.

Because multiple envelopes might reference the same matrix, a star is generally not
permitted to modify the matrix held by the Envelope. Thus, the function myData() returns
a const Message *. This is cast to be a const FloatMatrix * and then de-referenced and the
value is assigned to inputMatrix. It is generally better to handle matrices by reference
rather than pointer because it is clearer to write A + B rather than *A + *B when working
with matrix operations. Stars that modify an input matrix should access it using the
writableCopy method, as explained in Use of the Envelope Class.

 

 Allowing Delays on Inputs

The cast to (const FloatMatrix *) above is not always safe. Even if the source star is
known to provide matrices of the appropriate type, a delay on the arc connecting the two
stars can cause problems. In particular,   delays in dataflow domains are implemented as
initial particles on the arcs. These initial particles receive the value zero as defined by the
type of particle. For Message particles, a zero is a Message particle containing a copy of
the prototype Message registered with RegisterMessage (see the example Vector.cc file in
Defining a New Message Class).

 

 Matrix Outputs

To put a matrix into an output porthole  , the syntax is:

FloatMatrix& outMatrix =*(new FloatMatrix(someRow,someCol));

           // ... do some operations on the outMatrix

outputPortHole%0 << outMatrix;

The last line is similar to that for outputting a scalar value. This is because we have
overloaded the << operator for MatrixEnvParticles to support PtMatrix class inputs. The
standard use of the MessageParticle class requires you to put your message into an
envelope first and then use << on the envelope (see Use of the Envelope Class), but we
have specialized this so that the extra operation of creating an envelope first is not
explicit.

The following is an example of a complete star definition that inputs and outputs {{}}



User-Defined Models

215

matrices:

defstar {

     name {Add_M}

     domain {SDF}

     desc {Output is the sum of all the floating-point input matrices.}

     location {Numeric Matrix}

     inmulti {

     name {input}

           type {FLOAT_MATRIX}

     }

     output {

     name {output}

     type {FLOAT_MATRIX}

     }

     ccinclude {"ADSPtolemyMatrix.h"}

     go {

           // set up the multi-port

           MPHIter nexti(input);

       // Get the first input matrix

           PortHole *p = nexti++;

           Envelope firstPkt;

           ((*p)%0).getMessage(firstPkt);

           const FloatMatrix& firstMatrix =

     *(const FloatMatrix*)firstPkt.myData();

           FloatMatrix& result = *(new

     FloatMatrix(firstMatrix.numRows(),firstMatrix.numCols()));

     result = firstMatrix;

       // Add in the remaining inputs

           while ((p = nexti++) != 0)

           {

                 Envelope nextPkt;

                 ((*p)%0).getMessage(nextPkt);

                 const FloatMatrix& nextMatrix = *(const     

                             FloatMatrix*)nextPkt.myData();

           result += nextMatrix;

           }

       // Send out finished result

           output%0 << result;

     }

}

 

 

 Writing Stars That Manipulate Any Particle Type

In ADS Ptolemy, stars can declare inputs and outputs of type ANYTYPE. A star may need
to do this, for example, if it simply copies its inputs without regard to type, as in the case
of a Fork star, or if it calls a generic function that is overloaded by every data type, such
as sink stars which call the print method of the type.

The following example illustrates a star that operates on ANYTYPE particles:

defstar {

     name {Fork}

     domain {SDF}

     desc {Copy input particles to each output.}

     input {

           name{input}

           type{ANYTYPE}

     }

     outmulti {



User-Defined Models

216

           name{output}

           type{= input}

     }

     go {

           MPHIter nextp(output);

           PortHole* p;

           while ((p = nextp++) != 0)

                 (*p)%0 = input%0;

     }

}

Notice how, in the definition of the output type, the star simply says that its output type
will be the same as the input type.

 

 Timed Particle Signal Type

ADS Ptolemy supports timed data. This signal is derived from complex data and includes
additional attributes. The timed signal packet includes five members:

{i(t), q(t), flavor, Fc, and t}

where i(t) and q(t) are the timed signal in phase and quadrature components, flavor
represents a modulated signal, Fc is the carrier (or characterization) frequency, and t is
the time.

There are two equivalent representations ( flavors ) of a timed signal:

complex envelope (ComplexEnv) v(t)
real baseband (BaseBand) V(t)

RF signals that are represented in the ComplexEnv flavor v(t) together with __ F c can be
converted to the real BaseBand flavor V(t) as:

 

 Constructors

TimedParticle(const Complex& cx, const double& t, const double& fc);

Creates a Timed particle with a cx data, at time t, centered around Fc. Flavor is
set to Complex Envelope.

TimedParticle(const double& x, const double& t);

Creates a Timed particle with data x, at time t. The Fc is set to zero and the
flavor to Baseband.

TimedParticle(const int& x, const double& t);



User-Defined Models

217

Creates a Timed particle with data x, at time t. The Fc is set to zero and the
flavor to Baseband.

TimedParticle(const Fix& x, const double& t);

Creates a Timed particle with data x, at time t. The Fc is set to zero and the
flavor to Baseband.

TimedParticle();

Creates a Timed particle with data (0.0, 0.0), at time t=0. The Fc is set to zero
and the flavor to Baseband.

 

 Conversion Operators

TimedParticle::operator int () const

Returns the baseband representation of the timed data when the flavor is
Complex Envelope, or just the data if the flavor is Baseband. The result is then
converted to int.

TimedParticle::operator Fix () const

Returns the baseband representation of the timed data when the flavor is
Complex Envelope, or just the data if the flavor is Baseband. The result is then
converted to Fix.

TimedParticle::operator float () const

Returns the baseband representation of the timed data when the flavor is
Complex Envelope, or just the data if the flavor is Baseband. The result is then
converted to float.

TimedParticle::operator double () const

Returns the baseband representation of the timed data when the flavor is
Complex Envelope, or just the data when the flavor is Baseband. The result is
then converted to double.

TimedParticle::operator complex () const

Returns the (complex) data if the flavor is Complex Envelope, or just the real
part of data when the flavor is Baseband. The result is then converted to
complex.

StringList TimedParticle::print () const

Returns the (real and imaginary part of) data, flavor, time and carrier frequency
associated with the timed particle.



User-Defined Models

218

Particle& TimedParticle::initialize()

Initializes the data, time and carrier frequency to zero and sets the flavor to
Baseband.

 

 Loading Timed Particle with Data

void operator << (int arg);

Loads the arg in the timed port by setting data = arg, flavor = Baseband. The
time and Fc members are set by the kernel.

void operator << (double f);

Loads the arg in the timed port by setting data = arg, flavor = Baseband. The
time and Fc members are set by the kernel.

void operator << (const Complex& c);

Loads the arg in the timed port by setting data = arg, flavor = ComplexEnv. The
time and Fc members are set by the kernel.

void operator << (const Fix& x);

Loads the arg in the timed port by setting data = arg, flavor = Baseband. The
time and Fc members are set by the kernel.

void operator << (const Envelope&);

This is not allowed. An error message is issued.

Particle& operator = (const Particle&);

Copies a timed particle into another one.

int operator = = (const Particle&);

Compares all the members of the two timed particles delineated. Returns TRUE
or FALSE.

 

 Time Step Resolution

In a user-compiled model, to explicitly set a time step for any given port, you must insert
code into the component's setup method to assign the value of the time step to the port
object. The port object must be a single port object (not a multi-port object). Reference
the following code fragment for the port object (called output) and the begin method as



User-Defined Models

219

you would code it in the component's ptlang file. This example also demonstrates how to
use the setup method to set the output carrier frequency and how to use begin method to
set the default time step available at the output port.

output {
Name { out1 }
Type { Timed }
Desc { Timed source output signal }
}
defstate {
name { TStep }
type { float }
default { 0.001 }
desc { Simulation time step; use a value of 0 for time step synchronization with
other network timed signals }
units { TIME_UNIT }
attributes { A_SETTABLE | A_NONCONSTANT }

}
defstate {
name { FCarrier }
type { float }
default { 1000000 }
desc { Output signal carrier frequency } units { FREQUENCY_UNIT }
attributes { A_SETTABLE | A_NONCONSTANT }
}
setup {
out1.setTimeStep( double(TStep));
out1.setCarrierFrequency( double(FCarrier));
}
begin {
if ( double(TStep) == 0.) {
double tstep;
tstep = out1.getTimeStep();
TStep = tstep;
}
out1.setTimeStep( double(TStep));
}

 

 Carrier Frequency Resolution

For Timed data types, many times the carrier frequency must be propagated from the
inputs to the outputs.

Each Timed user-compiled component can define a custom way of propagating the carrier
frequency from the inputs to the outputs. By default, each output is marked with the
maximum Fc available at all of the inputs. To override this method, use the following

ptlang template. The following template can be modified to meet the specific component



User-Defined Models

220

requirement for output carrier frequency:

method {

     name {propagateFc }

     access { protected }

     arglist { "(double*)" }

     type { void }

     code {

           // Create an iterator for the ports of this star

           BlockPortIter nextPort(*this);

           TSDFPortHole* port;

           // Find the maximum fc over all of the inputs

           double maxFc = 0;

           while ((port = (TSDFPortHole*)nextPort++) != NULL) {

                 // Ignore unconnected ports and output ports

                 if (!(port->far() || port->isItOutput())) continue;

                 double fc = port->getCarrierFrequency();

                 if (fc > maxFc) maxFc = fc;

           }

           // Reset the iterator

           nextPort.reset();

           // Now set all Timed output ports to the maximum Fc

           // found over all of the inputs

           while ((port = (TSDFPortHole*)nextPort++) != NULL) {

                 // Ignore unconnected ports and input ports

                 if (!(port->far() ||

                                   port->isItInput() ||

                                   (port->resolvedType() != TIMED)))

                       continue;

                 port->setCarrierFrequency(maxFc);

           }

     }

}

   



User-Defined Models

221

  Porting UC Berkeley Ptolemy Models
A major design goal of ADS Ptolemy was to make it as backward compatible as possible
with University of California, Berkeley (UCB) Ptolemy. We have only changed interfaces
that were found to be not sufficiently robust or poorly implemented.

ADS Ptolemy currently supports most SDF UCB Ptolemy stars (component models). The
porting process for one of these stars is relatively straight forward. In this section we will
review the incompatibilities that require code modifications in the porting process of your
star.

To begin your port, follow the directions to create a new model builder workspace outlined
in the beginning of Building Signal Processing Models (modbuild). Edit the
networks/user.mak and list the stars to be compiled in the USER_STARS variable field.

If you are porting any of the following three types of stars, follow the corresponding
porting directions outlined in the sections below:

Stars that use Tcl/Tk
Stars making use of the Message Class
Matrix stars

Once you are ready, compile and link your model as outlined in Building Signal Processing
Models (modbuild).

  

 Tcl/Tk Porting Issues

There are two differences in Tcl/Tk use in ADS Ptolemy vs. UCB Ptolemy. The first is that
ADS Ptolemy uses Tcl/Tk 8.4 whereas UCB Ptolemy uses Tcl 7.6 / Tk 7.4 with iTcl
extensions. There are many advantages in using Tcl/Tk 8.4 including native look and feel,
speed improvements and improved widgets. Unfortunately, iTcl has not been ported to
Tcl/Tk 8.x at this time. No ported UCB Ptolemy Tcl/Tk script can use iTcl extensions.

The second difference in the Tcl/Tk implementation of ADS Ptolemy is that pTcl is not
included. pTcl allows a user to program a scripted run in UCB Ptolemy. The primary use
for this function is to sweep simulation parameters or to perform a very simple
optimization. ADS Ptolemy has its own methods for parameter sweeping and optimization,
as described in earlier sections.

 

 Porting Procedures

Resolve all Tcl/Tk 8.4 vs. Tcl 7.6/Tk 7.4 issues. These should be minor, and apparent
when you first run the Tcl/Tk script.
Remove dependencies on iTcl. Most Tcl/Tk stars written for UCB Ptolemy do not make
use of any iTcl, including all SDF Tcl/Tk stars shipped in the 0.7 release.
Remove any calls to pTcl functions.



User-Defined Models

222

  

 Message Class

This section assumes that you are both familiar with the Message class implementation in
UCB Ptolemy and have read the ADS Ptolemy Message documentation in Defining New
Data Types (modbuild) in Data Types for Model Builders (modbuild). The Message class
infrastructure has been greatly simplified and enhanced in ADS Ptolemy. The
improvements include:

The new Message class can have types that are resolved by the type resolution
algorithms. In UCB Ptolemy, all arcs that carried messages were resolved to the
MESSAGE data type.
Automatic type conversion between data types built into ADS Ptolemy and new
message classes can be defined.
A default delay message can be defined. In UCB Ptolemy, a delay message would
have a DUMMY message. For more information, refer to Defining New Data Types
(modbuild) in Data Types for Model Builders (modbuild).

An example vector Message class implementation complete with type conversion stars is
provided in ADS Ptolemy. See the example in the section Defining New Data Types
(modbuild) in Data Types for Model Builders (modbuild).

 

 Porting Procedures

Using the Vector message class example, modify your message class to conform to
the new ADS Ptolemy Message class. Refer to Defining a New Message Class
(modbuild) in Data Types for Model Builders (modbuild), for more information. This
should be a relatively straight forward procedure.
Optional: Search and replace the MESSAGE port data type in your star library with
the data type appropriate for your message.
Optional: Create type conversion stars, using the type conversion ptlang keyword in
place of the defstar directive. This will enable ADS Ptolemy to do automatic type
conversions.

  

 Matrix Stars

The data type _ENV suffix has been dropped. Therefore, you must:

Search and replace FLOAT_MATRIX_ENV with FLOAT_MATRIX.
Search and replace INT_MATRIX_ENV with INT_MATRIX.
Search and replace FIX_MATRIX_ENV with FIX_MATRIX.
Search and replace COMPLEX_MATRIX_ENV with COMPLEX_MATRIX.

 



User-Defined Models

223

 User-Defined Models API Reference
This section is provided as a reference and includes class descriptions, data structure
diagrams, and application procedural interface (API) functions.

 

 Class List

The table below shows a list of the structs with a brief description of each. For a detailed
description of struct data members, refer to Characteristics of User-Compiled Elements
(modbuild).

 Class List

Struct Description Collaboration
Diagrams

UserElemDef Senior user element definition UserElemDef Struct
Reference

UserInstDef The struct UserInstDef defines a senior user element instance UserInstDef Struct
Reference

UserNonLinDef Senior nonlinear device definition A nonlinear element response is
characterized by the functions in the UserNonLinDef type

UserNonLinDef
Struct Reference

UserTranDef Senior transient device definition UserTranDef Struct
Reference

COMPLEX Linear response modeled in the frequency domain is complex, so
the COMPLEX type is used for admittance (Y), scattering (S), and
noise current-correlation parameters

COMPLEX Struct
Reference

NParType Conventional 2-port Noise parameters NParType Struct
Reference

senior_data Parameter value of an instance. The parameter values of an item
are obtained in an array of this data type.

senior_data Struct
Reference

SENIOR_USER_DATA Parameter value of an instance. SENIOR_USER_DATA is a typedef
of struct senior_data

senior_data Struct
Reference

UserParamType Element parameter definition UserParamType
Struct Reference

 

 UserElemDef Struct Reference



User-Defined Models

224

 

 Collaboration Diagram for UserElemDef

 

 UserInstDef Struct Reference



User-Defined Models

225

 

 Collaboration Diagram for UserInstDef

 

 UserNonLinDef Struct Reference

 

 Collaboration Diagram for UserNonLinDef



User-Defined Models

226

 

 UserTranDef Struct Reference

 

 Collaboration Diagram for UserTranDef

 

 COMPLEX Struct Reference

 

 Collaboration Diagram for COMPLEX

 

 NParType Struct Reference



User-Defined Models

227

 

 Collaboration Diagram for NParType

 

 senior_data Struct Reference

 

 Collaboration Diagram for senior_data

 

 UserParamType Struct Reference



User-Defined Models

228

 

 Collaboration Diagram for UserParamType

 

 Typedefs

typedef struct senior_descriptor_data SENIOR_DESCRIPTOR_DATA

typedef struct senior_model_descriptor_data SENIOR_MODEL_DESCRIPTOR_DATA

typedef struct senior_data SENIOR_USER_DATA

Parameter value of an instance.<BR>
The parameter values of an item are obtained in an array of this data type.
SENIOR_USER_DATA and UserParamData are typedefs of struct senior_data.

typedef struct _UserElemDef SENIOR_USER_MODEL

typedef struct _UserElemDef UserElemDef

typedef struct _UserInstDef UserInstDef

typedef struct _UserNonLinDef UserNonLinDef

typedef struct _UserTranDef UserTranDef

 

 Enumeration Type



User-Defined Models

229

enum
DataTypeE

   

 Element parameter type.  

 Enumeration values:  

  NO_data for parameter with unspecified data type

  INT_data for parameter with integer data type

  REAL_data for parameter with real data type

  MTRL_data for parameter referring to an instance

  STRG_data for parameter with string data type

  CMPLX_data for parameter with complex data type

  INT_VECTOR_data for parameter with integer vector data type

  REAL_VECTOR_data for parameter with real vector data type

  CMPLX_VECTOR_data for parameter with complex vector data type

 

 Function Reference

This section provides information on User-Compiled Model application procedural interface
(API) functions. The table below provides an alphabetical list of each of the functions
available.



User-Defined Models

230

A,D  

active_noise (modbuild) add_tr_inductor (modbuild)

add_lin_n (modbuild) add_tr_iq (modbuild)

add_lin_y (modbuild) add_tr_lossy_inductor (modbuild)

add_nl_gc (modbuild) add_tr_mutual_inductor (modbuild)

add_nl_iq (modbuild) add_tr_resistor (modbuild)

add_tr_capacitor (modbuild) add_tr_tline (modbuild)

add_tr_gc (modbuild) dump_params (modbuild)

  

E,F  

ee_compute_n (modbuild) ee_pre_analysis (modbuild)

ee_compute_y (modbuild) first_frequency (modbuild)

ee_post_analysis (modbuild) first_iteration (modbuild)

  

G,L,M  

get_delay_v (modbuild) get_ucm_param_real_value (modbuild)

get_params (modbuild) get_ucm_param_string_value (modbuild)

get_temperature (modbuild) get_ucm_param_vector_complex_value (modbuild)

get_tr_time (modbuild) get_ucm_param_vector_int_value (modbuild)

get_ucm_num_external_nodes (modbuild) get_ucm_param_vector_real_value (modbuild)

get_ucm_num_of_params (modbuild) get_ucm_param_vector_size (modbuild)

get_ucm_param_complex_value (modbuild) get_user_inst (modbuild)

get_ucm_param_data_type (modbuild) is_ucm_repeat_param (modbuild)

get_ucm_param_int_value (modbuild) load_elements (modbuild)

get_ucm_param_name (modbuild) load_elements2 (modbuild)

get_ucm_param_num_repeats (modbuild) multifile (modbuild)

get_ucm_param_ptr (modbuild)

  

P,S,V  

passive_noise (modbuild) send_info_to_file (modbuild)

print_ucm_param_value (modbuild) send_info_to_scn (modbuild)

s_y_convert (modbuild) verify_senior_parameter (modbuild)

send_error_to_scn (modbuild)  

  

 



User-Defined Models

231

 active_noise
BOOLEAN active_noise ( IN COMPLEX * yPar ,

 IN NParType * nPar ,

 int numFloatPins ,

 OUT COMPLEX * _nCor_

 )  

Note
For information on COMPLEX and NParType, refer to Class List (modbuild).

 

 Description

This function computes the complex noise correlation 2x2 matrix for an active 3-terminal
2-port element/network, given its Y-pars and measured noise parameters.

Note that if numFloatPins is 2, the common (reference) third terminal is ground.

 

 Arguments

Name Description

yPar Array of nodal admittance matrix

nPar Array of noise correlation matrix

numFloatPins Number of floating pins

nCor An array of noise-current correlation admittance, normalized to FOUR_K_TO

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

232

 add_lin_n
BOOLEAN add_lin_n ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN COMPLEX iNcorr

 )  

Note
For information on UserInstDef and COMPLEX, refer to Class List (modbuild).

 

 Description

This function adds the COMPLEX noise-current correlation term iNcorr (siemens,
normalized to FOUR_K_TO) between ( iPin , jPin ). This function must be called from the
device's analyze_ac_n() function.

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

iNcorr noise-current correlation admittance, normalized to FOUR_K_TO

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

233

 add_lin_y
BOOLEAN add_lin_y ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN COMPLEX y

 )  

Note
For information on UserInstDef and COMPLEX, refer to Class List (modbuild).

 

 Description

This function adds the linear COMPLEX Y-parameter ( iPin , jPin ) branch contribution.

Note that this function can only be called from the device's analyze_lin() or analyze_ac()
function even for linear capacitive branches at DC (omega = 0): this will save the jacobian
matrix entry location for subsequent non-zero harmonic omega.

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

y admittance in siemens

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

234

 add_nl_gc
BOOLEAN add_nl_gc ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN double g,

 IN double c

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function adds the nonlinear conductance and capacitance contribution for the ( iPin,
jPin ) branch: g = d(current( iPin ))/d(voltage( jPin )) c = d(charge( iPin ))/d(voltage( jPin
)). The function must be called (in device's analyze_nl()).

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

g conductance in siemens

c capacitance in farads

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

235

 add_nl_iq
BOOLEAN add_nl_iq ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN double current,

 IN double charge

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function adds the nonlinear current and charge contribution at the device pin iPin.
The function must be called (in device's analyze_nl()).

 

 Arguments

Name Description

userInst user element instance

iPin pin index

current current in amperes

charge charge

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

236

 add_tr_capacitor
BOOLEAN add_tr_capacitor ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN double cval

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (in devices's analyze_tr()) to add a capacitor between pins
iPin and jPin . Values are in farads.

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

cval capacitance in farads

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

237

 add_tr_gc
BOOLEAN add_tr_gc ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN double g

 IN double c

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function adds the transient conductance and capacitance contribution for the ( iPin,
jPin ) branch. It must be called (in device's analyze_tr()).

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

g conductance in siemens

c capacitance in farads

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

238

 add_tr_inductor
BOOLEAN add_tr_inductor ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN double lval

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (in devices's analyze_tr()) to add a inductor between pins iPin
and jPin. Values are in henrys.

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

lval inductance in henrys

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

239

 add_tr_iq
BOOLEAN add_tr_iq ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN double current

 IN double charge

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function adds the transient current and charge contribution at the device pin iPin. It
must be called (in device's analyze_tr()).

 

 Arguments

Name Description

userInst user element instance

iPin pin index

current current in amperes

charge charge

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

240

 add_tr_lossy_inductor
BOOLEAN add_tr_lossy_inductor ( INOUT UserInstDef * userInst ,

 IN int pin1 ,

 IN int pin2 ,

 IN double rval,

 IN double lval

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (in devices's analyze_tr()) to add a lossy inductor between
pins iPin and jPin. Values are in henrys for inductance and in ohms for resistance.

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

rval resistance in ohms

lval inductance in henrys

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

241

 add_tr_mutual_inductor
BOOLEAN add_tr_mutual_inductor ( INOUT UserInstDef * userInst ,

 IN int ind1 ,

 IN int ind2 ,

 IN double K

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (in devices's analyze_tr()) to add mutual inductance with
coupling coefficient K between the inductors ind1 and ind2 .
Note that add_tr_inductor() or add_tr_lossy_inductor() must be added before the mutual
inductance is added. ind1 and ind2 are the values returned from add_tr_inductor() or
add_tr_lossy_inductor().

 

 Example

int ind1, ind2; boolean status = TRUE; ind1 =

add_tr_lossy_inductor(userInst, 0, 2, R1, L1); ind2 =

add_tr_lossy_inductor(userInst, 1, 3, R2, L2); if( ind1 && ind2 ) status =

add_tr_mutual_inductor(userInst, ind1, ind2, K12); else status = FALSE;

 

 Arguments

Name Description

userInst user element instance

ind1 , inductor index returned from add_tr_inductor or add_tr_lossy_inductor call

ind2 , inductor index returned from add_tr_inductor or add_tr_lossy_inductor call

K coupling coefficient, where -1.0 < K < 1

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.

 

 See Also

add_tr_inductor (modbuild), add_tr_lossy_inductor (modbuild)
 



User-Defined Models

242

 add_tr_resistor
BOOLEAN add_tr_resistor ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN double rval

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (in devices's analyze_tr()) to add a resistor between pins iPin
and jPin . Values are in ohms.

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

rval resistance in ohms

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

243

 add_tr_tline
BOOLEAN add_tr_tline ( INOUT UserInstDef * userInst ,

 IN int pin1 ,

 IN int pin2 ,

 IN int pin3 ,

 IN int pin4 ,

 IN double z0,

 IN double td,

 IN double loss

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (in devices's fix_tr()) to add an ideal transmission line.

The inputs are pin1 (positive) and pin3 (negative), the outputs are pin2 (positive) and
pin4 (negative), the impedance is z0 , in ohms, and the delay time is td , in seconds. the
loss is an attenuation scale factor; a lossless line has loss=1.0

 

 Arguments

Name Description

userInst user element instance

pin1 pin index of the input positive pin

pin2 pin index of the output positive pin

pin3 pin index of the input negative pin

pin4 pin index of the output negative pin

z0 impedance in ohms

td delay time in seconds

loss attenuation scale factor

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

244

 dump_params
BOOLEAN dump_params ( IN void * eeElemInst )

 

 Description

This function prints out the instance eeElemInst 's parameter names and values to stderr.

This function should only be used for debugging purposes.

 

 Arguments

Name Description

eeElemInst ADS element instance. For example, if the ADS model instance named "Msub1" is defined as the
first parameter of the userCompiled model, *eeElemInst is userInst->pData[0].value.eeElemInst

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

245

 ee_compute_n
BOOLEAN ee_compute_n ( INOUT void * eeElemInst ,

 IN UserParamData * pData ,

 IN double omega ,

 IN COMPLEX * yPar ,

 OUT COMPLEX * nCor ,

 )  

Note
For information on UserParamData and COMPLEX, refer to Class List (modbuild).

 

 Description

This function allows access to ADS elements for noise analysis.

Note that parameter data pData must be supplied in SI units, where applicable.

 

 Arguments

Name Description

eeElemInst ADS element instance. For example, if the ADS model instance name "Msub1" is defined as the
first parameter of the userCompiled model, *eeElemInst is userInst->pData[0].value.eeElemInst

pData instance's parameters

omega frequency omega radians/sec

yPar Array of nodal admittance matrix

nCor An array of noise-current correlation admittance, normalized to FOUR_K_TO

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

246

 ee_compute_y
BOOLEAN ee_compute_y ( INOUT void * eeElemInst ,

 IN UserParamData * pData ,

 IN double omega ,

 OUT COMPLEX * yPar

 )  

Note
For information on UserParamData and COMPLEX, refer to Class List (modbuild).

 

 Description

This function allows access to ADS elements for linear analysis.

Note that parameter data pData must be supplied in SI units, where applicable.

 

 Arguments

Name Description

eeElemInst ADS element instance. For example, if the ADS model instance name "Msub1" is defined as the
first parameter of the userCompiled model, *eeElemInst is userInst->pData[0].value.eeElemInst

pData instance's parameters

omega frequency omega radians/sec

yPar Array of nodal admittance matrix

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

247

 ee_post_analysis
BOOLEAN ee_post_analysis ( INOUT void * eeElemInst )

 

 Description

This function must be called by User-Defined Model code (possibly from a User-Defined
Model element's post_analysis() function) for every ee_pre_analysis() call to free memory
allocated for the ADS instance eeElemInst .

 

 Arguments

Name Description

eeElemInst ADS element instance. For example, if the ADS model instance named "Msub1" is defined as the
first parameter of the userCompiled model, *eeElemInst is userInst->pData[0].value.eeElemInst

yPar Array of nodal admittance matrix

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

248

 ee_pre_analysis
BOOLEAN ee_pre_analysis ( IN char * elName ,

 IN UserParamData * pData ,

 )  

Note
For information on UserParamData, refer to Class List (modbuild).

 

 Description

This function must be called by User-Defined Model code which require that you use an
ADS element (possibly from a User-Defined Model element's pre_analysis() function).

The function returns a pointer to an allocated ADS element instance if successful, NULL
otherwise. This pointer must be saved (possibly with the User-Defined Model element
instance, in its seniorData field) and passed to ee_compute_y() or ee_compute_n().

 

 Arguments

Name Description

elName element name

pData instance's parameters

 

 Returned Value

Returns a pointer to an allocated ADS element instance if successful, NULL otherwise.

 

 See Also

ee_compute_n (modbuild), ee_compute_y (modbuild)
 



User-Defined Models

249

 first_frequency
BOOLEAN first_frequency( void )
 



User-Defined Models

250

 first_iteration
BOOLEAN first_iteration( void )



User-Defined Models

251

 get_ucm_num_external_nodes
int get_ucm_num_external_nodes( const UserInstDef* userInst )

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function returns the number of external nodes.

 

 Arguments

Name Description

userInst user element instance

 

 Returned Value

Returns the number of external nodes.



User-Defined Models

252

 get_ucm_num_of_params
int get_ucm_num_of_params( const UserInstDef* userInst )

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function returns number of parameters in the parameter definition. No matter how
many entries a repeated parameter has, it is counted as one parameter.

 

 Arguments

Name Description

userInst user element instance

 

 Returned Value

Returns the number of parameters in the parameter definition.



User-Defined Models

253

 get_ucm_param_complex_value
Complex get_ucm_param_complex_value (const SENIOR_USER_DATA *param,
BOOLEAN* status, char* errorMsg)

The function returns parameter value which is type of complex. It can be used only when
the parameter value type is complex. The returned value is valid only when status is 1. If
the query fails, status is set to zero and error message is written to errorMsg.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the parameter complex value.



User-Defined Models

254

 get_ucm_param_data_type
DataTypeE get_ucm_param_data_type( const SENIOR_USER_DATA* param )

Note
For information on SENIOR_USER_DATA and DataTypeE, refer to Class List (modbuild).

 

 Description

This function returns the data type of the parameter value.

 

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

 

 Returned Value

Returns the data type of the parameter value.



User-Defined Models

255

 get_ucm_param_int_value
int get_ucm_param_int_value (const SENIOR_USER_DATA *param, BOOLEAN* status,
char* errorMsg)

The function returns parameter value which is type of integer. It can be used only when
the parameter value type is integer. The returned value is valid only when status is 1. If
the query fails, status is set to zero and error message is written to errorMsg.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the parameter integer value.



User-Defined Models

256

 get_ucm_param_name
const char* get_ucm_param_name( const UserInstDef* userInst, int paramIndex )

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function returns the parameter name.

 

 Arguments

Name Description

userInst user element instance

paramIndex the parameter index, starting from 0

 

 Returned Value

Returns the parameter name.



User-Defined Models

257

 get_ucm_param_num_repeats
int get_ucm_param_num_repeats( const UserInstDef* userInst, int paramIndex )

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function returns the number of entries of a repeated parameter. For example, Freq[1]
and Freq[2] are specified, then the number of entries is 2.

 

 Arguments

Name Description

userInst user element instance

paramIndex the parameter index, starting from 0

 

 Returned Value

Returns the number of entries of a repeated parameter.



User-Defined Models

258

 get_ucm_param_ptr
const SENIOR_USER_DATA* get_ucm_param_ptr( const UserInstDef* userInst, int
paramIndex, char* errorMsg, int repeatIndex )

Note
For information on UserInstDef and SENIOR_USER_DATA, refer to Class List (modbuild).

 

 Description

This function returns the pointer to a parameter. Before querying a parameter value, this
function should be used to obtain the pointer to the parameter. NULL pointer is returned if
the parameter not found or an error occurs. The error message is stored in errorMsg.
Please allocate enough buffer size for errorMsg.

 

 Arguments

Name Description

userInst user element instance

paramIndex the parameter index, starting from 0

errorMsg error message

repeatIndex the repeat index of a repeated parameter, starting from 0. For example, Freq[2],
repeatIndex=1. For non-repeated parameter, use -1.

 

 Returned Value

Returns the pointer to a parameter. NULL if the parameter is not found or an error occurs.



User-Defined Models

259

 get_ucm_param_real_value
double get_ucm_param_real_value (const SENIOR_USER_DATA *param, BOOLEAN*
status, char* errorMsg)

 Description

The function returns parameter value which is type of real. It can be used only when the
parameter value type is real. The returned value is valid only when status is 1. If the
query fails, status is set to zero and error message is written to errorMsg.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the parameter real value.



User-Defined Models

260

 get_ucm_param_string_value
const char* get_ucm_param_string_value (const SENIOR_USER_DATA *param,
BOOLEAN* status, char* errorMsg)

The function returns parameter value which is type of string. It can be used only when the
parameter value type is string. The returned value is valid only when status is 1. If the
query fails, status is set to zero and error message is written to errorMsg.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the parameter string value.



User-Defined Models

261

 get_ucm_param_vector_complex_value
Complex get_ucm_param_vector_complex_value (const SENIOR_USER_DATA *param, int
index, BOOLEAN* status, char* errorMsg)

 Description

The function returns parameter complex value. It can be used only when the parameter
has vector value and the value type is complex. The returned value is valid only when
status is 1. If the query fails, status is set to zero and error message is written to errorMsg
.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

index index in the array, starting from 0.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the complex value of the index_th item from the parameter's complex vector
value list.



User-Defined Models

262

 get_ucm_param_vector_int_value
int get_ucm_param_vector_int_value (const SENIOR_USER_DATA *param, int index,
BOOLEAN* status, char* errorMsg)

 Description

The function returns parameter integer value. It can be used only when the parameter has
vector value and the value type is integer. The returned value is valid only when status is
1. If the query fails, status is set to zero and error message is written to errorMsg.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

index index in the array, starting from 0.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the integer value of the index_th item from the parameter's integer vector value
list.



User-Defined Models

263

 get_ucm_param_vector_real_value
double get_ucm_param_vector_real_value (const SENIOR_USER_DATA *param, int index,
BOOLEAN* status, char* errorMsg)

 Description

The function returns parameter real value. It can be used only when the parameter has
vector value and the value type is real. The returned value is valid only when status is 1.
If the query fails, status is set to zero and error message is written to errorMsg.

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

index index in the array, starting from 0.

status query status. It is set to 1 if no error occurs, otherwise, it is set to 0.

errorMsg error message when query fails. Enough buffer should be allocated for it, for example, 2048.

 Returned Value

Returns the real value of the index_th item from the parameter's real vector value list.



User-Defined Models

264

 get_ucm_param_vector_size
int get_ucm_param_vector_size( const SENIOR_USER_DATA* param )

Note
For information on SENIOR_USER_DATA, refer to Class List (modbuild).

 

 Description

This function returns the vector size for a parameter which has vector value.

 

 Arguments

Name Description

param the pointer to a parameter, obtained from get_ucm_param_ptr( ) function.

 

 Returned Value

Returns the vector size if the parameter has vector value, otherwise 0.
 



User-Defined Models

265

 get_delay_v
BOOLEAN get_delay_v ( INOUT UserInstDef * userInst ,

 IN int iPin ,

 IN int jPin ,

 IN double tau

 OUT double * vDelay

 )  

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function may be called (from device's analyze_nl()) to get tau seconds delay * ( iPin ,
jPin ) voltage difference.

GND may be used as jPin to get absolute (w.r.t. ground) delayed pin voltage.

Note that tau must not be dependent device pin voltages (i.e. it is an ideal delay).

 

 Arguments

Name Description

userInst user element instance

iPin pin index

jPin pin index

tau delay in seconds

vDelay array of delayed pin voltage

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

266

 get_params
BOOLEAN get_parms ( IN void * eeElemInst ,

 OUT UserParamData * pData ,

 )  

Note
For information on UserParamData, refer to Class List (modbuild).

 

 Description

This function loads the passed instance eeElemInst 's RHS parameter values into pData ,
which must be big enough to store all parameters.

It is mainly useful to obtain a referred instance's (such as MSUB, TEMP) parameters. Note
that a User-Defined Model instance's parameters are always available in the
UserInstDef.pData array, so there is no need to call this for a user-instance's own params.

 

 Arguments

Name Description

eeElemInst ADS element instance. For example, if the ADS model instance name "Msub1" is defined as the
first parameter of the userCompiled model, *eeElemInst is userInst->pData[0].value.eeElemInst

pData instance's parameters

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

267

 get_temperature
BOOLEAN get_temperature( void )

 

 Description

This function returns the value of the ADS global variable temp .

 

 Returned Value

Returns the value of temperature in kelvin.
 



User-Defined Models

268

 get_tr_time
BOOLEAN get_tr_time( void )

 

 Description

This function retrieves the current transient analysis time in seconds.

 

 Returned Value

Returns the current transient analysis time in seconds.
 



User-Defined Models

269

 get_user_inst
UserInstDef* get_user_inst( IN void * eeElemInst )

 

 Description

This returns a pointer to the UserInstDef User-Defined Model instance if eeElemInst is
indeed an instance of a User-Defined Model element, NULL otherwise.

 

 Arguments

Name Description

eeElemInst ADS element instance. For example, if the ADS model instance name "Msub1" is defined as the
first parameter of the userCompiled model, *eeElemInst is userInst->pData[0].value.eeElemInst

 

 Returned Value

Returns a pointer to the UserInstDef User-Defined Model instance if eeElemInst is an
instance of a User-Defined Model element, NULL otherwise.



User-Defined Models

270

 is_ucm_repeat_param
BOOLEAN is_ucm_repeat_param( const UserInstDef* userInst, int paramIndex )

Note
For information on UserInstDef, refer to Class List (modbuild).

 

 Description

This function returns whether the parameter is repeated parameter.

 

 Arguments

Name Description

userInst user element instance

paramIndex the parameter index, starting from 0

 

 Returned Value

Returns TRUE if the parameter is repeated parameter, otherwise FALSE.
 



User-Defined Models

271

 load_elements
BOOLEAN load_elements ( IN UserElemDef * userElem ,

 IN int numElem

 )  

Note
For information on UserElemDef, refer to Class List (modbuild).

 

 Description

This function is used to load a single User-Defined Model module.

Note that this function should be used if versions and (*modify_param) are not defined as
members of the struct UserElemDef , otherwise load_elements2() should be used.

 

 Arguments

Name Description

userElem An array of UserElemDef which contains all user-defined elements in the module

numElem The size of UserElemDef array which is also the number of use-defined elements in the module

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.

 

 See Also

load_elements2 (modbuild)
 



User-Defined Models

272

 load_elements2
BOOLEAN load_elements2 ( IN UserElemDef * userElem,

 IN int numElem

 )  

Note
For information on UserElemDef, refer to Class List (modbuild).

 

 Description

This function is used to load a single User-Defined Model module. The function was
introduced after ADS 2003C.

Note that this function should be used if versions and (*modify_param) are defined as
members of the struct UserElemDef , otherwise load_elements() should be used.

 

 Arguments

Name Description

userElem An array of UserElemDef which contains all user-defined elements in the module

numElem The size of UserElemDef array which is also the number of use-defined elements in the module

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.

 

 See Also

load_elements (modbuild)
 



User-Defined Models

273

 multifile
BOOLEAN multifile( void )

 

 Description

ADS entry function to boot all User-Defined Model modules, defined in userindx.c Each
User-Defined Model module must have a call to its booting function here.

It is never modified by the Advanced Design System's Model Builder interface.

This module enables the user to link multiple User-Defined Model modules with the main
program. It works as an intermediary between the main program and all of the User-
Defined Model modules: it calls the boot function (use the name "boot_abc()" for the
module named "abc.c") to load the element/data item definitions in that module. The
boot_abc() function must in turn call load_elements() to accomplish this.

Note the example calls below:

boot_userex() to boot module "userex.c", boot_mymodule() to boot module "mymodule.c"

If you want to ignore booting failures, ensure that multifile() always returns TRUE and
remove the extra return statements. Also, remove the send_error_to_scn() calls to reduce
excess status messages during run time.
 



User-Defined Models

274

 passive_noise
BOOLEAN passive_noise ( IN COMPLEX * yPar ,

 IN double tempC ,

 IN int numNodes
,

 OUT COMPLEX * nCor

 )  

Note
For more information on COMPLEX, refer to Class List (modbuild).

 

 Description

This function computes the complex noise correlation matrix for a passive element, given
its Y-pars, operating temperature (Celsius) and # of nodes.

 

 Arguments

Name Description

yPar Array of nodal admittance matrix

tempC Temperature in Celsius

numNodes Number of nodes

nCor Array of noise-current correlation admittance, normalized to FOUR_K_TO

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.



User-Defined Models

275

 print_ucm_param_value
void print_ucm_param_value( FILE *fp, const SENIOR_USER_DATA *param )

Note
For information on SENIOR_USER_DATA, refer to Class List (modbuild).

 

 Description

This function prints a parameter value and data type to output specified by the first
argument *fp. It is for debug usage. Its implementation is listed in
$HPEESOF_INSTALLATION_DIR/modelbuilder/lib/printParam.c as sample code on how to
query parameter values.

 

 Arguments

Name Description

fp pointer to a output file

param pointer to the parameter, obtained from get_ucm_param_ptr( )
function

 

 Returned Value

None.
 



User-Defined Models

276

 send_error_to_scn
void send_error_to_scn( IN char * msg )

 

 Description

This function is useful to indicate program status in various stages of execution. For
example, during module bootup, element analyses, and pre- or post-analysis.

The function writes msg to the Errors/Warnings window.

 

 Arguments

Name Description

msg The string to be sent to the simulation Errors/Warning window

 



User-Defined Models

277

 send_info_to_file
void send_info_to_file( IN char * msg )

 

 Description

This function is useful to indicate program status in various stages of execution. For
example, during module bootup, element analyses, and pre- or post-analysis.

The function writes msg to the .inf file.

 

 Arguments

Name Description

msg The string to be written to the .inf file

 



User-Defined Models

278

 send_info_to_scn
void send_info_to_scn( IN char * msg )

 

 Description

This function is useful to indicate program status in various stages of execution. For
example, during module bootup, element analyses, and pre- or post-analysis.

The function writes msg to the simulation Status/Progress window.

 

 Arguments

Name Description

msg The string to be sent to the simulation Status/Progress window

 



User-Defined Models

279

 s_y_convert
BOOLEAN s_y_convert ( IN COMPLEX * inPar ,

 OUT COMPLEX * outPar,

 IN int direction
,

 IN double rNorm ,

 IN int size

 )  

Note
For more information on COMPLEX, refer to Class List (modbuild).

 

 Description

This function converts between S- and Y- parameters.

 

 Arguments

Name Description

inPar Input parameter array

outPar Output parameter array

direction 0: inPar(Y-pars) -> outPar(S-pars) 1: inPar(S-pars) -> outPar(Y-pars)

rNorm The S-parameter normalizing impedance in ohms

size The matrix size

 

 Returned Value

Returns TRUE if successful, FALSE otherwise.
 



User-Defined Models

280

 verify_senior_parameter
ee_bool
verify_senior_parameter

( SENIOR_USER_DATA * data ,

 DataTypeE type

 )  

Note
For more information on SENIOR_USER_DATA, refer to Class List (modbuild).

 

 Defines

#define BOLTZ 1.380658e-23  

 use NIST Codata-86 value  

#define boolean int  

#define BOOLEAN int  

#define CHARGE 1.60217733e-19  

 use NIST Codata-86 value  

#define ComplexNumber COMPLEX  

#define CTOK 273.15  

#define FALSE 0  

#define FOUR_K_TO (4.0*BOLTZ*NOISE_REF_TEMP)

 noise normalization 4kToB, B=1 Hz  

#define get_angunit ( eeElemInst ) 1.0  

 angle scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design units

#define get_cunit ( eeElemInst ) 1.0  

 capacitance scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV
design units

 

#define get_curunit ( eeElemInst ) 1.0  

 current scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design
units

 

#define get_funit ( eeElemInst ) 1.0  

 frequency scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design
units

 

#define get_gunit ( eeElemInst ) 1.0  

 conductance scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV
design units

 

#define get_lenunit ( eeElemInst ) 1.0  

 length scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design units

#define get_lunit ( eeElemInst ) 1.0  

 inductance scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design
units

 

#define get_runit ( eeElemInst ) 1.0  

 resistance scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design
units

#define get_tunit ( eeElemInst ) 1.0



User-Defined Models

281

 time scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design units

#define get_volunit ( eeElemInst ) 1.0

 voltage scale factor in the scope of eeElemInst. It is defined to keep ADS compatibility with SIV design units

#define get_watt ( eeElemInst, power ) (power)

 return watt-equivalent of 'power' in eeElemInst's scope. It is defined to keep ADS compatibility with SIV
design units

#define GND -1  

   

#define IN  

 input argument to function  

#define INOUT  

 argument used and modified by function  

#define LOCAL static  

   

#define NOISE_REF_TEMP 290.0  

 standard noise reference temperature, in Kelvin

#define NULL 0L  

 The following macros are defined in Libra and are copied here.

#define RealNumber double  

   

#define size ( thing ) (sizeof(thing)/sizeof(*thing))

   

#define TRUE 1

   

#define TWOPI 6.28318530717958623199593

 define 2 * PIAlso included are Senior user-needed interface function declarations.Warning: Do not modify
any existing definition/declaration here.This file provides the definitions for the Libra-Senior user defined
models.

#define UNUSED

 unused argument  

#define UserParamData SENIOR_USER_DATA

 UserParamData A macro for struct SENIOR_USER_DATA.


	  Building User-Compiled Analog Models
	  About User-Compiled Model Code
	  Creating Linear Circuit Elements
	  Creating Nonlinear Circuit Elements
	  Creating Transient Circuit Elements
	  Custom Modeling with Symbolically-Defined Devices
	  Custom Modeling with Frequency-Domain Defined Devices
	  Building Signal Processing Models
	  Writing Component Models
	  Data Types for Model Builders
	    Porting UC Berkeley Ptolemy Models
	  User-Defined Models API Reference
	  active_noise
	  add_lin_n
	  add_lin_y
	  add_nl_gc
	  add_nl_iq
	  add_tr_capacitor
	  add_tr_gc
	  add_tr_inductor
	  add_tr_iq
	  add_tr_lossy_inductor
	  add_tr_mutual_inductor
	  add_tr_resistor
	  add_tr_tline
	  dump_params
	  ee_compute_n
	  ee_compute_y
	  ee_post_analysis
	  ee_pre_analysis
	  first_frequency
	  first_iteration
	  get_ucm_num_external_nodes
	  get_ucm_num_of_params
	  get_ucm_param_complex_value
	  get_ucm_param_data_type
	  get_ucm_param_int_value
	  get_ucm_param_name
	  get_ucm_param_num_repeats
	  get_ucm_param_ptr
	  get_ucm_param_real_value
	  get_ucm_param_string_value
	  get_ucm_param_vector_complex_value
	  get_ucm_param_vector_int_value
	  get_ucm_param_vector_real_value
	  get_ucm_param_vector_size
	  get_delay_v
	  get_params
	  get_temperature
	  get_tr_time
	  get_user_inst
	  is_ucm_repeat_param
	  load_elements
	  load_elements2
	  multifile
	  passive_noise
	  print_ucm_param_value
	  send_error_to_scn
	  send_info_to_file
	  send_info_to_scn
	  s_y_convert
	  verify_senior_parameter


