MBP
Implementing MOSRA Models in MBP
Application Note
Copyright Notice and Proprietary Information

Copyright © Agilent Technologies, Inc. 2004, 2011. All rights reserved. This software and
documentation contain confidential and proprietary information that is the property of Agilent
Technologies, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of
the software and documentation may be reproduced, transmitted, or translated, in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Agilent Technologies, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Agilent Technologies permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights, trademarks,
service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to
all copies.

Disclaimer

AGILENT TECHNOLOGIES, INC. AND ITS LICENSORS MAKE NO WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Agilent, Model Builder Program, MBP, Model Quality Assurance, MQA, Advanced Model
Analysis, AMA, Proximity Quality Assurance, PQA are registered trademarks of Agilent
Technologies, Inc.
Implementing MOSRA Models in MBP

Application Note

This application note describes how to implement a MOSRA model in Model Builder Program (MBP).

Note: This document was originally released for MBP V201.1.0 in July 2011.

Introduction

Device models are relevant to the actual fabrication process. MBP offers an environment for MOS reliability analysis in general and MOSRA in particular. With this environment, the user can measure device performance degradation over time and evaluate stress effects.

This document provides information on the raw data format and MOSRA simulation and parameter extraction. For more information go to www.agilent.com/find/eesof or contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus.

Raw Data Format

The data format for MOSRA analysis is similar to that of general measurement data in MBP. A sample of MOSRA data is as follows:

```
condition{corner = tt,date = oct_20_02,instrument=(hp4145, probe_station ),
mode=forward, datatype= mosra, version=1.0, type=nmos}
Page (name=ids_vgs_vbs,x=vgs,p=vbs,y=ids) { vds=0.05, w=10.0, L=0.13,
T=25.0 }
stress ( time=0.0, vds=2.0, vgs=1.0, vbs=0.0)
curve { 0.0 }
0.0 5.000E-14
0.05 5.002E-14
0.1 5.010E-14
0.15 5.055E-14
0.2 5.315E-14
......
```

Here, the keyword `datatype` should be specified as `mosra` and `version=1.0` corresponds to the MOSRA level. The keyword `stress` defines the bias condition and the duration of the aging test.

MBP also supports another kind of MOSRA data, which allows the user to take the aging span as the variable. For example:

```
condition{corner = tt,date = oct_20_02,instrument=(hp4145, probe_station),mode=forward}
Datatype{S_target}
Version{2.1}
type{nmos}
Delimiter{,}
```

For any assistance, mail to: mbp_pdl-eesof@agilent.com

1
Instance{L, W, T}

Stress Condition{S_vgs=1, S_vds=2, S_vbs=0, S_time}

Input{Vgg=2, Vdd=2, Vbb=-1, Vdlin=0.05}

Data{ w, l, t, S_vgs, S_vds, S_vbs, S_time, vth_lin, vthsat, ldlin, Idsat, Ioff, gm }

10, 2, 125, 1, 2, 0, 0, 0.728628, 0.697769, 7.348435E-5, 8.848617E-4, 2.029162E-12, 4.2957E-4

10, 2, 125, 1, 2, 0, 1e5, 0.728985, 0.698127, 7.343337E-5, 8.8407E-4, 2.028872E-12, 4.2903E-4

......

Here, Datatype{S_target} means the data type is DP data. Note that all of the variables in this kind of MOSRA data need to start with S_. For example, the gate-to-source voltage (vgs) during an aging test should be named as S_vgs.

All of the data, including instance parameters, bias conditions, timing nodes, and physical quantities, is stored in the Data session.

As shown in Figure 1, several IMV pages have been pre-defined in MBP to help the user better understand stress data trends.

![Figure 1. Pre-defined IMV pages for stress data](image)

MOSRA Simulation and Parameter Extraction

MBP invokes the external simulator (Synopsys HSPICE) for MOSRA model simulation. Note that the user must make sure HSPICE has been installed properly before the simulation.

Choose Model Type

Choose Model -> Select Model from the main menu and select Reliability in the pop up window. The user must then select one core model in the upper Core Model Selection section and MOSRA in the lower Reliability section (Figure 2).
Model Parameters Panel
After setting up the model type, MBP merges the selected core model and MOSRA model. For example, as shown in the Parameters panel of Figure 3, the upper model (mosra model) is a MOSRA level 1 model and the lower one (nmos) is a BSIM3V3 core model. By clicking any model, the corresponding parameters will show on the right side of the window.

Load Model
In the main menu, choose File -> Model -> Load to load the model. A window named MOSRA Compose Dialog will pop up, as shown in Figure 4.
A complete MOSRA model consists of two parts: the core model and the MOSRA model. The user can deal with these two parts separately. Click Remove to delete the existing models and click Load to load other models. After loading the models, click Compose & Load to replace the current MOSRA model.

Then, choose File -> Data -> Load from the main menu to load the data file. The window with the MOSRA model and data is shown in Figure 5.

Now the user can select model parameters and adjust them to fit the measurement data.

MBP allows the user to compare two MOSRA models. The user simply clicks Compose & Add to append a MOSRA model for comparison. Select the two models and click the Compare icon to compare them (Figure 6).
The result is shown in Figure 7.

Run Task Tree

MBP also provides a built-in automatic extraction flow (task tree) for the MOSRA model. Task tree can be enabled by choosing *Extraction -> Task Tree* from the main menu. After loading the task tree, the user could run the flow automatically, or step by step. Task tree will select devices, region and parameters for optimization automatically. The task tree optimization window is shown in Figure 8.
Figure 8. Task tree of a MOSRA model