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 Adaptive Equalizers
Adaptive Equalizer Parts provide a set of adaptive filtering algorithms and other parts
which can be used to develop channel equalizers. Equalizers are used in communication
systems to compensate for the effect of multi-path channels. Although Adaptive Equalizer
Parts is designed with equalization as its main application, the algorithms are provided in
a form which makes them suitable for other adaptive filtering applications. The following
adaptive algorithms are provided:

Least Mean Squares (LMS)
Affine Projection Algorithm (APA)
Recursive Least Squares (RLS)
QR Recursive Least Squares (QR-RLS)

These algorithms can be combined with other parts from Algorithm Design/Adaptive
Equalizer Parts and SystemVue to design, simulate and analyze advanced channel
equalizer subsystems. For more information see About Adaptive Equalizer Parts
(algorithm)

 Contents
AdptFltAPA Part (algorithm)
AdptFltAPA Cx Part (algorithm)
AdptFltCoreAPA Part (algorithm)
AdptFltCoreAPA Cx Part (algorithm)
AdptFltCoreLMS Part (algorithm)
AdptFltCoreLMS Cx Part (algorithm)
AdptFltCoreRLS Part (algorithm)
AdptFltCoreRLS Cx Part (algorithm)
AdptFltLMS Part (algorithm)
AdptFltLMS Cx Part (algorithm)
AdptFltQR Part (algorithm)
AdptFltQR Cx Part (algorithm)
AdptFltRLS Part (algorithm)
AdptFltRLS Cx Part (algorithm)
ErrorFilter Part (algorithm)
ErrorFilterCx Part (algorithm)
LMS Part (algorithm)
NonLinearityCx Part (algorithm)
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 About Adaptive Equalizer Parts
 Introduction
Algorithm Design/Adaptive Equalizer Parts provide a set of adaptive filtering algorithms
and other parts which can be used to develop channel equalizers. Equalizers are used in
communication systems to compensate for the effect of multi-path channels. Although
Algorithm Design/Adaptive Equalizer Parts is designed with equalization as its main
application, the algorithms are provided in a form which makes them suitable for other
adaptive filtering applications. The following adaptive algorithms are provided:

Least Mean Squares (LMS)
Affine Projection Algorithm (APA)
Recursive Least Squares (RLS)
QR Recursive Least Squares (QR-RLS)

These algorithms can be combined with other parts from Algorithm Design/Adaptive
Equalizer Parts and SystemVue to design, simulate and analyze advanced channel
equalizer subsystems.

 Adaptive Filtering
The diagram below shows an adaptive filter and its associated input and output signals.
The aim of any adaptive filter is to minimize the error signal e[k], which represents the
difference between the desired signal d[k] and the output of the adaptive filter y[k].

The adaptive algorithms provided with Algorithm Design/Adaptive Equalizer Parts come in
two forms; standard parts and core parts. This is illustrated in the above diagram.

 Standard Parts

The standard parts take x[k] and d[k] as inputs and produce e[k] and y[k] as outputs.
Therefore the standard parts implement all of the functionality shown in the adaptive filter
diagram above.

 Core Parts

The core parts take x[k] and e[k] as inputs and produce y[k] as output. Therefore the core
parts require the user to calculate e[k] externally and feed this back into the part. The
core parts also perform their internal operations in a different order to take this feedback
into account. The core parts make it possible to build more complicated equalizers such as
Decision Feedback Equalizers (DFEs) and blind equalizers.

 Equalization
In adaptive filtering, the relationship between y[k] and d[k] determines the mode or
configuration of the adaptive filter. The diagram below shows an adaptive filter in "inverse
system identification" mode where the adaptive filter can be said to "equalize" an
unknown system. In this example the adaptive filter is being used to equalize a
communication channel by setting d[k] = I[k-u] where u is a delay introduced to ensure
that the equalization filter is causal. In practice a training sequence known by both the
transmitter and receiver can be used to create both I[k] and d[k]. Alternatively d[k] can
be derived from a non-linear function of y[k] at the receiver as in the case of blind and
decision directed equalizers.
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 Algorithms

 Definitions

The adaptive algorithms in Algorithm Design/Adaptive Equalizer Parts are defined in
matrix notation, therefore this section introduces the definitions which are common to all
algorithms. The diagram below shows an adaptive filter with N feed forward weights and M
feed back weights. For M=0 the filter is FIR (Finite Impulse Response). For M>0 the filter
is IIR (Infinite Impulse Response). 

   

The input and output data sample vectors corresponding to the input and output delay
lines are

   

where [ ]T represents the transpose of a vector. It is convenient to concatenate these
vectors as follows

   

The feed forward and feedback weight vectors are defined as

   

It is also convenient to combine these into a single vector

   

The output of the adaptive filter is

   

where [ ]H represents the Hermitian of a vector (transpose and complex conjugate).
Finally, the error signal e[k] is defined as
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 LMS

The Least Mean Squares (LMS) algorithm is a stochastic gradient technique which tries to
minimize the Mean Square Error (MSE); that is it tries to minimize E{e[k]} where E{} is
the expectation operator. On each weight update, the LMS algorithm estimates the
direction of steepest descent based on the current state vector z[k] and the current value
of the desired signal d[k]. To allow for different step sizes in the feed forward and
feedback sections of the filter we shall define the LMS explicitly in terms of these sections;
that is we refer to wff[k], wfb[k], x[k] and y[k-1] rather than w[k] and z[k]. The LMS

algorithm comprises the following steps.

Compute filter output1.

Compute error signal2.

Update feed forward and feedback weights3.

where μff and μfb are the feed forward and feedback step sizes respectively. The

Normalized Least Mean Squares (NLMS) algorithm is a variation of the LMS which
normalizes the step sizes according to the energy in z[k]. The NLMS weight update is
defined as follows

   

where ()* indicates the complex conjugate.

The Non-Canonical LMS (NC-LMS) is a modified version of the LMS algorithm which works
with the transpose form of an FIR filter. The transpose FIR has a broadcast line instead of
a tapped delay line and delays between the adders in the summation chain as shown in
the diagram below. Despite this, it has exactly the same functionality as a canonical FIR
filter. The non-canonical FIR structure has advantages for hardware implementation as the
delays form a natural pipeline through the summation chain. However the LMS algorithm
cannot be applied as it would require time advances to distribute the error signal to the
weights for the purpose of updating (i.e. it would be non-causal).

   

The Non-Canonical LMS (NC-LMS) is shown in the diagram below. It is important to note
that the NC-LMS has different behavior to that of the standard LMS. In particular it tends
to be less stable and slower to converge.

   

It can be shown that the NC-LMS actually implements the following weight update
equation.
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Currently the LMS algorithm in Algorithm Design/Adaptive Equalizer Parts only supports a
transpose filter structure in the feed forward section. The feedback part is implemented in
standard form therefore always uses the standard LMS algorithm.

 APA

The Affine Projection Algorithm (APA) is also a stochastic gradient technique which tries to
minimize the mean square error E{e[k]}. The APA algorithm estimates the direction of
steepest descent based on the p most recent state vectors {z[k], z[k-1] ... z[k-p+1]} and
the p most recent samples of the desired signal {d[k], d[k-1]... d[k-p+1]}. The parameter
p is known as the order of the algorithm. The following vector and matrix definitions are
required before stating the computation steps of the APA algorithm.

   

where I is the p-by-p identity matrix and δ is a bias factor introduced to prevent R[k]
from becoming singular. The APA algorithm then comprises the following steps:

Compute the filter output1.

Compute the error signal vector based on the current weights (note that e[k] does2.
not contain past samples of the error signal; it contains what the past error samples
would have been given the current filter weights)

Update the filter weights3.

where μff and μfb are the feed forward and feedback step sizes respectively. Note that for p=0

the APA is equivalent to the LMS algorithm.
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 AdptFltAPA_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltAPA_Cx
(algorithm)

Complex APA Adaptive
Filter
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 AdptFltAPA_Cx

Description: Complex APA Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltAPA Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for
the EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A
value different from zero
makes the structure an IIR
setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for
the feedback stage.

0.4  Float NO (0:1)

Order Selects the order of the APA
algorithm.

3  Integer NO (1:∞)

Bias Bias factor of the APA
algorithm.

1E-08  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0+j*0.0]  Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 desiredSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

4 errorSignal complex NO

 Notes/Equations

This model implements a complex arithmetic adaptive filter (FIR or IIR) using the1.
Affine Projection Algorithm (APA). The APA algorithm tries to minimize the Mean
Square Error (MSE) between the desired signal and the output of the filter.
During each iteration, the APA algorithm approximates the best direction in which to2.
adjust the filter weights based on the most recent p state vectors and the most
recent p samples of the desired signal where p is the algorithm order. This
approximation is then used to update the filter weights. Part of this algorithm
requires a p-by-p matrix inversion to be computed. The Bias parameter is added to
the diagonal elements of the matrix prior to inversion in case it is singular.
For a detailed description of the APA algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltAPA (algorithm), AdptFltCoreAPA (algorithm), AdptFltCoreAPA_Cx4.
(algorithm).
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 AdptFltAPA Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltAPA
(algorithm)

APA Adaptive
Filter
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 AdptFltAPA

Description: APA Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltAPA Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for the
EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A value
different from zero makes the
structure an IIR setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for the
feedback stage.

0.4  Float NO (0:1)

Order Selects the order of the APA
algorithm.

3  Integer NO (1:∞)

Bias Bias factor of the APA algorithm. 1E-08  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0]  Floating point
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 desiredSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

4 errorSignal real NO

 Notes/Equations

This model implements a real arithmetic adaptive filter (FIR or IIR) using the Affine1.
Projection Algorithm (APA). The APA algorithm tries to minimize the Mean Square
Error (MSE) between the desired signal and the output of the filter.
During each iteration, the APA algorithm approximates the best direction in which to2.
adjust the filter weights based on the most recent p state vectors and the most
recent p samples of the desired signal where p is the algorithm order. This
approximation is then used to update the filter weights. Part of this algorithm
requires a p-by-p matrix inversion to be computed. The Bias parameter is added to
the diagonal elements of the matrix prior to inversion in case it is singular.
For a detailed description of the APA algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltAPA_Cx (algorithm), AdptFltCoreAPA (algorithm), AdptFltCoreAPA_Cx4.
(algorithm).
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 AdptFltCoreAPA_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltCoreAPA_Cx
(algorithm)

Complex APA Adaptive Filter
Core
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 AdptFltCoreAPA_Cx

Description: Complex APA Adaptive Filter Core
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltCoreAPA Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for
the EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A
value different from zero
makes the structure an IIR
setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for
the feedback stage.

0.4  Float NO (0:1)

Order Selects the order of the APA
algorithm.

3  Integer NO (1:∞)

Bias Bias factor of the APA
algorithm.

1E-08  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0+j*0.0]  Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 errorSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

 Notes/Equations

This model implements the core of a complex arithmetic adaptive filter (FIR or IIR)1.
using the Affine Projection Algorithm (APA). The APA core tries to minimize the mean
square of the error signal by adjusting its internal filter coefficients.
During each iteration, the APA algorithm approximates the best direction in which to2.
adjust the filter weights based on the most recent p state vectors and the most
recent p samples of the error signal, where p is the algorithm order. This
approximation is then used to update the filter weights. Part of this algorithm
requires a p-by-p matrix inversion to be computed. The Bias parameter is added to
the diagonal elements of the matrix prior to inversion in case it is singular.
For a detailed description of the APA algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltAPA (algorithm), AdptFltAPA_Cx (algorithm), AdptFltCoreAPA4.
(algorithm).

Note that since this is a core part, the user must generate the error signal externally and feed it
back into the part. This means that the weight update is done on the time step after the output is
calculated.
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 AdptFltCoreAPA Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltCoreAPA
(algorithm)

APA Adaptive Filter Core
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 AdptFltCoreAPA

Description: APA Adaptive Filter Core
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltCoreAPA Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for the
EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A value
different from zero makes the
structure an IIR setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for the
feedback stage.

0.4  Float NO (0:1)

Order Selects the order of the APA
algorithm.

3  Integer NO (1:∞)

Bias Bias factor of the APA algorithm. 1E-08  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0]  Floating point
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 errorSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

 Notes/Equations

This model implements the core of a real arithmetic adaptive filter (FIR or IIR) using1.
the Affine Projection Algorithm (APA). The APA core tries to minimize the mean
square of the error signal by adjusting its internal filter coefficients.
During each iteration, the APA algorithm approximates the best direction in which to2.
adjust the filter weights based on the most recent p state vectors and the most
recent p samples of the error signal, where p is the algorithm order. This
approximation is then used to update the filter weights. Part of this algorithm
requires a p-by-p matrix inversion to be computed. The Bias parameter is added to
the diagonal elements of the matrix prior to inversion in case it is singular.
For a detailed description of the APA algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltAPA (algorithm), AdptFltAPA_Cx (algorithm), AdptFltCoreAPA_Cx4.
(algorithm).

Note that since this is a core part, the user must generate the error signal externally and feed it
back into the part. This means that the weight update is done on the time step after the output is
calculated.
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 AdptFltCoreLMS_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltCoreLMS_Cx
(algorithm)

Complex LMS Adaptive Filter Core



SystemVue - Algorithm Design Library

27

 AdptFltCoreLMS_Cx

Description: Complex LMS Adaptive Filter Core
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltCoreLMS Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for
the EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A
value different from zero
makes the structure an IIR
setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for
the feedback stage.

0.4  Float NO (0:1)

NLMS Normalisation of the step size
by the input signal power. If
on the algorithm used is called
NLMS.: OFF , ON

ON  Enumeration NO (0:1)

TransposeStructure Transpose filter structure in
the filter part of the adaptive
structure.: OFF , ON

OFF  Enumeration NO (0:1)

Symmetric Symmetric feedforward
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0+j*0.0]  Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 errorSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

 Notes/Equations

This model implements the core of a complex arithmetic adaptive filter (FIR or IIR)1.
using the Least Mean Squares (LMS) or Non-Canonical Least Mean Squares (NC-LMS)
algorithm. These algorithms try to minimize the mean square of the error signal by
adjusting their internal filter coefficients.
During each iteration the LMS algorithm approximates the best direction in which to2.
adjust the filter weights based on the current state vector and the current sample of
the error signal. This estimate is then used to update the filter weights. The size of
the step taken in this direction is controlled using the FeedfowardFilterStepSize and
FeedbackFilterStepSize parameters.
The NC-LMS is a modified version of the LMS algorithm which applies only when3.
transpose mode is selected. Note that the NC-LMS has different behavior from the
LMS.
Applying normalization to the step size causes the filter to vary its step size based on4.
the energy in the filter state vector. This can be used to stabilize convergence in
conditions where the strength of the input signal varies with time. When
normalization is applied the LMS and NC-LMS become the NLMS and NC-NLMS
algorithms respectively.
For a detailed description of the LMS family of algorithms see About Adaptive5.
Equalizer Parts (algorithm).
See also AdptFltLMS (algorithm), AdptFltLMS_Cx (algorithm), AdptFltCoreLMS6.
(algorithm).

Note that since this is a core part, the user must generate the error signal externally and feed it
back into the part. This means that the weight update is done on the time step after the output is
calculated.
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 AdptFltCoreLMS Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltCoreLMS
(algorithm)

LMS Adaptive Filter
Core



SystemVue - Algorithm Design Library

29

 AdptFltCoreLMS

Description: LMS Adaptive Filter Core
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltCoreLMS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for the
EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A value
different from zero makes the
structure an IIR setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for the
feedback stage.

0.4  Float NO (0:1)

NLMS Normalisation of the step size by
the input signal power. If on the
algorithm used is called NLMS.:
OFF , ON

ON  Enumeration NO (0:1)

TransposeStructure Transpose filter structure in the
filter part of the adaptive
structure.: OFF , ON

OFF  Enumeration NO (0:1)

Symmetric Symmetric feedforward
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0]  Floating point
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 errorSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

 Notes/Equations

This model implements the core of a real arithmetic adaptive filter (FIR or IIR) using1.
the Least Mean Squares (LMS) or Non-Canonical Least Mean Squares (NC-LMS)
algorithm. These algorithms try to minimize the mean square of the error signal by
adjusting their internal filter coefficients.
During each iteration the LMS algorithm approximates the best direction in which to2.
adjust the filter weights based on the current state vector and the current sample of
the error signal. This estimate is then used to update the filter weights. The size of
the step taken in this direction is controlled using the FeedfowardFilterStepSize and
FeedbackFilterStepSize parameters.
The NC-LMS is a modified version of the LMS algorithm which applies only when3.
transpose mode is selected. Note that the NC-LMS has different behavior from the
LMS.
Applying normalization to the step size causes the filter to vary its step size based on4.
the energy in the filter state vector. This can be used to stabilize convergence in
conditions where the strength of the input signal varies with time. When
normalization is applied the LMS and NC-LMS become the NLMS and NC-NLMS
algorithms respectively.
For a detailed description of the LMS family of algorithms see About Adaptive5.
Equalizer Parts (algorithm)
See also AdptFltLMS (algorithm), AdptFltLMS_Cx (algorithm), AdptFltCoreLMS_Cx6.
(algorithm).

Note that since this is a core part, the user must generate the error signal externally and feed it
back into the part. This means that the weight update is done on the time step after the output is
calculated.
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 AdptFltCoreRLS_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltCoreRLS_Cx
(algorithm)

Complex RLS Adaptive Filter Core
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 AdptFltCoreRLS_Cx

Description: Complex RLS Adaptive Filter Core
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltCoreRLS Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A
value different from zero makes
the structure an IIR setup.

0  Integer NO (0:∞)

Lambda Controls the memory of the
algorithm. The larger the value
the more memory it has.

0.999  Float NO (0:1)

Bias Bias factor of the RLS
algorithm.

1E-05  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0+j*0.0]  Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 errorSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

 Notes/Equations

This model implements the core of a complex arithmetic adaptive filter (FIR or IIR)1.
using the Recursive Least Squares (RLS) algorithm. The RLS core algorithm tries to
minimize the error signal based on the Least Squares (LS) criterion.
During each iteration, the RLS algorithm calculates the optimal set of filter weights2.
based on the current state vector, all past state vectors and the corresponding
samples of the error signal. The dependence of the result on previous data can be
controlled by the parameter Lambda. The RLS involves storing and recursively
updating the inverse of the data matrix. The diagonal elements of this matrix are
initialized to the value of the Bias parameter to avoid it becoming singular. 
For a detailed description of the RLS algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltRLS (algorithm), AdptFltRLS_Cx (algorithm), AdptFltCoreRLS4.
(algorithm).

Note that since this is a core part, the user must generate the error signal externally and feed it
back into the part. This means that the weight update is done on the time step after the output is
calculated.
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 AdptFltCoreRLS Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltCoreRLS
(algorithm)

RLS Adaptive Filter Core
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 AdptFltCoreRLS

Description: RLS Adaptive Filter Core
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltCoreRLS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of the
EqLib filter stage.

10  Integer NO (1:∞)

FeedbackFilterLength Number of filter coefficients of the
feedback filter stage. A value
different from zero makes the
structure an IIR setup.

0  Integer NO (0:∞)

Lambda Controls the memory of the
algorithm. The larger the value
the more memory it has.

0.999  Float NO (0:1)

Bias Bias factor of the RLS algorithm. 1E-05  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0]  Floating point
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 errorSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

 Notes/Equations

This model implements the core of a real arithmetic adaptive filter (FIR or IIR) using1.
the Recursive Least Squares (RLS) algorithm. The RLS core algorithm tries to
minimize the error signal based on the Least Squares (LS) criterion.
During each iteration, the RLS algorithm calculates the optimal set of filter weights2.
based on the current state vector, all past state vectors and the corresponding
samples of the error signal. The dependence of the result on previous data can be
controlled by the parameter Lambda. The RLS involves storing and recursively
updating the inverse of the data matrix. The diagonal elements of this matrix are
initialized to the value of the Bias parameter to avoid it becoming singular.
For a detailed description of the RLS algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltRLS (algorithm), AdptFltRLS_Cx (algorithm), AdptFltCoreRLS_Cx4.
(algorithm).

Note that since this is a core part, the user must generate the error signal externally and feed it
back into the part. This means that the weight update is done on the time step after the output is
calculated.
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 AdptFltLMS_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltLMS_Cx
(algorithm)

Complex LMS Adaptive Filter
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 AdptFltLMS_Cx

Description: Complex LMS Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltLMS Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for
the EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A
value different from zero
makes the structure an IIR
setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for
the feedback stage.

0.4  Float NO (0:1)

NLMS Normalisation of the step size
by the input signal power. If
on the algorithm used is called
NLMS.: OFF , ON

ON  Enumeration NO (0:1)

TransposeStructure Transpose filter structure in
the filter part of the adaptive
structure.: OFF , ON

OFF  Enumeration NO (0:1)

Symmetric Symmetric feedforward
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0+j*0.0]  Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 desiredSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

4 errorSignal complex NO

 Notes/Equations

This model implements a complex arithmetic adaptive filter (FIR or IIR) using the1.
Least Mean Squares (LMS) or Non-Canonical Least Mean Squares (NC-LMS)
algorithm. These algorithms try to minimize the Mean Square Error (MSE) between
the desired signal and the filter output by adjusting their internal coefficients.
During each iteration the LMS algorithm approximates the best direction in which to2.
adjust the filter weights based on the current state vector and the current sample of
the desired signal. This estimate is then used to update the filter weights. The size of
the step taken in this direction is controlled using the FeedfowardFilterStepSize and
FeedbackFilterStepSize parameters.
The NC-LMS is a modified version of the LMS algorithm which applies only when3.
transpose mode is selected. Note that the NC-LMS has different behavior from the
LMS.
Applying normalization to the step size causes the filter to vary its step size based on4.
the energy in the filter state vector. This can be used to stabilize convergence in
conditions where the strength of the input signal varies with time. When
normalization is applied the LMS and NC-LMS become the NLMS and NC-NLMS
algorithms respectively.
For a detailed description of the LMS family of algorithms see About Adaptive5.
Equalizer Parts (algorithm)
See also AdptFltLMS (algorithm), AdptFltCoreLMS (algorithm), AdptFltLMS_Cx6.
(algorithm).
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 AdptFltLMS Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltLMS
(algorithm)

LMS Adaptive Filter
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 AdptFltLMS

Description: LMS Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltLMS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedfowardFilterStepSize Step size of the algorithm for the
EqLib coefficients.

0.4  Float NO (0:1)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A value
different from zero makes the
structure an IIR setup.

0  Integer NO (0:∞)

FeedbackFilterStepSize Step size of the algorithm for the
feedback stage.

0.4  Float NO (0:1)

NLMS Normalisation of the step size by
the input signal power. If on the
algorithm used is called NLMS.:
OFF , ON

ON  Enumeration NO (0:1)

TransposeStructure Transpose filter structure in the
filter part of the adaptive
structure.: OFF , ON

OFF  Enumeration NO (0:1)

Symmetric Symmetric feedforward
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0]  Floating point
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 desiredSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

4 errorSignal real NO

 Notes/Equations

This model implements a real arithmetic adaptive filter (FIR or IIR) using the Least1.
Mean Squares (LMS) or Non-Canonical Least Mean Squares (NC-LMS) algorithm.
These algorithms try to minimize the Mean Square Error (MSE) between the desired
signal and the filter output by adjusting their internal coefficients.
During each iteration the LMS algorithm approximates the best direction in which to2.
adjust the filter weights based on the current state vector and the current sample of
the desired signal. This estimate is then used to update the filter weights. The size of
the step taken in this direction is controlled using the FeedfowardFilterStepSize and
FeedbackFilterStepSize parameters.
The NC-LMS is a modified version of the LMS algorithm which applies only when3.
transpose mode is selected. Note that the NC-LMS has different behavior from the
LMS.
Applying normalization to the step size causes the filter to vary its step size based on4.
the energy in the filter state vector. This can be used to stabilize convergence in
conditions where the strength of the input signal varies with time. When
normalization is applied the LMS and NC-LMS become the NLMS and NC-NLMS
algorithms respectively.
For a detailed description of the LMS family of algorithms see About Adaptive5.
Equalizer Parts (algorithm)
See also AdptFltLMS_Cx (algorithm), AdptFltCoreLMS (algorithm),6.
AdptFltCoreLMS_Cx (algorithm)
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 AdptFltQR_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltQR_Cx
(algorithm)

Complex QR Adaptive
Filter
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 AdptFltQR_Cx

Description: Complex QR Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltQR Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of the EqLib
filter stage.

10  Integer NO (1:∞)

FeedbackFilterLength Number of filter coefficients of the
feedback filter stage. A value different
from zero makes the structure an IIR
setup.

0  Integer NO (0:∞)

Lambda Controls the memory of the algorithm.
The larger the value the more memory
it has.

0.999  Float NO (0:1)

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 desiredSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

4 errorSignal complex NO

5 posterioriError complex NO

 Notes/Equations

This model implements a complex arithmetic adaptive filter (FIR or IIR) using the QR1.
Recursive Least Squares (QR-RLS) algorithm. The QR-RLS algorithm tries to minimize
the error between the desired signal and the output of the filter based on the Least
Squares (LS) criterion.
During each iteration, the QR-RLS algorithm calculates the optimal set of filter2.
weights based on the current state vector, all past state vectors and the
corresponding samples of the desired signal. The dependence of the result on
previous data can be controlled by the parameter Lambda. Internally the QR-RLS
uses a QR decomposition of the data matrix to store its current state.
For a detailed description of the QR-RLS algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltQR (algorithm).4.
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 AdptFltQR Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltQR
(algorithm)

QR Adaptive Filter
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 AdptFltQR

Description: QR Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltQR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of the EqLib
filter stage.

10  Integer NO (1:∞)

FeedbackFilterLength Number of filter coefficients of the
feedback filter stage. A value different
from zero makes the structure an IIR
setup.

0  Integer NO (0:∞)

Lambda Controls the memory of the algorithm.
The larger the value the more memory
it has.

0.999  Float NO (0:1)

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 desiredSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

4 errorSignal real NO

5 posterioriError real NO

 Notes/Equations

This model implements a real arithmetic adaptive filter (FIR or IIR) using the QR1.
Recursive Least Squares (QR-RLS) algorithm. The QR-RLS algorithm tries to minimize
the error between the desired signal and the output of the filter based on the Least
Squares (LS) criterion.
During each iteration, the QR-RLS algorithm calculates the optimal set of filter2.
weights based on the current state vector, all past state vectors and the
corresponding samples of the desired signal. The dependence of the result on
previous data can be controlled by the parameter Lambda. Internally the QR-RLS
uses a QR decomposition of the data matrix to store its current state.
For a detailed description of the QR-RLS algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltQR_Cx (algorithm).4.
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 AdptFltRLS_Cx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltRLS_Cx
(algorithm)

Complex RLS Adaptive Filter
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 AdptFltRLS_Cx

Description: Complex RLS Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltRLS Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of
the EqLib filter stage.

10  Integer NO (1:∞)

FeedbackFilterLength Number of filter coefficients of
the feedback filter stage. A
value different from zero makes
the structure an IIR setup.

0  Integer NO (0:∞)

Lambda Controls the memory of the
algorithm. The larger the value
the more memory it has.

0.999  Float NO (0:1)

Bias Bias factor of the RLS
algorithm.

1E-05  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0+j*0.0]  Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

2 desiredSignal complex NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal complex NO

4 errorSignal complex NO

 Notes/Equations

This model implements a complex arithmetic adaptive filter (FIR or IIR) using the1.
Recursive Least Squares (RLS) algorithm. The RLS algorithm tries to minimize the
error between the desired signal and the output of the filter based on the Least
Squares (LS) criterion.
During each iteration, the RLS algorithm calculates the optimal set of filter weights2.
based on the current state vector, all passed input vectors and the corresponding
samples of the desired signal. The dependence of the result on previous data can be
controlled by the parameter Lambda. The RLS involves storing and recursively
updating the inverse of the data matrix. The diagonal elements of this matrix are
initialized to the value of the Bias parameter to avoid it becoming singular.
For a detailed description of the RLS algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltRLS (algorithm), AdptFltCoreRLS (algorithm), AdptFltCoreRLS_Cx4.
(algorithm).
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 AdptFltRLS Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdptFltRLS
(algorithm)

RLS Adaptive Filter
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 AdptFltRLS

Description: RLS Adaptive Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdptFltRLS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FeedforwardFilterLength Number of filter coefficients of the
EqLib filter stage.

10  Integer NO (1:∞)

FeedbackFilterLength Number of filter coefficients of the
feedback filter stage. A value
different from zero makes the
structure an IIR setup.

0  Integer NO (0:∞)

Lambda Controls the memory of the
algorithm. The larger the value
the more memory it has.

0.999  Float NO (0:1)

Bias Bias factor of the RLS algorithm. 1E-05  Float NO (-
∞:∞)

InitCoef Initialized feed forward filter
coefficients: OFF , ON

OFF  Enumeration NO (0:1)

InitCoefValue Sets the feed forward filter
coefficients to an inital value
(used when InitCoef = YES).

[0.0]  Floating point
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal real NO

2 desiredSignal real NO

 Output Ports

Port Name Signal Type Optional

3 outputSignal real NO

4 errorSignal real NO

 Notes/Equations

This model implements a real arithmetic adaptive filter (FIR or IIR) using the1.
Recursive Least Squares (RLS) algorithm. The RLS algorithm tries to minimize the
error between the desired signal and the output of the filter based on the Least
Squares (LS) criterion.
During each iteration, the RLS algorithm calculates the optimal set of filter weights2.
based on the current state vector, all passed state vectors and the corresponding
samples of the desired signal. The dependence of the result on previous data can be
controlled by the parameter Lambda. The RLS involves storing and recursively
updating the inverse of the data matrix. The diagonal elements of this matrix are
initialized to the value of the Bias parameter to avoid it becoming singular.
For a detailed description of the RLS algorithm see About Adaptive Equalizer Parts3.
(algorithm).
See also AdptFltRLS_Cx (algorithm), AdptFltCoreRLS (algorithm), AdptFltCoreRLS_Cx4.
(algorithm).
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 ErrorFilterCx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ErrorFilterCx
(algorithm)

Complex Error Filter
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 ErrorFilterCx

Description: Complex Error Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: ErrorFilterCx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FloorType Specifies whether the floor parameter
introduced has to be interpreted as a linear or
as logarithmic value.: Linear , dB

Linear  Enumeration NO (0:1)

Floor Minimum value representable at the
logarithmic output of this component. This
value avoids the calculation of the logarithm of
zero.

-200  Float NO (-
∞:∞)

FilterLength Length of the Gaussian filter. If set to one no
filtering is performed.

10  Integer NO (1:∞)

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 outputLinear real NO

3 outputLog real NO

 Notes/Equations

This model measures the instantaneous power of its complex valued input signal by1.
computing its magnitude squared and applying a Gaussian filter to smooth the result.
It is provided as a convenient way to smooth the appearance of an error signal such
as that produced by an adaptive filtering algorithm. However it can be used to
measure the power of any signal.
The length of the Gaussian filter can be controlled by the FilterLength parameter. The2.
bandwidth of the filter is automatically varied according to the length. Choose
FilterLength=1 to disable filtering.
The resulting signal is provided in both linear and logarithmic formats as two3.
separate outputs. The logarithmic output is 10*log10(g(k)+F) where g(k) is the

output of the Gaussian filter. If FloorType is Linear then F=Floor. If FloorType is dB
then F=10(Floor / 10).
See also ErrorFilter (algorithm).4.
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 ErrorFilter Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ErrorFilter
(algorithm)

Error Filter
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 ErrorFilter

Description: Error Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: ErrorFilter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

FloorType Specifies whether the floor parameter
introduced has to be interpreted as a linear or
as logarithmic value.: Linear , dB

Linear  Enumeration NO (0:1)

Floor Minimum value representable at the
logarithmic output of this component. This
value avoids the calculation of the logarithm of
zero.

-200  Float NO (-
∞:∞)

FilterLength Length of the Gaussian filter. If set to one no
filtering is performed.

10  Integer NO (1:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 outputLinear real NO

3 outputLog real NO

 Notes/Equations

This model measures the instantaneous power of its real valued input signal by1.
squaring it and applying a Gaussian filter to smooth the result. It is provided as a
convenient way to smooth the appearance of an error signal such that produced by
an adaptive filtering algorithm. However it can be used to measure the power of any
signal.
The length of the Gaussian filter can be controlled by the FilterLength parameter. The2.
bandwidth of the filter is automatically varied according to the length. Choose
FilterLength=1 to disable filtering.
The resulting signal is provided in both linear and logarithmic formats as two3.
separate outputs. The logarithmic output is 10*log10(g(k)+F) where g(k) is the

output of the Gaussian filter. If FloorType is Linear then F=Floor. If FloorType is dB
then F=10(Floor / 10).
See also ErrorFilterCx (algorithm).4.
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 LMS Part
Categories: Adaptive Equalizers (algorithm), C++ Code Generation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LMS (algorithm) LMS Adaptive Filter

LMS_Cx
(algorithm)

Complex LMS Adaptive Filter

 LMS (LMS Adaptive Filter)

Description: LMS Adaptive Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: LMS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Taps Filter tap
values

[-0.040609, -0.001628, 0.17853,
0.37665, 0.37665, 0.17853, -0.001628,
-0.040609]

 Floating
point array

NO

m_iDecimation Decimation
ratio

1  Integer NO

DecimationPhase Decimation
phase

0  Integer NO

StepSize Adaptation step
size

0.01  Float YES

ErrorDelay Update loop
delay

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

2 error real NO

 Output Ports

Port Name Signal Type Optional

3 output real NO

 Notes/Equations

LMS is an adaptive filter using the least-mean square algorithm. The initial filter1.
coefficients are given by the Taps parameter. The default initial coefficients give an
8th-order, linear phase lowpass filter. LMS supports decimation, but not interpolation.
When used correctly, this LMS adaptive filter will try to minimize the mean-squared2.
error of the signal at its error input [1]. The output of the filter should be compared
to (subtracted from) some reference signal to produce an error signal. That error
signal should be fed back to the error input. The ErrorDelay parameter must equal
the total number of delays in the path from the output of the filter back to the error
input. This ensures correct alignment of the adaptation algorithm. The number of
delays must be greater than 0 or the simulation will deadlock.
The adaptation algorithm is the well-known LMS, or stochastic-gradient, algorithm.
If the SaveTapsFile parameter is not empty, a file will be created with the name3.
given by this parameter, and the final tap values will be stored there at the end of
the simulation.
See also: LMS_Cx (algorithm)4.

 References

S. Haykin, Adaptive Filter Theory, Prentice Hall: Englewood Cliffs, NJ. 1991. 2nd ed.1.

 LMS_Cx (Complex LMS Adaptive Filter)
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Description: Complex LMS Adaptive Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: LMS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Taps Filter tap values [-0.040609, -0.001628, 0.17853,
0.37665, 0.37665, 0.17853, -
0.001628, -0.040609]

 Complex
array

NO

Decimation Decimation ratio 1  Integer NO

DecimationPhase Decimation phase 0  Integer NO

StepSize Adaptation step size 0.01  Float YES

ErrorDelay Update loop delay 1  Integer NO

SaveTapsFile Filename in which to
save final tap values

  Text NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

2 error complex NO

 Output Ports

Port Name Signal Type Optional

3 output complex NO

 Notes/Equations

LMS_Cx is a complex adaptive filter using the least-mean square algorithm. For more1.
details see LMS (algorithm).
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 NonLinearityCx Part
Categories: Adaptive Equalizers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

NonLinearityCx
(algorithm)

Non-linear function for use in blind adaptive algorithms.
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 NonLinearityCx

Description: Non-linear function for use in blind adaptive algorithms.
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: NonLinearityCx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

BlindAlgorithm Choice of blind adaptive algorithm to use.:
Decision Directed (Luckly) , Constant
Modulus Algorithm (Godard) , Sato ,
Benveniste-Goursat , Stop-and-Go (Picchi
and Prati)

Decision
Directed
(Luckly)

 Enumeration NO (0:4)

ModType Modulation type: BPSK , QPSK , PSK8 ,
PSK16 , QAM16 , QAM32 , QAM64 ,
QAM128 , 256QAM , User_Defined

BPSK  Enumeration NO (0:9)

MappingTable Constellation table (used when
ModType=User_Defined)

[1+j*0,-
1+j*0]

 Complex
array

NO [-
∞:∞]

 Input Ports

Port Name Signal Type Optional

1 inputSignal complex NO

 Output Ports

Port Name Signal Type Optional

2 outputSignal complex NO

 Notes/Equations

This model implements a set of non-linear functions for use in blind adaptive1.
algorithms. A range of blind adaptive algorithms can be constructed by using this
part in conjunction with the adaptive filter cores.
The DDM and Godard algorithms work with complex-valued or real-valued2.
modulation formats. Sato, Benveniste-Goursat and Stop-and-Go algorithms only
work with real-valued modulation formats.
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 AddEnv Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AddEnv
(algorithm)

Envelope Signal
Adder

 AddEnv (Complex Envelope Signal Adder)

Description: Envelope Signal Adder
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Add Part (algorithm), AddEnv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

OutputFc Output characterization frequency
for the combined signal: Min, Max,
Center, User defined

Center  Enumeration NO  O

UserDefinedFc User defined output
characterization frequency

100e6 Hz Float NO [0:∞)† F

 Input Ports

Port Name Description Signal Type Optional

1 input input signals multiple
envelope

NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

The AddEnv model outputs the sum of the complex envelope inputs.1.
This model reads 1 sample from all inputs and writes 1 sample to the output.2.
Each input may have either a real baseband value or a complex value defined at a3.
specific characterization frequency.
The output characterization frequency NewFc is determined by the configuration of4.
inputs and the parameters, OutputFc and UserDefinedFc.

If any input is a real baseband signal, then the output will be a real baseband
signal.
Otherwise, the output will be a complex envelope signal defined at a
characterization frequency NewFc as follows.

If OutputFc is Min, NewFc is set to the minimum input characterization
frequencies.
If OutputFc is Max, NewFc is set to the maximum input characterization
frequencies.
If OutputFc is Center, NewFc is set to the average of the maximum and
minimum input characterization frequencies.
If OutputFc is User defined, NewFc is set to the UserDefinedFc parameter.

Note that if UserDefinedFc is positive, then all inputs require a nonzero characterization
frequency.

All inputs are converted to their equivalent representation at NewFc before summing.5.
A complex envelope value OldIQ at characterization frequency OldFc is converted to a6.
NewIQ at characterization frequency NewFc at time t as follows.

NewIQ is set to 
If NewFc is zero, the imaginary part of NewIQ is set to zero.

A warning message is displayed once if an input sample rate is too small to make the7.
transformation without loss of information.

See:
SubEnv (algorithm)
MpyEnv (algorithm)
MpyMultiEnv (algorithm)
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 AddNDensity Part
Categories: Analog/RF (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AddNDensity
(algorithm)

Add Noise Density to Input

 AddNDensity (Add Noise Density)

Description: Add Noise Density to Input
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: AddNDensity Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NDensityType Noise density type: Constant
noise density, Noise density vs
freq

Constant
noise density

 Enumeration NO  

NDensity Noise power spectral density 0.0 W Float NO [0:∞)

NDensityFreq Noise spectral density
specification frequency values
(Hz)

  Floating point
array

NO  

NDensityPower Noise spectral density
specification power density values
(dBm/Hz)

  Floating point
array

NO  

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

This model adds noise to the input signal.1.
At every execution, it reads 1 sample from the input and writes 1 sample to the2.
output.
If NDensityType is set to Constant noise density, then the noise added is white3.
Gaussian.
The noise density is specified in the NDensity parameter. Although the units for this
parameter are power units the value is interpreted as power spectral density, that is,
power per frequency unit (Hz).
The total noise power added to the input signal is NDensity × BW, where

NDensity is the noise power spectral density in Watts/Hz
BW is the simulation bandwidth (equal to SR for a complex envelope signal and
SR / 2 for a real baseband signal; SR is the input signal sample rate) in Hz.
The rms noise voltage level is 

.
The value of NDensity (in Watts/Hz) is related to temperature (in °Kelvin) as k·T
, where k is the Boltzmann constant (1.3806504e-23). At the standard system
temperature of 290° Kelvin (16.85° Celsius), the NDensity is 4.00388587e-21
Watts/Hz (-173.975 dBm/Hz).

If NDensityType is set to Noise density vs freq, then the spectral profile of the noise4.
added can be specified using the NDensityFreq (values need to be in Hz) and
NDensityPower (values need to be in dBm/Hz) array parameters.
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 AmplifierBB Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AmplifierBB
(algorithm)

Baseband Polynomial Amplifier with Noise
Figure

 AmplifierBB (Baseband Nonlinearity With Noise
Figure)

Description: Baseband Polynomial Amplifier with Noise Figure
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: AmplifierBB Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Offset DC offset voltage 0  Float NO (-
∞:∞)

GainUnit Gain unit for the Gain parameter or
the optional voltage controlled gain
input: voltage, dB

voltage  Enumeration NO  

Gain Gain with units defined by GainUnit
(used if optional voltage controlled
gain input not used)

1  Float NO (-
∞:∞)

NoiseFigure Input noise figure in dB 0  Float NO [0:∞)

SOIout Output second order intercept power
in dBm

40  Float NO (-
∞:∞)

TOIout Output third order intercept power in
dBm

30  Float NO (-
∞:∞)

HigherOrderTerms Higher order intercept terms 4th to
11th in dBm

[ ]  Floating point
array

NO (-
∞:∞)

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

2 control gain control real YES

 Output Ports

Port Name Description Signal Type Optional

3 output output signal real NO

 Notes/Equations

AmplifierBB models a baseband nonlinearity including noise figure.1.
This block reads 1 sample from input and writes 1 sample to output.2.
The small signal gain value is based on either the Gain parameter value or on the3.
optional control value. The control input is optional and when used the value at that
pin is used instead of the Gain parameter value. In the following discussion, the Gain
value generally refers to the control input value as well.
The nonlinearity is defined by the parameters Gain, SOIout, TOIout and RefR and by4.
curve fitting the nonlinear parameters with a second, third, or higher order
polynomial. The higher order polynomial is used if the HigherOrderTerms are
specified. SOI, TOI and HigherOrderTerms are ignored if set to 200 dBm or higher.
Nonlinear model with SOI is defined as follows.5.

Let y = c 1 x - c 2 x 2

where
x = input voltage
y = output voltage
c 1 = small signal gain = Gain
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c 2 = second order gain factor

Saturation occurs at the peak x = x_max. This occurs when dy/dx = 0
c 1 - 2 c 2 x_max = 0. Therefore, x_max = (c 1 / 2) / c 2.

y_max = c 1 x_max - c 2 x_max 2

Given the output, SOI is specified in dBm into RefR ohms, then c 2 is derived as

follows.

Let SOIv be SOI in terms of output peak volts.
SOI occurs at x i such that c 1 x i = c 2 x i

2 = SOIv. Therefore, c 2 = c 1
2 /

SOIv.
This value for c 2 implies that a positive signal experiences expansion, but a

negative signal will have compression.
Nonlinear model with TOI6.

Let y = c 1 x + c 3 x 3

where
x = input voltage
y = output voltage
c 1 = Gain

c 3 = third order gain factor

Saturation occurs at the peak x = x_max. This occurs when dy/dx = 0
c 1 + 3 c 3 x_max 2 = 0

y_max = c 1 x_max + c 3 x_max 3

Given the output, TOI is specified in dBm into RefR ohms, then c 3 is derived as

follows.

Let TOIv be TOI in terms of output peak volts.
TOI is defined for a two tone input signal, x(t).
The expansion for y(t) = c 1 x(t) + c 3 x 3(t) results in fundamental terms

at w1, w2 and third order terms at 2 w1 - w2, 2 * w2 - w1.
See note One and Two Tone Response for SOI and TOI.
After the trigonometric expansion,

the first order term is c 1

the third order term is: (3/4) c 3 x 3

TOI occurs at x i such at c 1 x i = -(3/4) c 3 x 3 = TOIv

Thus c 3 = -(4/3) c 1
3 / TOIv 2

Nonlinear model with SOI and TOI7.
Let y = c 1 x + c 2 x 2 + c 3 x 3

where
x = input voltage
y = output voltage
c 1 = Gain

c 2 = second order gain factor

c 3 = third order gain factor

c 2 and c 3 are derived as described in the notes above.

Saturation occurs at the peak x = x_max. This occurs when dy/dx = 0
c 1 - 2 c 2 x_max + 3 c 3 x_max 2 = 0

Using the quadratic equations solution that makes x_max positive

This value of x_max is always positive.
y_max = c 1 x_max - c 2 x_max 2 + c 3 x_max 3

This y_max value is the limit for a positive x_max signal.
For a negative signal, there will be another limiting value that is calculated using
the above expression for the other quadratic equation solution.

When HigherOrderTerms are defined (with values less than 200 dBm), then a similar8.
process to that described above is used to derive the nonlinearity polynomial
coefficiants along with the positive and negative saturation characteristics.
The noise is defined by the parameters NoiseFigure and RefR.9.

Let
k = Boltzmann constant = 1.3806504e-23 Joules/Kelvin
sr = simulation sample rate at this block input
t0 = reference temperature at 290 Kelvin
nf = 10 (NoiseFigure/10)

Then, the rms noise voltage, vn_rms is calculated as follows.
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vn_rms is used to generate a Gaussian random variate that is added to the
input signal before the signal is amplified through the nonlinearity.

 

 One and Two-Tone Response for SOI and TOI

Let y = c 1 x + c 2 x 2 + c 3 x 3

where
y = output voltage
c 1 = small signal gain

c 2 = second order gain factor

c 3 = third order gain factor

For one-tone excitation, 

, the response is:

For two-tone excitation, 

, the response is:
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 Amplifier Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Amplifier
(algorithm)

Nonlinear Amplifier with Noise Figure

 Amplifier (Nonlinear Gain)

Description: Nonlinear Amplifier with Noise Figure
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Gain Part (algorithm), Amplifier Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

GainUnit Gain unit for the Gain parameter or the optional
voltage controlled gain input: voltage, dB

voltage  Enumeration NO  

Gain Gain with units defined by GainUnit (used if
optional voltage controlled gain input not used)

1  Float NO (-
∞:∞)

NoiseFigure Input noise figure in dB 0  Float NO [0:∞)

GCType Gain compression type: none, TOI, dBc1,
TOI+dBc1, PSat+GCSat+TOI,
PSat+GCSat+dBc1, PSat+GCSat+TOI+dBc1,
RappNonlinearity, Gain compression vs input
power, AM/AM and AM/PM vs input power

none  Enumeration NO  

TOIout Output third order intercept power 0.1 W Float NO (0:∞)†

dBc1out Output 1 dB gain compression power 0.01 W Float NO (0:∞)†

PSat Saturation power 0.032 W Float NO (0:∞)†

GCSat Gain compression at saturation in dB 3  Float NO [3:7]†

RappS Rapp nonlinearity smoothness factor 3  Integer NO (0:∞)

GComp Array of triple values for Input Power(dBm) and
either Gain(dB)/Phase(deg) change from small
signal or AM-to-AM(dB/dB)/AM-to-PM(deg/dB)

[0, 0,
0]

 Floating
point array

NO ‡

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

2 control gain control real YES

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

Amplifier models a nonlinearity including noise figure for use with either baseband or1.
complex envelope signals.
This block reads 1 sample from input in and writes 1 sample to output out.2.
The small signal gain value is based on either the Gain parameter value or on the3.
optional control input value if used. The control input does not need to be connected.
It is optional and when used the value at that pin is used instead of the Gain
parameter value. In the following discussion, the Gain value implies the control input
value as well.
The nonlinearity is defined by the parameters GCType, TOIout, dBc1out, PSat, GCSat,4.
RappS, GComp and RefR. All nonlinear models except those based on GComp are
achieved by curve fitting nonlinear parameters with an odd order nonlinear
polynomial. The GComp based nonlinearities are table based with interpolation
between points.
The general nonlinearity has this output power versus input power characteristic.5.
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Nonlinear model with TOI6.
Let y = c 1 x + c 3 x 3

where
x = input voltage
y = output voltage
c1 = small signal gain ( Gain )
c3 = third order gain factor

See detail discussion in the documentation for the AmplifierBB block. See
AmplifierBB (algorithm).

Nonlinear model with dBc17.
Let y = c 1 x + c 3 x 3

where
x = input voltage
y = output voltage
c1 = small signal gain ( Gain )
c3 = third order gain factor

Given the output dBc1out in dBm into RefR ohms, then c 3 is derived as follows.

dBc1v = dBc1out in terms of output peak volts

dBc1out occurs when y is 1 dB compressed.
This occurs when y 1 = c 1 x 1 + c 3 x 1

3 = 0.891 c 1 x 1
where

-1 dB = 20 log 10 (0.891)

y 1 = dBc1v

x 1 = (dBc1v / 0.891) / c 1

c 3 = (y 1 – c 1 x 1) / x 1
3

Saturation occurs as for the TOI nonlinearity:

y_max = c 1 x_max + c 3 x_max 3

Nonlinear model with TOI and dBc18.
Let y = c 1 x + c 3 x 3 + c 5 x 5

where
x = input voltage
y = output voltage
c 1 = small signal gain

c 3 = third order gain factor

c 5 = fifth order gain factor

c 3 is same as that derived for the TOI nonlinearity.

Given the output dBc1out in dBm into RefR ohms, then c 5 is derived as follows:

dBc1v = dBc1 in terms of output peak volts

dBc1 occurs when y is 1 dB compressed.
This occurs when y 1 = c 1 x 1 + c 3 x 1

3 + c 5 x 5 = 0.891 c 1 x 1
where

-1 dB = 20 log 10 (0.891)

y 1 = dBc1v

x 1 = (dBc1v / 0.891) / c 1

c 5 = (y 1 – c 1 x 1 – c 3 x 1
3) / x 1

5

The minimum TOI occurs when c 5 = 0
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Therefore, the minimum TOI is defined when
c 3 = -(1 - 0.891)(0.891 2)(c 1

3) / dBc1v 2

Saturation occurs at the peak x = x_max. This occurs when dy/dx = 0
c 1 + 3 c 3 x_max 2 + 5 c 5 x_max 4 = 0

Using the minimum quadratic equations solution

y_max = c 1 x_max + c 3 x_max 3 + c 5 x_max 5

Nonlinear model with PSat, GCSat, TOI and dBc19.
Let y = c 1 x + c 3 x 3 + c 5 x 5 + c 7 x 7 + c 9 x 9 + c 11 x 11

where
x = input voltage
y = output voltage
c 1 = small signal gain

c 3, c 5, c 7, c 9, c 11 = 3rd, 5th, 7th, 9th, 11th order gain factor; c 3 < 0, c 5
< 0

For GCType = PSat+GCSat+TOI, dBc1out = TOIout - dB_offset
For GCType = PSat+GCSat+dBc1, TOIout = dBc1out + dB_offset
For complex envelope signals, dB_offset = 10.6357 dB, otherwise for baseband
signals, dB_offset = 11.8851 dB.
The c 11 factor is used to improve the stability of the polynomial expression;

otherwise the polynomial is more likely to have gain expansion or reduced range
of usage.
c 3 is based on TOIout only and is as derived for the TOI nonlinearity.

GCSatR = voltage compression ratio = 10 (GSat / 20)

y s = output peak voltage at saturation = 

x s = input peak voltage at saturation = PSatv × GCSatR / c 1

y 1 = output peak voltage at 1dB compression = 

x 1 = input peak voltage at 1dB compression = (dBc1v / 0.891) / c 1
To derive c 5, c 7, c 9 and c 11. Setup 4 equations with 4 unknowns.

At 1dB compression:
c 1 x 1 + c 3 x 1

3 + c 5 x 1
5 + c 7 x 1

7 + c 9 x 1
9 + c 11 x 1

11 = y 1
At saturation there is GCSat dB compression
c 1 x s + c 3 x s

3 + c 5 x s
5 + c 7 x s

7 + c 9 x s
9 + c 11 x s

11 = y s
At saturation set dy/dx = 0
c 1 + 3 c 3 x 1

2 + 5 c 5 x 1
4 + 7 c 7 x 1

6 + 9 c 9 x 1
8 + 11 c 11 x 1

10 = 0

At saturation set the second derivative of y with respect to x to zero
2 × 3 c 3 x 1 + 4 × 5 c 5 x 1

3 + 6 × 7 c 7 x 1
5 + 8 × 9 c 9 x 1

7 + 10 × 11 c 11

x 1
9 = 0

The four equations are solved for the four unknowns: c 5, c 7, c 9, c 11

The following parameter value limits are defined.
For GCType = PSat+GCSat+TOI+dBc1
dBc1out_dBm + 0.5 × GCSat_dB – 1 < PSat_dBm < dBc1out_dBm + 13 -
GCSat_dB
For GCType = PSat+GCSat+TOI+dBc1
TOIout_dBm_LoLimit =
dBc1out_dBm + dB_offset – 1 – 0.5 × ( (dBc1out_dBm + 13 – GCSat_dB)
– PSat_dBm )
TOIout_dBm_HiLimit =
dBc1out_dBm + dB_offset + ( (dBc1out_dBm + 13 – GCSat_dB) –
Psat_dBm ) 2

Nonlinear model with Rapp Nonlinearity10.
Let y = c 1 abs (x) / ( 1 + (c1*abs (x) /xs)(2*s) )(1/(2*s))

where
c 1 = Gain

s > 0; s = nonlinearity smoothness factor = RappS
x s >= 0; x s = input peak voltage at saturation

GCSatR = voltage compression ratio = 10 (GSat / 20)

y s = output peak voltage at saturation = 

x s = input peak voltage at saturation = PSatv × GCSatR / c 1
This nonlinear model was developed for solid state power amplifiers, produces a
smooth transition for the AM/AM conversion as the input amplitude approaches
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saturation, and has no AM/PM conversion.
The reference for the Rapp nonlinear model is:
Rapp C., "Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital
sound broadcasting system," in Proc. of the Second European Conf. on Satellite
Comm.,
Liège, Belgium, Oct. 1991.

Nonlinear model with Gain compression versus input power11.
This nonlinear model is defined by the small signal gain, Gain, and the array of triple
values for input power(dBm), gain change (dB) and phase change (deg) from small
signal.

Define:
dB(G ss) = small signal gain in dB

phase(G ss) = small signal phase in deg

P = input power in dBm
O = output power in dBm
OPh = output phase in deg
GC = gain change from small signal in dB
GC[i] = O[i] – P[i] – dB(G ss);

GC[i] = (O[i] – O[i-1]) – (P[i] – P[i-1]) + GC[i-1]
PC = phase change from small signal in deg
PC[i] = OPh[i] – phase(G ss);

PC[i] = (OPh[i] – OPh[i-1]) + PC[i-1];
Gain and phase change between the consecutive points is found using linear
interpolation.

Nonlinear model with AM/AM and AM/PM versus input power12.
This nonlinear model is defined by the small signal gain, Gain, and the array of triple
values for input power(dBm), AM-to-AM (dB/dB), and AM-to-PM (deg/dB).
The model is achieved by relating to the nonlinear model with Gain compression
versus input power. See the prior note for the definition of P, O, OPh, GC and PC

Define
AM_to_AM = AM = (delta output power in dB)/(delta input power in dB)
AM_to_PM = PM = (delta output phase in deg)/(delta input power in dB)

By definition
AM[i] = 0.5 * ( dO[i]/dP[i] + dO[i+1]/dP[i+1] )
PM[i] = 0.5 * ( dOPh[i]/dP[i] + dOPh[i+1]/dP[i+1] )
Where

dO[i] = O[i] – O[i-1] with dO[0] = 0;
dOPh[i] = OPh[i] – OPh[i-1] with dOPh[0] = 0;
dP[i] = P[i] – P[i-1] with dP[0] = dP[1];

Given the set of values for AM[i] and PM[i], the associated value for GC[i] and
PC[i] are derived. Then the nonlinearity is as defined in the previous note.

The noise is defined by the parameters NoiseFigure and RefR.13.
Let

k = Boltzmann constant = 1.3806504e-23 Joules/Kelvin
sr = simulation sample rate at this block input
factor = 2 for real baseband signal, = 1 for complex envelope signals
t0 = reference temperature = 290 Kelvin
nf = 10 (NoiseFigure/10)

vn_rms = rms noise voltage
Then

vn_rms is used to generate a Gaussian random variate that is added to the
input signal before the signal is amplified through the nonlinearity.
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 AtoD_ADI Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AtoD_ADI
(algorithm)

Analog to Digital Converter for ADI ADC
Models
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 AtoD_ADI

Description: Analog to Digital Converter for ADI ADC Models
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: AtoD ADI Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Model ADC type A-to-D model: User specified
model, AD6645_80.adc,
AD6645_105.adc, AD9214_65_2V.adc,
AD9214_80_1V.adc,
AD9214_105_1V.adc, AD9215_65.adc,
AD9215_80.adc, AD9215_105.adc,
AD9216_65.adc, AD9216_80.adc,
AD9216_105.adc, AD9218_40_1V.adc,
AD9218_65_2V.adc,
AD9218_80_1V.adc,
AD9218_105_1V.adc, AD9219_40.adc,
AD9219_65.adc, AD9222_40.adc,
AD9222_50.adc, AD9226_2V.adc,
AD9228_40.adc, AD9228_65.adc,
AD9229_50.adc, AD9229_65.adc,
AD9230_170.adc, AD9230_210.adc,
AD9230_250.adc, AD9233_105.adc,
AD9233_125.adc, AD9236.adc,
AD9237_20.adc, AD9237_40.adc,
AD9237_65.adc, AD9238_20.adc,
AD9238_40.adc, AD9238_65.adc,
AD9244_40.adc, AD9244_65.adc,
AD9245_20.adc, AD9245_40.adc,
AD9245_65.adc, AD9245_80.adc,
AD9246_105.adc, AD9246_125.adc,
AD9248_20.adc, AD9248_40.adc,
AD9248_65.adc, AD9252.adc,
AD9254.adc, AD9259.adc, AD9287.adc,
AD9289.adc, AD9430_170_LVDS.adc,
AD9430_210_LVDS.adc,
AD9433_105.adc, AD9433_125.adc,
AD9444.adc, AD9445_105_2V.adc,
AD9445_105_3p2V.adc,
AD9445_125_2V.adc,
AD9445_125_3p2V.adc,
AD9446_80_2V.adc,
AD9446_80_3p2V.adc,
AD9446_100_2V.adc,
AD9446_100_3p2V.adc,
AD9460_80_3p4V.adc,
AD9460_105_3p4V.adc,
AD9461_125_3p4V.adc,
AD9461_130_3p4V.adc, AD9480.adc,
AD9600.adc, AD9601.adc,
AD9626_170.adc, AD9626_210.adc,
AD9626_250.adc, AD9627-11.adc,
AD9627.adc, AD9640.adc, AD80141.adc,
Ideal_8_Bit.adc, Ideal_10_Bit.adc,
Ideal_12_Bit.adc, Ideal_14_Bit.adc

User
specified
model

 Enumeration NO

ModelDirType Model directory type: Default, User
defined

Default  Enumeration NO

ModelDir User defined directory for model adc files   Text NO

UserModel User specified A-to-D model   Filename NO

UserNBits User specified number of bits in the A-
to-D model

8  Integer NO

UserMinSR User specified minimum sample rate
(encode rate)

0 Hz Float NO

UserMaxSR User specified maximum sample rate
(encode rate)

1e12 Hz Float NO

UserCommonModeOffset User specified common mode offset
voltage applied to input signal

0 V Float NO

UserInputSpan User specified input signal span 2 V Float NO

UserDigitalFormat User specified output digital format:
Offset binary, Twos-complement

Twos-
complement

 Enumeration NO

CenterFreq Spectral center frequency of analog
input

0 Hz Float NO

NyquistZone Value representing the analog input
Nyquist zone; use n when n*SR/2 < f <
(n+1)*SR/2

1  Integer NO

EnableExtJitter Enable external jitter: NO, YES NO  Enumeration NO

ExtJitter External RMS jitter applied to the input
signal

0 s Float NO

 Input Ports

Port Name Description Signal Type Optional

1 A_in input analog
signal

envelope NO

 Output Ports
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Port Name Description Signal Type Optional

2 A_out output sampled analog signal envelope NO

3 D_I output NBit word as integer for I channel int NO

4 D_Q output NBit word as integer for Q channel int NO

 Notes/Equations

This component models analog-to-digital converters from Analog Devices with1.
reference to Analog Devices part numbers. The input at A_in can be a real baseband
signal or a complex envelope signal. The output digital words are in integer form.
When the input is a real baseband signal, the output digital word is at the D_I
output. When the input is a complex envelope signal, the D_I output contains the
digital word for the I envelope and the D_Q ouput contains the digital word for the Q
envelope. The A_out contains the quantized form of the input signal. If A_in is a
complex envelope signal, then the A_out is also a complex envelope signal at the
same characterization frequency.
This block reads 1 sample from the input and writes 1 sample to the outputs.2.
ModelDir is the computer disk directory location in which the Analog Devices AtoD3.
model files (*.adc) are located. The default location is in the SystemVue installation
directory (typically C:\Program Files\SystemVue(Version)) under Model\ADI. The
user can use these model files delivered with SystemVue or use other Analog Devices
AtoD model files obtained from Analog Devices and located in another directory.
When Model is not 'User specified model'4.
The Model value is the name of an Analog Devices AtoD model file that is delivered
with SystemVue. By selecting one of these predefined model, the full characteristics
are defined and used. For these models, the simulator prints out the values for NBits,
MinSR, MaxSR, CommonModeOffset, InputSpan and DigitalFormat associated with
the selected Analog Devices AtoD model.
When Model is 'User specified model'5.
The UserModel is the Analog Devices *.adc filename that the user separately
obtained and would like to use. This option is available when the predefined *.adc
filenames are not what the user wants to use and would like to use instead other
Analog Devices AtoD models. The UserNBits, UserMinSR, UserMaxSR,
UserCommonModeOffset, UserInputSpan, and UserDigitalFormat values are to be
entered by the user as is defined for the UserModel listed by the user and are value
to be obtained from Analog Devices for the model listed.
Every simulation sample results in sampling the input A_in and quantization of that6.
input resulting in the output values. When EnableExtJitter = YES, then the ExtJitter
defines the RMS jitter applied to the input A_in before sampling.
The Analog Devices AtoD (*.adc) model is defined for use with the input signals in7.
the range [ CommonModeOffset, CommonModeOffset + InputSpan ]. The
CommonModeOffset bias is automatically applied internally to the AtoD_ADI input
A_in. Thus, the AtoD_ADI input A_in is defined for use with A_in in the range [ -
InputSpan / 2, InputSpan / 2 ), and limited to these limits when A_in is outside this
range. The CommonModeOffset and InputSpan are automatically defined when Model
is not 'User specified model'. They are defined by UserCommonModeOffset and
UserInputSpan when Model is 'User specified model'.
Quantization of the input A_in8.
NBits, InputSpan and DigitalFormat are used to quantize the input A_in to generate
the digital words that appear at the integer outputs D_I and D_Q and the quantized
analog output A_out. These values are either predefined when Model is not 'User
specified model', or are user specified when Model is 'User specified model'. Define
VRef = InputSpan/2. Define LSB = least significant bit = 2 × VRef / 2 NBits .
The conversion thresholds for A_in are {-VRef + i × LSB}, where i = 1, ... , 2 NBits -
1.
When DigitalFormat is 'Offset binary', the digital words span integer values in the
range [ 0, 2^ NBits - 1 ].
When DigitalFormat is 'Twos-complement', the digital words span integer values in
the range [ -2^( NBits /2), 2^( NBits /2) - 1 ].
A_out output is in the range of [-(VRef - 0.5 LSB), (VRef - 0.5 LSB)] with values {-
VRef + (i - 0.5) × LSB}, where i = 1, ... , 2 NBits .
The Analog Devices AtoD models all have a start up transient time (Latency) during9.
which time the output values are random values.
The Analog Devices AtoD models allow the user to specify the spectral center10.
frequency of the analog signal (CenterFreq, when A_in is real) and the analog input
Nyquist zone to improve AtoD model behavior.
See the Analog Devices AtoD documentation for more detail on their AtoD models.11.
http://www.analog.com/en/analog-to-digital-converters/ad-
converters/products/index.html

http://www.analog.com/en/analog-to-digital-converters/ad-converters/products/index.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/products/index.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/products/index.html
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 AtoD_ADI_PMF Part
Categories: Analog/RF (algorithm), C++ Code Generation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AtoD_ADI_PMF
(algorithm)

Analog to Digital Converter for ADI PMF Models
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 AtoD ADI PMF

Description: Analog to Digital Converter for ADI PMF Models
Domain: Timed
C++ Code Generation Support: YES
Associated Parts: AtoD ADI PMF Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

PMFModel PMF type A-to-D model: AD6655.pmf,
AD6657.pmf, AD9262.pmf,
AD9271.pmf, AD9272.pmf,
AD9273.pmf

AD6655.pmf  Enumeration NO

ModelDirType Model directory type: Default, User
defined

Default  Enumeration NO

ModelDir User defined directory for model adc
and pmf files

  Text NO

DisplayPMF_Info Display PMF model information: No,
Setup information, Setup information
and all available states

No  Enumeration NO

Set6655_Mode PMF model 6655 mode: HB Only, HB +
FIR, NCO + HB, NCO + HB + FIR, NCO
+ HB + FIR + fadc/8

HB Only  Enumeration NO

Set6657_Mode PMF model 6657 mode: ADC Only, ADC
+ NS (22%), ADC + NS (33%)

ADC Only  Enumeration NO

Set9262_Mode PMF model 9262 mode: 10 MHz
Bandwidth, 5 MHz Bandwidth, 2.5 MHz
Bandwidth

10 MHz
Bandwidth

 Enumeration NO

LowPass Enable halfband low pass mode: NO,
YES

YES  Enumeration NO

ReverseSpec Enable spectrum reversal mode: NO,
YES

NO  Enumeration NO

DoubleFIRScale Double FIR scale factor: NO, YES NO  Enumeration NO

DecimationPhase Decimation phase 0  Integer NO

NCO_Freq NCO frequency 0 Hz Float NO

NCO_PhaseOffset NCO phase offset in degrees 0  Float NO

NoiseShapeTuningWord Noise shape tuning word 0  Integer NO

NCO_Kout_m NCO Kout parameter m 16  Float NO

LNA_Gain1 LNA scalar gain: Gain1 14, Gain1 15.6,
Gain1 18

Gain1 14  Enumeration NO

LNA_Gain2 LNA scalar gain: Gain2 15.6, Gain2
17.9, Gain2 21.3

Gain2 15.6  Enumeration NO

VGA_Gain VGA scalar gain 0  Float NO

PGA_Gain PGA scalar gain 0  Float NO

PGA_Atten PGA scalar attenuation: Atten 21,
Atten 24, Atten 27, Atten 30

Atten 24  Enumeration NO

LowerCutOffFreq Lower cutoff frequency: LPF 0, LPF
300000, LPF 700000

LPF 0  Enumeration NO

AAF_k AAF k parameter: AAF k 0.7, AAF k
0.8, AAF k 0.9, AAF k 1.0, AAF k 1.1,
AAF k 1.2, AAF k 1.3

AAF k 0.7  Enumeration NO

HPF_CutOffFreq HPF Cutoff Frequency (not working; to
be fixed): HPF Flp/20.7, HPF Flp/11.5,
HPF Flp/7.9, HPF Flp/6.0, HPF Flp/4.9,
HPF Flp/4.1, HPF Flp/3.5, HPF Flp/3.1,
HPF DC

HPF Flp/20.7  Enumeration NO

LPF_fc_vs_fs LPF fc percentage of fs: LPF 1/3, LPF
1/4.5

LPF 1/3  Enumeration NO

CenterFreq Spectral center frequency of analog
input

0 Hz Float NO

NyquistZone Value representing the analog input
Nyquist zone; use n when n*SR/2 < f
< (n+1)*SR/2

0  Integer NO

EnableExtJitter Enable external jitter: NO, YES NO  Enumeration NO

ExtJitter External RMS jitter applied to the input
signal

0 s Float NO

 Input Ports
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Port Name Description Signal Type Optional

1 A_in input analog
signal

envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 I_out output sampled analog I signal envelope NO

3 Q_out output sampled analog Q signal envelope NO

4 D_I output NBit word as integer for I channel int NO

5 D_Q output NBit word as integer for Q channel int NO

 Notes/Equations

This models implements a predefined set of Analog Devices parts referenced through1.
their part numbers.
At every execution cycle, 1 sample is read from the input and 1 sample is written to2.
the output.
ModelDir is the computer disk directory location where the Analog Devices model files3.
(*.pmf) are located. The default location is in the SystemVue installation directory
(typically C:\Program Files\SystemVue(Version)) under Model\ADI.
For more details on the specific parts refer to their documentation provided by Analog4.
Devices:

AD6655: http://www.analog.com/en/rfif-components/digital-updown-
converters/ad6655/products/product.html
AD6657: http://www.analog.com/en/rfif-components/rxtx-
subsystems/ad6657/products/product.html
AD9262: http://www.analog.com/en/analog-to-digital-converters/ad-
converters/ad9262/products/product.html
AD9271: http://www.analog.com/en/analog-to-digital-converters/ad-
converters/ad9271/products/product.html
AD9272: http://www.analog.com/en/analog-to-digital-converters/ad-
converters/ad9272/products/product.html
AD9273: http://www.analog.com/en/analog-to-digital-converters/ad-
converters/ad9273/products/product.html

http://www.analog.com/en/rfif-components/digital-updown-converters/ad6655/products/product.html
http://www.analog.com/en/rfif-components/digital-updown-converters/ad6655/products/product.html
http://www.analog.com/en/rfif-components/digital-updown-converters/ad6655/products/product.html
http://www.analog.com/en/rfif-components/rxtx-subsystems/ad6657/products/product.html
http://www.analog.com/en/rfif-components/rxtx-subsystems/ad6657/products/product.html
http://www.analog.com/en/rfif-components/rxtx-subsystems/ad6657/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9262/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9262/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9262/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9271/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9271/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9271/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9272/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9272/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9272/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9273/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9273/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9273/products/product.html
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 AtoD_Model Part
Categories: Analog/RF (algorithm), C++ Code Generation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AtoD_Model
(algorithm)

Analog to Digital Converter Model

 AtoD_Model

Description: Analog to Digital Converter Model
Domain: Timed
C++ Code Generation Support: YES
Associated Parts: AtoD Model Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

NBits Number of bits in the A-to-D model 12  Integer NO

VRef Reference voltage, -
VRef<=input<=VRef

1 V Float NO

OutputDigitalFormat Output digital format: Offset binary,
Twos-complement

Twos-
complement

 Enumeration NO

DistortionModel Distortion model: None, Jitter, INL and
DNL, ENOB value, SNR and Harmonics,
SINAD and SFDR

Jitter, INL and
DNL

 Enumeration NO

EnableJitter Enable jitter: No, Time Domain,
Frequency Domain

No  Enumeration NO

RJrms Standard deviation of the random jitter 0 s Float NO

PhaseNoiseData Phase noise specification - pairs of
offset freq (Hz) and SSB phase noise
level (dBc/Hz)

[1000, -30,
10000, -50,
100000, -50]

 None NO

PN_Type Phase noise model type with random or
fixed offset freq spacing and amplitude:
Random PN, Fixed Freq Offset, Fixed
Freq Offset And Amplitude

Random PN  Enumeration NO

INL Integral nonlinearity relative to least
significant bit (LSB)

0  Float NO

DNL Differential nonlinearity relative to least
significant bit (LSB)

0  Float NO

ENOB Equivalent number of bits (based on
INL and DNL

12  Float NO

SNR_Model SNR model: Quantization and Jitter,
Quantization and INL/DNL,
Quantization and (Jitter or INL/DNL)

Quantization
and Jitter

 Enumeration NO

CenterFreq Spectral center frequency for analog
input

0 Hz Float NO

Level_dBFS Signal level in dBFS for analog input 0  Float NO

SNR_dB SNR output in dB for analog input 60  Float NO

H2_dBc 2nd harmonic output level in dBc
relative to fundamental output

-400  Float NO

H3_dBc 3rd harmonic output level in dBc
relative to fundamental output

-400  Float NO

H4_dBc 4th harmonic output level in dBc
relative to fundamental output

-400  Float NO

H5_dBc 5th harmonic output level in dBc
relative to fundamental output

-400  Float NO

SINAD_dB Output signal to (noise plus harmonic
distortion) ratio in dB

60  Float NO

SFDR_dBc Output spurious free dynamic range in
dBc relative to fundamental output
level

70  Float NO

FFT_Size FFT size as power of 2: 2^12, 2^13,
2^14, 2^15, 2^16

2^14  Enumeration NO

ConversionType Type of input conversion: Clocked,
Downsampled

Clocked  Enumeration NO

Clock Internal cosine clock frequency 0.2e6 Hz Float NO

Phase Internal clock phase 0.0 deg Float NO

DownsampleFactor Downsampling ratio 1  Integer NO

DownsamplePhase Downsampling phase 0  Integer NO

AntiAliasingFilter Turn off/on anti-aliasing filter before
downsampling: OFF, ON

OFF  Enumeration NO

ExcessBW Excess bandwidth of raised cosine anti-
aliasing filter

0.5  Float NO

 Input Ports

Port Name Description Signal Type Optional

1 A_in input analog
signal

envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 A_out output sampled analog signal envelope NO

3 D_I output NBit word as integer for I channel int NO

4 D_Q output NBit word as integer for Q channel int NO

 Notes/Equations
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 AtoD Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AtoD
(algorithm)

Analog to Digital Converter with Integral and Differential Nonlinearities

 AtoD

Description: Analog to Digital Converter with Integral and Differential Nonlinearities
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: AtoD Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

NBits Number of bits 8  Integer NO [4:16]

VRef Reference voltage, -
VRef<=input<=VRef

1.0 V Float NO (0:∞)

OutputDigitalFormat Output digital format: Offset binary,
Twos-complement

Offset binary  Enumeration NO  

DistortionModel Distortion model: None,
Jitter/INL/DNL, ENOB value, SNR
and Harmonics, SINAD and SFDR

Jitter/INL/DNL  Enumeration NO  

EnableJitter Enable jitter: No, Time Domain,
Frequency Domain

No  Enumeration NO  

RJrms Standard deviation of random jitter 0.0 s Float NO [0:∞)

PhaseNoiseData Phase noise specification - pairs of
offset freq (Hz) and SSB phase noise
level (dBc/Hz)

  Floating
point array

NO  

PN_Type Phase noise model type with random
or fixed offset freq spacing and
amplitude: Random PN, Fixed freq
offset, Fixed freq offset and
amplitude

Random PN  Enumeration NO  

INL Integral nonlinearity relative to least
significant bit (LSB)

0.0  Float NO [DNL/2:∞)

DNL Differential nonlinearity relative to
least significant bit (LSB)

0.0  Float NO [0:∞)

ENOB Equivalent number of bits (based on
INL and DNL)

12  Float NO [1:16]

SNR_Model SNR model: Quantization_and_Jitter,
Quantization_and_INL_DNL,
Quantization_and_Jitter_or_INL_DNL

Quantization_and_Jitter  Enumeration NO  

CenterFreq Spectral center frequency for analog
input

0.0 Hz Float NO [0.0:∞)

Level_dBFS Signal level in dBFS for analog input 0.0  Float NO (-∞:0.0]

SNR_dB SNR output in dB for analog input 60.0  Float NO (-∞:∞)

H2_dBc 2nd harmonic output level in dBc
relative to fundamental output

-400.0  Float NO (-ing:-10]

H3_dBc 3rd harmonic output level in dBc
relative to fundamental output

-400.0  Float NO (-ing:-10]

H4_dBc 4th harmonic output level in dBc
relative to fundamental output

-400.0  Float NO (-ing:-10]

H5_dBc 5th harmonic output level in dBc
relative to fundamental output

-400.0  Float NO (-ing:-10]

SINAD_dB Output signal to (noise plus
harmonic distortion) ratio in dB

60.0  Float NO (-∞:∞)

SFDR_dBc Output spurious free dynamic range
in dBc relative to fundamental
output level

70.0  Float NO (-∞:∞)

FFT_Size FFT size as power of 2: 2^12, 2^13,
2^14, 2^15, 2^16

2^14  Enumeration NO  

ConversionType Type of input conversion: Clocked,
Downsampled

Clocked  Enumeration NO  

Clock Internal cosine clock frequency 0.2e6 Hz Float NO (0:SR]†

Phase Internal clock phase 0.0 deg Float NO (-∞:∞)

DownsampleFactor Downsampling ratio 1  Integer NO [1:∞)

DownsamplePhase Downsampling phase 0  Integer NO [0:Factor-
1]

AntiAliasingFilter Turn off/on anti-aliasing filter before
downsampling: OFF, ON

OFF  Enumeration NO  

ExcessBW Excess bandwidth of raised cosine
anti-aliasing filter

0.5  Float NO [0:1]

 Input Ports

Port Name Description Signal Type Optional

1 A_in input analog
signal

envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 A_out output sampled analog baseband signal envelope NO

3 D_I output NBit word as integer for I channel int NO

4 D_Q output NBit word as integer for Q channel int NO

 Notes/Equations

This model implements an analog-to-digital converter (ADC) with an internal clock. It1.
can implement an ideal ADC or integral and differential non-linearities as well as jitter
or phase noise for the internal clock can be specified by the user to model a more
realistic ADC. Offset and gain errors are not included in this model.
The input A_in can be a real baseband signal or a complex envelope signal.2.
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When the input signal is a real baseband signal, it is sampled (with the
appropriate jitter/phase noise applied) and quantized (based on the NBits, VRef,
INL, and DNL) to generate the real baseband output signal A_out. The bits that
represent the quantized input signal value (the index of the quantization level to
which the input signal sample was quantized to) are output as an integer value
at the port D_I. The signal at the port D_Q is always 0.
When the input signal is a complex envelope signal, its I and Q envelopes are
sampled (with the appropriate jitter/phase noise applied) and quantized (based
on the NBits, VRef, INL, and DNL) to generate the I and Q envelopes of the
output signal A_out. The characterization frequency of A_out is the same as the
characterization frequency of A_in. The bits that represent the quantized values
of the I and Q envelope of the input signal (the indices of the quantization levels
to which the envelope values were quantized to) are output as integer values at
the ports D_I and D_Q respectively.

The NBits parameter sets the number of bits for the ADC. The number of quantization3.
levels is 2NBits. The higher the number of bits the smaller the quantization error,
which means that the output signal A_out matches more closely with the input A_in.
The VRef parameter sets the reference voltage for the ADC. The input signal must lie4.
in the range [−Verf, VRef]. Otherwise, clipping occurs.
The INL and DNL parameters set the integral and differential nonlinearities relative to5.
the LSB (Least Significant Bit) for the ADC.
The DNL error is defined as the maximum difference between the ideal ADC step6.
width of 1 LSB (1 LSB = 2·VRef/2NBits) and the actual ADC step width (after the
offset and gain errors have been compensated for). A DNL error specification of less
than 1 LSB guarantees that there will be no missing codes in the ADC transfer
function.

Note
When DNL > 0, there is no guarantee that this model will actually use a transfer function with
the requested DNL error.
The DNL error is modeled by a Gaussian distribution. There is approximately 1% probability
that the random Gaussianly distributed DNL errors will be equal to or greater than the DNL
parameter value (or less than −DNL).
If that happens the actual error is truncated to DNL (or −DNL) and the ADC transfer function
will have the DNL error set by the user.
Otherwise, the ADC transfer function will have a DNL error smaller than what the user has set.
The higher the NBits value the more steps the ADC has and therefore the more likely the DNL
error for one of those steps will be equal to or greater than the DNL parameter value (or less
than −DNL), which will result in an ADC transfer function with the exact desired DNL.

The INL error is defined as the maximum deviation (in LSB) between the ideal ADC7.
transfer function (straight line) and the actual ADC transfer function (after the offset
and gain errors have been compensated for).

Note
When INL > 0, there is no guarantee that this model will actually use a transfer function with
the requested INL error.
The INL error is the cumulative sum of the DNL errors, which (as explained earlier) are
modeled by Gaussian distribution.
Therefore, the probability the probability that the actual ADC transfer function will have an INL
error equal to the INL parameter value (or −INL) depends on the values of the NBits, INL, and
DNL parameters.
With larger NBits, smaller INL, and larger DNL, the more likely the the actual ADC transfer
function will have an INL error equal to the INL parameter value (or −INL).

For an ideal ADC (INL=0 and DNL=0) the input quantization thresholds are −VRef + i·8.
LSB (i = 1, ... , 2NBits − 1) and the output quantization levels are −VRef + (i − 0.5)·
LSB (i = 1, ... , 2NBits), where LSB = 2·VRef/2NBits. The following graph shows the
transfer function of an ideal 3-bit ADC with VRef = 1. Based on the equations given
above, the quantization thresholds (x-axis transition points) are −1 + i·0.25 (i = 1,
... , 7) = { −0.75, −0.5, −0.25, 0.0, 0.25, 0.5, 0.75 } and the quantization levels (y-
axis transition points) are −1 + (i − 0.5)·0.25 (i = 1, ... , 8) = { −0.875, −0.625,
−0.375, −0.125, 0.125, 0.375, 0.625, 0.875 }.
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This ADC model can operate in two different modes: Clocked and Downsampled9.
(specified in the ConversionType parameter)

In the Clocked mode, the model reads one sample from its input and writes
one sample to each of its outputs. The internal clock frequency (Clock
parameter) and phase (Phase parameter) need to be set. The internal clock is of
the form cos( 2·π·Clock·t + Phase ). The input signal is sampled at the positive
zero crossings of the clock. To be able to detect zero crossings, at least four
samples per clock period are needed. Therefore, when SR/4 < Clock ≤ SR, the
internal clock is represented at 4·SR (SR is the sampling rate of the input
signal). This does not affect the output signal sampling rate, which is always the
same as the input signal sampling rate (SR). Once the input signal is sampled,
the sampled value is quantized and held constant at the output until the next
clock positive zero crossing occurs. If Clock < SR/2, the output will have the
form of a piece wise constant waveform because of the sample and hold
operation. A piece wise constant waveform can show at the output even when
Clock = SR if NBits is not big enough, which will result in multiple input signal
values to be quantized to the same output quantization level.
In the Downsampled mode, the DownsampleFactor and DownsamplePhase
parameters need to be set. In this case, the model reads DownsampleFactor
samples from its input and writes 1 sample to each of its outputs. The sample
written to the outputs is the quantized DownsamplePhase-th sample in the block
of DownsampleFactor input samples. No explicit clock signal is used but the
equivalent clock signal is cos( 2·π·SR·t/DownsampleFactor + 2·π·
DownsamplePhase/DownsampleFactor − π/2 ). Since the input signal is
downsampled, the output signal will not have the form of a piece wise constant
waveform (no sample and hold operation), unless NBits is not big enough, which
will result in multiple input signal values to be quantized to the same output
quantization level.
When downsampling a signal, aliasing can occur (if the sampling rate of the
downsampled signal is not high enough to represent the frequency content of
the original signal). Therefore, a raised cosine antialiasing filter can be set up
(set AntiAliasingFilter parameter to ON). The ExcessBW (or roll off factor) of this
filter can also be specified. If the antialiasing filter is used a delay is introduced
in the output signals.

For more details on downsampling see the documentation of the DownSampleEnv (algorithm)
model.

The internal clock whether explicit (Clocked mode) or implicit (Downsampled mode)10.
can be impaired with jitter (set EnableJitter parameter to Time Domain) or phase
noise (set EnableJitter parameter to Frequency Domain). Jitter or phase noise affect
the clock zero crossings and therefore the instant the input signal gets sampled.

When EnableJitter = Time Domain, the standard deviation of the random jitter
can be specified in the RJrms parameter. Jitter is modeled using a Gaussian
distribution with zero mean and RJrms standard deviation.
When ConversionType = Clocked, then 3·RJrms (99.7% of a Gaussian
distribution lies within 3·σ of its mean) has to be smaller than 1/4 of the clock
time step (note that when SR/4 < Clock ≤ SR, the clock time step is 1/4 of the
input signal time step).
When ConversionType = Downsampled, then 3·RJrms has to be smaller than 1/2
of the input signal time step.
If the generated random jitter value happens to be outside the range [−3·RJrms
, 3·RJrms] it gets limited to ±3·RJrms.
When EnableJitter = Frequency Domain, the phase noise specification can be
entered in the PhaseNoiseData parameter as pairs of offset freq in Hz and SSB
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(Single Side Band) phase noise power level in dBc/Hz (with respect to a 1 Volt
amplitude cosine wave on 50 Ohms). The PN_Type parameter provides
additional options on how phase noise is modeled. For more details about phase
noise modeling see the documentation of the Oscillator (algorithm) model.
When ConversionType = Clocked, the phase noise error introduced cannot be
greater (in absolute value) than the clock phase increment corresponding to 1/4
of the clock time step (note that when SR/4 < Clock ≤ SR, the clock time step is
1/4 of the input signal time step).
When ConversionType = Downsampled, the phase noise error introduced cannot
be greater (in absolute value) than the clock phase increment corresponding to
1/2 of the input signal time step.
If the generated phase noise error value happens to be outside the ranges
mentioned above it gets limited to the upper or lower limits of the acceptable
ranges.

The OutputDigitalFormat parameter sets the range of values for the D_I and D_Q11.
outputs. If OutputDigitalFormat = Offset binary, then D_I and D_Q are integers in
the range [0, 2NBits−1]. If OutputDigitalFormat = Twos-complement, then D_I and
D_Q are integers in the range [−2NBits−1, 2NBits−1−1]. The following graphs show the
D_I output for an ideal 3-bit ADC with VRef = 1, when OutputDigitalFormat = Offset
binary and OutputDigitalFormat = Twos-complement.
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 CommsChannel Part
Categories: Analog/RF (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CommsChannel
(algorithm)

Wireless Channel
Model

 CommsChannel

Description: Wireless Channel Model
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: CommsChannel Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

ModelType Channel model type:
UserDefined, Pedestrian_A,
Pedestrian_B, Vehicular_A,
Vehicular_B,
Extended_Pedestrian_A,
Extended_Vehicular_A,
Extended_TypicalUrban

UserDefined  Enumeration NO  

Delay User defined tap delays in usec [0.0 , 0.03,
0.15, 0.31
,0.37, 0.71 ,
1.09 , 1.73 ,
2.51]

 Floating
point array

NO [0:10000.0]

Power User defined relative tap powers
in dB

[0.0, -1.5, -
1.4, -3.6, -
0.6, -9.1, -
7.0, -12.0, -
16.9]

 Floating
point array

NO (-∞:0]

RiceanFactor User defined tap Ricean K-
factors in linear scale

[0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

 Floating
point array

NO [0.0:1000.0]

Velocity Velocity of mobile station in
km/hour

120  Float NO [0.001:1000]

PathLoss Include large-scale pathloss:
NO, YES

NO  Enumeration NO  

PropDistance Distance between the transmit
and receive stations

1000 m Float NO [200:5000]

PwrNormal Normalize output power: NO,
YES

NO  Enumeration NO  

PwrMeasPeriod Power measurement time period
for output power normalization

0.001 s Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input channel input
signal

envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output channel output signal envelope NO

3 tap fading channel complex tap
coefficients

multiple complex NO

 Notes/Equations

This model is used to generate channel models for mobile wireless applications.1.
This model reads 1 sample at its input and writes 1 sample at all outputs.2.
Model use of Velocity, PropDistance, PathLoss, PwrNormal and PwrMeasPeriod3.
Velocity specifies the mobile's velocity relative to base station.
PropDistance specifies the distance between base station and mobile station.
PathLoss identifies whether the large-scale pathloss is included.
If PathLoss = NO, then the path loss is not included in this model and the parameters
describing the environment are unused.
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If PathLoss = YES, then the path loss for both urban and suburban environments is
modeled by the COST 207 model with a correction term. There are three terms which
make up the model:
The Path Loss model for outdoor to indoor and pedestrian test environment is,

where R is the propagation distance and f is the frequency.
The Path Loss model for vehicular test environment is,

where R is the propagation distance and f is the frequency,  is the height between
base station antenna and mobile.
PwrNormal specifies whether the ouput power is normalized to the input power.
When PwrNormal = YES, then the output power is normalized using the
PwrMeasPeriod which is the time period for measuring power to ensure that the
output power is equal to the input power with the resolution of PwrMeasPeriod. The
method for adjusting the ouput power is that, assuming the power level measured in
two contiguous time periods with PwrMeasPeriod seconds is identical, a gain,
calculated on the power level measured in the (i-1)th time period, is multiplied to the
signal in the ith time period to ensure that the output power in the ith time period is
equal to the input power, and so on for the (i+1)th time period. Hence the first time
period with PwrMeasPeriod seconds remain unadjusted.
Channel model definition when ModelType = Extended_Pedestrian_A,4.
Extended_Vehicular_A, Extended_TypicalUrban
This model is implemented following the channel model requirements defined for
3GPP LTE mobile wireless applications and based onR4-070872 3GPP TR
36.803v0.3.0. See references 1 and 2 below.
For this model, the Delay, Power and RiceanFactor are predefined and not user
specifiable.
For this model a delay of 64 tokens is introduced in the outputs.
A set of 3 channel models are implemented to simulate the multipath fading
propagation conditions. The multipath fading is modeled as a tapped-delay line with a
number of taps at fixed positions on a sampling grid. The gain associated with each
tap is characterized by a distribution (Ricean with a K-factor>0, or Rayleigh with K-
factor=0) and the maximum Doppler frequency that is determined from the mobile
speed. For each tap, the method of filtered noise is used to generate channel
coefficients with the specified distribution and spectral power density.
The definition of the 3 specific channels are shown in the following tables:
Extended Pedestrian A model (EPA)
Tap Excess tap delay [ns] Relative power [dB]

1 0 0.0

2 30 -1.0

3 70 -2.0

4 90 -3.0

5 110 -8.0

6 190 -17.2

7 410 -20.8

Extended Vehicular A model (EVA)

Tap Excess tap delay [ns] Relative power [dB]

1 0 0.0

2 30 -1.5

3 150 -1.4

4 310 -3.6

5 370 -0.6

6 710 -9.1

7 1090 -7.0

8 1730 -12.0

9 2510 -16.9

Extended Typical Urban model (ETU)

Tap Excess tap delay [ns] Relative power [dB]

1 0 -1.0

2 50 -1.0

3 120 -1.0

4 200 -0.0

5 230 -0.0

6 500 -0.0

7 1600 -3.0

8 2300 -5.0

9 5000 -7.0

The total channel gain is normalized by adding the specified Normalization Factor to
each tap.
The Doppler spectrum is modelled using the well known Clarke or Classical Doppler
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spectrum. The power spectral density (PSD) function is defined as follows: !3gpplte-
channel-2008-1-01.gif! where !3gpplte-channel-2008-1-02.gif! is the net power, and
!3gpplte-channel-2008-1-03.gif! denotes the maximum Doppler frequency, and
!3gpplte-channel-2008-1-04.gif! where !3gpplte-channel-2008-1-06.gif! is the speed
of the mobile, !3gpplte-channel-2008-1-05.gif! is the carrier frequency and c is the
speed of light.
Channel model definition when ModelType = Pedestrian_A, Pedestrian_B,5.
Vehicular_A, Vehicular_B
This model is implemented following Rec.ITU-R M.1225 for mobile wireless
applications. See references 3 below.
For this model, the Delay, Power and RiceanFactor are predefined and not user
specifiable.
For this model a delay of 64 tokens is introduced in the outputs.
A set of 4 modified International Telecommunication Union (ITU) channel models are
constructed to simulate the multipath fading of the channel. The multipath fading is
modeled as a tapped-delay line with 6 taps with non-uniform delays. The gain
associated with each tap is characterized by a distribution (Ricean with a K-factor>0,
or Rayleigh with K-factor=0) and the maximum Doppler frequency. For each tap, the
method of filtered noise is used to generate channel coefficients with the specified
distribution and spectral power density.
The definition of the 4 specific ITU channels is shown in the following tables:  

 Outdoor to Indoor and Pedestrian Test Environment Tapped-Delay-Line Parameters

Tap Channel A Channel B Doppler
Spectrum

Relative Delay
(ns)

Average Power
(dB)

Relative Delay
(ns)

Average Power
(dB)

1 0 0 0 0 Classic

2 110 -9.7 200 -0.9 Classic

3 190 -19.2 800 -4.9 Classic

4 410 -22.8 1200 -8.0 Classic

5 °™°™ °™°™ 2300 -7.8 Classic

6 °™°™ °™°™ 3700 -23.9 Classic
 

 Vehicular Test Environment Tapped-Delay-Line Parameters

Tap Channel A Channel B Doppler
Spectrum

Relative Delay
(ns)

Average Power
(dB)

Relative Delay
(ns)

Average Power
(dB)

1 0 0.0 0 -2.5 Classic

2 310 -1.0 300 0 Classic

3 710 -9.0 8900 -12.8 Classic

4 1090 -10.0 12900 -10.0 Classic

5 1730 -15.0 17100 -25.2 Classic

6 2510 -20.0 20000 -16.0 Classic

The total channel gain is normalized by adding the specified Normalization Factor to
each tap.
The specified Doppler is the maximum Doppler frequency parameter (fm) of the
rounded spectrum which has the power spectral density (PSD) function as follows:

where  and ,  is the mobile's velocity relative to base station.
The set of ITU channel models specify statistical parameters of microscopic effects.
To simulate the real channel, these statistics have to be combined with macroscopic
channel effects, i.e. the path loss (including shadowing) which will be introduced in
the later section.
The COST 207 model with a correction term is used to simulate the path loss for both
pedestrian and vehicular environments if the PathLoss is ON and other parameters
are set according to the specific environment.
Channel model definition when ModelType = UserDefined6.
For this model, the Delay, Power and RiceanFactor array values specified are used to
define the model. These three arrays must has the same size. This size defines N
taps in a tapped-delay line. The multipath fading model follows the same approach
for the above predefined models, but with user defined characteristics. The multipath
fading is modeled as a tapped-delay line with N taps with the delays ( Delay ) and
gains ( Power ) specified. Each gain will have a distribution defined by the the
RiceanFactor (Ricean when RiceanFactor > 0, or Rayleigh when RiceanFactor = 0)
and the maximum Doppler frequency. For each tap, we use the method of filtered
noise to generate channel coefficients with the specified distribution and spectral
power density.
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 CommsMIMO_Channel Part
Categories: Analog/RF (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_MIMO_Channel
(algorithm)

LTE MIMO Channel
Model

 LTE_MIMO_Channel

Description: LTE MIMO Channel Model
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: CommsMIMO Channel Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

AntennaConfig Antenna configuration as
(number of Tx) x (number of
Rx) antennas: TR_1x2,
TR_2x2, TR_4x2, TR_4x4

TR_2x2  Enumeration NO  

CorrelationType MIMO channel correlation
matrix type: Low, Medium,
High

Low  Enumeration NO  

ModelType Channel model type:
UserDefined,
Extended_Pedestrian_A,
Extended_Vehicular_A,
Extended_TypicalUrban

UserDefined  Enumeration NO  

Delay User defined tap delays in
usec

[0.0 , 0.03,
0.15, 0.31
,0.37, 0.71 ,
1.09 , 1.73 ,
2.51]

 Floating
point array

NO [0:10000.0]

Power User defined relative tap
powers in dB

[0.0, -1.5, -
1.4, -3.6, -0.6,
-9.1, -7.0, -
12.0, -16.9]

 Floating
point array

NO (-∞:0]

RiceanFactor User defined tap Ricean K-
factors in linear scale

[0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

 Floating
point array

NO [0.0:1000.0]

Velocity Velocity of mobile station in
km/hour

120  Float NO [0.001:1000]

 Input Ports

Port Name Description Signal Type Optional

1 TxSig Signals supplied to transmit array multiple
envelope

NO

 Output Ports

Port Name Description Signal Type Optional

2 RxSig Signals at output of receive
array

multiple
envelope

NO

 Notes/Equations

The model implements a MIMO channel as defined for 3GPP LTE wireless systems and1.
follows the definition in B.2 of 36.101 [1].
This model reads 1 sample from the inputs and writes 1 sample to the outputs.2.
The multipath propagation conditions consist of several parts:3.

delay profile in the form of a "tapped delay-line", characterized by a number of
taps at fixed positions on a sampling grid. The profile can be further
characterized by the r.m.s. delay spread and the maximum delay spanned by
the taps.
A combination of channel model parameters that include the Delay profile and
the Doppler spectrum, that is characterized by a classical spectrum shape and a
maximum Doppler frequency
A set of correlation matrices defining the correlation between the UE and
eNodeB antennas in case of multi-antenna systems.
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ModelType parameter specifies the propagation model selected from Extended4.
Pedestrian A, Extended Vehicular A, Extended Typical Urban and user-defined model.
Each pre-defined propagation model defines the number of channel taps, delay
spread and Relative power for each tap, as shown in Table B.2.1-1, Table B.2.1-2,
Table B.2.1-3 and Table B.2.1-4 of 36.101 [1]. For the user-defined model, the
power delay profiles (PDP) is defined by the user as follows:

Delay, Power and RiceanFactor parameters specify the delay, power and ricean
factor for each path when ModelType is selected as UserDefined.

AntennasConfig defines the antenna configurations at eNodeB and UE respectively.5.
The antenna configurations are in the format of MxN, where M is the number of
antennas at eNodeB, and N is the number of antennas at UE. The bus width at the
input port should be equal to M, while the bus width at the input port should be equal
to M should be equal to M. Currently the allowable configurations are 1x2, 2x2, 4x2,
and 4x4.
CorrelationType defines the spatial correlation between the antennas at the eNodeB6.
and UE, selected from Low, Medium, and High.
For each antenna configuration, the channel correlation matrix is shown as follows,

where, α and β are channel correlation factor at the eNodeB and UE respectively. α
and β for different correlation types are given in the following table according to
CorrelationType parameter.
Low correlation Medium Correlation High Correlation

α=0, β=0 α=0.3, β=0.9 α=0.9, β=0.9

In this model, the channel correlation matrices are per-tap applied on each tap7.
independently.
Velocity specifies the mobile unit's velocity (ν) relative to the base station, in units of8.
kilometer/hour. The specified Doppler is the maximum Doppler frequency parameter
(fm) of the rounded spectrum which has the classical spectrum shape as follows:

where  and .
Output delay: a delay of 64 tokens is introduced in this model9.

 References

3GPP TS 36.101 v8.5.1 "User Equipment (UE) radio transmission and reception",1.
March 2009.
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 CxToEnv Part
Categories: Analog/RF (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CxToEnv
(algorithm)

Complex to
Envelope

 CxToEnv

Description: Complex to Envelope
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: CxToEnv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Fc Characterization
frequency

0.2e6 Hz Float NO (0:∞)

 Input Ports

Port Name Signal Type Optional

1 input complex NO

2 fc envelope YES

 Output Ports

Port Name Signal Type Optional

3 output envelope NO

 Notes/Equations  

The CxToEnv block converts the complex signal at input to a complex envelope signal1.
at output using the characterization frequency associated with the complex envelope
signal at input fc.
This block reads 1 sample from both inputs and writes 1 sample to output.2.
The input fc is optional. When not connected, the value for the parameter Fc is used3.
as the value for fc (f2) in the following discussion.

Define the input signal at pin 1 as 4.
The signals at fc (pin k = 2) and at output (pin k = 3) have complex envelope5.
representation.

 , where 
The output is6.

 with f 3 = f 2
CxToEnv is a modulator whose output obtains its I and Q values from the input and7.
its carrier frequency from fc.
If the fc input is not a complex envelope signal, then the output will be made a real8.
signal and the imaginary part of input will be ignored.
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 DelayEnv Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DelayEnv
(algorithm)

Envelope Delay

 DelayEnv

Description: Envelope Delay
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: DelayEnv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Delay Time delay (used with no
control input is connected)

0.0 s Float NO [0*TStep:∞)†

InterpolationMethod Signal interpolation
method: None, Linear,
Lagrange

None  Enumeration NO  

IncludeCarrierPhaseShift Include RF carrier phase
shift: NO, YES

YES  Enumeration NO  

MaxTimeDelay Maximum time delay
available (used when the
control input is connected)

0.0 s Float NO [0*TStep:∞)†

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

2 control control
signal

envelope YES

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

DelayEnv delays the input signal by the amount Delay.1.
This model reads 1 sample from the inputs and writes 1 sample to the output.2.
The IncludeCarrierPhaseShift value is not used when the input is a real signal. It is3.
only used when the input is a complex envelope signal.
When InterpolationMethod is Linear or Lagrange, the input is interpolated to achieve4.
the specified time delay.

When InterpolationMethod is Lagrange and delay is less than 2 /T S , then Linear

interpolation is used where T S is the sampling interval of the input signal

The input control is optional. When connected, the value for the parameter Delay is5.
ignored and the value at the control pin is used instead.

In the following discussion, 'delay' implies either the Delay value (when there is
no control input), or the control value (when there is a control input).
When the control input is used, then the delay is limited to the MaxTimeDelay
value.

Let6.
T′ = T S round ( delay /T S ) where T S is the sampling interval of the input

signal, when InterpolationMethod is None
T′ = delay, when InterpolationMethod is Linear or Lagrange

Representation of the delayed output signal when the input is a real signal.7.
The input signal v1(t) is a real value.
Then
. 

Representation of the delayed output signal when the input is a complex envelope8.
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signal.
The input signal V 1 (t) is represented by its in-phase and quadrature

components about its carrier frequency, f c.

where

Then

. 

where

if IncludeCarrierPhaseShift = NO, then
.

if IncludeCarrierPhaseShift = YES, then
.
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 Demodulator Part
Categories: Analog/RF (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Demodulator
(algorithm)

Demodulator

 Demodulator (Demodulator)

Description: Demodulator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Demodulator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

OutputType Output type: I/Q,
Amp/Phase, Amp/Freq

I/Q  Enumeration NO   

FCarrier Carrier frequency 0.2e6 Hz Float NO (0:∞) fc

InitialPhase Initial phase 0 deg Float NO (-
∞:∞)

θ

AmpSensitivity Amplitude sensitivity 1  Float NO (-
∞:∞)

Sa

PhaseSensitivity Phase deviation sensitivity
in Volts/degree

1.0/90.0  Float NO (-
∞:∞)

Sp

FreqSensitivity Frequency deviation
sensitivity in Volts/Hz

1.0e-4  Float NO (-
∞:∞)

Sf

MirrorSignal Mirror signal about carrier:
NO, YES

NO  Enumeration NO   

ShowIQ_Impairments Show I and Q
impairments: NO, YES

NO  Enumeration NO   

GainImbalance Gain imbalance in dB, Q
channel relative to I
channel

0.0  Float NO (-
∞:∞)

G

PhaseImbalance Phase imbalance, Q
channel relative to I
channel

0.0 deg Float NO (-
∞:∞)

φ

I_OriginOffset I origin offset 0.0  Float NO (-
∞:∞)

Ioff

Q_OriginOffset Q origin offset 0.0  Float NO (-
∞:∞)

Qoff

IQ_Rotation IQ rotation 0.0 deg Float NO (-
∞:∞)

R

 Input Ports

Port Name Description Signal Type Optional

1 input complex envelope vector
input

envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output1 output1 real NO

3 output2 output2 real NO

 Notes/Equations

The Demodulator model implements a coherent demodulator that can be used to1.
perform amplitude, phase, frequency, or I/Q demodulation.
This model reads 1 sample from the input and writes 1 sample to the outputs.2.
The input signal must be a complex envelope signal with characterization frequency3.
greater than zero. Real input signals are not allowed by this model. If use with a real
signal is needed, then the input to this model can be preceded with an EnvFcChange
(algorithm) model that will recharacterize a real signal to its representation at a
specified frequency.
Let's assume that the complex envelope input signal is cx = I + j·Q at a4.
characterization frequency of f , which represents the real signal I·cos( 2πf t ) −
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1 1

Q·sin( 2πf1t ).

First the InitialPhase is applied to the input signal by rotating it by −θ ( cx = cx·(5.
cos(θ) − j·sin(θ) ).
Then cx is recharacterized at fc.6.

See the documentation for EnvFcChange (algorithm) for detail on how a signal is
converted from one characterization frequency to another.
The following discussion is in context with the input signal after it has been
characterized at fc, that is, cx now represents the new complex envelope at fc.

Then the IQ impairments are applied to the input.7.
I_OriginOffset and Q_OriginOffset: cx = cx + (Ioff + j·Qoff)

IQ_Rotation: cx = cx·( cos(R)+j·sin(R) )
GainImbalance and PhaseImbalance: let g = 10G/20. The I and Q envelopes of
the signal I·cos( 2πfct ) − Q·sin( 2πfct ) can be recovered by multiplying it with

cos( 2πfct ) and sin( 2πfct ) respectively and filtering the generated products at

2·fc. When these imbalances are applied, the local oscillator for the Q channel is

not sin( 2πfct ) but g·sin( 2πfct + φ ). The result is that the recovered value for

the Q envelope is g·( Q·cos(φ) − I·sin(φ) ).
If MirrorSignal = YES, then cx = conjugate( cx)8.
Finally, the output is calculated as follows (in the following equations, I(t) and Q(t)9.
represent the I and Q envelopes of the signal after all the transformations and
impairments described above have been applied):

When OutputType is set to I/Q,

When OutputType is set to Amp/Phase,

When OutputType is set to Amp/Frequency,

See also: Modulator (algorithm)10.
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 DownSampleEnv Part
Categories: Analog/RF (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DownSampleEnv
(algorithm)

Down Sampler for Envelope Signal

 DownSampleEnv

Description: Down Sampler for Envelope Signal
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: DownSampleEnv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Factor Downsampling ratio 2  Integer NO [1:∞)

Phase Downsampling phase 0  Integer NO [0:Factor-
1]

AntiAliasingFilter Turn off/on anti-aliasing filter before
downsampling: OFF, ON

OFF  Enumeration NO  

ExcessBW Excess bandwidth of raised cosine
anti-aliasing filter

0.5  Float NO [0:1]

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

To avoid confusion on a schematic, it is best to mirror (flip) this symbol (instead of rotating it) when you
need to have the input on the right and the output on the left of the symbol; otherwise the symbol arrow
will point in the "wrong" direction. Select the part and press F6 to flip the symbol into the correct
orientation.

 Notes/Equations

This component downsamples an input timed signal to produce an output timed1.
signal sampled with a time step that is Factor times the input time step.
This model reads Factor samples from the input and writes 1 sample to the output.2.
The Phase parameter identifies which one of the Factor input sample is to be used as3.
the output sample.
Let N1 = the Nth input sample (starting at count of zero).
Then, TIn = TStartIn + N1*TStepIn where TStartIn is the time stamp for the first
sample into this model.
Let N2 = the Nth output sample (starting at count of zero) with one output sample
occuring for every Factor input samples.
Then, TOut = TStartOut + N2*TStepOut where TStartOut = TStartIn +
Phase*TStepIn and TStepOut = Factor * TStepIn
v 2 (TOut) = v 1 (TOut)

The AntiAliasingFilter parameter can be used to activate/de-activate an anti-aliasing4.
filter before downsampling. When the input signal is baseband, the anti-aliasing filter
is a lowpass raised-cosine filter with bandwidth equal to 1/(2 × TStepOut). When the
input signal is a complex envelope signal, the anti-aliasing filter is a bandpass raised-
cosine filter with bandwidth equal to 1/TStepOut. In both cases the filter has
20 × Factor taps (it introduces a delay of 10 × TStepOut) and its excess bandwidth
can be set by the ExcessBW parameter.
To downsample a signal by a non-integer factor, a cascade of an upsampler and5.
downsampler is needed. For example, to change the sampling rate of a signal from
73MHz (TStep = 13.69863 nsec) to 40MHz (TStep = 25 nsec), first pass it through
the UpSampleEnv model(Faotor=40, Type=PolyPhaseFilter or Linear) and then
through the DownSampleEnv model(Factor=73). To improve simulation speed, make
sure the two Factors are relatively prime; if not, divide them with their GCD (greatest
common divisor). For example, if in the previous case the original sampling rate was
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72 MHz, the Factor of the UpSampleEnv model can be set to 5 (=40/8) and the
Factor of the DownSampleEnb component can be set to 9 (=72/8); GCD (72, 40) =
8.

See:
DownSample (algorithm)
DownSampleVarPhase (algorithm)
UpSampleEnv (algorithm)
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 DtoA Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DtoA
(algorithm)

Digital to Analog Converter with Integral and Differential Nonlinearities

 DtoA

Description: Digital to Analog Converter with Integral and Differential Nonlinearities
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: DtoA Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NBits Number of bits 8  Integer NO [2:∞)

VRef Reference voltage for output
analog signal A: -
VRef<=A<=VRef

1.0 V Float NO (0:∞)

INL Integral nonlinearity relative to
least significant bit (LSB)

0.0  Float NO [DNL/2:∞)

DNL Differential nonlinearity relative to
least significant bit (LSB)

0.0  Float NO [0:∞)

InputDigitalFormat Input digital format: Offset
binary, Twos-complement

Offset
binary

 Enumeration NO  

RepeatOutput Output upsampling repeat ratio 1  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 D input to D/A int NO

 Output Ports

Port Name Description Signal Type Optional

2 A output of D/A real NO

 Notes/Equations

This component models a digital-to-analog converter with integral and differential1.
nonlinearities. The input is a digital word in integer form. The output is a quantized
real baseband signal.

Note
Bit-to-integer conversion is not performed within this model. For this conversion, place an external
BitsToInt converter before this component.

This block reads 1 sample from the input and writes RepeatOutput samples to the2.
output.
Summary of operation3.
The NBits, VRef, INL, DNL, and InputDigitalFormat values are used to quantize the
output A from the digital integer D input word. When InputDigitalFormat is
OffsetBinary, then D is limited to the range [ 0, 2^ NBits - 1 ]. When
InputDigitalFormat is Twos-complement, then D is limited to the range [ -2^( NBits -
1), 2^( NBits - 1) - 1 ]. The output A is limited to values within the range of [ - VRef,
VRef ]. The INL and DNL value affect the quantization levels as described in the
following notes.
DNL (differential nonlinearity) error is defined as the difference between an actual4.
output step width and the ideal value of 1 LSB (least significant bit, 1 LSB = 2 × VRef
/ 2 NBits). For an ideal digital-to-analog converter, in which the DNL=0 LSB, each
output analog step equals 1 LSB. The DNL parameter is used to set the maximum
value of DNLs. A DNL error specification of less than or equal to 1 LSB guarantees a
monotonic transfer function.

Note
There is no guarantee that the DNL parameter value will be reached. The DNL error is modeled by a
normal (Gaussian) distribution. The distribution has an approximate 1% probability that the DNL
error will be equal to or greater than the DNL parameter value (or less than -DNL). Those numbers
are then truncated to DNL (or -DNL) before further processing.

INL (integral nonlinearity) error is defined as the deviation (in LSB) of the digital-to-5.
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analog converter actual transfer function from an ideal straight line. The INL
parameter is used to set the maximum value of INLs.

Note
There is no guarantee that the INL parameter value will be reached; it depends on the NBits, INL,
and DNL values. With larger NBits, smaller INL, and larger DNL, the INL will be reached more easily
and frequently.

For an ideal DAC (INL=0 and DNL=0) the A output is in the range of [-(VRef - 0.56.
LSB), (VRef - 0.5 LSB)] with value {-VRef + (i - 0.5) × LSB}, where i = 1, ... , 2 NBits

.
AnalogOut vs. DigitalIn shows the output of an ideal DAC (INL=0 and DNL=0) with7.
NBits=3, VRef=1, and RepeatOutput=1.
In this case, the LSB = 0.25; and the output signal A is {-0.875, -0.625, -0.375, -
0.125, 0.125, 0.375, 0.625, 0.875}.
 

 AnalogOut vs. DigitalIn
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 EnvFcChange Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

EnvFcChange
(algorithm)

Envelope Signal Characterization Frequency Converter

 EnvFcChange (Complex Envelope Signal
Characterization Frequency Change)

Description: Envelope Signal Characterization Frequency Converter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: EnvFcChange Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

OutputFc New characterization frequency 0 Hz Float NO [0:∞)

Bandwidth Bandwidth of bandpass filter centered at OutputFc
(used when input fc=0)

0 Hz Float NO [0:∞)†

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

The EnvFcChange block converts a complex envelope signal with a defined1.
characterization frequency to an equivalent complex envelope signal defined at
another characterization frequency.
This block reads 1 sample from the input and writes 1 sample to the output.2.
EnvFcChange does not change the information content of the input signal. Only the3.
signal representation is changed.
The signals at pin k, where k is 1 or 2, have complex envelope representation.4.

 , where 
When the input complex envelope signal is converted from its characterization5.
frequency f 1 to the output characterization frequency f 2, the conversion algorithm

transforms the input envelope value to an output envelope value at time t.
f 2 is set from OutputFc. Two cases for f 1 are considered.6.

Case 1: f 1 > 0

if f 2 is zero, then the imaginary part of v 2 (t) is set to zero.

Case 2: f 1 = 0

The assumption is made that the input is a bandpass signal with no significant
energy at 0 Hz and that the energy of interest is located at f 2 ±(Bandwidth/2).

The output inphase and quadrature are extracted by multiplying the real input
by  and by  and then low pass filtering the products with
bandwidth Bandwidth.
When the value of Bandwidth is 0, a default value of f 2 is used. Note that delay

is introduced, because of the low pass filtering.
A warning message will be displayed when the input sample rate is too small to make7.
the transformation without loss of information.
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 EnvToCx Part
Categories: Analog/RF (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

EnvToCx
(algorithm)

Envelope to
Complex

 EnvToCx

Description: Envelope to Complex
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: EnvToCx Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

3 fc envelope NO

 Notes/Equations

EnvToCx decomposes input into a complex envelope and its characteristic frequency.1.
For every input sample, one sample to written to both outputs.2.
If input is a real baseband signal (v), then the output is real and set to the input3.
value (v), and fc is a complex envelope signal set to 0+j*0 with a zero characteristic
frequency.
If input is a complex envelope signal (i+j*q with non-zero characterization frequency4.
f1), then the output is a complex envelope set to the input value (i+j*q with non-
zero characterization frequency f1), and fc is a complex envelope signal set to 0+j*0
with non-zero characteristic frequency set to f1.
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 EnvToData Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

EnvToData
(algorithm)

Convert Envelope into its Characteristic Frequency, Time, Inphase and Quadrature
Values

 EnvToData

Description: Convert Envelope into its Characteristic Frequency, Time, Inphase and
Quadrature Values
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: EnvToData Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 fc real NO

3 time real NO

4 I real NO

5 Q real NO

 Notes/Equations

EnvToData decomposes a complex envelope into its constituents.1.
For every sample read, one sample is written to all outputs.2.
If the input is a real baseband signal, only I and time are meaningful. Zeroes are3.
output for Q and f c.

Otherwise, the input complex envelope signal is decomposed into its constituent4.
values of f c, time, I and Q which are related to the input signal follows:

. 
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 FreqMpyDiv Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FreqMpyDiv
(algorithm)

Envelope Signal Frequency Multiplier or Divider

 FreqMpyDiv

Description: Envelope Signal Frequency Multiplier or Divider
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: FreqMpyDiv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

MultDiv Either frequency multiplier or freqency
divider: Frequency multiplier, Frequency
divider

Frequency
multiplier

 Enumeration NO  

NominalX Nominal frequency multiplication/division
factor

1  Float NO (0:∞)

MaxX Maximum limit for frequency
multiplication/division factor (used when
the optional control input is used)

2  Float NO (0:∞)

MinX Minimum limit for frequency
multiplication/division factor (used when
the optional control input is used)

0.5  Float NO (0:∞)

OperatorType Multiplier/divider type: Full signal, Phase
only

Phase only  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

2 control input normalized optional control signal envelope YES

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

FreqMpyDiv is a frequency multiplier or a frequency divider that operates on a1.
complex envelope depending on parameter MultDiv.
This model reads 1 sample from the inputs and writes 1 sample to the output.2.
The input signal must be a complex envelope signal with characterization frequency3.
greater than zero. Real input signals are not allowed by this model. If use with a real
signal is needed, then the input to this model can be preceeded with an EnvFcChange
(algorithm) model that will recharacterize a real signal to its representation at a
specified frequency.
Let X be the multiplier or divider value. When there is no control input, then X =4.
NominalX. When there is a control input, then X = NominalX + control, with X limited
in this case to MinX and MaxX.
Frequency multiplication is accomplished by first passing the input signal through a5.
nonlinearity which raises the input signal to the power X and then passing the signal

through a bandpass filter centered at  , where  is the carrier frequency of the
input. Computational efficiency is accomplished by directly calculating the output of
the bandpass filter without explicitly performing the filtering operation.

Assuming the input signal is

The output signal is given by
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where

a=1 when Type is RF phase only
a=X when Type is full signal
and

Frequency division with divisor X is a frequency multiplication operation with 1/X.6.
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 LogAmp Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LogAmp
(algorithm)

Logarithmic Amplifier

 LogAmp

Description: Logarithmic Amplifier
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: LogAmp Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Sensitivity Log sensitivity in volts/dB 0.1 V Float NO (0:∞)

PMin Minimum input power in dBm for logarithmic
amplification

-80  Float NO (-
200:∞)

E Peak log error in dB 0  Float NO [0:∞)

Ec Log error cycle in dB 0  Float NO (0:∞)

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

LogAmp models a logarithmic amplifier with some non-ideal behavior.1.
This model reads 1 sample from the input and writes 1 sample to the output.2.
The basic equation describing this amplifier is3.

where
K determines the logarithmic slope
V L determines the minimum input voltage required for logarithmic amplification

ε is the deviation of the amplifier from the ideal.
The following equations describe the algorithm used for this model.4.

Let

Then, the output signal V 2 (t) is given by the equation
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 LogVDet Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LogVDet
(algorithm)

Logarithmic Video
Detector

 LogVDet

Description: Logarithmic Video Detector
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: LogVDet Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Sensitivity Log sensitivity in volts/dB 0.1 V Float NO (0:∞)

PMin Minimum input power in dBm for logarithmic
amplification

-80  Float NO (-
200:∞)

E Peak log error in dB 0  Float NO [0:∞)

Ec Log error cycle in dB 0  Float NO (0:∞)

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

LogVDet models a logarithmic video detector with some non-ideal behavior.1.
This model reads 1 sample from the input and writes 1 sample to the output.2.
The basic equation describing this detector is:3.

where
K determines the logarithmic slope
VL determines the minimum input voltage required for logarithmic video detection

ε is the deviation of the detector from the ideal.
The following equations describe the algorithm used for this model.4.

Let

Then, the output signal V2(t) is given by the equation

 Example: S= 0.025v/dB, PMin = −80 dBm, E = 0.75 dB, EC = 10 dB
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 Mixer Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Mixer
(algorithm)

Envelope Signal
Mixer

 Mixer (Signal Mixer)

Description: Envelope Signal Mixer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Mixer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

ConvGain Conversion gain in dB 0  Float NO (-
∞:∞)

EnableNoise Enable mixer noise: NO, YES YES  Enumeration NO  

NoiseFigure Double sideband noise figure in dB 0  Float NO [0:∞)

Sideband Mixer primary output sideband:
Lower, Upper

Lower  Enumeration NO  

SidebandSuppression Suppression of the output
alternate sideband in dB

-200  Float NO (-∞:0)

RfRej RF to outut rejection in dB -200  Float NO (-∞:0)

LoRej LO to output rejection in dB -200  Float NO (-∞:0)

LoRfIso LO to RF isolation in dB -200  Float NO (-∞:0)

RfLoIso RF to LO isolation in dB -200  Float NO (-∞:0)

SOIout Output second order intercept
power

1.0e17 W Float NO (0:∞)†

TOIout Output third order intercept power 1.0e17 W Float NO (0:∞)†

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input1 input signal
1

envelope NO

2 input2 input signal
2

envelope NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

Mixer models an RF mixer for use with complex envelope input and local oscillator1.
(LO) and includes many non-ideal mixer features such as noise figure, RF and LO
leakage products, and 2 nd and 3 rd order nonlinearities.
This block reads 1 sample from input1 and input2 and writes 1 sample to output.2.
The Mixer primary signal of interest at the input1 is the RF signal with frequency f RF.3.

The RF signal mixes with the LO input at input2 with frequency f LO to produce the

lower sideband output signal with frequency |f LO - f RF| and the upper sideband

output signal with frequency (f LO + f RF). The mixer is operated with selection of

either the lower or upper output sideband as the primary sideband. The mixer
conversion gain, ConvGain, is the ratio of the desired output sideband to the RF input
signal level. The other sideband output level is controlled by the
SidebandSuppression value.
The Mixer block internal signal flow is diagramed.4.
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Mixer operates with LO limiting and does not support any starved LO conditions,
i.e. the LO always drives the mixer into saturation.
Note that the linear gain precedes the nonlinear gain which precedes the mixing
process.
The mixing process is a 'linear' process performing frequency translation that
results in lower and upper sideband products.
vrf1 is the primary RF input signal at frequency f1 including any noise from
NoiseFigure.
vrf2 is the secondary RF input signal leakage due to the LO at frequency f2
appearing at the RF input.
vlo1 is the primary LO input signal at frequency f2.
vlo2 is the secondary LO input signal due to leakage from the RF input at
frequency f1 appearing at the LO input.

The Mixer input RF image frequency, f RFImage, is defined as the other input5.

frequency which results in a mixing product output at the specified output frequency.
The input image is typically only of interest for receiver/down-conversion applications
and is given by f RFImage = 2 * f LO - f RF.

The frequencies, f RF and f RFImage, both mix down with f LO to generate the output at

|f LO - f RF|. The signals f RF and f RFImage are called images of each other with

respect to the f LO.

In typical simulations, the f RFImage is often input noise that is located at a frequency

away from the desired f RF input modulated signal.

The Mixer output operating without nonlinearity can be defined with this expression:6.
vout = vout A + vout B + vout2 A + vout2 B + vlo1 leak + vrf1 leak

where
vout A = mixer output due to mixing with the primary LO signal, vlo1, and at the

primary sideband based on the parameters Sideband and ConvGain.
vout B = mixer output due to mixing with the primary LO signal, vlo1, and at the

alternate sideband based on the suppression parameter, SidebandSuppression,
and ConvGain.
vout2 A = mixer output due to mixing with the secondary LO signal, vlo2, at the

primary sideband based on the parameters Sideband and ConvGain.
vout B = mixer output due to mixing with the secondary LO signal, vlo2, at the

alternate sideband based on the suppression parameter, SidebandSuppression,
and ConvGain.
vlo1 leak = mixer output due to leakage of the primary LO input signal appearing

at the output based on the rejection parameter, LoRej.
vrf1 leak = mixer output due to leakage of the primary RF input signal appearing

at the output based on the rejection parameter, RfRej.
The Mixer output operating with nonlinearity is defined by the SOIout and TOIout7.
parameters.
For definition of the SOI and TOI nonlinearities, see the detail discussion in the
documentation for the AmplifierBB (algorithm) block.
The nonlinearity is applied only to the RF path before the mixing process which is
composed of vrf1 and vrf2.
The Mixer self generated noise is added to the primary RF input signal, vrf1, and is8.
defined by the parameters NoiseFigure and RefR .
NoiseFigure for Mixer is defined as a double sideband noise figure, NFdsb, which
follows industry conventions. The double sideband noise figure is converted to an
equivalent single sideband noise figure, NFssb. That conversion is dependent on
whether the lower or the upper sideband is selected.

In general, the NFssb is related to the NFdsb as follows
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NFssb = NFdsb + 10 * log( ( G1 + G2 +... ) / G1 )
where

G1 is the primary power gain from the input noise frequency to the output
noise frequency
G2 +... is the sum of all higher order mixing gains which is mixed from
some input frequency to the output noise frequency.

For a mixer without input image rejection as is the case for this Mixer model, G2
is significant and is often equal to G1 under small-signal operation while G3 +...
is zero under small-signal conditions.
Thus, the simplified expression, NFssb = NF + 10 * log( 1 + G2 / G1 ), is used.
Note that the Mixer self noise is considered to be broadband such that it exists
at all frequencies.
Consider the case when Sideband is _Lower and choose f RF < f LO.

The primary lower output sideband is |f LO - f RF|. The input image for down-

conversion is at 2 * f LO - f RF. Its lower output sideband is due to mixing down

by the f LO which also gives |f LO - f RF|. The gain factor G2 is the same as G1

since both noise results from a frequency down conversion. Thus, the NFssb is 3
dB more than the NFdsb, i.e. NFssb is NoiseFigure + 3.010299.
Consider the case when Sideband is Upper and choose f RF < f LO.

The primary upper output sideband is |f LO + f RF|. The input image for up-

conversion is at 2 * f LO + f RF. Its lower output sideband is due to mixing down

by the f LO to also give |f LO + f RF|. At the same frequency, the first noise term

(G1) is due to an up conversion and the second noise term (G2) is due to a
down conversion. Thus, the mixer gain for G2 will be different from the gain for
G1 due to SidebandSuppression. The single sideband noise figure is increased
only if the alternate sideband is not suppressed, i.e. NFssb = NoiseFigure + 10 *
log( 1 + 10 ( SidebandSuppression / 10 ) ).

vn_rms, the rms noise voltage, is used to generate a complex Gaussian random9.
value at each simulation time point which is then added to the input complex
envelope.
Let
k = Boltzmann constant is 1.380622e-23 J/K
sr = simulation sample rate of the block input
t0 = reference temperature in Kelvin is set at 290 K
nf = 10 ( NFssb / 10)

then
How does the simulation sample rate impact the Mixer model. Let the simulation10.
sample rate be called sr and the primary mixer output frequency be called f out.

If Sideband is Upper, then f out is f LO + f RF.

Else Sideband is Lower, then f out is |f LO - f RF| provided there is ideal LO to RF

and RF to LO isolation, otherwise f out is set to 0 Hz.

There is ideal LO to RF isolation when LoRfIso is less then -200 dB. There is
ideal RF to LO isolation when RfLoIso is less then -200 dB.
When there is non-ideal LO to RF or RF to LO isolation, f out is set to 0 Hz, since

the primary artifact of non-ideal LO to RF and RF to LO is frequency content at
or near 0 Hz.
For Mixer usage without suppression, leakage, isolation and nonlinear
characteristics, the model is not dependent on the simulation sample rate. It
simply mixes the RF input with the LO input to produce the selected sideband
output with mixer noise if specified.
However, when the there are any suppression, leakage, isolation or nonlinear
characteristics specified, then the simulation sample rate will impact how these
additional effects are included in the mixer output signal.
Each of these additional mixer characteristics may result in frequency terms that
reside outside the frequency range [f out - sr / 2, f out + sr / 2]. If frequency

terms are outside this range, they will be excluded from the output signal.
In general, these frequency terms are excluded without warning. Warnings are
issued when the sample rate is too small to support the effects of leakage terms
when LoRej > -200 dB or when SidebandSuppression > -200 dB.
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 MpyEnv Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MpyEnv
(algorithm)

Two Input Envelope Multiplier

 MpyEnv

Description: Two Input Envelope Multiplier
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: MpyEnv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

SideBandType Multiplication product type: Lower sideband,
Upper sideband, Both sidebands

Upper
sideband

 Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 input1 input signal
1

envelope NO

2 input2 input signal
2

envelope NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

MpyEnv multiplies the two input complex envelope signals. It can be used to model1.
an up-converter, down-converter, or double sideband modulator.
This model reads 1 sample from all inputs and writes 1 sample to the output.2.
The signals at pin k, where k is 1, 2, or 3, have complex envelope representation:3.

For SidebandType = Both4.
When both inputs are complex envelope: v 3(t) = 0.5 v 1(k) conj(v 2(t)) + 0.5

conj(v 1(t)) v 2(t); f 3 = max(f 1, f 2)

When both inputs are real: v 3(t) = v 1(t) v 2(t); f 3 = 0

When one input is real: v 3(t) = v 1(t) v 2(t); f 3 = max(f 1, f 2)

For SidebandType = Upper sideband5.
When either input is real: SidebandType is forced to Both and the output is set
for that case.
When both inputs are complex envelope: v 3(t) = 0.5 v 1(t) v 2(t); f 3 = f 1 + f 2

For SidebandType = Lower sideband6.
When either input is real: SidebandType is forced to Both and the output is set
for that case.
When both inputs are complex envelope and f 1 > f 2 : v 3(t) = 0.5 v 1(t) conj(v 2
(t)); f 3 = f 1 - f 2
When both inputs are complex envelope and f 2 > f 1 : v 3(t) = 0.5 conj(v 1(t))

v 2(t); f 3 = f 2 - f 1
When both inputs are complex envelope and f 1 = f 2 : v 3(t) = 0.5 v 1(t) conj(v 2
(t)); f 3 = 0 and the imaginary part of v 3(t) is set to 0.0.

In the above, the function conj() takes the conjugate of the complex argument.7.

See:
AddEnv (algorithm)
SubEnv (algorithm)
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MpyMultiEnv (algorithm)
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 NoiseFMask Part
Categories: Analog/RF (algorithm), Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

NoiseFMask
(algorithm)

Noise Generator with Frequency Domain Mask Specification

 NoiseFMask

Description: Noise Generator with Frequency Domain Mask Specification
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: NoiseFMask Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

FCarrierOption Signal carrier
frequency option:
Carrier at center of
NoiseMask data,
Defined by FCarrier

Carrier at
center of
NoiseMask
data

 Enumeration NO   

FCarrier Carrier frequency for
the noise (used if
FCarrierOption is
Defined by FCarrier)

1000000 Hz Float NO (0:∞)  

NoiseMask Noise specification
defined with pairs of
values for frequency
(Hz), noise level
(dBm/Hz)

  Floating
point array

NO   

ResBW Resolution frequency
bandwidth for noise
spectrum

1e6 Hz Float NO (0:∞)†  

RefR Reference resistance 50 ohm Float NO (0:∞)  

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output time
delay

0 s Float YES [0:∞) D

 Output Ports

Port Name Description Signal Type Optional

1 output output signal envelope NO

 Notes/Equations

NoiseFMask generates an RF (complex envelope) noise signal with a power spectral1.
density that follows the frequency domain noise mask as defined by NoiseMask.
The NoiseMask parameter is an array of values that defines the mask. The values are2.
interpreted as pairs of frequency in Hz and noise power level in dBm/Hz.
The FCarrierOption and FCarrier parameters define the characterization frequency3.
(fc) of the output signal.

For FCarrierOption set to Carrier at center of NoiseMask data, fc is the average
of the effective smallest and largest frequencies listed in NoiseMask.
For FCarrierOption set to Defined by FCarrier, fc is FCarrier.

The output signal is modeled as a sum of tones.4.
Number of tones is (f max - f min) / ResBW. Let SR be the simulation sample rate

for this model instance. If f min is less than fc - (SR / 2), then it is reset to this

limit. If f max is greater than fc + (SR / 2), then it is reset to this limit. More

tones allow for more accurate modeling in the output noise. However, using
more tones will increase simulation time.
Frequency of the i th tone is selected from a uniform distribution in the interval
[f  + i   ×  ResBW, f  + (i + 1)   ×  ResBw).
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min min

Amplitude of the i th tone is selected from a normal distribution centered around
an amplitude that corresponds to the power level specified in the mask. Power
levels for tones whose frequency is not listed in the NoiseMask parameter are
interpolated. The power level is converted to voltage level using the reference
resistance, RefR.
Initial phase of each tone is selected from a uniform distribution in the interval
[0, 2 × pi).

For other parameter descriptions, see Timed Sources (algorithm).5.
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 Oscillator Part
Categories: Analog/RF (algorithm), Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Oscillator
(algorithm)

Oscillator with Carrier Frequency

 Oscillator

Description: Oscillator with Carrier Frequency
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Oscillator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Frequency RF tone frequency 1000000 Hz Float NO (0:∞)  

Power RF tone carrier power .010 W Float NO [0:∞)  

Phase RF tone carrier phase 0.0 deg Float NO (-
∞:∞)

 

RandomPhase Set phase of RF tone to
random value between
-PI and +PI: NO, YES

NO  Enumeration NO   

PhaseNoiseData Phase noise
specification - pairs of
offset freq (Hz) and
SSB phase noise level
(dBc/Hz)

  Floating
point array

NO   

PN_Type Phase noise model
type with random or
fixed offset freq
spacing and amplitude:
Random PN, Fixed freq
offset, Fixed freq offset
and amplitude

Random PN  Enumeration NO   

NDensity Noise spectral density
added

0 W Float NO [0:∞)  

RefR Reference resistance 50 ohm Float NO (0:∞)  

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output time
delay

0 s Float YES [0:∞) D

 Output Ports

Port Name Description Signal Type Optional

1 output output signal envelope NO

 Notes/Equations

Oscillator generates an RF (complex envelope) defined by its carrier frequency and1.
with optional thermal noise and phase noise.
The frequency, power, and phase of the first tone are defined by the Frequency,2.
Power and Phase parameters, respectively.
If RandomPhase=Yes, then the Phase is ignored and a random phase between −1803.
and +180 degrees is used.
Noise power added to the output signal is NDensity_W × BW where4.
NDensity_W is the noise density in Watts/Hz. The NDensity parameter specified in
any power unit automatically converts to NDensity_W.
BW is the simulation bandwidth which, for complex envelope signal, is the sample
rate.
The rms voltage associated with the noise power is 
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.
The value of NDensity (in Watts/Hz) is related to temperature in Kelvin as kT where k
is the Boltzmann constant (1.3806504e-23). At the standard system temperature of
290 Kelvin (16.85 Celsius), the NDensity is 4.00388587e-21 Watts/Hz (-173.975
dBm/Hz).
A phase noise characteristic is specified in the PhaseNoiseData list. This list contains5.
double values of offset frequency (Hz) and single sideband relative power level
(dBc/Hz).

PhaseNoiseData = "[100, -50, 1000, -70, 1e5, -90]" or alternatively can reference an array

defined using Math Language in an Equations sheet.

The phase noise characteristic defined from this list describes a frequency domain
specification for phase noise. Interpolation is applied between these frequency
domain points as needed to give a full time domain simulation definition for this
phase noise.

Phase noise is modeled as a sum of tones that modulates the phase of the main tone. Let f

offsetMax (f offsetMin) be the maximum (minimum) offset frequency specified in

PhaseNoiseData. Then the number of tones N used to model phase noise is equal to f

offsetMax / f offsetMin.

In the following, let ROut = RefR, the power specification reference resistance.
Let P i be the phase noise power at frequency offset f i. The phase (φ i), frequency (f i),

and amplitude (or modulation index) (η i) of each tone is given by:

When PN_Type = Fixed freq offset and amplitude

φ i is a random variable uniformly distributed in [0, 2π)

When PN_Type = Fixed freq offset

φ i is a random variable uniformly distributed in [0, 2π)

η i is a random variable with a Rayleigh distribution and mean value

When PN_Type = Random PN

φ i is a random variable uniformly distributed in [0, 2π)

f i is a random variable uniformly distributed in

η i is a random variable with a Rayleigh distribution and mean value

For the first two cases Fixed freq offset and amplitude and Fixed freq offset, phase noise is
a sum of tones whose frequencies are integer multiples of the same frequency (f offsetMin).

Therefore, phase noise will be periodic with period 1 / f offsetMin and all the phase noise

signal power will be located at the discrete frequencies that are integer multiples of f

offsetMin. When a spectrum analysis is performed on this signal and the resolution

bandwidth is equal to f offsetMin / M, where M is an integer, the spectrum will have spectral

nulls (e.g. -250 dBm) at all frequencies that are not an integer multiple of f offsetMin . The

integrated power in a bandwidth of f offsetMin will still be what one expects based on the

phase noise data specification but it will all be concentrated at one frequency (the one that
is an integer multiple of f offsetMin).

For better phase noise modeling it is recommended that simulations be performed with
PN_Type set to Random PN (default). The other values for PN_Type can be used to
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demonstrate/understand the phase noise modeling algorithm and are not recommended
for use in practical simulations.
The single sideband phase noise in dBc/Hz is

where
η rms (f i) = root mean square of modulation index η i at offset frequency f i.

The modulation index is related to the signal power and single sideband phase noise
power as follows:

where
P c = signal power

P ssb (f i ) = signal sideband power at offset frequency f i

Therefore, single sideband phase noise in dBc/Hz can also be expressed as:

where
P ssb (f i)dBm = simulated single sideband phase noise power per simulation frequency

resolution bandwidth ResBW
ResBWdB = factor for frequency resolution bandwidth ResBW used during simulation = 10
× log10(ResBW)
P c dBm = signal power in dBm

Note
If the phase noise settings result in the summed phase noise higher than tone power (dBm) - 10 dB, a
warning message will be generated:
Phase noise violates small signal modeling requirement; phase noise power exceeds Tone_Power (dBm) -
10 dB.
However, the simulation will continue with the current parameter settings.

A phase noise modeling example is demonstrated here. Consider the simple design with
an Oscillator used to generate a 1 GHz tone at a power level of 10 dBm with 50 Ohms
reference resistance. The tone is colored with phase noise, whose frequency specification
is defined with PhaseNoiseData = 1.0e3, -70, 1.0e4, -60, 4.0e4, -60, 4.0e5, -90. For this
example, f offsetMin is 1 kHz and f offsetMax is 400 kHz.   The simulation sample rate

(Sample_Rate) is set to (8192 / Stop_Time ) Hz, which is large enough to resolve the
maximum phase noise frequency offset data point at 400 kHz. The simulation stop time
(Stop_Time) is set to 1 msec, which is large enough to resolve the lowest phase noise
frequency offset data point at 1 kHz.
The spectrum of the signal at the output of N_Tones is measured using a
SpectrumAnalyzer component. The spectrum is shown in Signal Spectrum with
PN_Type=Random PN and TStop=1 msec. The resolution bandwidth of the spectrum
measurement is 1 / ( Stop - Start ) = 1 / ( 1 msec ) = 1 kHz. This means that each
spectral tone displayed will be at multiples of 1 kHz from the carrier frequency of 1 GHz.
For noise power integrated over a 1 kHz bandwidth, the power would be 30 dB
(=10 × log10(1000)) more than that in a 1 Hz bandwidth.
 

 Signal Spectrum with PN_Type= Random PN and TStop=1 msec

Signal Spectrum with PN_Type=Fixed freq offset and amplitude and TStop=2 msec shows
the signal spectrum when PN_Type= Fixed freq offset and amplitude and TStop=2 msec.
The resolution bandwidth of the spectrum measurement is 1 / ( Stop - Start ) = 0.5 kHz.
As explained in note 6, all phase noise signal power will be located at frequencies that are
integer multiples of f offsetMin = 1 kHz and the spectrum values at frequencies (M+0.5)

kHz (where M is an integer) will be practically 0.

 Signal Spectrum with PN_Type= Fixed freq offset and amplitude and TStop=2 msec



SystemVue - Algorithm Design Library

110

To view the phase noise spectrum versus spectral tone offset index, a signal processing
network can be created to perform the FFT on the collected RF complex time domain
waveform. Summed powers in the upper and lower sidebands are averaged and results
are converted into dBm to obtain the single sideband phase noise power in dBm per
simulation frequency resolution bandwidth versus offset spectral tone. This resultant
single sideband phase noise spectrum can be displayed versus spectral tone offset index
as shown in Phase Noise Spectrum with PN_Type=Random PN.
  In Phase Noise Spectrum with PN_Type=Random PN, 1 kHz offset occurs at index 1, 10
kHz offset occurs at index 10, 40 kHz offset occurs at index 40, and 400 kHz offset occurs
at index 400. As can be seen, this figure agrees with the PhaseNoiseData specified.
The phase noise data displayed in Phase Noise Spectrum with PN_Type=Random PN was
generated using PN_Type= Random PN . In Phase Noise Spectrum with PN_Type=Fixed
freq offset and amplitude, phase noise is displayed with PN_Type= Fixed freq offset and
amplitude . As can be seen, Phase Noise Spectrum with PN_Type=Fixed freq offset and
amplitude agrees much better (compared to Phase Noise Spectrum with
PN_Type=Random PN) with the PhaseNoiseData specified, since in this case there is no
randomness in the values of f i and η i .

The results of Phase Noise Spectrum with PN_Type=Random PN and Phase Noise
Spectrum with PN_Type=Fixed freq offset and amplitude were obtained by setting the FFT
size to 2 13.
 

 Phase Noise Spectrum with PN_Type= Random PN

 Phase Noise Spectrum with PN_Type= Fixed freq offset and amplitude

For other parameter descriptions, see Time Burst Sources.
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 PeakDetector Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PeakDetector
(algorithm)

Peak
Detector

 PeakDetector

Description: Peak Detector
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: PeakDetector Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

ChargeTimeConstant Output voltage charge time
constant

0 s Float NO [0:∞)

DecayTimeConstant Output voltage decay time
constant

20e-6 s Float NO [0:∞)

VThreshold Voltage threshold for detection 0 V Float NO (-
∞:∞)

VTransWidth Voltage transition width 0 V Float NO [0:∞)

Polarity Polarity of the peak detector:
positive, negative

positive  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

PeakDetector captures the previous peak input and includes charge and decay time1.
constants.
This model reads 1 sample from the input and writes 1 sample to the outputs.2.
Define the signal to be detected as vs. When the input is a real baseband signal, let3.
vs be the input signal, vs = v1. When the input is a complex envelope signal, and
Polarity = positive , let vs be the magnitude of the input signal, vs = |v1|. Otherwise,
let vs be the negative of the input signal, vs = -|v1|.
The model operation can be defined with an input signal detection process and a4.
signal output process.

The detection process is dependant on the Polarity, VThreshold and VTransWidth
values and results in the detected value vdet.
The output process is dependant on the detected value, vdet, and the
ChargeTimeConstant and DecayTimeConstant and results in the output value
vout.

Input signal detection process for vdet when Polarity = positive5.
Require: VThreshold >= 0.
When vs < VThreshold - VTransWidth / 2, vdet = 0.
When VTransWidth = 0 and vs >= VThreshold level, the peak detection is
instantaneous and vdet is:
. 
When VTransWidth > 0 and vs >= VThreshold - VTransWidth / 2, then [
VThreshold - VTransWidth / 2, VThreshold + VTransWidth / 2 ] defines a
transition range for vs over which the detection is weighted and vdet is:
. 

Input signal detection process for vdet when Polarity = negative6.
Require: VThreshold <= 0.
When the vs > VThreshold + VTransWidth / 2, vdet = 0.
When VTransWidth = 0 and vs <= VThreshold level, the peak detection is
instantaneous and vdet is:
. 
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When VTransWidth > 0 and vs <= VThreshold + VTransWidth / 2, then [
VThreshold - VTransWidth / 2, VThreshold + VTransWidth / 2 ] defines a
transition range for vs over which the detection is weighted and vdet is:
. 

Signal output process for vout7.
When the new value for vdet is greater then the prior value for vout, then the
new vout value will charge to this new vdet value dependant on the
ChargeTimeConstant.

When ChargeTimeConstant = 0 and vdet > vout, then the charge is
instantenous and vout = vdet.
When ChargeTimeConstant > = 0, then a test is performed to determine if
vout should continue to charge.
. 

Where, SR = the simulation sample rate for the model instance.
If vtest > vout, then vout is reset to vtest.

When the new value for vdet is less then the prior value for vout, then the new
vout value will decay to this new vdet value dependant on the
DelayTimeConstant.

When DecayTimeConstant = 0 and vdet < vout, then the decay is
instantaneous and vout = vdet.
When DecayTimeConstant is large, then vout is held indefintely until
changed by a new vdet value.
When DecayTimeConstant > = 0, then a test is performed to determine if
vout should continue to decay.
. 

Where, SR = the simulation sample rate for the model instance.
If vtest < vout, then vout is reset to vtest.
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 PhaseComparator Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PhaseComparator
(algorithm)

Phase Comparator

 PhaseComparator

Description: Phase Comparator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: PhaseComparator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

PhaseCharacteristicType Type of analog phase
comparator: PhaseFreq,
Sinusoidal, Triangular

PhaseFreq  Enumeration NO  

GainConstant Small signal gain constant, in
volts per degree

1  Float NO (-∞:0)
or
(0:∞)

MaxAngle Maximum unwrapped phase
angle (+/- MaxAngle) for
PhaseCharacteristicType =
PhaseFreq

360  Float NO  

 Input Ports

Port Name Description Signal Type Optional

1 s1 input signal
1

envelope NO

2 s2 input signal
2

envelope NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

PhaseCompRF models a phase comparator which compare two complex envelope1.
signals. The output can be a linear difference or a difference that has sine or
triangular characteristics.  
This model reads 1 sample from the inputs and writes 1 sample to the output.2.
This model is useful in the design of RF phase lock loops.3.
This model requires that both inputs are complex envelope signals with4.
characterization frequencies (fc1, fc2) greater than zero. Real input signals are not
allowed by this model. If use with a real is needed, then the input to this model can
be preceeded with an EnvFcChange (algorithm) model that will recharacterize a real
signal to its representation at a specified frequency. The simulation rate for this
model must be large enough to enable both input signals to be represented at the
same characterization frequency as s1. Otherwise, a warning message will be
displayed. In the following, the phase angles for s1 and s2 are discussed after s2 is
converted to its characterization at fc1 (if fc2 is not the same as fc1).
The output is calculated as follows:5.
θ 1 (t) denotes the phase angle associated with s1.

θ 2 (t) denotes the phase angle associated with s2.

K is the GainConstant parameter value.
The output signal at pin 3 is

. 

diff(t) is the difference between the unwrapped phase between s1 and s2 with
modulo MaxAngle.
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The triangular() function is shown below.

 Phase Comparator Characteristics
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 PhaseShifter Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PhaseShifter
(algorithm)

Phase
Shifter

 PhaseShifter

Description: Phase Shifter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: PhaseShifter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

PhaseShift Phase shift angle (used when the optional
control input is not used)

0 deg Float NO (-
∞:∞)

Sensitivity Phase shift sensitivity in angle/Volt (used
when the optional control input is used)

90 deg Float NO (-
∞:∞)

HilbertFilterLength Hilbert filter sample length (used when
input is a real signal)

64  Integer NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

2 control optional control signal envelope YES

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

PhaseShifter shifts the phase of the input signal by D degrees. If the control pin is1.
connected, D is the product of Sensitivity and the control pin input, otherwise D is
taken from PhaseShift.
This model reads 1 sample from the inputs and writes 1 sample to the output.2.
If the input signal is a complex envelope signal with characterization frequency, fc1,3.
greater than zero, then
. 
If the input signal is a real baseband signal, then4.

Define a Hilbert FIR filter with HilbertFilterLength number of coefficients.
Let v1h(t) represent the result of signal v1(t) convolved with this Hilbert filter.
Let v1d(t) represent the signal v1(t) delayed by HilbertFilterLength / 2 number
of samples.
The signal v2(t) is then obtained as:
. 
For good resolution, set HilbertFilterLength to N * SR / CenterFrequency.
where
SR = simulation sample rate for this model instance.
CenterFrequency = the center frequency for the information of interest in the
real baseband signal.
N = integer greater than or equal to 1; for better resolution set N > 1.
This operation results in a delay of approximately HilbertFilterLength / 2 number
of samples.
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 RF_Link Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RF_Link
(algorithm)

Link to Spectrasys RF Design

 RF_Link

Description: Link to Spectrasys RF Design
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: RF Link Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Schematic Spectrasys design to cosimulate with   Text NO

InputPartName Input part name (path start)   Text NO

OutputPartName Output part name (path end)   Text NO

FreqSweepSetup Frequency sweep setup: Automatic,
Manual

Automatic  Enumeration NO

FreqStart Frequency sweep start 1.0e6 Hz Float NO

FreqStop Frequency sweep stop 2.0e6 Hz Float NO

FreqStep Frequency sweep stop 1.0e4 Hz Float NO

FreqSweepPower Power level for frequency sweep 1.0e-3 W Float NO

EnableNoise Enable thermal noise extraction: NO, YES NO  Enumeration NO

Temperature System temperature 16.85 degC Float NO

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Setup UI
A custom UI is provided for this model that allows easy set up.
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The Schematic drop down box lists all the Spectrasys designs in the workspace. As
soon as a schematic is selected, the Input Part and Output Part drop down boxes
are updated to list all the available input and output part names that can be used to
define the path of interest.
The Enable Noise checkbox can be used to enable/disable thermal noise analysis for
the Spectrasys design.
The Use Automatic Frequency Sweep check box can be used to enable/disable the
automatic frequency sweep setup.

If checked, then the frequency sweep used to extract the frequency response for
the defined path in the Spectrasys design is setup automatically based on the
input signal sampling rate and characterization frequency.
If not checked, then frequency sweep Start, Stop, and Step values as well as
the power level at which the frequency sweep is performed (Sweep Power)
need to be specified in the fields inside the Manual Frequency Sweep Setup
area.

 Notes/Equations

The RF_Link model allows simulating a Spectrasys RF design in a Data Flow1.
schematic.
During simulation initialization a Spectrasys simulation is run that extracts behavioral2.
data for the Spectrasys RF design. The extracted behavioral data characterizes the
Spectrasys RF design in terms of its frequency response, non-linear behavior, and
thermal noise performance. This data is used to set up an equivalent Data Flow
network consisting of filters, amplifiers, mixers, oscillators, and noise generators.
For more details see About using Spectrasys designs in Data Flow schematics (sim)3.
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 SwitchSPDT Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SwitchSPDT
(algorithm)

Single Pole Double Throw Switch

 SwitchSPDT

Description: Single Pole Double Throw Switch
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SwitchSPDT Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss1 Loss in dB for on state insertion loss for output
1

0  Float NO [0:+200)

Isolation1 Isolation in dB for off state insertion loss for
output 1

200  Float NO [0:+200)

Loss2 Loss in dB for on state insertion loss for output
2

0  Float NO [0:+200)

Isolation2 Isolation in dB for off state insertion loss for
output 2

200  Float NO [0:+200)

VThreshold Control voltage threshold 0.5 V Float NO (0:∞)

TOn1 On state transition time for output 1 0 s Float NO [0:∞)

TOff1 Off state transition time for output 1 0 s Float NO [0:∞)

TOn2 On state transition time for output 2 0 s Float NO [0:∞)

TOff2 Off state transition time for output 2 0 s Float NO [0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input1 input signal
1

envelope NO

2 input2 input signal
2

envelope NO

 Output Ports

Port Name Description Signal Type Optional

3 output1 output signal 1 envelope NO

4 output2 output signal 2 envelope NO

 Notes/Equations

SwitchSPDT models a single pole double throw switch with non-idealities including1.
insertion loss, imperfect isolation, and non-zero switching time.
This model reads 1 sample from the inputs and writes 1 sample to the outputs.2.
The outputs take on the attributes of input1. If input1 is a real baseband signal, the3.
the outputs will be. If the input1 is a complex envelope signal, then the output will
also be with the same characterization frequency. The input2 is always interpreted as
a real baseband signal. If input2 is a complex envelope signal, it will be converted
internally in this model to its equivalent form as a real baseband signal.
SwitchSPDT inputs and output are defined as follows.4.
Let v i(t) be the real or complex envelop value at pin i.

The control input v 2(t) is always forced to a real value for comparison with

VThreshold.
Case 1: v 2(t) > VThreshold connects pin 1 to pin 4.

Let T s be the time at which v 2(t) exceeds VThreshold. Then
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Case 2: v 2(t) ≤ VThreshold connects pin 1 to pin 3.

Let T s be the time at which v 2(t) falls below VThreshold. Then

 A SwitchSPDT Example

 

The SwitchSPDT example uses a 1 KHz cosine input at pin 1 and a 0.5 KHz square1.
wave control at pin 2.

 
An ideal SwitchSPDT part with the following parameters give the following output.2.
Loss1=0 dB, Isolation1=200 dB,
Loss2=0 dB, Isolation2=200 dB,
VThreshold=0.50,
TOn1=0 s, TOff1=0 s,
TOn2=0 s, TOff2=0 s

 
A non-ideal SwitchSPDT part with the following parameters give the following output.3.
Loss1=3 dB, Isolation1=20 dB,
Loss2=3 dB, Isolation2=20 dB,
VThreshold=0.50,
TOn1=0.15 s, TOff1=0.15 s,
TOn2=0.15 s, TOff2=0.15 s
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 SwitchSPST Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SwitchSPST
(algorithm)

Single Pole Single Throw
Switch

 SwitchSPST

Description: Single Pole Single Throw Switch
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SwitchSPST Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Loss Loss in dB for on state insertion loss 0  Float NO [0:+200)

Isolation Isolation in dB for off state insertion loss -200  Float NO [0:+200)

VThreshold Control voltage threshold 0.5 V Float NO (0:∞)

TOn On-state transition ctime for output 0 s Float NO [0:∞)

TOff Off-state transition ctime for output 0 s Float NO [0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input1 input signal
1

envelope NO

2 input2 input signal
2

envelope NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

SwitchSPST models a single pole single throw switch with non-idealities including1.
insertion loss, imperfect isolation, and non-zero switching time.
This model reads 1 sample from the inputs and writes 1 sample to the output.2.
The output take on the attributes of input1. If input1 is a real baseband signal, the3.
the output will be. If the input1 is a complex envelope signal, then the output will
also be with the same characterization frequency. The input2 is always interpreted as
a real baseband signal. If input2 is a complex envelope signal, it will be converted
internally in this model to its equivalent form as a real baseband signal.
SwitchSPST inputs and output are defined as follows4.
Let v i(t) be the real or complex envelop value at pin i.
The control input v 2(t) is always forced to a real value for comparison with
VThreshold.
Case 1: v 2 (t) > VThreshold

Let T s be the time at which v 2 (t) exceeds VThreshold.

Then

Case 2: v 2 (t) ≤ VThreshold

Let T s be the time at which v 2 (t) falls below VThreshold.
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Then

SwitchSPST Component Inputs and SwitchSPST Component Output show the5.
performance of the SwitchSPST component, when it is an ideal switch, using the
following parameter values:
Loss=0, Iso=200, Vth=0.50, Ton=0, Toff=0
SwitchSPST Component Output shows the output of the SwitchSPST component,
when the switch is not ideal, using the parameter values:
Loss=3 dB, Iso=20 dB, Vth=0.50, Ton=0.15 s, Toff=0.15 s

 SwitchSPST Component Inputs

 SwitchSPST Component Output

 SwitchSPST Component Output
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 TimeDelay Part
Categories: Analog/RF (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

TimeDelay
(algorithm)

Ideal Time Delay Block. Delays the signal for a certain amount of
time.

 TimeDelay

Description: Ideal Time Delay Block. Delays the signal for a certain amount of time.
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: TimeDelay Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Unit Time delay unit: Time,
TimeStep

Time  Enumeration NO  

T Delay in time 0 s Float NO [0, ∞)

N Delay in number of time steps 0  Integer NO [0, ∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 Notes/Equations

TimeDelay delays the signal in time.1.
For every input, one value is output.2.
If Unit is Time, the input is delayed by T where T is any non-negative number.3.
Otherwise, the input is delayed by N × time step where N is any non-negative4.
integer.
TimeDelay increases the time stamps by the delay without inserting zero valued5.
samples.
See page on Special Models in Timing Method (sim).6.
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 TimeSynchronizer Part
Categories: Analog/RF (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

TimeSynchronizer
(algorithm)

Synchronize signals in
time

 TimeSynchronizer

Description: Synchronize signals in time
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: TimeSynchronizer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Mode Time synchronization mode: ZeroPadding,
TimeDelay

ZeroPadding  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input multiple anytype NO

 Output Ports

Port Name Signal Type Optional

2 output multiple anytype NO

 Notes/Equations

TimeSynchronizer aligns multiple inputs in time.1.
This model reads 1 sample from each of the inputs and writes 1 sample to each of2.
the outputs.
The _i_th input flows to _i_th output, therefore the number of the input connections3.
must at least equal to the number of the output connections.
If Mode is ZeroPadding, zero valued samples are inserted to later arriving inputs such4.
that all signals are aligned in time to the earliest incoming signal.
Otherwise, the earlier incoming signal time stamps are adjusted without inserting5.
zeros such that all signals are aligned to the latest incoming signal.
See section on Special Models in Timing Method (sim).6.
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 UpSampleEnv Part
Categories: Analog/RF (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

UpSampleEnv
(algorithm)

Up Sampler for Envelope Signal

 UpSampleEnv

Description: Up Sampler for Envelope Signal
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: UpSampleEnv Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Factor Upsampling ratio 5  Integer NO [1:∞)

Mode Upsampling interpolation type: Insert
zeros, Hold sample, Polyphase filter,
Linear

Hold
sample

 Enumeration NO  

Phase Upsampling insertion phase for the output
non-zero sample

0  Integer NO [0:Factor -
1]

ExcessBW Excess bandwidth of raised cosine
interpolation filter

0.5  Float NO [0:1]

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

To avoid confusion on a schematic, it is best to mirror (flip) this symbol (instead of rotating it) when you
need to have the input on the right and the output on the left of the symbol; otherwise the symbol arrow
will point in the "wrong" direction. Select the part and press F6 to flip the symbol into the correct
orientation.

 Notes/Equations

This model upsamples an input with time step TStepIn to the output that has time1.
step TStepOut = TStepIn / Factor.
This model reads 1 sample from the input and writes Factor number of samples to2.
the output.
If Mode is Insert zeros, the Phase parameter identifies which of the Factor output3.
samples will contain the one input sample.
If Mode is Hold samples, the input sample is repeated Factor times at the output.4.
If Mode is Polyphase filter, a raised-cosine filter with excess bandwidth equal to5.
ExcessBW (ExcessBW = 0 gives the ideal lowpass filter) is used for interpolation. The
corner frequency of the filter is set to FCorner = 1 / Factor / TStepIn. The number of
taps used for this filter is (1 + 20 × Factor). Therefore, the output signal will be
delayed with respect to the input signal by 10 × TStepIn.
If Mode is Linear, linear interpolation is used to fill the values between consecutive6.
input samples. The output signal will be delayed by TStepIn with respect to the input
signal.
To upsample a signal by a non-integer factor, a cascade of an upsampler followed by7.
a downsampler is needed. For example, to change the sampling rate of a signal from
40 MHz (TStep = 25 nsec) to 73 MHz (TStep = 13.69863 nsec), first pass it through
the UpSampleEnv component (Factor = 73, Mode = Polyphase filter or Linear) and
then through the DownSampleEnv component (Factor = 40). To improve simulation
speed, make sure the two ratios are relatively prime. If not, divide them with their
GCD (greatest common divisor). For example, if in the previous case the desired
sampling rate was 72 MHz, Factor of UpSampleEnv can be set to 9 (= 72 / 8) and
Factor of DownSampleEnv can be set to 5 (= 40 / 8) where GCD (72, 40) = 8.
The figure below shows the UpSampleEnv output for different Mode values.8.
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 Upsampler outputs for the different Mode values: Insert Zeros(Type=ZeroInsertion), Hold samples
(Type=SampleAndHold), Polyphase filter(Type=PolyPhaseFilter) and Linear(Type=Linear). The ZeroInsertion
plot was created with Phase set to 0. The PolyPhaseFilter plot wascreated with ExcessBW set to 0.5.

Note on large upsampling factors

Each upsampler require a buffer of Factor number of samples. For a large Factor value, memory
requirements may prevent a simulation. The way around this problem is to substitute a cascade of
upsamplers. For example, a Factor of 10 6 would require a buffer of 10 6 samples. If a cascade of two
upsamplers were used, then each Factor could be 10 3 which would require a total buffer equivalent of 2 ×
10 3 samples. If a cascade of three upsamplers were used, then each Factor could be 10 2 which would
require a total buffer equivalent of 3 × 10 2 samples.
If a nonzero Phase were to be used, the Phase would have to be deconstructed into Phase values for each
cascaded upsampler. Let an upsampler have a Factor of 10 6 and a Phase of 123456. The upsampler is
substituted by 3 upsamplers each having a Factor of 10 2. The first upsampler would have a Phase of 12,
the second upsampler would have a Phase of 34 and the third sampler would have a Phase of 56.

See:
DownSampleEnv (algorithm)
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 VCO_DivideByN Part
Categories: Analog/RF (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VCO_DivideByN
(algorithm)

VCO with Internal Divide by N Divider

 VCO_DivideByN

Description: VCO with Internal Divide by N Divider
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: VCO DivideByN Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

FCarrier VCO carrier frequency 1000000 Hz Float NO (0:∞)

Power Unmodulated carrier power 0.01 W Float NO [0:∞)

Sensitivity Frequency deviation sensitivity in Hz/volts 1  Float NO (-
∞:∞)

N Nominal divide-by-N ratio 1  Float NO (0:∞)

RefR Reference resistance 50 ohm Float NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 vtune input tune signal envelope NO

2 dN input delta divide by N ratio envelope NO

 Output Ports

Port Name Description Signal Type Optional

3 VCOn output VCO divide by N+dN RF signal envelope NO

4 Freq output VCO instantaneous frequency envelope NO

5 VCO output VCO undivided RF signal envelope NO

 Notes/Equations

VCO_DivideByN models a VCO with a built-in controllable frequency divider. It1.
outputs the VCO output signal ( VCO ) as well as the frequency divide signal ( VCOn
).
This model reads 1 sample from the inputs and writes 1 sample to the outputs.2.
Incorporating the divider into the same model permits its use in phase-lock loop3.
simulations where the the primary interest is in the VCOn signal which requires a
smaller sampling rate than does the VCO signal. This model does not check for
sample rate validity for the VCO signal. If the sample rate is too small, the phase and
frequency information of the VCO output may be aliased. If just the divided output
VCOn is used, the loop simulations can still be valid and simulate faster due to the
smaller sample rate required.
As the sample rate is increased such that the VCO signal is not aliased, then both the
VCO and divided VCOn outputs are valid.
The inputs vtune and dN are interpreted as real baseband signals.4.
The outputs VCO and VCOn are complex envelope signals with characterization5.
frequencies FCarrier and FCarrier / N respectively.
The output Freq is a real baseband signal whose value is the frequency of the VCO as6.
determined by FCarrier + Sensitivity * vtune.
The divide number is determined by adding the N parameter and the dN baseband7.
input voltage. The divide number can change during the simulation. By properly
driving the dN input, fractional frequency division can be simulated. To simulate all
the dynamics of a fractional divider, the simulation sample rate must be large enough
to properly digitize the varying divide rate.
Both the main VCO output and the divided output VCOn have unmodulated carrier8.
voltage levels determined from the Power and RefR parameter values.
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 C++ Code Generation
The parts listed in this category have a default model that supports C++ Code Generation.
If the part has more than one model, the non-default models do not necessarily support
C++ Code Generation. To find out whether a specific model supports C++ Code
Generation go to its documentation page and look for the C++ Code Generation Support
field.

For more information about C++ Code generation, refer to C++ Code Generation
(algorithm).

 Contents
Add Part (algorithm)
AddGuard Part (algorithm)
AsyncCommutator Part (algorithm)
AsyncDistributor Part (algorithm)
Average Part (algorithm)
BitDeformatter Part (algorithm)
BitFormatter Part (algorithm)
BitsToInt Part (algorithm)
Chop Part (algorithm)
ChopVarOffset Part (algorithm)
CoderRS Part (algorithm)
Commutator Part (algorithm)
Const Part (algorithm)
ConvolutionalCoder Part (algorithm)
CxToRect Part (algorithm)
Distributor Part (algorithm)
FFT Cx Part (algorithm)
FIR Part (algorithm)
FIR CX Part (algorithm)
Gain Part (algorithm)
GoldCode Part (algorithm)
Hilbert Part (algorithm)
IntToBits Part (algorithm)
LFSR Part (algorithm)
LMS Part (algorithm)
LoadIFFTBuff802 Part (algorithm)
Logic Part (algorithm)
LookUpTable Part (algorithm)
Mapper M Part (algorithm)
Math Part (algorithm)
Mpy Part (algorithm)
Mux Part (algorithm)
Pack M Part (algorithm)
RectToCx Part (algorithm)
Repeat Part (algorithm)
ResamplerRC Part (algorithm)
Sub Part (algorithm)
Trig Part (algorithm)
Unpack M Part (algorithm)
ViterbiDecoder Part (algorithm)
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 C++ Code Generation
SystemVue C++ Code Generator allows users to generate C++ code for a network (or a
sub-network) of a system. The generated code is in SystemVue C++ Model (users) format
but can be wrapped in different shells (e.g. ADS Ptolemy Model) and used in other
simulation environments. The generated C++ Model (users) contains the following
contents to implement the system of the code generation network:

Declaration of models and sub-networks inside the network.
Declaration of interface ports and specifying the interface data flow rates of the
network.
Specifying model parameters.
Allocation (and de-allocation) of buffer memories for transferring data inside the
network.
Setting up models' input and output ports (users) for reading and writing data from
and to circular buffers (users).
Executing pre-scheduled model executions for a complete data flow schedule iteration
(sim) of the network.

The generated C++ Model is also generic enough to be used as standalone C++ code for
other applications.

 Quick Start
In this section code generation flow is used to generate C++ code for a CIC filter. The
similar flow can be used for more complex systems build with code-generation supported
models in SystemVue. All user defined C++ models (users) following the directions in the
section Writing C++ Models for Code Generation support code-generation.

 Creating a Sub-network Model

Create a sub-network model implementing a CIC filter using models in Algorithm Design
library as follows,

 Creating a Design using the Sub-network Model

Create a Design using the CIC filter sub-network model as follows

 Adding a C++ Code Generator Analysis
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Right click on the workspace tree and add a C++ Code Generator Analysis as follows

In the C++ Code Generation Options dialog box, edit the Name to CIC_CodeGen and
select Top Level Design to be Design1. The dialog should look as shown below:

The different fields and buttons of the dialog are explained below:

The Name is the C++ Code Generator name, which identifies it on the workspace
tree.
The Top Level Design selects the top level design for code generation.
The Add button selects one or more parts for code generation; the generated code
will be for the models associated with the selected parts.
The Delete button removes parts that have been previosuly added.
The Selected items grid lists the parts for which code will be generated.

Part is the full path to the part selected for code generation; this is a non-
editable field.
Model is the name of the model the part was using when selected for code
generation; this is a non-editable field.
Generated Class Name is the C++ class name that will be used when
generating code for the corresponding part. This is editable and can be modified
if the default auto-generated name is not desired.
You can add multiple parts for code generation at a time.

The Output Directory is the directory where the Visual Studio Solution will be
generated.
If Use default directory is selected then the default directory (a directory with the
same name as the workspace located in the same directory as the workspace) is
used.
The Shell Type drop down menu specifies the shell (application) on which the
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generated code will run. The available shells are: SystemVue Model, Win32
Standalone DLL, ADS Ptolemy Model. See Supported Shells section for more details.

SystemVue Model will generate code for a SystemVue Model that can then be
imported and run inside SystemVue.
Win32 Standalone DLL will generate code that can be compiled in a
standalone dll for use in other applications. For this shell the Use circular
buffers checkbox controls whether the generated C++ model is going to use
CircularBuffer or GenericType input/output interface. Generic-type interface
currently supports only int, double, std::complex<double>, int*, double*, and
std::complex<double>* data-types.

ADS Ptolemy Model will generate code and an associated pl file(s) that can be
compiled in a dll for use in the ADS Ptolemy simulation environment. For this
shell the ADS Install Directory needs to be specified in the corresponding
field.

Clicking on the Add button brings up a dialog box where the sub-networks for which C++
code generation is desired can be selected. For this example, select "Data1 (CIC_filter)"
for code generation as follows

Click Expand sub-folders (if desired). (Note that you can open any individual sub-folder
by clicking the + symbol on its left.)

Automatically opens sub-folders with only a small number of parts.
Always opens all sub-folders.
Never only opens the Top Level Design folder, but leaves all the sub-folders closed.

Click Ok button. The Selected items grid in C++ Code Generation Options dialog box
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should look like as follows.

 Generating Code

Clicking on the Generate Now button (or right-clicking on the C++ Code Generation item
on the workspace tree and selecting Generate Now) generates the C++ code plus other
necessary files (e.g. pl files for the ADS Ptolemy Model shell) as well as an associated
Visual Studio solution and project(s) that can be used to build the code. The Visual Studio
project for the different shells (SystemVue Model, Win32 Standalone DLL, ADS Ptolemy
Model) is created under a different directory (SystemVue, StandaloneDLL, Ptolemy) in the
top level Visual Studio solution directory. All Visual Studio projects created from the same
C++ Code Generator are included in the same Visual Studio solution. The first time the
Visual Studio solution is created, Visual Studio is launched, the generated solution and
project files are loaded, and Visual Studio comes to the foreground. All that needs to be
done after that is selecting the desired configuration (Release/Debug) and building the
solution. Every time the Visual Studio solution is updated (e.g. new project added to the
solution, more files added to an existing project in the solution) through the code
generator, Visual Studio first saves the solution (this guarantees that changes the user
has made are not overwritten), then closes the solution, then the code generator updates
the necessary files, and finally Visual Studio loads the updated solution.

When selecting a C__ model part (non-subnetwork part) for code generation, SystemVue will generate a
C__ wrapper inherited from the original C__ model. For this reason, the Generated Class Name should
be different than the full class name (including namespace) of the original C__ model. In general, users
just need to take care of user-defined C__ models as SystemVue built-in models are protected within a
namespace.

 Supported Shells
This section describes in more detail the supported shell types. Although the generated
files are very similar or identical for all shell types the compiler and linker options used to
build the code are different.

 SystemVue Model

The SystemVue Model shell generates code that can be built into a DLL for use inside
SystemVue. The DLL can be loaded into SystemVue using the Library Manager (users)
(see section Adding C++ Custom Libraries (users)). The structure of the auto-generated
Visual Studio solution and project is shown below.

The solution name is the same as the workspace name (CodeGenExample) and the project
name is SystemVue.

The Header Files folder contains the header file(s) for the generated classes.
The Source Files folder contains the implementation (.cpp) file(s) for the generated
classes. In addition, the Source Files folder contains the file LibraryProperties.cpp,
which can be used to change the name of the Part, Model, and Enum libraries created
when the DLL is loaded into SystemVue. By default the name of these libraries is the
workspace name.
The XML Files folder contains xml file(s) that describe the model interface, that is, the
names, types, and other properties of the the model's parameters, inputs, outputs,
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etc. These xml files are not necessary for building the DLL.

 Win32 Standalone DLL

The Win32 Standalone DLL shell generates code can be built into a DLL for use outside of
SystemVue. The structure of the auto-generated Visual Studio solution and project is
shown below.

The solution name is the same as the workspace name (CodeGenExample) and the project
name is StandaloneDLL.

The Header Files folder contains the header file(s) for the generated classes.
The Source Files folder contains the implementation (.cpp) file(s) for the generated
classes.
The XML Files folder contains xml file(s) that describe the model interface, that is, the
names, types, and other properties of the the model's parameters, inputs, outputs,
etc. These xml files are not necessary for building the DLL.

 Exporting symbols from the Standalone DLL

No symbols are exported from the DLL that is built. Symbols are required to be exported if
you wish to reference the functions and classes defined in this DLL from another DLL or an
executable. To export symbols from a DLL, you need to use:

__declspec(dllexport)

To do this, add a new header file to the StandaloneDLL project. A good practice is to call
this header file "<Solution Name>_DLL_Export.h". To add a new file right click on the
Header Files folder and select Add > New Item ...

In the dialog that pops up select Header File (.h), type the name of the new file in the
Name field, and press the Add button.
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An empty file called CodeGenExample_DLL_Export.h is created and opened in Visual
Studio for editing. Copy the content shown below and paste it in this file. Replace
CODEGENEXAMPLE with the name of your solution.

#pragma once

// The following ifdef block is the standard way of creating macros which make exporting

// from a DLL simpler. All files within this DLL are compiled with the CODEGENEXAMPLE_EXPORTS

// symbol defined on the command line. this symbol should not be defined on any project

// that uses this DLL. This way any other project whose source files include this file see

// CODEGENEXAMPLE_API functions as being imported from a DLL, whereas this DLL sees symbols

// defined with this macro as being exported.

#if defined DISABLE_CODEGENEXAMPLE_EXPORTS || !defined _MSC_VER

#define CODEGENEXAMPLE_API

#elif defined CODEGENEXAMPLE_EXPORTS

#define CODEGENEXAMPLE_API __declspec(dllexport)

#else

#define CODEGENEXAMPLE_API __declspec(dllimport)

#endif

Now, you can modify the generated code to export the classes and functions you wish to
reference from other DLLs or executables. For example, to export the generated CIC_Filter
class, modify "CIC_Filter.h" by adding an include statement for the header file you just
added and adding the API preprocessor definition (CODEGENEXAMPLE_API) to the
declaration of the class.
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If you generate code from SystemVue again, the file CIC_Filter.h will be regenerated and the edits you
have made above will be lost. In this case, a window with a warning that certain files will be overwritten
pops up and you can choose to overwrite the files or not.

Now the CIC_Filter class/model can be instantiated and used in other applications. An
example on how to use a model from a standalone DLL in a standalone executable is
described in the next section.

 Using a model defined in a Standalone DLL in an executable

Make sure you have exported the classes/models you want to use in your executable1.
(see previous section).
Add a new project to the solution. Right click on the solution and select Add > New2.
Project ...

In the dialog that pops up select Win32 under Visual C++ in the Project types area,3.
then select Win32 Console Application in the Templates area, type the name of
the new project in the Name field, and press the OK button.
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3.

In the new dialog that pops up just press the Next and then the Finish button.4.
The new project is created and added to the solution. The CIC.cpp file, which5.
contains the _tmain function, is automatically opened for editing.

Edit this file to implement the application you want. The code shown below (this code6.
is also provide as a code snippet below so that you can copy/paste it and try it out
yourself)

instantiates the CIC_Filter class (line 12) that was generated by SystemVue
initializes it (lines 14 and 15)
passes random data to it (line 21)
runs it (line 22)
writes the filtered output to a file (line 23)
calls the finalize method of the filter (line 25) to do clean up (e.g. free allocated
memory) before exiting the program



SystemVue - Algorithm Design Library

138

// CIC.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include "../StandaloneDLL/CIC_Filter.h"

#include <iostream>

#include <fstream>

#include <stdlib.h>

int _tmain(int argc, _TCHAR* argv[])

{

CIC_Filter filter;

filter.Setup();

filter.Initialize();

std::ofstream outputFile("noise.txt");

for ( int i = 0; i < 1000; i++)

{

// Set input

filter.dp1 = double(rand())/(1000. * double(RAND_MAX));

filter.Run();

outputFile << filter.dp2 << std::endl;

}

filter.Finalize();

return 0;

}

Add a dependency between the CIC and the StandaloneDLL projects.7.
From the Project menu select Project Dependencies....
In the Project Dependencies dialog that pops up, go to the Dependencies tab,
select CIC in the Projects drop down menu, check the checkbox next to
StandaloneDLL in the Depends on area, and press the OK button.
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Add the appropriate Property Sheets.8.
From the View menu select Property Manager. The Property Manager tab
appears net to the Solution Explorer tab.

Add the "Model Builder Standalone DLL" property sheet to the CIC project. To do
this right click on the CIC project and select Add Existing Property Sheet....
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Navigate to the Modelbuilder directory of your SystemVue installation, select
"Model Builder Standalone DLL.vsprops", and press the open button.

Repeat the above step to add the "StandaloneDLL" property sheet to the CIC
project. This property sheet is under the StandaloneDLL directory of your
solution directory (c:\work\Examples\CodeGenExample for the example
discussed here).

Change the Output Directory for the CIC project so that the executable is built in the9.
same directory as the standalone DLL.

Right click on the CIC project and select Properties.
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In the dialog that pops up, select All Configurations in the Configuration drop
down menu, go to the General section under the Configuration Properties, set
the Output Directory to "$(SolutionDir)$(ConfigurationName)StandAloneDLL"
(the default value is "$(SolutionDir)$(ConfigurationName)"), and press the OK
button.

Build the solution by right clicking on the solution name and selecting Build Solution.10.
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The CIC.exe executable is created under the
DebugStandAloneDLL/ReleaseStandAloneDLL directory of your solution directory
(c:\work\Examples\CodeGenExample for the example discussed here) depending on
whether you chose to build Debug or Release code. You can navigate to this directory
(in Windows Explorer) and run it by double clicking on it. You will see the noise.txt
file being created. You can also place breakpoints and debug it inside Visual Studio.

 ADS Ptolemy Model

The ADS Ptolemy Model shell generates code and all other necessary files that can be built
into a DLL for use inside the ADS Ptolemy simulation environment. The structure of the
auto-generated Visual Studio solution and project is shown below.

The solution name is the same as the workspace name (CodeGenExample) and the project
name is Ptolemy. The solution includes two more projects: Ptolemy-SystemVueMatrix and
Ptolemy-SystemVueModelbuilder. These projects are not copied into the solution
directory. They exist under the directory My Documents\SystemVue\<SystemVue
version>\<ADS version> (without the Ptolemy- prefix) and they are included in the
solution from the above directory. These projects are built as part of the solution and the
DLLs they create are needed so that the DLL built from the Ptolemy project works
properly. Do not make any changes to the files of these two projects. The structure of the
Ptolemy projects is described below:

The Header Files folder contains the header file(s) for the generated classes. In
addition, the Header Files folder contains the file <WorkspaceName>Dll.h., where
<WorkspaceName> is the name of the workspace, which is required for compiling.
Do not delete or modify this file.
The Source Files folder contains the implementation (.cpp) file(s) for the generated
classes.
The Stars folder contains the Ptolemy Language (.pl) file(s), which wrap the
generated classes with an ADS Ptolemy model.
The XML Files folder contains xml file(s) that describe the model interface, that is, the
names, types, and other properties of the the model's parameters, inputs, outputs,
etc. These xml files are not necessary for building the DLL.
The Generated Header Files folder contains the header file(s) for the ADS Ptolemy
model(s).
The Generated Sources folder contains the implementation (.cc) file(s) for the ADS
Ptolemy model(s).

The header files under the Generated Header Files folder and the .cc files under the
Generated Sources folder are auto-generated from the pl files and do not exist during the
creation of the project. They are generated the first time the project is built. Do not delete
of modify these files.

When the Ptolemy project is built it creates a DLL (under the lib.win32 directory) as well
as the ael, symbols, and bitmaps needed for the model to be used in ADS. The resultant
directory structure is shown below.



SystemVue - Algorithm Design Library

143

To use these models in ADS just set the ADSPTOLEMY_MODEL_PATH environment
variable to the directory where the lib.win32, ael, symbols, bitmaps directories are located
(for the example shown above ADSPTOLEMY_MODEL_PATH should be set to
c:\work\Examples\CodeGenExample) and start ADS. The models will be located under the
SystemVue Imports library.

 Use of SystemVue matrix models in ADS

If a model with an output of SystemVue matrix is connected to a NumericSink it is
required that a Gain_M, GainInt_M, or GainCx_M component with Gain=1 is inserted
between the model and the sink.

 Supported ADS versions

The ADS Ptolemy Model shell is compatible with the following ADS versions: ADS 2009
Update 1, ADS 2010.

 Creating ADS Ptolemy models for an entire SystemVue Modelbuilder library

If you have a SystemVue library (dll) of custom models and want to use these models in
ADS you can follow the process described here to generate the associated pl files and
build a dll with the corresponding Ptolemy models. The alternative is to use the Code
Generator, where you add each one of the models in your library. This may not be
practical if your library contains a lot of models.

First create a simple subnetwork model (you can use the CIC_Filter example under1.
Examples\Model Building) and use the Code Generator to generate code using the
ADS Ptolemy Model shell. This step will create the proper Visual Studio solution and
project structure with the correct settings. Once this is done you can actually remove
the files created by the Code Generator (CIC_Filter.h, CIC_Filter.cpp, CIC_Filter.xml,
SDFSVUCIC_Filter.pl, SDFSVUCIC_Filter.h, and SDFSVUCIC_Filter.cc) from the
Ptolemy project. Do not remove the <SolutionName>Dll.h header file under the
Header Files folder. To simplify the description of the next steps we will assume that:

the SystemVue installation is under c:\Program Files\SystemVue2010.07
the Visual Studio solution directory is c:\work\Examples\CodeGenMyModels
the SystemVue custom model library is MyModels.dll

Open a DOS window and go to the Ptolemy directory of your Visual Studio solution2.
cd c:\work\Examples\CodeGenMyModels\Ptolemy
Run the command (make sure the directory where MyModels.dll is located is in your3.
PATH variable)
c:\Program Files\SystemVue2010.07\bin\SystemVue.exe -XML MyModels.dll
This command will create the xml file MyModels.xml, which fully describes the
interface of your SystemVue custom models.
Run the command4.
c:\Program Files\SystemVue2010.07\bin\SystemVueModelShell.exe -list -o
c:\work\Examples\CodeGenMyModels\Ptolemy -ptolemy MyModels.xml
This command will create a pl file wrapper for all the models in the MyModels.dll
library. The names of the created pl files are SDFSVU<ModelName>.pl.
In the Visual Studio Solution Explorer window, right click on the Stars folder of the5.
Ptolemy project and select Add > Existing Item.... In the dialog that pops up,
select all the SDFSVU<ModelName>.pl files and press the Add button. This will add
the selected pl files under the Stars folder.
In the Visual Studio Solution Explorer window, select all the pl files under the Stars6.
folder (you can do this by left mouse clicking on the first pl file and then holding
down the Shift key and left mouse clicking on the last pl file), then right click and
choose Compile. This will generate the corresponding SDFSVU<ModelName>.h and
SDFSVU<ModelName>.cc files.
Add the .h files under the Generated Headers folder and the .cc files under the7.
Generated Sources folder by right clicking on the folder and selecting Add >
Existing Item....
Update the Ptolemy project properties so that the C++ compiler has access to the8.
header files of your SystemVue custom models and the linker has access to the
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associated lib file (make sure the classes representing your models have been
exported properly so that they can be referenced from another dll; you can follow a
process similar to the one described in Exporting symbols from the Standalone DLL).
Build the solution.9.

 Limitations

When writing fixed point C++ models for SystemVue, users can simply override
AgilentEEsof::DFFixedPointInterface::SetOutputFixedPointParameters() method to let
SystemVue automatically set fixed point parameters (including word length, integer word
length, sign bit, etc) for each AgilentEEsof::FixedPoint object in
AgilentEEsof::FixedPointCircularBuffer. See Writing Fixed Point Models (users) for details.
However, such automation process is not available in ADS Ptolemy, so users have to
modify the source code. If the output fixed point parameters can be derived from model
parameters, users can set the fixed point parameters for each AgilentEEsof::FixedPoint
object in AgilentEEsof::FixedPointCircularBuffer in the Initialize() method. If the output
fixed point parameters depend on the input fixed point parameters, users can set the
output fixed point parameters for each output data in the Run() method.

In addition, because ADS Ptolemy and SystemVue use different fixed point data types,
conversions between two data types are performed in the generated Ptolemy Language
(.pl) model. The conversion functions are coded in
\ModelBuilder\include\SystemVue\ADSPtolemy\FixedPointHelper.h under SystemVue
installation directory.

 Licensing
Using the generated C++ code requires certain SystemVue licenses. The license features
required are based on what is included in the design used to generate C++ code and how
the generated code is being used (shell type).

 SystemVue Model Shell

If the generated C++ code is used as SystemVue model inside SystemVue then license
requirements will be same as running the original design used to generate C++ code. For
example if original design contained LTE models then LTE license will be needed.

 ADS Ptolemy Model Shell

If the generated code is used inside ADS Ptolemy, then SystemVue Core license will not be
required, instead ADS Ptolemy license will be used in place of SystemVue Core license.
However, if your design to generate C++ code requires any extra license other then
SystemVue core then exactly the same license will be needed to use generated code in
ADS Ptolemy. For example, if you have used any LTE license in SystemVue design to
generate C++ code then you will need exactly the same license to run the design in ADS
Ptolemy as well. To use SystemVue specific LTE ( or any other non SystemVue Core
license) in ADS Ptolemy, please append the SystemVue license path to ADS license
environment variable AGILEESOFD_LICENSE_FILE along with original ADS license.

 Win32 Standalone DLL Shell

To use generated code outside SystemVue and ADS Ptolmey, you will need exactly the
same licenses as you need for the SystemVue design used to generate C++ code. The
SystemVue Core license will always be pulled.

 W1718 License

If you have W1718 license available then the first time you run SystemVue C++ code
generation using your user account, the source code and corresponding Visual Studio
project for SystemVue core models will be copied to "\SystemVue\2010.07\W1718" under
"My Documents" directory for your user account, where 2010.07 represents corresponding
SystemVue version. You can read / modify the code and use it in anyway you want. If you
use the libraries created by W1718 source code, and link with the generated C++ code,
then you will not need SystemVue core license to use the generated code outside
SystemVue, provided that design to generate C++ code contains ONLY SystemVue core
model. If the design contains both core models and LTE then both SystemVue Core license
and LTE license will be required to use the code outside SystemVue/ADS.

 LTE Specific License Requirements

If you have LTE Baseband Verification License then the first time your will generate C++
code, LTE C++ header files will be copied to "\SystemVue\2010.07\LTE_8.9" under "My
Documents" directory for your user account, where 2010.07 represents corresponding
SystemVue version, and LTE_8.9 represents LTE version 8.9. To build any C++ code
generated using LTE models in your design requires these headers to be presented in that
directory. You will also require LTE license to run use the generated code. If you have
purchased LTE Basebad Exploration library then you will have access to complete LTE
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source code and you can use it in a similar way as W1718 source code.

 Schema
Along with C++ code generation, SystemVue generates XML file that describes the
interface of the generated C++ model. The XML format is based on the schema provided
in \ModelBuilder\Schema\systemvue_model.xsd under SystemVue installation directory.
In the same folder, systemvue_model.pdf and systemvue_model.mht are also provided
that describe the schema content.

 Writing C++ Models for Code Generation
In general, SystemVue C++ code generator supports any C++ model that is created and
loaded based on Creating a Custom C++ Model Library (users), including user-defined
C++ models. However, in order to successfully compile generated code, additional
information needs to be provided in DEFINE_MODEL_INTERFACE (users) of C++ models
that are going to be used in code generation.

If the class name (say classname) of a C++ model is different than the name of the
header file that declares the model, then use ADD_MODEL_HEADER_FILE(
header_file ) macro to specify the header file. See
\ModelBuilder\include\ModelBuilder.h in SystemVue installation directory for macro
definition. In this case, header_file.h will be included in the generated code.
Otherwise, classname.h will be automatically included by default.
If there are headers necessary for the generated code to use a model, and those
headers are not included in the model's header file, then use
ADD_MODEL_HEADER_FILE( header_file ) macro to specify the additional
headers to be included in the generated code and also the model class header.

Once ADD_MODEL_HEADER_FILE( header_file ) macro is used, C__ code generator will not
generate classname.h.

If a C++ model is declared within a namespace, then use
SET_MODEL_NAMESPACE( model_namespace ) macro to specify the
namespace. See \ModelBuilder\include\ModelBuilder.h in SystemVue installation
directory for macro definition.
The C++ code generator relies on the names specified through the DFInterface to
use model's member variables in the generated code. Therefore, model member
variables for inputs, outputs, parameters, and array parameter sizes must be in
public scope, and the names of the member variables must be specified exactly the
same as declared in the model class. The macros, e.g., ADD_MODEL_INPUT(
user_variable ), ADD_MODEL_OUTPUT( user_variable ),
ADD_MODEL_PARAM( user_param_variable ), ADD_MODEL_ENUM_PARAM(
user_param_variable, enum_type_name ),
ADD_MODEL_ARRAY_PARAM(user_param_variable,
user_array_size_variable), help users to add inputs, outputs, and parameters
while preserving naming consistency. For advanced users, see pcCodeGenName,
pcSizeName, and pcEnumType in \ModelBuilder\include\DFInterface.h and see
\ModelBuilder\include\ModelBuilder.h in SystemVue installation directory.
For enum parameters, the enum types must be declared in public scope. The names
of enum types must be specified exactly the same as declaration and must include
class scope if the enum types are declared within classes. See
ADD_MODEL_ENUM_PARAM( user_param_variable, enum_type_name )
macro in \ModelBuilder\include\ModelBuilder.h in SystemVue installation directory.

Model's inputs, outputs, parameters, array parameter sizes, and enum types must be declared in
public scope, and the names and enum types must be specified properly.

After code generation, the Visual Studio solution and projects (see Generating Code
and Supported Shells) that are automatically created by SystemVue will have the
proper include and library directories for the built-in SystemVue models. Regarding to
custom (user-defined) C++ models, users have to manually include them in the
Visual Studio projects. The following steps provide a general guideline to build the
custom C++ models along with the generated code.

Copy the custom .h and .cpp files to the generated Visual Studio project1.
directory.
In Visual Studio Solution Explorer, right click the project, use Add > Existing2.
Files to add the custom .h and .cpp files to the project Header and Source Files.
In the project property page (right click the project in Solution Explorer, then3.
choose Properties), set the include directories (Configuration Properties >
C/C++ > General > Additional Include Directories), library directories
(Configuration Properties > Linker > General > Additional Library Directories),
and .lib files (Configuration Properties > Linker > Input > Additional
Dependencies) that are necessary to build the custom C++ models. See Using
Third Party Library in C++ Models (users) for information about how to setup
Visual Studio project for using third party libraries in C++ models.
If the custom C++ models depend on dynamic link libraries, remember to set4.
windows PATH environment variable to include the directory where the .dll files
are located.
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 Understanding Generated C++ Code

 Example

The following figure shows a sub-network example for C++ code generation. The sub-
network contains an Add (algorithm) block A1, a "GainSubnet" sub-network model Data1,
and a custom "DownSample" C++ model D1.

The "GainSubnet" sub-network contains only a Gain (algorithm) block as shown in the
figure below:

The blocks Add (algorithm) and Gain (algorithm) use circular buffers (users) as inputs and
outputs. The header files can be found in \ModelBuilder\include under SystemVue
installation directory.

The custom C++ model (users) "DownSample" implements a simple down sampler. The
implementation is shown in the following "DownSample.h" and "DownSample.cpp" for the
purpose of illustrating scalar port (double Out) and array port (double *In).

// DownSample.h

#pragma once

#include "ModelBuilder.h"

class DownSample : public AgilentEEsof::DFModel

{

public:

DECLARE_MODEL_INTERFACE( DownSample )

virtual bool Run(); // down sampling

virtual bool Setup(); // Setup rate

double *In; // array input

double Out; // scalar output

int Factor; // down sample factor

unsigned Rate; // input rate = down sample factor

};

// DownSample.cpp

#include "stdafx.h"

#include "DownSample.h"

DEFINE_MODEL_INTERFACE( DownSample )

{

AgilentEEsof::DFParam cFactor = ADD_MODEL_PARAM( Factor );

cFactor.SetDefaultValue( "2" );

AgilentEEsof::DFPort cIn = ADD_MODEL_INPUT( In );

cIn.AddRateVariable( Rate );

ADD_MODEL_OUTPUT( Out );

return true;

}

bool DownSample::Setup()

{

if ( Factor > 0 )

Rate = Factor;

else

POST_ERROR("Factor should be > 0");

return true;
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}

bool DownSample::Run()

{

Out = In[0];

return true;

}

 Generated Header and C++ Files

The following "MyModel.h" shows the generated C++ model header file for the above code
generation sub-network.

The top of the header file documents the file name and copyright notice.
It includes the header files that declare the models inside the code generation sub-
network.
The class name of the generated C++ model is specified by the Generated Class
Name field in C++ Code Generation Options dialogue box.
For each sub-network interface port or bus-port, e.g., dp1, dp2, and dp3 in Fig:
GainSubnet, there is a corresponding circular buffer (users) port or circular buffer bus
(users) port declared in the generated C++ model for data input and output.
The hierarchical sub-networks are preserved in the generated model in a way that
the models are declared in nested classes that imitate the hierarchical structures. For
example, block G1 in sub-network Data1 is invoked in the generated code as
Data1.G1. For example, block A1 in the top-level code generation network is invoked
simply as A1.
If a model has any scalar port or array port, a circular buffer (users) will be declared
with the model for accessing data in a circular buffer fashion. For example, circular
buffers D1_In and D1_Out are declared for "DownSample" D1.In and D1.Out.
For each connection in the code generation network, there is a corresponding buffer
memory declared to store data for the connection. For example, double*
m_pBuffer_Data1_G1_output_To_dp2 for connection from Data1.G1.output to dp2.

/*

* MyModel.h

* Created by SystemVue C++ Code Generator

* Copyright &copy; Agilent Technologies, Inc. 2000-2010

*/

#pragma once

#include "ModelBuilder.h"

#include "DownSample.h"

#include "SystemVue/Models/Gain.h"

#include "SystemVue/Models/Add.h"

#include "SystemVue/Models/Fork.h"

class MyModel : public AgilentEEsof::DFModel

{

public:

DECLARE_MODEL_INTERFACE(MyModel)

MyModel();

~MyModel();

bool Setup();

bool Initialize();

bool Run();

bool Finalize();

// input, size=2, rate=2 2

AgilentEEsof::CircularBufferBusT<AgilentEEsof::CircularBuffer<double > > dp1;

// output, rate=1

AgilentEEsof::CircularBuffer<double > dp3;

// output, rate=2

AgilentEEsof::CircularBuffer<double > dp2;

private:

// subnetwork Data1

class Subnetwork_Data1

{

public:

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G1;

} Data1;

// delete buffer memory

void DeleteBuffers();

// DownSample

DownSample D1;

// circular buffer for D1.In

AgilentEEsof::CircularBuffer<double > D1_In;

// circular buffer for D1.Out

AgilentEEsof::CircularBuffer<double > D1_Out;

// AgilentEEsof::Add< double > double Add

AgilentEEsof::Add< double > A1;

// AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > double Fork

AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > A1_output;

// buffer from dp1[0] to A1.input[0]

double* m_pBuffer_dp1_0__To_A1_input_0_;

// circular buffer for dp1[0]

AgilentEEsof::CircularBuffer<double > dp1_0__CirBuf;

// buffer from dp1[1] to A1.input[1]

double* m_pBuffer_dp1_1__To_A1_input_1_;

// circular buffer for dp1[1]

AgilentEEsof::CircularBuffer<double > dp1_1__CirBuf;
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// buffer from D1_Out to dp3

double* m_pBuffer_D1_Out_To_dp3;

// circular buffer for dp3

AgilentEEsof::CircularBuffer<double > dp3_CirBuf;

// buffer from Data1.G1.output to dp2

double* m_pBuffer_Data1_G1_output_To_dp2;

// circular buffer for dp2

AgilentEEsof::CircularBuffer<double > dp2_CirBuf;

// buffer from A1.output to A1_output.input

double* m_pBuffer_A1_output_To_A1_output_input;

// buffer from A1_output.output[0] to D1_In

double* m_pBuffer_A1_output_output_0__To_D1_In;

// buffer from A1_output.output[1] to Data1.G1.input

double* m_pBuffer_A1_output_output_1__To_Data1_G1_input;

};

The following "MyModel.cpp" shows the generated C++ model cpp file for the above code
generation sub-network.

Input and output circular buffers and circular buffer buses are added automatically in
DEFINE_MODEL_INTERFACE (users) such that it can be easily brought back to
SystemVue. The DEFINE_MODEL_INTERFACE (users) is surrounded by
SV_CODE_GEN such that it can be easily compiled out for standalone usage.
Constructor, destructor, and DeleteBuffers() methods take care of initialization and
de-allocation of buffer memories.
Setup() method is overridden to set model's parameters (if any), initialize model's
bus-port width (if any), declare contiguous memory for model's array port (if any),
set optional connectivity for model's circular buffer port (if any), and call each
model's Setup() methods. It also initialize the interface circular buffer bus width and
set the input and output data flow rates of the generated model.
Initialize() method is overridden to allocate buffer memories based on the computed
schedule and set circular buffers for both ends of the connections. It also calls each
model's Initialize() methods.
Run() method is overridden to read data from input circular buffer (bus) ports,
execute the pre-computed schedule for a complete data flow iteration, and write data
to output circular buffer (bus) ports. Before and after each model's Run() method,
data access and circular buffer adjustment are taken care properly.
Finalize() method is overridden to call each model's Finalize() method and to de-
allocate buffer memories.

/*

* MyModel.cpp

* Created by SystemVue C++ Code Generator

* Copyright &copy; Agilent Technologies, Inc. 2000-2010

*/

#include "MyModel.h"

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(MyModel)

{

ADD_MODEL_INPUT( dp1 );

ADD_MODEL_OUTPUT( dp3 );

ADD_MODEL_OUTPUT( dp2 );

return true;

}

#endif

MyModel::MyModel()

{

m_pBuffer_dp1_0__To_A1_input_0_ = NULL;

m_pBuffer_dp1_1__To_A1_input_1_ = NULL;

m_pBuffer_D1_Out_To_dp3 = NULL;

m_pBuffer_Data1_G1_output_To_dp2 = NULL;

m_pBuffer_A1_output_To_A1_output_input = NULL;

m_pBuffer_A1_output_output_0__To_D1_In = NULL;

m_pBuffer_A1_output_output_1__To_Data1_G1_input = NULL;

}

MyModel::~MyModel()

{

DeleteBuffers();

}

void MyModel::DeleteBuffers()

{

delete[] m_pBuffer_dp1_0__To_A1_input_0_;

m_pBuffer_dp1_0__To_A1_input_0_ = NULL;

delete[] m_pBuffer_dp1_1__To_A1_input_1_;

m_pBuffer_dp1_1__To_A1_input_1_ = NULL;

delete[] m_pBuffer_D1_Out_To_dp3;

m_pBuffer_D1_Out_To_dp3 = NULL;

delete[] m_pBuffer_Data1_G1_output_To_dp2;

m_pBuffer_Data1_G1_output_To_dp2 = NULL;

delete[] m_pBuffer_A1_output_To_A1_output_input;

m_pBuffer_A1_output_To_A1_output_input = NULL;

delete[] m_pBuffer_A1_output_output_0__To_D1_In;

m_pBuffer_A1_output_output_0__To_D1_In = NULL;

delete[] m_pBuffer_A1_output_output_1__To_Data1_G1_input;

m_pBuffer_A1_output_output_1__To_Data1_G1_input = NULL;

}

bool MyModel::Setup()
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{

bool bStatus = true;

//setup models

//DownSample D1

D1.Factor = 2;

D1.Phase = 0;

D1_In.SetContiguousProperty();

bStatus &= D1.Setup();

//AgilentEEsof::Gain< double > Data1.G1

Data1.G1.m_Gain = 2;

bStatus &= Data1.G1.Setup();

//AgilentEEsof::Add< double > A1

A1.input.Initialize(2);

bStatus &= A1.Setup();

//AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > A1_output

A1_output.output.Initialize(2);

bStatus &= A1_output.Setup();

//setup circular buffer buses

dp1.Initialize(2);

//setup input and output dataflow rates

dp1[0].SetRate(2);

dp1[1].SetRate(2);

dp3.SetRate(1);

dp2.SetRate(2);

return bStatus;

}

bool MyModel::Initialize()

{

bool bStatus = true;

DeleteBuffers();

//allocate buffer from dp1[0] to A1.input[0]

m_pBuffer_dp1_0__To_A1_input_0_ = new double[2];

dp1_0__CirBuf.SetBuffer(m_pBuffer_dp1_0__To_A1_input_0_, 2, 2, 0);

A1.input[0].SetBuffer(m_pBuffer_dp1_0__To_A1_input_0_, 2, 1, 0);

//allocate buffer from dp1[1] to A1.input[1]

m_pBuffer_dp1_1__To_A1_input_1_ = new double[2];

dp1_1__CirBuf.SetBuffer(m_pBuffer_dp1_1__To_A1_input_1_, 2, 2, 0);

A1.input[1].SetBuffer(m_pBuffer_dp1_1__To_A1_input_1_, 2, 1, 0);

//allocate buffer from D1_Out to dp3

m_pBuffer_D1_Out_To_dp3 = new double[1];

dp3_CirBuf.SetBuffer(m_pBuffer_D1_Out_To_dp3, 1, 1, 0);

D1_Out.SetBuffer(m_pBuffer_D1_Out_To_dp3, 1, 1, 0);

//allocate buffer from Data1.G1.output to dp2

m_pBuffer_Data1_G1_output_To_dp2 = new double[2];

dp2_CirBuf.SetBuffer(m_pBuffer_Data1_G1_output_To_dp2, 2, 2, 0);

Data1.G1.output.SetBuffer(m_pBuffer_Data1_G1_output_To_dp2, 2, 1, 0);

//allocate buffer from A1.output to A1_output.input

m_pBuffer_A1_output_To_A1_output_input = new double[1];

A1.output.SetBuffer(m_pBuffer_A1_output_To_A1_output_input, 1, 1, 0);

A1_output.input.SetBuffer(m_pBuffer_A1_output_To_A1_output_input, 1, 1, 0);

//allocate buffer from A1_output.output[0] to D1_In

m_pBuffer_A1_output_output_0__To_D1_In = new double[2];

A1_output.output[0].SetBuffer(m_pBuffer_A1_output_output_0__To_D1_In, 2, 1, 0);

D1_In.SetBuffer(m_pBuffer_A1_output_output_0__To_D1_In, 2, 2, 0);

//allocate buffer from A1_output.output[1] to Data1.G1.input

m_pBuffer_A1_output_output_1__To_Data1_G1_input = new double[1];

A1_output.output[1].SetBuffer(m_pBuffer_A1_output_output_1__To_Data1_G1_input, 1, 1, 0);

Data1.G1.input.SetBuffer(m_pBuffer_A1_output_output_1__To_Data1_G1_input, 1, 1, 0);

//initialize models

bStatus &= D1.Initialize();

bStatus &= Data1.G1.Initialize();

bStatus &= A1.Initialize();

bStatus &= A1_output.Initialize();

return bStatus;

}

bool MyModel::Run()

{

bool bStatus = true;

//copy samples from inputs

dp1[0].Copy(0, &dp1_0__CirBuf, 0, 2);

dp1[1].Copy(0, &dp1_1__CirBuf, 0, 2);

//loop indices

int index1;

//execute schedule

for (index1=0; index1<2; index1++ ) {

//AgilentEEsof::Add< double > A1

bStatus &= A1.Run();

A1.input[0].Advance();

A1.input[1].Advance();

//AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > A1_output

bStatus &= A1_output.Run();

A1_output.output[0].Advance();

//AgilentEEsof::Gain< double > Data1.G1

bStatus &= Data1.G1.Run();

Data1.G1.output.Advance();

}

//DownSample D1

D1.In = (double*)D1_In.GetReadPtr();

bStatus &= D1.Run();

D1_Out[0] = D1.Out;

//copy samples to outputs

dp3_CirBuf.Copy(0, &dp3, 0, 1);

dp2_CirBuf.Copy(0, &dp2, 0, 2);
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return bStatus;

}

bool MyModel::Finalize()

{

bool bStatus = true;

//finalize models

bStatus &= D1.Finalize();

bStatus &= Data1.G1.Finalize();

bStatus &= A1.Finalize();

bStatus &= A1_output.Finalize();

DeleteBuffers();

return bStatus;

}

 Generated Code and SystemVue Sub-network Differences

In most cases the generated code will behave exactly the same as the SystemVue sub-
network it was generated from. This section lists some exceptions:

All anytype models (models with red ports) are replaced (in the generated code) by1.
specific type models. In the example described in this section, the anytype gain and
add models are being replaced by gain and add models that operate on double
numbers, since double was the resolved type for these models. If the resolved type
for these models were complex, then they would be replaced by gain and add models
that operate on complex numbers. The generated code can only operate on specific
data types and once generated the data type cannot be changed when the generated
code is being used (run). Of course, the data type can be changed if the code is
generated again with a different set of input signals or parameters, which result in a
different resolved type for the anytype models.
For improved performance, certain models are being replaced by simpler more2.
efficient versions and therefore the generated code does not have the full
functionality of the SystemVue sub-network it was generated from. For example, the
Math model is replaced by a model that performs only the specific function selected
during code generation, e.g. Sqrt. Therefore, if the FunctionType parameter of the
Math model was controlled by a parameter of the top level sub-network, the model
that replaces the Math model in the generated code would not respond to changes of
this top level sub-network parameter. The following table lists all the models for
which the generated code will not have the full functionality of the original model.
Original Model Generated Model

Math (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

MathCx (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

Trig (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

TrigCx (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

Logic (algorithm) performs only the function selected during code generation (Logic parameter is
removed)

RandomBits
(algorithm)

does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

PRBS (algorithm) does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

DataPattern
(algorithm)

does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

WaveForm
(algorithm)

does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

See next section on Parameter Support for other cases where the generated code3.
may not behave the same as the SystemVue sub-network it was generated from.

 Parameter Support
When a sub-network is selected for code generation and the sub-network has parameters,
the C++ code generator will create corresponding public members in the generated class,
which can be used to parametrize and control the model. To enable parametrization in the
generated code, at least one of the parts inside the sub-network must make use of the
sub-network parameters to set its own parameters.

The following figure shows a CIC filter sub-network, where the Gain parameters of the
Gain (algorithm) parts are set by the sub-network parameters Gain1, Gain2, and Gain3.



SystemVue - Algorithm Design Library

151

The generated model, MyCICPS, for the above CIC filter sub-network is partially shown in
the following code. In the class declaration three parameters Gain1, Gain2, and Gain3 are
declared as double (this depends on the Validation flag in the sub-network Parameters
tab) variables. In DEFINE_MODEL_INTERFACE, Gain1, Gain2, and Gain3 are added as
parameters of the generated model. In Setup, the m_Gain members of the
AgilentEEsof::Gain< double > models G2, G3, and G4 are set using Gain1, Gain2, and
Gain3.

/*MyCICPS.h*/

class MyCICPS : public AgilentEEsof::DFModel

{

public:

//sub-network parameters

double Gain1;

double Gain2;

double Gain3;

//...

private:

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G2;

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G3;

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G4;

//...

};

/*MyCICPS.cpp*/

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(MyCICPS)

{

ADD_MODEL_PARAM(Gain1);

ADD_MODEL_PARAM(Gain2);

ADD_MODEL_PARAM(Gain3);

//...

}

#endif

bool MyCICPS::Setup()

{

//...

//AgilentEEsof::Gain< double > G2

G2.m_Gain = Gain1;

bStatus &= G2.Setup();

//AgilentEEsof::Gain< double > G3

G3.m_Gain = Gain2;

bStatus &= G3.Setup();

//AgilentEEsof::Gain< double > G4

G4.m_Gain = Gain3;

bStatus &= G4.Setup();

//...
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}

The mapping between the Validation flag of a sub-network parameter and the type of the
C++ variable created is shown in the table below:

Validation Flag C++ variable type

Boolean bool

Integer int

Positive Integer int

Floating point number double

Warn if negative double

Warn if non-positive double

Error if negative double

Error if non-positive double

Complex number std::complex<double>

Integer array AgilentEEsof::Matrix<int>

Floating point array AgilentEEsof::Matrix<double>

Complex array AgilentEEsof::Matrix< std::complex<double>
>

Enumeration int

Text char*

Filename char*

Warning NOT SUPPORTED

Error NOT SUPPORTED

<None> NOT SUPPORTED

For code generation purposes, users must properly set the Validation flag for each sub-network
parameter in the sub-network Parameter tab.

In the SystemVue 2010.07 release the parameter support is limited to direct assignments (e.g.
Gain=Gain1) of the sub-network parameters to the parameters of its parts (see CIC filter examples
described earlier in this section). If a part is using a sub-network model then again the parts inside that
sub-network can only use the sub-network's parameters in direct assignments to set their parameters.
There is no limit to the number of hierarchy levels supported. For example, let A be the top level sub-
network that is selected for code generation and a be a parameter of A. Let B be a sub-network inside A
and b be a parameter of B set to a. Let C be a part (not using a sub-network model) inside B and c be a
parameter of C set to b. Then in the generated code, B.C.c is set to a and so changes to the top level sub-
network parameter a are properly propagated to the lower hierarchy levels.

If a part's parameter is set using an expression or equation, then in the generated code the parameter will
be set to the expression's resolved value and changing the values of the top level sub-network's
parameters will have no effect on the behavior of the part. For example, in the CIC filter example shown
earlier in this section, if the Gain parameter of part G2 is set to 2*Gain1-0.3, the generated code will set
G2.m_Gain to 2*1-0.3=1.7 and changing Gain1 will not affect the Gain of part G2.

When a sub-network parameter is used in a direct assignment to set the parameter of one of its parts and
it is also used in an expression to set the parameter of another one of its parts, users must be aware of
the inconsistency in the behavior of the generated model. For example, let p be a top level sub-network
parameter. Let X be a part inside the top level sub-network whose parameter x is set to p. Let Y be a part
inside the top level sub-network whose parameter y is set to 1_p. Then in the generated code, X.x is set
to p and thus controlled by it, whereas Y.y is set to the resolved value of the 1_p and cannot be controlled
by p. In this case, the generated model will not behave the same as the original sub-network model when
the value of the parameter p is changed.

If a part's parameter can change the data flow rate or buffer size or fixed point parameters of the part's
input/output, setting the part's parameter by the sub-network parameter may introduce incorrect behavior
in the generated model. This is because the schedule, the buffer size, and the fixed point parameters in
the generated model are pre-computed and hard-coded based on the parameter values during code
generation. In this case, when such parameter is changed from its default value, incorrect behavior may
occur in the generated model.

In certain cases, model parameters are removed from the generated code (see section Generated Code
and SystemVue Sub-network Differences). Trying to control these parameters with a sub-network
parameter is going to result in inconsistent behavior between the original SystemVue sub-network and the
generated code.

 Limitations
The data flow graph inside the code generation network (sub-network) must be
connected. The C++ code generator does not support multiple isolated graphs
because the relative execution rates depend on outside systems.
The C++ code generator currently does not support timed (sim) blocks, envelope
(sim) blocks, nor dynamic (sim) blocks.
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 AddGuard Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AddGuard
(algorithm)

OFDM Symbol Guard Samples Inserter

 AddGuard (OFDM Symbol Guard Samples Inserter)

Description: OFDM Symbol Guard Samples Inserter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: AddGuard Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

IFFTSize IFFT size 64  Integer NO

PreGuard Pre-guard length 16  Integer NO

PostGuard Post-guard length 0  Integer NO

Intersection Guard intersection length 0  Integer NO

 Input Ports

Port Name Description Signal Type Optional

1 In Transmitted signal after IFFT complex NO

2 Window Window function real NO

 Output Ports

Port Name Description Signal Type Optional

3 Out OFDM output data complex NO

 Notes/Equations

Guard intervals are added to IFFT signals to form an OFDM symbol. Both Pre- and1.
post-guard intervals are possible.
IFFTSize specifies the input IFFT signal length.2.
PreGuard specifies the pre-guard length. If PreGuard = 0, there is no pre-guard.3.
PostGuard specifies the post-guard length. If PostGuard = 0, there is no post-guard.
Intersection specifies the intersect length of two consecutive OFDM symbols. If4.
Intersection = 0, there is no intersect between symbols. To protect the IFFT signals,
Intersection cannot exceed PreGuard + PostGuard.
IEEE 802 series (802.11a, 802.11g, 802.15.3a, 802.16a, 802.16d) and DVB-T5.
standards do not include post-guard and intersection.
For each OFDM symbol:6.

IFFTSize samples are input from pin In.
PreGuard + IFFTSize + PostGuard samples are input from pin Window.
PreGuard + IFFTSize + PostGuard - Intersection samples are output as the
OFDM symbol.

A window function is input at pin Window for multiplying the output OFDM symbol. A7.
non-window is created by providing a constant one at this pin.
If an intersect does not exist, the windowed OFDM symbol is output.8.
If an intersect does exist, the windowed OFDM symbol and the intersect of the9.
previous OFDM symbol is added before output. The next intersect of the windowed
OFDM symbol is saved for the next OFDM symbol.
How an OFDM symbol is formed.10.

Inverse-Fourier-transformation creates the IFFT signal of time duration Tb
(having IFFTSize samples) and constitute the useful symbol.
A copy of the last time duration Tg (having PreGuard samples) of the useful
symbol is added before the IFFT signal. This pre-guard is also called a cyclic
prefix.
A copy of the first time duration Tc (having PostGuard samples) of the useful
symbol is added after the IFFT signal. This post-guard is also called a cyclic
postfix.
The combined duration is referred to as symbol time Ts. OFDM Symbol Time
with Guard Interval illustrates this sequence.  

 OFDM Symbol Time with Guard Interval
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How Intersection, PreGuard and PostGuard values form consecutive OFDM symbols11.
for Case 1: Intersection > PreGuard and Intersection > PostGuard.  

The second OFDM symbol is formed and multiplied by window.
Intersect of the first and second OFDM symbols is then summed and output
first.
Beginning after Intersection samples, the remaining segment of the second
OFDM symbol with length of PreGuard + IFFTSize + PostGuard - 2 ×
Intersection is output.
Last Intersection samples of the second OFDM symbol are saved as for the next
OFDM symbol.

 Intersection > PreGuard, Intersection > PostGuard

Let the input be {0, 1, 2, 3, 4, 5} and {6, 7, 8, 9, 10, 11}, window is 1,
IFFTSize = 6, PreGuard = 2, PostGuard = 2, Intersection = 3. With the steps
described above, the output of the first and second OFDM symbol are {4, 5, 0,
1, 2, 3, 4} and {15, 11, 7, 7, 8, 9, 10}, respectively. Case 1: Calculation for
Output illustrates the calculation. 

 Case 1: Calculation for Output

How Intersection, PreGuard and PostGuard values form consecutive OFDM symbols12.
for Case 2: Intersection ≤ PreGuard and Intersection ≤ PostGuard.  

This calculation is similar to Case 1.

 Intersection ≤ PreGuard, Intersection ≤ PostGuard

Let the input be {0, 1, 2, 3, 4, 5} and {6, 7, 8, 9, 10, 11}, window is 1,
IFFTSize = 6, PreGuard = 3, PostGuard = 3, Intersection = 2. The output of the
first and second OFDM symbols are {3, 4, 5, 0, 1, 2, 3, 4, 5, 0} and {10, 12,
11, 6, 7, 8, 9, 10, 11, 6}, respectively. Case 2: Calculation for Output illustrates
the calculation.  

 Case 2: Calculation for Output

 

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer," April, 2000.
ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);3.
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Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.
ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and4.
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.
IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.155.
Task Group 3a," September 2003.
IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area6.
networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.
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 BCH_Decoder Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BCH_Decoder
(algorithm)

Binary primitive BCH decoder
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 BCH_Decoder

Description: Binary primitive BCH decoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: BCH Decoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

M The root of generation polynomial is defined in
GF(2^M), primitive codeword length N=2^M-1

3  Integer NO

K Primitive message length (Unshortened) 4  Integer NO

T Error correction capability 1  Integer NO

CodeLength Shortened codeword length ( <=2^M-1 ), set 0 for
unshortened code

0  Integer NO

PrimPoly Primitive polynomial in the form of integer (default
[]), binary vector or power vector of non-zero item

[]  Integer
array

NO

Erase there is erased bits or not in undecoded code: NO,
YES

NO  Enumeration NO

ErasePosition index array of erased bits (from [0,CodeLength-1]),
valid if Erase==YES and pin EraseFlag is
disconnected

[]  Integer
array

NO

 Input Ports

Port Name Description Signal Type Optional

1 Code Uncoded binary codeword int NO

2 EraseFlag Specifying the corresponding bits is erased (1) or not (0) int YES

 Output Ports

Port Name Description Signal Type Optional

3 Msg Decoded binary messageword int NO

 Notes/Equations

This model performs the decoding of primitive binary BCH (Bose-Chaudhuri-1.
Hocquengham) systematic code.
The primitive message length, is represented by K, and the primitive codeword2.
length, 2M-1, is represented by N. For shortened code, Ks and Ns represent the
shortened message length and codeword length respectively.
Each run, it consumes Ns = min(N,CodeLength) input codeword bits and output Ks =3.
K+min(0,CodeLength-2M-1) decoded message bits. CodeLength=0 is treated the
same as CodeLength=N.
The primitive polynomial of the Galois Field GF(2M), p(x) = 1+p(2)*x+p(3)*x24.

+...+p(M)*xM-1+xM, is set by array PrimPoly in three ways. If p(x)= 1+x+x4, i.e.
p(x) = 1*x0+1*x1+0*x2+0*x3+1*x4, PrimPoly can be

an array consists of the order of x whose coefficients are 1, i.e.

[0,1,4]

an array consists of all polynomial coefficients, from the lowest power to
the highest power, i.e.

[1,1,0,0,1]

an integer p(2), i.e.

19

Note
If PrimPoly is set to [], the default primitive polynomials shown below shall be used

The relationship of T and code generation polymonial g(x)5.

T is the error correction capability, i.e. the number of reducible error bits in
the received codeword.
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2*T+1 equals to the minimum distance between different codewords, or
the number of 1's in the coefficient array of g(x).

Decoding algorithm6.
Constructing the codeword polynomial

  r(x) = r(0)*xNs-1 + r(1)*xNs-2 + ... + r(Ns-2)*x + r(Ns-1)

from un-decoded input (r(0) is the first input bit)

  r = [r(0), r(1), ..., r(Ns-1)]
Calculating the syndrome S

  S(i) = r(αi), i=1,2,...,T*2, α is a primitive element of GF(2M)

If {S(i)} are all zeros, i.e. no (reducible) errors, picking up [r(0), r(1),
..., r(Ks-1)] as the decoded message and return. Otherwise, going
forward to the next step

Calculating error location polynomial with Berlekamp-Massey algorithm

  σ(x) = σ(0) + σ(1)*x + σ(2)*x2 + ... + σ(v)*xv, v≤T

by filling the iterative table

u σu(x) du lu u-lu

-1 1 1 0 -1

0 1 S1 0 0

1     

2     

...     

2T     

with the following iteration method

  Assuming the result of the uth iteration is

    σu(x) = σu(0) + σu(1)*x + σu(2)*x2 + ... + σu(lu)*xlu

  to deduce σu+1(x), calculate the uth discrepancy

    du = Su+1 + σu(1)Su + σu(2)Su-1 + ... + σu(lu)Su+1-lu

  If du==0,

    σu+1(x) = σu(x)

  otherwise, search σρ(x) satisfying ρ<u, dρ≠0 and ρ-lρ=max{i-li}, -

1≤i<u, and rewrite σu+1(x) as

    σu+1(x) = σu(x) + du dρ
-1 xu-ρ σρ(x)

Calculating the error locations with Chien Search

Create a all-zero array e = [e(0), e(1), ..., e(Ns-1)]

Evaluate σ(x) with {αi+1, N-Ns≤i<N}. If σ(αi)==0, i.e. r(i-(N-Ns)) is a
error bit, set e(i) to 1.

Correcting error bits with error array e obtained above and get the decoded
output bits

  udec = [r(0), r(1), ..., r(Ks-1)] + [e(0), e(1), ..., e(Ks-1)]

If Erase is YES, the decoder shall perform a decoding with erased bits.7.
The positions of erased bits is set by ErasePosition consisting of not more than
2T digits with each in the range of [0,CodeLength)
If the EraseFlag pin is connected, parameter ErasePosition shall be ignored.
EraseFlag should has the same length as Input and in which 1 represents an
erased bits and 0 represents not.
The decoder decode the codeword twice by replacing the erased bits with logic
1's and 0's respectively. Decoded message is obtained from one of the two
decoded codewords which has the smaller distance from the uncoded codewords
(excluding the erased positions).

Default primitive polynomials8.
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M Primitive Polynomial Integer representation

1 p(x) = x + 1 3

2 p(x) = x2 + x + 1 7

3 p(x) = x3 + x + 1 11

4 p(x) = x4 + x + 1 19

5 p(x) = x5 + x2 + 1 37

6 p(x) = x6 + x + 1 67

7 p(x) = x7 + x3 + 1 137

8 p(x) = x8 + x4 + x3 + x2 + 1 285

9 p(x) = x9 + x4 + 1 529

10 p(x) = x10 + x3 + 1 1033

11 p(x) = x11 + x2 + 1 2053

12 p(x) = x12 + x6 + x4 + x + 1 4179

13 p(x) = x13 + x4 + x3 + x + 1 8219

14 p(x) = x14 + x10 + x6 + x + 1 17475

15 p(x) = x15 + x + 1 32771

16 p(x) = x16 + x12 + x3 + x + 1 69643

17 p(x) = x17 + x3 + 1 131081

18 p(x) = x18 + x7 + 1 262273

19 p(x) = x19 + x5 + x2 + x + 1 524327

20 p(x) = x20 + x3 + 1 1048585

 References
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 BCH_Encoder Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BCH_Encoder
(algorithm)

Binary BCH Encoder
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 BCH_Encoder

Description: Binary BCH Encoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: BCH Encoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

M The root of generation polynomial is defined in
GF(2^M), primitive codeword length N=2^M-1

3  Integer NO

K Primitive message length (Unshortened) 4  Integer NO

MsgLength Shortened message length [0,K], set 0 (or K) for
unshortened code

0  Integer NO

GenPoly Code generation polynomial (if g( x)=1+X+X^3,
GenPoly=[0,1,3] or [1,1,0,1])

[0,1,3]  Integer
array

NO

 Input Ports

Port Name Description Signal Type Optional

1 Msg Uncoded binary
message

int NO

 Output Ports

Port Name Description Signal Type Optional

2 Code Encoded binary
codeword

int NO

 Notes/Equations

This model performs the encoding of binary BCH (Bose-Chaudhuri-Hocquengham)1.
systematic code.
The primitive message length, is represented by K, and the primitive codeword2.
length, 2M-1, is represented by N. For shortened code, Ks and Ns represent the
shortened message length and codeword length respectively.
Each run, it consumes Ks = min(K,MsgLength) input message bits and output Ns =3.
N+min(0,MsgLength-K) codeword bits. MsgLength=0 is treated the same as
MsgLength=K.
The code generation polynomial, g(x), with the highest order xN-K, is set by array4.
GenPoly in three ways.

1-D array of the order of x whose coefficients are 1. For instance, if g(x)=
1+x+x3, i.e. g(x) = 1*x0+1*x1+0*x2+1*x3, GenPoly should be [0,1,3]. The
number of parity bits is the highest power of g(x).
1-D array consists of all polynomial coefficients, from lowest power to highest
power. If g(x)= 1+x+x3, i.e. g(x) = 1*x0+1*x1+0*x2+1*x3, GenPoly should be
[1,1,0,1].
2-D array consists of the polynomial coefficients of g(x)'s factor polynomials
whose highest power ≤M. For instance, if g(x) = (1+x+x4) * (1+x+x2+x3+x4) *
(1+x+x2), GenPoly can be set as a 3 x (M+1) array

  [1,1,0,0,1;
  1,1,1,1,1;
  1,1,1,0,0]

Coding process5.
Constructing the message polymonial

  u(x) = u(0)*xKs-1 + u(1)*xKs-2 + ... + u(Ks-2)*x + u(Ks-1)

from input Msg (rewrite as u, u(0) is the first input bit)

  u = [u(0), u(1), ..., u(Ks-1)]
Dividing xNs-Ksu(x) by g(x) and obtaining the remainer polynomial

b(x) = xNs-Ksu(x)/g(x) = b(0)*xNs-Ks-1 + b(1)*xNs-Ks-2 + ... + b(Ns-
Ks-2)*x + b(Ns-Ks-1)

Combining u(x) and g(x) to obtain the codeword polynomial c(x) (c(0) is the
first output bit)
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  c(x) = xNs-Ksu(x) + b(x) = c(0)*xNs-1 + c(1)*xNs-2 + ... + c(Ns-2)*x
+ c(Ns-1)

and the codeword array

  c = [c(0), c(1), ... c(Ns-1)] = [u(0), u(1), ... u(Ks-1), b(0), b(1), ...,
b(Ns-Ks-1)]

 References
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 CoderRS Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CoderRS
(algorithm)

Reed Solomon Encoder

 CoderRS (Reed Solomon Encoder)

Description: Reed Solomon Encoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: CoderRS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

GF Galois field size (2^GF) 8  Integer NO

CodeLength Length of output codeword 255  Integer NO

MessageLength Length of input message symbols 223  Integer NO

PrimPoly Coefficients of primitive polynonial. PrimPoly
must be the coefficients of the m order of
polynomial

[1, 0, 1, 1, 1,
0, 0, 0, 1]

 Integer
array

NO

Root First root of generator polynomial 1  Integer NO

 Input Ports

Port Name Description Signal Type Optional

1 in information symbol int NO

 Output Ports

Port Name Description Signal Type Optional

2 out systematical code int NO

 Notes/Equations

The CoderRS model implements a Reed-Solomon (RS) encoder.1.
This model reads k samples from input in and writes n samples to output out.2.
RS codes are a class of block codes that operate on non-binary symbols. The symbols3.
are formed from m bits of a binary data stream. A code block is then formed with n =
2 m - 1 symbols. In each block, k symbols are formed from the encoder input and (n
- k) parity symbols are added. The code is thus a systematic code. The rate of the
code is k/n, and the code is able to correct up to t = (n - k - 1)/2 or (n - k)/2 symbol
errors in a block, depending on whether n - k is odd or even. For example, the code
used in the WCDMA [1] data transmission system is a (36,32) code shortened from
RS code (255,251) defined on Galois Field (2 8). A shortened code can be formed by
taking 32 input symbols, padding them out with 219 all zero symbols to form 251
symbols, and then encoding with a RS code (255,251). The 219 fixed symbols are
then discarded prior to transmission. The input pin consumes k tokens and the output
pin produces n tokens for each firing.
Implementation4.
The code format is: RS code (n, k), defined on Galois Field (2 m).
Galois Field Generator
Galois Fields are set up according to the number of bits per symbol and the number
of symbols per block.
Generate GF (2 m) from the irreducible primitive polynomial. It is defined as the
polynomial of least degree, with coefficients in GF(2) and a highest degree coefficient
equal to 1. The polynomial is always of degree m.
The elements of Galois Field can have two representations: exponent or polynomial.
Let α represent the root of the primitive polynomial p(x). Then in GF(2 m), for any 0
 ≤  i ≤  2 m - 2

where the binary vector (bi(0), bi(1),..., bi(m_-1)) is the representation of the
integer polynomial[i]. Now exponent[i] is the element whose polynomial
representation is (bi(0), bi(1),..., bi(m-1)), and exponent[polynomial[i]] = i.
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Polynomial representation is convenient for addition, exponent representation for
multiplication.
RS Encoder
The RS generator polynomial is generally defined as

where t is the correctable error number. It can be reduced to a 2t order of polynomial

Encoding is done by using a feedback shift register with appropriate connections
specified by the element g i . The encoded symbol is then

where in(x) is the polynomial representation of the input data, parity(x) is the
polynomial of the parity symbol.
The RS encoder diagram is illustrated in Reed Solomon Encoder.  
Figure: Reed Solomon Encoder

 See Also:

DecoderRS (algorithm)

 References

NTT Mobile Communications Network Inc. "Specifications for W-CDMA Mobile1.
Communication System Experiment", October 9, 1997.
S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications, 1983.2.
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 ConvolutionalCoder Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ConvolutionalCoder
(algorithm)

Convolutional
Coder

 ConvolutionalCoder (ConvolutionalCoder)

Description: Convolutional Coder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: ConvolutionalCoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

CodingRate Coding rate: rate_1_2, rate_1_3, rate_1_4,
rate_1_5, rate_1_6, rate_1_7, rate_1_8

rate_1_2  Enumeration NO

ConstraintLength Constraint length 7  Integer NO

Polynomial Generator polynomial [91,
121]

 Integer
array

NO

ZeroTail Zero tail used to convert convolutional code
to block code: NO, YES

NO  Enumeration NO

BitSequenceLength Length of bit squence not including tail bits 88  Integer NO

 Input Ports

Port Name Signal Type Optional

1 In boolean NO

 Output Ports

Port Name Signal Type Optional

2 Out boolean NO

 Notes/Equations

The ConvolutionalCoder model convolutionally encodes the input information1.
sequence bit-by-bit.
This model reads 1 sample from input In and writes R samples to output Out. R = 2,2.
3, 4, 5, 6, 7, or 8 when CodingRate = rate_1_2, rate_1_3, rate_1_4, rate_1_5,
rate_1_6, rate_1_7, or rate_1_8 respectively.
A convolutional code is generated by passing the information sequence to be3.
transmitted through a linear finite-state shift register. The shift register generally
consists of K(k-bit) stages and n linear algebraic function generators. Input data to
the encoder (assumed to be binary) is shifted into (and along) the shift register k bits
at a time. The number of output bits for each k-bit input sequence is n bits.
Therefore, the code rate is defined as R c = k /n, which is consistent with the code

rate definition for a block code. The K parameter is called the constraint length of the
convolutional code.
CodingRate (R c) is the ratio of input bit (k) and output bits (n). ConvolutionalCoder4.

supports the 1/n coding rate only, which implements an R c = 1/n rate(n = 2, 3, 4, 5,

6, 7, 8) convolution for input data.
Convolutional codes with k /n (k > 1) are not supported by this component because:
coding and decoding will be more complex; and, even convolutional codes with a k /n
(k > 1) coding rate are used that are typically implemented by puncturing the
convolutional code with a 1/n coding rate.
ConstraintLength (K) represents shift register stages.5.
Polynomial is the generator function of the convolutional code. In general, the6.
generator matrix for a convolutional code is semi-infinite since the input sequence is
semi-infinite. As an alternative to specifying the generator matrix, a functionally
equivalent representation is used in which a set of n vectors is specified, one vector
for each n modulo-2 adder. A 1 in the ith position of the vector indicates that the
corresponding stage in the shift register is connected to the modulo-2 adder; 0 in a
given position indicates that no connection exists between that stage and the
modulo-2 adder.
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For example, consider the binary convolutional encoder with constraint length K = 7, k
= 1, and n = 2; refer to Convolutional Code CC(2, 1 ,7). The connection for y0 is (1,
0, 1, 1, 0, 1, 1) from Outputs to Input; the connection for y1 is (1, 1, 1, 1, 1, 0, 1).
The generators for this code are more conveniently given in octal form as (0133,
0175). So, when k = 1, n generators, each of dimension K specify the encoder.  

 Convolutional Code CC(2, 1 ,7)

ZeroTail specifies the character of encoder input sequence. If ZeroTail = YES, the7.
input sequence of encoder is divided into blocks. The length of the block is
BitSequenceLength. After each block, K - 1 zeros need to be appended as tail bits.
That is, the total block length of encoder is (BitSequenceLength + K - 1), referring to
Tail bits appending for ZeroTail = YES. The information will be used in the decoder to
obtain better performance.  

 Tail bits appending for ZeroTail = YES

BitSequenceLength (valid only if ZeroTail = YES) is used to specify the information8.
bit length, which indicates the length of uncoded bits. This parameter can be used to
set the same value for the encoder and the decoder.

 See Also:

ViterbiDecoder (algorithm)

 References

John G. Proakis, Digital Communications (Third edition), Publishing House of1.
Electronics Industry, Beijing, 1998.
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 CRC_Coder Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CRC_Coder
(algorithm)

CRC Coder

 CRC_Coder (CRC Coder)

Description: CRC Coder
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: CRC Coder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

ParityPosition Parity bits position: Tail, Head Tail  Enumeration NO  

ReverseData Reverse the data sequence: NO,
YES

NO  Enumeration NO  

ReverseParity Peverse the parity bits: NO, YES NO  Enumeration NO  

ComplementParity Complement parity bits: NO, YES NO  Enumeration NO  

MessageLength Input message length 172  Integer NO [1:∞)

InitialState Initial state of encoder 0  Integer NO [0:∞)

Polynomial Generator polynomial 7955  Integer NO [3:∞)

 Input Ports

Port Name Description Signal Type Optional

1 In input data boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 Out output data boolean NO

 Notes/Equations

This component is used to add CRC bits to the input information.1.
Each firing, (MessageLength + CRCLength) tokens are produced when
MessageLength tokens are consumed. CRCLength is the length of CRC bits that is
determined by Polynomial, where 2CRCLength ≤ Polynomial ≤ 2CRCLength+1 .
CRC bits can be added to the head or the tail of the information bits by setting2.
ParityPosition. The order of CRC bits and the order of information bits can be
reversed by setting ReverseData and ReverseParity.
CRC Bit Calculation as shown below is an example of a CRC encoder in CDMA2000,3.
where g(x) = x 6 + x 2 + x + 1, and Polynomial is hex 0x47. The CRC bits are added
after the information bits; the order of the CRC and information bits are not reversed.

Initially, all shift register elements are set to the InitialState and the switches
are set in the up position.
The register is clocked the number of times equal to MessageLength.
Switches are then set in the down position so that the output is a modulo-2
addition with a 0 and the successive shift register inputs are 0.
The register is clocked an additional number of times equal to CRCLength and
the CRC bits are output.
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 References

TIA/EIA/IS-2000.2 (PN-4428), Physical Layer Standard for cdma2000 Spread1.
Spectrum Systems, July 1999.



SystemVue - Algorithm Design Library

169

 CRC_Decoder Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CRC_Decoder
(algorithm)

CRC
Decoder

 CRC_Decoder (CRC Decoder)

Description: CRC Decoder
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: CRC Decoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

ParityPosition Parity bits position: Tail, Head Tail  Enumeration NO  

ReverseData Reverse the data sequence: NO,
YES

NO  Enumeration NO  

ReverseParity Peverse the parity bits: NO, YES NO  Enumeration NO  

ComplementParity Complement parity bits: NO, YES NO  Enumeration NO  

MessageLength Input message length 172  Integer NO [1:∞)

InitialState Initial state of encoder 0  Integer NO [0:∞)

Polynomial Generator polynomial 7955  Integer NO [3:∞)

 Input Ports

Port Name Description Signal Type Optional

1 In input data boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 Out output data boolean NO

3 Parity Parity check int NO

 Notes/Equations

This component is used to check the CRC bits for CRC frame errors.1.
Each firing, (MessageLength + CRCLength) tokens are consumed when
MessageLength tokens and one parity token are produced. CRCLength is the CRC bit
length determined by Polynomial, where 2CRCLength ≤ Polynomial ≤ 2CRCLength+1.
The message part of the input data is sent to a CRC encoder that has the same2.
Polynomial value as the encoder (CRC_Coder). The CRC bits are then compared with
the CRC bits in the input data. If these are the same, the CRC check is passed.
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 DecoderRS Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DecoderRS
(algorithm)

Reed Solomon Decoder

 DecoderRS (Reed Solomon Decoder)

Description: Reed Solomon Decoder
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DecoderRS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

GF Galois field size
(2^GF)

8  Integer NO [2:30] m

CodeLength Length of input
codewords

255  Integer NO [3:2<sup>m</sup>-1] n

MessageLength Length of output
message symbols

223  Integer NO [1:CodeLength-2] k

PrimPoly Coefficients of
primitive
polynomial

[1, 0, 1, 1,
1, 0, 0, 0,
1]

 Integer
array

NO † p

Root First root of
generator
polynomial

1  Integer NO [0:2<sup>m</sup>-1
- (n - k)]

m0

 Input Ports

Port Name Description Signal Type Optional

1 in received symbol int NO

 Output Ports

Port Name Description Signal Type Optional

2 out decoded
symbol

int NO

 Notes/Equations

The DecoderRS model implements a Reed-Solomon (RS) decoder.1.
This model reads n samples from input in and writes k samples to output out.2.
The RS decoding is performed via the Berlekamp iterative algorithm [2].3.
The Berlekamp iterative algorithm locates the error in RS code and generates an4.
error location polynomial. By finding the root of the error location polynomial, the
error position can be determined. If decoding is successful, the information symbols
are output; otherwise, the received data is unaltered.
Decoding routines are described here.5.
For the shortened code, the same number of symbols 0 is inserted into the same
position as CoderRS and a Reed Solomon decoder is used to decode the block. After
decoding, the padded symbols are discarded, leaving the desired information
symbols.
Syndromes indicate erroneous situations. When the generator polynomial g(x) and
the received codeword represented by r(x) are given, one or more errors have
occurred during transmission of an encoded block.
Let

where v(x) is the polynomial representation of the transmitted symbol.

where r(x) is the polynomial representation of the received symbol.
Then

where e(x) denotes the error patterns.
If r i - v i, then e i = 0; else e i = 1.
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Remember that
v(x) = g(x)Q(x)
where Q(x) is the quotient.
So if α i is the root of g(x) , then v(α i) = 0 and r(α i) = e(α i).
Now there is a simple procedure for checking the occurrence of errors at the receiver:
Calculate syndromes s(i), the syndromes are decided by the error patterns:

If one or more of the syndromes are not equal to zero, one or more symbol errors
occur in the received data. For example, if

are roots of g(x), then

.

.

.

Syndromes are used to find the error location polynomial.
Given the syndromes s(i), the decoding algorithm will synthesize an error location
polynomial. The roots of the polynomial indicate the error positions.
Assuming the received symbols have v symbol errors, the syndromes are
represented as:

.

.

.

where the error location is

and

Now the error location polynomial is defined as

The Berlekamp iterative algorithm is used to construct this polynomial, which is the
key to RS decoding.
The algorithm is described here without proof; for more information, see Ref. [1].
An iterative table will be filled.

-1 1 1 0 -1

0 1 s 1 0 0

1     

2 ... , 2t     

where

is the iterative step number

 is the mth step iterative difference

is the order of 
If

then

and

If
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search for lines in the table to find step p in which d p  ≠ 0 and the value of p - l p is

the maximum, then

and

For the two conditions

Iterate until the last line of the table Ω (2 t) (x) is calculated. If the order of the
polynomial is greater than t (which means the received codeword block has more
than t errors) the error cannot be corrected.
For non-binary codes, the error values must be known.
The minimum order polynomial is iteratively solved to obtain the least number of
roots (error location number). The inverse element of the root indicates the error
location.
The error value is calculated based on the Ref. [2] equation

where

Then,

 See Also:

CoderRS (algorithm)

 References

E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.1.
S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications, 1983.2.
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 Deinterleaver802 Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Deinterleaver802
(algorithm)

IEEE 802 Deinterleaver

 Deinterleaver802 (IEEE 802 Deinterleaver)

Description: IEEE 802 Deinterleaver
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Deinterleaver802 Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

s Modular factor of interleaving 1  Integer NO [1:∞)

l Divisor factor of interleaving 16  Integer NO [1:∞)

NCBPS Number of coded bits per OFDM
symbol

48  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 In Input real NO

 Output Ports

Port Name Description Signal Type Optional

2 Out Output real NO

 Notes/Equations

The Deinterleaver802 model performs deinterleaving based on IEEE 802 standards. It1.
performs the inverse of the Interleaver802 model.
This model reads N CBPS samples from input In and writes N CBPS samples to the2.

output Out.
N CBPS is the number of coded bits in a single OFDM symbol and is defined in the

table below.
Deinterleaving is defined by a two-step permutation; j is used to denote the index of3.
the original received bit before the first permutation; i is used to denote the index
after the first (and before the second) permutation; k is used to denote the index
after the second permutation, before delivering the coded bits to the convolutional
(Viterbi) decoder.
The first permutation is defined by
i = s × floor(j/s) + (j + floor(l × j/ N CBPS )) mod s j = 0, 1, ... N CBPS - 1

The function floor (.) denotes the largest integer not exceeding the parameter
The second permutation is defined by
k = l  × i - (N CBPS - 1)floor(l × i/N CBPS) i = 0, 1, ... N CBPS - 1

In the equations, s is the modular factor and l is the divisor factor; these are variable
parameters and their values depend on which standard the model is used for.
If this model is used for IEEE 802.11 and HIPERLAN/2
s = max (N BPSC/2, 1), l = 16

where
N BPSC and N CBPS are determined by data rates given in IEEE 802.11 and

HIPERLAN/2 Rate Dependent Values.
If this model is used for IEEE 802.16
s = N BPSC /2, 1) l = 12

where N BPSC and N CBPS are determined by block sizes given in IEEE 802.16 Bit

Interleaver Block Sizes (NCBPS / NBPSC).

 

 IEEE 802.11 and HIPERLAN/2 Rate Dependent Values
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Data Rate
(Mbps)

Modulation Coding
Rate (R)

Coded Bits per
Subcarrier
(NBPSC)

Coded Bits per
OFDM Symbol
(NCBPS)

Data Bits per OFDM
Symbol (NDBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 (IEEE
802.11a)

16QAM 1/2 4 192 96

27
(HIPERLAN/2)

16QAM 9/16 4 192 108

36 16QAM 3/4 4 192 144

48 (IEEE
802.11a)

64QAM 2/3 6 288 192

54 64QAM 3/4 6 288 216

 

 IEEE 802.16 Bit Interleaver Block Sizes (N CBPS / N BPSC)

Modulation 16 Subchannels (Default) 8 Subchannels 4 Subchannels 2 Subchannels 1 Subchannel

QPSK 384/2 192/2 96/2 48/2 24/2

16QAM 768/4 384/4 192/4 96/4 48/4

64QAM 1152/6 576/6 288/6 144/6 72/6

 

 See Also:

Interleaver802 (algorithm)

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer," April, 2000.
IEEE P802.16-REVd/D2-2003," Part 16 Air Interface for Fixed Broadcast Wireless3.
Access Systems".
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 Demapper Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Demapper
(algorithm)

Complex Symbol Demapper/Slicer

 Demapper (Complex Symbol Demapper)

Description: Complex Symbol Demapper/Slicer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Demapper Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ModType Modulation type: BPSK, QPSK, PSK8, PSK16,
QAM16, QAM32, QAM64, QAM128, QAM256,
User_Defined

QPSK  Enumeration NO

MappingTable Constellation table [1, -1]  Complex
array

NO

BitOrder Bit order: LSB first, MSB first LSB
first

 Enumeration YES

 Input Ports

Port Name Description Signal Type Optional

1 In input symbol sequence complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Bits output bit sequence boolean NO

3 Node closest constellation
node

complex NO

 Notes/Equations

Demapper inputs a complex value, finds the nearest constellation node for the input,1.
and outputs both the constellation node and the symbol value for the constellation
node in a bit sequence specified by the BitOrder parameter.
For each input, one constellation node is output at Node and depending on the2.
ModType parameter Symbol Length number of bits is output at Bits.
A constellation value is a pair of real values (I,Q) that is expressed on the input as I3.
+ jQ. Earlier in the modulation chain, I modulated the inphase part of the carrier, and
Q modulated the quadrature part of the carrier over a symbol period.
Each modulation type has its constellation and symbol length. The symbol length, i.e.4.
the number of output bits per symbol, is detailed in the following table.
 

 Modulation Type and Symbol Length

ModType Symbol Length

BPSK 1

QPSK 2

PSK8 3

PSK16 or QAM16 4

QAM32 5

QAM64 6

QAM128 7

QAM256 8

If ModType is User_Defined and the size of MappingTable is N, then the symbol
length is log 2 (N) bits.

For ModType BPSK, bit value 0 is mapped to 1 + j0 and bit value 1 is mapped to -1 +5.
j0.
For ModType QPSK, the constellation map is illustrated in QPSK Modulation6.
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Constellation. For ModType PSK8, the constellation map is illustrated in 8PSK
Modulation Constellation. For ModType PSK16, the constellation map is illustrated in
16PSK Modulation Constellation. The output symbols are assumed to be Gray coded.
The symbol mappings for ModType QAM16, QAM32, QAM64, QAM128 and QAM2567.
are described in the section 9 of [1], and their constellation maps are illustrated in
figure 7-8 of [1].
QAM constellations need definition only for quadrant 1. The constellation points in8.
quadrants 2, 3 and 4 are derived from quadrant 1 by selecting the quadrant 1
constellation value with the least significant bits of the desired symbol and rotating
that constellation value by the amount selected by the two most significant bits of
the desired symbol, b i b q, as specified in table Conversion of Constellation Points.

 

 Conversion of Constellation Points

Quadrant Symbol Most Significant Bits ( b i b q ) Rotation

1 00 0

2 10 π/2

3 11 π

4 01 3π/2

16QAM, 32QAM, 64QAM, 128QAM and 256QAM constellation maps are illustrated in
16 and 32QAM Constellation through 256QAM Constellation.
When ModType is specified to User_Defined, a custom constellation is defined with9.
MappingTable. The output symbol is mapped directly to a constellation point as a 0
based index into MappingTable.
 

 QPSK Modulation Constellation

 

 8PSK Modulation Constellation

 

 16PSK Modulation Constellation
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 16 and 32QAM Constellations

 

 64QAM Constellation

 

 128QAM Constellation

 

 256QAM Constellation



SystemVue - Algorithm Design Library

178

 

See Mapper (algorithm).

 References

EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding1.
and modulation for cable systems," V1.2.1, 1998-04.
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 DeScrambler Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DeScrambler
(algorithm)

Bit Sequence Descrambler

 DeScrambler (Bit Sequence Descrambler)

Description: Bit Sequence Descrambler
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DeScrambler Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Polynomial Generator polynomial for the shift register -
decimal, octal, or hex integer

147457  Integer NO (0:∞)

ShiftReg Initial state of the shift register - decimal, octal,
or hex integer

1  Integer NO (-
∞:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input bit sequence (zero or
nonzero)

boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 output output bit sequence (zero or
one)

boolean NO

 Notes/Equations

This component descrambles the input bit sequence using a feedback shift register.1.
The taps of the feedback shift register are given by the Polynomial parameter.
This is a self-synchronizing descrambler that will exactly reverse the operation of the
Scrambler component if the corresponding parameter values of Scrambler and
DeScrambler are the same.
A self-synchronized descrambler is shown in Self-Synchronized Descrambler.
Figure:Self-Synchronized Descrambler

See also, Scrambler (algorithm).2.

 References

E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition, Kluwer1.
Academic Publishers, 1994, pp. 595-603.
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 FMPulseTrain Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FMPulseTrain
(algorithm)

Frequency modulated pulse
train

 FMPulseTrain

Description: Frequency modulated pulse train
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: FMPulseTrain Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Frequency Nominal frequency of the pulse train 20e3 Hz Float NO (0:∞)

InitialPhase Initial phase 0 deg Float YES (-
∞:∞)

FreqSensitivity Frequency deviation sensitivity in
Hz/Volt

1e5  Float YES (-
∞:∞)

Amplitude Amplutide of the pulse train 1 V Float YES (-
∞:∞)

PulseWidth Time width of the output pulse train 1e-6 s Float YES (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output real NO

 Notes/Equations

FMPulseTrain generates a frequency modulated pulse train.1.
For every input, there is one output.2.
Consider a phasor P(t) operating at 3.
radians per second.
P(t) is P(0) + 4.

where P(0) is InitialPhase.
If P(t) crosses  for integer n within the last time step, a pulse is generated.5.
A pulse has Amplitude value and persists PulseWidth seconds. No pulse is6.
represented by a zero output.
PulseWidth is rounded to the nearest time step and is forced to be at least one time7.
step.
Pulses may overlap, however the most recently generated pulse determines the next8.
no pulse time.

See also: Modulator (algorithm).
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 GoldCode Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

GoldCode
(algorithm)

Gold Code Generator

 GoldCode

Description: Gold Code Generator
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: GoldCode Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

GoldCodePolynomials G1,G2 polynomials for LFSR-1,LFSR-2:
G1[5 2]&G2[5 4 3 2], G1[7 3]&G2[7 3 2
1], G1[7 3 2 1]&G2[7 5 4 3 2 1], G1[8 7 6
5 2 1]&G2[8 7 6 1], G1[9 4]&G2[9 6 4 3],
G1[9 6 4 3]&G2[9 8 4 1], G1[10
3]&G2[10 9 8 6 3 2]_GPS, G1[10 9 8 7 6
5 4 3]&G2[10 9 7 6 4 1], G1[10 8 7 6 5 4
3]&G2[10 9 7 6 4 1], G1[10 8 5 1]&G2[10
7 6 4 2 1], G1[10 9 8 6 5 1]&G2[10 5 3
2], G1[10 8 4 3]&G2[10 9 6 5 4 3], G1[10
8 7 6 2 1]&G2[10 9 4 2], G1[10 5 2
1]&G2[10 9 7 6 4 3 2 1], G1[11 2]&G2[11
8 5 2], G1[11 8 5 2]&G2[11 10 3 2],
G1[11 7 3 2]&G2[11 10 9 7 6 4 3 2],
G1[12 9 3 2]&G2[12 11 8 7 6 3 2 1],
G1[12 11 6 4 2 1]&G2[12 11 8 7 5 4 3 2],
G1[12 9 8 3 2 1]&G2[12 11 8 7 3 1],
G1[12 9 8 5 4 3]&G2[12 7 6 4], G1[12 10
7 5 3 2]&G2[12 11 8 4 3 1], G1[12 11 7 4
2 1]&G2[12 10 9 8 4 3], G1[12 10 6 5 2
1]&G2[12 11 10 4], G1[12 11 10 9 8 7 5
4 3 2]&G2[12 11 7 4], G1[12 9 7 6 3
1]&G2[12 11 10 7 6 5 4 1], G1[12 11 10
9 4 2]&G2[12 8 4 3 2 1], G1[12 9 8 5 4 3
2 1]&G2[12 11 7 5 4 3], G1[12 10 8 7 6
2]&G2[12 10 2 1], G1[13 4 3 1]&G2[13
12 8 7 6 5], G1[13 10 9 7 5 4]&G2[13 12
8 7 6 5], G1[13 11 8 7 4 1]&G2[13 11 10
5 4 3 2 1]

G1[10
3]&G2[10 9 8
6 3 2]_GPS

 Enumeration NO

G1InitialState LFSR-1 initial state non-zero bit positions [1, 2, 3, 4, 5,
6, 7, 8, 9,
10]

 None NO

G2InitialState LFSR-2 initial state non-zero bit positions [1, 2, 3, 4, 5,
6, 7, 8, 9,
10]

 None NO

PhaseSelect LFSR-2 output modification only for GPS
Goldcode: PRN_disabled, PRN1_2xor6,
PRN2_3xor7, PRN3_4xor8, PRN4_5xor9,
PRN5_1xor9, PRN6_2xor10, PRN7_1xor8,
PRN8_2xor9, PRN9_3xor10,
PRN10_2xor3, PRN11_3xor4,
PRN12_5xor6, PRN13_6xor7,
PRN14_7xor8, PRN15_8xor9,
PRN16_9xor10, PRN17_1xor4,
PRN18_2xor5, PRN19_3xor6,
PRN20_4xor7, PRN21_5xor8,
PRN22_6xor9, PRN23_1xor3,
PRN24_4xor6, PRN25_5xor7,
PRN26_6xor8, PRN27_7xor9,
PRN28_8xor10, PRN29_1xor6,
PRN30_2xor7, PRN31_3xor8,
PRN32_4xor9, PRN33_5xor10,
PRN34_4xor10, PRN35_1xor7,
PRN36_2xor8, PRN37_4xor10

PRN_disabled  Enumeration NO

SkipNBits Number of bits to initially skip 0  Integer NO

 Input Ports
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Port Name Signal Type Optional

1 clock int NO

2 reset int YES

 Output Ports

Port Name Signal Type Optional

3 goldcode int NO

4 g1 int NO

5 g2 int NO

 Notes/Equations

Gold code sequences have the property of minimal circular autocorrelation values for1.
nonzero lag.
For every clock input, there is a Gold code output.2.
New bit values are output when the clock input is true (not 0). Otherwise, the output3.
bit value is unchanged.
Gold code sequences are generated with a pair of linear feed back register (LFSR4.
(algorithm)) of the same length. These registers named G1 and G2 have very specific
feedback taps (polynomials) which are selected through the GoldCodePolynomials
parameter as a pair of polynomials. The GoldCodePolynomials enumeration G1[5
2]&G2[5 4 3 2] define a 5 bit LFSR for both G1 and G2. G1 has feedback taps at bit
positions 5 and 2, and G2 has feedback taps at bit position 5, 4, 3 and 2.
G1 and G2 output are both found at their LFSR highest bit position, i.e. if G1 and G25.
are defined with GoldCodePolynomials enumeration G1[5 2]&G2[5 4 3 2], then G1
and G2 output from bit position 5. The outputs are typically exclusive ORed to
generate a Gold code bit. When clocked G1 and G2 are shifted one bit simultaneously
toward the higher bit position to generate the next Gold code bit.
G1InitialState and G2InitialState initializes G1 and G2 respectively. Both parameters6.
can be specified either as a bit array or as an array of positions having bit value 1.
The implied length of the bit array notation is the number of array elements. For the
positional notation, the implied length is the largest position value.
PhaseSelect is displayed only when GoldCodePolynomials is G1[10 3]&G2[10 9 9 6 37.
2]_GPS. This Gold code polynomial is used in Global Positioning Satellite (GPS)
hardware. PhaseSelect chooses two bits from G2 which are together exclusive ORed
with the G1 output to produce the Gold code bit. The enumeration PRN1_2xor9
choose bit position 2 and 9 from G2.
SkipNBits truncates the Gold code sequence by removing the first SkipNBits number8.
of outputs from each Gold code sequence period.

See:
Bits
LFSR (algorithm)
SetSampleRate (algorithm)

file:/pages/createpage.action?spaceKey=sv201007&amp;title=Bits&amp;linkCreation=true&amp;fromPageId=107087464
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Bits&amp;linkCreation=true&amp;fromPageId=107087464


SystemVue - Algorithm Design Library

183

 GrayDecoder Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

GrayDecoder
(algorithm)

Gray Decoder

 GrayDecoder (Gray Decoder)

Description: Gray Decoder
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: GrayDecoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NumBits Number of bits read/produced per
execution

4  Integer NO [1:∞)

BitOrder Bit order: LSB first, MSB first MSB
first

 Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input bits boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 output output bits boolean NO

 Notes/Equations

This model implements a Gray decoder.1.
At every execution NumBits bits are read from the input, Gray decoded, and written2.
to the output.
The BitOrder parameter specifies whether the first bit in the block of NumBits bits3.
read/written is to be considered as MSB or LSB.
See also: GrayEncoder (algorithm)4.
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 GrayEncoder Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

GrayEncoder
(algorithm)

Gray Encoder

 GrayEncoder (Gray Encoder)

Description: Gray Encoder
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: GrayEncoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NumBits Number of bits read/produced per
execution

4  Integer NO [1:∞)

BitOrder Bit order: LSB first, MSB first MSB
first

 Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input bits boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 output output bits boolean NO

 Notes/Equations

This model implements a Gray encoder.1.
At every execution NumBits bits are read from the input, Gray encoded, and written2.
to the output.
The BitOrder parameter specifies whether the first bit in the block of NumBits bits3.
read/written is to be considered as MSB or LSB.
Gray encoding maps natural binary numbers to a set of binary codes where two4.
successive codes differ only in one bit.
1-bit binary numbers and their Gray codes
Binary Number Gray Code

0 0

1 1

2-bit binary numbers and their Gray codes (MSBs are to the left and LSBs to the
right)

Binary Number Gray Code

00 00

01 01

10 11

11 10

3-bit binary numbers and their Gray codes (MSBs are to the left and LSBs to the
right)

Binary Number Gray Code

000 000

001 001

010 011

011 010

100 110

101 111

110 101

111 100
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4-bit binary numbers and their Gray codes (MSBs are to the left and LSBs to the
right)

Binary Number Gray Code

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

The easiest way to construct a (N+1)-bit Gray code is to start with the N-bit Gray
code, reflect it, then prepend the top half with 0 and the bottom half with 1.
Following is an example showing how the 3-bit Gray code is constructed from the 2-
bit Gray code.

Start with 2-bit Gray code
00
01
11
10
Reflect
00
01
11
10
---
10
11
01
00
Prepend 0 for the top half and 1 for the bottom half
000
001
011
010
----
110
111
101
100

Gray encoding is commonly used in communications systems when mapping bits to5.
constellation points so that adjacent constellation points are assigned bit patterns
that differ only in one bit. This helps minimize Bit Error Rate since in most cases
errors occur between adjacent constellation points and in this case only one bit will
be in error.
See also: GrayDecoder (algorithm)6.
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 InterleaveDeinterleave Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

InterleaveDeinterleave
(algorithm)

Interleaver / Deinterleaver

 InterleaveDeinterleave (Interleaver/Deinterleaver)

Description: Interleaver / Deinterleaver
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: InterleaveDeinterleave Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Rows Number of rows of the interleave/deinterleave
matrix

8  Integer NO (0:∞)

Columns Number of columns of the interleave/deinterleave
matrix

8  Integer NO (0:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 Notes/Equations

This component is a general purpose interleaver/de-interleaver. Every time it fires it1.
reads (Rows × Columns) samples from its input and writes them to its output in a
different order. Its operation is equivalent to writing the samples read from its input
in a Rows × Columns matrix row-wise, then reading the matrix elements column-
wise and writing them to the output.
Alternatively, the Transpose (algorithm) component in the Numeric Control library
can be used.
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 Interleaver802 Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Interleaver802
(algorithm)

IEEE 802 Interleaver

 Interleaver802 (IEEE 802 Interleaver)

Description: IEEE 802 Interleaver
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Interleaver802 Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

s Modular factor of interleaving 1  Integer NO [1:∞)

l Divisor factor of interleaving 16  Integer NO [1:∞)

NCBPS Number of coded bits per OFDM
symbol

48  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 In Input int NO

 Output Ports

Port Name Description Signal Type Optional

2 Out Output int NO

 Notes/Equations

The Interleaver802 model performs interleaving based on IEEE 802 standards. It1.
performs the inverse of the Deinterleaver802 model.
This model reads N CBPS samples from input In and writes N CBPS samples to the2.

output Out.
N CBPS is the number of coded bits in a single OFDM symbol and is defined in the

table below.
Interleaving is defined by a two-step permutation. The first permutation ensures that3.
adjacent coded bits are mapped onto nonadjacent subcarriers. The second
permutation ensures that adjacent coded bits are mapped alternately onto less and
more significant bits of the constellation, thereby avoiding long runs of low reliability
bits.
In the following, k denotes the index of the coded bit before the first permutation; i
denotes the index after the first and before the second permutation; j denotes the
index after the second permutation, just prior to modulation mapping.
The first permutation is defined by
i = (N CBPS /l) (k mod l) + floor(k/l) k = 0, 1, ..., N CBPS - 1

The function floor (.) denotes the largest integer not exceeding the parameter.
The second permutation is defined by
j = s × floor(i/s) + (i + N CBPS - floor(l × i/N CBPS)) mod s i = 0, 1, ... N CBPS - 1

In the equations, s is the modular factor and l is the divisor factor ; these are
variable parameters and their values depend on which standard the model is used
for.
If this model is used in IEEE 802.11 and HIPERLAN/2,
s = max (N BPSC /2, 1), l = 16;

where N BPSC and N CBPS are determined by data rates given in IEEE 802.11 and

HIPERLAN/2 Rate-Dependent Values.
If this model is used in IEEE 802.16,
s = N BPSC /2, l = 12;

where N BPSC and N CBPS are determined by block sizes given in IEEE 802.16 Bit

Interleaver Block Sizes (NCBPS /NBPSC).
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 IEEE 802.11 and HIPERLAN/2 Rate-Dependent Values

Data Rate
(Mbps)

Modulation Coding
Rate (R)

Coded Bits per
Subcarrier
(NBPSC)

Coded Bits per
OFDM Symbol
(NCBPS)

Data Bits per
OFDM Symbol
(NDBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 (IEEE
802.11a)

16QAM 1/2 4 192 96

27
(HIPERLAN/2)

16QAM 9/16 4 192 108

36 16QAM 3/4 4 192 144

48 (IEEE
802.11a)

64QAM 2/3 6 288 192

54 64QAM 3/4 6 288 216

 

 IEEE 802.16 Bit Interleaver Block Sizes (N CBPS /N BPSC)

Modulation 16 Subchannels
(Default)

8
Subchannels

4
Subchannels

2
Subchannels

1
Subchannel

QPSK 384/2 192/2 96/2 48/2 24/2

16QAM 768/4 384/4 192/4 96/4 48/4

64QAM 1152/6 576/6 288/6 144/6 72/6

 

 See Also:

Deinterleaver802 (algorithm)

 References

IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band, 1999.
ETSI TS 101 475 v1.1.1, Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer, April, 2000.
IEEE P802.16-REVd/D2-2003, Part 16 Air Interface for Fixed Broadcast Wireless3.
Access Systems.
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 LFSR Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LFSR
(algorithm)

Linear Feedback Shift Register

 LFSR

Description: Linear Feedback Shift Register
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: LFSR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

FeedbackTaps Feedback tap positions [3, 10]  None NO

InitialState Initial state non-zero bit positions [5, 9]  None NO

UseInternalReset Internal periodic reset mode: NO,
YES

NO  Enumeration NO

InternalResetPeriod Number of outputs in a period 127  Integer NO

 Input Ports

Port Name Signal Type Optional

1 clock int NO

2 reset int YES

 Output Ports

Port Name Signal Type Optional

3 output multiple int NO

 Notes/Equations

The linear feedback shift register (LFSR) part is configured to generate a PN1.
sequence.
For every clock input, there is an LFSR output.2.
The output may be connected to a bus which can make all LFSR bits observable. A3.
non-bus connection permit the standard output which is the rightmost bit in the LFSR
Model. For a bus labeled B(a:b), B(a) is the standard output connection. If a<b,
B(a+1) is the adjacent bit to the standard output and so on. This default connection
order can be changed. Consult Nets Connection Lines and Buses (users). Note that
any bus width specification greater than the LFSR number of bits generates an error.
New bit values are generated when the clock input is true (not 0) and the reset input4.
is false (0), if the reset input is connected. Otherwise, the previous bit value is
output.
When the reset input is true (not 0), the bits of InitialState is available for output.5.
If UseInternalReset is YES, then any reset input is ignored. The LFSR starts from6.
InitialState every InternalResetPeriod samples.
The parameters FeedbackTaps and InitialState permit configuration for a LFSR with7.
length up to 64 bits.
Both parameters can be specified either as a bit array or as an array of positions8.
having bit value 1. The implied length of the bit array notation is the number of array
elements. For the positional notation, the implied length is the largest position value.
The LFSR length r is defined by the implied length of FeedbackTaps. For example, if9.
FeedbackTaps is specified as [7 3 2 1] in the positional notation or equivalently [1 1
1 0 0 0 1] in the bit array notation, then the LFSR length is 7 bits.
The diagram below illustrates the LFSR model.10.
 

 LFSR Model
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Constants a(1), a(2), ... , a(r) are binary feedback coefficients that are specified in
FeedbackTaps. The length of the LFSR is r. The LFSR states are labeled as D(n − 1),
D(n − 2), ... ,D(n − r). The LFSR is shifted to right, i.e. D(n − r) is replaced by D(n −
r + 1) and so on. State D(n − r) is the standard output. The LFSR is initialized by
shifting in bits at D(n − 1) from InitialState. The rightmost bit of InitialState is shifted
out first. If the length of the InitialState parameter is i and i < r, then (r - i)
additional zeros are shifted in. This results in InitialState shifted out beginning with
the right most bit.
The following recurrence relation describes how the feedback value is calculated from11.
the preceding r LFSR input bits.

For example, if FeedbackTaps is [7, 3, 2, 1], then the feedback value is D( n ) = ( D(
n − 7 ) + D( n − 3 ) + D( n − 2 ) + D( n − 1 ) ) mod 2.
The following table provide a list of feedback coefficients for LFSR of length r which12.
have the maximal code length property. Code length refers to the number of shifts of
the LFSR before repeating the bit sequence.
 

 Feedback Connections for Linear m-Sequences

Number
of Stages
(r)

Code Length Maximal Feedback Taps

2 a 3 [2, 1]

3 a 7 [3, 1]

4 15 [4, 1]

5 a 31 [5, 2] [5, 4, 3, 2] [5, 4, 2, 1]

6 63 [6, 1] [6, 5, 2, 1,] [6, 5, 3, 2,]

7 a 127 [7, 1] [7, 3] [7, 3, 2, 1,] [7, 4, 3, 2,] [7, 6, 4, 2] [7, 6, 3, 1]
[7, 6, 5, 2] [7, 6, 5, 4, 2, 1] [7, 5, 4, 3, 2, 1]

8 255 [8, 4, 3, 2] [8, 6, 5, 3] [8, 6, 5, 2] [8, 5, 3, 1] [8, 6, 5, 1] [8,
7, 6, 1] [8, 7, 6, 5, 2, 1] [8, 6, 4, 3, 2, 1]

9 511 [9, 4] [9, 6, 4, 3] [9, 8, 5, 4] [9, 8, 4, 1] [9, 5, 3, 2] [9, 8, 6,
5] [9, 8, 7, 2] [9, 6, 5, 4, 2] [9, 7, 6, 4, 3, 1] [9, 8, 7, 6, 5,
3]

10 1023 [10, 3] [10, 8, 3, 2] [10, 4, 3, 1] [10, 8, 5, 1] [10, 8, 5, 4]
[10, 9, 4, 1] [10, 8, 4, 3] [10, 5, 3, 2] [10, 5, 2, 1] [10, 9, 4,
2]

11 2047 [11, 2] [11, 8, 5, 2] [11, 7, 3, 2] [11, 5, 3, 5] [11, 10, 3, 2]
[11, 6, 5, 1] [11, 5, 3, 1] [11, 9, 4, 1] [11, 8, 6, 2] [11, 9, 8,
3]

12 4095 [12, 6, 4, 1] [12, 9, 3, 2] [12, 11, 10, 5, 2, 1] [12, 11, 6, 4,
2, 1] [12, 11, 9, 7, 6, 5] [12, 11, 9, 5, 3, 1] [12, 11, 9, 8, 7,
4] [12, 11, 9, 7, 6, 5] [12, 9, 8, 3, 2, 1] [12, 10, 9, 8, 6, 2]

13 a 8191 [13, 4, 3, 1] [13, 10, 9, 7, 5, 4] [13, 11, 8, 7, 4, 1] [13, 12,
8, 7, 6, 5] [13, 9, 8, 7, 5, 1] [13, 12, 6, 5, 4, 3] [13, 12, 11,
9, 5, 3] [13, 12, 11, 5, 2, 1] [ 13, 12, 9, 8, 4, 2] [13, 8, 7, 4,
3, 2]

14 16,383 [14, 12, 2, 1] [14, 13, 4, 2] [14, 13, 11, 9] [14, 10, 6, 1]
[14, 11, 6, 1] [14, 12, 11, 1] [14, 6, 4, 2] [14, 11, 9, 6, 5, 2]
[14, 13, 6, 5, 3, 1] [14, 13, 12, 8, 4, 1] [14, 8, 7, 6, 4, 2]
[14, 10, 6, 5, 4, 1] [14, 13, 12, 7, 6, 3] [14, 13, 11, 10, 8,
3]

15 32,767 [15, 1] [15, 4] [15, 13, 10, 9] [15, 13, 10, 1] [15, 14, 9, 2]
[15, 9, 4, 1] [15, 12, 3, 1] [15, 10, 5, 4] [15, 10, 5, 4, 3, 2]
[15, 11, 7, 6, 2, 1] [15, 7, 6, 3, 2, 1][15, 10, 9, 8, 5, 3] [15,
12, 5, 4, 3, 2] [15, 10, 9, 7, 5, 3] [15, 13, 12, 10] [15, 13,
10, 2] [15, 12, 9, 1] [15, 14, 12, 2] [15, 13, 9, 6] [15, 7, 4,
1] [15, 13, 7, 4]

16 65,535 [16, 12, 3, 1] [16, 12, 9, 6] [16, 9, 4, 3] [16, 12, 7, 2] [16,
10, 7, 6] [16, 15, 7, 2] [16, 9, 5, 2] [16, 13, 9, 6] [16, 15, 4,
2] [16, 15, 9, 4]

17 a 131,071 [17, 3] [17, 3, 2] [17, 7, 4, 3] [17, 16, 3, 1] [17, 12, 6, 3, 2,
1] [17, 8, 7, 6, 4, 3] [17, 11, 8, 6, 4, 2] [17, 9, 8, 6, 4, 1]
[17, 16, 14, 10, 3, 2] [17, 12, 11, 8, 5, 2]
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18 262,143 [18, 7] [18, 10, 7, 5] [18, 13, 11, 9, 8, 7, 6, 3] [18, 17, 16,
15, 10, 9, 8, 7] [18, 15, 12, 11, 9, 8, 7, 6]

19 a 524,287 [19, 5, 2, 1] [19, 13, 8, 5, 4, 3] [19, 12, 10, 9, 7, 3] [19, 17,
15, 14, 13, 12, 6, 1] [19, 17, 15, 14, 13, 9, 8, 4, 2, 1] [19,
16, 13, 11, 19, 9, 4, 1] [19, 9, 8, 7, 6, 3] [19, 16, 15, 13,
12, 9, 5, 4, 2, 1] [19, 18, 15, 14, 11, 10, 8, 5, 3, 2] [19, 18,
17, 16, 12, 7, 6, 5, 3, 1]

20 1, 048,575 [20, 3] [20, 9, 5, 3] [20, 19, 4, 3] [20, 11, 8, 6, 3, 2] [20,
17, 14, 10, 7, 4, 3, 2]

21 2,097,151 [21, 2] [21, 14, 7, 2] [21, 13, 5, 2] [21, 14, 7, 6, 3, 2] [21,
8, 7, 4, 3, 2] [21, 10, 6, 4, 3, 2] [21, 15, 10, 9, 5, 4, 3, 2]
[21, 14, 12, 7, 6, 4, 3, 2] [21, 20, 19, 18, 5, 4, 3, 2]

22 4,194,303 [22,1] [22, 9, 5, 1] [22, 20, 18, 16,6, 4, 2, 1] [22, 19, 16,
13, 10, 7, 4, 1] [22, 17, 9, 7, 2, 1] [22, 17, 13, 12, 8, 7, 2,
1] [22, 14, 13, 12, 7, 3, 2, 1]

23 8,388,607 [23, 5] [23, 17, 11, 5] [23, 5, 4, 1] [23, 12, 5, 4] [23, 21, 7,
5] [23, 16, 13, 6, 5, 3] [23, 11, 10, 7, 6, 5] [23, 15, 10, 9,
7, 5, 4, 3] [23, 17, 11, 9, 8, 5, 4, 1] [23, 18, 16, 13, 11, 8,
5, 2]

24 16,777,215 [24, 7, 2] [24, 4, 3, 1] [24, 22, 20, 18, 16, 14, 11, 9, 8, 7, 5,
4] [24, 21, 19, 18, 17, 16, 15, 14, 13, 10, 9, 5, 4, 1]

25 33,554, 431 [25, 3] [25, 3, 2, 1] [25, 20, 5, 3] [25, 12, 5, 4] [25, 17, 10,
3, 2, 1] [25, 23, 21, 19, 9, 7, 5, 3] [25, 18, 12, 11, 6, 5, 4]
[25, 20, 16, 11, 5, 3, 2, 1] [25, 12, 11, 8, 7, 6, 4, 3]

26 67,108,863 [26, 6, 2, 1] [26, 22, 21, 16, 12, 11, 10, 8, 5, 4, 3, 1]

27 134,217,727 [27, 5, 2, 1] [27, 18, 11, 10, 9, 5, 4, 3]

28 268,435,455 [28, 3] [28, 13, 11, 9, 5, 3] [28, 22, 11, 10, 4, 3] [28, 24,
20, 16, 12, 8, 4, 3, 2, 1]

29 536,870,911 [29, 2] [29, 20, 11, 2] [29, 13, 7, 2] [29, 21, 5, 2] [29, 26,
5, 2] [29, 19, 16, 6, 3, 2] [29, 18, 14, 6, 3, 2]

30 1,073,741,823 [30, 23, 2, 1] [30, 6, 4, 1] [30, 24, 20, 16, 14, 13, 11, 7, 2,
1]

31 a 2,147,483,647 [31, 29, 21, 17] [31, 28, 19, 15] [31, 3] [31, 3, 2, 1] [31,
13, 8, 3] [31, 21, 12, 3, 2, 1] [31, 20, 18, 7, 5, 3] [31, 30,
29, 25] [31, 28, 24, 10] [31, 20, 15, 5, 4, 3] [31, 16, 8, 4,
3, 2]

32 4,294,967,295 [32, 22, 2, 1] [32, 7, 5, 3, 2, 1] [32, 28, 19, 18, 16, 14, 11,
10, 9, 6, 5, 1]

33 8,589,934,591 [33, 13] [33, 22, 13, 11] [33, 26, 14, 10] [33, 6, 4, 1] [33,
22, 16, 13, 11, 8]

34 17,179,869,183 [34,27,2,1]

35 34,359,738,367 [35,33]

36 68,719,476,735 [36,25]

37 137,438,953,471 [37,5,4,3,2,1]

38 274,877,906,943 [38,6,5,1]

39 549,755,813,887 [39,35]

40 1,099,511,627,776 [40,38,21,19]

41 2,199,023,255,551 [41,38]

42 4,398,046,511,103 [42,41,20,19]

43 8,796,093,022,207 [43,42,38,37]

44 17,592,186,044,415 [44,43,18,17]

45 35,184,372,088,831 [45,44,42,41]

46 70,368,744,177,663 [46,45,26,25]

47 140,737,488,355,327 [47,42]

48 281,474,976,710,656 [48,47,21,20]

49 562,949,953,421,312 [49,40]

50 1,125,899,906,84,2623 [50,49,24,23]

51 2,251,799,813,685,248 [51,50,36,35]

52 4,503,599,627,370,496 [52,49]

53 9,007,199,254,740,991 [53,52,38,37]

54 18,014,398,509,481,983 [54,53,18,17]

55 36,028,797,018,963,967 [55,31]

56 72,057,594,037,927,935 [56,55,35,34]

57 144,115,188,075,855,871 [57,50]

58 288,230,376,151,711,743 [58,39]

59 576,460,752,303,423,488 [59,58,38,37]

60 1,152,921,504,606,846,975 [60,59]

61 2,305,843,009,213,693,951 [61, 5, 2, 1]

62 4,611,686,018,427,387,903 [62,61,6,5]

63 9,223,372,036,854,775,807 [63,62] [33, 13]

64 18,446,744,073,709,551,615 [64,63,61,60]

An alternative implementation of the LFSR is shown in Alternative Implementation of13.
LFSR. In order to get the same output sequence from the two implementations the
following relationships should hold between a(i) and b(i):
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b(i) = a(r − i), i = 1, 2, ... , r − 1.
Implementation of 5-Stage LFSR illustrates implementation for a shift register of
length 5 and FeedbackTaps = [2 5].
The sequence of the LFSR states in both implementations and the output (rightmost
bit of the state) is shown in LFSR States.
Although the shift register in the two implementations does not go through the same
sequence of states, the output sequence is the same for both. It is also worth noting
that if the initial state is different from [1 0 0 0 0], the output sequences may not be
identical but remain a shifted version of each other.

 Alternative Implementation of LFSR

 Implementation of 5-Stage LFSR

 LFSR States

See:
Bits
GoldCode (algorithm)

file:/pages/createpage.action?spaceKey=sv201007&amp;title=Bits&amp;linkCreation=true&amp;fromPageId=107087514
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Bits&amp;linkCreation=true&amp;fromPageId=107087514
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 LoadIFFTBuff802 Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LoadIFFTBuff802
(algorithm)

IEEE 802 IFFT Buffer Loader

 LoadIFFTBuff802 (IEEE 802 IFFT Buffer Loader)

Description: IEEE 802 IFFT Buffer Loader
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: LoadIFFTBuff802 Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Carriers Number of subcarriers per OFDM
symbol

52  Integer NO

DCCarrier DC carrier: OFF, ON OFF  Enumeration NO

DCPilotValue DC Pilot Value 1.33333  Complex
number

YES

FullSubcarriers Activate all sub-carriers: NO, YES YES  Enumeration NO

SubcarrierList Subcarrier list [-21, -7, 7,
21]

 None NO

Order IFFT points as 2^Order 7  Integer NO

 Input Ports

Port Name Description Signal Type Optional

1 In Transmitted signal before IFFT complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Out IFFT input signal, zero padded complex NO

 Notes/Equations

This component is used to load transmission data into the IFFT buffer. Each firing,1.
Carriers tokens are consumed and 2 Order tokens are generated. For example, if
Carriers = 52, Order = 7, 52 tokens are consumed and 128 tokens are generated.
Data loading is performed as follows.2.
Assume x(0), x(1), ... , x(N-1) are the inputs that generally represent active
subcarriers defined by designers, where N = Carriers. y(0), y(1), ... , y(M-1) are the
outputs, M = 2 Order.
when N is even

when N is odd

For example, if Order = 4 and Carriers = 7, the input carriers are x(0), x(1), x(2),
x(3),x(4),x(5),x(6), and the output carrier sequence would be:
0 , x(3) , x(4) , x(5) , x(6) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , x(0) , x(1) , x(2)
which will be loaded into the IFFT model for the IFFT transformation.
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DCCarrier and DCPilotValue specify whether DC carrier is used; if DCCarrier = ON,3.
the DC carrier value is set by DCPilotValue.
In the example provided in note 2, DCCarrier = OFF.
While DCCarrier = ON and DCPilotValue = 4/3, the output carriers sequence would
be:
4/3, x(3), x(4), x(5), x(6), 0, 0, 0, 0, 0, 0, 0, 0, x(0), x(1), x(2)
in which the first carrier is 4/3 instead of 0.
If FullSubcarriers = YES, all input carriers will be used. If FullSubcarriers = NO, some4.
of the input carriers will be used; SubcarrierList specifies which input carriers will be
used.
SubcarrierList (valid when FullSubcarriers = NO) specifies the positions of the input5.
carriers to be used as active subcarriers (all subcarriers are 0 except those carriers
specified).
Assume x(0), x(1), ... , x(N-1) are the input signals that generally represent active
subcarriers defined by designers, where N = Carriers. y(0), y(1), ... , y(M-1) are the
output of the model M = 2 Order. The corresponding indices of x(0), x(1), ... , x(N-1)
are {int(-Carriers/2), int(-Carriers/2) + 1, ... , -1, 1, ... , int(Carriers/2)-1,
int(Carriers/2)}.
The active subcarrier loading procedure is performed as follows: assume index is an
element of {int(-Carriers/2), int(-Carriers/2) + 1, ... , -1, 1, ... , int(Carriers/2)-1,
int(Carriers/2)}:
when N is even

when N is odd

For example, SubcarrierList = {-2, -1, 2, 3}, and input carriers are x(0), x(1), x(2),
x(3), x(4), x(5), x(6). Indices of the input carriers are -3, -2, -1, 1, 2, 3, 4.
Elements in SubcarrierList must be integer and in (-Carriers/2, Carriers/2), in which
Carriers is the number of carriers of input, here, it is 7 and index should be in [-3, 3].
In this case, the carrier with index is -2, -1, 2, 3 is used, these are x(1), x(2), x(4),
x(5). The output subcarriers are then:
4/3, 0, x(4), x(5), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x(1), x(2).

 

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer," April, 2000.
ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);3.
Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.
ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and4.
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.
IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.155.
Task Group 3a," September 2003.
IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area6.
networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.



SystemVue - Algorithm Design Library

195

 Mapper Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Mapper
(algorithm)

Complex Symbol
Mapper

 Mapper (Complex Symbol Mapper)

Description: Complex Symbol Mapper
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Mapper Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ModType Modulation type: BPSK, QPSK, PSK8, PSK16,
QAM16, QAM32, QAM64, QAM128, QAM256,
User_Defined

QPSK  Enumeration NO

MappingTable Constellation table [1, -1]  Complex
array

NO

BitOrder Bit order: LSB first, MSB first LSB
first

 Enumeration YES

 Input Ports

Port Name Description Signal Type Optional

1 In input bit sequence boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 Out output symbol
sequence

complex NO

 Notes/Equations

Mapper groups consecutive bits as specified by the BitOrder parameter in the input to1.
form a symbol value which is mapped to a complex valued constellation point that is
output.
A constellation point is a pair of real values (I,Q) that is expressed on the output as I2.
+ jQ. Later in the modulation chain, I modulates the inphase part of the carrier, and
Q modulates the quadrature part of the carrier over a symbol period.
Each modulation type has its constellation and symbol length. The symbol length, i.e.3.
the number of input bits per symbol, is detailed in the following table.

 Modulation Type and Symbol Length

ModType Symbol Length

BPSK 1

QPSK 2

PSK8 3

PSK16 or QAM16 4

QAM32 5

QAM64 6

QAM128 7

QAM256 8

If ModType is User_Defined and the size of MappingTable is N, then the symbol
length is log 2 (N) bits.

For QPSK, PSK8, and PSK16 the mapping from bits to symbols is using Gray4.
encoding. For QAM16, QAM32, QAM64, QAM128, and QAM256, Gray encoding is used
inside each quadrant.
For ModType BPSK, bit value 0 is mapped to 1 + j0 and bit value 1 is mapped to -1 +5.
j0.
For ModType QPSK, the constellation map is illustrated in QPSK Constellation. For6.
ModType PSK8, the constellation map is illustrated in 8PSK Constellation. For
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ModType PSK16, the constellation map is illustrated in 16PSK Constellation.
The symbol mappings for ModType QAM16, QAM32, QAM64, QAM128 and QAM2567.
are described in the section 9 of [1], and their constellation maps are illustrated in
figure 7-8 of [1].
QAM constellations need definition only for quadrant 1. The constellation points in8.
quadrants 2, 3 and 4 are derived from quadrant 1 by selecting the quadrant 1
constellation value with the least significant bits of the input symbol and rotating that
constellation value by the amount selected by the two most significant bits of the
input symbol, b i b q, as specified in table Conversion of Constellation Points.

 

 Conversion of Constellation Points

Quadrant Symbol Most Significant Bits ( b i b q ) Rotation

1 00 0

2 10 π/2

3 11 π

4 01 3π/2

16QAM, 32QAM, 64QAM, 128QAM and 256QAM constellation maps are illustrated in
16 and 32QAM Constellation through 256QAM Constellation.
When ModType is specified to User_Defined, a custom constellation is defined with9.
MappingTable. The input symbol is mapped directly to a constellation point as a 0
based index into MappingTable.
 

 QPSK Constellation

 

 8PSK Constellation

 

 16PSK Constellation
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 16 and 32QAM Constellation

 

 64QAM Constellation

 

 128QAM Constellation

 

 256QAM Constellation
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See
Mapper_M (algorithm)
Demapper (algorithm)

 References

EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding1.
and modulation for cable systems," V1.2.1, 1998-04.
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 Modulator Part
Categories: Analog/RF (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Modulator
(algorithm)

Modulator

 Modulator (Modulator)

Description: Modulator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Modulator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

InputType Input type: I/Q,
Amp/Phase, Amp/Freq

I/Q  Enumeration NO   

FCarrier Carrier frequency (used if
optional LO input not
used)

0.2e6 Hz Float NO [0:∞) fc

InitialPhase Initial phase 0 deg Float NO (-
∞:∞)

θ

AmpSensitivity Amplitude sensitivity 1  Float NO (-
∞:∞)

Sa

PhaseSensitivity Phase deviation sensitivity
in degrees/Volt

90  Float NO (-
∞:∞)

Sp

FreqSensitivity Frequency deviation
sensitivity in Hz/Volt

10000  Float NO (-
∞:∞)

Sf

ConjugatedQuadrature Negate quadrature output:
NO, YES

NO  Enumeration NO   

MirrorSignal Mirror signal about carrier:
NO, YES

NO  Enumeration NO   

ShowIQ_Impairments Show I and Q
impairments: NO, YES

NO  Enumeration NO   

GainImbalance Gain imbalance in dB, Q
channel relative to I
channel

0.0  Float NO (-
∞:∞)

G

PhaseImbalance Phase imbalance, Q
channel relative to I
channel

0.0 deg Float NO (-
∞:∞)

φ

I_OriginOffset I origin offset 0.0  Float NO (-
∞:∞)

Ioff

Q_OriginOffset Q origin offset 0.0  Float NO (-
∞:∞)

Qoff

IQ_Rotation IQ rotation 0.0 deg Float NO (-
∞:∞)

R

 Input Ports

Port Name Description Signal Type Optional

1 input1 input1 real YES

2 input2 input2 real YES

3 LO complex envelope local oscillator signal envelope YES

 Output Ports

Port Name Description Signal Type Optional

4 output complex envelope vector output envelope NO

5 quad_output complex envelope vector quadrature
output

envelope NO
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 Notes/Equations
The Modulator model implements a modulator that can perform amplitude, phase,1.
frequency, or I/Q modulation.
This model reads 1 sample from the inputs and writes 1 sample to the outputs.2.
The LO input is optional. When not connected, an internal LO signal is used at the3.
frequency FCarrier. When the external LO input is used, is must be a complex
envelope signal with characterization frequency greater than zero. If use with a real
signal is needed, then the LO input to this model can be preceded with an
EnvFcChange (algorithm) model that will recharacterize a real signal to its
representation at a specified frequency. The LO input can include power, phase, and
noise variations in the LO signal. In the following, fc is used to refer to the FCarrier

parameter (when there is no LO input) or to the characterization frequency of the
signal at the LO input.
When fc > 0, the outputs are complex envelope signals with characterization4.

frequency equal to fc. The complex envelope is a complex value of the form I + j·Q.

When fc = 0, the outputs are real baseband signals.5.

Basic operation for generating the modulated complex envelope signal (cx)6.
When InputType is set to I/Q, this model acts as an I/Q modulator. The I signal
is applied at input1 while the Q signal is applied at input2. The output signal is
given by

Either input (but not both) can be left disconnected, in which case its value is
assumed to be 0.
When InputType is set to Amp/Phase, this model acts as an amplitude and
phase modulator. The amplitude modulating signal is applied at input1, and the
phase modulating signal is applied at input2. The output signal is given by

Either input (but not both) can be left disconnected. If input1 is left
disconnected, then its value is assumed to be 1 and S a is set to 1. In this case,

this model acts as a pure phase modulator. If input2 is left disconnected, then
its value is assumed to be 0. In this case, this model acts as a pure amplitude
modulator.
When InputType is set to Amp/Freq, this model acts as an amplitude and
frequency modulator. The amplitude modulating signal is applied at input1, and
the frequency modulating signal is applied at input2. The output signal is given
by

Either input (but not both) can be left disconnected. If input1 is left
disconnected, then its value is assumed to be 1 and S a is set to 1. In this case,

this model acts as a pure frequency modulator. If input2 is left disconnected,
then its value is assumed to be 0. In this case, this model acts as a pure
amplitude modulator.

Effect of MirrorSignal on the modulated complex envelope signal (cx)7.
If MirrorSignal = YES, then let cx = conjugate( cx)

Effect of GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and8.
IQ_Rotation on the modulated complex envelope signal (cx)
Assuming that cx is of the form I + j·Q, then the real signal that this complex
envelope signal represents is I·cos( 2πfct ) − Q·sin( 2πfct ).

For GainImbalance and PhaseImbalance, let g = 10G/20. When these imbalances
are applied to the modulator the real signal is I·cos( 2πfct ) − g·Q·sin( 2πfct +

φπ/180 ). Applying trigonometric formulas we can express this in the form
I'·cos( 2πfct ) − Q'·sin( 2πfct ), where I'=I − g·Q·sin(φπ/180) and

Q'=g·Q·cos(φπ/180) and so cx = I' + j·Q'.
For IQ_Rotation, cx = cx·( cos(R)+j·sin(R) )
For I_OriginOffset and Q_OriginOffset, cx = cx + (Ioff + j·Qoff)

Obtaining the output and quad_output signals from the modulated complex envelope9.
signal cx = Re{cx} + j·Im{cx}

When fc > 0, output = cx and quad_output = −Im{cx} + j·Re{cx}

When fc = 0, output = Re{cx} and quad_output = Im{cx}

See also: Demodulator (algorithm)10.
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 M_PSK Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

M_PSK
(algorithm)

Complex PSK Symbol Mapper

 M_PSK (Complex PSK Symbol Mapper)

Description: Complex PSK Symbol Mapper
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: M PSK Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ModType Modulation type: BPSK, QPSK, PSK8, PSK16, PSK32,
PSK64, PSK128, PSK256, PSK512

QPSK  Enumeration NO

BitOrder Bit order: LSB first, MSB first MSB
first

 Enumeration YES

 Input Ports

Port Name Description Signal Type Optional

1 In Input bit sequence int NO

 Output Ports

Port Name Description Signal Type Optional

2 Out Output complex symbol complex NO

 Notes/Equations

M_PSK performs a M-ary phase shift key (PSK) modulation on the input bit stream,1.
producing a Gray coded complex output signal. This component supports all popular
M-ary PSK modulations in communication systems, including BPSK (2-BPSK), QPSK
(4-PSK), 8-, 16-, 32-, 64-, 128-, 256-, and 512-PSK.
This is a multirate component. In general, if an M-ary PSK modulation is selected by2.
using ModeType, the component consumes n = log2(M) bits from the input and
produces one modulated complex output. Input bits are Gray encoded and mapped
to an output constellation point as shown in BPSK and QPSK Modulation Using Gray
Encoding to 32-PSK Modulation Using Gray Coding. For example, if ModType = PSK8,
the component consumes log2(8) = 3 bits from the input for Gray coded bits then
maps these coded bits to a corresponding constellation point as shown in 8PSK
Modulation Using Gray Coding.
While there are many ways to encode and map sets of input bits into an M-point PSK3.
constellation, Gray coding is always used for modulations to reduce error probabilities
in communication systems. For M_PSK, a generic Labeling Expansion method
proposed by E. Agrell [1] is used for Gray-encoding the input bits.
For specific mapping details, refer to Mapper (algorithm).
Figure: BPSK and QPSK Modulation Using Gray Encoding

Figure: 8PSK Modulation Using Gray Coding
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Figure: 16-PSK Modulation Using Gray Coding

Figure: 32-PSK Modulation Using Gray Coding
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 MuxOFDMSym802 Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MuxOFDMSym802
(algorithm)

IEEE 802 OFDM Symbol Multiplexer

 MuxOFDMSym802 (IEEE 802 OFDM Symbol
Multiplexer)

Description: IEEE 802 OFDM Symbol Multiplexer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: MuxOFDMSym802 Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Carriers Number of subcarriers per
OFDM symbol

52  Integer NO [1:8192]

DataCarriers Number of data subcarriers
per OFDM symbol

48  Integer NO [1:8192]

PilotPosition Standard pilot positions [-21, -7, 7,
21]

 Integer
array

NO  

PilotValue Standard pilot values [1, 1, 1, -1]  Complex
array

NO  

GuardCarrierPosition Guard carrier positions   Integer
array

NO  

GuardCarrierValue Guard carrier values   Complex
array

NO  

 Input Ports

Port Name Description Signal Type Optional

1 Data data subcarriers input complex NO

2 Pilot continual pilot value complex NO

 Output Ports

Port Name Description Signal Type Optional

3 Out OFDM symbol output complex NO

 Notes/Equations

This component is used to multiplex data and pilot subcarriers into the OFDM symbol1.
for IEEE 802 standards 802.11a, 802.11g, 802.15.3a, 802.16a, and 802.16d.

Note
OFDM symbols generally consist of continual pilots (CP) and scattered pilots (SP). Current IEEE 802
standards use CP only. Even though some DAB, DVB-T, and ISDB-T OFDM systems may use both CP
and SP, MuxOFDMSym802 supports CP only.

The basic OFDM symbol structure is introduced in the frequency domain. The symbol2.
(illustrated in OFDM Symbol) consists of subcarriers that determine the size of the
FFT. There are several subcarrier types:

Data subcarriers for data transmission
Pilot subcarriers for estimations
Null subcarriers for no transmission, for guard bands and DC subcarrier.
Guard bands in most OFDM systems (DVB-T, ISDB-T, 802.11a, 802.11g,
802.16a, and 802.16d) are inserted zeros.
IEEE 802.15.3a has additional guard carriers defined between data subcarriers
and guard bands. The guard subcarriers can be used for various purposes,
including relaxing the specification on transmit and receive filters. The
magnitude level of the guard tones is not specified, so reduced power levels for
these subcarriers can be used. The all-zeros guard bands allow the signal to
naturally decay and create the FFT brick wall shaping.  
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 OFDM Symbol

This component multiplexes data and pilot subcarriers into one OFDM symbol
according to the positions of data and pilot subcarriers defined in the standards.
The null subcarriers (guard bands and DC subcarrier) are inserted into an OFDM
symbol by the LoadIFFTBuff802 component. (Both MuxOFDMSym802 and
LoadIFFTBuff802 components implement an OFDM symbol in the frequency
domain.)

MuxOFDMSym802 parameter settings enable designers to generate a variety of3.
OFDM symbol formats, in accordance with IEEE standards or not.
Carriers specifies the number of active subcarriers (data subcarriers, pilot subcarriers
and guard subcarriers) in one OFDM symbol.

Note
Carriers = DataCarriers _ PilotPosition _ GuardCarrierPosition.

DataCarriers specifies the number of data subcarriers in one OFDM symbol.
PilotPosition specifies continual pilot positions; PilotPosition is the number of pilot
subcarriers in one OFDM symbol.
PilotValue specifies values for continual pilot positions.
GuardCarrierPosition specifies guard carriers positions (default = NULL);
GuardCarrierPosition is the number of guard carrier subcarriers in one OFDM symbol.
GuardCarrierValue specifies values for guard carrier positions (default = NULL).
Each firing, one Pilot token and DataCarriers tokens are consumed and Carriers4.
tokens are output.
The complex Data input signal is directly multiplexed into the OFDM symbol.
The continual pilots are multiplexed into OFDM symbols as follows:
p k is the input in Pilot pin for kth OFDM symbol (or kth firing)

a 0, a 1, ... , a n are n+1 pilot values defined by PilotValue

The actual pilot values of kth OFDM symbol are p k × a 0, p k × a 1, ... , p k × a n.

The continual pilot subcarrier values are multiplexed into the OFDM symbol according
to PilotPosition.
The guard carriers are multiplexed into the OFDM symbol like continual pilot as
follows:
b 0, b 1, ... , b m are m+1 guard carriers values specified by GuardCarrierValue.

The actual guard carrier values of kth OFDM symbol are p k × b 0, p k × b 1, ... , p k

× b m.

These guard carrier subcarriers values are multiplexed into the OFDM symbol
according to GuardCarrierPosition.
The MuxOFDMSym802 output includes all active data, pilot, and guard carriers5.
subcarriers indexed in the frequency domain:
[-(Carriers )/2, -(Carriers )/2 + 1, ... , -1, 1, ... , (Carriers + 1)/2 -1, (Carriers +
1)/2]
LoadIFFTBuff802 loads these output signals from MuxOFDMSym802 into the IFFT
buffer and inserts zeros into the NULL and DC subcarriers. IFFT Input and Output
(802.11a Specification) illustrates the 802.11a IFFT input and output. An OFDM
symbol is input in the frequency domain after LoadIFFTBuff802; an OFDM symbol is
output in the time domain after IFFT.
 

 IFFT Input and Output (802.11a Specification)

 

 References
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 PAM_Demapper Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PAM_Demapper
(algorithm)

PAM
Demapper/Slicer

 PAM_Demapper (Pam Demapper)

Description: PAM Demapper/Slicer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: PAM Demapper Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

NumBits Number of bits 4  Integer NO [1:∞)

BitOrder Bit order: LSB first, MSB
first

MSB
first

 Enumeration YES  

LowLevel Lowest level -1  Float YES (-∞:∞)

HighLevel Highest level 1  Float YES (LowLevel:∞)

 Input Ports

Port Name Description Signal Type Optional

1 Input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 Bits output bit
sequence

boolean NO

3 Amplitude closest PAM symbol real NO

 Notes/Equations
The PAM_Demapper model implements a Pulse Amplitude Modulation demapper.1.
At every execution of the model, 1 sample is read from the input, NumBits samples2.
are written to the Bits output, and 1 sample is written to the Amplitude output.
The demapping algorithm first finds which of the output levels of the corresponding3.
PAM mapper is the closest to the input signal level, that is, find the i that minimizes |
Input - L i|, where

Let j be that value of i. The integer j is converted to its binary representation in
NumBits bits and these bit values are written to the Bits output (the BitOrder
parameter defines whether the first bit written is the LSB or MSB of this binary
representation). The level L j is written to the Amplitude output.

See also: PAM_Mapper (algorithm)4.
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 PAM_Mapper Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PAM_Mapper
(algorithm)

PAM Mapper

 PAM_Mapper (PAM Mapper)

Description: PAM Mapper
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: PAM Mapper Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

NumBits Number of bits 4  Integer NO [1:∞)

BitOrder Bit order: LSB first, MSB
first

MSB
first

 Enumeration YES  

LowLevel Lowest level -1  Float YES (-∞:∞)

HighLevel Highest level 1  Float YES (LowLevel:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input bits boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 output output PAM symbol real NO

 Notes/Equations
The PAM_Mapper model implements a Pulse Amplitude Modulation mapper.1.
At every execution of the model, NumBits samples (bits) are read from the input and2.
mapped into a level between LowLevel and HighLevel, which is then written to the
output.
The mapping algorithm first converts the NumBits bits read from the input (a 0 input3.
value is considered to be a 0 bit; any other value is considered to be a 1 bit) into the
equivalent integer representation (the BitOrder parameter defines whether the first
bit read is to be considered as LSB or MSB in this bit to integer conversion). Let this
integer be i (the range of values i can have is 0 to 2 NumBits − 1). Then the output
level is given by

See also: PAM_Demapper (algorithm)4.
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 Scrambler Part
Categories: Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Scrambler
(algorithm)

Bit Sequence
Scrambler

 Scrambler (Bit Sequence Scrambler)

Description: Bit Sequence Scrambler
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Scrambler Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Polynomial Generator polynomial for the shift register - decimal,
octal, or hex integer

147457  Integer NO

ShiftReg Initial state of the shift register - decimal, octal, or hex
integer

1  Integer NO

 Input Ports

Port Name Description Signal Type Optional

1 input input bit sequence (zero or
nonzero)

boolean NO

 Output Ports

Port Name Description Signal Type Optional

2 output output bit sequence (zero or
one)

boolean NO

 Notes/Equations

This component scrambles the input bit sequence using a feedback shift register, as1.
shown in Feedback Shift Register. The taps of the feedback shift register are given by
the Polynomial parameter, which should be a positive integer. The nth bit of this
integer indicates whether the nth tap of the delay line is fed back. The low-order bit
is called the 0th bit, and must be set. The next low-order bit indicates whether the
output of the first delay should be fed back, and so on. The default Polynomial is an
octal number defining the V.22bis scrambler.
In scramblers based on feedback shift registers, all the bits to be fed back are2.
exclusive-ORed together (their parity is calculated), and the result is exclusive-ORed
with the input bit. This result is produced at the output and shifted into the delay
line. With proper choice of polynomial, the resulting output appears highly random
even if the input is highly non-random (for example, all 0s or all 1s).  

 Feedback Shift Register

If the polynomial is a primitive polynomial, then the feedback shift register is a so-3.
called maximal length feedback shift register. This means that with a constant input,
the output will be sequence with period 2N -1 where N is the order of the polynomial
(the length of the shift register). This is the longest possible sequence. Moreover,
within this period the sequence will appear to be white, in that a calculated
autocorrelation will be very nearly an impulse. Therefore, the scrambler with a
constant input can be very effectively used to generate a pseudo-random bit
sequence.
The maximal-length feedback shift register with constant input will pass through 2N -
1 states before returning to a state it has been in before. This is one short of the 2N
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states that a register with N bits can take on. This one missing state, in fact, is a
lock-up state, in that if the input is an appropriate constant, the scrambler will cease
to produce random-looking output, and will output a constant. For example, if the
input is all zeros, and the initial state of the scrambler is zero, then the outputs will
be all zero, hardly random. This is easily avoided by initializing the scrambler to some
non-0 state. That is why the default value for the ShiftReg parameter is set to 1.
The Polynomial parameter must be carefully chosen. It must represent a primitive4.
polynomial, which is one that cannot be factored into two (nontrivial) polynomials
with binary coefficients. For details, refer to [1].
The table below lists primitive polynomials (expressed as octal numbers so that these5.
are easily translated into taps on shift register); these will result in maximal-length
pseudo-random sequences if the input is constant and lockup is avoided.
Order Polynomial Order Polynomial Order Polynomial

  11 04005 21 010000005

2 07 12 010123 22 020000003

3 013 13 020033 23 040000041

4 023 14 042103 24 0100000207

5 045 15 0100003 25 0200000011

6 0103 16 0210013 26 0400000107

7 0211 17 0400011 27 01000000047

8 0435 18 01000201 28 02000000011

9 01021 19 02000047 29 04000000005

10 02011 20 04000011 30 010040000007

The leading 0 in the polynomials indicates an octal number. Note also that reversing
the order of the bits in any of these numbers will also result in a primitive
polynomial. Therefore, the default value for the Polynomial parameter is 0440001 in
octal, or "100 100 000 000 000 001" in binary. Reversing these bits we get "100 000
000 000 001 001" in binary, or 0400011 in octal. This latter number is listed in the
table as the primitive polynomial of order 17. The order is the index of the highest-
order non-0 bit in the polynomial, where the low-order bit has index 0.
Because the polynomial and the feedback shift register are both implemented using
type int, the order of the polynomial is limited by the size of the int data type. For
simplicity and portability, the polynomial is also not allowed to be interpreted as a
negative integer, so the sign bit cannot be used. Therefore, if int is a 32-bit word,
then the highest order polynomial allowed is 30 (recall that indexing for the order
starts at 0, and we cannot use the sign bit). The primitive polynomials in the table
are up to order 30 because of 32-bit integer machines.
Both the Polynomial and ShiftReg parameters can be set to a decimal, octal, or hex
value. To enter an octal or hex value, prefix it with 0 or 0x, respectively. For
example, in order to use the primitive polynomial of order 11, set Polynomial to
04005, 0x805, or 2053.
See also, DeScrambler (algorithm).6.

 

 References

Lee and Messerschmitt, Digital Communication, Second Edition, Kluwer Academic1.
Publishers, 1994, pp. 595-603.
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 ViterbiDecoder Part
Categories: C++ Code Generation (algorithm), Communications (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ViterbiDecoder
(algorithm)

Viterbi Decoder for Convolutional
Code

 ViterbiDecoder (Viterbi Decoder for Convolutional
Code)

Description: Viterbi Decoder for Convolutional Code
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: ViterbiDecoder Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

CodingRate Coding rate: rate_1_2, rate_1_3,
rate_1_4, rate_1_5, rate_1_6, rate_1_7,
rate_1_8

rate_1_2  Enumeration NO

ConstraintLength Constraint length 7  Integer NO

Polynomial Generator polynomial [91, 121]  Integer
array

NO

ZeroTail Zero tail used to convert convolutional
code to block code: NO, YES

NO  Enumeration NO

BitSequenceLength Length of bit squence not including tail
bits

88  Integer NO

MaxSurvivorLength Maximum length of survivor in bits 35  Integer NO

Polarity Mapping mode from NRZ to logic signal:
Negative to logic 1, Negative to logic 0

Negative to
logic 1

 Enumeration NO

InitialState Initial state of convolutional encoder:
Zero state, Non-zero state

Zero state  Enumeration NO

IgnoreNumber Number of data points to be ignored 0  Integer NO

 Input Ports

Port Name Signal Type Optional

1 In real NO

 Output Ports

Port Name Signal Type Optional

2 Out boolean NO

 Notes/Equations

The ViterbiDecoder model is used for convolutionally decoding the input information1.
sequence with a Viterbi algorithm.
If ZeroTail = NO, this model reads (1/R) samples from input In and writes 1 sample2.
to output Out. If ZeroTail = YES, this model reads (N + K − 1)/R samples from input
In and writes (N + K − 1) samples to output Out. R = 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, or
1/8 when CodingRate = rate_1_2, rate_1_3, rate_1_4, rate_1_5, rate_1_6,
rate_1_7, or rate_1_8 respectively.
For example, the CDMA access channel CC(3, 1, 9) is defined with convolutional code3.
rate R = 1/3 and K = 9. When ZeroTail = YES and N = 88, then this model reads 288
samples from input In and writes 96 samples to output Out.
Generally, there are two ways to implement convolutional code in communications4.
system: code a semi-infinite bit sequence length where the initial encoder state could
be zero- or non-zero with any final state; or, code block-by-block by appending zero
tails after bit blocks so that the initial and the final encoder states are both zero. The
ZeroTail parameter specifies this implementation; if ZeroTail = YES, then zero tails
must be appended before input to this component.
ViterbiDecoder supports the 1/ n coding rate only. Convolutional codes with k/ n ( k5.
>1) are not supported by this component because: the coding and decoding will be
more complex (this is also the reason why convolutional codes with a k/n (k >1)
coding rate are seldom used in real communication systems); and, even
convolutional codes with a k/ n (k >1) coding rate are used that are typically
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implemented by puncturing the convolutional code with a 1/ n coding rate.
Polynomial is the convolutional code generator function. The generator matrix for a6.
convolutional code is generally semi-infinite because the input sequence is semi-
infinite. As an alternative to specifying the generator matrix, a functionally equivalent
representation is used in which a set of n vectors is specified, one vector for each of
the n modulo-2 adder. 1 in the ith position of the vector indicates that the
corresponding stage in the shift register is connected to the modulo-2 adder; 0 in a
given position indicates that no connection exists between that stage and the
modulo-2 adder.
For example, consider the binary convolutional encoder with constraint length K = 7,
k = 1, and n = 2, illustrated in Convolutional Code CC(2,1,7). The connection for y0
is (1, 0, 1, 1, 0, 1, 1) from Outputs to Input, while the connection for y1 is (1, 1, 1,
1, 1, 0, 1). Generators for this code are conveniently given in octal form as (0133,
0175). So, when k=1, n generators (each of dimension K) are required to specify the
encoder.  

 Convolutional Code CC(2,1,7)

ZeroTail is used to specify the encoder input sequence character. If ZeroTail = YES,7.
the encoder input sequence is divided into blocks; block length is N . After each
block, K−1 zeros are appended as tail bits. The total block length of the encoder is (N
+ K − 1), referring to Tail bits removal for ZeroTail = YES. In the decoder, known
information can be used to obtain better performance.  

 Tail bits removal for ZeroTail = YES

BitSequenceLength (valid only when ZeroTail = YES) is used to specify the8.
information bit length, which indicates the length of uncoded bits. This parameter can
be set to the same value in the encoder and the decoder.
MaxSurvivorLength is the maximum length of the survivor that is stored in memory.9.
The delay in decoding a long information sequence that has been convolutionally
encoded is usually too long for most practical applications; moreover, memory
required to store the entire length of surviving sequences is large and expensive. A
solution for this is to modify the Viterbi algorithm in such a way that results in a fixed
decoding delay without significantly affecting the optimal performance of the
algorithm.
The modification is to retain at any given time t only the most recent δ decoded
informations bits in each surviving sequence. As each new information bit is received,
a final decision is made on the bit received δ branches back in the trellis, by
comparing the metrics in the surviving sequences and determining in favor of the bit
in the sequence having the largest metric. If the δ chosen is sufficiently large, all
surviving sequences will contain the identical decoded bit  δ branches back in time.
That is, with high probability, all surviving sequences at time t stem from the same
one as t−. Experimental simulation has determined that a delay δ ≥ 5 K results in a
negligible degradation in the performance relative to the optimum Viterbi algorithm.
Polarity is used to specify the mapping mode from bit (0, 1) to the NRZ signal level.10.
Generally, bit 0 is mapped to level 1 and bit 1 is mapped level −1. An alternative is
to map bit 0 to level −1 and bit 1 to level 1.
InitialState is used to specify the coded sequence character. If the initial state of11.
encoder is zero-state, the known information can be used to obtain better
performance. If the initial state is not known to be zero, InitialState must be set to a
non-zero state.
IgnoreNumber is used to specify how much data will be ignored by this component.12.
Delays in communications systems can be caused by devices or transmission. And,
the delay may be inserted between the encoder and decoder in the form of
meaningless data, so the information must be set in IgnoreNumber.

If ZeroTail = YES, the value of IgnoreNumber is n  × (N + K − 1)/ R (n is an
integer and n ≥ 0), and no extra delay will be introduced because it is assumed
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the sequence is frame synchronized before input to ViterbiDecoder.
If ZeroTail = NO, the delay is an integer number n ; this means the symbol
synchronization is achieved before ViterbiDecoder. If n / R is also an integer,
then the delay of output bit sequence will be n / R bits. Otherwise, the delay will
be the minimum integer larger than n / R.
Input sequence requirements are:
If ZeroTail = YES
The input sequence must be frame synchronized; that is, IgnoreNumber must
be n  ×  N / R (n is an integer and n ≥ 0) and the first valid data must be the
first symbol of the first codeword in that frame.
The input sequence must be encoded from blocks, each having K−1 zero tails so
that the initial state and final state are all zero-state.
If ZeroTail = NO
The input sequence must be bit synchronized; that is, the first valid data must
be the first symbol of a codeword.
If InitialState is set to Zero state, the first valid symbol must be encoded with
zero initial state.

The Viterbi algorithm is an optimal method of decoding convolutional codes. Optimal13.
decoding decisions cannot be made on a symbol-by-symbol basis; instead, the entire
received sequence must be compared with all possible transmitted sequences. The
number of possible transmitted sequences increases exponentially with time, so an
efficient method of comparing sequences is necessary.
The Viterbi algorithm is computationally efficient, but its complexity increases
exponentially with the constraint length of the code. The Viterbi decoder measures
how similar the received sequence is to a transmitted sequence by calculating a
number called path metric (path metric of a sequence is calculated by adding
numbers known as symbol metric, which is a measure of how close a received
symbol is to each of the possible transmitted symbols). The transmitted sequence
corresponding to the smallest path metric is declared to be the most likely sequence.
The Viterbi algorithm for a CC(n, k, K) code is described in the following paragraphs.
Branch Metric Calculation
The branch metric m (a)

j , at the J th instant of the α path through the trellis is

defined as the logarithm of the joint probability of the received n-bit symbol r j 1, r j

2 ... , r jn conditioned on the estimated transmitted n-bit symbol c j 1 (a) , c j 2 (a) ...

, c jn
(a) for the α path. That is,

If Rake receiver is regarded as a part of the channel, for the Viterbi decoder the
channel can be considered to be an AWGN channel. Therefore,

Path Metric Calculation
The path metric M (a) for the α path at the J th instant is the sum of the branch
metrics belonging to the α path from the first instant to the J th instant. Therefore,

Information Sequence Update
There are 2 k merging paths at each node in the trellis and the decoder selects from
paths α1, α2, ... , α2k the one having the largest metric, namely:

This path is known as the survivor.
Decoder Output
When the two survivors have been determined at the J th instant, the decoder
outputs from memory the ( J-L )th information symbol survivor with the largest
metric.
ViterbiDecoder Component Validation14.
BER Measurements lists BER measurements for a rate 1/2 code (g 0 = 171, g 1 =

133) and a memoryless additive white Gaussian channel. Simulations were made
with hard decision decoding (binary quantization) and soft decision decoding (no
quantization). Simulation results are listed along with results published in
QUALCOMM Technical Data Sheet Q0256; note that the published data and
simulation results agree.
As can be seen from this table, there is a substantial BER performance improvement
when this model is used with soft decision decoding. The difference between the two
decoding processes is whether the input to this model is a binary signal (NRZ with -1
and 1 levels) or is an analog signal (the raw NRZ signal with noise and intersymbol
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interference included). Where possible, use this model with an input analog signal
with no binary decision made before this model. By providing the raw analog signal
to the input of this model the model can then perform the soft decision decoding that
results in superior BER performance.
 

Eb/No(dB) Hard Decision Soft Decision

Simulated BER QUALCOMM BER Simulated BER QUALCOMM BER (3 bits)

3.0 3.62e-04 8.00e-04

3.5 7.56e-05 2.00e-04

4.0 5.01e-03 6.50e-03 1.11e-05 3.50e-05

4.5 1.79e-03 1.80e-03 2.12e-06 7.00e-06

5.0 5.71e-04 5.50e-04

5.5 1.25e-04 9.00e-05

6.0 2.81e-05 4.00e-05

 See Also:

ConvolutionalCoder (algorithm)

 

 References
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 ADSCosimBlock Part
 

Categories: Cosimulation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

ADSCosimBlock (algorithm)

ADSCosimBlockCx (algorithm)

ADSCosimBlockEnv
(algorithm)

 ADSCosimBlock

Description:
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: ADSCosimBlock Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

InputBlockSize Array of numbers of input samples per port.
The receiving end should set the same value.

[1]  None NO

OutputBlockSize Array of numbers of output samples per port.
The sending end should set the same value.

[1]  None NO

InputID Identification for shared memory. The
receiving end should set the same ID.

SystemVueToADS  Text NO

OutputID Identification for shared memory. The sending
end should set the same ID.

ADSToSystemVue  Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple real NO

 Output Ports

Port Name Signal Type Optional

2 output multiple real NO

 Notes/Equations

ADSCosimBlock performs SystemVue-ADS cosimulation by transferring double-type1.
data samples between this model and the corresponding cosimulation blocks in ADS
through shared memory.
This model consumes InputBlockSize numbers of samples from input ports and2.
produces OutputBlockSize numbers of samples to output ports in every execution.
InputBlockSize is an array parameter specifying numbers of samples to be3.
consumed for each of the input ports.
OutputBlockSize is an array parameter specifying numbers of samples to be4.
produced to each of the output ports.
InputID specifies the shared memory identifier for transferring samples from the5.
input port to the corresponding block SVCosimSourceDbl in ADS.
outputID specifies the shared memory identifier for transferring samples from the6.
corresponding block SVCosimSinkDbl in ADS to the output port.
The input data samples are transferred to the corresponding ADS block7.
SVCosimSourceDbl using shared memory. The InputBlockSize parameter in
ADSCosimBlock and the BlockSize parameter in ADS SVCosimSourceDbl should be
set to the same value. The InputID parameter in ADSCosimBlock and the
SVSenderID parameter in ADS SVCosimSourceDbl should be set to the same
identifier string.
The output data samples are transferred from the corresponding ADS block8.
SVCosimSinkDbl using shared memory. The OutputBlockSize parameter in
ADSCosimBlock and the BlockSize parameter in ADS SVCosimSinkDbl should be set
to the same value. The OutputID parameter in ADSCosimBlock and the
SVReceiverID parameter in ADS SVCosimSinkDbl should be set to the same
identifier string.
The cosimulation library for ADS2009U1 is provided in9.
\Examples\SV_ADS_Link\ADS2009U1\adsptolemy under SystemVue installation
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directory. To load the cosimulation library in ADS, set ADSPTOLEMY_MODEL_PATH
environment variable to "adsptolemy" directory (note that the path cannot contain
any space). After starting ADS, the cosimulation blocks can be found in "SystemVue
Cosimulation" category. For more details about custom models in ADS, please refer
to
http://edocs.soco.agilent.com/display/ads2009U1/Building+Signal+Processing+Models
.

SystemVue-ADS cosimulation example workspaces can be found in10.
\Examples\SV_ADS_Link under SystemVue installation directory.
When using this model for SystemVue-ADS cosimulation, both SystemVue and ADS11.
workspaces should be opened and simulated on the same machine.
Use ADSCosimBlockCx (algorithm) for complex data type cosimulation. Use12.
ADSCosimBlockEnv (algorithm) for timed envelope data type cosimulation.
Please refer to application note13.
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-
in-1+example+LTE+HD+WPAN+ZigBee  for details in SystemVue-ADS cosimulation
examples. The application note also provides template projects for creating custom
cosimulation models.

The current implementation does not provide time-out mechanism. If the communication cannot be
established during simulation, you will have to terminate SystemVue process.

 ADSCosimBlockCx

Description:
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: ADSCosimBlock Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

InputBlockSize Array of numbers of input samples per port.
The receiving end should set the same value.

[1]  None NO

OutputBlockSize Array of numbers of output samples per port.
The sending end should set the same value.

[1]  None NO

InputID Identification for shared memory. The
receiving end should set the same ID.

SystemVueToADS  Text NO

OutputID Identification for shared memory. The sending
end should set the same ID.

ADSToSystemVue  Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple complex NO

 Output Ports

Port Name Signal Type Optional

2 output multiple complex NO

 Notes/Equations

ADSCosimBlockCx performs SystemVue-ADS cosimulation by transferring complex-1.
type data samples between this model and the corresponding cosimulation blocks in
ADS through shared memory.
This model consumes InputBlockSize numbers of samples from input ports and2.
produces OutputBlockSize numbers of samples to output ports in every execution.
The corresponding cosimulation blocks in ADS are SVCosimSourceCx and3.
SVCosimSinkCx, which are provided in
\Examples\SV_ADS_Link\ADS2009U1\adsptolemy under SystemVue installation
directory.
Please refer to ADSCosimBlock (algorithm) for detailed description and parameter4.
specification.

 ADSCosimBlockEnv

Description:
Domain: Timed

http://edocs.soco.agilent.com/display/ads2009U1/Building+Signal+Processing+Models
http://edocs.soco.agilent.com/display/ads2009U1/Building+Signal+Processing+Models
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-in-1+example+LTE+HD+WPAN+ZigBee
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-in-1+example+LTE+HD+WPAN+ZigBee
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-in-1+example+LTE+HD+WPAN+ZigBee
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C++ Code Generation Support: NO
Associated Parts: ADSCosimBlock Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

OutputFc Array of characterization frequency of output
envelope signal. The values should obtained
from the sending co-simulation process.

0  None NO

InputBlockSize Array of numbers of input samples per port. The
receiving end should set the same value.

[1]  None NO

OutputBlockSize Array of numbers of output samples per port.
The sending end should set the same value.

[1]  None NO

InputID Identification for shared memory. The receiving
end should set the same ID.

SystemVueToADS  Text NO

OutputID Identification for shared memory. The sending
end should set the same ID.

ADSToSystemVue  Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple
envelope

NO

 Output Ports

Port Name Signal Type Optional

2 output multiple
envelope

NO

 Notes/Equations

ADSCosimBlockCx performs SystemVue-ADS cosimulation by transferring envelope-1.
type data samples between this model and the corresponding cosimulation blocks in
ADS through shared memory.
This model consumes InputBlockSize numbers of samples from input ports and2.
produces OutputBlockSize numbers of samples to output ports in every execution.
The corresponding cosimulation blocks in ADS are SVCosimSourceTimed and3.
SVCosimSinkTimed, which are provided in
\Examples\SV_ADS_Link\ADS2009U1\adsptolemy under SystemVue installation
directory.
OutputFc is an array parameter specifying characterization frequencies for each of4.
the output ports (output envelope signal). OutputFc should be set according to the
corresponding design in ADS.
Please refer to ADSCosimBlock (algorithm) for detailed description and parameter5.
specification.
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 ADSCosimSink Part
 

Categories: Cosimulation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

ADSCosimSink (algorithm)

ADSCosimSinkCx (algorithm)

ADSCosimSinkEnv
(algorithm)

 ADSCosimSink

Description:
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: ADSCosimSink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

InputBlockSize Array of numbers of input samples per port. The
receiving end should set the same value.

[1]  None NO

InputID Identification for shared memory. The receiving
end should set the same ID.

SystemVueToADS  Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple real NO

 Notes/Equations

ADSCosimSink performs SystemVue-ADS cosimulation by transferring double-type1.
data samples from this model to the corresponding cosimulation block in ADS
through shared memory.
This model consumes InputBlockSize numbers of samples from input ports in2.
every execution.
InputBlockSize is an array parameter specifying numbers of samples to be3.
consumed for each of the input ports.
InputID specifies the shared memory identifier for transferring samples from the4.
input port to the corresponding block SVCosimSourceDbl in ADS.
The input data samples are transferred to the corresponding ADS block5.
SVCosimSourceDbl using shared memory. The InputBlockSize parameter in
ADSCosimBlock and the BlockSize parameter in ADS SVCosimSourceDbl should be
set to the same value. The InputID parameter in ADSCosimBlock and the
SVSenderID parameter in ADS SVCosimSourceDbl should be set to the same
identifier string.
The cosimulation library for ADS2009U1 is provided in6.
\Examples\SV_ADS_Link\ADS2009U1\adsptolemy under SystemVue installation
directory. To load the cosimulation library in ADS, set ADSPTOLEMY_MODEL_PATH
environment variable to "adsptolemy" directory (note that the path cannot contain
any space). After starting ADS, the cosimulation blocks can be found in "SystemVue
Cosimulation" category. For more details about custom models in ADS, please refer
to
http://edocs.soco.agilent.com/display/ads2009U1/Building+Signal+Processing+Models
.

SystemVue-ADS cosimulation example workspaces can be found in7.
\Examples\SV_ADS_Link under SystemVue installation directory.
When using this model for SystemVue-ADS cosimulation, both SystemVue and ADS8.
workspaces should be opened and simulated on the same machine.
Use ADSCosimSinkCx (algorithm) for complex data type cosimulation. Use9.
ADSCosimSinkEnv (algorithm) for timed envelope data type cosimulation.
Please refer to application note10.
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-
in-1+example+LTE+HD+WPAN+ZigBee  for details in SystemVue-ADS cosimulation
examples. The application note also provides template projects for creating custom
cosimulation models.

http://edocs.soco.agilent.com/display/ads2009U1/Building+Signal+Processing+Models
http://edocs.soco.agilent.com/display/ads2009U1/Building+Signal+Processing+Models
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-in-1+example+LTE+HD+WPAN+ZigBee
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-in-1+example+LTE+HD+WPAN+ZigBee
http://edocs.soco.agilent.com/display/eesofkc/SystemVue+ADS+link+bidirectional+cosim+3-in-1+example+LTE+HD+WPAN+ZigBee
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The current implementation does not provide time-out mechanism. If the communication cannot be
established during simulation, you will have to terminate SystemVue process.

 ADSCosimSinkCx

Description:
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: ADSCosimSink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

InputBlockSize Array of numbers of input samples per port. The
receiving end should set the same value.

[1]  None NO

InputID Identification for shared memory. The receiving
end should set the same ID.

SystemVueToADS  Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple complex NO

 Notes/Equations

ADSCosimSinkCx performs SystemVue-ADS cosimulation by transferring complex-1.
type data samples from this model to the corresponding cosimulation block in ADS
through shared memory.
This model consumes InputBlockSize numbers of samples from input ports in2.
every execution.
The corresponding cosimulation block in ADS is SVCosimSourceCx, which is provided3.
in \Examples\SV_ADS_Link\ADS2009U1\adsptolemy under SystemVue installation
directory.
Please refer to ADSCosimSink (algorithm) for detailed description and parameter4.
specification.

 ADSCosimSinkEnv

Description:
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ADSCosimSink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

InputBlockSize Array of numbers of input samples per port. The
receiving end should set the same value.

[1]  None NO

InputID Identification for shared memory. The receiving
end should set the same ID.

SystemVueToADS  Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple
envelope

NO

 Notes/Equations

ADSCosimSinkEnv performs SystemVue-ADS cosimulation by transferring envelope-1.
type data samples from this model to the corresponding cosimulation block in ADS
through shared memory.
This model consumes InputBlockSize numbers of samples from input ports in2.
every execution.
The corresponding cosimulation block in ADS is SVCosimSourceTimed, which is3.
provided in \Examples\SV_ADS_Link\ADS2009U1\adsptolemy under SystemVue
installation directory.
Please refer to ADSCosimSink (algorithm) for detailed description and parameter4.
specification.
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 DynamicPack_M Part
Categories: Dynamic (algorithm), Math Matrix (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DynamicPack_M
(algorithm)

Pack variable numbers of samples into
matrices

 DynamicPack_M

Description: Pack variable numbers of samples into matrices
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DynamicPack M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Format Format of data to be packed into matrix:
ColumnMajor, RowMajor

ColumnMajor  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 input Input samples anytype NO

2 numRows Control signal for number of rows int YES

3 numColumns Control signal for number of columns int YES

 Output Ports

Port Name Description Signal Type Optional

4 output Output
matrix

anytype matrix NO

 Notes/Equations

DynamicPack_M packs variable numbers of input samples into output matrices based1.
on numRows and numColumns control signals.
A complete execution consists of two modes: control mode and operation mode.2.
In control mode, DynamicPack_M reads one sample from numRows and one sample3.
from numColumns, and the integer values specify number-of-rows and number-of-
columns respectively for the matrix to be packed in the operation mode.
In operation mode, DynamicPack_M reads number-of-rows * number-of-columns4.
number of samples from input, then packs them into number-of-rows by number-of-
columns output matrix in either column major or row major according to the Format
parameter.
If numRows is not connected, number-of-rows is default to be 1, which means a row5.
vector. If numColumns is not connected, number-of-columns is default to be 1, which
means a column vector. At least one of the control inputs (numRows, numColumns)
must be connected.
The integer value for number-of-rows or number-of-columns can be 0 or negative,6.
which results in an empty matrix.

See:
DynamicUnpack_M (algorithm)
Pack_M (algorithm)
Unpack_M (algorithm)
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 DynamicUnpack_M Part
Categories: Dynamic (algorithm), Math Matrix (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DynamicUnpack_M
(algorithm)

Unpack variable-size matrices into
samples

 DynamicUnpack_M

Description: Unpack variable-size matrices into samples
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DynamicUnpack M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Format Format of data to be packed into matrix:
ColumnMajor, RowMajor

ColumnMajor  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 input Input matrix anytype matrix NO

 Output Ports

Port Name Description Signal Type Optional

2 output Output samples anytype NO

3 numRows Number of rows int NO

4 numColumns Number of
columns

int NO

 Notes/Equations

DynamicUnpack_M unpacks variable-size input matrices into output samples.1.
A complete execution consists of two modes: control mode and operation mode.2.
In control mode, DynamicUnpack_M reads one matrix from input. Suppose the size of3.
the matrix is number-of-rows by number-of-columns.
In operation mode, DynamicUnpack_M unpacks the matrix into number-of-rows *4.
number-of-columns number of output samples in either column major or row major
according to the Format parameter. It also writes number-of-rows integer value to
numRows and writes number-of-columns integer value to numColumns.
If an input matrix is empty, DynamicUnpack_M will not generate any sample at5.
output, but still write 0 to numRows and 0 to numColumns.

See:
DynamicPack_M (algorithm)
Pack_M (algorithm)
Unpack_M (algorithm)
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 Filters
The Filters library contains various digital (discrete-time) filters for signal processing.
These filters are implemented as either digital FIR (finite impulse response) or digital IIR
(infinite impulse response) filters.

For details, please refer Common Filter Parameters (algorithm)

 Contents
Biquad Part (algorithm)
BiquadCascade Part (algorithm)
BlockAllPole Part (algorithm)
BlockFIR Part (algorithm)
Filter Part (algorithm)
FIR Part (algorithm)
Hilbert Part (algorithm)
IIR Part (algorithm)
OSF Part (algorithm)
PID Part (algorithm)
SData Part (algorithm)
SDomainIIR Part (algorithm)
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 BiquadCascade Part
Categories: C++ Code Generation (algorithm), Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BiquadCascade
(algorithm)

IIR Filter with Cascaded Biquad Sections

 BiquadCascade (IIR Filter with Cascaded Biquad
Sections)

Description: IIR Filter with Cascaded Biquad Sections
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: BiquadCascade Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Taps Sets of six biquad
coefficients.

[0.067455, 0.135, 0.067455, 1, -
1.143, 0.4128]

 Floating point
array

NO

 Input Ports

Port Name Description Signal Type Optional

1 input  real NO

 Output Ports

Port Name Description Signal
Type

Optional

2 output The outputs from each of the biquads in the cascade, starting with the
output from last.

multiple
real

NO

 Notes/Equations

BiquadCascade is a cascade of 2-pole, 2-zero digital IIR filter (a biquad). This IIR1.
filter has a Z-domain transfer function of

For every input, one filtered value is output.2.
Each biquad section is defined by six coefficients in order: N 0,i N 1,i N 2,i D 0,i D 1,i D3.

2,i .

The multi-output pin contains each of the outputs of the cascade, starting with the4.
output from the last.
The default is a single biquad Butterworth filter with a frequency cutoff at 0.1 of the5.
input rate.

See:
Biquad (algorithm)
IIR (algorithm)
IIR_Cx (algorithm)

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 Biquad Part
Categories: C++ Code Generation (algorithm), Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Biquad
(algorithm)

Biquad IIR
Filter

 Biquad (Biquad IIR Filter)

Description: Biquad IIR Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Biquad Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

D1 First-order denominator coefficient -1.143  Float YES

D2 Second-order denominator
coefficient

0.4128  Float YES

N0 Zeroth-order numerator coefficient 0.067455  Float YES

N1 First-order numerator coefficient 0.135  Float YES

N2 Second-order numerator coefficient 0.067455  Float YES

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

Biquad is a 2-pole, 2-zero digital IIR filter (a biquad). This IIR filter has a Z-domain1.
transfer function of  

For every input, one filtered value is output.2.
H(z) results in the following second order difference equation.3.

where
y(n) is the output for sample n
x(n) is the input for sample n
H(z) is a linear time invariant system and can be rearranged to yield difference4.
equation in direct form II as shown in Yield Difference Equation in Direct Form II.
Indeed, it is the minimum number of delay elements required to implement a system
with transfer function H(z). An implementation with the minimum number of delay
elements is also referred to as a canonic form implementation.  
The default is a Butterworth filter with a frequency cutoff at 0.1 of the input rate.5.

 Yield Difference Equation in Direct Form II

 

See:
BiquadCascade (algorithm)
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IIR (algorithm)
IIR_Cx (algorithm)

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 BlockAllPole Part
Categories: Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BlockAllPole
(algorithm)

All-Pole Filter for Data Blocks

 BlockAllPole (All-Pole Filter for Data Blocks)

Description: All-Pole Filter for Data Blocks
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: BlockAllPole Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSize Number of inputs that use each coefficient
set

128  Integer NO (0:∞)

Order Number of new coefficients to read each time 16  Integer NO (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 signalIn  real NO

2 coefs Coefficients of the denominator
polynomial

real NO

 Output Ports

Port Name Description Signal Type Optional

3 signalOut  real NO

 Notes/Equations

BlockAllPole implements an all-pole filter with coefficients that are periodically1.
updated from the outside.
For a BlockSize number of inputs, an Order number of coefficients are read and a2.
BlockSize number of filtered values are output.
The BlockSize parameter specifies how many input samples are processed using each3.
set of coefficients.
The Order parameter tells how many coefficients are expected.4.
The transfer function of the filter is5.

where d i are the externally specified coefficients and M is the value of the Order

parameter.

See:
IIR (algorithm)
IIR_Cx (algorithm)
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 BlockFIR Part
Categories: Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BlockFIR
(algorithm)

FIR Filter for Data Blocks

 BlockFIR (FIR Filter for Data Blocks)

Description: FIR Filter for Data Blocks
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: BlockFIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

BlockSize Number of inputs that use each
coefficient set

128  Integer NO (0:∞)

Order Number of new coefficients to
read each time

16  Integer NO (0:∞)

Decimation Decimation ratio 1  Integer NO (0:∞)

DecimationPhase Decimation phase 0  Integer NO [0:_D_ecimation-
1]

Interpolation Interpolation ratio 1  Integer NO (0:∞)

 Input Ports

Port Name Signal Type Optional

1 signalIn real NO

2 coefs real NO

 Output Ports

Port Name Signal Type Optional

3 signalOut real NO

{

 Notes/Equations

BlockFIR implements an FIR (algorithm) filter with coefficients that are periodically1.
updated from the outside.
For each set of Order number of coefficients, Decimation × BlockSize number of input2.
samples is processed and a Interpolation × Blocksize number of filtered values are
output.
BlockFIR efficiently implements sample rate changes. When the Decimation ratio is3.
≥1, the filter behaves as if it were followed by a DownSample (algorithm) part. When
the Interpolation ratio is set, the filter behaves as if it were preceded by an
UpSample (algorithm) part. The implementation is much more efficient, because a
polyphase structure is used internally, thereby avoiding unnecessary use of memory
and multiplications by 0. Arbitrary sample rate conversions by rational factors are
accomplished this way.
The DecimationPhase parameter is equivalent to the Phase parameter of the4.
DownSample (algorithm) part. When decimating, output samples are conceptually
discarded. The polyphase structure does not calculate the discarded samples. To
decimate by three, only one of every three outputs is selected. The DecimationPhase
parameter determines which of these is selected. If DecimationPhase is 0 (default),
the earliest outputs of the decimation block are decimated.
Avoid aliasing when designing a multi-rate filter. The filter sample rate is the product5.
of the Interpolation parameter and the input sample rate or equivalently the product
of the Decimation parameter and the output sample rate.

See:
FIR (algorithm)

 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.
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Digital Signal Processing, Academic Press, 1987.
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 Common Filter Parameters
This section introduces the definitions of some common filter parameters. Please note that
a filter model contains only a subset of the parameters listed below, and may have specific
parameters that are only described in its individual documentation. For the list of
parameters for a particular filter model, please refer to specific filter model documentation
(algorithm).

 List of Common Filter Parameters
The common Filter parameters are listed below:

Loss: The Loss parameter specifies the filter loss in dB.
FCenter: The FCenter parameter specifies the passband center frequency in Hz for a
bandpass filter or the stopband center frequency in Hz for a bandstop filter.
PassBandwidth: The PassBandwidth parameter specifies the passband bandwidth in
Hz for a bandpass filter or the difference between lower and upper passband edge
frequencies in Hz for a bandstop filter.
PassFreq: The PassFreq parameter specifies the passband edge frequency in Hz for
highpass and lowpass filters.
PassAtten: The PassAtten parameter specifies the attenuation in dB at the passband
edge frequencies. Suppose a filter has -1dB passband edge magnitude, then
PassAtten should be specified as 1.
PassRipple: The PassRipple parameter specifies the passband ripple in dB. Suppose
a filter requires -1dB passband ripple, then PassRipple should be specified as 1.
StopBandwidth: The StopBandwidth parameter specifies the stopband bandwidth in
Hz for a bandstop filter or the difference between lower and upper stopband edge
frequencies in Hz for a bandpass filter.
StopFreq: The StopFreq parameter specifies the stopband edge frequency in Hz for
highpass and lowpass filters.
StopAtten: The StopAtten parameter specifies the attenuation in dB at the stopband
edge frequencies. Suppose a filter requires -30dB stopband edge magnitude, then
StopAtten should be specified as 30.
StopRipple: The StopRipple parameter specifies the stopband ripple in dB. Suppose
a filter requires -30dB stopband ripple, then StopRipple should be specified as 30.
OrderType: The OrderType parameter is used to select the filter order option: User
Defined or Auto. When OrderType is User Defined, the Order parameter defines the
order of the lowpass prototype analog filter (see IIR Filter Design (users)). On the
other hand, when OrderType is Auto, the Order of the lowpass prototype analog filter
is automatically computed.
Order: For IIR filters, the Order parameter specifies the order of the lowpass
prototype analog filter (see IIR Filter Design (users)). For FIR filters, the Order
parameter specfies the filter order, which is equivalent to the number of filter
coefficients (filter length) minus one.
MaximumOrder: The MaximumOrder parameter specifies the maximum order in the
iterative filter design process. In such process, the filter design stops at the
MaximumOrder.
Transform: The Transform parameter specifies S domain to Z domain
transformation method for IIR filter design. The option can be either Bilinear
Transform or Impulse Invariance (see IIR Filter Design (users)).
UnderSampledModel: The UnderSampledModel parameter specifies the default
behavior when the sampling rate is too small to represent the filter. The default
behavior can be either Model As Allpass or Error Out. When the sampling rate is too
small to represent the filter, Model As Allpass simply passes the input signal to the
output without changing the signal. In contrast, the Error Out option issues error
message and stops simulation. This parameter is only used for simulation. The Filter
Designer (users) ignores this parameter.
Window: The Window parameter specifies the window function applied for FIR
filters. The possible window functions include Rectangular, Bartlett, Hann, Hamming,
Blackman, Flat Top, Generalized Cosine, Ready, and Kaiser (see Window Functions
(users)). An FIR filter model may only support a subset of window functions.
WindowParameter: When Window is Generalized Cosine, WindowParameter
specifies Generized Cosine coefficients [A B C D E ...] in as described in Generized
Cosine (users). When Window is Ready, WindowParameter specifies 

as described in Ready (users)
Interpolation: The Interpolation parameter specifies the interpolation factor for
Multirate Polyphase FIR Filter Implementation (users). If the Interpolation factor is
larger than 1, the input signal is up-sampled by the Interpolation factor with zero
value insertion before the filter.
Decimation: The Decimation parameter specifies the decimation factor for Multirate
Polyphase FIR Filter Implementation (users). If the Decimation factor is larger than 1,
the output signal is down-sampled by the Decimation factor with Decimation Phase
after the filter.
DecimationPhase: The DecimationPhase parameter specifies the decimation phase
for Multirate Polyphase FIR Filter Implementation (users).
InterpolationScaling: The InterpolationScaling parameter specifies whether the
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output samples should be multiplied by the Interpolation value when Interpolation
factor is larger than 1. The purpose of InterpolationScaling is to adjust the magnitude
of the output signal to compensate the zero insertion during up-sampling.
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 Filter Part
The SystemVue Filter part incorporates various filter models in terms of different
frequency responses (e.g., lowpass, highpass, bandpass, bandstop, custom, etc.), IIR
design methods (e.g., Bessel, Butterworth, ChebyshevI, ChebyshevII, Elliptic,
Synchronously Tuned, S-domain poles-zeros, etc.), and FIR design methods (e.g., Parks-
McClellan, Raised Cosine, Gaussian, Window, custom frequency response, etc.).

 Filter Designer and Filter Part

SystemVue integrates the Filter Designer (Filter Design Tool) (users) with the Filter Part
(algorithm). To launch the Filter Designer (users), place a Filter part on a schematic and
double click it.
The Filter Design Tool, the Filter part, and most of the filter models associated with the
Filter part are tightly integrated such that:

A specific Response and Shape (Design Method) selection in Filter Designer (users)1.
corresponds to a specific filter model associated with the Filter part.

If Response is Lowpass (LPF), Highpass (HPF), Bandpass (BPF), or Bandstop (BSF), the
corresponding filter model is Response_Shape. For example, Lowpass Butterworth corresponds to
LPF_Butterworth (algorithm), and Bandpass Parks-McClellan corresponds to BPF_ParksMcClellan
(algorithm). Lowpass Half-Band Parks-McClellan is a specialized lowpass filter that maps to
HBLPF_ParksMcClellan (algorithm).

Under "Custom" Response, IIR "H(z) Coefficients (Z-Domain)" maps to ZDomainIIR (algorithm), IIR
"H(s) Poles and Zeros (S-Domain)" maps to SDomainSystem (algorithm), FIR "Taps" maps to
ZDomainFIR (algorithm), and FIR "Frequency Response" maps to CustomFIR (algorithm).

The parameters that appear in the Filter Designer (users) are the parameters of the2.
chosen filter model.
After closing the Filter Designer (users), the last chosen filter model will be3.
instantiated in the Filter part with the proper symbol.
All the parameter values of the instantiated filter model remain the same as they4.
were specified in the Filter Designer (users).

For the filter models integrated with the Filter Designer, "double-click" the part opens the Filter Designer.
To open the normal Part Properties (users) window, right-click on the part and select "Properties...".

 Multirate Polyphase Implementation for FIR Filter Models

Most of the SystemVue FIR filter models support multirate capabilities (i.e., interpolation,
decimation, and decimation phase) with efficient polyphase implementation. Please refer
to Multirate Polyphase FIR Filter Implementation (users) for details.

 Designing FIR Coefficients for Fixed-Point FIR Model

To design an FIR filter in Filter Designer (users) and set the coefficients to the fixed-point
FIR model FIR_Fxp (hardware), this process can be done as follows:

Design an FIR filter in Filter Designer (users).1.
Switch to the "Coefficients" tab, click "Convert to Z-Domain Digital Model" button to2.
convert the designed coefficients into ZDomainFIR (algorithm), and close Filter
Designer Window.
Right click on the Filter part to open the Part Properties window, then switch the3.
model from ZDomainFIR (algorithm) to FIR_Fxp (hardware). The pre-designed
coefficients will remain the same in FIR_Fxp (hardware).

 Filtering Envelope Signal

Most filter models associated with the Filter part support Envelope Signal (sim) (black
pin). Please refer to Filtering Envelope Signal (sim) for technical details about how
SystemVue filter models filter real and analytic signal.

 Associated Models

The following table lists the models that are available/associated with this part. To view
detailed information on a model, please select the appropriate link from the table. This
information will include, but is not limited to: description, parameters, inputs, outputs,
notes and equations.
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Model Description

BPF Bessel (algorithm) Bandpass Bessel Filter

BPF Butterworth (algorithm) Bandpass Butterworth Filter

BPF ChebyshevI (algorithm) Bandpass Chebyshev I Filter

BPF ChebyshevII (algorithm) Bandpass Chebyshev II Filter

BPF Elliptic (algorithm) Bandpass Elliptic Filter

BPF Gaussian (algorithm) Gaussian bandpass filter

BPF ParksMcClellan (algorithm) Bandpass linear phase FIR filter based on Parks-McClellan design method

BPF RaisedCosine (algorithm) Raised cosine bandpass filter

BPF SynchronouslyTuned
(algorithm)

Bandpass SynchronouslyTuned Filter

BPF Window (algorithm) Bandpass window-based linear phase FIR filter

BSF Bessel (algorithm) Bandstop Bessel Filter

BSF Butterworth (algorithm) Bandstop Butterworth Filter

BSF ChebyshevI (algorithm) Bandstop Chebyshev I Filter

BSF ChebyshevII (algorithm) Bandstop Chebyshev II Filter

BSF Elliptic (algorithm) Bandstop Elliptic Filter

BSF ParksMcClellan (algorithm) Bandstop linear phase FIR filter based on Parks-McClellan design method

BSF SynchronouslyTuned
(algorithm)

Bandstop SynchronouslyTuned Filter

BSF Window (algorithm) Bandstop window-based linear phase FIR filter

CustomFIR (algorithm) Custom FIR filter

HBLPF ParksMcClellan (algorithm) Half-Band Lowpass linear phase FIR filter based on Parks-McClellan design
method

HPF Bessel (algorithm) Highpass Bessel Filter

HPF Butterworth (algorithm) Highpass Butterworth Filter

HPF ChebyshevI (algorithm) Highpass Chebyshev I Filter

HPF ChebyshevII (algorithm) Highpass Chebyshev II Filter

HPF Elliptic (algorithm) Highpass Elliptic Filter

HPF ParksMcClellan (algorithm) Highpass linear phase FIR filter based on Parks-McClellan design method

HPF SynchronouslyTuned
(algorithm)

Highpass Synchronously Tuned Filter

HPF Window (algorithm) Highpass window-based linear phase FIR filter

LPF Bessel (algorithm) Lowpass Bessel Filter

LPF Butterworth (algorithm) Lowpass Butterworth Filter

LPF ChebyshevI (algorithm) Lowpass Chebyshev I Filter

LPF ChebyshevII (algorithm) Lowpass Chebyshev II Filter

LPF Edge (algorithm) EDGE pulse shaping lowpass filter

LPF Elliptic (algorithm) Lowpass Elliptic Filter

LPF Gaussian (algorithm) Gaussian lowpass filter

LPF ParksMcClellan (algorithm) Lowpass linear phase FIR filter based on Parks-McClellan design method

LPF RaisedCosine (algorithm) Raised cosine lowpass filter

LPF SynchronouslyTuned
(algorithm)

Lowpass Synchronously Tuned Filter

LPF Window (algorithm) Lowpass window-based linear phase FIR filter

SDomainSystem (algorithm) S domain system

ZDomainFIR (algorithm) Z domain FIR filter

ZDomainIIR (algorithm) Z domain IIR filter

FIR_Fxp (hardware) Fixed Point Finite Impulse Response Filter

 BPF_Bessel (Bandpass Bessel Filter)

Description: Bandpass Bessel Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

PassAtten Passband edge
attenuation in dB

3  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth
(required only when
OrderType = Auto)

125e3 Hz Float NO (PassBandwidth:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

20  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order
for the lowpass
prototype analog
filter

5  Integer NO [0:30]

Transform S to Z domain
transformation
method: Bilinear,
Impulse Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior
when sampling rate
is too small to
represent the filter.
This parameter is
only used for
simulation not for
filter design tool:
Model As Allpass,
Error Out

Model
As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_Bessel implements a Bandpass Bessel IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BPF_Butterworth (Bandpass Butterworth Filter)

Description: Bandpass Butterworth Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

PassAtten Passband edge
attenuation in dB

3  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth
(required only when
OrderType = Auto)

100e3 Hz Float NO (PassBandwidth:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order
for the lowpass
prototype analog
filter

5  Integer NO [0:30]

Transform S to Z domain
transformation
method: Bilinear,
Impulse Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior
when sampling rate
is too small to
represent the filter.
This parameter is
only used for
simulation not for
filter design tool:
Model As Allpass,
Error Out

Model
As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_Butterworth implements Bandpass Butterworth IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BPF_ChebyshevI (Bandpass ChebyshevI Filter)

Description: Bandpass Chebyshev I Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

PassRipple Passband ripple in
dB

1  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth
(required only when
OrderType = Auto)

100e3 Hz Float NO (PassBandwidth:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order
for the lowpass
prototype analog
filter

5  Integer NO [0:30]

Transform S to Z domain
transformation
method: Bilinear,
Impulse Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior
when sampling rate
is too small to
represent the filter.
This parameter is
only used for
simulation not for
filter design tool:
Model As Allpass,
Error Out

Model
As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_ChebyshevI implements a Bandpass Chebyshev I IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BPF_ChebyshevII (Bandpass ChebyshevII Filter)

Description: Bandpass Chebyshev II Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth
(required only
when OrderType =
Auto)

50e3 Hz Float NO (0:FCenter*2)

PassAtten Passband edge
attenuation in dB
(required only
when OrderType =
Auto)

3  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth

100e3 Hz Float NO (PassBandwidth:FCenter*2)

StopRipple Stopband ripple in
dB

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order
for the lowpass
prototype analog
filter

5  Integer NO [0:30]

UnderSampledModel Default behavior
when sampling rate
is too small to
represent the filter.
This parameter is
only used for
simulation not for
filter design tool:
Model As Allpass,
Error Out

Model
As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

BPF_ChebyshevII implements a Bandpass Chebyshev II IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BPF_Elliptic (Bandpass Elliptic Filter)

Description: Bandpass Elliptic Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

PassRipple Passband ripple in
dB

1  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth

100e3 Hz Float NO (PassBandwidth:FCenter*2)

StopRipple Stopband ripple in
dB (required only
when OrderType =
Auto)

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order
for the lowpass
prototype analog
filter

5  Integer NO [0:30]

UnderSampledModel Default behavior
when sampling rate
is too small to
represent the filter.
This parameter is
only used for
simulation not for
filter design tool:
Model As Allpass,
Error Out

Model
As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_Elliptic implements a Bandpass Elliptic IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BPF_Gaussian (Bandpass Gaussian Filter)

Description: Gaussian bandpass filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 50e3 Hz Float NO (0:FCenter/2)

PassAtten Passband edge attenuation
in dB

3  Float NO [0.01:3.0103]

LengthOption Filter length option (Auto:
1.2 / 3db frequency): Auto,
Number of Taps, Impulse
Time Duration

Auto  Enumeration NO  

Length Filter length (based on
LengthOption, specify
number of taps, or impulse
time duration; delay =
length/2)

0  Float NO [0:∞)

Interpolation Interpolation (up sampling)
factor

1  Integer NO [1:∞)

Decimation Decimation (down sampling)
factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down sampling)
phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_Gaussian implements a Bandpass Gaussian FIR filter.1.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.
The delay introduced by the filter is approximately equal to:5.

 BPF_ParksMcClellan (Bandpass ParksMcClellan
Filter)

Description: Bandpass linear phase FIR filter based on Parks-McClellan design method
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO [0:∞)

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

PassRipple Passband ripple in
dB

1  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth

100e3 Hz Float NO (PassBandwidth:FCenter*2)

StopRipple Stopband ripple in
dB

30  Float NO [3.0103:∞]

MaximumOrder Maximum filter
order for Parks-
McClellan filter
design

300  Integer NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-1]

InterpolationScaling Gain adjustment
for interpolation:
NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_ParksMcClellan implements a linear-phase Bandpass FIR filter using the Parks-1.
McClellan design method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 BPF_RaisedCosine (Bandpass Raised Cosine Filter)

Description: Raised cosine bandpass filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

FCenter Center frequency 150e3 Hz Float NO (0:∞)

SymbolRate Symbol rate (passband
bandwidth = SymbolRate)

100e3 Hz Float NO (0:FCenter/2)

RollOff Roll-off factor (between 0
and 1)

0.5  Float NO [0:1]

SquareRoot Square root option: NO,
YES

NO  Enumeration NO  

PulseEqualization Pulse equalization option:
NO, YES

NO  Enumeration NO  

LengthOption Filter length option (Auto:
8 * symbol period): Auto,
Number of Taps, Number
of Symbols, Impulse Time
Duration

Auto  Enumeration NO  

Length Filter length (length =
2*delay) (based on
LengthOption, specify
number of taps, number
of symbols, or impulse
time duration)

0  Float NO [0:∞)

Window Window function:
Rectangular, Bartlett,
Hann, Hamming,
Blackman, Flat Top

Rectangular  Enumeration NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_RaisedCosine implements a Bandpass Raised Cosine FIR filter.1.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 BPF_SynchronouslyTuned (Bandpass
SynchronouslyTuned Filter)

Description: Bandpass SynchronouslyTuned Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

PassAtten Passband edge
attenuation in dB

3  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth
(required only when
OrderType = Auto)

150e3 Hz Float NO (PassBandwidth:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

20  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order
for the lowpass
prototype analog
filter

5  Integer NO [0:30]

Transform S to Z domain
transformation
method: Bilinear,
Impulse Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior
when sampling rate
is too small to
represent the filter.
This parameter is
only used for
simulation not for
filter design tool:
Model As Allpass,
Error Out

Model
As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_SynchronouslyTuned implements a Bandpass Synchronously Tuned IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BPF_Window (Bandpass Window Filter)

Description: Bandpass window-based linear phase FIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Window Window function:
Rectangular,
Bartlett, Hann,
Hamming,
Blackman, Flat Top,
Generalized Cosine,
Ready, Kaiser,
BlackmanHarris

Kaiser  Enumeration NO  

Loss Magnitude loss in dB 0  Float NO [0:∞)

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 50e3 Hz Float NO (0:FCenter*2)

WindowParameter Window parameter 1  Floating
point array

NO  

Order Filter order (number
of taps - 1)

30  Integer NO [0:512]

PassRipple Passband ripple in
dB

1  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth
(cutoff bandwidth =
(PassBandwidth +
StopBandwidth)/2)

100e3 Hz Float NO (PassBandwidth:FCenter*2)

StopAtten Stopband edge
attenuation in dB

20  Float NO [3.0103:∞]

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-1]

InterpolationScaling Gain adjustment for
interpolation: NO,
YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BPF_Window implements a linear-phase Bandpass FIR filter using the Window design1.
method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 BSF_Bessel (Bandstop Bessel Filter)

Description: Bandstop Bessel Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 200e3 Hz Float NO (StopBandwidth:FCenter*2)

PassAtten Passband edge
attenuation in dB

3  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth
(required only when
OrderType = Auto)

50e3 Hz Float NO (0:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

20  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order for
the lowpass prototype
analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_Bessel implements a Bandstop Bessel IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BSF_Butterworth (Bandstop Butterworth Filter)

Description: Bandstop Butterworth Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 100e3 Hz Float NO (StopBandwidth:FCenter*2)

PassAtten Passband edge
attenuation in dB

3  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth
(required only when
OrderType = Auto)

50e3 Hz Float NO (0:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order for
the lowpass prototype
analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO
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 Notes/Equations

BSF_Butterworth implements a Bandstop Butterworth IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BSF_ChebyshevI (Bandstop ChebyshevI Filter)

Description: Bandstop Chebyshev I Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 100e3 Hz Float NO (StopBandwidth:FCenter*2)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth
(required only when
OrderType = Auto)

50e3 Hz Float NO (0:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order for
the lowpass prototype
analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_ChebyshevI implements a Bandstop Chebyshev I IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BSF_ChebyshevII (Bandstop ChebyshevII Filter)

Description: Bandstop Chebyshev II Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth
(required only when
OrderType = Auto)

100e3 Hz Float NO (StopBandwidth:FCenter*2)

PassAtten Passband edge
attenuation in dB
(required only when
OrderType = Auto)

3  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth 50e3 Hz Float NO (0:FCenter*2)

StopRipple Stopband ripple in dB 50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order for
the lowpass prototype
analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_ChebyshevII implements a Bandstop Chebyshev II IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BSF_Elliptic (Bandstop Elliptic Filter)

Description: Bandstop Elliptic Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 100e3 Hz Float NO (StopBandwidth:FCenter*2)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth 50e3 Hz Float NO (0:FCenter*2)

StopRipple Stopband ripple in dB
(required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order for
the lowpass prototype
analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_Elliptic implements a Bandstop Elliptic IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.



SystemVue - Algorithm Design Library

246

Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BSF_ParksMcClellan (Bandstop ParksMcClellan Filter)

Description: Bandstop linear phase FIR filter based on Parks-McClellan design method
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in
dB

0  Float NO [0:∞)

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband
bandwidth

100e3 Hz Float NO (StopBandwidth:FCenter*2)

PassRipple Passband ripple in
dB

1  Float NO [0.01:3.0103]

StopBandwidth Stopband
bandwidth

50e3 Hz Float NO (0:FCenter*2)

StopRipple Stopband ripple in
dB

30  Float NO [3.0103:∞]

MaximumOrder Maximum filter
order for Parks-
McClellan filter
design

300  Integer NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-1]

InterpolationScaling Gain adjustment
for interpolation:
NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_ParksMcClellan implements a linear-phase Bandstop FIR filter using the Parks-1.
McClellan design method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 BSF_SynchronouslyTuned (Bandstop
SynchronouslyTuned Filter)

Description: Bandstop SynchronouslyTuned Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 200e3 Hz Float NO (StopBandwidth:FCenter*2)

PassAtten Passband edge
attenuation in dB

3  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth
(required only when
OrderType = Auto)

50e3 Hz Float NO (0:FCenter*2)

StopAtten Stopband edge
attenuation in dB
(required only when
OrderType = Auto)

14  Float NO (3.0103:∞)

OrderType Order specification:
Auto, User Defined

User
Defined

 Enumeration NO  

Order User defined order for
the lowpass prototype
analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_SynchronouslyTuned implements a Bandstop Synchronously Tuned IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 BSF_Window (Bandstop Window Filter)

Description: Bandstop window-based linear phase FIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Window Window function:
Rectangular, Bartlett, Hann,
Hamming, Blackman, Flat
Top, Generalized Cosine,
Ready, Kaiser,
BlackmanHarris

Kaiser  Enumeration NO  

Loss Magnitude loss in dB 0  Float NO [0:∞)

FCenter Center frequency 150e3 Hz Float NO (0:∞)

PassBandwidth Passband bandwidth 100e3 Hz Float NO (0:FCenter*2)

WindowParameter Window parameter 1  Floating
point array

NO  

Order Filter order (set to even
number)

30  Integer NO [0:512]

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopBandwidth Stopband bandwidth (cutoff
bandwidth =
(PassBandwidth +
StopBandwidth)/2)

50e3 Hz Float NO (0:PassBandwidth)

StopAtten Stopband edge attenuation
in dB

20  Float NO [3.0103:∞]

Interpolation Interpolation (up sampling)
factor

1  Integer NO [1:∞)

Decimation Decimation (down sampling)
factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down sampling)
phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

BSF_Window implements a linear-phase Bandstop FIR filter using the Window design1.
method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 CustomFIR (Custom FIR Filter)

Description: Custom FIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Frequency Frequency points in Hz [0 20000 40000 60000 80000
100000 120000 140000
160000 180000 200000
220000 240000 260000
280000 300000 320000
340000 360000 380000
400000 420000 440000
460000 480000 500000]

 Floating
point array

NO

Magnitude Magnitude response in
dB at frequency points

[0 0 0 0 0 0 0 0 0 0 0 -
5.333333333 -10.66666667 -
16 -21.33333333 -
26.66666667 -32 -
37.33333333 -40 -40 -40 -40
-40 -40 -40 -40]

 Floating
point array

NO

Phase Phase response in
degrees at frequency
points

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0]

 Floating
point array

NO

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO

MagTolerance Magnitude error
tolerance limit in dB

0.5  Float NO

EnableFitFreqLimits Enable limits for
frequency fitting: NO,
YES

NO  Enumeration NO

LowerFitFreq Lower fitting boundary
within region
[min(Frequency),
max(Frequency)]

0 Hz Float NO

UpperFitFreq Upper fitting boundary
within region
[min(Frequency),
max(Frequency)]

100000 Hz Float NO

ForceLinearPhase Force linear phase: NO,
YES

NO  Enumeration NO

ExtrapolationOption Data extrapolation
method outside data
frequency range:
Constant, versus freq

versus freq  Enumeration NO

ExtrapolationRollOff Additional rolloff
(dB/octave) applied to
data extrapolated
outside data frequency
range

0  Float NO

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

CustomFIR designs an FIR filter based on the frequency points and the associated1.
magnitude and phase responses specified by the user in the Frequency, Magnitude,
and Phase array parameters.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Custom FIR Design (users) for details.3.

 HBLPF_ParksMcClellan (Half-Band Lowpass
ParksMcClellan Filter)

Description: Half-Band Lowpass linear phase FIR filter based on Parks-McClellan design
method
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

PassFreq Passband edge frequency 225e3 Hz Float NO (0:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopRipple Stopband ripple in dB 30  Float NO [3.0103:∞]

MaximumOrder Maximum filter order for
Parks-McClellan filter
design

300  Integer NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HBLPF_ParksMcClellan implements a linear-phase Half-Band Lowpass FIR filter using1.
the Parks-McClellan design method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.
HBLPF_ParksMcClellan is a half-band version of LPF_ParksMcClellan (algorithm)5.
where (PassFreq + StopFreq)/2 = SampleRate/4 and 0 < PassFreq < SampleRate/4.

 HPF Bessel (Highpass Bessel Filter)

Description: Highpass Bessel Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 200e3 Hz Float NO (StopFreq:∞)

PassAtten Passband edge attenuation in dB 3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency (required
only when OrderType = Auto)

100e3 Hz Float NO (0:∞)

StopAtten Stopband edge attenuation in dB
(required only when OrderType =
Auto)

18  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the lowpass
prototype analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_Bessel implements a Highpass Bessel IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
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output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 HPF_Butterworth (Highpass Butterworth Filter)

Description: Highpass Butterworth Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 150e3 Hz Float NO (StopFreq:∞)

PassAtten Passband edge attenuation in dB 3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency (required
only when OrderType = Auto)

100e3 Hz Float NO (0:∞)

StopAtten Stopband edge attenuation in dB
(required only when OrderType =
Auto)

50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the lowpass
prototype analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_Butterworth implements a Highpass Butterworth IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 HPF_ChebyshevI (Highpass ChebyshevI Filter)

Description: Highpass Chebyshev I Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 150e3 Hz Float NO (StopFreq:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency (required
only when OrderType = Auto)

100e3 Hz Float NO (0:∞)

StopAtten Stopband edge attenuation in dB
(required only when OrderType =
Auto)

50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the lowpass
prototype analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_ChebyshevI implements a Highpass Chebyshev I IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 HPF_ChebyshevII (Highpass ChebyshevII Filter)

Description: Highpass Chebyshev II Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency (required
only when OrderType = Auto)

150e3 Hz Float NO (StopFreq:∞)

PassAtten Passband edge attenuation in dB
(required only when OrderType =
Auto)

3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency 100e3 Hz Float NO (0:∞)

StopRipple Stopband ripple in dB 50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the lowpass
prototype analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_ChebyshevII implements a Highpass Chebyshev II IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 HPF_Elliptic (Highpass Elliptic Filter)
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Description: Highpass Elliptic Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 150e3 Hz Float NO (StopFreq:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency 100e3 Hz Float NO (0:∞)

StopRipple Stopband ripple in dB (required only
when OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the lowpass
prototype analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_Elliptic implements a Highpass Elliptic IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 HPF_ParksMcClellan (Highpass ParksMcClellan Filter)

Description: Highpass linear phase FIR filter based on Parks-McClellan design method
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

PassFreq Passband edge frequency 150e3 Hz Float NO (0:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency 100e3 Hz Float NO (PassFreq:∞)

StopRipple Stopband ripple in dB 30  Float NO [3.0103:∞]

MaximumOrder Maximum filter order for
Parks-McClellan filter
design

300  Integer NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports
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Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_ParksMcClellan implements a linear-phase Highpass FIR filter using the Parks-1.
McClellan design method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 HPF_SynchronouslyTuned (Highpass
SynchronouslyTuned Filter)

Description: Highpass Synchronously Tuned Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 250e3 Hz Float NO (StopFreq:∞)

PassAtten Passband edge attenuation in dB 3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency (required
only when OrderType = Auto)

100e3 Hz Float NO (0:∞)

StopAtten Stopband edge attenuation in dB
(required only when OrderType =
Auto)

20  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the lowpass
prototype analog filter

5  Integer NO [0:30]

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_SynchronouslyTuned implements a Highpass Synchronously Tuned IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 HPF_Window (Highpass Window Filter)

Description: Highpass window-based linear phase FIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Window Window function:
Rectangular, Bartlett, Hann,
Hamming, Blackman, Flat
Top, Generalized Cosine,
Ready, Kaiser,
BlackmanHarris

Kaiser  Enumeration NO  

Loss Magnitude loss in dB 0  Float NO [0:∞)

PassFreq Passband edge frequency 150e3 Hz Float NO (0:∞)

WindowParameter Window parameter 1  Floating
point array

NO  

Order Filter order (number of taps
- 1)

30  Integer NO [0:512]

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency
(cutoff frequency =
(PassFreq + StopFreq)/2)

100e3 Hz Float NO (0:PassFreq)

StopAtten Stopband edge attenuation
in dB

20  Float NO [3.0103:∞]

Interpolation Interpolation (up sampling)
factor

1  Integer NO [1:∞)

Decimation Decimation (down sampling)
factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down sampling)
phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

HPF_Window implements a linear-phase Highpass FIR filter using the Window design1.
method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 LPF_Bessel (Lowpass Bessel Filter)

Description: Lowpass Bessel Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassAtten Passband edge attenuation in
dB

3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency
(required only when OrderType
= Auto)

200e3 Hz Float NO (PassFreq:∞)

StopAtten Stopband edge attenuation in
dB (required only when
OrderType = Auto)

18  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the
lowpass prototype analog filter

5  Integer NO [0:30]

Transform S to Z domain transformation
method: Bilinear, Impulse
Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior when sampling
rate is too small to represent
the filter. This parameter is only
used for simulation not for filter
design tool: Model As Allpass,
Error Out

Model As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_Bessel implements a Lowpass Bessel IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 LPF_Butterworth (Lowpass Butterworth Filter)

Description: Lowpass Butterworth Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassAtten Passband edge attenuation in
dB

3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency
(required only when OrderType
= Auto)

150e3 Hz Float NO (PassFreq:∞)

StopAtten Stopband edge attenuation in
dB (required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the
lowpass prototype analog filter

5  Integer NO [0:30]

Transform S to Z domain transformation
method: Bilinear, Impulse
Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior when sampling
rate is too small to represent
the filter. This parameter is only
used for simulation not for filter
design tool: Model As Allpass,
Error Out

Model As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_Butterworth implements a Lowpass Butterworth IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 LPF_ChebyshevI (Lowpass ChebyshevI Filter)

Description: Lowpass Chebyshev I Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency
(required only when OrderType
= Auto)

150e3 Hz Float NO (PassFreq:∞)

StopAtten Stopband edge attenuation in
dB (required only when
OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the
lowpass prototype analog filter

5  Integer NO [0:30]

Transform S to Z domain transformation
method: Bilinear, Impulse
Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior when sampling
rate is too small to represent
the filter. This parameter is only
used for simulation not for filter
design tool: Model As Allpass,
Error Out

Model As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_ChebyshevI implements a Lowpass Chebyshev I IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 LPF_ChebyshevII (Lowpass ChebyshevII Filter)

Description: Lowpass Chebyshev II Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency
(required only when OrderType
= Auto)

100e3 Hz Float NO (0:∞)

PassAtten Passband edge attenuation in
dB (required only when
OrderType = Auto)

3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency 150e3 Hz Float NO (PassFreq:∞)

StopRipple Stopband ripple in dB 50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the
lowpass prototype analog filter

5  Integer NO [0:30]

UnderSampledModel Default behavior when sampling
rate is too small to represent
the filter. This parameter is only
used for simulation not for filter
design tool: Model As Allpass,
Error Out

Model As
Allpass

 Enumeration NO  

 Input Ports
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Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_ChebyshevII implements a Lowpass Chebyshev II IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 LPF_Edge (Lowpass Edge Filter)

Description: EDGE pulse shaping lowpass filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

SymbolRate Symbol rate (impulse
time = 5 * symbol
period)

1625000/6 Hz Float NO (0:∞)

Window Window function:
Rectangular, Bartlett,
Hann, Hamming,
Blackman, Flat Top

Rectangular  Enumeration NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_Edge implements a lowpass EDGE pulse shaping filter.1.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 LPF_Elliptic (Lowpass Elliptic Filter)

Description: Lowpass Elliptic Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency 150e3 Hz Float NO (PassFreq:∞)

StopRipple Stopband ripple in dB (required
only when OrderType = Auto)

50  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the
lowpass prototype analog filter

5  Integer NO [0:30]

UnderSampledModel Default behavior when sampling
rate is too small to represent
the filter. This parameter is only
used for simulation not for filter
design tool: Model As Allpass,
Error Out

Model As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_Elliptic implements a Lowpass Elliptic IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 LPF_Gaussian (Lowpass Gaussian Filter)

Description: Gaussian lowpass filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassAtten Passband edge attenuation
in dB

3  Float NO [0.01:3.0103]

LengthOption Filter length option (Auto:
1.2 / 3db frequency): Auto,
Number of Taps, Impulse
Time Duration

Auto  Enumeration NO  

Length Filter length (based on
LengthOption, specify
number of taps, or impulse
time duration; delay =
length/2)

0  Float NO [0:∞)

Interpolation Interpolation (up sampling)
factor

1  Integer NO [1:∞)

Decimation Decimation (down sampling)
factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down sampling)
phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports
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Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

The delay introduced by the filter is approximately equal to:1.

 LPF_ParksMcClellan (Lowpass ParksMcClellan Filter)

Description: Lowpass linear phase FIR filter based on Parks-McClellan design method
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency 150e3 Hz Float NO (PassFreq:∞)

StopRipple Stopband ripple in dB 30  Float NO [3.0103:∞]

MaximumOrder Maximum filter order for
Parks-McClellan filter
design

300  Integer NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_ParksMcClellan implements a linear-phase Lowpass FIR filter using the Parks-1.
McClellan design method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 LPF_RaisedCosine (Lowpass Raised Cosine Filter)

Description: Raised cosine lowpass filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters



SystemVue - Algorithm Design Library

262

Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO [0:∞)

SymbolRate Symbol rate (passband
edge frequency =
SymbolRate/2)

100e3 Hz Float NO (0:∞)

RollOff Roll-off factor (between 0
and 1)

0.5  Float NO [0:1]

SquareRoot Square root option: NO,
YES

NO  Enumeration NO  

PulseEqualization Pulse equalization option:
NO, YES

NO  Enumeration NO  

LengthOption Filter length option (Auto:
8 * symbol period): Auto,
Number of Taps, Number
of Symbols, Impulse Time
Duration

Auto  Enumeration NO  

Length Filter length (length =
2*delay) (based on
LengthOption, specify
number of taps, number
of symbols, or impulse
time duration)

0  Float NO [0:∞)

Window Window function:
Rectangular, Bartlett,
Hann, Hamming,
Blackman, Flat Top

Rectangular  Enumeration NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation (down
sampling) factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down
sampling) phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_RaisedCosine implements a Lowpass Raised Cosine FIR filter.1.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 LPF_SynchronouslyTuned (Lowpass
SynchronouslyTuned Filter)

Description: Lowpass Synchronously Tuned Filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Loss Magnitude loss in dB 0  Float NO  

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

PassAtten Passband edge attenuation in
dB

3  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency
(required only when OrderType
= Auto)

250e3 Hz Float NO (PassFreq:∞)

StopAtten Stopband edge attenuation in
dB (required only when
OrderType = Auto)

20  Float NO (3.0103:∞)

OrderType Order specification: Auto, User
Defined

User
Defined

 Enumeration NO  

Order User defined order for the
lowpass prototype analog filter

5  Integer NO [0:30]

Transform S to Z domain transformation
method: Bilinear, Impulse
Invariance

Bilinear  Enumeration NO  

UnderSampledModel Default behavior when sampling
rate is too small to represent
the filter. This parameter is only
used for simulation not for filter
design tool: Model As Allpass,
Error Out

Model As
Allpass

 Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_SynchronouslyTuned implements a Lowpass Synchronously Tuned IIR filter.1.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to IIR Filter Design (users) for the technical information about the design4.
process.

 LPF_Window (Lowpass Window Filter)

Description: Lowpass window-based linear phase FIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Window Window function:
Rectangular, Bartlett, Hann,
Hamming, Blackman, Flat
Top, Generalized Cosine,
Ready, Kaiser,
BlackmanHarris

Kaiser  Enumeration NO  

Loss Magnitude loss in dB 0  Float NO [0:∞)

PassFreq Passband edge frequency 100e3 Hz Float NO (0:∞)

WindowParameter Window parameter 1  Floating
point array

NO  

Order Filter order (number of taps
- 1)

30  Integer NO [0:512]

PassRipple Passband ripple in dB 1  Float NO [0.01:3.0103]

StopFreq Stopband edge frequency
(cutoff frequency =
(PassFreq + StopFreq)/2)

150e3 Hz Float NO (PassFreq:∞)

StopAtten Stopband edge attenuation
in dB

20  Float NO [3.0103:∞]

Interpolation Interpolation (up sampling)
factor

1  Integer NO [1:∞)

Decimation Decimation (down sampling)
factor

1  Integer NO [1:∞)

DecimationPhase Decimation (down sampling)
phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment for
interpolation: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

LPF_Window implements a linear-phase Lowpass FIR filter using the Window design1.
method.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Please refer to FIR Filter Design (users) for the technical information about the design4.
process.

 SDomainSystem (S Domain System Filter)

Description: S domain system
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SDomainIIR Part (algorithm), Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Factor H(s) = Factor * (
(s - z1) * (s - z2)
* ... ) / ( (s - p1)
* (s - p2) * ... )

1.1616128054708951e+029  Float NO

RealPoles Real poles [-650148.07080641726]  Floating
point array

NO

ComplexConjugatePoles Complex
conjugate poles
(specify only one
for a complex
conjugate pair)

[-200906.80273926951 +
618327.55929716607j, -
525980.83814247814 +
382147.44782641466j]

 Complex
array

NO

RealZeros Real zeros []  Floating
point array

NO

ComplexConjugateZeros Complex
conjugate zeros
(specify only one
for a complex
conjugate pair)

[]  Complex
array

NO

FreqUnit Frequency unit
for S domain
poles and zeros:
Radians Per
Second, Hz

Radians Per Second  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

SDomainSystem designs an IIR filter based on the S domain poles and zeros1.
specified by the users.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to S Domain Design (users) for the technical information about the3.
design process.
Suppose Factor = C, RealPoles = [ pr ], ComplexConjugatePoles = [ pc1 pc2 ],4.

RealZeros = [ zr ], ComplexConjugateZeros = [ zc1 zc2 ], then the S domain transfer

function is

For ComplexConjugatePoles and ComplexConjugateZeros, only specify one for each5.
complex conjugate pair.
SDomainSystem applies Bilinear Transform to convert S-domain transfer function6.
H(s) to Z-domain IIR transfer function H(z).

 ZDomainFIR (Z Domain FIR filter)

Description: Z domain FIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

Coefficients Filter tap values [-0.040609, -
0.001628, 0.17853,
0.37665, 0.37665,
0.17853, -
0.001628, -
0.040609]

 Floating
point array

NO  

Interpolation Interpolation (up
sampling) factor

1  Integer NO [1:∞)

Decimation Decimation
(down sampling)
factor

1  Integer NO [1:∞)

DecimationPhase Decimation
(down sampling)
phase

0  Integer NO [0:_D_ecimation-
1]

InterpolationScaling Gain adjustment
for interpolation:
NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

ZDomainFIR is an FIR filter with the coefficients specified by the users.1.
This model consumes Decimation number of samples from the input and produces2.
Interpolation number of samples to the output in every execution.
Please refer to Common Filter Parameters (algorithm) for further parameter details.3.
Suppose Coefficients = [ b0 b1 ... bN ], then .4.

 ZDomainIIR (Z Domain IIR filter)

Description: Z domain IIR filter
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Numerator Numerator coefficients. Single section: specify a real
array of numerator coefficients. Multiple sections:
specify a cell array of real arrays (each real array
contains numerator coefficients of a section).

[0.5,
0.25,
0.1]

 None NO

Denominator Denominator coefficients. Single section: specify a
real array of denominator coefficients. Multiple
sections: specify a cell array of real arrays (each real
array contains denominator coefficients of a section).

[1, 0.5,
0.3]

 None NO

Structure Transfer function structure for multiple sections.:
Cascade Form, Parallel Form

Cascade
Form

 Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

ZDomainIIR is an IIR filter with coefficients specified by the users.1.
This model consumes one sample from the input and produces one of sample to the2.
output in every execution.
Suppose Numerator = [ b00 b01 b02 ] and Denominator = [ a00 a01 a02 ], then3.

Suppose Numerator = { [ b00 b01 b02 ], [ b10 b11 b12 ] } and Denominator = { [ a004.
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a01 a02 ], [ a10 a11 a12 ] }.

When Structure = Cascade Form,

.
When Structure = Parallel Form,
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 FIR_Cx Part
Categories: C++ Code Generation , Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FIR_Cx
(algorithm)

std::complex<double>
FIR

 FIR_Cx (Complex FIR Filter)

Description: Complex FIR Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: FIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Taps Filter tap
values

[-0.040609, -0.001628, 0.17853, 0.37665,
0.37665, 0.17853, -0.001628, -0.040609]

 Complex
array

NO

Decimation Decimation
ratio

1  Integer NO

DecimationPhase Decimation
phase

0  Integer NO

Interpolation Interpolation
ratio

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

The FIR_Cx component implements a complex-valued finite-impulse response filter1.
with multi-rate capability.
For every Decimation number of input samples, Interpolation number of filtered2.
values are output.
The filter coefficients are specified by the Taps parameter.3.
FIR efficiently implements sample rate changes. When the Decimation ratio is ≥1, the4.
filter behaves as if it were followed by a DownSample (algorithm) part. When the
Interpolation ratio is set, the filter behaves as if it were preceded by an UpSample
(algorithm) part. The implementation is much more efficient, because a polyphase
structure is used internally, thereby avoiding unnecessary use of memory and
multiplications by 0. Arbitrary sample rate conversions by rational factors are
accomplished this way.
The DecimationPhase parameter is equivalent to the Phase parameter of the5.
DownSample (algorithm) part. When decimating, output samples are conceptually
discarded. The polyphase structure does not calculate the discarded samples. To
decimate by three, only one of every three outputs is selected. The DecimationPhase
parameter determines which of these is selected. If DecimationPhase is 0 (default),
the earliest outputs of the decimation block are decimated.
Avoid aliasing when designing a multi-rate filter. The filter sample rate is the product6.
of the Interpolation parameter and the input sample rate or equivalently the product
of the Decimation parameter and the output sample rate.
The default tap coefficients correspond to an eighth-order, equiripple, linear-phase,7.
lowpass filter. The cutoff frequency is approximately one-third of the Nyquist
frequency.

See:
FIR (algorithm)
FIR_Fxp (hardware)

 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.

file:/pages/createpage.action?spaceKey=sv201007&amp;title=C%2B%2B+Code+Generation+Category&amp;linkCreation=true&amp;fromPageId=107090743
file:/pages/createpage.action?spaceKey=sv201007&amp;title=C%2B%2B+Code+Generation+Category&amp;linkCreation=true&amp;fromPageId=107090743
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Digital Signal Processing, Academic Press, 1987.
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 FIR Part
Categories: C++ Code Generation (algorithm), Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FIR (algorithm) FIR Filter

FIR_Cx (algorithm) Complex FIR Filter

FIR_Fxp
(hardware)

Fixed Point Finite Impulse Response Filter

 FIR (FIR Filter)

Description: FIR Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: FIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Taps Filter tap
values

[-0.040609, -0.001628, 0.17853,
0.37665, 0.37665, 0.17853, -0.001628, -
0.040609]

 Floating
point array

NO

Decimation Decimation
ratio

1  Integer NO

DecimationPhase Decimation
phase

0  Integer NO

Interpolation Interpolation
ratio

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

FIR implements a finite-impulse response filter with multi-rate capability.1.
For every Decimation number of input samples, Interpolation number of filtered2.
values are output.
The Taps parameter specifies the filter coefficients.3.
FIR efficiently implements sample rate changes. When the Decimation ratio is ≥1, the4.
filter behaves as if it were followed by a DownSample (algorithm) part. When the
Interpolation ratio is set, the filter behaves as if it were preceded by an UpSample
(algorithm) part. The implementation is much more efficient, because a polyphase
structure is used internally, thereby avoiding unnecessary use of memory and
multiplications by 0. Arbitrary sample rate conversions by rational factors are
accomplished this way.
The DecimationPhase parameter is equivalent to the Phase parameter of the5.
DownSample (algorithm) part. When decimating, output samples are conceptually
discarded. The polyphase structure does not calculate the discarded samples. To
decimate by three, only one of every three outputs is selected. The DecimationPhase
parameter determines which of these is selected. If DecimationPhase is 0 (default),
the earliest outputs of the decimation block are decimated.
Avoid aliasing when designing a multi-rate filter. The filter sample rate is the product6.
of the Interpolation parameter and the input sample rate or equivalently the product
of the Decimation parameter and the output sample rate.
The default tap coefficients correspond to an eighth-order, equiripple, linear-phase,7.
lowpass filter. The cutoff frequency is approximately one-third of the Nyquist
frequency.

See:
FIR_Cx (algorithm)
FIR_Fxp (hardware)
ResamplerRC (algorithm)
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 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.
Digital Signal Processing, Academic Press, 1987.
A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:2.
Englewood Cliffs, NJ, 1989.
P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and3.
Applications: A Tutorial," Proc. of the IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.
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 Hilbert Part
Categories: C++ Code Generation (algorithm), Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Hilbert
(algorithm)

Hilbert Transformer

 Hilbert (Hilbert Transformer)

Description: Hilbert Transformer
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Hilbert Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

N Number of taps in the Hilbert
filter

64  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

This component approximates the Hilbert transform of the input signal by using an1.
FIR filter.
For every input, there is a transformed output.2.
The response is truncated symmetrically at −N/2 and N/2 samples [1]. For higher3.
accuracy and smaller delay, it may be necessary to use the Parks-McClellan algorithm
[2] to design a custom Hilbert transform filter [1,3].
The Hilbert transform requires an infinite length set of FIR tap coefficients for4.
accurate representation. This model approximates the Hilbert transform with a finite
list of FIR taps. For practical accuracy, it is recommended N≥64.

See:
FIR (algorithm)

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
T. W. Parks and J. H. McClellan, "Chebyshev Approximation for Nonrecursive Digital2.
Filters With Linear Phase," IEEE Trans. on Circuit Theory, vol. 19, no. 2, pp. 189-194,
March 1972.
L. R. Rabiner, J. H. McClellan, and T. W. Parks, "FIR Digital Filter Design Techniques3.
Using Weighted Chebyshev Approximation," Proc. of the IEEE, vol. 63, no. 4, pp.
595-610, April 1975.
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 IIR Part
Categories: C++ Code Generation (algorithm), Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

IIR (algorithm) IIR Filter

IIR_Cx
(algorithm)

Complex IIR
Filter

 IIR (IIR Filter)

Description: IIR Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: IIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Gain Gain Value 1  Float YES

Numerator Numerator coefficients [0.5, 0.25, 0.1]  Floating point array NO

Denominator Denominator coefficients [1, 0.5, 0.3]  Floating point array NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

IIR implements an infinite impulse response filter of arbitrary order in a direct form II1.
as shown in IIR Filter Structure.
For every input, one output is generated.2.
The parameters specify H(z), the Z-transform of an impulse response h(n). The3.
output of IIR is the convolution of the input with h(n).
The transfer function is of the form

where:
Gain specifies G.
Numerator and Denominator specify N(z -1 ) and D(z -1 ), respectively. Both arrays
start with the constant term of the polynomial and decrease in powers of z or
increase in powers of 1/z. The constant term of D is not omitted.
 

 IIR Filter Structure

Numerator and Denominator are array values.4.
The numerical noise originating from finite precision increases with the filter order. To5.
minimize this distortion, expand the filter into a parallel or cascade form.

See:
Biquad (algorithm)
BiquadCascade (algorithm)
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IIR_Cx (algorithm)

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

 IIR_Cx (Complex IIR Filter)

Description: Complex IIR Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: IIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Gain Gain Value 1  Complex
number

YES

Numerator Numerator coefficients [0.5, 0.25, 0.1]  Complex array NO

Denominator Denominator coefficients [1, 0.5, 0.3]  Complex array NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

IIR_Cx implements a complex infinite impulse response (IIR) filter of arbitrary order1.
in a direct form II realization.
For every input, one output is generated.2.
The parameters specify H(z), the Z-transform of an impulse response h(n). The3.
output is the convolution of the input with h(n). The transfer function is of the form

where:
Gain specifies G.
Numerator and Denominator specify N(z -1 ) and D(z -1 ), respectively. Both arrays
start with the constant term of the polynomial and decrease in powers of z or
increase in powers of 1/z. The constant term of D is not omitted.
 

 IIR Filter Structure

Numerator and Denominator are array values.4.
The numerical noise originating from finite precision increases with the filter order. To5.
minimize this distortion, expand the filter into a parallel or cascade form.

See:
IIR (algorithm)

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 FIR_CX

Description: Complex FIR Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: FIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Taps Filter tap
values

[-0.040609, -0.001628, 0.17853, 0.37665,
0.37665, 0.17853, -0.001628, -0.040609]

 Complex
array

NO

Decimation Decimation
ratio

1  Integer NO

DecimationPhase Decimation
phase

0  Integer NO

Interpolation Interpolation
ratio

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

 References
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 OSF Part
Categories: Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OSF
(algorithm)

Order Statistic Filter

 OSF (Order Statistic Filter)

Description: Order Statistic Filter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: OSF Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

N Size of sliding window 3  Integer NO [1:∞)

Percentile Ranking percentile (0 percent is the minimum) 50  Float YES [0:100]

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

OSF implements a order statistic filter.1.
For every input, one output is generated.2.
From a window of the most recent N input values, a value is chosen for output. If3.
each of N inputs are ranked from the lowest (0 percentile) to the highest value (100
percentile), the value ranked closest to the Percentile parameter is output.
The default part outputs the median value of the most recent 3 inputs.4.

See:
SlidWinAvg (algorithm)
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 PID Part
Categories: Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PID
(algorithm)

Proportional-Integral-Derivative Controller

 PID (Proportional-Integral-Derivative Controller)

Description: Proportional-Integral-Derivative Controller
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: PID Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

ProportionalGain Proportional gain 1  Float YES [(-
∞:∞)

IntegratorGain Integral gain 1  Float YES (-∞:∞)

DerivativeGain Derivative gain 1  Float YES (-∞:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

PID outputs the weighted sum of the input, the integral of the input, and the1.
derivative of the input.
For every input, one output is generated.2.
Both integral and derivative are zero for the first output. The derivative and the3.
increment for the integral require only the most recent input samples.
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 SData Part
Categories: Analog/RF (algorithm), Filters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SData
(algorithm)

Reading and Simulation of S-Parameter
Data

 SData

Description: Reading and Simulation of S-Parameter Data
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SData Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

OutputPort Reflected wave port (row
index for the desired S-
Parameter in the scattering
matrix)

2  Integer NO [1:∞)

InputPort Incident wave port (column
index for the desired S-
Parameter in the scattering
matrix)

1  Integer NO [1:∞)

DataSource S-Parameter data location:
TouchstoneFile, Dataset

TouchstoneFile  Enumeration NO  

DataFileName Touchstone data file name
(e.g. TwoPort.s2p)

  Filename NO  

DatasetName Dataset name   Text NO  

ShowAdvancedParams Show advanced parameters:
NO, YES

NO  Enumeration NO  

MagTolerance Magnitude error tolerance limit
in dB

0.5  Float NO  

EnableFitFreqLimits Enable limits for frequency
fitting: NO, YES

NO  Enumeration NO  

LowerFitFreq Lower fitting boundary within
region [min(Frequency),
max(Frequency)]

0 Hz Float NO  

UpperFitFreq Upper fitting boundary within
region [min(Frequency),
max(Frequency)]

100000 Hz Float NO  

ForceLinearPhase Force linear phase: NO, YES NO  Enumeration NO  

ExtrapolationOption Data extrapolation method
outside data frequency range:
Constant, versus freq

versus freq  Enumeration NO  

ExtrapolationRollOff Additional rolloff (dB/octave)
applied to data extrapolated
outside data frequency range

0  Float NO  

 Input Ports

Port Name Signal Type Optional

1 input envelope NO

 Output Ports

Port Name Signal Type Optional

2 output envelope NO

 Notes/Equations

The SData model can be used to simulate S-Parameter data in the time domain Data1.
Flow simulation engine.
Only the data for a single pair of ports can be simulated. The OutputPort and2.
InputPort parameters specify the pair of ports whose S-Parameter data will be used.
The DataSource parameter selects whether the S-Parameter data resides in a3.
TouchstoneFile file or in a Dataset in the workspace.

When Touchstone is selected, the name of the file is specified in the
DataFileName parameter.
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When Dataset is selected, the name of the dataset is specified in the
DatasetName parameter (to import S-Parameter data from an S-Data file or a
Touchstone file to a dataset go to the File menu and select Import -> S-Data
File ...)

The S-Parameter data is converted to an equivalent causal time domain impulse4.
response of finite length (FIR filter) that is used by the Data Flow simulator.
For details on the parameters shown under ShowAdvancedParams refer to Custom5.
FIR Design (users).

 References

The SData Demo  (examples) example demonstrates how to use SData part.1.
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 SDomainIIR Part
Categories: C++ Code Generation (algorithm), Filters (algorithm), IBIS-AMI Transceivers
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SDomainIIR (algorithm) S-domain IIR filter using bilinear transform and cascade biquad
structure

SDomainSystem
(algorithm)

S domain system

 SDomainIIR (S DomainIIR)

Description: S-domain IIR filter using bilinear transform and cascade biquad structure
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: SDomainIIR Part (algorithm), Filter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

SampleRate Sampling rate 1e6  Float NO

Factor H(s) = Factor * (
(s - z1) * (s - z2)
* ... ) / ( (s - p1)
* (s - p2) * ... )

1.1616128054708951e+029  Float NO

RealPoles Real Poles [-650148.07080641726]  None NO

ComplexConjugatePoles Complex
conjugate poles
(specify only one
for a complex
conjugate pair)

[-200906.80273926951 +
618327.55929716607j, -
525980.83814247814 +
382147.44782641466j]

 None NO

RealZeros Real zeros []  None NO

ComplexConjugateZeros Complex
conjugate zeros
(specify only one
for a complex
conjugate pair)

[]  None NO

FreqUnit Frequency unit:
Radians per
second, Hz

Radians per second  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

SDomainIIR designs an IIR biquad-cascade filter based on the S domain poles and1.
zeros specified by the users.
This model consumes one sample from the input and produces one sample to the2.
output in every execution.
Please refer to S Domain Design (users) for the technical information about the3.
design process.
Suppose Factor = C, RealPoles = [ pr ], ComplexConjugatePoles = [ pc1 pc2 ],4.

RealZeros = [ zr ], ComplexConjugateZeros = [ zc1 zc2 ], then the S domain transfer

function is

For ComplexConjugatePoles and ComplexConjugateZeros, only specify one for each5.
complex conjugate pair.
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SDomainIIR applies Bilinear Transform to convert S-domain transfer function H(s) to6.
Z-domain IIR transfer function H(z).
SDomainIIR is an untimed model. The SampleRate parameter specifies the sampling7.
rate to characterize the S-domain transfer function and to transform it into Z-domain
transfer function. The difference between SDomainIIR and SDomainSystem
(algorithm) is that SDomainSystem uses simulation sampling rate to characterize the
S-doamin transfer function, but SDomainIIR uses SampleRate parameter instead.
SDomainIIR supports C++ code generation (algorithm). In the generated C++ code,8.
the SDomainIIR is re-characterized based on the SampleRate parameter.
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 IBIS-AMI_Transceivers
BlindDFE Part (algorithm)
BlindFFE Part (algorithm)
CDR Part (algorithm)
ClockTimes Part (algorithm)
Coder64b66b Part (algorithm)
Coder8b10b Part (algorithm)
Decoder64b66b Part (algorithm)
Decoder8b10b Part (algorithm)
DFE Part (algorithm)
FFE Part (algorithm)
PhaseDetector Part (algorithm)
PulseShaping Part (algorithm)
SDomainIIR Part (algorithm)
TimeResponseFIR Part (algorithm)
VCO Part (algorithm)
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 ClockTimes Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ClockTimes
(algorithm)

Clock signal to clock times converter
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 ClockTimes

Description: Clock signal to clock times converter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: ClockTimes Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

SampleInterval Sample interval (time step between
adjacent clock samples)

1e-10 s Float NO

ClockEdge Clock edge option for clock times: Negative
clock edge, Positive clock edge

Negative
clock edge

 Enumeration NO

Offset Offset for clock times 0 s Float NO

 Input Ports

Port Name Signal Type Optional

1 clock int NO

 Output Ports

Port Name Signal Type Optional

2 time real NO

 Notes and Equations

The ClockTimes model converts clock signal to clock times.1.
According to IBIS Version 5.0  specification, AMI_GetWave function can return2.
clock times that represent the times at which clock signal at the output of the clock
recovery loop crosses the logic threshold. The input samples are assumed to be
sampled at exactly one half clock period after a clock time.
This model consumes one sample from the clock port and produces one sample to3.
the time port in every execution.
Parameter SampleInterval specifies the sample interval (1 / sample rate) of the4.
input clock signal.
Parameter ClockEdge specifies which clock edge to be timed.5.
Parameter Offset specifies the offset to be used for clock times.6.
Let c[n] represent the input clock samples. A positive clock edge occurs at sample7.
instance n if c[n] > 0 and c[n-1] <= 0. A negative clock edge occurs at sample
instance n if c[n] <= 0 and c[n-1] > 0.
For samples that do not belong valid clock time instances (positive or negative clock8.
edges), the value of the output sample is -1. AMI_GetWave generated by SystemVue
will remove negative-valued clock times. For more information, please refer to
Understanding AMI Model Generation (users).

http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
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 DFE Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DFE (algorithm) Decision-Feedback Equalizer

BlindDFE
(algorithm)

Blind Decision Feedback Equalizer
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 DFE

Description: Decision-Feedback Equalizer
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: DFE Part (algorithm), BlindDFE Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ChannelImpulse Channel impulse response vector
representing the overall impulse response
from bit source to the input of FFE

[1]  None NO

SamplesPerBit  16  Integer NO

NumDFETaps Number of DFE taps 0  Integer NO

SampleInterval Sample interval associated with the
channel impulse response

1e-10 s Float NO

LogicLevel Logic level of the binary bits injected into
the channel. Bit 1 and 0 are represented
by LogicLevel and -LogicLevel.

1.0 V Float NO

BitSampling Bit sampling point: Negative clock edge,
Positive clock edge

Positive
clock edge

 Enumeration NO

AdaptiveEQ Adaptive equalization option: NO, YES YES  Enumeration NO

Alpha Taps update factor 0.01  Float NO

StartThreshold Magnitude threshold of the input signal to
start the adaptive process

0  Float NO

PrecedingEqualizer Equalizer preceded before DFE: None,
FFE

None  Enumeration NO

FFENumPrecursorTaps Number of FFE precursor taps. Total FFE
taps = NumPrecursorTaps +
NumPostcursorTaps + 1.

0  Integer NO

FFENumPostcursorTaps Number of FFE postcursor taps. Total FFE
taps = NumPrecursorTaps +
NumPostcursorTaps + 1.

0  Integer NO

FFENormalization Normalize FFE coefficients to have unit
sum: NO, YES

NO  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

2 clock int NO

 Output Ports

Port Name Signal Type Optional

3 output real NO

4 bit int NO

 Notes/Equations

DFE implements adaptive decision feedback equalizer and automatically computes1.
optimal bit-level DFE taps based on the given channel impulse response (parameter
ChannelImpulse).
This model consumes one sample from the input port and one sample from the2.
clock port and produces one sample to the output port and one sample to the bit
port in every execution.
Parameter PrecedingEqualizer specifies the equalizer precedes DFE. If3.
PrecedingEqualizer is set to None, parameter ChannelImpulse specifies the
overall impulse response of the system starting right after the bit source and
stopping right before the DFE. If PrecedingEqualizer is set to FFE, parameter
ChannelImpulse specifies the overall impulse response of the system starting right
after the bit source and stopping right before the FFE (algorithm). When computing
optimal DFE taps, the effect of FFE (algorithm) will be taken into account.
Parameter NumDFETaps specifies the number of desired DFE taps.4.
Please refer to FFE (algorithm) for parameters ChannelImpulse, SamplesPerBit,5.
SampleInterval, and LogicLevel.
Please refer to BlindDFE (algorithm) for parameters BitSampling, AdaptiveEQ,6.
Alpha, and StartThreshold.
If PrecedingEqualizer is set to FFE, please refer to FFE (algorithm) for parameters7.
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FFENumPrecursorTaps, FFENumPostcursorTaps, and FFENormalization.
Please refer to BlindDFE (algorithm) for DFE operation.8.
Use BlindDFE (algorithm) instead of DFE (algorithm) if you want to specify a set of9.
custom taps.
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 JitterGenerator Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

JitterGenerator
(algorithm)

Jitter generator

 JitterGenerator

Description: Jitter generator
Domain: Timed
C++ Code Generation Support: YES
Associated Parts: JitterGenerator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

VHigh the Logic-1 voltage level 1 V Float NO

VLow the Logic-0 voltage level -1 V Float NO

EdgeTime the rise and fall times (in second) : must be in the
range between 0.0 and 0.5 UI

0.0 s Float NO

SamplesPerUI the number of samples per UI 16  Integer NO

InitialState the initial state for the sequence 0  Integer NO

DCD Duty-cycle distortion (in second): must be in the range
between 0.0 and 1.0 UI

0 s Float YES

PJ_Amplitude Periodic jitter amplitude in sec 0 s Float YES

PJ_Frequency Periodic jitter frequency in Hz 0 Hz Float YES

RJ RMS random jitter (in second):must be in the range
between 0.0 and 1.0 UI

0 s Float YES

 Input Ports

Port Name Description Signal Type Optional

1 Input the input sequences int NO

 Output Ports

Port Name Description Signal Type Optional

2 Output the output sampled
bits

real NO

 Notes/Equations

This model is used to apply random, periodic and DCD jitter to the input bit.1.
Upsampling with rise/fall edge is also applied.
Each firing,2.

1 token is consumed at the input port.
SamplesPerUI tokens are produced at the output port. It equals to 16 by
default.

Parameter details:3.
VHigh specifies the logic-1 voltage level of the input sequences.
VLow specifies the logic-0 voltage level of the input sequences.
EdgeTime specifies the rise/fall times in second.
SamplesPerUI specifies the number of samples for one input bit.
InitialState specifies the initial state of the input sequence.
DCD specifies the Duty-cycle distortion in second.
PJ_Amplitude specifies the periodic Jitter amplitude in second.
PJ_Frequency specifies the periodic Jitter frequency in Hz.
RJ specifies the random Jitter in second.

The input sequences should be logical bit which can only be 1 or 0. This is a timed4.
model so that bit rate can be got from the input port. Timing Jitter is defined as the
deviation of a signal transition from its ideal position in time. The total Jitter consists
of two components: the Deterministic Jitter(DJ) and Random Jitter(RJ).

DCD is a part of Deterministic Jitter which is caused by a difference in
propagation delay between low to high transitions and high to low transitions.
Assuming the ideal signal has 50% duty cycle, the deviated signal with DCD has
non-50% duty cycle.
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Periodic Jitter is a part of Deterministic Jitter which is caused by electromagnetic
interference. This type of deviation is referred to as Sinusoidal which repeats in

a cyclic fashion. The model is represented as:

where  denotes the total periodic jitter, N is the number of cosine
components(tones), Ai is the amplitude in units of time,  is the modulation
frequency, t is the time and  is the initial phase. This model is applied as:

.
Random Jitter which comes from device noise sources such as thermal and
flicker noise is characterized by both Gaussian and non-Gaussian distributions.
This model only support Gaussian distribution with mean value equals to 0 and
standard deviation equals to 1.

This model causes one bit time delay.5.

 References

Kyung Ki Kim, Jing Huang, Yong-Bin Kim, Fabrizio Lombard. "On the Modeling and1.
Analysis of Jitter in ATE Using Matlab". Proceedings of the 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 285-293,2005.
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 PhaseDetector Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PhaseDetector
(algorithm)

PhaseDetector

 PhaseDetector

Description: PhaseDetector
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: PhaseDetector Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

BitCenter Bit center and clock edge alignment: Negative
clock edge, Positive clock edge

Positive clock
edge

 Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 signal real NO

2 clock int NO

 Output Ports

Port Name Signal Type Optional

3 phaseError real NO

 Notes/Equations

PhaseDetector detects phase difference (phase error) between input signal and1.
reference clock.
The phase detection method used in this model is derived from: C. R. Hogge Jr. "A2.
self correcting clock recovery circuit", IEEE Transactions on Electron Devices, 1985.
This model consumes one sample from signal and one sample from clock and3.
produces one sample to phaseError in every execution.
PhaseDetector assumes signal is in NRZ (non-return-to-zero) format. If a signal4.
sample is larger than 0, it is treated as bit level 1, otherwise, it is treated as bit level
0.
PhaseDetector treats positive-valued clock sample as clock level 1 and treats non-5.
positive-valued clock sample as clock level 0.
The PhaseDetector detects phase difference (phase error) between the bit transition6.
of the input signal and the clock edge.
Suppose BitCenter is set to Negative clock edge, signal and clock are synchronized7.
(no phase error) if the negative clock edge is aligned with the bit center. On the
other hand, suppose BitCenter is set to Positive clock edge, there is no phase error if
the positive clock edge is aligned with the bit center.
PhaseDetector can only detect phase error when there is a bit transition in the input8.
signal. When there is a bit transition, the phase error is outputted at the next positive
clock edge if BitCenter is set to Negative clock edge. Otherwise (BitCenter is set to
Positive clock edge), the phase error is outputted at the next negative clock edge. For
all other situations, phaseError outputs 0.
Phase error is computed in rad. However, due to discrete-time implementation, the9.
number of possible phase error values are equivalent to the number of samples per
bit (samples per unit interval), which are equally spaced in the range of 
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 VCO Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VCO
(algorithm)

Voltage Controlled
Oscillator

 VCO

Description: Voltage Controlled Oscillator
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: VCO Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

SampleInterval Sample interval in sec. 1e-10 s Float NO

Frequency Fundamental oscillator frequency in Hz. 1e9 Hz Float NO

Sensitivity Sensitivity in Hz/V. 1  Float NO

InitialPhase Initial phase in rad. 0 deg Float NO

Amplitude Output amplitude in volt. 1 V Float NO

 Input Ports

Port Name Signal Type Optional

1 vin real NO

 Output Ports

Port Name Signal Type Optional

2 vout real NO

3 clock int NO

 Notes/Equations

VCO implements voltage-controlled oscillator.1.
This model consumes one sample from vin and produces one sample to vout and to2.
clock in every execution.
The continuous-time input-output relationship of voltage-controlled oscillator can be3.
expressed as , where  represents input voltage
vin,  represents output voltage vout,  represents oscillator fundamental
Frequency in Hz,  represents Sensitivity in Hz/volt,  represents InitialPhase in
rad, and  represents Amplitude in volt.
VCO is implemented as discrete-time version of the above equation. The sampling4.
time instances are at , where  and  represents sampling TimeStep.
The clock port outputs square clock waveform samples. The clock samples are5.
generated by slicing 

using the following equation:
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 WriteFlexDCAFile Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

WriteFlexDCAFile
(algorithm)

Write samples in a text file that conforms to the Agilent FlexDCA Software
requirements

 WriteFlexDCAFile

Description: Write samples in a text file that conforms to the Agilent FlexDCA Software
requirements
Domain: Timed
C++ Code Generation Support: YES
Associated Parts: WriteFlexDCAFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FileName Wave samples text file MyPatternWave.txt  Filename NO

NumToSkip Number of bits to skip before writing
to text file.

0  Integer NO

NumToCollect Number of bits to be collected and
written into the text file.

1  Integer NO

PeriodicPattern Bits pattern is periodic (Required for
jitter analysis): NO, YES

YES  Enumeration NO

BitRate Original bit rate. Sample_Rate Hz Float NO

PatternLength Number of bits per period for periodic
bit pattern.

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 m_cbInput real NO

 Notes/Equations
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 BlindFFE Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BlindFFE
(algorithm)

Blind Feed-Forward
Equalizer

FFE (algorithm) Feed-Forward Equalizer
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 BlindFFE

Description: Blind Feed-Forward Equalizer
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: FFE Part (algorithm), BlindFFE Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Coefficients Bit level FFE taps [1]  None NO

SamplesPerBit Number of samples per bit 16  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

BlindFFE implements feed-forward equalizer based on the given FFE taps (parameter1.
Coefficients).
This model consumes one sample from the input port and produces one sample to2.
the output port.
It is called "blind" because no training sequence is used to compute the taps.3.
Parameter Coefficients specifies the FFE taps. The taps are assumed at bit level to4.
remove inter-symbol interference (ISI).
Parameter SamplesPerBit specifies the number of samples per bit used in the5.
simulation, which is equivalent to bit time (unit interval (UI)) divided by sample
interval.
Let 6.

and y[n] denote input sample sequence and output sample sequence respectively.
Let

denote FFE taps, where M is the number of taps. Let N denote number of samples per
bit. The FFE operation can be expressed as:

See also FFE (algorithm). FFE (algorithm) automatically computes optimal taps based7.
on the given channel impulse response.
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 CDR Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CDR
(algorithm)

Clock and Data
Recovery
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 CDR

Description: Clock and Data Recovery
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: CDR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

SamplesPerBit Number of samples per bit 16  Integer NO

ZeroCrossing Clock edge at zero crossing point: Negative
clock edge, Positive clock edge

Negative
clock edge

 Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 clock int NO

 Notes/Equations

The CDR (clock and data recovery) model implements a very simple clock recovery1.
mechanism based on zero crossing detection.
This model is mainly served as a C++ template for users to create custom CDR2.
model.
For practical clock recovery, SystemVue provides PhaseDetector (algorithm) and VCO3.
(algorithm) models to construct a PLL (phase locked loop) based clock recovery
system.
This model consumes one sample from the input port and produces one sample to4.
the clock port in every execution.
Parameter SamplesPerBit specifies the number of samples per bit used in the5.
simulation, which is equivalent to bit time (unit interval (UI)) divided by sample
interval.
This model detects zero crossing in the input signal, and uses the zero crossing point6.
as positive clock edge (In other words, if locked, negative clock edge is aligned with
bit center). If there is no zero-crossing, the clock period is maintained at
SamplesPerBit samples.
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 WriteN1000AFile Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

WriteN1000AFile
(algorithm)

Write samples in a text file that conforms to the Agilent N1000A Software
requirements
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 WriteN1000AFile

Description: Write samples in a text file that conforms to the Agilent N1000A Software
requirements
Domain: Timed
C++ Code Generation Support: YES
Associated Parts: WriteN1000AFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FileName Wave samples text file MyPatternWave.txt  Filename NO

NumToSkip Number of bits to skip before writing
to text file.

0  Integer NO

NumToCollect Number of bits to be collected and
written into the text file.

1  Integer NO

PeriodicPattern Bits pattern is periodic (Required for
jitter analysis): NO, YES

YES  Enumeration NO

BitRate Original bit rate. Sample_Rate Hz Float NO

PatternLength Number of bits per period for periodic
bit pattern.

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 m_cbInput real NO

 Notes/Equations
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 PulseShaping Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PulseShaping
(algorithm)

Jitter generator
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 PulseShaping

Description: Jitter generator
Domain: Timed
C++ Code Generation Support: YES
Associated Parts: PulseShaping Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

VHigh the Logic-1 voltage level 1 V Float NO

VLow the Logic-0 voltage level -1 V Float NO

EdgeTime the rise and fall times (in second) : must be in the
range between 0.0 and 0.5 UI

0.0 s Float NO

SamplesPerUI the number of samples per UI 16  Integer NO

InitialState the initial state for the sequence 0  Integer NO

DCD Duty-cycle distortion (in second): must be in the range
between 0.0 and 1.0 UI

0 s Float YES

PJ_Amplitude Periodic jitter amplitude in sec 0 s Float YES

PJ_Frequency Periodic jitter frequency in Hz 0 Hz Float YES

RJ RMS random jitter (in second):must be in the range
between 0.0 and 1.0 UI

0 s Float YES

 Input Ports

Port Name Description Signal Type Optional

1 Input the input sequences int NO

 Output Ports

Port Name Description Signal Type Optional

2 Output the output sampled
bits

real NO

 Notes/Equations
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 FFE Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FFE (algorithm) Feed-Forward Equalizer

BlindFFE
(algorithm)

Blind Feed-Forward
Equalizer
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 FFE

Description: Feed-Forward Equalizer
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: FFE Part (algorithm), BlindFFE Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ChannelImpulse Channel impulse response vector representing
the overall impulse response from bit source to
the input of FFE

[1]  None NO

SamplesPerBit Number of samples per bit 16  Integer NO

NumPrecursorTaps Number of precursor taps. Total FFE taps =
NumPrecursorTaps + NumPostcursorTaps + 1.

0  Integer NO

NumPostcursorTaps Number of postcursor taps. Total FFE taps =
NumPrecursorTaps + NumPostcursorTaps + 1.

0  Integer NO

SampleInterval Sample interval associated with the channel
impulse response

1e-10 s Float NO

LogicLevel Logic level of the binary bits injected into the
channel. Bit 1 and 0 are represented by
LogicLevel and -LogicLevel.

1.0 V Float NO

Normalization Normalize FFE coefficients to have unit sum:
NO, YES

NO  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

FFE implements feed-forward equalizer and automatically computes optimal bit-level1.
FFE taps based on the given channel impulse response (parameter ChannelImpulse
).
This model consumes one sample from the input port and produces one sample to
the output port.
Parameter ChannelImpulse specifies the overall impulse response of the system2.
starting right after the bit source and stopping right before the FFE, which can
possibly include transmitter, channel, and receiver frond-end, etc.

Let 

denote such impulse response specified by ChannelImpulse, where L is the
length of the given channel impulse response.

Parameter SamplesPerBit specifies the number of samples per bit used in the3.
simulation, which is equivalent to bit time (unit interval (UI)) divided by sample
interval.
Parameter NumPrecursorTaps and NumPostcursorTaps specify the number of4.
precursor taps N1 and the number of postcursor taps N2 to be used in FFE. The total
number of FFE taps including the main cursor is N1+N2+1.
Parameter LogicLevel specifies logic one voltage, LogicLevel, and logic zero voltage, -5.
LogicLevel, in the NRZ (non-return-to-zero) format. The bit stream injected into the
channel is assumed in the NRZ format.

Let b[n] = 1 or 0 represent random bits.
Let N denote number of samples per bit.
Set V = LogicLevel.
The sampled version of bits b[k] in the NRZ format can be expressed in z[n] as:

Parameter SampleInterval specifies sampling interval 6.

used in the simulation. Sample interval is equivalent to 1 / sampling rate.
The FFE input signal x[n] is assumed to be the output of channel h when the input to7.
the channel is z[n]. Assuming channel h is a LTI (linear time-invariant) system, then
x[n] can be expressed as 
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The convolution in this context involves a scaling factor of sample interval. This
convention is commonly adopted by many channel simulators.
ChannelImpulse h[n] should be scaled properly to take sample interval into
account.

Based on the given channel impulse and other parameters, FFE automatically8.
computes a set of bit-level taps  to remove ISI (inter symbol
interference). The number of FFE taps M is N1_N2_1.
When parameter Normalization is set to NO, the amplitude of output samples is9.
approximately in the range of 1 and -1. When parameter Normalization is set to
YES, then w[n] is normalized to have unit sum, i.e., 
Let y[n] denote the output samples of FFE. The FFE operation can be expressed as:10.

See also BlindFFE (algorithm). Use BlindFFE (algorithm) instead of FFE if you want to11.
specify a set of custom taps.
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 Coder64b66b Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Coder64b66b
(algorithm)

64b/66b
encoder
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 Coder64b66b

Description: 64b/66b encoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Coder64b66b Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Scrambler scramble or
not: NO,
YES

NO  Enumeration NO

ScramblerInit initial state
of scrambler

[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]  Integer
array

NO

 Input Ports

Port Name Signal Type Optional

1 input int NO

2 CtrlBits int NO

 Output Ports

Port Name Signal Type Optional

3 output int NO

 Notes/Equations

The 64B/66B transmission code is used to improve the transmission characteristics of1.
information and to support transmission of control and data characters. The
encodings defined by the transmission code ensure that sufficient transitions are
present in the PHY bit stream to make clock recovery possible at the receiver. Such
encoding also greatly increases the likelihood of detecting any single or multiple bit
errors that may occur during transmission and reception of information. In addition,
the synchronization headers of the code enable the receiver to achieve block
alignment on the incoming PHY bit stream. The 64B/66B transmission code has a
high transition density and is a run-length-limited code.
64B/66B encodes 8 data octets or control characters into a block. Blocks containing2.
control characters also contain a block type field. Data octets are labeled D 0 to D 7.

Control characters other than /O/, /S/ and /T/ are labeled C0 to C 7. The control

character for ordered_set is labeled as O 0 or O 4 since it is only valid on the first

octet of the XGMII. The control character for start is labeled as S 0 or S 4 for the

same reason. The control character for terminate is labeled as T 0 to T 7.

Two consecutive XGMII transfers provide eight characters that are encoded into one
66-bit transmission block. The subscript in the above labels indicates the position of
the character in the eight characters from the XGMII transfers.
Contents of block type fields, data octets and control characters are shown as
hexadecimal values. The LSB of the hexadecimal value represents the first
transmitted bit. For instance, the block type field 0x1e is sent from left to right as
01111000. The bits of a transmitted or received block are labeled TxB<65:0> and
RxB<65:0> respectively where TxB<0> and RxB<0> represent the first transmitted
bit. The value of the sync header is shown as a binary value. Binary values are shown
with the first transmitted bit (the LSB) on the left.
Blocks consist of 66 bits. The first two bits of a block are the synchronization header3.
(sync header). Blocks are either data blocks or control blocks. The sync header is 01
for data blocks and 10 for control blocks. Thus, there is always a transition between
the first two bits of a block. The remainder of the block contains the payload. The
payload is scrambled and the sync header bypasses the scrambler. Therefore, the
sync header is the only position in the block that always contains a transition. This
feature of the code is used to obtain block synchronization.
Data blocks contain eight data characters. Control blocks begin with an 8-bit block
type field that indicates the format of the remainder of the block. For control blocks
containing a Start or Terminate character, that character is implied by the block type
field. Other control characters are encoded in a 7-bit control code or a 4-bit O Code.
Each control block contains eight characters.
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The format of the blocks is as shown in 64B/66B Encoder. In the figure, the column
labeled Input Data shows, in abbreviated form, the eight characters used to create
the 66-bit block. These characters are either data characters or control characters
and, when transferred across the XGMII interface, the corresponding TXC or RXC bit
is set accordingly. Within the Input Data column, D0 through D7 are data octets and
are transferred with the corresponding TXC or RXC bit set to zero. All other
characters are control octets and are transferred with the corresponding TXC or RXC
bit set to one. The single bit fields (thin rectangles with no label in the figure) are
sent as zero and ignored upon receipt.
Bits and field positions are shown with the least significant bit on the left.
Hexadecimal numbers are shown in normal hexadecimal. For example the block type
field 0x1e is sent as 01111000 representing bits 2 through 9 of the 66 bit block. The
least significant bit for each field is placed in the lowest numbered position of the
field.
 

 64B/66B Encoder

Ordered sets are used to extend the ability to send control and status information4.
over the link such as remote fault and local fault status. Ordered sets consist of a
control character followed by three data characters. Ordered sets always begin on the
first octet of the XGMII. 10 Gigabit Ethernet uses one kind of ordered_set: the
sequence ordered_set. The sequence ordered_set control character is denoted /Q/.
An additional ordered_set, the signal ordered_set, has been reserved and it begins
with another control code. The 4-bit O field encodes the control code. See Table 49-1
in IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications, Amendment:
Media Access Control (MAC) Parameters, Physical Layers, and Management
Parameters for 10 Gb/s Operation, Section 49.2. for the mappings.
A block is invalid if any of the following conditions exists:5.
a) The sync field has a value of 00 or 11.
b) The block type field contains a reserved value.
c) Any control character contains a value not in Table 49-1.
d) Any O code contains a value not in Table 49-1.
e) The set of eight XGMII characters does not have a corresponding block format in
64B/66B Encoder.
If parameter Scrambler is set as NO, the payload of the block is not scrambled. If it is6.
set as YES, the payload of the block is scrambled with a self-synchronizing scrambler.
The scrambler shall produce the same result as the implementation shown in
Scrambler. This implements the scrambler polynomial: G(x) = 1 + x39 + x58. The
parameter ScramblerInit is the initial value of the scrambler according to Scrambler.
Note that, in this 58-element array parameter ScramblerInit , the first element is the
initial value in S0 while the 58th element is the initial value in S57. The scrambler is
run continuously on all payload bits. The sync header bits bypass the scrambler.
 

 Scrambler
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Each firing,7.
64 tokens are consumed at pin input, and 8 tokens are consumed at pin CtrlBits.
66 tokens are produced at pin output.
The input at pin input are 8 data octets or control characters. For each data
octet or control character, the LSB is input first.
Each token at pin CtrlBits indicates the type of corresponding octet at pin input.
0 indicates data octet while 1 indicates control character.
All the bits are input and output serially.

 

 References

IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision detection1.
(CSMA/CD) access method and physical layer specifications, Amendment: Media
Access Control (MAC) Parameters, Physical Layers, and Management Parameters for
10 Gb/s Operation, Section 49.2.
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 TimeResponseFIR Part
 

Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

TimeResponseFIR
(algorithm)
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 TimeResponseFIR

Description:
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: TimeResponseFIR Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ResponseType Type of Response specified:
Impulse Response, Step Response

Step
Response

 Enumeration NO

Response Time Response Coefficients   Floating point
array

NO

ResponseTimeStamps Time Stamps of time response
coefficients, must be in ascending
order

  Floating point
array

NO

SampleRate Input signal sampling rate 10.3125e9*16 Hz Float NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

TimeResponseFIR can be used to recharacterize step or impulse response specified with
Response and ResponseTimeStamps at a user specified TimeStep. The user specefied
Response is usually measured either in the lab using measurement equipments or using
circuit simulators such as H-Spice. If the ResponseType is Impulse Response then a 4-
point Lagrange interpolation is performed to calculate recharacterized impulse response
with specified Time Step. If the ResponseType is Step Response then analytical
differentiation is performed on input response in the time vicinity of each coefficient of
recharacterized impulse response to calculate the value of the coefficient at the accurate
time specified using Time Step. The recharacterized impulse response coefficients are then
used as FIR taps. In case of ResponseType being Step Response, output of the FIR is
also multiplied with TimeStep value.

The number of coefficients in the recharacterized impulse response are calculated as (
max ( ResponseTimeStamps ) - min ( ResponseTimeStamps ) ) / TimeStep.

The values in ResponseTimeStamps must be positive and in non-repeating ascending
order.
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 Decoder8b10b Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Decoder8b10b
(algorithm)

8b/10b decoder
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 Decoder8b10b

Description: 8b/10b decoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Decoder8b10b Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Delay number of 10-bit symbol
delay

0  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input int NO

 Output Ports

Port Name Signal Type Optional

2 output int NO

3 Kout int NO

 Notes/Equations

The 8B/10B decoder is the reverse procedure of 8B/10B encoder. It's illustrated in1.
Decoder 8B/10B.
 

 Decoder 8B/10B

For more information on the 8B/10B Coder, refer to Coder8b10b (algorithm).
Parameter Description:2.
Delay specifies the number of 10-bit symbol delay. The decoder begins to work after
10*Delay input tokens.
Each firing,3.

Ten tokens are consumed at pin input. One token is produced at pin Kout
(control character), and eight tokens are produced at pin output.
All the bits are input and output serially.
The input at pin input is the 10-bit transmission code-group. The LSB bit (a) is
input first, while the MSB (j) is input last.
The output at pin Kout is the decoded control variable Z, in which 0 means the
value D and 1 means the value K.
The output at pin output is the decoded information octet. The LSB bit (A) is
output first, while the MSB (H) is output last.

 

 References

IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple access with collision1.
detection (CSMA/CD) access method and physical layer specifications, Section
36.2.4.
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 Coder8b10b Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Coder8b10b
(algorithm)

8b/10b encoder
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 Coder8b10b

Description: 8b/10b encoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Coder8b10b Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 Din int NO

2 Kin int NO

 Output Ports

Port Name Signal Type Optional

3 output int NO

 Notes/Equations

The 8B/10B transmission code is used to improve the transmission characteristics of1.
information. The encodings defined by the transmission code ensure that sufficient
transitions are present in the PHY bit stream to make clock recovery possible at the
receiver. Such encoding also greatly increases the likelihood of detecting any single
or multiple bit errors that may occur during transmission and reception of
information. In addition, some of the special code-groups of the transmission code
contain a distinct and easily recognizable bit pattern that assists a receiver in
achieving code-group alignment on the incoming PHY bit stream. The 8B/10B
transmission code has a high transition density, is a run-length-limited code, and is
dc-balanced. The transition density of the 8B/10B symbols ranges from 3 to 8
transitions per symbol.
8B/10B transmission code uses letter notation for describing the bits of an unencoded2.
information octet and a single control variable. Each bit of the unencoded information
octet contains either a binary zero or a binary one. A control variable, Z, has either
the value D or the value K. When the control variable associated with an unencoded
information octet contains the value D, the associated encoded code-group is
referred to as a data code-group. When the control variable associated with an
unencoded information octet contains the value K, the associated encoded code-
group is referred to as a special code-group.
The bit notation of A, B, C, D, E, F, G, H for an unencoded information octet is used
in the description of the 8B/10B transmission code. The bits A, B, C, D, E, F, G, H are
translated to bits a, b, c, d, e, i, f, g, h, j of 10-bit transmission code-groups. The
8B/10B encoder is illustrated in Coder8b/10b. Each valid code-group has been given
a name using the following convention: /Dx.y/ for the 256 valid data code-groups,
and /Kx.y/ for special control code-groups, where x is the decimal value of bits
EDCBA, and y is the decimal value of bits HGF. For detailed information, refer to
Tables 36-1 and 36-2 in IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple
access with collision detection (CSMA/CD) access method and physical layer
specifications, Section 36.2.4.
 

 8B/10B Encoder

Each firing,3.
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Eight tokens are consumed at pin Din, and one token is consumed at pin Kin
(control character). Ten tokens are produced at pin output.
All the bits are input and output serially.
The input at pin Kin is the control variable Z, in which 0 means the value D and
1 means the value K.
The input at pin Din is the unencoded information octet. The LSB bit (A) is input
first, while the MSB (H) is input last.
The output at pin output is the 10-bit transmission code-group. The LSB bit (a)
is output first, while the MSB (j) is output last.

 

 References

IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple access with collision1.
detection (CSMA/CD) access method and physical layer specifications, Section
36.2.4.
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 Decoder64b66b Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Decoder64b66b
(algorithm)

64b/66b
decoder
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 Decoder64b66b

Description: 64b/66b decoder
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Decoder64b66b Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Scrambler scramble or
not: NO,
YES

NO  Enumeration NO

ScramblerInit initial state
of scrambler

[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]  Integer
array

NO

Delay number of
66-bit
symbol
delayed for
descrambler

0  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input int NO

 Output Ports

Port Name Signal Type Optional

2 output int NO

3 CtrlBits int NO

 

 Notes/Equations

The 64B/66B decoder is the reverse procedure of the 64B/66B encoder. For more1.
information on the 64B/66B Coder, refer to Coder64b66b (algorithm).
Parameter Description:2.
If parameter Scrambler is set as NO, the payload of the block is not scrambled. If it is
set as YES, the payload of the block is scrambled with a self-synchronizing scrambler.
The scrambler shall produce the same result as the implementation shown in
Scrambler. This implements the scrambler polynomial: G(x) = 1 + x39 + x58. The
parameter ScramblerInit is the initial value of the scrambler according to Scrambler.
Note that, in this 58-element array parameter ScramblerInit, the first element is the
initial value in S0 while the 58th element is the initial value in S57. The scrambler is
run continuously on all payload bits. The sync header bits bypass the scrambler.
 

 Scrambler

Parameter Delay specifies the number of 66-bit symbol delay. The decoder begins to
work after 66* Delay input tokens.
Each firing,3.

66 tokens are consumed at pin input. 64 tokens are produced at pin output, and
8 tokens are produced at pin CtrlBits (with each corresponding to 8 decoded
bits).
The output at pin output are 8 data octets or control characters. For each data
octet or control character, the LSB is input first.
Each token at pin CtrlBits indicates the type of corresponding output octet at pin
output. 0 indicates data octet while 1 indicates control character.
All the bits are input and output serially.
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 References

IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision detection1.
(CSMA/CD) access method and physical layer specifications, Amendment: Media
Access Control (MAC) Parameters, Physical Layers, and Management Parameters for
10 Gb/s Operation, Section 49.2.
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 BlindDFE Part
Categories: C++ Code Generation (algorithm), IBIS-AMI Transceivers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BlindDFE
(algorithm)

Blind Decision Feedback Equalizer

DFE (algorithm) Decision-Feedback Equalizer
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 BlindDFE Part

Description: Blind Decision Feedback Equalizer
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: DFE Part (algorithm), BlindDFE Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Coefficients Bit level DFE taps [0]  None NO

BitSampling Bit sampling point: Negative clock edge,
Positive clock edge

Positive clock
edge

 Enumeration NO

AdaptiveEQ Adaptive equalization option: NO, YES YES  Enumeration NO

Alpha Taps update factor 0.01  Float NO

ScalingFactor Scaling equalized signal before slicer 1.0  Float NO

StartThreshold Magnitude threshold of the input signal to
start the adaptive process

0  Float NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

2 clock int NO

 Output Ports

Port Name Signal Type Optional

3 output real NO

4 bit int NO

 Notes/Equations

BlindDFE implements adaptive decision feedback equalizer.1.
This model consumes one sample from the input port and one sample from the2.
clock port and produces one sample to the output port and one sample to the bit
port in every execution.
It is called "blind" because no training sequence is used to compute the taps.3.
Parameter Coefficients specifies a set of DFE taps 4.

.
Let x[n] represent the input samples and y[n] represent the output samples.5.
Let 6.

represent the decision bits in the feedback delay line. In each execution of BlindDFE,

.
Let c[n] represent the input clock samples. A positive clock edge occurs at sample7.
instance n if c[n] > 0 and c[n-1] <= 0. A negative clock edge occurs at sample
instance n if c[n] <= 0 and c[n-1] > 0.
Parameter BitSampling specifies clock edges for the decision instances and update-8.
shift instances. When BitSampling is set to Negative clock edge, then decision
instances are at negative clock edges and update-shift instances are at positive clock
edges. When BitSampling is set to Positive clock edge, then decision instances are
at positive clock edges and update-shift instances are at negative clock edges.
At decision instances, y[n] is scaled by parameter ScalingFactor (denoted as C)9.
before sending to the slicer. The decision bit b[k] is computed as:

The decision bits can be obtained from the bit output port.
DFE error is defined as  at decision instances.10.
Parameter AdaptiveEQ specifies whether adaptive equalization is turned on. If11.
parameter AdaptiveEQ is set to YES, taps are updated at update-shift instances
based on the LMS adaptive method: 

for
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, where

is specified by parameter Alpha. In this case, parameter Coefficients specifies only
the initial tap values.
On the other hand, if parameter AdaptiveEQ is set to NO, DFE taps are fixed12.
throughout simulation.
At update-shift instances, feedback delay line of the past decision bits are updated13.
as:  for .
When adaptive equalization is turned on, parameter StartThreshold specifies when14.
to turned on the adaptive process based on the magnitude threshold for the input
signal. At initial decision instances, if the magnitude of the input signal is less than
the threshold, taps will not be updated. This prevents updating taps from false errors
due to initial transient stage of the input signal. Once the magnitude of the input
signal exceeds the threshold at a particular decision instance, the adaptive process is
turned on afterward.
See also DFE (algorithm). DFE (algorithm) automatically computes optimal taps15.
based on the given channel impulse response.
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 SignalDownloader_E4438C Part
 Signal Downloader for Agilent ESG E4438C and MXG N5182A RF Signal Synthesizers.

Categories: Instrumentation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

SignalDownloader_E4438C
(algorithm)

<\!\--start_panel_strip-\-><\!\--end_panel_strip-\->

 SignalDownloader_E4438C

Description: SignalDownloader
Category: Instrumentation
Domain:
Associated Part: SignalDownloader E4438C Part (algorithm)

 Basic Parameters
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Name Description Default Symbol Unit Type Range

HWAvailable YES: HW available.
NO: HW not exist,
communication to
HW supressed

NO   enum  

IOType Instrument
Communication
type: 'LAN', 'TCPIP',
or 'GPIB'

LAN   string  

IOBoardID For GPIB IO type
only. Identify the
IO board index.
Typically 0 from
default PC IO setup

0   string  

PrimAddress Primary address: IP
address (LAN) or
instrument GPIB
address (GPIB)

111.222.333.444   string  

SecAddress Secondary address:
Port number (LAN)
or secondary
address (GPIB)

5025   int  

TimeStart Time to start
waveform recording

Start_Time  second float [Start_Time,Stop_Time]

TimeStop Time to stop
waveform recording

Stop_Time  second float [Start_Time,Stop_Time]

FileName File name for the
downloaded
waveform

esg.wfm   string  

RFPower RF output power
level in dBm

-35   dBm  

ArbOn Turn ON/OFF ARB
and mpdulation

OFF   enum  

RFPowerOn Turn ON/OFF RF
output

OFF   enum  

EventMarkers Enable event
marker pulse
outputs: no output;
Event1 output only;
Event2 output only;
or both Event1 and
Event2 outputs

NONE   enum  

MarkerStart Sample index to
start event marker
pulse (Note that
sample index starts
at 1)

1   int [1,Num_Samples]

MarkerLength Duration of event
marker pulse
measured in
number of
waveform samples

10   int [1,Num_Samples]

ShowAdvancedParams To display
parameters for
advanced
instrument setups

NO   enum  

 Advanced Parameters (after setting ShowAdvancedParams to YES)
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Name Description Default Symbol Unit Type Range

Reset Reset the instrument before
everything else. YES: reset
instrument; NO: skip instrument
reset

YES   enum  

IQModFilter Filter applied to played out IQ
(ARB) waves: THROUGH (no
filter applied); 2.1MHz Low Lass
Filter; 40MHz Low pass Filter

THROUGH   enum  

SCPICommands Additonal SCPI commands
before turning ARB and RF
output ON or OFF

   string  

DownloadSize Waveform download size. The
number of samples to be
streamed into the instrument
per download operation

Num_Samples   int [1,Num_Samples]

AutoScale Normalize waveform into [-1, 1]
Volt range before downloading.
YES: auto scale; NO: no auto
scale

YES   enum  

InstructionTimeout Instrument instruction timeout
limit

10  second float  

DoDownload Request to download waveform
to instrument

YES   enum  

ARBRefSrc Source for ARB reference
frequency, either: provided
internally by the instrument
(INTERNAL) or provided by an
external instrument (EXTERNAL)

INTERNAL   enum  

ARBRefFreq ARB reference frequency (Active
only when chosen EXTERNAL
ARB reference)

10e6  Hz float  

ConfigMIMO Establish the Master-Slaves
relationship among multiple
E4438C or MXG(N5182A) signal
generators. YES: Instrument
participates MIMO setup; NO:
Instrument doesn't participate
MIMO setup

NO   enum  

MasterSrc Mark this signal source as the
master that will generate the
synchronization trigger from
EVENT1 (MXG) or EVENT2
(E4438C). YES: Master source;
NO: Slave source

NO   enum  

UseE4438Cs YES = E4438C's are used; NO =
MXG's are used

YES   enum  

NumMXGSlaves (For MXG's only) Number of
MXG Slaves (range: 1 to 15)

1   int [1, 15]

SlavePosition (For slave MXG's only) Slave
position (Range: 1 to 15)

1   int [1, 15]

 Input Ports

Port Name Description Signal Type Optional

1 input input signal Complex Envelope (i.e. Modulated RF signal) NO

Example: ESG SignalDownloader Example.wsv under Instruments Examples
(examples)

SignalDownloader_E4438C supports both Agilent ESG E4438C and MXG N5182A instruments

SignalDownloader_E4438C only accepts Timed Complex Envelope (also known as Timed
modulated RF) signal. Make sure you use a part such as RF Modulator (algorithm) part in front of it to
convert complex IQ signal into Complex Envelope signal. If the complex IQ signal does not have
sampling time information, make sure to use a SetSampleRate (algorithm) part in front of the RF
Modulator (algorithm) part to set up the sampling rate for the baseband IQ waveform.

How to determine if a signal is "Timed"? Open the Source part (e.g. SineGen, Bits, etc)used in the
design/schematic, set "ShowAdvancedParams = YES"; the "SampleRateOption" should be
"1:Timed from SampleRate" ( recommended default setting) or "2:Timed from Schematic" for
timed signals.

In current SystemVue release, "LAN" is the only IOType supported.

Where do the values for variables such as Num_Samples, Start_Time or Stop_Time come from? They
all come from the simulation controller for Data Flow simulation.
Create a workspace from the Blank template. Then double click the "Design1 Analysis" on the workspace
tree, it will bring up the "Data Flow Analysis  (sim)" window, the simulation controller.
The "Start_Time" contains the value in the Start Time: field, the "Stop_Time" for the Stop Time:, and
of course, the "Num_Samples" for Number of Samples.

 Master-Slave(s) Configuration for MIMO Applications

 Using E4438C's - Example: ESG MIMO Configuration Example.wsv under Instruments
Examples (examples)

1.
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Configure the interconnections between the master and slave E4438C's as
shown in the diagram. (Note: You can add more slave E4438C's in the same
way as the existing slave).
The 10 MHz references should be connected between the instruments.
The EVENT2 output of the master E4438C is used to generate the
synchronization trigger and can't be used to as EventMarker outputs.
Master or slave status is controlled by the MasterSrc parameter.
Make sure to set ARBRefSrc = EXTERNAL

 Using N5182A's - Example: MXG MIMO Configuration Example.wsv under Instruments
Examples (examples)

1.

Make sure that the EVENT 1 output from the master MXG (N5182A) is
connected to the PAT TRIG IN on the slave MXG.
If additional slaves are present, the EVENT 1 output of each slave should be
connected to the PAT TRIG IN of the next slave in the system.
The 10 MHz references should be connected between the instruments.

Make sure to leave ARBRefSrc at its default INTERNAL state.  MXG's will automatically
sense the reference signals and adjust itself accordingly.

Make sure ArbOn is set to "OFF". You have to use MathLang script (users) to run the
simulation followed by turning ON the baseband ARB.

Make sure UseE4438Cs = "NO", and set up NumMXGSlaves for master MXG
and set up NumMXGSlaves and SlavePosition for slave MXG('s) accordingly.

 Notes/Equations

SignalDownloader_E4438C supports both Agilent ESG E4438C and MXG1.
N5182A instruments. It provides an interface for streaming baseband IQ waveforms
modulated onto an RF carrier into the Agilent E4438C and N5182A Vector Signal
Synthesizers to produce the desired modulated RF signals at the specified power
level.
SignalDownloader_E4438C only accepts Timed Complex Envelope (also known2.
as Timed modulated RF) signal. Make sure you use a part such as RF Modulator
(algorithm) part in front of it to convert complex IQ signal into Complex Envelope
signal. If the complex IQ signal does not have sampling time information, make sure
to use a SetSampleRate (algorithm) part in front of the RF Modulator
(algorithm) part to set up the sampling rate for the baseband IQ waveform.
The EventMarkers parameter controls whether a pulse will be sent out at the3.
instrument's Event1 and Event2 output. The pulses coming out of the two outputs
have the same characteristics. The pulse rises at the sample indexed by the
MarkerStart parameter and last the number of samples determined by the
MarkerLength parameter.
For example, assume the waveform contains 600 samples (i.e. 600 IQ pairs), if you
want a pulse to start at the 1st sample and last 10 sampling period, you simply set
the MarkerStart = 1 and MarkerLength = 10.
The SCPICommands parameter holds additional instrument control SCPI commands4.
you want to send to the instrument. The SCPI commands entered here will be
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executed right before the RF modulation and RF power are turned on. This means if
you want to set RF powers or event markers again here, it will override the settings
passed in through the RFPower or EventMarkers parameters.
The DownloadSize parameter determines the size of data package the simulator will5.
send to the instrument during the waveform downloading operation. If the size is
large, a sizable amount of memory will be required to hold the package before
downloading it to the instrument. If the data package is small, there will be many
downloading operations to download the complete waveform, which might slow down
the downloading process.
The default size Num_Samples, which is the total number of samples created by the
simulation, works well if the it is less than 1M samples. If the total number of
samples is larger than 1M samples, a size of 1M samples seems a good compromise
between memory usage and downloading time since setting it larger than 1M
provides no observable downloading time reduction.
The AutoScale parameter will force a normalization of the waveform generate to6.
within [-1, 1]V range. The scaling is linear and the maximum magnitude of the I and
Q data is scaled to -1V or 1V.
If an instruction can not be completed within the time specified in the7.
InstructionTimeout parameter, either due to IO communication issues or due to
hardware failures, a timeout will occur so that the simulator will not appear to hang.
Set DoDownload = NO if you want to run a simulation without downloading the8.
waveform into the instrument.
When you choose to hook your instrument with an external reference source, you9.
need to set ARBRefFreq = EXTERNAL and specify the reference frequency provided
by the external reference source here.

Important Links To learn more about the instruments supported by the SignalDownloader_E4438C,
please visit the E4438C  and MXG  websites of Agilent Technologies.

 Theory of Operation

SignalDownloader_E4438C is a sub-circuit part that is built upon the Sink (algorithm)
part. It utilizes the Sink (algorithm) part's capability of executing a MathLang
Equation (users) when all simulation data have been collected. Here is how the
operation flow goes. (To follow the following description, you can drop a
SignalDownloader_E4438C part into the design/schematic and do a mouse right click
on the part to bring out the drop-down menu
and select "Open -> Model/Subcircuit". You should see the sub-circuit
design/schematic that has only a Sink (algorithm) in it. (An node named
SignalDownloader_ESG4438C(Model) will also appear on the Workspace tree). Then
do a mouse right click on this Sink and select "Edit Equations" from its drop-down
menu and you will see the equation's MathLang script for this Sink).

First,the Sink (algorithm) in the sub-circuit is set up to write the simulation data into a
file using the Sink (algorithm)'s Binary format. Note that we specifically ask the Sink
(algorithm) not to write the RF frequency into this binary file by setting
SkipFrequency parameter to YES. Once all the simulation data have been collected into
the file, the Equation for the Sink (algorithm) will be executed. Note how the sub-
circuit part passes its own "DownloadSize" parameter into the Sink's "BlockSize"
parameter.

The first thing this Equation does is to set up communication with the instrument. (Right
now it can only use LAN to communicate). Then it will set up trivial things such as RF
frequency, power, and sampling rate for the instrument. Please note how this Equation
utilize information embedded in the M_State of the Sink. For example, the RF
frequency and sampling rate information is taken from the M_State.

Then the Equation will read out the data from the binary file at the same package size
specified by the DownloadSIze parameter and convert them into the format the
instrument expects before downloading the converted data package into the instrument.

Finally, the event markers are set up if needed followed by additional SCPI commands
passed in by the SCPICommands parameter, and then the modulation and RF output are
turned ON or OFF based on the corresponding parameters' setting. Now you see why the
SCPICommands content sets up the instrument right before modulation and RF power
are turned ON/OFF.

To access the functions used in the Equation, make sure you have Library Selector pannel open via
menu View -> Advanced Windows -> Library Selector. (You might have to close the Part Select A
pannel to reveal the Library Selector pannel). Then select Equation for "Library Type:", and
MathLang Instrument Control Functions for "Current Library:". Now you will see the list that include
all the functions used by this SignalDownloader_E4438C part

http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1000004297%3Aepsg%3Apro&amp;ct=PRODUCT&amp;id=1000004297%3Aepsg%3Apro
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1000004297%3Aepsg%3Apro&amp;ct=PRODUCT&amp;id=1000004297%3Aepsg%3Apro
http://www.home.agilent.com/agilent/product.jspx?nid=-536906709.536910812.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?nid=-536906709.536910812.00&amp;cc=US&amp;lc=eng
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 SignalDownloader_N5106A Part
 Signal downloader to download waveform and set up Agilent N5106A instrument.

Categories: Instrumentation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

SignalDownloader_N5106A
(algorithm)

 SignalDownloader_N5106A

Description: Signal downloader to download waveform and set up Agilent N5106A
instrument.
Associated Parts: SignalDownloader N5106A Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

PXBStarted YES: N5106A PXB is running . NO: PXB
is not running, communication to PXB is
supressed.: NO, YES

NO  Enumeration NO

ConfigFile N5106A configuration file   Filename NO

TimeStart Time to start waveform recording Start_Time s Float NO

TimeStop Time to stop waveform recording Stop_Time s Float NO

ArbOn Turn ON/OFF ARB(s) Outputs: OFF, ON OFF none Enumeration NO

NumberOfChannels Number of ARB Channels to use: 1 IQ
Channel, 2 IQ Channels, 4 IQ Channels

1 IQ Channel  Enumeration NO

Chan1FileName File name for downloaded waveform for
IQ channel 1

chan1.bin  Text NO

Chan1EventMarkers Enable channel 1 event marker pulse
outputs: no output; Event1 output
only; Event3 output only; Event4
output only; or all outputs (Event2 is
reserved for instrument internal use
only): NONE, EVENT1, EVENT3,
EVENT4, ALL

NONE  Enumeration NO

Chan1MarkerStart Sample index to start event marker
pulse (Note that sample index starts at
1)

1  Integer NO

Chan1MarkerLength Duration of event marker pulse
measured in number of waveform
samples

10 none Integer NO

Chan2FileName Waveform file name for IQ channel 2   Text NO

Chan2EventMarkers Event markers for IQ channel 2: NONE,
EVENT1, EVENT3, EVENT4, ALL

NONE  Enumeration NO

Chan2MarkerStart Sample index to start event marker
pulse for IQ channel 2

1  Positive
integer

NO

Chan2MarkerLength Marker duration measured in number of
waveform samples for IQ channel 2

10  Positive
integer

NO

Chan3FileName Waveform file name for IQ channel 3   Text NO

Chan3EventMarkers Event markers for IQ channel 3: NONE,
EVENT1, EVENT3, EVENT4, ALL

NONE  Enumeration NO

Chan3MarkerStart Sample index to start event marker
pulse for IQ channel 3

1  Positive
integer

NO

Chan3MarkerLength Marker duration measured in number of
waveform samples for IQ channel 3

10  Positive
integer

NO

Chan4FileName Waveform file name for IQ channel 4   Text NO

Chan4EventMarkers Event markers for IQ channel 4: NONE,
EVENT1, EVENT3, EVENT4, ALL

NONE  Enumeration NO

Chan4MarkerStart Sample index to start event marker
pulse for IQ channel 4

1  Positive
integer

NO

Chan4MarkerLength Marker duration measured in number of
waveform samples for IQ channel 4

10  Positive
integer

NO

ShowAdvancedParams To display parameters used for
advanced setups of the instrument:
NO, YES

NO  Enumeration NO

SCPICommands Additonal SCPI commands before
turning ARB output ON or OFF

  Text NO

DownloadSize Waveform download size. The number
of samples to be streamed into each
PXB waveform file per waveform
download operation

Num_Samples none Integer NO

InstructionTimeout Instrument instruction timeout limit 300 s Float NO

ARBRefSrc Source for ARB reference frequency,
either provided internally by the
instrument (INTERNAL) or provided by
an external instrument (EXTERNAL):
INTERNAL, EXTERNAL

INTERNAL none Enumeration NO

ARBRefFreq ARB reference frequency (Active only
when chosen EXTERNAL ARB reference)

10 MHz Float NO

AutoScale Normalize waveform into [-1, 1] Volt
range before downloading. YES: auto
scale; NO: no auto scale.: NO, YES

YES  Enumeration NO

ClippingLevel The DAC clipping level for the ARB 1 V Float NO

 Input Ports

Port Name Signal Type Optional

1 ComplexIn multiple complex NO

Example: Bento N5106A SignalDownloader.wsv under Instruments Examples
(examples)

 Notes/Equations
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You must have SystemVue and N5106A PXA software running in the same instrument box in order to use
SignalDownloader_N5106A to communicate with N5106A PXA

It is highly recommended to use Timed Complex signal (i.e. it embodies sampling time information)
for SignalDownloader_N5106A. Otherwise, you will need to set up the sampling rate in the PXB
software yourself. If the complex IQ signal does not have sampling time information, simply use a
SetSampleRate (algorithm) part in front of each input into this part to set up the sampling rate for the
baseband IQ signal(s)/waveform(s).

How to determine if a signal is "Timed"? Open the Source part (e.g. SineGen, Bits, etc)used in the
design/schematic, set "ShowAdvancedParams = YES"; the "SampleRateOption" should be
"1:Timed from SampleRate" ( recommended default setting) or "2:Timed from Schematic" for
timed signals.

For the description of the variables Start_Time, Stop_Time and Num_Samples, see
SignalDownloader_E4438C (algorithm)

SignalDownloader_N5106A provides an interface for streaming simulation1.
generated baseband IQ waveforms into Bento N5106A PXB environment to produce
the desired IQ baseband signals. Hence you must have SystemVue and N5106A PXA
software running in the same instrument box in order to use it in your applications.
SignalDownloader_N5106A only accepts Timed Complex signal (i.e. it embodies2.
sampling time information). If the complex IQ signal does not have sampling time
information, make sure to use a SetSampleRate (algorithm) part in front of each
input into this part to set up the sampling rate for the baseband IQ
signal(s)/waveform(s).
Set PXBStarted = YES if you already have N5106A PXB software running since3.
doing so will enable communication with the N5106A PXB application.
Use ConfigFile to bring in the previously saved PXB configuration file. If you don't4.
have a N5106A configuration file, this part will configure the number of IQ channels
needed based on the actual IQ inputs. Of course you can modify the configuration in
PXB and save it for later use.

Note once the mouse cursor is in this field, on the bottom left of the parameter setup
window, a Browse... button is available and click it to open the file browser

The NumberOfChannels parameter controls how many additional file names and5.
marker setup fields should be brought up since these fields are per IQ channel
specific. Obviously you select the actual number of channels you are using.
In addition to hold the file name for the waveform for IQ channel 1, the6.
Chan1FileName may also provide the base file name for the other IQ channels if
you use more than one channel (i.e. NumberOfChannels is more than 1) while not
specifying file names for the other channels. In such a case, the actual waveform file
name for the other channels will be composed by using this file name with subscript
such as "_1", "_2", etc.
The Chan1EventMarkers parameter controls whether a pulse will be sent out at the7.
IQ channel 1's Event1, Event3 or Event 4 output. (Event2 is for instrument internal
use only). The pulses coming out of the two outputs have the same characteristics.
The pulse rises at the sample indexed by the Chan1MarkerStart parameter and last
the number of samples determined by the Chan1MarkerLength parameter.
For example, assume the waveform contains 600 samples (i.e. 600 IQ pairs), if you
want a pulse to start at the 1st sample and last 10 sampling period, you simply set
the Chan1MarkerStart = 1 and Chan1MarkerLength = 10.
The markers for additional IQ channels are set up the same way. Markers are
independent among IQ channel.
The SCPICommands parameter holds additional instrument control SCPI commands8.
you want to send to the instrument. The SCPI commands entered here will be
executed right before the IQ channels are turned on.
The DownloadSize parameter determines the size of data package the simulator will9.
write to the waveform file per data writing/streaming operation. If the size is large, a
sizable amount of memory will be required to hold the package before writing it to
the waveform. If the data package is small, there will be many writing operations,
which might slow down the process.
The default size Num_Samples, which is the total number of samples created by the
simulation, works well if it is less than 1M samples. If the total number of samples is
larger than 1M samples, 1M samples seems a good compromise depending on the
overall memory available. Note that if multiple IQ channels are used, the memory
consumption will be the multiplication of the DownloadSize and the
NumberOfChannels.
The AutoScale parameter will force a normalization of the waveform generate to10.
within [-1, 1]V range. The scaling is linear and the maximum magnitude of the I and
Q data is scaled to -1V or 1V. If you choose not to use auto-scale, you can notify the
simulator about the clipping level of the DAC used in the instrument by entering it in
the ClippingLevel field, so that if the simulation waveform sample exceeds this
clipping level, a warning message will be issued.
If an instruction can not be completed within the time specified by the11.
InstructionTimeout parameter, either due to IO communication issues or due to
hardware failures, a timeout will occur so that the simulator will not appear to hang.
When you choose to hook your instrument with an external reference source, you12.
need to set ARBRefFreq = EXTERNAL and specify the reference frequency provided
by the external reference source here.
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 Important Links

Learn more about the PXB/N5106A  instrument from Agilent Technologies.1.
To download the N5106A PXB MIMO Receiver Tester SW to run on your PC in2.
simulated mode, visit the download site  from Agilent Technologies.

 Theory of Operation

SignalDownloader_N5106A is a sub-circuit part that is built upon the Sink
(algorithm) part. It utilizes the Sink (algorithm) part's capability of executing a
MathLang Equation (users) when all simulation data have been collected. Additionally,
it ues Sink (algorithm)'s capabilty to write data from each inputs into sepereate file.
Here is how the operation flow goes. (To follow the following description, you can drop a
SignalDownloader_N5106A part into the design/schematic and do a mouse right click
on the part to bring out the drop-down menu
and select "Open -> Model/Subcircuit". You should see the sub-circuit
design/schematic that has only a Sink (algorithm) in it. (An node named
SignalDownloader_N5106A(Model) will also appear on the Workspace tree). Then do
a mouse right click on this Sink and select "Edit Equations" from its drop-down menu
and you will see the equation's MathLang script for this Sink).

First,the Sink (algorithm) in the sub-circuit is set up to write the simulation data from
each complex IQ input into into a seperate waveform file using the Sink (algorithm)'s
N5106A format. Once all the simulation data have been collected into the file, the
Equation for the Sink (algorithm) will be executed. Note how the sub-circuit part
passes its own "DownloadSize" parameter into the Sink's "BlockSize" parameter.

The first thing this Equation does is to set up communication with the instrument by
communicating to localhost. (This is why for applications using
SignalDownloader_N5106A, SystemVue must run on the same machine where the
N5106A PXB runs). Then it will sort out the waveform file names assigned to each IQ
channel and rename the waveform file names used by the Sink if necessary. It'll also set
up trivial things such as sampling rate for the instrument. Please note how this
Equation utilizes information embedded in the M_State of the Sink. For example,
the sampling rate information is taken from the M_State.

Finally, the event markers are set up if needed followed by additional SCPI commands
passed in by the SCPICommands parameter, and then the outputs of active IQ channels
are turned ON or OFF based on the corresponding parameters' setting. Now you see why
the SCPICommands content sets up the instrument right before outputs are turned
ON/OFF.

To access the functions used in the Equation, make sure you have Library Selector pannel open via
menu View -> Advanced Windows -> Library Selector. (You might have to close the Part Select A
pannel to reveal the Library Selector pannel). Then select Equation for "Library Type:", and
MathLang Instrument Control Functions for "Current Library:". Now you will see the list that include
all the functions used by this SignalDownloader_N5106A part

http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1611642&amp;nid=-536902260.800382&amp;id=1611642
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1611642&amp;nid=-536902260.800382&amp;id=1611642


SystemVue - Algorithm Design Library

330

 VSA_89600_MIMO_Sink Part
Categories: Instrumentation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VSA_89600_MIMO_Sink
(algorithm)

Agilent 89600 Vector Signal Analyzer

 VSA_89600_MIMO_Sink

Description: Agilent 89600 Vector Signal Analyzer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: VSA 89600 MIMO Sink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

VSATitle Text for VSA title bar MIMO
Simulation
output

 Text NO

NumberOfChannels Number of channels.: 2 channels, 3
channels, 4 channels

2 channels  Enumeration NO

SamplesPerSymbol Digital demodulation samples per
symbol; NOT to be confused with VSA
points per symbol

0.0  Float NO

Start Sample number to start measuring 0  Integer NO

Stop Sample number to stop measuring Num_Samples -
1

 Integer NO

SetupFile Name of measurement setup file to
recall

  Filename NO

SetFreqProp Set VSA 89600 measurement properties
such as center frequency, span/sampling
rate, zoom, ect. based on user inputs
and simulation data.: NO, YES

YES  Enumeration NO

RestoreHW YES to restore VSA hardware selection
at end of simulation; NO to not: NO, YES

NO  Enumeration NO

ContinuousMode YES enables continuous simulation; NO
disables: NO, YES

NO  Enumeration NO

RecordMode YES enables VSA 89600 Recording
mode; NO disables; Stop must be >
Start, ContinuousMode = NO: NO, YES

NO  Enumeration NO

Important Note: Starting from SystemVue2009.08 release, in order to speed up the VSA start-up, all
VSA's created by SystemVue will remain running in the background even when their windows are closed
by the user. They will be closed together on exiting SystemVue. You can manually close them all via menu
*Action -> Exit Vector Signal Analyzer (89600 VSA) * or close them selectively through the window's task
manager.

VSA 89600 MIMO Sink is for MIMO applications only. It is designed to stream the time domain data
from multiple simulated RF antennas into VSA SW to be processed by it.

To stream single antenna data into VSA SW, please use VSA_89600_Sink (algorithm)
.

 VSA MIMO Sink UI Properties

If desired, click the Advanced Options ... button on the bottom left corner of VSA MIMO Sink
Properties UI to view the parameter list. The mapping between the parameters in the parameter list and
the setup controls shown in the Graphic User Interface described above should be straightforward.

Most of the setup controls in the User Interface is self explanatory. In the following we
only cover a few key setup controls.

Number of Channels Currently only up to 4 MIMO channels are supported.1.
Sample start & Sample Stop Defines the range of simulation data that VSA MIMO2.
Sink should capture and process. To have it capture and process simulation data non-
stop, check the Free-running simulation box.
VSA Setup File: Browse the VSA setup file that configures how to process the data3.
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captured.
Auto-adjust frequency setting This check box maps to the parameter4.
SetFreqProp. When checked, VSA 89600 measurement properties such as center
frequency, span/sampling rate, zoom, etc. will be set based on simulation data.
Restore hardware after simulation By default (unchecked), the VSA application5.
remains in its "Stream hardware" setup at the end of a simulation. It can be returned
to using other VSA hardware setups through the Hardware -> Utilities menu on
the VSA application. Once checked, the hardware setup is saved at the beginning of
the simulation and then restored at the end of the simulation.
Since some measurement setups change when the hardware setup changes, this
setting can interfere with the continuity between simulations. In general, leave it
unchecked (default) or specifying a VSA Setup File can have the least problems.
One need for restoring hardware is when changing between simulations where a VSA
with the same Name is used as a source in one simulation and a sink in another and
the VSA instance is not closed between the simulations. In this case, the sink VSA
restores the source hardware setting at the end of the simulation. Otherwise, the
VSA is left configured with Stream hardware and does not function correctly as a
source. The same problem arises if you would like to alternate between using the
same running VSA instance as a sink in a simulation and then would like to make
hardware based measurements.
Free-running simulation Once checked, the simulation will continuously run until6.
user clicks the Stop button in the simulation progress display window to stop the
simulation.
Record simulation data (This choice is available only when Free-running7.
simulation is unchecked. The 89600 Record buffer may need additional settling
points under some conditions, such as when the span is reduced (by lowering the
sampling rate for example). (Note that the recording file is specified via the VSA
89600 SW's menu "Input -> Recording ...").
Multiple VSA 89600 components (such as VSA_89600_Source (algorithm),8.
VSA_89600_MIMO_Source (algorithm), VSA_89600_Sink (algorithm) and
VSA_89600_MIMO_Sink (algorithm) can be active in a simulation and you can
configure each one independently

 Important Links

Download latest VSA SW  with 14 day trial license from Agilent Technologies1.
Purchase VSA license  from Agilent Technologies2.
If you did NOT install the Agilent IO library during the VSA SW installation, you can3.
also download Agilent IO Library  yourself.
Also see related parts:4.
VSA_89600_Sink (algorithm)
VSA_89600_Source (algorithm)
VSA_89600_MIMO_Source (algorithm)

http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
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 VSA_89600_MIMO_Source Part
Categories: Instrumentation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VSA_89600_MIMO_Source
(algorithm)

Agilent 89600 Vector Signal Analyzer for MIMO
Applications

 VSA_89600_MIMO_Source

Description: Agilent 89600 Vector Signal Analyzer for MIMO Applications
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: VSA 89600 MIMO Source Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

VSATitle Text for VSA title bar Simulation
source

 Text NO  

RepeatData VSA hardware measurement
control: Repeat, Reacquire,
Single pass

Reacquire  Enumeration NO  

Pause Pause for user to manually
adjust VSA settings: NO, YES

NO  Enumeration NO  

SetupFile Name of setup file to recall into
VSA

  Filename NO  

SetupUse VSA setup file recall control:
Always, Once, No

Always  Enumeration NO  

SampleRateOption Set the sample rate for the
output signals: From Traces,
User Specified

From Traces  Enumeration NO  

SampleRate Sample rate sepcified by user Sample_Rate Hz Float NO  

NumberOfAntennas Number of receiver attennas: 2
Antennas, 3 Antennas, 4
Antennas

2 Antennas  Enumeration NO  

Antenna1_Trace VSA trace that will supply the
1st antenna's time domain
trace.: A, B, C, D, E, F

A  Enumeration NO  

Antenna2_Trace VSA trace that will supply the
2nd antenna's time domain
trace.: A, B, C, D, E, F

B  Enumeration NO  

Antenna3_Trace VSA trace that will supply the
3rd antenna's time domain
trace.: A, B, C, D, E, F

C  Enumeration NO  

Antenna4_Trace VSA trace that will supply the
3rd antenna's time domain
trace.: A, B, C, D, E, F

D  Enumeration NO  

RecordingFile Name of recording file to recall
into VSA to be played back

  Filename NO  

AutoCapture Capture VSA input data at
start-up: NO, YES

NO  Enumeration NO  

ShowAdvancedParams Show advanced parameters:
NO, YES

NO  Enumeration NO  

DefaultHardware Use VSA default hardware
configuration: NO, YES

NO  Enumeration NO  

SetFrequencySpan Enables the FrequencySpan
parameter.: NO, YES

NO  Enumeration NO  

FrequencySpan If non-zero, set the frequency
span.

0 Hz Float NO [0:∞)

SetCenterFrequency Enables the CenterFrequency
parameter.: NO, YES

NO  Enumeration NO  

CenterFrequency Center frequency 0 Hz Float NO (-
∞:∞)

SetRange Enables the Range parameter.:
NO, YES

NO  Enumeration NO  

Range If non-zero and RecordingFile
not set, set the range.

0 V Float NO [0:∞)

RecordingLength If non-zero and RecordingFile
not set, this parameter set the
recording length.

0 s Float NO [0:∞)

GapOut Enable outputting
measurement Gap flag.: NO,
YES

NO  Enumeration NO  

Important Note: Starting from SystemVue2009.08 release, in order to speed up the VSA start-up, all
VSA's created by SystemVue will remain running in the background even when their windows are closed
by the user. They will be closed together on exiting SystemVue. You can manually close them all via menu
*Action -> Exit Vector Signal Analyzer (89600 VSA) * or close them selectively through the window's task
manager.

VSA 89600 MIMO Source is for MIMO applications only. It is designed to retrieve the time domain
data of multiple RF sources captured by VSA SW and stream them into simulation for measurements such
as Bit Error Rate measurement.

To retrieve other measurement data (e.g. spectrum) from VSA SW, please use VSA_89600_Source
(algorithm).

 VSA MIMO Main Properties

VSA Window Title If the VSA SW's window is displayed (by check the Pause VSA1.
box under the VSA MIMO Advanced Properties tab), this will be the title for that
window.
Number of Antennas Controls how many RF signals are concurrently captured and2.
streamed into the simulator from the VSA SW. Note how this parameter changes the
content grouped under the "Outputs" and how it also changes the number of output
pins on the little icon in the top right corner of this window.
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Data Repetition It controls how data are acquired by VSA 89600 SW. Since the3.
number of data called for by the simulator and the number of data acquired per
measurement made by the VSA SW may be different, this parameter controls how
data acquired by VSA SW should be used and whether VSA SW should make
additional measurements to feed the data needs of the simulator.
Single Pass: data are acquired from a single measurement by VSA per simulation.
Repeat Data:* data are acquired from a single measurement and repetitively used
by the simulation if the simulation asks for more data than what have been acquired
by VSA.
Reacquire Data: data are repeatedly acquired and fed to the simulator if the
simulation requires more data than that can be captured by one measurement. Note
that in the Repeat Data and Reacquire Data modes time-based data may not be
continuous across measurements.
Sample Rate Option: The data acquired by the VSA SW has its own sampling rate4.
that is determined by the measurement setup.
From Traces: The sampling rate used for the simulation is the VSA's sampling rate.
User Specified: Allows a sampling rate to be entered into the Sample Rate field.
Sample Rate: Used to specify a sampling rate that is different from what VSA5.
measurement uses.
Recorded Data File (Optional): If data are read in from some recorded data file6.
(e.g. SDF data file) in stead of be acquired through "live" measurements via VSA SW,
use this file browser to locate the data file.
Output Measurements Gap Flag: When simulation requires more data than that7.
can be captured by one VSA measurement, multiple measurements need to be made
and the aggregated ("stitched") data are not continuous, i.e. there will be time gaps
in the data stream. This check box allows an additional "Gap" flag out put to notify
whether a gap happened in between 2 captured data. If the value is 0, no gap
happened. If it is 1, gap occurred. To overcome gap, use the Automatic Capture
check box described later.
Antenna1/2/3/4: This is to specify data from which trace from VSA SW are used8.
to feed which output pin of the VSA 89600 MIMO part.

 VSA MIMO Advanced Properties

VSA Setup File: A VSA setup file specified here will be recalled automatically during1.
simulation start-up. The VSA measurement setup file is saved from the VSA
application file menu, File -> Save -> Save Setup. To adjust VSA setup after a setup
file has been loaded, check the Pause VSA box.
Apply Setup File:2.
Always Setup file will be reloaded per simulation
Once Setup file will be loaded on the first simulation.
No Never load the setup file.

Under current SystemVue releases, since the VSA SW will be restarted per simulation, Options
Always and Once are equivalent. But this may change in the future releases.

Override VSA Setup: The VSA setups specified here will be applied to adjust VSA3.
setup after the setup file has been loaded.
Input Range is to adjust the maximum expected voltage range of the signal being
measured.
Automatic Capture If the data required by the simulation is more than the data4.
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held by each VSA measurement (i.e. its corresponding trace(s)), multiple
measurements are required to provide the required number of data and in general, it
will create measurement gaps that will distort the final measurement results such as
Bit Error Rate (BER). If gap such introduced is not tolerable by the application such
as BER, the solution is to have the VSA SW record enough data for the simulation
through one single continuous measurement then feed these recorded data to the
simulation. This check box is used to achieve this. You can leave the Recording
Length as 0 if the setup file already has a long recording length specified.
Use Default Hardware If checked, it will have the 89600 automatically select an5.
appropriate hardware configuration. Otherwise, the 89600 uses previous hardware
selections. Note that when a source 89600 works together with a VSA_89600_Sink
(algorithm) part, it can be left set up with Stream input hardware. This problem can
be solved via the RestoreHW parameter of the VSA_89600_Sink (algorithm)
component..
Pause VSA: If you need to make some modifications to the VSA setup after loading6.
a VSA setup file bu tbefore simulation starts, you can check this check box so that
the VSA window will be brought up after the setup file has been loaded to allow you
to make those adjustments.

If desired, click the Advanced Options ... button on the bottom left corner of VSA MIMO Main
Properties to view the parameter list. The mapping between the parameters in the parameter list and the
setup controls shown in the 2 Graphic User Interfaces described above should be straightforward.

 Important Links

Download latest VSA SW  with 14 day trial license from Agilent Technologies1.
Purchase VSA license  from Agilent Technologies2.
If you did NOT install the Agilent IO library during the VSA SW installation, you can3.
also download Agilent IO Library  yourself.
Also see related parts:4.
VSA_89600_Sink (algorithm)
VSA_89600_Source (algorithm)

http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
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 VSA_89600_Sink Part
Categories: Instrumentation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VSA_89600_Sink
(algorithm)

Agilent 89600 Vector Signal Analyzer

 VSA_89600_Sink

Description: Agilent 89600 Vector Signal Analyzer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: VSA 89600 Sink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

VSATitle Text for VSA title bar Simulation
output

 Text NO

SamplesPerSymbol Digital demodulation samples per symbol;
NOT to be confused with VSA points per
symbol

0.0  Float NO

SetupFile Name of measurement setup file to recall   Filename NO

SetFreqProp Set VSA 89600 measurement properties
such as center frequency, span/sampling
rate, zoom, ect. based on user inputs and
simulation data.: NO, YES

YES  Enumeration NO

RestoreHW YES to restore VSA hardware selection at
end of simulation; NO to not: NO, YES

NO  Enumeration NO

Start Sample number to start measuring 0  Integer NO

Stop Sample number to stop measuring Num_Samples
- 1

 Integer NO

ContinuousMode YES enables continuous simulation; NO
disables: NO, YES

NO  Enumeration NO

RecordMode YES enables VSA 89600 Recording mode;
NO disables; Stop must be > Start,
ContinuousMode = NO: NO, YES

NO  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input multiple anytype NO

Important Note: Starting from SystemVue2009.08 release, in order to speed up the VSA start-up, all
VSA's created by SystemVue will remain running in the background even when their windows are closed
by the user. They will be closed together on exiting SystemVue. You can manually close them all via menu
*Action -> Exit Vector Signal Analyzer (89600 VSA) * or close them selectively through the window's task
manager.

The input must be timed, either timed complex IQ for BaseBand or timed Complex Envelope. If
needed, consider using a SetSampleRate (algorithm) part to add the sampling rate/time information
and/or using a Modulator (algorithm) part to add the RF carrier frequency.
Example: VSA89600 Demod QPSK.wsv under Instruments Examples (examples)

 Notes/Equations

The VSA_89600 models provide a dynamic link to integrate the 89600 series VSA1.
software with SystemVue.

Before using this model, the VSA89600 software must be installed. The VSA 89600 software
can be downloaded from http://www.agilent.com/find/89600 .
For 89600 analyzer reference information, example measurements, or a getting started video,
access Help or choose Start -> Programs -> Agilent 89600 VSA -> Help.

The VSA_89600_Sink model provides a stream interface where you can input2.
digitized waveforms directly from SystemVue to 89600-series VSA software without
using the 89600-series hardware. The full functionality of the 89600 analyzer is
available to analyze and display the SystemVue signal.
The SamplesPerSymbol parameter provides a convenient way to set the analyzer's3.

http://www.agilent.com/find/89600
http://www.agilent.com/find/89600
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Symbol Rate. This is different from the analyzer's Points/Symbol parameter, which
adjusts the analyzer's interpolation of demodulated data. SamplesPerSymbol takes
precedence over the Symbol Rate in the setup file, if a SetupFile is specified.
The analyzer's digital demodulation algorithm limits the analyzer's span to a4.
maximum of 15.625 times the Symbol Rate. This, plus the analyzer's maximum
decimation rate, places a lower limit on the Symbol Rate.
The SetupFile parameter can be used to recall a VSA setup file automatically during5.
simulation start-up. The VSA measurement setup file, SetupFile, is saved from the
VSA application file menu, File -> Save -> Save Setup. To refine an existing
SetupFile, you can modify the VSA application while simulating and then save the
setup file before restarting the simulation.

Note that once the mouse cursor is in SetupFile parameter's field, on the bottom left of the
parameter setup window, a Browse... button is available and clicking it will open a file browser.

Triggering is not available in the 89600 when the input is from a simulation.6.
If SetFreqProp = NO, the VSA's measurement center frequency, span, and zoom7.
mode are left unchanged (except that these are loaded from a setup file, if
SetupFile is specified). If SetFreqProp = YES, the VSA's measurement center
frequency, span, and zoom parameters is set to those of the simulation, overriding
those in the setup file, if specified.
Unless a setup file is specified, the VSA application begins the simulation with its8.
previous setup, with a few modifications dictated by the simulation. This setting
enables for continuity of the VSA setup between simulations. RestoreHW = YES can
interfere with this. This continuity means that the initial VSA application setup can be
important when a setup file is not specified. This includes the Hardware Setup.
Starting a simulation in a known state, such as a preset state, can resolve some VSA
initialization problems. The VSA can be preset in various ways under File -> Preset
on the VSA application. The Simulate Hardware selection under Hardware ->
Utilities can be a useful starting point.
If RestoreHW = NO (default), the VSA application remains in its Stream hardware9.
setup at the end of a simulation. It can be returned to using other VSA hardware
setups through the Hardware -> Utilities menu on the VSA application.
If RestoreHW = YES, the hardware setup is saved at the beginning of the10.
simulation and then restored at the end of the simulation. Since some measurement
setups change when the hardware setup changes, this setting can interfere with the
continuity between simulations as described in previous note. In general, setting
RestoreHW to NO or specifying SetupFile can have the least problems.
One need for RestoreHW = YES is when changing between simulations where a
VSA with the same Instance Name is used as a source in one simulation and a sink in
another and the VSA instance is not closed between the simulations. In this case, the
sink VSA restores the source hardware setting at the end of the simulation.
Otherwise, the VSA is left configured with Stream hardware and does not function
correctly as a source. The same problem arises if you would like to alternate between
using the same running VSA instance as a sink in a simulation and then would like to
make hardware based measurements.
Set ContinuousMode to "YES" if you want the simulation to run indefinitely. You11.
can always click the Stop button in the simulation progress display window to stop
the simulation.
When RecordMode = YES (i.e., Time Capture mode, which is available only when12.
ContinuousMode = NO), the 89600 Record buffer may need additional settling
points under some conditions, such as when the span is reduced (by lowering the
sampling rate for example). (Note that the recording file is specified via the VSA
89600 SW's menu "Input -> Recording ...").
Multiple VSA_89600_Sink components can be active in a simulation and you can13.
configure each one independently
When a simulation that contains an active VSA_89600_Sink component starts, it14.
attaches to a running 89600 whose title begins with the component's instance name.
If no such 89600 instance is found, a new 89600 is created, and its title is set to the
associated component's instance name and VSATitle text.

Important Links

Download latest VSA SW  with 14 day trial license from Agilent Technologies1.
Purchase VSA license  from Agilent Technologies2.
If you did NOT install the Agilent IO library during the VSA SW installation, you can also download3.
Agilent IO Library  yourself.

http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
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Commonly Seen Errors

Error Seen When Using Workspace Created on a Different Computer1.
If you copy a workspace from a different computer, occasionally you might see the following error messages:
"Cannot create the file C:\Documents and Settings\fxdit\My Documents\Agilent\89600
VSA\Data\Recording.sdf.4088", recording file ...
To fix this, you can either try to replace the VSA_89600_Sink used in the schematic/design with a new one, or simply add
all the missing folders specified along the path C:\Documents and Settings\fxdit\My Documents\Agilent\89600
VSA\Data.
Error Seen When Using RecordMode2.
When you set "RecordMode" to "YES" and you see the following Error writing to temporary file C:\Documents and
Settings\fxdit\My Documents\Agilent\89600 VSA\Data\Recording.sdf.1234 complaint from VSA 89600 SW, it is
very likely you have copied the workspace (project) from somewhere else. To fix it, you can either try to replace the
VSA_89600_Sink used in the schematic/design with a new one, or simply add all the missing folders specified along the
path C:\Documents and Settings\fxdit\My Documents\Agilent\89600 VSA\Data.
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 VSA_89600_Source Part
Categories: Instrumentation (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VSA_89600_Source
(algorithm)

Agilent 89600 Vector Signal Analyzer

 VSA_89600_Source

Description: Agilent 89600 Vector Signal Analyzer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: VSA 89600 Source Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

VSATitle Text for VSA title bar Simulation
source

 Text NO  

Pause Pause for user to manually adjust
VSA settings: NO, YES

NO  Enumeration NO  

OutputType Output port type: Timed,
Frequency, Demod Errors, Complex
Scalar, Float Scalar, Integer Scalar

Timed  Enumeration NO  

VSATrace VSA trace that will supply data.: A,
B, C, D

B  Enumeration NO  

RepeatData VSA hardware measurement
control: Repeat, Reacquire, Single
pass

Repeat  Enumeration NO  

TStep Simulation time step 0 s Float NO  

SetupFile Name of setup file to recall into
VSA

  Filename NO  

SetupUse VSA setup file recall control:
Always, Once, No

Always  Enumeration NO  

RecordingFile Name of recording file to recall into
VSA to be played back

  Filename NO  

AutoCapture Capture VSA input data at start-up:
NO, YES

NO  Enumeration NO  

DefaultHardware Use VSA default hardware
configuration: NO, YES

NO  Enumeration NO  

FrequencySpan If non-zero, set the frequency
span.

0 Hz Float NO [0:∞)

SetCenterFrequency Controls the CenterFrequency
parameter.: NO, YES

NO  Enumeration NO  

CenterFrequency Center frequency 0 Hz Float NO (-
∞:∞)

Range If non-zero and RecordingFile not
set, set the range.

0 V Float NO [0:∞)

RecordingLength If non-zero and RecordingFile not
set, this parameter set the
recording length.

0 s Float NO [0:∞)

 Output Ports

Port Name Description Signal Type Optional

1 out Measurement data anytype NO

2 gap VSA input data gap
signal

int NO

Important Note: Starting from SystemVue2009.08 release, in order to speed up the VSA start-up, all
VSA's created by SystemVue will remain running in the background even when their windows are closed
by the user. They will be closed together on exiting SystemVue. You can manually close them all via menu
*Action -> Exit Vector Signal Analyzer (89600 VSA) * or close them selectively through the window's task
manager.
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In SystemVue2009.05 official release, we have taken out the multiple time domain traces (for MIMO
applications) support we introduced during SystemVue2009.05 Alpha. If you are using this feature, please
use VSA 89600 MIMO Source Part (algorithm) instead.

Measurement data from VSA 89600 streams out of Port 1

Example: VSA89600 Recall QAM512 Data.wsv under Instruments Examples
(examples)

 Notes/Equations

The VSA_89600 models provide a dynamic link to integrate the 89600 series VSA1.
software with SystemVue.
Before using this model, the VSA 89600 software must be installed. The VSA 896002.
software can be downloaded from http://www.agilent.com/find/89600 .
For 89600 analyzer reference information, example measurements, or a getting3.
started video, access Help or choose Start -> Programs -> Agilent 89600 VSA -
> Help.
The VSA_89600_Source model transfers measurement data from the 89600 Vector4.
Signal Analyzer. The model outputs different amounts and types of data depending
on OutputType, as described in detail under the OutputType parameter.
Measurements can be acquired from any 89600 trace and are transferred in raw5.
(unformatted) state.
The VSATitle parameter sets the title in the 89600 window title bar.6.
The Pause parameter controls the 89600 start-up sequence:7.

When Pause = YES, the simulation displays a message dialog and pause before
acquiring measurement data from the 89600. This allows you to configure the
89600 before pressing the OK button to proceed.

The OutputType parameter establishes the configuration of the model's output data8.
port.

Important
The data type of the 89600 trace selected by VSATrace must be compatible with the output
type.

Timed - Timed data is output at the 89600 center frequency and timestep (refer
to TStep for detail). The data can be complex or baseband, depending on the
89600 zoom state. Requires time domain measurements from the 89600.
Frequency - Spectrum data is output as pairs of complex numbers. The first
number is the real frequency (the imaginary part is zero), and the second
number is the complex voltage at that frequency. You can connect a to the
VSA_89600_Source data port to separate the signal. Requires frequency domain
measurements from the 89600. Example 89600 trace data type: Spectrum.
Demod Errors - Demodulation error data is output as sets of floating-point
(real) values. The number of values and required 89600 configuration vary with
demod type. See note 20.
Complex Scalar - Complex numbers are output. If the 89600 measurement
data is real-valued, the imaginary part of the output values is zero. Example
89600 trace data type: "Error Vector Time" in Digital Demod mode.
Float Scalar - Floating point numbers are output. Requires real-valued 89600
measurement data. Example 89600 trace data type: "IQ Mag Error" in Digital
Demod mode.
Integer Scalar - Integer numbers are output. Requires real-valued 89600
measurement data. Useful for sourcing demodulation symbols when the 89600
trace data type is Syms/Errs.

The VSATrace parameter specifies which 89600 trace provides measurement data.9.
The RepeatData parameter controls the transfer of data from the 89600 during10.
hardware-based measurement.

When RepeatData = Single pass, the model supplies data from a single
measurement. The Repeat option acquires a single measurement and
repetitively sources it into the simulation. Reacquire repeatedly acquires and
sources new measurements. Note that in the Repeat and Reacquire modes time-
based data is not continuous across measurements.

When 89600 input is from a recording the RepeatData setting is ignored. Refer to note 19 for
information on operation with recordings.

The TStep parameter can be used to specify a target timestep when sourcing timed11.
data. The model trys to adjust the 89600's span to achieve the requested step size
via resampling. If the 89600 cannot be set to the required span, a warning message
is output to the status window.
The SetupFile parameter can be used to recall automatically a VSA setup file during12.
simulation start-up. The VSA measurement setup file, SetupFile, is saved from the
VSA application file menu, File -> Save -> Save Setup. To refine an existing
SetupFile, you can modify the VSA application while simulating and then save the
setup file before restarting the simulation. If Pause = YES, the setup file is loaded
before the Pause dialog is displayed.

Note that once the mouse cursor is in SetupFile parameter's field, on the bottom left of the
parameter setup window, a Browse... button is available and clicking it will open a file browser.

The SetupUse parameter specifies when an 89600 setup file (specified in the13.
SetupFile parameter) is recalled. Options are:

http://www.agilent.com/find/89600
http://www.agilent.com/find/89600
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Always - Recall setup file on every simulation run.
Once - Recall setup file only when 89600 is started.
No - Do not recall setup file.

The RecordingFile parameter can be used to recall automatically a recording into14.
the 89600 during simulation start-up. #* If Pause = YES, the recording file is
loaded before the Pause dialog is displayed.

Use the Browse... button to open the file browser in the same way as handling SetupFile.

The AutoCapture parameter can be set to YES to have the 89600 automatically15.
initiate a capture recording of hardware input data at the beginning of a simulation.
When the capture is complete, the model begins sourcing the recorded data. Time-
based measurements is continuous (note 19). Recording length can be controlled via
an 89600 setup file.
The DefaultHardware parameter can be set to YES to have the 89600 automatically16.
select an appropriate hardware configuration. Otherwise, the 89600 uses previous
hardware settings. Note that when a source 89600 reuses the same running 89600
instance that was used by a sink 89600, it can be left set up with Stream input
hardware. This problem can be solved via the RestoreHW parameter of the
VSA_89600_Sink (algorithm) component.
Each 89600 measurement produces a block of data points, which are pipelined to the17.
simulation. As a result, simulation plots typically lag 89600 traces. The number of
points in a block varies with 89600 measurement type and configuration. For
reference, the block size is output to the status window during startup. This value can
be useful when configuring other components (for example, plot persistence and
update size). Also, any change in block size during simulation is logged in the status
window.
The units associated with transferred 89600 data are output to the status window18.
during startup. Unless otherwise indicated, values are peak units.
To avoid transfer of overlapped measurement data, the 89600's maximum overlap19.
for averaging off is set to zero when a simulation starts.
If the model detects a change to one of the following 89600 settings while sourcing20.
data, the model disconnects from the 89600.

Input data source
Demodulator configuration
Data type of the trace supplying measurements (VSATrace)
Sweep mode
Center frequency (for timed output)
Timestep size (for timed output)

The recommended practice is to use the Pause and/or SetupFile options to pre-configure the
89600.

When a simulation that contains an active VSA_89600_Source component starts, it21.
attaches to a running 89600 whose title begins with the component's instance name.
If no such 89600 instance is found, a new 89600 is created, and its title is set to the
associated component's instance name and VSATitle text.
When 89600 input is from a recording, the model steps through the recording,22.
transferring all measurements. 89600 recording playback properties can be used to
control start/stop points and looping. In this mode time-based data are continuous,
with the exception of wrapped values when a playback loop occurs.
Demodulation Error/Summary information is available by configuring the trace data.23.

For details on results available, please refer to the following:
89600 help index topic symbol table and look for the demodulation format of interest.
The demod formats available depend on 89600 licensing (For example, Digital Demod requires
option AYA, and cdma2000 requires option B7.)
The error summary data and the numbering for each demodulation format are documented in
tables in the 89600 help documentation (look in the index under demod errors).
Also note that some demodulation formats include several of these tables. The table values
are output in a fixed sequence, which can be different from the order seen on the 89600
display.
The number of output error values depends on the configuration.
The easiest way to get an individual error value is to place a DownSample component in series
with the VSA89600Source output.
For example, consider the list of Digital Demod error items. The DownSample Factor
parameter would be set to the number of error values (21). To select EVM, the Phase
parameter would be set to 20 (EVM position in the list subtracted from 21).
When OutputType is Integer Scalar and trace data is configured to one of the above types
(Syms/Errs, for example), the module sources demodulation symbols.

The gap output port emits a 1 when there is a discontinuity in 89600 input data.24.
Otherwise it emits 0.
Multiple VSA_89600_Source components can be active in a simulation.25.
When both VSA_89600_Source and VSA_89600_Sink (algorithm) components are26.
present in a design, configuring the VSA_89600_Sink (algorithm) for 0% time
record overlap minimizes the effect of gaps in source data.
The VSA_89600_Source component can be used with a PSA E444xA/89601A27.
combination. The VSA89600 software runs on a PC connected to the E444xA, via LAN
or GPIB, and provides hardware control, modulation analysis, and complete results
displays. The controls and display of the E4406A are disabled while operating with
the 89601A software.
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For more information, refer to the Agilent PSA website http://www.agilent.com/find/psa .
Special options required for use of the Performance Spectrum Analyzers E444xA and the
VSA89600 software are described in these product notes:

Product Note 5988-5015EN; available on the website
http://cp.literature.agilent.com/litweb/pdf/5988-5015EN.pdf .
Product Note 5988-4094EN; available on the website
http://cp.literature.agilent.com/litweb/pdf/5988-4094EN.pdf .

The VSA_89600_Source component can be used with a VSA E4406A/89601A28.
combination. The VSA89600 software runs on a PC connected to the E4406A, via LAN
or GPIB, and provides hardware control, modulation analysis, and complete results
displays. The controls and display of the E4406A are disabled while operating with
the 89601A software.

For more information, refer to the Agilent VSA E4406A website
http://www.agilent.com/find/vsa .
Special options required for use of the Vector Signal Analyzer E4406A and the VSA89600
software are described in Product Note 5988-2906EN, which is available on the website
http://cp.literature.agilent.com/litweb/pdf/5988-2906EN.pdf .

The VSA_89600_Source component can be used with an ESA/89601A combination.29.
The VSA89600 software runs on a PC connected to the ESA, via GPIB, and provides
hardware control, modulation analysis, and complete results displays. The controls
and display of the ESA are disabled while operating with the 89601A software.

For more information, refer to the Agilent ESA website http://www.agilent.com/find/esa .
Special options required for use of the ESA and the VSA89600 software are described in
Product Note 5988-4097EN, which is available on the website
http://cp.literature.agilent.com/litweb/pdf/5988-4097EN.pdf .

The VSA_89600_Source component can be used with an Infiniium30.
oscilloscope/89601A combination. The VSA89600 software runs on a PC connected to
the Infiniium scope, via LAN or GPIB, and provides hardware control, modulation
analysis, and complete results displays. The controls and display of the scope are
disabled while operating with the 89601A software.

Special options required for use of the Infiniium scope and the VSA89600 software are described in
this product note:
http://cp.literature.agilent.com/litweb/pdf/5988-4096EN.pdf .

The VSA_89600_Source component does not handle averaged measurements as a31.
special case; each 89600 analyzer trace update is output to the simulation. The
default 89600 analyzer average setup has Fast Average disabled, so the traces are
updated each time new measurement results are added to the average, starting with
the first measurement.
To force only the final, fully averaged result to be output to the simulation, select32.
MeasSetup -> Average on the 89600 analyzer and check both the Fast Average
and the Same as Count check boxes. This prevents the analyzer from updating the
screen until the selected number of measurements have been averaged together.

Additional Important Links

Download latest VSA SW  with 14 day trial license from Agilent Technologies1.
Purchase VSA license  from Agilent Technologies2.
If you did NOT install the Agilent IO library during the VSA SW installation, you can also download3.
Agilent IO Library  yourself.

Commonly Seen Errors
Error Seen When Using Workspace Created on a Different Computer: If you copy a workspace from
a different computer, occasionally you might see the following error messages if the workspace reads data
from recorded sdf file:

Warning: VSA_89600_Source `VSA89600RecallQAM512__VSA89600Source': VSA recall
recording error 0x8004021a,
"Cannot create the file C:\Documents and Settings\fxdit\My Documents\Agilent\89600
VSA\Data\Recording.sdf.4088", recording file
"C:\Program
Files\SystemVue(Version)\Examples\Instruments\VSA89600Source\Qam512.sdf"
Warning: VSA_89600_Source `VSA89600RecallQAM512__VSA89600Source': Disconnecting from
VSA...*

To fix this, you can either try to replace the VSA_89600_Source used in the schematic/design with a
new one, or simply add all the missing folders specified along the path C:\Documents and
Settings\fxdit\My Documents\Agilent\89600 VSA\Data.

http://www.agilent.com/find/psa
http://www.agilent.com/find/psa
http://cp.literature.agilent.com/litweb/pdf/5988-5015EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-5015EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-4094EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-4094EN.pdf
http://www.agilent.com/find/vsa
http://www.agilent.com/find/vsa
http://cp.literature.agilent.com/litweb/pdf/5988-2906EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-2906EN.pdf
http://www.agilent.com/find/esa
http://www.agilent.com/find/esa
http://cp.literature.agilent.com/litweb/pdf/5988-4097EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-4097EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-4096EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5988-4096EN.pdf
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1303376&amp;nid=-34704.0.00&amp;id=1303376
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1000000604:epsg:pgr&amp;nid=-34704.0.00&amp;id=1000000604:epsg:pgr&amp;cmpid=90924
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;ckey=1510187&amp;nid=-34466.816598.00&amp;id=1510187
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 Math Matrix
A matrix is a two dimensional or rectangular arrangement of scalar values. The two
dimensions are commonly referred as the number of rows (NumRows) and the number of
columns (NumCols). If the matrix is square, only the number of rows or columns
(RowsCols) is specified. If NumRows and NumCols or RowsCols are not visible as
parameters, they are inferred. Matrix parts are concerned with:

generation of a matrix1.
conversion to or from a matrix2.
operation upon a matrix3.

 Contents
Abs M Part (algorithm)
Add Part (algorithm)
AvgSqrErr M Part (algorithm)
Conjugate M Part (algorithm)
DynamicPack M Part (algorithm)
DynamicUnpack M Part (algorithm)
Gain Part (algorithm)
Hermitian M Part (algorithm)
Identity M Part (algorithm)
Inverse M Part (algorithm)
Mapper M Part (algorithm)
MathLang Part (algorithm)
MATLAB Cosim Part (algorithm)
Mpy Part (algorithm)
MxCom M Part (algorithm)
MxDecom M Part (algorithm)
Pack M Part (algorithm)
SampleMean M Part (algorithm)
Sub Part (algorithm)
SubMx M Part (algorithm)
SVD M Part (algorithm)
Toeplitz M Part (algorithm)
Transpose M Part (algorithm)
Unpack M Part (algorithm)
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 Abs_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Abs_M
(algorithm)

Absolute Value Matrix Function

 Abs_M (Absolute Value Matrix Function)

Description: Absolute Value Matrix Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Abs M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input real matrix NO

 Output Ports

Port Name Signal Type Optional

2 output real matrix NO

 Notes/Equations

The input matrix is copied to output with each element replaced with the absolute1.
value of that element.
For every input matrix, an output matrix is written_2.
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 Add Part
Categories: C++ Code Generation (algorithm), Math Matrix (algorithm), Math Scalar
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Add (algorithm) Multiple Input Adder

AddEnv
(algorithm)

Envelope Signal
Adder

AddFxp (hardware) Fixed Point Adder

 Add (Multiple Input Adder)

Description: Multiple Input Adder
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Add Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input multiple anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim),
fixed point (sim), or variant (sim).

 Notes/Equations

The Add model produces the sum of the inputs at the output.1.
This model reads 1 sample from all inputs and writes 1 sample to the output.2.
For discussion on the variant type, see Variant (sim).3.
For a single input add, the input is copied to the output.4.
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 AvgSqrErr_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AvgSqrErr_M
(algorithm)

Mean Squared Error Matrix
Averager

 AvgSqrErr_M (Mean Squared Error Matrix Averager)

Description: Mean Squared Error Matrix Averager
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AvgSqrErr M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NumInputsToAverage Number of input matrices to
average

8  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input1 real matrix NO

2 input2 real matrix NO

 Output Ports

Port Name Signal Type Optional

3 output real NO

 Notes/Equations

The squared difference between corresponding elements of matrices from input1 and1.
input2 are summed. These sums are calculated and then averaged over NumInputs
number of inputs. The averaged sum is output.
For every NumInputs matrices from each input port, one non-negative float value is2.
output.
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 Conjugate_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Conjugate_M
(algorithm)

Conjugate Matrix
Function

 Conjugate_M (Conjugate Matrix Function)

Description: Conjugate Matrix Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Conjugate M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input complex matrix NO

 Output Ports

Port Name Signal Type Optional

2 output complex matrix NO

 Notes/Equations

The input matrix is copied to output with each element replaced with the complex1.
conjugate of that element.
For every input matrix, an output matrix is written.2.
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 Gain Part
Categories: C++ Code Generation (algorithm), Math Matrix (algorithm), Math Scalar
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Gain (algorithm) Constant Gain

Amplifier (algorithm) Nonlinear Amplifier with Noise Figure

GainFxp (hardware) Fixed Point Gain

NegateFxp
(hardware)

Fixed Point Negate
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 Gain

Description: Constant Gain
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Gain Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Gain Gain value 1  None YES

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim),
fixed point (sim), or variant (sim).

 Notes/Equations

Gain multiplies the input by the Gain parameter.1.
For every input, a product is output.2.
As the Gain parameter is a variant, the product may be promoted from the input3.
type, e.g. if the Gain parameter is a complex matrix while the input is real, the
output will be a complex matrix. For discussion on the variant type, see Variant
(sim).
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 Hermitian_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Hermitian_M
(algorithm)

Hermitian Matrix Function

 Hermitian_M (Hermitian Matrix Function)

Description: Hermitian Matrix Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Hermitian M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input complex matrix NO

 Output Ports

Port Name Signal Type Optional

2 output complex matrix NO

 Notes/Equations

The conjugate transpose of the input is output.1.
If the input is a M × N matrix, then the output is a N × M matrix.2.
Let x[i,j] be an element of the input and y[j,i] be an element of the output, then3.
y[j,i] is set to the conjugate of x[i,j] when i is not equal to j.

See:
TransposeCx_M (algorithm)
Transpose_M (algorithm)
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 Identity_M Part
Categories: Math Matrix (algorithm), Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Identity_M (algorithm) Identity Matrix Generator

IdentityCx_M
(algorithm)

Complex Identity Matrix
Generator

 Identity_M (Identity Matrix Generator)

Description: Identity Matrix Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Identity M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

RowsCols Number of rows and
columns in output
square matrix

2  Integer NO [2:∞) RC

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output real matrix NO

 Notes/Equations

Identity_M is a constant square matrix source whose dimensions are specified by the1.
RowsCols parameter.
The constant matrix is formed by inserting real ones into the diagonal elements2.
beginning at element [1,1]. Zeroes are inserted at the off diagonal elements.
For other parameter descriptions, see Untimed Sources (algorithm).3.
Fill value is a real matrix zero.4.

See:
IdentityCx_M (algorithm)
Diagonal_M (algorithm)
DiagonalCx_M (algorithm)
Const (algorithm)

 IdentityCx_M (Complex Identity Matrix Generator)

Description: Complex Identity Matrix Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Identity M Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range Symbol

RowsCols Number of rows and
columns in output
square matrix

2  Integer NO [2:∞) RC

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output complex matrix NO

 Notes/Equations

IdentityCx_M is a constant square matrix source whose dimensions are specified by1.
the RowsCols parameter.
The constant matrix is formed by inserting complex ones into the diagonal elements2.
beginning at element [1,1]. Zeroes are inserted at the off diagonal elements.
For other parameter descriptions, see Untimed Sources (algorithm).3.
Fill value is a complex matrix zero.4.

See:
Identity_M (algorithm)
Diagonal_M (algorithm)
DiagonalCx_M (algorithm)
Const (algorithm)
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 Inverse_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Inverse_M (algorithm) Inverse Matrix Function

InverseCx_M
(algorithm)

Complex Inverse Matrix
Function

 Inverse_M (Inverse Matrix Function)

Description: Inverse Matrix Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Inverse M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input real matrix NO

 Output Ports

Port Name Signal Type Optional

2 output real matrix NO

 Notes/Equations

The output matrix is the inverse of the input matrix, i.e.1.

For every input matrix, an inverse matrix is output.2.
The input matrix must be square.3.

See:
InverseCx_M (algorithm)

 InverseCx_M (Complex Inverse Matrix Function)

Description: Complex Inverse Matrix Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Inverse M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input complex matrix NO

 Output Ports

Port Name Signal Type Optional

2 output complex matrix NO

 Notes/Equations

The output matrix is the inverse of the input matrix, i.e.1.

For every input matrix, an inverse matrix is output.2.
The input matrix must be square.3.

See Inverse_M (algorithm).
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 Mapper_M Part
Categories: C++ Code Generation (algorithm), Communications (algorithm), Math Matrix
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Mapper_M
(algorithm)

Most significant bit first. BPSK, QPSK, PSK8, QAM16, QAM32, QAM64, QAM128,
QAM256

<#comment></#comment><#comment></#comment>

 Mapper_M (Most significant bit first)

Description: Most significant bit first. BPSK, QPSK, PSK8, QAM16, QAM32, QAM64,
QAM128, QAM256
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Mapper M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 In boolean matrix NO

 Output Ports

Port Name Signal Type Optional

2 Out complex NO

 Notes/Equations

The Mapper_M model maps an input boolean matrix into a complex constellation1.
point. The modulation type is dynamically determined by the number of elements in
the input matrix. The bits are grouped by reading the matrix in column-major order,
with the first matrix element being interpreted as the most significant bit.
A constellation point is a pair of real values (I,Q) that is expressed on the output as I2.
+ jQ. Later in the modulation chain, I modulates the inphase part of the carrier, and
Q modulates the quadrature part of the carrier over a symbol period.
Each modulation type has its constellation and symbol length. The symbol length, i.e.3.
the number of input bits per symbol, is detailed in the following table.

 Modulation Type and Symbol Length

Symbol Length (Number of matrix elements) Modulation Type

1 BPSK

2 QPSK

3 PSK8

4 QAM16

5 QAM32

6 QAM64

7 QAM128

8 QAM256

For QPSK and PSK8 the mapping from bits to symbols is using Gray encoding. For1.
QAM16, QAM32, QAM64, QAM128, and QAM256, Gray encoding is used inside each
quadrant.
For BPSK, bit value 0 is mapped to 1 + j0 and bit value 1 is mapped to -1 + j0.2.
For QPSK, the constellation map is illustrated in QPSK Constellation (algorithm). For3.
PSK8, the constellation map is illustrated in 8PSK Constellation (algorithm).
The symbol mappings for QAM16, QAM32, QAM64, QAM128 and QAM256 are4.
described in the section 9 of [1], and their constellation maps are illustrated in figure
7-8 of [1].
QAM constellations need definition only for quadrant 1. The constellation points in5.
quadrants 2, 3 and 4 are derived from quadrant 1 by selecting the quadrant 1
constellation value with the least significant bits of the input symbol and rotating that
constellation value by the amount selected by the two most significant bits of the
input symbol, b i b q, as specified in table Conversion of Constellation Points

(algorithm). 
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 Conversion of Constellation Points

Quadrant Symbol Most Significant Bits ( b i b q ) Rotation

1 00 0

2 10 π/2

3 11 π

4 01 3π/2

16QAM, 32QAM, 64QAM, 128QAM and 256QAM constellation maps are illustrated in 16
and 32QAM Constellation (algorithm) through 256QAM Constellation (algorithm).

See
Mapper (algorithm)
Demapper (algorithm)

 References

EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding1.
and modulation for cable systems," V1.2.1, 1998-04.
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 MathLang Part
Categories: Math Matrix (algorithm), Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MathLang
(algorithm)

Math Language Block

 MathLang (Math Language Model)

Description: Math Language Block
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: MathLang Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

 Summary

The MathLang model uses Math Language equations to process input data and produce
output data. This block is designed to be capable of being a fully self-contained model.
Although by default, when placed from the associated part in the Algorithm Design library,
this block has a single input and a single output, this model is compatible with any
symbol. Data presented to input terminals can be obtained and used in MathLang
equations which then assigns data to the output terminals of the symbol being used.
Custom Parameters and/or State Variables can be defined and are fully visible from the
MathLang equations.

 MathLang Equations

There are two ways to view and edit the MathLang equations associated with a part using
the MathLang model. The preferred way is to right-click the part in the schematic and
select Edit Equations as shown here:

This will bring up the MathLang equations associated with the selected part in a Script
Editor window, shown here:

The Script Editor is a resizable window that supports all functions that the Equations



SystemVue - Algorithm Design Library

357

window supports, such as setting breakpoints, Find and Replace, etc. For details about the
Equations window, see Equations (users).

Another way to view and edit the equations is to double-click on the part in the schematic.
This will bring up the standard Part Parameters dialog box with a MathLang-specific user
interface. The first tab is labeled Equations and contains the editable equations.
Breakpoints may also be set and removed here. The Equations tab looks like this:

 Configuring Inputs and Outputs

The I/O tab, shown here, is used to configure the inputs and outputs used by the
MathLang equations:

The first column, Symbol Port Name, displays the names of the ports of the current
symbol assigned to the part. The current symbol can be seen in the upper-right hand
corner of the Part Properties dialog box. The second column, Name in Equations,
represents the name that the corresponding symbol port is refered to as in the MathLang
equations. The Direction column specifies whether the corresponding symbol port is an
input or an output. The MultiPort column specifies whether the corresponding symbol port
is a bus terminal or a single terminal. Note: Bus Terminals will produce a variable of
type Cell Array, in which each element of the Cell Array corresponds to a sub-
terminal of the bus. Even if there is only one object connected to the bus, a cell array of
length 1 is produced. The index into the cell array corresponds to the ordering defined in
the Netlist of the part. Finally, the Port Rates column allows the user to set the Rate(s) of
the port and is discussed in more detail in the Port Rates section below.

Examples referencing the above 'input' and 'output' equation names:
When the 'input' has 'Multiport' checked, but 'output' does not, then reference 'input' in
the 'Equations' page using cell array notation: output = 12.5 * input { 4 }. The value
assigned to 'output' is 12.5 times the 4th member of the 'input' cell array.
Similarly, when the 'output' has 'Multiport' checked, but 'input' does not, then reference
'output' in the 'Equations' page using cell array notation: output { 4 } = 12.5 * input. The
value assigned to the 4th member of the 'output' cell array is 12.5 times the input.

Inputs and Outputs are added or removed by clicking the Add Port and Delete Port
buttons, respectively. Note that if the Symbol Port Name column has an empty entry, that
means the current symbol does not have a terminal to map to the port associated with
that row. In other words, the port defined by that row will not receive any data.

To load preconfigured I/O configurations, Inherit from Symbol and Inherit from Model
buttons are provided. Since a Symbol contains no information about directionality of a
terminal, or whether the terminal is a single-port or a bus, the Inherit from Symbol button
can only intelligently inherit symbol terminal names from a symbol. Models, on the other
hand, contain all information about their ports, so the Inherit from Model button allows
one to extract all I/O information from a model.

 Custom Parameters and States
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The Custom Parameters tab, shown here, allows you to define parameters or states that
are visible from within your MathLang equations:

The table seen in this tab allows you to set values for parameters that you have
configured. This table is identical to the usual Part Parameters entry table seen in most
parts. To define Parameters, use the Define Custom Parameters button. The resulting
dialog box allows you to define parameters in a manner identical to the way one would
define Parameters for a Sub-Network model (ie. the Parameters tab of a Design). See
Creating a Design with Parameters (users) for details on defining Parameters.

 Port Rates

The rate of a port determines how many samples to collect (input rate), or how many
samples to generate (output rate), for each simulator clock tick.

For example, suppose we have a constant source feeding a MathLang block with the value
1 on every clock tick. If we set the input Rates parameter to be 3, the simulator will wait
to collect 3 samples before firing the MathLang block's equations. Therefore, for that clock
tick, the MathLang block would see a vector [1; 1; 1] as the current sample, in effect
decreasing the sampling rate by a factor of 3.

Similarly, suppose that in our MathLang equations we assign a vector [1; 2; 3] to an
output terminal which has an output Rate set to 3. The block would then output 3
samples: 1, 2, and 3, in effect increasing the sampling rate by a factor of 3.

Suppose input port rate is R (larger than 1). If input samples are with the same scalar
type, the MathLang block would see a R x 1 vector. If the input samples are matrices with
the same size M x N, the MathLang block would see a R x M x N structure. If input
samples are in different dimensions or different sizes, the MathLang block would see a R x
1 cell array.

For Bus ports, the corresponding Rates parameter can be a scalar, in which case it applies
that rate to all sub-terminals for that port. It may also be a vector which defines a rate for
each sub-terminal separately.

 How the Simulator invokes the MathLang Block

The simulator looks for 3 specific functions in the MathLang block to execute: Initialize,
Run, and Finalize. Note: If no function definition is present in your MathLang
equations (ie. you just have equation script commands), then your script is
wrapped into the Run function automatically.

The Initialize function, if present, is called once at the begining of the simulation run. It
can be used to pre-allocate data or perform any sort of initialization. The Finalize function,
if present, is called once at the end of the simulation run and can be used to perform
clean-up.

The Run function is invoked by the simulator for every clock tick, ie. every time input is
presented to the block. Variables defined in the Run function do not persist between calls
unless they are declared as persistent.

 Examples

Suppose we wanted to define an Adder with a Gain parameter. First, we define configure
the inputs and outputs. We define one input named "input" and check the MultiPort
column since we want the adder to add an arbitrary number of inputs. We define a single
output named "output" which we leave as a single-port, since the adder produces only one
result.

In the Custom Parameters tab, we click the Define Custom Parameters button and define
a single parameter called Gain.
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The MathLang code which sums all of the inputs, scales by the Gain parameter, and
produces an output might look like this:

nInputs = numel( input );

sum = 0;

for i = 1 : nInputs

 sum = sum + input{i};  % input is a cell array

end

output = Gain * sum;  % Gain was defined in Custom Parameters tab

Here's a more complex example that uses a persistent variable named State to retain
state in between calls:

persistent State;

% initialize the structure on the first tic

if isempty( State )  % is it the first call?

 State.Amount = 1

 State.Clock  = 0

 State.Flag= 1   % increase so we don't call this block again

end

% increment to the next clock tic

State.Clock = State.Clock+1

%

% at each 100 clocks bump the amount

if ( State.Clock == 100)

State.Amount = State.Amount * 1.1

State.Clock = 0; % reset clock

end

% now scale the input data

if input >= 1

 output = State.Amount * sqrt( input )

else

 output = input

end

Finally, if we wanted to define Initialize and Finalize functions, we could do as follows:

function Initialize()

% Set up code and pre-allocation goes here

function Run()

% compute outputs based on inputs

function Finalize()

% Clean up code goes here
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 MATLAB_Cosim Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MATLAB_Cosim
(algorithm)

MATLAB Cosimulation Block

 MATLAB_Cosim (MATLAB Cosimulation Block)

Description: MATLAB Cosimulation Block
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: MATLAB Cosim Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

ScriptDirectory Optional directory for location of custom Matlab files   Text NO

MatlabSetUp Matlab command to execute during begin method   Text NO

MatlabFunction Matlab command to execute for each simulation
sample

  Text NO

MatlabWrapUp Matlab command to execute during wrapup method   Text NO

 Input Ports

Port Name Signal Type Optional

1 input multiple
variant

YES

 Output Ports

Port Name Signal Type Optional

2 output multiple complex matrix NO

 Notes/Equations

See MATLAB Cosimulation (sim) for detailed information about MATLAB_Cosim.1.
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 Mpy Part
Categories: C++ Code Generation (algorithm), Math Matrix (algorithm), Math Scalar
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Mpy (algorithm) Multiple Input Multiplier

MpyMultiEnv
(algorithm)

Multiple Input Envelope
Multiplier

MpyFxp (hardware) Fixed Point Multiplier

 Mpy(Multiple Input Multiplier)

Description: Multiple Input Multiplier
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Mpy Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input multiple anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim),
fixed point (sim), or variant (sim).

 Notes/Equations

Mpy outputs the product of the inputs.1.
This model reads 1 sample from all inputs and writes 1 sample to the output.2.
For a single input multiply, the input is copied to the output.3.
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 MpyMultiEnv (Multiple Input Envelope
Multiplier)

Description: Multiple Input Envelope Multiplier
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Mpy Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

SideBandType Multiplication product type: Lower sideband,
Upper sideband, Both sidebands

Upper
sideband

 Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 input input signal multiple
envelope

NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal envelope NO

 Notes/Equations

This model implements a multiple input envelope multiplier.1.
When the number of inputs is 2, then this model performs exactly the same as the2.
two input envelope multiplier MpyEnv (algorithm).
When the number of inputs is greater than 2, then the only SideBandType supported3.
is Upper sideband. In this case, this model acts as a cascade of MpyEnv (algorithm)
models, that is, the first two input envelope signals are multiplied using the two input
MpyEnv (algorithm) model, the resulting signal is multiplied with the third input
envelope signal using another two input MpyEnv (algorithm) model, the resulting
signal is is multiplied with the fourth input envelope signal using another two input
MpyEnv (algorithm) model, etc.

See:
AddEnv (algorithm)
SubEnv (algorithm)
MpyEnv (algorithm)
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 MxCom_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MxCom_M
(algorithm)

Matrix
Composer

 MxCom_M (Matrix Composer)

Description: Matrix Composer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: MxCom M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

OutputNumRows Number of rows for
output matrix

100  Integer NO [InputNumRows:∞)†

OutputNumColumns Number of columns for
output matrix

100  Integer NO [InputNumColumns:∞)‡

InputNumRows Number of rows for
input matrix

4  Integer NO [1:∞)

InputNumColumns Number of columns for
input matrix

4  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input real matrix NO

 Output Ports

Port Name Signal Type Optional

2 output real matrix NO

 Notes/Equations

Each output matrix is composed of submatrices from the input.1.
For (OutputNumRows ⁄ InputNumRows) × (OutputNumColumns ⁄ InputNumColumns)2.
number of input matrices, one matrix is output.
The output matrix is filled with submatrices in rasterized order, i.e. the top row of3.
submatrices is filled first from left to right, and so on to the bottom row of
submatrices.

See:
MxDecom_M (algorithm)
SubMx_M (algorithm)
SubMxCx_M (algorithm)



SystemVue - Algorithm Design Library

364

 MxDecom_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MxDecom_M
(algorithm)

Matrix Decomposer

 MxDecom_M (Matrix Decomposer)

Description: Matrix Decomposer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: MxDecom M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

StartRow Starting row in input matrix to
generate output matrices (first
row is 1)

1  Integer NO [1:∞)

StartCol Starting column in input matrix
to generate output matrices
(first column is 1, matrix upper
left corner is (1,1)

1  Integer NO [1:∞)

InputNumRows Number of rows for input matrix 100  Integer NO [OutputNumRows:∞)†

InputNumCols Number of columns from input
matrix

100  Integer NO [OutputNumCols:∞)‡

OutputNumRows Number of rows for output
matrix

4  Integer NO [1:∞)

OutputNumCols Number of columns for output
matrix

4  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input Input matrix to be decomposed into the output
submatrices.

real matrix NO

 Output Ports

Port Name Description Signal Type Optional

2 output Output matrices with dimensions
OutputNumRows*OutputNumCols.

real matrix NO

 Notes/Equations

Each output matrix is a nonoverlapping submatrix of the input.1.
For every input matrix, (OutputNumRows ⁄ InputNumRows) × (OutputNumColumns ⁄2.
InputNumColumns) number of matrices are output.
The output matrices are extracted from the input in rasterized order, i.e. the top row3.
of submatrices is retrieved first from left to right, and so on to the bottom row of
submatrices.

See:
MxCom_M (algorithm)
SubMx_M (algorithm)
SubMxCx_M (algorithm)
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 Pack_M Part
Categories: C++ Code Generation (algorithm), Math Matrix (algorithm), Type Converters
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Pack_M
(algorithm)

Pack Matrix Function

 Pack_M (Pack Matrix Function)

Description: Pack Matrix Function
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Pack M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NumRows Number of rows in output matrix 1  Integer NO [1:∞)

NumCols Number of columns in output matrix 1  Integer NO [1:∞)

Format Format of data to be packed into matrix:
ColumnMajor, RowMajor

ColumnMajor  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype matrix NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

The Pack_M model packs NumRows x NumCols input scalar values into an output1.
matrix with NumRows and NumCols.
This model reads NumRows x NumCols scalar samples from the input and writes one2.
matrix to the output with NumRows and NumCols.
Inputs are entered into the matrix output in either column-major or row-major order3.
based using the Format parameter.

See:
Unpack_M (algorithm)
DynamicPack_M (algorithm)
DynamicUnpack_M (algorithm)
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 SampleMean_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SampleMean_M
(algorithm)

Matrix Mean
Value

 SampleMean_M (Matrix Mean Value)

Description: Matrix Mean Value
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SampleMean M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input real matrix NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

The averaged value of all elements of the input matrix is output.1.
For input matrix, one real value is output.2.
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 SubMx_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SubMx_M (algorithm) Submatrix Extractor

SubMxCx_M
(algorithm)

Complex Submatrix Extractor

 SubMx_M (Submatrix Extractor)

Description: Submatrix Extractor
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SubMx M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

StartRow Starting row for the submatrix within the input
matrix

1  Integer NO [1:∞)

StartCol Starting column for the submatrix within the
input matrix

1  Integer NO [1:∞)

NumRows Number of submatrix rows 2  Integer NO [1:∞)

NumCols Number of submatrix columns 2  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input real matrix NO

 Output Ports

Port Name Signal Type Optional

2 output real matrix NO

 Notes/Equations

Output a submatrix of the input.1.
For every input matrix, a submatrix is output.2.
The parameters specify the dimensions of the output and the upper left position3.
within the input where extraction begins.

See:
SubMxCx_M (algorithm)
MxDecom_M (algorithm)
MxCom_M (algorithm)

 SubMxCx_M (Complex Submatrix Extractor)

Description: Complex Submatrix Extractor
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SubMx M Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range

StartRow Starting row for the submatrix within the input
matrix

1  Integer NO [1:∞)

StartCol Starting column for the submatrix within the
input matrix

1  Integer NO [1:∞)

NumRows Number of submatrix rows 1  Integer NO [1:∞)

NumCols Number of submatrix columns 1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input complex matrix NO

 Output Ports

Port Name Signal Type Optional

2 output complex matrix NO

 Notes/Equations

Output a submatrix of the input.1.
For every input matrix, a submatrix is output.2.
The parameters specify the dimensions of the output and the upper left position3.
within the input where extraction begins.

See:
SubMx_M (algorithm)
MxDecom_M (algorithm)
MxCom_M (algorithm)
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 SVD_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SVD_M
(algorithm)

Singular Value Decomposition of a Toeplitz Matrix

 SVD_M (Singular Value Decomposition of a Toeplitz
Matrix)

Description: Singular Value Decomposition of a Toeplitz Matrix
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SVD M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Threshold Threshold for similarities
(algorithm assumes values
below Threshold have
reached zero)

0.00000000000000001  Float NO (-
∞:∞)

MaxIterations Maximum iterations for SVD
convergence

30  Integer NO [1:∞)

GenerateLeft Matrix generation of left
singular vectors: Do not
Generate Left Singular
Vectors, Generate Left
Singular Vectors

Generate Left Singular
Vectors

 Enumeration NO  

GenerateRight Matrix generation of right
singular vectors: Do not
Generate Right Singular
Vectors, Generate Right
Singular Vectors

Generate Right Singular
Vectors

 Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input Input stream. real matrix NO

 Output Ports

Port Name Description Signal Type Optional

2 svals The singular values of input - The diagonal of "W". real matrix NO

3 rsvec Right singular vectors of input - "V". real matrix NO

4 lsvec Left singular vectors of input - "U". real matrix NO

 Notes/Equations

SVD_M computes the singular-value decomposition (SVD) of an input Toeplitz matrix1.
A by decomposing A into A = U × W × V′, where U and V are orthogonal matrices
and V′ represents the transpose of V.
For every input matrix, a vector is output to svals (S), a matrix is output to lsvec (L)2.
and a matrix is output to rsvec (R).
The input must be a Toeplitz matrix. Output S is the diagonal of the matrix W, output3.
L is the matrix U, and output R is the matrix V. If the input is of size M rows × N
columns, S will be of size N × 1, L will be of size M × N, and V will be of size N × N.
The MaxIterations parameter allows the designer to limit the number of iterations4.
that the SVD algorithm is allowed to run. This is necessary for non-convergent matrix
inputs.
The execution time of SVD_M may be reduced by using the GenerateLeft and5.
GenerateRight parameters to specify that the matrices of the left and right singular
vectors not be generated. The vector of singular values (S) is always generated.

See:
Toeplitz_M (algorithm)

 References

S. Haykin, Modern Filters, pp. 333-335, Macmillan Publishing Company, New York,1.
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1989.
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 Toeplitz_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Toeplitz_M (algorithm) Toeplitz Matrix Converter

ToeplitzCx_M
(algorithm)

Complex Toeplitz Matrix Converter

 Toeplitz_M (Toeplitz Matrix Converter)

Description: Toeplitz Matrix Converter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Toeplitz M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

NumRows Number of rows in the output matrix 2  Integer NO [1:∞)

NumCols Number of columns in the output
matrix

2  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input Input stream. real NO

 Output Ports

Port Name Description Signal Type Optional

2 output the data matrix
X.

real matrix NO

 Notes/Equations

The Toeplitz_M model packs NumRows + NumCols − 1 input real scalar values into1.
an output real matrix with NumRows and NumCols.
This model reads NumRows + NumCols − 1 real scalar samples from the input and2.
writes 1 real matrix (X) to the output with NumRows and NumCols.
Let M = NumCols, N = NumRows + NumCols − 1 and x[1:N] be the input, then from3.
left to right:
The first (top) row of X is x[M] x[M−1]) ... x[1],
the second row of X is x[M + 1] x[M] ... x[2],
until
the last (bottom) row of X, which is x[N] x[N − 1] ... x[N − M + 1]. Note that N = M
+ NumRows − 1 and N − M + 1 = NumRows.

See:
ToeplitzCx_M (algorithm)
Identity_M (algorithm)
IdentityCx_M (algorithm)
Diagonal_M (algorithm)
DiagonalCx_M (algorithm)
Const (algorithm)

 ToeplitzCx_M (Complex Toeplitz Matrix Converter)

Description: Complex Toeplitz Matrix Converter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Toeplitz M Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime Tunable Range

NumRows Number of rows in the output matrix 2  Integer NO [1:∞)

NumCols Number of columns in the output
matrix

2  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input Input stream. complex NO

 Output Ports

Port Name Description Signal Type Optional

2 output Data matrix
X.

complex matrix NO

 Notes/Equations

The ToeplitzCx_M model packs NumRows + NumCols − 1 input complex scalar values1.
into an output complex matrix with NumRows and NumCols.
This model reads NumRows + NumCols − 1 complex scalar samples from the input2.
and writes 1 complex matrix (X) to the output with NumRows and NumCols.
Let M = NumCols, N = NumRows + NumCols − 1 and x[1:N] be the input, then from3.
left to right:
The first (top) row of X is x[M] x[M − 1]) ... x[1],
the second row of X is x[M + 1] x[M] ... x[2],
until
the last (bottom) row of X, which is x[N] x[N − 1] ... x[N − M + 1]. Note that N = M
+ NumRows − 1 and N − M + 1 = NumRows.

See:
Toeplitz_M (algorithm)
Identity_M (algorithm)
IdentityCx_M (algorithm)
Diagonal_M (algorithm)
DiagonalCx_M (algorithm)
Const (algorithm)
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 Transpose_M Part
Categories: Math Matrix (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Transpose_M (algorithm) Matrix Transposer

TransposeCx_M
(algorithm)

Complex Matrix
Transposer

 Transpose_M (Matrix Transposer)

Description: Matrix Transposer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Transpose M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input real matrix NO

 Output Ports

Port Name Signal Type Optional

2 output real matrix NO

 Notes/Equations

The transpose of the input is output.1.
If the input is a M × N matrix, then the output is a N × M matrix.2.
Let x[i,j] be an element of the input and y[j,i] be an element of the output, then3.
y[j,i] = x[i,j].

See:
TransposeCx_M (algorithm)
Hermitian_M (algorithm)

 TransposeCx_M (Complex Matrix Transposer)

Description: Complex Matrix Transposer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Transpose M Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input complex matrix NO

 Output Ports

Port Name Signal Type Optional

2 output complex matrix NO

 Notes/Equations

The transpose of the input is output.1.
If the input is a M × N matrix, then the output is a N × M matrix.2.
Let x[i,j] be an element of the input and y[j,i] be an element of the output, then3.
y[j,i] = x[i,j].

See:
Transpose_M (algorithm)
Hermitian_M (algorithm)
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 Unpack_M Part
Categories: C++ Code Generation (algorithm), Math Matrix (algorithm), Type Converters
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Unpack_M
(algorithm)

Unpack Matrix Function

 Unpack_M (Unpack Matrix Function)

Description: Unpack Matrix Function
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Unpack M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NumRows Number of rows in input matrix 1  Integer NO [1:∞)

NumCols Number of columns in input matrix 1  Integer NO [1:∞)

Format Format of data to be packed into matrix:
ColumnMajor, RowMajor

ColumnMajor  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input anytype matrix NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

The Unpack_M model unpacks an input matrix to write NumRows x NumCols values1.
to the output. If the matrix is too small, zero-padding will be used for the missing
elements. If the matrix is too larger, the extra elements will be ignored.
This model reads one matrix from the input and writes NumRows x NumCols scalar2.
samples to the output.
Elements of the input matrix of dimension, NumRow × NumCols, are output in either3.
column-major or row-major order based using the Format parameter.

See:
Pack_M (algorithm)
DynamicPack_M (algorithm)
DynamicUnpack_M (algorithm)
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 BitShiftRegister Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BitShiftRegister
(algorithm)

Bit Shift
Register
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 BitShiftRegister

Description: Bit Shift Register
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: BitShiftRegister Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

NumBits Number of bits in the output
register

8  Integer NO [1:∞)

BitOrder Output bit order: LSB first, MSB first MSB
first

 Enumeration YES  

 Input Ports

Port Name Description Signal Type Optional

1 input input bits boolean NO

2 clock clock int YES

3 reset reset int YES

 Output Ports

Port Name Description Signal Type Optional

4 output output bit
register

boolean NO

 Notes/Equations

The BitShiftRegister model reads input bit values and writes to the output the current1.
and NumBits-1 prior bits in a shift register stream with LSB or MSB first based on
BitOrder and dependent on the state of the reset and clock inputs.
This model reads 1 sample from the inputs (input , clock , reset ) and writes NumBits2.
samples to the output. The clock and reset inputs are optional.
When the clock is not connected, it is set internally to one.3.
When the reset is not connected, it is set internally to zero.4.
When reset is one (regardless of the clock ), then all NumBits samples written to the5.
output are set to zero.
When clock is one, then the current input bit is read and is loaded into and shifts all6.
prior bits in the output register.
The output resigter is sent out with either LSB (least significant bit) or MSB (most7.
significant bit) ordering based on the setting of BitOrder .
To select only the 'n'th output bit, one can follow this part with a DownSample part8.
with Factor set to NumBits and Phase set to 'n'.
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 BitsToInt Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm), Type Converters
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BitsToInt
(algorithm)

Bits to Integer Converter

 

 BitsToInt(Bits to Integer Converter) 

 

Description: Bits to Integer Converter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: BitsToInt Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

NumBits Number of bits read per execution 4  Integer NO

BitOrder Bit order: LSB first, MSB first MSB
first

 Enumeration YES

 Input Ports

Port Name Signal Type Optional

1 input boolean NO

 Output Ports

Port Name Signal Type Optional

2 output int NO

 

 Notes/Equations

The BitsToInt model converts NumBits successive input bit values, packs these bits1.
into an integer, and outputs the integer.
This model reads NumBits samples from the input and interprets it using the BitOrder2.
parameter to write 1 sample to the output.
When the input is any nonzero value, a one bit value is input, otherwise a zero bit is3.
input.
The BitOrder parameter determines how successive inputs bits are packed into the4.
integer. If BitOrder is specified as LSB first, then the first input bit becomes the least
significant bit of the output, i.e. controls whether the output is even or odd.
Otherwise, the last input bit becomes the least significant bit of the output.
If NumBits is greater than the number of bits forming an integer, the most significant5.
bits are lost.
If NumBits is greater than or equal to the number of bits forming an integer, the6.
output could be negative. Otherwise, the output is always nonnegative.
When symbols are mapped onto an integer, this part becomes a BitToSymbol7.
converter.

See:
IntToBits (algorithm)
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 CxToPolar Part
Categories: Math Scalar (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CxToPolar
(algorithm)

Complex to Magnitude and Phase Converter

  

 CxToPolar (Complex to Magnitude and Phase
Converter) 

 

Description: Complex to Magnitude and Phase Converter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: CxToPolar Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 magnitude real NO

3 phase real NO

 Notes/Equations  

The CxToPolar model converts input complex values to output magnitude and angle1.
values.
This model reads 1 sample from the input and writes 1 sample to each of the outputs2.
magnitude and phase.
magnitude = | input |
phase =  input (the phase is in radians)

See:
unwrap (algorithm)
CxToRect (algorithm)
PolarToCx (algorithm)
RectToCx (algorithm)
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 CxToRect Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm), Type Converters
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CxToRect
(algorithm)

double CxToRect

  

 CxToRect (Complex to Real and Imaginary
Converter) 

 

Description: double CxToRect
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: CxToRect Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 real real NO

3 imag real NO

 Notes/Equations  

The CxToRect model converts input complex values to output real and imaginary1.
values.
This model reads 1 sample from the input and writes 1 sample to each of the outputs2.
real and imag.
real = real part
imag = imaginary part

See:
CxToPolar (algorithm)
RectToCx (algorithm)
PolarToCx (algorithm)
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 DB Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

db
(algorithm)

Decibel Function

 db

Description: Decibel Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DB Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Min Minimum output value -100  Float YES (-
∞:∞)

DbType Type of dB value: Power as
10*log(input), Amplitude as
20*log(input)

Amplitude as
20*log(input)

 Enumeration YES  

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

DB converts the input to a decibel (dB) scale. Zero and negative inputs convert to the1.
Min value.
If the input is a power measurement set DbType to Power as 10log(input), else the2.
input is an amplitude measurement so set DbType to Power as 20log(input).
If Power as 10log(input):3.

If Power as 20log(input):

where:
x(n) is input for sample n
y(n) is output for sample n
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 Dirichlet Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Dirichlet
(algorithm)

Dirichlet (Aliased Sinc)
Function

    

 Dirichlet (Dirichlet (Aliased Sinc) Function)
 

Description: Dirichlet (Aliased Sinc) Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Dirichlet Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

N Length of Dirichlet kernel 10  Integer YES [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input to the Dirichlet kernel real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output of the Dirichlet kernel real NO

 

 Notes/Equations

Dirichlet computes the normalized Dirichlet kernel (also called the aliased sinc1.
function).
The value of the normalized Dirichlet kernel at x = 0 is always 1, and the normalized2.
Dirichlet kernel oscillates between −1 and +1. The normalized Dirichlet kernel is
periodic in x with a period of either 2π when N is odd or 4π when N is even.
The Dirichlet kernel is the discrete-time Fourier transform (DTFT) of a sampled pulse3.
function. The parameter N is the length of the pulse [1].

See:
sinc (algorithm).

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 Integrator Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Integrator (algorithm) Integrator with Reset

IntegratorCx (algorithm) Complex integrator with
Reset

IntegratorInt
(algorithm)

Integer Integrator with Reset

 Integrator (Integrator with Reset)

Description: Integrator with Reset
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Integrator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

IntegrationMethod Integration method: Rectangle,
Trapezoidal

Rectangle  Enumeration YES  

LimitOutput Output limiter options: No,
Saturate, Wrap

No  Enumeration YES  

Top Upper limit. Visible when
LimitOutput is enabled.

0  Float YES (-
∞:∞)

Bottom Lower limit. Visible when
LimitOutput is enabled.

0  Float YES (-
∞:∞)

InitialState Initial integrator state 0  Float NO (-
∞:∞)

UseIntegrationWindow Enable integration window: No,
DefinedInTime, DefinedInSamples

No  Enumeration NO  

FeedbackGain Gain on feedback path. Visible
when UseIntegrationWindow is
disabled.

1  Float YES (-
∞:∞)

IntegrationTime Integration time. Visible when
UseIntegrationWindow is
DefinedInTime.

100e-6 s Float NO (0:∞)

IntegrationSamples Integration samples. Visible when
UseIntegrationWindow is
DefinedInSamples.

100  Integer NO [2:∞)

 Input Ports

Port Name Description Signal Type Optional

1 reset reset int YES

2 data input real NO

 Output Ports

Port Name Description Signal Type Optional

3 output output real NO

 Notes/Equations

The input port is numerically integrated in a method chosen by the1.
IntegrationMethod parameter. The integration value is output.
For every input, there is one output.2.
If the reset input is non-zero (true), the integration value is set to the current input.3.
To enable a continuous accumulation, leave the reset port unconnected or connect a
zero Const source to the reset port.
Limits to the output are controlled by the LimitOutput parameter. If LimitOutput is No4.
, no limiting is performed, otherwise the output is kept between Top and Bottom.
If LimitOutput is Saturate then the integration value is clamped between Top and5.
Bottom, otherwise wrap around is performed.
The InitialState value is applied only to the first output.6.
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If UseIntegrationWindow is either DefineInTime or DefineInSamples, the integration7.
is performed over the most recent window of samples. Samples before the first are
zero valued.
When UseIntegrationWindow is No, leakage can be modeled by the FeedbackGain8.
parameter. The output is the input plus the product of FeedbackGain and the
previous integration value.
With the default parameters, input values are accumulated and the accumulation is9.
output.

See:
IntegratorCx (algorithm)
IntegratorInt (algorithm)
SlidWinAvg (algorithm)
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 IntegratorCx

Description: Complex integrator with Reset
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Integrator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

IntegrationMethod Integration method: Rectangle,
Trapezoidal

Rectangle  Enumeration YES  

LimitOutput Output limiter options: No,
Saturate, Wrap

No  Enumeration YES  

Top Upper magnitude limit. Visible
when LimitOutput is enabled.

0  Float YES (-
∞:∞)

Bottom Lower magnitude limit. Visible
when LimitOutput is enabled.

0  Float YES (-
∞:∞)

InitialState Initial integrator state 0  Complex
number

NO (-
∞:∞)

UseIntegrationWindow Enable integration window: No,
DefinedInTime, DefinedInSamples

No  Enumeration NO  

FeedbackGain Gain on feedback path 1  Float YES (-
∞:∞)

IntegrationTime Integration time. Visible when
UseIntegrationWindow is
DefinedInTime.

100e-6 s Float NO (0:∞)

IntegrationSamples Integration samples. Visible when
UseIntegrationWindow is
DefinedInSamples.

100  Integer NO [2:∞)

 Input Ports

Port Name Description Signal Type Optional

1 reset reset int YES

2 data input complex NO

 Output Ports

Port Name Description Signal Type Optional

3 output output complex NO

 Notes/Equations

The input port is numerically integrated in a method chosen by the1.
IntegrationMethod parameter. The integration value is output.
For every input, there is one output.2.
If the reset input is non-zero (true), the integration value is set to the current input.3.
To enable a continuous accumulation, leave the reset port unconnected or connect a
zero Const source to the reset port.
Limits to the output are controlled by the LimitOutput parameter. If LimitOutput is No4.
, no limiting is performed, otherwise the output magnitude is kept between Top and
Bottom.
If LimitOutput is Saturate then the magnitude of the integration value is clamped5.
between Top and Bottom, otherwise wrap around is performed.
The InitialState value is applied only to the first output.6.
If UseIntegrationWindow is either DefineInTime or DefineInSamples, the integration7.
is performed over the most recent window of samples. Samples before the first are
zero valued.
When UseIntegrationWindow is No, leakage can be modeled by the FeedbackGain8.
parameter. The output is the input plus the product of FeedbackGain and the
previous integration value.
With the default parameters, input values are accumulated and the accumulation is9.
output.

See also: Integrator (algorithm), IntegratorInt (algorithm), SlidWinAvg (algorithm).
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 IntegratorInt

Description: Integer Integrator with Reset
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Integrator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

LimitOutput Output limiter options: No, Saturate,
Wrap

No  Enumeration YES  

Top Upper integer limit. Visible when
LimitOutput is enabled.

0  Integer YES (-
∞:∞)

Bottom Lower integer limit. Visible when
LimitOutput is enabled.

0  Integer YES (-
∞:∞)

InitialState Initial integrator state 0  Integer NO (-
∞:∞)

UseIntegrationWindow Enable integration window: No,
DefinedInTime, DefinedInSamples

No  Enumeration NO  

IntegrationTime Integration time. Visible when
UseIntegrationWindow is
DefinedInTime.

100e-6 s Float NO (0:∞)

IntegrationSamples Integration samples. Visible when
UseIntegrationWindow is
DefinedInSamples.

100  Integer NO [2:∞)

 Input Ports

Port Name Description Signal Type Optional

1 reset reset int YES

2 data input int NO

 Output Ports

Port Name Description Signal Type Optional

3 output output int NO

 Notes/Equations

Input is summed and output.1.
For every input, there is one output.2.
If the reset input is non-zero (true), the sum is set to the current input. To enable a3.
continuous accumulation, leave the reset port unconnected or connect a zero Const
source to the reset port.
Limits to the output are controlled by the LimitOutput parameter. If LimitOutput is No4.
, no limiting is performed, otherwise the output is kept between Top and Bottom.
If LimitOutput is Saturate then the sum is clamped between Top and Bottom,5.
otherwise wrap around is performed.
The InitialState value is applied only to the first output.6.
If UseIntegrationWindow is either DefineInTime or DefineInSamples, the integration7.
is performed over the most recent window of samples. Samples before the first are
zero valued.
With the default parameters, input values are accumulated and the accumulation is8.
output.

See also: Integrator (algorithm), IntegratorCx (algorithm), SlidWinAvg (algorithm).
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 IntToBits Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm), Type Converters
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

IntToBits
(algorithm)

Integer to Bits Converter

   

 IntToBits (Integer to Bits Converter) 

 

Description: Integer to Bits Converter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: IntToBits Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

NumBits Number of output bits per input sample 4  Integer NO

BitOrder Bit order: LSB first, MSB first MSB
first

 Enumeration YES

 Input Ports

Port Name Signal Type Optional

1 input int NO

 Output Ports

Port Name Signal Type Optional

2 output boolean NO

 Notes/Equations  

The IntToBits model extracts the least significant NumBits number of bits from an1.
integer input and serial outputs the bits as zeros and ones.
This model reads 1 sample from the input and interprets it using the BitOrder2.
parameter to write NumBits samples to the output.
If BitOrder is specified as LSB first, then the least significant bit is output first. If3.
nBits is greater than the number of bits forming an integer, the most significant bits
above the number of bits forming an integer are lost and are assigned the input sign
bit, i.e. a one bit if the input is negative.
When symbols are mapped onto an integer, this part becomes a SymbolToBits4.
converter.
To select only the 'n'th output bit, one can follow this part with a DownSample part5.
with Factor set to NumBits and Phase set to 'n'.

See:
BitsToInt (algorithm)
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 Logic Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Logic (algorithm) Boolean Logic Function

AND_Fxp (hardware) Fixed Point Bitwise AND

NAND_Fxp
(hardware)

Fixed Point Bitwise NAND

NOR_Fxp (hardware) Fixed Point Bitwise NOR

NOT_Fxp (hardware) Fixed Point NOT

OR_Fxp (hardware) Fixed Point Bitwise OR

XNOR_Fxp (hardware) Fixed Point Bitwise XNOR

XOR_Fxp (hardware) Fixed Point Bitwise XOR

    

 Logic (Boolean Logic Function)
 

Description: Boolean Logic Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Logic Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Logic Logic operation: NOT, AND, NAND, OR, NOR, XOR,
XNOR

AND  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 input Input logic
values.

multiple boolean NO

 Output Ports

Port Name Description Signal
Type

Optional

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a
non-zero integer (not necessarily 1).

boolean NO

 

 Notes/Equations

A logical operation selected by the Logic parameter is applied to the inputs. The NOT1.
operation can have only one input.
The inputs are interpreted as booleans, i.e. false when the input is zero, otherwise2.
true.
This part's symbol text changes when the "Logic" parameter value is changed. That is3.
"AND", "OR", "XOR", etc. is based on the value of the "Logic" parameter. This is
accomplished via a %ParameterName% macro (in the annotation text), a feature
which is end-user accessable. See Symbols (users) for more info.
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 MathCx Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MathCx
(algorithm)

Complex Math Function

 MathCx (Complex Math Function)

Description: Complex Math Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Math Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FunctionType Mathematical function: Abs, Ceil, Exp, Floor, Ln,
Log10, Pow10, Recip, Round, Sqr, Sqrt, Conj

Abs  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

Math calculates complex mathematical functions:1.
y(n) = f(x(n))
where:
f( ) is a function selected by the FunctionType parameter
x(n) is input for sample n
y(n) is output for sample n
If the function cannot be calculated, the simulation is halted with an error message.2.
For FunctionType:3.

Abs, y(n) = |x(n)| = 

Ceil, y(n) = 
See Ceil function of Math component.

Exp, y(n) = e x(n) = e Re{x(n)} (cos(Im{x(n)}) + j sin(Im{x(n)}))

Floor, y(n) = 
See Floor function of Math component.

Ln, y(n) = , where  is the phase of x(n)
in radians.
Log10, y(n) = log 10 (x(n)) = ln(x(n)) / ln(10)

Pow10, y(n) = 10 x(n) = e x(n) ln(10)

Recip, y(n) = 1 / x(n) = (Re{x(n)} − j Im{x(n)}) / |x(n)| 2

Round, y(n) = Round(Re{x(n)}) + j Round(Im{x(n)})
See Round function of Math component.

Sqr, y(n) = x(n) 2

Sqrt, y(n) = , where  is the phase of
x(n) in radians.

Conj, y(n) = 

See:
Math (algorithm)
Trig (algorithm)
TrigCx (algorithm)



SystemVue - Algorithm Design Library

389

 Math Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Math (algorithm) Math Function

MathCx (algorithm) Complex Math Function

ABS_Fxp
(hardware)

Fixed Point Absolute Value

SqrtFxp (hardware) Fixed Point Square Root

   

 Math (Math Function)
 

Description: Math Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Math Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FunctionType Mathematical function: Abs, Ceil, Exp, Floor, Ln,
Log10, Pow10, Recip, Round, Sqr, Sqrt, Sgn

Abs  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

Math calculates real mathematical functions:1.
y(n) = f(x(n))
where:
f( ) is a function selected by the FunctionType
x(n) is input for sample n
y(n) is output for sample n
If the function cannot be calculated, the simulation is halted with an error message.2.
For FunctionType:3.

Abs, y(n) = |x(n)|

Ceil, y(n) = , where 
Exp, y(n) = e x(n)

Floor, y(n) = , where 
Ln, y(n) = ln(x(n))
Log10, y(n) = log 10 (x(n))

Pow10, y(n) = 10 x(n)

Recip, y(n) = 1 / x(n)
Round, y(n) = closest integer to x(n)

When x(n) is at the same distance between integers, Round maps away
from 0, e.g. 2.5 maps to 3 and −2.5 maps to −3.

Sqr, y(n) = x(n) 2

Sqrt, y(n) = 
Sgn, y(n) = a number indicating the sign of the input n i.e., y(n) = 1 if n > 0;
y(n) = 0 if n == 0; and y(n) = -1 if n < 0.

See:
MathCx (algorithm)
Trig (algorithm)
TrigCx (algorithm)
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 Modulo Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Modulo (algorithm) Modulo Function

ModuloInt
(algorithm)

Integer Modulo Function

    

 Modulo (Modulo Function)
 

Description: Modulo Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Modulo Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Modulo Modulo value 1  Float YES (-∞:0) or (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal real NO

 

 Notes/Equations

Modulo outputs the remainder with the same sign as input after dividing the input by1.
the Modulo parameter.

where:
x(n) is input for sample n
y(n) is output for sample n
For every input, there is an output.2.

See:
ModuloInt (algorithm)
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 ModuloInt

Description: Integer Modulo Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Modulo Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Modulo Integer modulo value 8  Integer YES (0:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal int NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal int NO

 Notes/Equations

ModuloInt functions identically to Modulo (algorithm) except that the operation is1.
over integers.

See:
Modulo (algorithm)
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 PolarToCx Part
Categories: Math Scalar (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PolarToCx
(algorithm)

Magnitude and Phase to Complex Converter

   

 PolarToCx (Magnitude and Phase to Complex
Converter) 

 

Description: Magnitude and Phase to Complex Converter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: PolarToCx Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 magnitude real NO

2 phase real NO

 Output Ports

Port Name Signal Type Optional

3 output complex NO

 Notes/Equations  

The PolarToCx model converts input magnitude and angle values to output complex1.
values.
output = magnitude × ( cos( phase ) + j × sin( phase ) )
This model reads 1 sample from the inputs magnitude and phase and writes 12.
sample to the output.
The phase angle is specified in radians.3.

See:
PolarToRect (algorithm)
CxToPolar (algorithm)
RectToPolar (algorithm)
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 PolarToRect Part
Categories: Math Scalar (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PolarToRect
(algorithm)

Magnitude and Phase to Rectangular Converter

   

 PolarToRect (Magnitude and Phase to Rectangular
Converter) 

 

Description: Magnitude and Phase to Rectangular Converter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: PolarToRect Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 magnitude real NO

2 phase real NO

 Output Ports

Port Name Signal Type Optional

3 x real NO

4 y real NO

 Notes/Equations  

The PolarToCx model converts input magnitude and phase values to output complex1.
values.

x = magnitude * cos( phase )
y = magnitude * sin( phase )

This model reads 1 sample from the inputs magnitude and phase and writes 12.
sample to the outputs x and y.
The phase is specified in radians.3.

See:
PolarToCx (algorithm)
RectToPolar (algorithm)
CxToPolar (algorithm)
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 Polynomial Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Polynomial (algorithm) Polynomial Mapper

PolynomialInt
(algorithm)

Integer Polynomial
Mapper

    

 Polynomial (Polynomial Mapper)
 

Description: Polynomial Mapper
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Polynomial Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Coefficients Polynomial coefficients (0-th order
coefficient first)

[0, 1]  Floating point
array

NO

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal real NO

 

 Notes/Equations

Polynomial models a system with a polynomial input-output relationship.1.
For every input, there is an output.2.
If the input is x, the output is y = c 0 + c 1 × x + c 2 × x 2 + ... + c N × x N, where N3.
is the order of the polynomial and c 0 , ... , c N are the elements of the Coefficients

parameter.

See:
PolynomialInt (algorithm)
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 PolynomialInt

Description: Integer Polynomial Mapper
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Polynomial Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Coefficients Integer polynomial coefficients (0-th order
coefficient first)

[0, 1]  Integer
array

NO

 Input Ports

Port Name Description Signal Type Optional

1 input input signal int NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal int NO

 Notes/Equations

PolynomialInt functions identically to Polynomial (algorithm) except that the1.
operation is over integers.

See:
Polynomial (algorithm)
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 Reciprocal Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Reciprocal
(algorithm)

Reciprocal
Function

    

 Reciprocal (Reciprocal Function)
 

Description: Reciprocal Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Reciprocal Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

MagLimit Magnitude limit; non-zero value limits the output
magnitude

0  Float YES (-
∞:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

The reciprocal of the input is calculated with an optional magnitude limit.1.
If MagLimit = 0

If MagLimit ≠ 0 and input = 0
y(n) = MagLimit
If MagLimit ≠ 0 and input ≠ 0

where:
x(n) is input for sample n
y(n) is output for sample n

See:
Math (algorithm)
MathCx (algorithm)
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 RectToCx Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm), Type Converters
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RectToCx
(algorithm)

double RectToCx

   

 RectToCx (Real and Imaginary to Complex
Converter) 

 

Description: double RectToCx
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: RectToCx Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 real real YES

2 imag real YES

 Output Ports

Port Name Signal Type Optional

3 output complex NO

 Notes/Equations  

The RectToCx model converts input real and imaginary values to output complex1.
values.

output = real + j × imaginary
This model reads 1 sample from the inputs real and imaginary and writes 1 sample to2.
the output.

See:
RectToPolar (algorithm)
CxToRect (algorithm)
PolarToRect (algorithm)
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 RectToPolar Part
Categories: Math Scalar (algorithm), Type Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RectToPolar
(algorithm)

Rectangular to Polar
Converter

   

 RectToPolar (Rectangular to Polar Converter) 

 

Description: Rectangular to Polar Converter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: RectToPolar Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 x real NO

2 y real NO

 Output Ports

Port Name Signal Type Optional

3 magnitude real NO

4 phase real NO

 Notes/Equations  

The RectToPolar model converts input real and imaginary values to output magnitude1.
and phase values.

magnitude = sqrt( real^2 + imaginary^2 )
phase = atan2( imaginary, real )

This model reads 1 sample from the inputs real and imaginary and writes 1 sample to2.
the outputs magnitude and phase.
The phase angle is in the range -π to π radians.3.

See:
RectToCx (algorithm)
PolarToRect (algorithm)
CxToRect (algorithm)
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 Rotate Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Rotate
(algorithm)

Complex Rotate
Function

 Rotate

Description: Complex Rotate Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Rotate Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

RotationAngle Rotation
angle

0 deg Float NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

Rotate rotates a complex input.1.
For every input, there is an output.2.
The input is multiplied by exp( j × θ ) where θ is the RotationAngle parameter value3.
in radians.
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 Sinc Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

sinc
(algorithm)

Sinc Function

 sinc

Description: Sinc Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Sinc Part (algorithm)

 Input Ports

Port Name Description Signal Type Optional

1 input The input x to the sinc
function.

real NO

 Output Ports

Port Name Description Signal Type Optional

2 output The output of the sinc function. real NO

 Notes/Equations

The sinc function is defined as sin(x)/x which is continuous with value 1.0 when x =1.
0. Input is in radians.
For every input, there is an output.2.

See:
Dirichlet (algorithm)
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 Sub Part
Categories: C++ Code Generation (algorithm), Math Matrix (algorithm), Math Scalar
(algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Sub (algorithm) Multiple Input Subtractor

SubEnv
(algorithm)

Multiple Input Subtractor

SubFxp (hardware) Fixed Point Subtractor

 Sub (Multiple Input Subtractor)

Description: Multiple Input Subtractor
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Sub Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 pos anytype NO

2 neg multiple anytype NO

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim),
fixed point (sim), or variant (sim).

 Notes/Equations

The Sub model subtracts all inputs at the neg input from the input at the pos input1.
and produces the result at the output.
This model reads 1 sample from all inputs and writes 1 sample to the output.2.
For discussion on the variant type, see Variant (sim).3.
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 SubEnv (Multiple Input Subtractor)

Description: Multiple Input Subtractor
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Sub Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

OutputFc Output characterization frequency
for the combined signal: Min, Max,
Center, User defined

Center  Enumeration NO  O

UserDefinedFc User defined output
characterization frequency

100e6 Hz Float NO [0:∞)† F

 Input Ports

Port Name Description Signal Type Optional

1 pos  envelope NO

2 neg input signals multiple
envelope

NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal envelope NO

 Notes/Equations

The SubEnv model subtracts all envelope signals connected to the neg port from the1.
envelope signal connected to the pos port.
This model reads 1 sample from all inputs and writes 1 sample to the output.2.
For more information see the documentation of the AddEnv (algorithm) model.3.

See:
AddEnv (algorithm)
MpyEnv (algorithm)
MpyMultiEnv (algorithm)
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 Test Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Test (algorithm) Comparison Test
Function

CompareFxp
(hardware)

Fixed Point Compare

    

 Test (Comparison Test Function)
 

Description: Comparison Test Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Test Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Condition Test condition: EQ, NE, GT, GE, LT, LE EQ  Enumeration NO  

Tolerance Finite-precision comparison tolerance 0  Float YES [0:∞)

CrossingDetection Crossing detection options: Off,
Positive, Negative, All

Off  Enumeration YES  

InitialCondition Initial condition value for crossing
detection: FALSE, TRUE

FALSE  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input1 Signal used in left hand side of comparison test real NO

2 input2 Signal used in right hand side of comparison
test

real NO

 Output Ports

Port Name Description Signal Type Optional

3 output Test result int NO

 

 Notes/Equations

The Test model compares the value of the input1 input to the value of the input21.
input using the relationship selected by the Condition parameter. The output result of
the comparison is either FALSE or TRUE. FALSE is represented by a value of 0 and
TRUE is represented by a value of 1.
For one input at input1 and input2, there is one output.2.
If the CrossingDetection parameter is set to Off, then output is just the result of the3.
comparison as described below:

If Condition is EQ, then output is TRUE if | input2  −  input1 | ≤ Tolerance, else
output is FALSE
If Condition is NE, then output is TRUE if | input2  −  input1 | > Tolerance, else
output is FALSE
If Condition is GT, then output is TRUE if input1 > input2, else output is FALSE
If Condition is GE, then output is TRUE if input1 ≥ input2, else output is FALSE
If Condition is LT, then output is TRUE if input1 < input2, else output is FALSE
If Condition is LE, then output is TRUE if input1 ≤ input2, else output is FALSE

If the CrossingDetection parameter is set to Positive, then output is TRUE when the4.
comparison result changes from FALSE (previous comparison value) to TRUE (current
comparison value), else output is FALSE.
If the CrossingDetection parameter is set to Negative, then output is TRUE when the5.
comparison result changes from TRUE (previous comparison value) to FALSE (current
comparison value), else output is FALSE.
If the CrossingDetection parameter is set to All, then output is TRUE when the6.
comparison result changes from its previous value, else output is FALSE.
When the CrossingDetection parameter is set to Positive, Negative, or All, an initial7.
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value is needed to compare the result of the first comparison against. This value is
set in the InitialCondition parameter.
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 Trig Part
Categories: C++ Code Generation (algorithm), Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Trig (algorithm) Trigonometric Function

TrigCx
(algorithm)

Complex Trigonometric
Function

    

 Trig (Trigonometric Function)
 

Description: Trigonometric Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Trig Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FunctionType Trigonometric function type: Sin, Cos, Tan, Cot,
Asin, Acos, Atan, Acot, Sinh, Cosh, Tanh, Coth,
Asinh, Acosh, Atanh, Acoth

Sin  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

Trig calculates real trigonometric functions:1.
y(n) = f(x(n))
where:
f( ) is a function selected by the Type parameter
x(n) is input for sample n
y(n) is output for sample n
If the function cannot be calculated, the simulation is halted with an error message.2.
All angles are in radians.3.

See:
TrigCx (algorithm)
Math (algorithm)
MathCx (algorithm)
    

 TrigCx (Complex Trigonometric Function)
 

Description: Complex Trigonometric Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Trig Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

FunctionType Complex trigonometric function type: Sin, Cos, Tan,
Cot, Asin, Acos, Atan, Acot, Sinh, Cosh, Tanh, Coth,
Asinh, Acosh, Atanh, Acoth

Sin  Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 

 Notes/Equations

TrigCx calculates complex trigonometric functions:1.
y(n) = f(x(n))
where:
f( ) is a function selected by the Type parameter
x(n) is input for sample n
y(n) is output for sample n
The principal value is calculated.2.
If the function cannot be calculated, the simulation is halted with an error message.3.
All angles are in radians.4.

See:
Trig (algorithm)
Math (algorithm)
MathCx (algorithm)

 References

Handbook of Mathematical Functions, 1972, Abramowitz and Stegun.1.
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 Unwrap Part
Categories: Math Scalar (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

unwrap
(algorithm)

Unwrap
Phase

 unwrap

Description: Unwrap Phase
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Unwrap Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

OutPhase Initial output phase 0 deg Float YES (-
∞:∞)

PrevPhase Initial wrapped phase of input signal for
computing the first phase difference

0 deg Float YES (-
∞:∞)

PhaseType Phase type for the input and output signals:
radians, degrees

radians  Enumeration YES  

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

Unwrap a phase plot by removing discontinuities of magnitude 2 π.1.
For every input, there is an output.2.
The phase is assumed to never change by more than π between inputs. The input is3.
assumed to be in the range [−π, π].
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 Interpolator Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Interpolator
(algorithm)

1-dimension Wiener
interpolator

 Interpolator

Description: 1-dimension Wiener interpolator
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Interpolator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

R interpolation ratio 2  Integer NO

L half the original sample number used for
interpolation

4  Integer NO

Alpha ratio of signal bandwidth to half the sample rate
[0,1]

0.5  Float NO

SNR signal to noise power ratio of input signal in dB 100  Float NO

OperationMode Operation mode (in Continuous mode, the filtering
delay is R*L samples): Blocked, Continuous

Blocked  Enumeration NO

BlockSize Block size of input signal (> 2*L) 128  Integer NO

OutputOption Normal: InBlockSize x R, Tailored: InBlockSize x
R - R + 1: Normal, Tailored

Tailored  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 Input signal to be interpolated complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Output signal interpolated complex NO

 Notes/Eqautions

The interpolator implements a 1-dimension wiener low-pass interpolation for1.
baseband signal.
The interpolator assumes the input signal has a square spectrum mask within the2.
digital frequency span [0,Alpha], where Alpha is the the ratio of signal bandwidth in
Hz to half the sampling rate in Hz. It also assumes the noise is AWGN type.
SNR is the Signal to Noise power ratio in dB which is used to optimize the filter3.
coefficient so as to suppress out-of-band noise in input signal.
OptiontionMode specifies the operation mode of the interpolator.4.

If OperationMode==Continuous, the interpolator will consumes 1 sample from
the Input each Run and export R samples to the Output. There's a delay of R*L
samples in this mode, i.e. the (R*L+1)'th output sample shall be synchronuous
with the 1'th input sample, and the (R*L+R+1)'th output synchronize the 2'th
output, etc.
If Opeationmode==Blocked, the interpolator will consumes BlockSize samples
from the Input each Run.

If OutputOption is Normal, it will export R*BlockSize samples to the
Output, with the first output sample synchronized to the first input sample.
If OutputOption is Tailored, it will export R*BlockSize-(R-1) samples to the
Output, with the first output sample synchronized to the first input sample
and the last of output synchronized to the last of input. This case is
applicable to channel estimation in OFDM receiver.

 References
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 OFDM_CP_Sync Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_CP_Sync
(algorithm)

OFDM cyclic prefix/postfix based synchronization

 OFDM_CP_Sync

Description: OFDM cyclic prefix/postfix based synchronization
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM CP Sync Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

DFTSize DFT Size before oversampling 2048  Integer NO

CPSize Cyclic prefix/postfix Size before
oversampling

512  Integer NO

OperationMode Operation mode: Continuous, Burst Continuous  Enumeration NO

BurstLength Burst frame length before oversampling 8192  Integer NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8, x16,
x32, x64, x128

x1  Enumeration NO

PeakThreshold Correlation coefficient threshold for peak
search

0.7  Float NO

TimingTolerance Non oversampled DFT window jitter
tolerance

5  Integer NO

 Input Ports

Port Name Description Signal Type Optional

1 Input Input signal complex NO

 Output Ports

Port Name Description Signal
Type

Optional

2 Corr Correlation magnitude of input and local PN samples real NO

3 CarrierOffset Normalized carrier offset ( (Fc(Rx)-Fc(Tx)*(Ts*DFTSize) ) real NO

4 Output Synchronized output signal aligned with integeral times of
FrameSize (carrier offset not compensated)

complex NO

5 OutputEnable Synchronization validation flag of output signal int NO

6 SyncIndex Number of input samples from real frame start to ideally aligned
frame start

int NO

 Notes/Eqautions

This model completes the timing synchronization based on CP correlation. It can1.
detect the correct timing position and estimate the carrier offset. It can provide the
correlation values, aligned output, output enable indicator, timing offset values and
carrier offset.
x1, x2, ... x128 of OversampleRatio means the actual sampling ratio. All parameters2.
specified in this model are non-oversample values, the actual number of these
parameters still need to multiple 2OversampleRatio. For instance,
DFTSizeOS=DFTSize*2OversampleRatio.
In OFDM symbol, the cyclic prefix is the same as the corresponding samples in the3.
rear of the DFT samples. So the correlation of the two parts can indicate the symbol
timing position because there will be a correlation peak to indicate the timing
position.
When the input signals from Input pin are Input(n), the relative correlation values
corr(n) is outputted from Corr output pin.
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This model can work in two modes: Continuous and Burst, which can be specified in4.
OperationMode.
In Continuous mode, this model calculates the correlation for each sample. It begins5.
with the acquiring phase. In this phase, it searches the correlation peak. The
correlation peak value must be larger than the parameter PeakThreshold. When it
finds the correlation peak, it enters the tracking phase. The correlation peak position
is just the last sample of the OFDM symbol. In tracking phase, this model keeps
searching the correlation peaks for the following OFDM symbols. If the first peak
appears at sample index i, the following correlation peaks are expected at
i+(DFTSizeOS+CPSizeOS), i+2*(DFTSizeOS+CPSizeOS),
i+3*(DFTSizeOS+CPSizeOS),…. In tracking phase, it will detect how many samples
the following peaks position bias from the expectation positions. If the bias is not
larger than TimingToleranceOS=TimingTolerance*2OversampleRatio, it will keep the
timing synchronization position that is detected at the first time; otherwise, it will
lose the synchronization and enter the acquiring phase again.

When it enters the tracking phase, it can align the signals of Output pin to the
integral times of SymbolLengthOS (SymbolLengthOS=DFTSizeOS+CPSizeOS), which
will be convenient to deal with the signals in the following models. For example, if it
finds the correlation peak at sample index i, [Input(i-SymbolLengthOS+1), Input(i-
SymbolLengthOS+2), ... ,Input(i)] is an OFDM symbol. If i is within sample index
[n*SymbolLengthOS, n*SymbolLengthOS+SymbolLengthOS/2], it will output this
OFDM symbol from sample index (n+1)*SymbolLengthOS.

     Output((n+1)*SymbolLengthOS)=Input(i-SymbolLengthOS+1)

     Output((n+1)*SymbolLengthOS+1)= Input(i-SymbolLengthOS+2)

     ......

If i is within sample index
(n*SymbolLengthOS+SymbolLengthOS/2,(n+1)*SymbolLengthOS], it will output this
OFDM symbol from sample index (n+2)*SymbolLengthOS.

     Output((n+2)*SymbolLengthOS)= Input(i-SymbolLengthOS+1)

     Output((n+2)*SymbolLengthOS+1)= Input(i-SymbolLengthOS+2)

     ......

If it doesn’t lose synchronization, it will keep the relationship between Input and
Output signals.

When it aligns the Output to the integral times of SymbolLengthOS, OutputEnable pin
will output 1 to indicate the corresponding signals from Output pin are aligned.

The SyncIndex pin will also output the oversampled sample number that need to
adjust to align the input signals to the corresponding Output pin signals.

The CarrierOffset pin will output Δf•Tu that is detected from corresponding outputted

symbol, where Δf is the actual carrier offset frequency and Tu=DFTSize•T, T is the

non-oversample sampling period.
In Burst mode, a parameter BurstLength can be specified, which is a non-oversample6.
value. Then in a BurstLengthOS (BurstLengthOS=BurstLength*2OversampleRatio)
interval, only one OFDM symbol can be detected based on CP correlation. When it
finds the correlation peak, it will stop the correlation calculation until the end of this
burst. Then in the next burst, it searches the correlation peak again and get the new
synchronization position.

The Output pin signals need to align to the integral times of BurstLengthOS. For
example, if it finds the correlation peak at sample index i, Input(i-
SymbolLengthOS+1) is the first sample of the burst. If i is within sample index
[n*BurstLengthOS, (n+1)*BurstLengthOS-SymbolLengthOS/2], it will output this
burst from sample index (n+1)*BurstLengthOS.

     Output((n+1)*BurstLengthOS)=Input(i-SymbolLengthOS+1)
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     Output((n+1)*BurstLengthOS+1)= Input(i-SymbolLengthOS+2)

     ......

     Output((n+1)*BurstLengthOS+BurstLengthOS-1)=Input(i-
SymbolLengthOS+BurstLengthOS)

If i is within sample index ((n+1)*BurstLengthOS-
SymbolLengthOS/2,(n+1)*BurstLengthOS], it will output this OFDM symbol from
sample index (n+2)*BurstLengthOS.

     Output((n+2)*BurstLengthOS)= Input(i-SymbolLengthOS+1)

     Output((n+2)*BurstLengthOS+1)= Input(i-SymbolLengthOS+2)

     ......

     Output((n+2)*BurstLengthOS+BurstLengthOS-1)= Input(i-
SymbolLengthOS+BurstLengthOS)

For the next burst, it will search the peak position again and align Output pin signals
according to the new peak position.

The OutputEnable, SyncIndex and CarrierOffset pins will output the signals for the
corresponding burst, which are similar to those of Continuous mode.

 References
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 OFDM_Equalizer Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_Equalizer
(algorithm)

OFDM single tap equalizer

 OFDM_Equalizer

Description: OFDM single tap equalizer
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM Equalizer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

MagnitudeClip Clip signal magnitude when channel gain is
very low: NO, YES

NO  Enumeration NO

MaxMagnitude Maximum magnitude for clipping sqrt(2)*2  Float NO

 Input Ports

Port Name Description Signal Type Optional

1 Input Input signal complex NO

2 CFR Channel frequency response complex NO

 Output Ports

Port Name Description Signal Type Optional

3 Output Equalized
signal

complex NO

 Notes/Eqautions

This model does the one-tap equalization for OFDM signals.1.
The received sub-carriers signals can be connect to “Input” pin and the corresponding2.
channel frequency responses can be connect to “CFR” pin. Then the equalized signals
can be outputted.
If MagnitudeClip is NO, Output = Input/CFR. If MagnitudeClip is YES, then the3.
magnitude of Output will be clipped to MaxMagnitude.
If CFR inputs are zeros, the corresponding output signals will also be zeros.4.

 Refrences
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 OFDM_FineFreqSync Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_FineFreqSync
(algorithm)

OFDM RF carrier frequency offset and ADC sampling frequency offset
estimation

 OFDM_FineFreqSync

Description: OFDM RF carrier frequency offset and ADC sampling frequency offset
estimation
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM FineFreqSync Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

DFTSize DFT size before oversampling 64  Integer NO

GuardSize Guard interval size before oversampling 16  Integer NO

NumPilot Pilot number in OFDM symbol 4  Integer NO

PilotIndexDim Dimension of parameter PilotIndex:
Dimension_1, Dimension_2

Dimension_1  Enumeration NO

PilotIndex Pilot position in OFDM symbol [-FFTSize/2,
FFTSize/2-1]

[-21,-
7,7,21]

 Integer
array

NO

SymbolInterval OFDM symbol index difference be Pilot and
RefPilot ([1,128])

1  Integer NO

 Input Ports

Port Name Description Signal
Type

Optional

1 Pilot Non-equalized pilot carriers picked up from OFDM, from negative to
positive

complex NO

2 RefPilot Non-equalized pilot carriers picked up from Previous OFDM symbol complex YES

 Output Ports

Port Name Description Signal
Type

Optional

3 CPE Common phase error between Pilot and RefPilot real NO

4 CarrierFreqOffset Normalized RF carrier frequency offset,(Fc(rx)-
Fc(tx))*(Ts*DFTSize)

real NO

5 SampleFreqOffset Normalized ADC sampling frequency offset,(Fs(rx)-
Fs(tx))/Fs(tx)

real NO

 Notes/Equations

This model estimates the normalized RF carrier frequency offset Δf0, the normalized1.
ADC sampling clock frequency offset ΔF0 and the Common Phase Error (CPE) using
Least Linear Squares Estimator (LLSE) algorithm.

  Δf0 = (f0RX - f0TX) * (Ts * NDFT)

where f0RX and f0TX are the RF carrier frequencies in Hz in the receiver side

and the transmitter side respectively, Ts is the sample rate of the based

OFDM symbol in Sec and NDFT is the corresponding DFT size. (Ts * NDFT)

represents the reciprocal of sub-carrier space.

  ΔF0 = (F0RX - F0TX) / F0TX

where F0RX and F0TX are the ADC sampling clock frequency in the receiver

side and the transmitter side respectively.
Non-equalized pilots from the same subcarrier positions of two OFDM symbols are2.
used. SymbolInterval specifies the difference of OFDM symbol index between the
Pilot and RefPilot. If RefPilot is disconnected, the model regard the delayed version of
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Pilot as reference.
Assuming θ = [Δf0, ΔF0]T,3.

  pi is the index of the ith pilot in OFDM symbol,

  Δfpi = angle(Pilot[i]*RefPilot[i]) * NDFT/(NDFT+NGuard) / SymbolInterval /

(2π), is the phase difference of the ith pilot of Pilot and RefPilot,

  v = [Δfp1, Δfp2, Δfp3, ..., ΔfpK],

  u = [1, 1, 1, ..., 1]T, p = [p1, p2, p3, ..., pK]T, where K is the number of

continuous pilots in one OFDM symbol,

  H = [u, p],

We can get the estimation equations

  ˆ
  θ = AT*v, where A = (HTH)-1*HT,

and

  CPE = 2π*Δf0 * Ts*(NDFT+NGuard) * SymbolInterval.

 References
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 OFDM_GuardInsert Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_GuardInsert
(algorithm)

OFDM guard interval
insertion

 OFDM_GuardInsert

Description: OFDM guard interval insertion
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM GuardInsert Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

DFTSize DFT size before oversampling 64  Integer NO

PrefixSize Prefix size(s) before oversampling [16]  Integer
array

NO

PostfixSize Postfix size(s) before oversampling [0]  Integer
array

NO

GuardStuff Signals to be stuffed in guard interval:
CyclicShift, Zeros

CyclicShift  Enumeration NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8, x16,
x32, x64, x128

x1  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 Input Input signal complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Output Output
signal

complex NO

 Notes/Eqautions

This model inserts guard intervals to OFDM symbols. The input are consecutive OFDM1.
time-domain signals from IDFT (Inverser Digital Fourier Transformation) module.
Both prefix and postfix can be added to input signal.2.
The stuff signal may be cyclic shift (extension) of an IDFT period or zeros.3.
Different guard intervals may be added to different OFDM symbols. For instance, in a4.
WLAN 11a signal with 4 data symbols, the input symbols is

[STS, STS, LTS, LTS, SIGNAL, Data, Data, Data, Data],

the parameters may be set as

DFTSize = 64,

PrefixSize = 16*[1,1,2,0,1,1,1,1,1],

PostfixSize = zeros(9, 1),

GuardStuff = CyclicShift.

 Refrences
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 OFDM_GuardRemove Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_GuardRemove
(algorithm)

OFDM guard interval removal

 OFDM_GuardRemove

Description: OFDM guard interval removal
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM GuardRemove Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

DFTSize DFT size before oversampling 64  Integer NO

PrefixSize Prefix size(s) before oversampling [16]  Integer
array

NO

PostfixSize Postfix size(s) before oversampling [0]  Integer
array

NO

GuardStuff Signals stuffed in guard interval: CyclicShift,
Zeros

CyclicShift  Enumeration NO

CIRLength Channel impulse response length for cyclic
overlap addition (the first
CIRLength*2^OversampleRatio samples should
be chopped before applying guard removal)

8  Integer NO

CIRAdjust Number of non-oversampled samples to cyclic
delay (shift from left to right) channel impulse
response

0  Integer NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8, x16, x32,
x64, x128

x1  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 Input Input signal complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Output Output
signal

complex NO

 Notes/Eqautions

This model removes the guard interval of the OFDM symbol. It outputs OFDM time-1.
domain signals to DFT (Digital Fourier Transformation) module directly.
It can remove different guard intervals for different OFDM symbols. For instance, in a2.
WLAN 11a signal with 4 data symbols, the input symbols is

    [STS, STS, LTS, LTS, SIGNAL, Data, Data, Data, Data],

the parameters may be set as

     DFTSize = 64,

     PrefixSize = 16*[1,1,2,0,1,1,1,1,1],

     PostfixSize = zeros(9, 1),

     GuardStuff = CyclicShift.

x1, x2, ... x128 of OversampleRatio means the actual sampling ratio. All parameters3.
specified in this model are all non-oversample values, such as DFTSize, PrefixSize,
PostfixSize, CIRLength and CIRAdjust. The actual numbers of oversampled samples
for these parameters are the product of these non-oversample parameters and 2
OversampleRatio. For instance, DFTSizeOS=DFTSize*2OversampleRatio.
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It can work in two modes: CyclicShift and Zeros for cyclic guard interval and zero4.
padding guard interval removal. The mode can be specified in parameter GuardStuff.
In CyclicShift mode, it can remove cyclic guard interval. Parameter CIRAdjust can be5.
specified to get the DFT signals with cyclic delay, which can shift the CIR (channel
impulse response) in the time domain. For example, PrefixSize is [pre1,pre2];
PostfixSize is [post1,post2]. Each run, there are two OFDM symbols in the Input pin.
The two OFDM symbols have 2*DFTSizeOS+sum(PrefixSizeOS)+sum(PostfixSizeOS)
samples. It will output 2*DFTSizeOS samples of DFT signals. The input sequence of
the first OFDM symbol is

     [Input-pre1OS, ... ,Input-1, Input0, ... ,InputDFTSizeOS-1, InputDFTSizeOS,

... ,InputDFTSizeOS+post1OS-1]

     where [Input-pre1OS, ... ,Input-1] is prefix, [Input0, ... ,InputDFTSizeOS-1]

is DFT window samples, [InputDFTSizeOS, ... ,InputDFTSizeOS+post1OS-1] is

postfix.

The output sequence is

     [Inputmod(-CIRAdjustOS+0,DFTSizeOS), Inputmod(-CIRAdjustOS+1,DFTSizeOS),

... ,Inputmod(-CIRAdjustOS+DFTSizeOS-1,DFTSizeOS)].

The second OFDM symbol is similar as the first one.
In Zeros mode, it can remove zero padding guard interval. Parameter CIRLength is6.
the non-oversampled samples number covered by maximum multipath delay. In zero
padding mode, it needs to add the CIRLengthOS samples that follow DFT window to
the first CIRLengthOS samples in DFT window. So the input begins with the
CIRLengthOSth sample and ends in the CIRLengthOSth sample of next OFDM symbol.
For example, PrefixSize is [pre1,pre2]; PostfixSize is [post1,post2]. Each run, there
are two OFDM symbols in the Input pin. The two OFDM symbols have
2*DFTSizeOS+sum(PrefixSizeOS)+sum(PostfixSizeOS) samples. It will output
2*DFTSizeOS samples of DFT signals. The input sequence of the first OFDM symbol is

     [Input-pre1OS+CIRLengthOS, ... ,Input-1, Input0, ... ,InputDFTSizeOS-1,

InputDFTSizeOS, ... ,InputDFTSizeOS+post1OS-1, InputDFTSizeOS+post1OS, ...

,InputDFTSizeOS+post1OS+CIRLengthOS-1]

     where [InputDFTSizeOS+post1OS, ... ,InputDFTSizeOS+post1OS+CIRLengthOS-1]

is actually the prefix of the next OFDM symbol.

It will add CIRLengthOS samples that follow the DFT window to the first CIRLengthOS
samples in DFT window to get the DFTSizeOS samples:

     Y0~DFTSizeOS-1=[Input0+InputDFTSizeOS, ... ,InputCIRLengthOS-1+Input

DFTSizeOS+CIRLengthOS-1, InputCIRLengthOS, ... ,InputDFTSizeOS-1]

Then the sequence can be cyclically delayed by CIRAdjust to get the output
sequence:

     Outputi=Ymod(-CIRLengthOS+i,DFTSizeOS)

     where i=0~DFTSizeOS-1

The second OFDM symbol is similar as the first one.

 Refrences
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 OFDM_SubcarrierDemux Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_SubcarrierDemux
(algorithm)

OFDM subcarrier demultiplexing

 OFDM_SubcarrierDemux

Description: OFDM subcarrier demultiplexing
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM SubcarrierDemux Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

DFTSize DFT size before oversampling 64  Integer NO

NumOutput Number of output branches ([1,4]) 1  Integer NO

Out1_NumCarriers Number of (branch 1) Subcarriers in
each OFDM symbol

[48]  Integer
array

NO

Out1_DimCarrierIndex Dimension of parameter
Out1_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

2-D  Enumeration NO

Out1_FileFormat Specify the format of the Out1
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

Out1_CarrierIndex Out1 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-26,-22; -20,-
8; -6,-1; 1,6;
8,20; 22,26]

 Integer
array

NO

Out1_FileName Out1 index file specification   Filename NO

Out2_NumCarriers Number of (branch 2) Subcarriers in
each OFDM symbol

[4]  Integer
array

NO

Out2_DimCarrierIndex Dimension of parameter
Out2_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

1-D  Enumeration NO

Out2_FileFormat Specify the format of the Out2
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

Out2_CarrierIndex Out2 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-21,-7,7,21]  Integer
array

NO

Out2_FileName Out2 index file specification   Filename NO

Out3_NumCarriers Number of (branch 3) Subcarriers in
each OFDM symbol

[4]  Integer
array

NO

Out3_DimCarrierIndex Dimension of parameter
Out3_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

1-D  Enumeration NO

Out3_FileFormat Specify the format of the Out3
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

Out3_CarrierIndex Out3 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-21,-7,7,21]  Integer
array

NO

Out3_FileName Out3 index file specification   Filename NO

Out4_NumCarriers Number of (branch 4) Subcarriers in
each OFDM symbol

[4]  Integer
array

NO

Out4_DimCarrierIndex Dimension of parameter
Out4_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

1-D  Enumeration NO

Out4_FileFormat Specify the format of the Out4
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

Out4_CarrierIndex Out4 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-21,-7,7,21]  Integer
array

NO

Out4_FileName Out4 index file specification   Filename NO

InputOrder Subcarrier input order
([0~DFTSize/2-1, -DFTSize/2~-1] or
[-DFTSize/2~-1, 0~DFTSize/2-1]),
not applicable to EVMRef:
DC_Pos_Neg, Neg_DC_Pos

DC_Pos_Neg  Enumeration NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8,
x16, x32, x64, x128

x1  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 Input OFDM frequency domain signals from DFT complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Output Signals demultiplexed from input subcarriers multiple complex NO

 Notes/Equations

This model de-multiplexes different type of signals from OFDM symbols in frequency-1.
domain. The input signal is from DFT module.
The parameters have similar meaning with that of OFDM_SubcarrierMux and should2.
be set accordingly. See OFDM_SubcarrierMux (algorithm) for details.

 References
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 OFDM_SubcarrierMux Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_SubcarrierMux
(algorithm)

OFDM subcarrier multiplexing

 OFDM_SubcarrierMux

Description: OFDM subcarrier multiplexing
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM SubcarrierMux Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

DFTSize DFT size before oversampling 64  Integer NO

NumInput Number of input branches ([1,4]) 1  Integer NO

In1_NumCarriers Number of (branch 1) Subcarriers
in each OFDM symbol

[48]  Integer
array

NO

In1_DimCarrierIndex Dimension of parameter
In1_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

2-D  Enumeration NO

In1_FileFormat Specify the format of the In1
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

In1_CarrierIndex In1 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-26,-22; -20,-
8; -6,-1; 1,6;
8,20; 22,26]

 Integer
array

NO

In1_FileName In1 index file specification   Filename NO

In2_NumCarriers Number of (branch 2) Subcarriers
in each OFDM symbol

[4]  Integer
array

NO

In2_DimCarrierIndex Dimension of parameter
In2_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

1-D  Enumeration NO

In2_FileFormat Specify the format of the In2
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

In2_CarrierIndex In2 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-21,-7,7,21]  Integer
array

NO

In2_FileName In2 index file specification   Filename NO

In3_NumCarriers Number of (branch 3) Subcarriers
in each OFDM symbol

[4]  Integer
array

NO

In3_DimCarrierIndex Dimension of parameter
In3_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

1-D  Enumeration NO

In3_FileFormat Specify the format of the In3
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

In3_CarrierIndex In3 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-21,-7,7,21]  Integer
array

NO

In3_FileName In3 index file specification   Filename NO

In4_NumCarriers Number of (branch 4) Subcarriers
in each OFDM symbol

[4]  Integer
array

NO

In4_DimCarrierIndex Dimension of parameter
In4_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

1-D  Enumeration NO

In4_FileFormat Specify the format of the In4
IndexFile;In ASCII format, data are
seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

In4_CarrierIndex In4 subcarrier position array (1-D,
list the indices one by one; 2-D, list
the index zone by 2-digit pairs)

[-21,-7,7,21]  Integer
array

NO

In4_FileName In4 index file specification   Filename NO

OutputOrder Subcarrier output order
([0~DFTSize/2-1, -DFTSize/2~-1]
or [-DFTSize/2~-1, 0~DFTSize/2-
1]), not applicable to EVMRef:
DC_Pos_Neg, Neg_DC_Pos

DC_Pos_Neg  Enumeration NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8,
x16, x32, x64, x128

x1  Enumeration NO

CustomEVMRef Custom EVM reference or not: NO,
YES

NO  Enumeration NO

EVMRef_NumCarriers Number of EVM reference
subcarriers in each OFDM symbol

[52]  Integer
array

NO

EVMRef_DimCarrierIndex Dimension of parameter
EVMRef_CarrierIndex: 1-D, 2-D, 1-
D_FromFile

2-D  Enumeration NO

EVMRef_FileFormat Specify the format of the
EVMRefFile;In ASCII format, data
are seperated by space or changing
lines: ASCII, Binary

ASCII  Enumeration NO

EVMRef_CarrierIndex EVMRef subcarrier position array
with each row a continuous range

[-26,-1; 1,26]  Integer
array

NO

EVMRef_FileName EVMRef index file specification   Filename NO

 Input Ports
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Port Name Description Signal Type Optional

1 Input Signals to be placed in
subcarriers

multiple complex YES

 Output Ports

Port Name Description Signal Type Optional

2 Output OFDM frequency domain format ready for applying
IDFT

complex NO

3 EVMRef EVM reference subcarriers complex NO

 Notes/Equations

This model multiplexes different types of signals in frequency-domain to1.
corresponding subcarrier locations. The Output is ready to be processed by the
Inverse Digital Fourier Transformation (IDFT).
Each branch of the input bus may be data of an OFDMA user or pilots.2.
For each of the 4 branches supported, the parameters are configured as described3.
below (<N> has one of the values 1, 2, 3, 4)

In<N>_NumCarriers specifies the number of subcarriers in each OFDM
symbol. For instance, in DVB-T signal, there are 142 SP (Scattered Pilot) in
each OFDM symbol and they repeat every 4 OFDM symbols, so this
parameter should be [142, 142, 142, 142].

In<N>_DimCarrierIndex specifies the form of parameter
In<N>_CarrierIndex. 1-D is suitable for non-consecutive subcarrier
allocation whereas 2-D is suitable for consecutive subcarrier allocation.

In<N>_CarrierIndex should be a 1-D or 2-D array whose elements belong
to the interval [-DFTSize/2, DFTSize/2-1]. A negative index indicates that
the subcarrier will be modulated to the left half of the RF spectrum, a 0
index indicates that the subcarrier will be modulated at the center of the RF
spectrum, and a positive index indicates that the subcarrier will be
modulated to the right half of the RF spectrum

  RF spectrum:       [fmin, ..., fc, ..., fmax]

  Carrier index: [-Kmin, ..., -1, 0, 1, ..., Kmax], Ki<DFTSize/2

If In<N>_DimCarrierIndex is 1-D, the parameter In<N>_CarrierIndex
should be a 1-D array of sum(In<N>_NumCarriers) elements. The first
In<N>_NumCarriers(1) elements specify the subcarrier location in the first
OFDM symbol, the next NumCarriers(2) elements specify the subcarrier
location in the second OFDM symbol, etc. For SP in DVB-T signal, it should
be [-852, -840, ..., 828, 840, -849, -837, ..., 831, 843, -846, -834, ...,
834, 846, -843, -831, ..., 837, 849].

If In<N>_DimCarrierIndex is 2-D, the parameter In<N>_CarrierIndex
should be a 2-column 2-D array. Each line in this array specifies a
consecutive subcarrier zone. In DVB-T signal, the location of Data
subcarriers are [-851, -850, ..., -841, -839, -838, ..., -830, -829, -827 ...]
in the form of 1-D array, and the corresponding 2-D array should be [-
851,-841; -839,-829;-827,...].

If there is subcarrier overlap in input branches, for instance, both branch i and4.
branch j have allocation to the -kth subcarrier, the data in the max(i,j)th branch will
be the final value.
OutputOrder is used to set the subcarrier order of the Output pin. If OutputOrder is5.
DC_Pos_Neg, i.e. [Direct Current, Positive, Negative], the output subcarrier indices
will be [0, 1, ..., DFTSizeOS/2-1, -DFTSizeOS/2, -DFTSizeOS/2+1, ..., -1], which
matches the formula of IDFT, where DFTSizeOS is DFTSize*2OversampleRatio. If
OutoutOrder is Neg_DC_Pos, the output subcarrier indices will be [-DFTSizeOS/2, -
DFTSizeOS/2+1, ..., -1, 0, 1, ..., DFTSizeOS/2-1], which matches the subcarrier
allocation in RF spectrum.
x1, x2, ... x128 of OversampleRatio means DFTSize*2OversampleRatio-DFTSize zero6.
subcarriers will be inserted to the Output signal, which will ease the upsampling
before applying ADC or digital IF up-conversion.
This model also provides a pin as the reference signal of EVM (Error Vector7.
Magnitude) measurement. If CustomEVMRef is NO, the output will be the all the non-
zero sub-carriers from the input branches in the order from Negative frequency to
Positive frequency. If CustomEVMRef is YES, the custom EVMRef output can be set
manually. Note that the size of EVMRef_NumCarriers must be a factor of the LCM
(Least Common Multiple) of (size(In1_NumCarriers), size(In2_NumCarriers), ...).
In each execution of this model, there will be DFTSize*2OversampleRatio8.
*LCM(size(In1_NumCarriers), size(In2_NumCarriers), ...) samples in the Output pin.
The corresponding numbers of input samples are
sum(In1_NumCarriers)*LCM(size(In1_NumCarriers), size(In2_NumCarriers),
...)/size(In1_NumCarriers), sum(In2_NumCarriers)*LCM(size(In1_NumCarriers),
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size(In2_NumCarriers), ...)/size(In2_NumCarriers), etc.
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 OFDM_WaveformSmooth Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OFDM_WaveformSmooth
(algorithm)

OFDM waveform
smoothing

 OFDM_WaveformSmooth

Description: OFDM waveform smoothing
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: OFDM WaveformSmooth Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

DFTSize DFT size(s) before oversampling [64]  Integer
array

NO

PrefixSize Prefix size(s) before oversampling [16]  Integer
array

NO

PostfixSize Postfix size(s) before oversampling [0]  Integer
array

NO

RCSlopeLength RC slope length before oversampling
[0,PrefixSize+PostfixSize]

0  Float NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8, x16, x32,
x64, x128

x1  Enumeration NO

 Input Ports

Port Name Description Signal Type Optional

1 Input Input signal complex NO

 Output Ports

Port Name Description Signal Type Optional

2 Output Output
signal

complex NO

 Notes/Equations

This model smoothes the OFDM signal with cyclic prefix/postfix with Raised Cosine1.
(RC) slope. It's only applicable for OFDM symbols with prefix/postfix as guard
intervals.
RCSlopeLength is set in the form of a multiple of non-oversampled sample interval,2.
integer or fraction.
The RC slope is added by cyclicly extending each OFDM symbol (the cyclic period is3.
the OFDM symbol duration without guard interval) and then applying a Raised Cosine
window to each as follows:

where T is the OFDM symbol duration with guard interval, TTR is the

transient (Slope in the figure below) duration.
There will be a delay of ceil(RCSlopeLength*2OversampleRatio/2) samples in the output4.
signal.
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4.

In general, the higher the OversampleRatio is, the more smooth the waveform is.5.
The longer the RC slope is, the lower the out-of-band power is. Nevertheless, long RC
slope will reduce the multi-path fading and timing error immunity in the receiver
side.

 References
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 PN_Sync Part
Categories: C++ Code Generation (algorithm), OFDM (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PN_Sync
(algorithm)

Pseudo noise sequence based
synchronization

 PN_Sync

Description: Pseudo noise sequence based synchronization
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: PN Sync Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FrameSize Frame Size without oversampling 1024  Integer NO

OversampleRatio Oversampling ratio: x1, x2, x4, x8, x16,
x32, x64, x128

x1  Enumeration NO

PNCodeSampPerSym Number of samples per local PN code
symbol: x1, x2, x4, x8

x1  Enumeration NO

PNCodeLength Number of PN code symbols in each PN code
pattern

128  Integer NO

PNCodePatternNum Number of PN code patterns 1  Integer NO

PNCode PN code sequence [1+0i]  Complex
array

NO

RCRolloffFactor Rolling off factor of the raised cosine
interpolation filter (when
PNCodeSampPerSym is x1)

0.5  Float NO

RCFilterOrder Number (even) of PN code symbols used in
raised cosine filter

12  Integer NO

CorrBlockSize Number of oversampled samples in each sub
correlation block

4  Integer NO

PeakThreshold Correlation coefficient threshold for peak
search (0,1]

0.7  Float NO

 Input Ports

Port Name Description Signal Type Optional

1 Input Input signal complex NO

2 PNInput Local PN samples complex YES

 Output Ports

Port Name Description Signal
Type

Optional

3 Corr Correlation magnitude of input and local PN samples real NO

4 CarrierOffset Normalized carrier offset ( (Fc(Rx)-Fc(Tx)/Fsymbol ) real NO

5 Output Synchronized output signal aligned with integeral times of
FrameSize (carrier offset not compensated)

complex NO

6 OutputEnable Synchronization validation flag of output signal int NO

7 SyncIndex Number of input samples from real frame start to ideally aligned
frame start

int NO

 Notes/Equations

This model completes the timing synchronization based on PN sequence correlation.1.
It can detect the correct timing position and estimate the carrier offset. It can
provide the correlation values, aligned output, output enable indicator, timing offset
values and carrier offset.
x1, x2, ... x128 of OversampleRatio means the actual sampling ratio. Parameter2.
FrameSize is a non-oversample value, the actual samples number of a frame still
need to multiply 2OversampleRatio.
PN sequence can be inputted by PNInput pin or parameter PNCode. The PNInput pin3.
is an optional pin, if it is connected, the PN sequency is inputted by it; otherwise, PN
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sequence is inputted by parameter PNCode.
Multiple PN patterns can be supported by this model. For example, there are two PN4.
patterns P1 and P2 with the same length N. They are used alternately in the heads of
frames.

     Frame1: [P11, P12, ... ,P1N, Data(1)1, Data(1)2, ... ,Data(1)FrameSize-N]

     Frame2: [P21, P22, ... ,P2N, Data(2)1, Data(2)2, ... ,Data(2)FrameSize-N]

     Frame3: [P11, P12, ... ,P1N, Data(3)1, Data(3)2, ... ,Data(3)FrameSize-N]

     Frame4: [P21, P22, ... ,P2N, Data(4)1, Data(4)2, ... ,Data(4)FrameSize-N]

     ......

     where P1i is the ith sample of P1, P2i is the ith sample of P2, Data(i)j is

the data in the jth sample of ith frame.

Then the parameters for PN input can be specified as:

     PNCodePatternNum = 2

     PNCodeLength = N

     If PNInput pin is use, the first 2*N samples of PNInput pin should be
[P11, P12, ... ,P1N, P21, P22, ... ,P2N].

     If parameter PNCode is used, PNCode = [P11, P12, ... ,P1N, P21, P22, ...

,P2N].

The oversampled PN sequence can also be used through specifying parameter5.
PNCodeSampPerSym. In above example, if you want to use a oversampled sequence
of P1 and P2, the oversample ratio can be specified as x1, x2, x4 and x8. For
example, you have a four times oversampled sequence of P1 and P2 and you want to
use it as the reference sequence for better synchronization performance. You can
specify PNCodeSampPerSym as x4 and input the oversampled sequence from
PNInput pin or parameter PNCode. But the size of input PN sequence should become
from 2*N to 4*2*N.
When the PN sequence is non-oversampled (PNCodeSampPerSym = x1) and the6.
inputted signal is also non-oversampled, the correlation of them may have an
unconspicuous peak
or even no peak, because the sampling position of the input signal is random within a
non-oversampled period. So when the PN sequence is non-oversampled, it is
interpolated to four times oversampled sequence automatically to improve the
sampling resolution in this model.

The interpolation is done according to Raised Cosine interpolation filter. The order of
the Raised Cosine interpolation filter can be specified as an even in parameter
RCFilterOrder and the roll-off factor of the Raised Cosine filter can be specified in
parameter RCRolloffFactor.
The oversample ratios difference between input signal and PN sequence is supported.7.

If the PN sequence oversample ratio is larger than that of input signal, for example,
PN input sequence is non-oversampled and it is interpolated to four times
oversampled sequence automatically, then there are four different samples within
one non-oversample PN sampling period. The input signal is non-oversampled. Then
each input signal sample, four correlation values will be calculated for four different
oversampling positions. Output pin Corr will output 4 values for each input sample. It
will search the correlation peak from all corrlation values and check which input
sample index the correlation peak belongs to. Then it can find the timing
synchronizaiton position.

Otherwise, if the PN sequence oversample ratio is not larger than that of input signal,
it calculates the correlation value once an input sample.
If PNInput pin is used, PNCodeSampPerSym can't be larger than OversampleRatio.8.
Because when PNInput pin is used, it must start calculating the correlation values
after the PN sequence input is finished. So if PNCodeSampPerSym is larger than
OversampleRatio, it will miss the synchronization position of the first frame.
Because the input signal can be effected by carrier offset, it needs specify parameter9.
CorrBlockSize to calculate the correlation values in many small blocks to relieve the
impact of carrier offset. CorrBlockSize must be divided by PNLength exactly.
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     For instance, when PNCodeSampPerSym=OversampleRatio,
PNLengthOS=PNLength*2PNCodeSampPerSym. The PN sequence is [P0, P1, ...

,PPNLengthOS-1] and input signal is [Input(n-PNLengthOS+1), Input(n-

PNLengthOS+2), ... ,Input(n)]. Then the output of Corr output pin is

     

     where

    

     

     

So when CorrBlockSize is small, it can relieve the impact of carrier offset, but it
needs more calculation.
Output pins are similar to those of CP Sync block. The peaks detection mode is10.
similar to the Burst mode of CP sync model. It begins with an acquiring phase and
searches the correlation peak. When it finds the correlation peak, it will stop the
correlation calculation until the end of this burst. Then in the next frame, it searches
the correlation peak again and get the new synchronization position.See
OFDM_CP_Sync (algorithm) for details.

 References
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 AsyncCommutator Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AsyncCommutator
(algorithm)

Asynchronous Data
Commutator

 AsyncCommutator (Asynchronous Data Commutator)

Description: Asynchronous Data Commutator
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: AsyncCommutator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSizes Block sizes read from each
input

1  Integer
array

NO [1:∞)†

 Input Ports

Port Name Signal Type Optional

1 input multiple anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

AsyncCommutator takes N input streams, where N is the input bus width, and1.
asynchronously combines them into one output stream.
B i input samples are consumed from input #i (i = 1, ... , N), where B i is an element2.

of the BlockSizes parameter.
B 1 + B 2 + ... + B N samples are output. The first B 1 samples on the output come3.

from the first input, the next B 2 samples come from the second input, and so on.

See:
Commutator (algorithm)
AsyncDistributor (algorithm)
Distributor (algorithm)
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 AsyncDistributor Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AsyncDistributor
(algorithm)

Asynchronous Data Distributor

 AsyncDistributor (Asynchronous Data Distributor)

Description: Asynchronous Data Distributor
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: AsyncDistributor Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSizes Block sizes written to each output 1  Integer
array

NO [1:∞)†

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output multiple anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

AsyncDistributor asynchronously splits one input stream into N output streams. N,1.
the output bus width, is the number elements in the BlockSizes parameter.
B 1 + B 2 + ... + B N samples are consumed from the input, where B i (i = 1, ... , N)2.

are the elements of BlockSizes.
B i samples are distributed to output#i (i = 1, ... , N). The samples on the first3.

output are the first B 1 samples of the input, the samples on the second output are

the next B 2 samples of the input, and so on.

See:
Distributor (algorithm)
AsyncCommutator (algorithm)
Commutator (algorithm)
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 Commutator Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Commutator
(algorithm)

Synchronous Data Commutator

    

 Commutator (Synchronous Data Commutator)
 

Description: Synchronous Data Commutator
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Commutator Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSize Number of particles in a
block

1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input multiple anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

This component takes N input streams and synchronously combines them into one1.
output stream.
B samples are consumed from each input (where B is BlockSize), and N × B samples2.
are output. The first B samples on the output come from the first input, the next B
samples come from the second input, and so on.

See:
AsyncCommutator (algorithm)
Distributor (algorithm)
AsyncDistributor (algorithm)
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 DeMux Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DeMux
(algorithm)

Data Demultiplexer

    

 DeMux (Data Demultiplexer)
 

Description: Data Demultiplexer
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: DeMux Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSize Number of data items in a block 1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

2 control int NO

 Output Ports

Port Name Signal Type Optional

3 output multiple anytype NO

 

 Notes/Equations

Input should be demultiplexed to one of N output streams.1.
B samples are consumed from the input, where B is the BlockSize value, and copied2.
to one output as determined by the control input. All other outputs get B zeroes of
the appropriate type.
Integer values from 0 to N - 1 are expected at the control input. If the control input3.
is outside this range, all outputs get B zeroes of the appropriate type.

See:
Mux (algorithm)
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 Distributor Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Distributor
(algorithm)

Synchronous Data
Distributor

    

 Distributor (Synchronous Data Distributor)
 

Description: Synchronous Data Distributor
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Distributor Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSize Number of data items in a block 1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output multiple anytype NO

 

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

Distributor synchronously splits one input stream into N output streams. N is equal to1.
the number of connections to the output pin.
N × B samples (where B = BlockSize) are input, and distributes the first B samples to2.
the first output, the next B samples to the next output, and so on.
Output has the same type as input.3.

See:
AsyncDistributor (algorithm)
Commutator (algorithm)
AsyncCommutator (algorithm)
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 DownSample Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DownSample (algorithm) Downsampler

DownSampleEnv
(algorithm)

Down Sampler for Envelope Signal

DownSampleFxp (hardware) Fixed Point DownSample

    

 DownSample (Downsampler)
 

Description: Downsampler
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DownSample Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Factor Downsample factor 2  Integer NO [1:∞)

Phase Downsample
phase

0  Integer NO [0:Factor-
1]

 Input Ports

Port Name Description Signal Type Optional

1 input input signal anytype NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal anytype NO

 

To avoid confusion on a schematic, it is best to mirror (flip) this symbol (instead of rotating it) when you
need to have the input on the right and the output on the left of the symbol; otherwise the symbol arrow
will point in the "wrong" direction. Select the part and press F6 to flip the symbol into the correct
orientation.

 Notes/Equations

The DownSample model reduces the sampling rate of its input signal by an integer1.
Factor ratio. Down-sampling is also referred to as decimation.
For every Factor samples received at the input, one sample is output.2.
This model does not have a built-in lowpass filter. Therefore, to avoid aliasing, it may3.
be necessary to connect a lowpass filter at the input to ensure that the input signal
bandwidth is appropriately limited.
The Phase parameter specifies which one sample (out of the Factor input samples4.
read) to output: if Phase = 0, the first input sample is output; if Phase = Factor - 1,
the latest input sample is output. The equation describing the behavior of this model
is
y[n] = x[Factor × n + Phase], where n is the output sample number, y is the output,
and x is the input.

See:
DownSampleEnv (algorithm)
DownSampleVarPhase (algorithm)
UpSample (algorithm)
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 DownSampleVarPhase Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DownSampleVarPhase
(algorithm)

Downsample with variable down sampling
phase

 DownSampleVarPhase (Downsample with Variable
Downsampling Phase)

Description: Downsample with variable down sampling phase
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DownSampleVarPhase Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Factor Downsample
factor

2  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal anytype NO

2 phase down sampling phase int NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal anytype NO

To avoid confusion on a schematic, it is best to mirror (flip) this symbol (instead of rotating it) when you
need to have the input on the right and the output on the left of the symbol; otherwise the symbol arrow
will point in the "wrong" direction. Select the part and press F6 to flip the symbol into the correct
orientation.

 Notes/Equations

The DownSampleVarPhase model reduces the sampling rate of its input signal by an1.
integer Factor ratio. Down-sampling is also referred to as decimation.
For every Factor samples received at the input, one sample is output.2.
This model does not have a built-in lowpass filter. Therefore, to avoid aliasing, it may3.
be necessary to connect a lowpass filter at the input to ensure that the input signal
bandwidth is appropriately limited.
The value of the phase input specifies which one sample (out of the Factor input4.
samples read) to output: if phase = 0, the first input sample is output; if phase =
Factor − 1, the latest input sample is output. The equation describing the behavior of
this model is y[n] = x[Factor × n + phase], where n is the output sample number, y
is the output, x is the value of the input input, and phase is the value of the phase
input. If the value of the phase input is outside the range [0, Factor − 1], it is reset
to 0 or Factor − 1 accordingly.

See:
DownSample (algorithm)
DownSampleEnv (algorithm)
UpSample (algorithm)
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 Latch Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Latch
(algorithm)

Data Latch with Clock
Control
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 Latch

Description: Data Latch with Clock Control
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Latch Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

2 clock int NO

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

 Notes/Equations

The Latch model sets its output sample to the previously recorded input when the1.
clock input was non-zero.
This model reads 1 sample from the input and clock and writes 1 sample to the2.
output.
When the clock is non-zero, the previously recorded input when the clock input was3.
non-zero is written to the output and the current input is saves for use the next time
the clock is non-zero.
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 Mux Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Mux
(algorithm)

Data Multiplexer

    

 Mux (Data Multiplexer)
 

Description: Data Multiplexer
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Mux Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

BlockSize Number of data items in a block 1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 control int NO

2 input multiple anytype NO

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

 

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

One of N inputs is multiplexed to the output. N is the number of input connections.1.
BlockSize samples are consumed on each input. Only one of these blocks as2.
determined by the control input is copied to the output.
Integer values from 0 through N - 1 are expected at the control input. If the control3.
input is outside this range, the simulation is terminated with an error message.

See:
DeMux (algorithm)
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 OrderTwoInt Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

OrderTwoInt
(algorithm)

Ordered Two Integer Min/Max Function

    

 OrderTwoInt (Ordered Two Integer Min/Max
Function)
 

Description: Ordered Two Integer Min/Max Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: OrderTwoInt Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 upper int NO

2 lower int NO

 Output Ports

Port Name Signal Type Optional

3 greater int NO

4 lesser int NO

 

 Notes/Equations

OrderTwoInt takes two inputs and outputs the greater and lesser of the two inputs.1.

where:
x 1 is the upper input

x 2 is the lower input

y 1 is the greater output

y 2 is the lesser output

For an input sample, one sample is output.2.

See:
Mux (algorithm)
DeMux (algorithm)
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 Repeat Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Repeat
(algorithm)

Data Repeater
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 Repeat

Description: Data Repeater
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Repeat Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

NumTimes Repetition factor 2  Integer NO [1:∞)

BlockSize Number of data items in a block 1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

Repeat copies BlockSize number of inputs to the output NumTimes.1.
For every BlockSize number of inputs, there are BlockSize × NumTimes number of2.
outputs.
This model is useful when a block of inputs needs upsampling.3.

Note on large upsampling factors

Each repeater require a buffer of NumTimes number of BlockSize × samples. For a large NumTimes value,
memory requirements may prevent a simulation. The way around this problem is to substitute a cascade
of repeaters. For example, a NumTimes of 10 6 would require a buffer of 10 6 BlockSize × samples. If a
cascade of two repeater were used, then each NumTimes could be 10 3 which would require a total buffer
equivalent of 2 × 10 3 BlockSize × samples. If a cascade of three repeater were used, then each
NumTimes could be 10 2 which would require a total buffer equivalent of 3 × 10 2 BlockSize × samples.

See:
DownSample (algorithm)
UpSample (algorithm)
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 ResamplerRC Part
Categories: C++ Code Generation (algorithm), Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ResamplerRC
(algorithm)

Resampler with Raised Cosine
Filter

 ResamplerRC (Resampler with Raised Cosine Filter)

Description: Resampler with Raised Cosine Filter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: ResamplerRC Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Decimation Decimation ratio 1  Integer NO

DecimationPhase Decimation phase 0  Integer NO

Interpolation Interpolation
ratio

16  Integer NO

Length Number of taps 64  Integer NO

ExcessBW Excess bandwidth 1  Float YES

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

The ResamplerRC implements a rational ratio resampler that uses a raised cosine1.
filter as the interpolating filter.
For every Decimation number of input samples, Interpolation number of filtered2.
values are output.
For more information on the multi-rate implementation, see FIR (algorithm).3.
DecimationPhase is equivalent to the Phase parameter of the DownSample4.
(algorithm) part. If DecimationPhase is 0 (default), the earliest outputs of the
decimation block are decimated.
The Length parameter defines the number of taps in the raised cosine filter.5.
ExcessBW parameter defines the excess bandwidth for the raised cosine filter. This6.
value is often referred as the rolloff or the alpha of the raised cosine filter.
The impulse response of an ideal raised cosine filter is given by7.

The ideal impulse response is centered at 0. Since only causal filters are
implemented, the actual impulse response used is

The impulse response is truncated outside the range [0, L-1].

 

 References

E. A. Lee and D. G. Messerchmitt, Digital Communication, Kluwer Academic1.
Publishers, Boston, 1988.
I. Korn, Digital Communications, Van Nostrand Reinhold, New York, 1985.2.



SystemVue - Algorithm Design Library

443

See:
FIR (algorithm)
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 SampleHold Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SampleHold
(algorithm)

Sample and hold with clock
control
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 SampleHold

Description: Sample and hold with clock control
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SampleHold Part (algorithm)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

2 clock int NO

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

 Notes/Equations

The SampleHold model sets its output to the input when the clock is non-zero.1.
This model reads 1 sample from the input and clock and writes 1 sample to the2.
output.
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 SetSampleRate Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SetSampleRate
(algorithm)

Set Signal Sample Rate

 SetSampleRate (Set Signal Sample Rate)

Description: Set Signal Sample Rate
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SetSampleRate Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

SampleRate Sample rate Sample_Rate Hz Float NO (0:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 Notes/Equations

The SetSampleRate model associates a sample rate with the input data and sets the1.
output with that data and its associated sample rate.
This model reads 1 sample from the input and writes 1 sample to the output.2.
The output sample rate generates time values for the output.3.
For a discussion on the precision of the time values, see Sources Category4.
(algorithm).
A consistency check on the multirate graph will flag implementation problems.5.
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 Trainer Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Trainer
(algorithm)

Initial Sample
Trainer

    

 Trainer (Initial Sample Trainer)
 

Description: Initial Sample Trainer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Trainer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

TrainLength Number of training samples to use 100  Integer NO [0:∞)

 Input Ports

Port Name Signal Type Optional

1 train anytype NO

2 decision anytype NO

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

 

 Notes/Equations

Trainer passes the value of the training input to the output for the first TrainLength1.
samples, then passes the decision input to the output.
For every input, there is an output.2.
During the startup phase, the decision inputs are discarded. After the startup phase,3.
the training inputs are discarded.
This component is designed for use with adaptive equalizers that require a training4.
sequence at startup, but it can be used whenever one sequence is used during a
startup phase, and another sequence after that.
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 UpSample Part
Categories: Routers/Resamplers (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

UpSample (algorithm) Up Sampler

UpSampleEnv
(algorithm)

Up Sampler for Envelope Signal

UpSampleFxp (hardware) Fixed Point UpSample

    

 UpSample (Upsampler)
 

Description: Up Sampler
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: UpSample Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Factor Number of samples produced 2  Integer NO [1:∞)

Mode Mode method: Insert zeros, Hold sample Insert
zeros

 Enumeration YES  

Phase Where to put the input in the output block.
Visible when Mode mode is Insert zeros

0  Integer YES [0:Factor-
1]

 Input Ports

Port Name Description Signal Type Optional

1 input input signal anytype NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal anytype NO

 

To avoid confusion on a schematic, it is best to mirror (flip) this symbol (instead of rotating it) when you
need to have the input on the right and the output on the left of the symbol; otherwise the symbol arrow
will point in the "wrong" direction. Select the part and press F6 to flip the symbol into the correct
orientation.

 Notes/Equations

UpSample increases the sample rate of the input signal by Factor.1.
This model reads one sample from the input and writes Factor number of samples to2.
the output.
If Mode is Insert zeros, the inserted output samples have the zero value of the input3.
type. Otherwise, the output samples have the same value as the most recent input.
For Insert zeros mode only, the Phase parameter specifies where to place the input4.
sample in a block of Factor output samples. Phase number of zeros are output first
followed by the input value followed by (Factor - 1) - Phase number of zeros.
Examples follow.

If Phase is zero, the input value is output first followed by Factor - 1 number of1.
zeros.
If Phase is Factor - 1, Factor - 1 number of zeros are output first followed by the2.
input value.
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Note on large upsampling factors

Each upsampler require a buffer of Factor number of samples. For a large Factor value, memory
requirements may prevent a simulation. The way around this problem is to substitute a cascade of
upsamplers. For example, a Factor of 10 6 would require a buffer of 10 6 samples. If a cascade of two
upsamplers were used, then each Factor could be 10 3 which would require a total buffer equivalent of 2 ×
10 3 samples. If a cascade of three upsamplers were used, then each Factor could be 10 2 which would
require a total buffer equivalent of 3 × 10 2 samples.
If a nonzero Phase were to be used, the Phase would have to be deconstructed into Phase values for each
cascaded upsampler. Let an upsample part have a Factor of 10 6 and a Phase of 123456. The upsampler is
substituted by 3 upsamplers each having a Factor of 10 2. The first upsampler would have a Phase of 12,
the second upsampler would have a Phase of 34 and the third sampler would have a Phase of 56.

See:
DownSample (algorithm)
Repeat (algorithm)
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 Signal Processing
The Signal Processing library provides parts that implement signal processing algorithms,
like FFT, Quantization, Compress/Expand, etc.

 Contents
AdaptLinQuant Part (algorithm)
AutoCorr Part (algorithm)
Average Part (algorithm)
AverageCxWOffset Part (algorithm)
BitDeformatter Part (algorithm)
BitFormatter Part (algorithm)
Chop Part (algorithm)
ChopVarOffset Part (algorithm)
Compress Part (algorithm)
Convolve Part (algorithm)
CrossCorr Part (algorithm)
DeadZone Part (algorithm)
Delay Part (algorithm)
DTFT Part (algorithm)
Expand Part (algorithm)
FFT Cx Part (algorithm)
Filter Part (algorithm)
GeometricMean Part (algorithm)
Hysteresis Part (algorithm)
Limit Part (algorithm)
LinearQuantizer Part (algorithm)
LookUpTable Part (algorithm)
MaxMin Part (algorithm)
PattMatch Part (algorithm)
PcwzLinear Part (algorithm)
Quantizer Part (algorithm)
Quantizer2D Part (algorithm)
Reverse Part (algorithm)
SchmittTrig Part (algorithm)
SlidWinAvg Part (algorithm)
TimeDelay Part (algorithm)
TimeSynchronizer Part (algorithm)
Transpose Part (algorithm)
VarDelay Part (algorithm)
Variance Part (algorithm)
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 AdaptLinQuant Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AdaptLinQuant
(algorithm)

Adaptive Linear Quantizer

 AdaptLinQuant (Adaptive Linear Quantizer)

Description: Adaptive Linear Quantizer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AdaptLinQuant Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Bits Number of bits 8  Integer YES [1:31]

 Input Ports

Port Name Signal Type Optional

1 input real NO

2 inStep real NO

 Output Ports

Port Name Signal Type Optional

3 amplitude real NO

4 outStep real NO

5 stepLevel int NO

 Notes/Equations

Input is quantized to 2 Bits number of levels in a plan described as odd symmetric1.
about zero midrise.
For each model execution, one sample is read at each input and one sample is2.
written to each output.
Quantization levels are uniformly spaced by inStep and symmetric about zero.3.
Therefore, the high quantization level is (2 Bits − 1)(inStep / 2), the low quantization
level is set to −high. Zero is not a quantization level.
Input is held to a value between low and high and rounded to the nearest4.
quantization level.
Quantized input is output on the amplitude port. Its quantization index is output on5.
the stepLevel port as an integer between 0 and 2 Bits − 1.
inStep is copied to the outStep port.6.

See:
LinearQuantizer (algorithm)
Quantizer (algorithm)
Quantizer2D (algorithm)
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 AutoCorr Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AutoCorr
(algorithm)

Autocorrelation
Estimator

 AutoCorr (Autocorrelation Estimator)

Description: Autocorrelation Estimator
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AutoCorr Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

CorrelationType Correlation method:
NonCircular,
Circular

Circular  Enumeration YES   

CorrelationLength Number of input
samples

511  Integer NO [1:∞) N

StartLag Low lag limit to
output

-255  Integer NO (-
N:L<sub>h</sub>]

Ll

StopLag High lag limit to
output

255  Integer NO [L<sub>l</sub>:N) Lh

Normalization Correlation estimate
normalization:
None, UnBiased,
Biased

None  Enumeration YES   

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal real NO

 Notes/Equations

AutoCorr estimates the autocorrelation function of the input.1.
The part inputs N samples and outputs L l + L h + 1 autocorrelation values.2.

r x (k) is the estimated autocorrelation function of N input samples and is evaluated3.

for a k from L l, ... , L h.

r x (L l) is output first, and r x (L h) is output last.4.

If CorrelationType is NonCircular, then5.
r x (k) = sum { x (i) x (i + k) } for input x and i = 1, ... , N. For p < 1 or p > N, x

(p) is 0.
Otherwise, the CorrelationType is Circular, then
r x (k) = sum { x (i) x (i + k) } for input x and i = 1, ... , N. For p < 1 or p > N, x

(p) is x ( ( (p - 1) modulo N) + 1 ). Define -1 modulo N as N - 1, and so on.
Additionally, UnBiased and Biased autocorrelation estimates are supported.6.

If CorrelationType is NonCircular, then for UnBiased Normalization, r x (k) is

divided by N - | k |. For Biased Normalization, r x (k) is divided by N.

If CorrelationType is Circular, then for UnBiased or Biased Normalization, r x (k)

is divided by N.
A typical application of AutoCorr is to find periodicities in N samples of input. For this7.
application, set CorrelationType to Circular.

See:
CrossCorr (algorithm)
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 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 AverageCxWOffset Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

AverageCxWOffset
(algorithm)

Complex Averager with Offset
Control

    

 AverageCxWOffset (Complex Averager with Offset
Control)
 

Description: Complex Averager with Offset Control
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: AverageCxWOffset Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

NumInputsToAverage Number of input samples to
average

256  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 Input Input complex NO

2 Offset Offset int NO

 Output Ports

Port Name Description Signal Type Optional

3 Output Output complex NO

 

 Notes/Equations

AverageCxWOffset averages a window of NumInputsToAverage samples.1.
For each model execution, one sample is input at Input and Offset, and one sample is2.
output.
If NumInputsToAverage samples are not available, the last output is held. The initial3.
hold value is zero.
Otherwise, the averaged value is output, and all samples in the window and older are4.
considered stale and discarded.
The window of NumInputsToAverage samples is offset from the most recent inputs by5.
the Offset value. The offset must be non-negative and less than NumSymToAverage.
AverageCxWOffset can be used to average RF received data using channel delay6.
information. The output is the averaged complex signal envelope.

 

 References

M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"1.
Plenum Press, New York and London, 1992.
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 Average Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Average (algorithm) Averager

AverageCx
(algorithm)

Complex Averager

 Average (Averager)

Description: Averager
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Average Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

NumInputsToAverage Number of input blocks to average 8  Integer NO

BlockSize Sample size of input blocks that are averaged
to produce an output block

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

The Average model calculates the average over NumInputsToAverage real-valued1.
input samples. If BlockSize is 1, then NumInputsToAverage samples are read from
the input, averaged, and the average is written to the output. If BlockSize is greater
than 1, then NumInputsToAverage × BlockSize samples are read from the input,
BlockSize averages are computed by averaging the NumInputsToAverage samples at
the same position (first, second, third, ..., B-th) in every block, and these BlockSize
averages are written to the output. The output values are calculated based on the
following equation:

At every execution of this model, NumInputsToAverage × BlockSize samples are read2.
from the input and BlockSize samples are written to the output.

See:
AverageCx (algorithm)

 AverageCx (Complex Averager)

Description: Complex Averager
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Average Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

NumInputsToAverage Number of input blocks to average 8  Integer NO

BlockSize Sample size of input blocks that are averaged
to produce an output block

1  Integer NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

The AverageCx model calculates the average over NumInputsToAverage complex-1.
valued input samples. If BlockSize is 1, then NumInputsToAverage samples are read
from the input, averaged, and the average is written to the output. If BlockSize is
greater than 1, then NumInputsToAverage × BlockSize samples are read from the
input, BlockSize averages are computed by averaging the NumInputsToAverage
samples at the same position (first, second, third, ..., B-th) in every block, and these
BlockSize averages are written to the output. The output values are calculated based
on the following equation:

At every execution of this model, NumInputsToAverage × BlockSize samples are read2.
from the input and BlockSize samples are written to the output.

See:
Average (algorithm)
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 BitDeformatter Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm), Type
Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BitDeformatter
(algorithm)

NRZ/RZ Symbol to Bit
Converter

 BitDeformatter (NRZ/RZ Symbol to Bit Converter)

Description: NRZ/RZ Symbol to Bit Converter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: BitDeformatter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

SamplesPerBit Number of input samples per bit 1  Integer NO

Format Format for input signal: NRZ,
RZ

NRZ  Enumeration NO

LogicZeroLevel Voltage for bit value zero -1 V Float YES

LogicOneLevel Voltage for bit value one 1 V Float YES

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output boolean NO

 Notes/Equations

The BitDeformatter converts input NRZ/RZ symbols to output bits.1.
This model reads SamplesPerBit samples from input representing one NRZ/RZ2.
symbol and interprets it using the Format parameter to write 1 sample to output as a
bit value that has a logic level defined by LogicZeroLevel and LogicOneLevel.
Format specifies the pulse-code modulation (PCM) waveform type:  Nonreturn-to-3.
zero (NRZ) or Return-to-zero (RZ).  Unipolar RZ and Bipolar RZ are specified with
appropriate values for parameters LogicZeroLevel and LogicOneLevel.
For NRZ, the sampled input waveform is averaged.  The averaged value that is closer4.
to LogicZeroLevel than LogicOneLevel outputs a zero bit, otherwise a one bit is
output.
For RZ, the SamplerPerBit parameter must be a multiple of two as the format returns5.
to "zero" in the last half of the waveform.  The sampled input waveform is separately
averaged in the first and second half of the bit period.  The averaged "zero" provide a
zero reference for the bit period. If the differential value for the bit period is closer to
LogicZeroLevel than LogicOneLevel, a zero bit is output, otherwise a one bit is
output.

See:
BitFormatter (algorithm)
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 BitFormatter Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm), Type
Converters (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BitFormatter
(algorithm)

Bit to NRZ/RZ Symbol
Converter

 BitFormatter (Bit to NRZ/RZ Symbol Converter)

Description: Bit to NRZ/RZ Symbol Converter
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: BitFormatter Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

SamplesPerBit Number of output samples per input bit 1  Integer NO

Format Format for output signal: NRZ, RZ NRZ  Enumeration NO

LogicZeroLevel Voltage for bit value zero -1 V Float YES

LogicOneLevel Voltage for bit value one 1 V Float YES

 Input Ports

Port Name Signal Type Optional

1 input boolean NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

The BitFormatter converts input bits to output NRZ/RZ symbols.1.
This model reads 1 sample from the input representing one bit and interprets it using2.
the Format parameter to write SamplesPerBit samples representing one NRZ/RZ
symbol to the output with a level defined by LogicZeroLevel and LogicOneLevel.
Any input greater than zero maps to a one bit value, otherwise a zero bit is input. 3.
For each bit, a pulse-code modulation (PCM) waveform is generated.  The4.
SamplesPerBit parameter determines the waveform period.
The Format parameter determines the PCM type: Nonreturn-to-zero (NRZ) or Return-5.
to-zero (RZ).  Unipolar RZ and Bipolar RZ are represented by selecting appropriate
values for LogicOneLevel and LogicZeroLevel parameters.
For NRZ, a one bit value input outputs a constant waveform at LogicOneLevel while a6.
zero bit value input outputs a waveform at LogicZeroLevel.
For RZ, the SamplesPerBit parameter must be a multiple of two since the last half of7.
the waveform must return to zero.  For the first half of the waveform, a one bit value
input outputs LogicOneLevel samples while a zero bit outputs LogicZeroLevel
samples.

See:
BitDeformatter (algorithm)
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 Chop Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Chop
(algorithm)

Data Block Chopper

    

 Chop (Data Block Chopper)
 

Description: Data Block Chopper
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Chop Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

nRead Number of data items read 128  Integer NO [1:∞)

nWrite Number of data items written 64  Integer NO [1:∞)

Offset Start of output block relative to start of
input block

0  Integer NO (-
∞:∞)

UsePastInputs Use previously read inputs: NO, YES YES  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

The Chop model reads a block of nRead samples from its input and produces a block1.
of nWrite samples at its output. The output block may have samples from the current
or previous input block, may discard samples from the current block, and may
append/prepend zeros to the input block.
The Offset parameter defines where in the output block of samples the first (oldest)2.
input sample is output.

If Offset is ≤ 0, the first |Offset| input samples are discarded and the (|Offset|
+ 1)-th input sample is output as the first output sample (the UsePastInputs
parameter is ignored)
If Offset > 0, the first input sample is output as the (Offset + 1)-th output
sample. The first Offset output samples are:

0, if UsePastInputs is set to NO
the last Offset samples from the previous blocks read, if UsePastInputs is
set to YES

The following tables summarize the behavior of this component.3.
If nRead ≥ nWrite
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Case Offset UsePastInputs nWrite ≤
nRead − |
Offset|

Output

1 (−∞, −
nRead]

NO or YES will always
be FALSE

all zeros

2 (−
nRead,
0]

NO or YES TRUE discard the first |Offset| input samples, output the next
nWrite input samples

3 (−
nRead,
0]

NO or YES FALSE discard the first |Offset| input samples, output the next
(nRead − |Offset|) input samples followed by (nWrite −
(nRead − |Offset|)) zeros

4 (0,
nWrite)

NO TRUE or
FALSE

output Offset zeros followed by the first (nWrite − Offset
) input samples

5 (0,
nWrite)

YES TRUE or
FALSE

output the last Offset samples of the previously read
input block followed by the first (nWrite − Offset) input
samples

6 [nWrite,
∞)

NO TRUE or
FALSE

all zeros

7 [nWrite,
∞)

YES TRUE or
FALSE

output from the (nRead − Offset + 1)-th to (nRead −
Offset + nWrite)-th samples of the previously read input
block (for the first block the previous block is assumed
to be all zeros)

If nRead < nWrite

Case Offset UsePastInputs nRead ≤
nWrite − |
Offset|

Output

8 (−∞, −
nRead]

NO or YES TRUE or
FALSE

all zeros

9 (−nRead
, 0]

NO or YES TRUE or
FALSE

discard the first |Offset| input samples, output the
next (nRead − |Offset|) input samples followed by (
nWrite − (nRead − |Offset|)) zeros

10 (0,
nWrite)

NO TRUE output Offset zeros followed by the nRead input
samples followed by (nWrite − nRead − Offset) zeros

11 (0,
nWrite)

NO FALSE output Offset zeros followed by the first (nWrite −
Offset) input samples

12 (0,
nWrite)

YES TRUE output the last Offset samples of the previously read
input block followed by the nRead input samples
followed by (nWrite − nRead − Offset) zeros

13 (0,
nWrite)

YES FALSE output the last Offset samples of the previously read
input block(s) followed by the first (nWrite − Offset)
input samples

14 [nWrite,
∞)

NO will always be
FALSE

all zeros

15 [nWrite,
∞)

YES will always be
FALSE

output the last nWrite samples of the previously read
input block(s) (for the first block the previous blocks
are assumed to be all zeros)

Here are some examples. In all of these examples the input is assumed to be a ramp4.
signal with initial value of 1 and step 1 (1, 2, 3, 4, 5, 6, ...).
Case nRead nWrite Offset UsePastInputs Output

1 10 5 -10 (or
smaller)

NO or YES 0, 0, 0, 0, 0, 0, ...

2 10 3 -5 NO or YES 6, 7, 8, 16, 17, 18, 26, 27, 28, ...

3 10 5 -7 NO or YES 8, 9, 10, 0, 0, 18, 19, 20, 0, 0, 28, 29, 30, 0, 0, ...

4 10 5 2 NO 0, 0, 1, 2, 3, 0, 0, 11, 12, 13, 0, 0, 21, 22, 23, ...

5 10 5 2 YES 0, 0, 1, 2, 3, 9, 10, 11, 12, 13, 19, 20, 21, 22, 23,
...

6 10 5 5 (or
bigger)

NO 0, 0, 0, 0, 0, 0, ...

7 10 5 5 YES 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 16, 16, 18, 19, 20, ...

7 10 5 7 YES 0, 0, 0, 0, 0, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, ...

8 5 10 -5 (or
smaller)

NO or YES 0, 0, 0, 0, 0, 0, ...

9 5 10 -3 NO or YES 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 0, 0,
0, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, ...

10 5 10 3 N0 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 0,
0, 0, 0, 0, 11, 12, 13, 14, 15, 0, 0, ...

11 5 10 7 N0 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 6, 7,
8, 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, ...

12 5 10 3 YES 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 3, 4, 5, 6, 7, 8, 9, 10, 0,
0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, ...

13 5 10 7 YES 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 1, 2, 3, 4, 5, 6, 7,
8, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...

14 5 10 10 (or
bigger)

NO 0, 0, 0, 0, 0, 0, ...

15 3 5 5 YES 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8,
9, ...

Common uses of the Chop component include:5.
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Discard samples from the beginning of a block of data: Offset should be set to −N
, where N is the number of samples that need to be discarded and nWrite should
be set to nRead − N.
Discard samples from the end of a block of data: Offset should be set to 0 and
nWrite should be set to nRead − N, where N is the number of samples that need
to be discarded.
Discard samples from both the beginning and the end of a block of data: Offset
should be set to −N b, where N b is the number of samples that need to be

discarded from the beginning of the block and nWrite should be set to nRead −
N b − N e, where N e is the number of samples that need to be discarded from

the end of the block.
Prepend zeros to a block of data: Offset should be set to N , where N is the
number of zeros to be prepended, UsePastInputs should be set to NO, and
nWrite should be set to nRead + N.
Append zeros to a block of data: Offset should be set to 0 and nWrite should be
set to nRead + N, where N is the number of zeros to be appended.
Prepend and append zeros to a block of data: Offset should be set to N p , where

N p is the number of zeros to be prepended, UsePastInputs should be set to NO,

and nWrite should be set to nRead + N p + N a, where N a is the number of

zeros to be appended.
Break an input stream of samples in blocks of size N b with N o overlapping

samples: nRead should be set to N b − N o, nWrite should be set to N b, Offset

should be set to N o, and UsePastInputs should be set to YES.

See:
ChopVarOffset (algorithm)

 Timing

When this model is used in a timed simulation, the first sample at its output will occur at
time t 0 + (nRead - 1) / SampleRate, where t 0 is the time stamp of the first input sample

and SampleRate is the sample rate of the input signal. For more information about timing
see Timing Method (sim).
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 ChopVarOffset Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ChopVarOffset
(algorithm)

Data Block Chopper with Offset
Control

    

 ChopVarOffset (Data Block Chopper with Offset
Control)
 

Description: Data Block Chopper with Offset Control
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: ChopVarOffset Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

nRead Number of data items read 128  Integer NO [1:∞)

nWrite Number of data items written 64  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

2 offsetCntrl int NO

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

 

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

ChopVarOffset has the same functionality as the Chop (algorithm) model except that1.
the Offset parameter is determined at run time by a control input (offsetCntrl) and
the UsePastInputs parameter is assumed to be NO.
The model reads a block of nRead samples from its input and produces a block of2.
nWrite samples at its output.

See:
Chop (algorithm)
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 Compress Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Compress
(algorithm)

Compression Part of a Compander

    

 Compress (Compression Part of a Compander)
 

Description: Compression Part of a Compander
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Compress Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

CompressionType Compression law: MU-law, A-
law

MU-law  Enumeration YES  

CompressionK Compression constant 1  Float YES  

Max Maximum input value magnitude 1  Float YES (0.0:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

Compress performs MU-law or A-law compression.1.
For every input, there one output.2.
Let x′(n) = x(n) / Max, then3.
MU-law:

A-law:

where
x(n) is input for sample n
V M is Max

y(n) is output for sample n
µ is CompressionK for MU-law
A is CompressionK for A-law
Shown below is the input/output characteristic of Compress with Type = MU-law,4.
CompressionK = 255 and Max = 1V. 

 Compress Signal Plot
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See:
Expand (algorithm)
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 Convolve Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Convolve (algorithm) Convolution Function

ConvolveCx
(algorithm)

Complex Convolution
Function

    

 Convolve (Convolution Function)
 

Description: Convolution Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Convolve Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

TruncationDepth Maximum number of terms in convolution
sum

256  Integer NO

 Input Ports

Port Name Signal Type Optional

1 inA real NO

2 inB real NO

 Output Ports

Port Name Signal Type Optional

3 out real NO

 

 Notes/Equations

The Convolve model convolves two real-valued causal finite length sequences.1.

For each model execution, one sample is read from inA and inB, and one convolution2.
value is output.
TruncationDepth must be set to a value larger than the number of output samples of3.
interest. Otherwise, the results will be unexpected after TruncationDepth samples.
If one input has finite length and does not change over time, whereas the other input4.
can be arbitrarily long, use the FIR (algorithm) model. Set the Taps parameter of the
FIR (algorithm) model to the values of the finite length sequence.
If one input has finite length and changes over time, whereas the other input can be5.
arbitrarily long, use the BlockFIR (algorithm) model. BlockFIR (algorithm) allows
filtering of a signal in fixed size blocks, where each input block is filtered with a
different set of coefficients.

See:
ConvolveCx (algorithm)

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

    

 ConvolveCx (Complex Convolution Function)



SystemVue - Algorithm Design Library

466

 

Description: Complex Convolution Function
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: Convolve Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

TruncationDepth Maximum number of terms in convolution
sum

256  Integer NO

 Input Ports

Port Name Signal Type Optional

1 inA complex NO

2 inB complex NO

 Output Ports

Port Name Signal Type Optional

3 out complex NO

 

 Notes/Equations

The ConvolveCx model convolves two complex-valued causal finite length sequences.1.

For each model execution, one sample is read from inA and inB, and one convolution2.
value is output.
TruncationDepth must be set to a value larger than the number of output samples of3.
interest. Otherwise, the results will be unexpected after TruncationDepth samples.
If one input has finite length and does not change over time, whereas the other input4.
can be arbitrarily long, use the FIR_Cx (algorithm) model. Set the Taps parameter of
the FIR_Cx (algorithm) model to the values of the finite length sequence.

See:
Convolve (algorithm)
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 CrossCorr Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CrossCorr
(algorithm)

Cross Correlator

    

 CrossCorr (Cross Correlator)
 

Description: Cross Correlator
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: CrossCorr Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

CorrelationType Correlation
method:
NonCircular,
Circular

NonCircular  Enumeration YES   

CorrelationLength Number of input
samples

511  Integer NO [1:∞) N

StartLag Low lag limit to
output

-255  Integer NO (-
N:L<sub>h</sub>]

Ll

StopLag High lag limit to
output

255  Integer NO [L<sub>l</sub>:N) Lh

Normalization Correlation
estimate
normalization:
None, UnBiased,
Biased

None  Enumeration YES   

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

2 input2 second input
signal

real NO

 Output Ports

Port Name Description Signal Type Optional

3 output output signal real NO

4 delay delay of input2 with respect to
input

int NO

 

 Notes/Equations

CrossCorr estimates the cross correlation function for two inputs.1.
The part inputs N samples from pin 1 and from pin 2 and outputs L l + L h + 1 cross2.

correlation values to pin 3 and one delay value to pin 4.
r xy (k) is the estimated cross correlation function of inputs from pin 1 (x) and pin 23.

(y) and is evaluated for a k from L l, ... , L h.

r xy (L l) is output first, and r xy (L h) is output last.4.

If CorrelationType is NonCircular, then5.
r xy (k) = sum { x (i) y (i + k) } for i = 1, ... , N. For p < 1 or p > N, x (p) and y

(p) are 0.
Otherwise, the CorrelationType is Circular, then
r xy (k) = sum { x (i) y (i + k) } for i = 1, ... , N. For p < 1 or p > N, x (p) is x (q)

and y (p) is y (q) where q is ( (p − 1) modulo N) + 1 ). Define −1 modulo N as N −
1, and so on.
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Additionally, UnBiased and Biased autocorrelation estimates are supported.6.
If CorrelationType is NonCircular, then for UnBiased Normalization, r xy (k) is

divided by N − | k |. For Biased Normalization, r xy (k) is divided by N.

If CorrelationType is Circular, then for UnBiased or Biased Normalization, r xy

(k) is divided by N.
The estimated delay in samples of y with respect to x is output at pin 4. A negative7.
value imply that x is delayed with respect to y.
A typical application for CrossCorr is to find the best delay that will synchronize two8.
signals. For this application set CorrelationType to NonCircular.

See:
AutoCorr (algorithm)

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 DeadZone Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DeadZone
(algorithm)

Dead Zone Nonlinearity

 DeadZone (Dead Zone Nonlinearity)

Description: Dead Zone Nonlinearity
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DeadZone Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

K Magnitude gain 1  Float YES (-∞:0.0) or (0.0:∞)

Low Lower dead zone value 0  Float YES (-∞:High)

High Higher dead zone value 1  Float YES (-∞:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal real NO

 Notes/Equations

The dead zone nonlinearity is defined as follows:1.

where:
x(n) is input for sample n
K is the K parameter
V h is the High parameter

V l is the Low parameter

y(n) is output for sample n
For every input, there is one output.2.
Shown below is the input/output characteristic of DeadZone with K = 1, Low = 0 and3.
High = 1.  

 DeadZone Signal Plot
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 Delay Part

 Ideal Time Delay Block (DELAY). Delays the signal for a certain amount of time.

The models and symbols associated with this part are listed below. To view detailed
information on a model (description, parameters, equations, notes, etc.), please select the
appropriate link.

For a list of available parts organized by Schematic Toolbar, please see Appendix C - Toolbars
(users).

Model

Delay
(algorithm)

Symbol

DELAY

For a list of available symbols see the Symbol Reference .

 Delay (Delay)

Description: Delay
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Delay Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

N Sample delay size 1  Integer NO [0:∞)

OutputTiming Output start time: EqualToInput,
BeforeInput

EqualToInput  Enumeration NO  

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 Notes/Equations

The Delay model introduces a delay of N samples to the input signal.1.
For every input, there is one output.2.
The initial N output samples have a null value. For scalar signals, a null value is 0.3.
For matrix signals, a null value is a matrix with the same size as the input matrix and
with all its elements set to 0.

See:
InitDelay (algorithm)

 InitDelay (Delay with Initial Value)

Description: Delay with Initial Value
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: Delay Part (algorithm)

 Model Parameters

file:/pages/createpage.action?spaceKey=sv201007&amp;title=Symbol_Reference&amp;linkCreation=true&amp;fromPageId=107087404
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Symbol_Reference&amp;linkCreation=true&amp;fromPageId=107087404


SystemVue - Algorithm Design Library

471

Name Description Default Units Type Runtime Tunable Range

N Sample delay
size

1  Integer NO [0:∞)

InitialDelay Initial data value   None NO  

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

InitDelay delays input tokens from output by N sets of initial delay tokens.1.
For every input, there is an output value.2.

See:
Delay (algorithm)
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 DTFT Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

DTFT
(algorithm)

Discrete-Time Fourier Transform

    

 DTFT (Discrete-Time Fourier Transform)
 

Description: Discrete-Time Fourier Transform
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: DTFT Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Length Length of input signal 8  Integer NO (0:∞) L

NumberOfSamples Number of transform samples
to output

128  Integer NO (0:∞) N

TimeBetweenSamples Time between input samples 1  Float YES (0:∞) T

 Input Ports

Port Name Description Signal Type Optional

1 signal signal to be transformed complex NO

2 omega frequency values at which to compute the transform real NO

 Output Ports

Port Name Description Signal Type Optional

3 dtft transform values complex NO

 

 Notes/Equations

The DTFT model calculates the Discrete-Time Fourier transform (DTFT) of the1.
sequence applied at its signal input at each of the frequency points specified on the
omega input.
At every execution of this model, L samples are read from its signal input, N samples2.
are read from its omega input, and N samples written to its output.
The DTFT of a sequence x[n] is a continuous function of ω defined by3.

If the sequence x[n] is obtained by sampling a continuous time signal x c (t) at

intervals of T, that is x[n] = x c (nT), and if X c (f), the continuous-time Fourier

Transform of x c (t), equals 0 for f > 1/(2T), then X(jω) and X c (f) have the following

relationship:

, for f < 1 / (2T).
The DTFT model can calculate X(jω) at arbitrary values of ω for sequences x[n] of4.
finite length. Let the L values on the signal input be x[0], x[1], ... , x[L − 1] and the
N values on the omega input be ω[0], ω[1], ... , ω[N − 1]. Then the N values at the
output are:

, i = 0, 1, ... , N − 1.
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Notice that in this last formula the exponent of e has the extra term T compared to
the formula defining the DTFT. Therefore, to calculate the Fourier transform of the
corresponding continuous time signal x c (t) at the frequencies f i , i = 0, 1, ... , N,

generate the values ω i = 2πf i, apply them at the omega input, and scale the output

by T. The values f i do not need to span the entire frequency range of the signal or

be equally spaced.

See:
FFT_Cx (algorithm)

 

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 Expand Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Expand
(algorithm)

Expander Part of a Compander

    

 Expand (Expander Part of a Compander)
 

Description: Expander Part of a Compander
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Expand Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

CompressionType Compression law: MU-law, A-
law

MU-law  Enumeration YES  

CompressionK Compression constant 1  Float YES  

Max Maximum input value magnitude 1  Float YES (0.0:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

Expand performs A-law or MU-law expansion.1.
For every input, there is an output value.2.
Let3.

then
MU-law:

A-law:

where:
x(n) is input for sample n
V M is Max

y(n) is output for sample n
µ is CompressionK for MU-Law
A is CompressionK for A-Law
Shown below is the input/output characteristic of Expand with Type = MU-law,4.
CompressionK = 255 and Max = 1V. 

 Expand Component Signal Plot
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See:
Compress (algorithm)
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 FFT_Cx Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FFT_Cx
(algorithm)

Complex Fast Fourier Transform

 FFT_Cx (Complex Fast Fourier Transform)

Description: Complex Fast Fourier Transform
Domain: Untimed
C++ Code Generation Support: YES
Associated Parts: FFT Cx Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

FFTSize Output transform size 256  Integer NO

Size Number of input samples to read 256  Integer NO

Direction Direction of transform: Inverse, Forward Forward  Enumeration NO

FreqSequence Sequence for the frequency terms: 0-pos-neg,
neg-0-pos

0-pos-
neg

 Enumeration NO

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 Notes/Equations

The FFT_Cx model computes the DFT (Discrete Fourier Transform) of the input signal1.
using a mixed radix FFT (Fast Fourier Transform) algorithm.
At every execution of this model, Size complex samples are read from the input. This2.
block of Size samples is zero padded (if Size < FFTSize) to create a block of FFTSize
samples. The block of FFTSize samples is then processed by a mixed radix FFT
algorithm to produce FFT_Size equally spaced samples that is the DFT of the input
signal.
Direction specifies a forward or inverse FFT.3.

See:
DTFT (algorithm)

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
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 GeometricMean Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

GeometricMean
(algorithm)

Geometric Mean Function

 GeometricMean (Geometric Mean Function)

Description: Geometric Mean Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: GeometricMean Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

N Number of samples in a block 10  Integer NO [1:∞)

Gain Gain value 1  Float YES (-
∞:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations
The GeometricMean model computes the geometric mean for every block of N input1.
samples.

At every execution of this model, N samples are read from the input and 1 sample is2.
written to the output.
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 Hysteresis Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Hysteresis
(algorithm)

Hysteresis Function

 Hysteresis (Hysteresis Function)

Description: Hysteresis Function
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Hysteresis Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Bandwidth Rate specified damping
bandwidth

0 Hz Float YES [0:SampleRate]†

Backlash Backlash threshold 0  Float YES [0:∞)

Gain Backlash gain 1  Float YES (-∞:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 Notes/Equations

Hysteresis has a internal state which is initialized to zero. The product of this state1.
and the Gain parameter is output.
For every input, there is an output value.2.
The state changes only if the magnitude of the difference between the input and the3.
state exceed the Backlash parameter.
A fraction of the excess is applied to the state with the sign from the subtraction of4.
the state from the input. This fraction is the Bandwidth parameter normalized by the
input rate.
A very small bandwidth fraction result in a sluggish hysteresis, i.e. exhibiting lowpass5.
filter behavior, whereas a large bandwidth fraction, e.g. 0.3, result in a stiff
hysteresis exhibiting pure backlash behavior.

See:
SchmittTrig (algorithm)
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 Limit Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Limit
(algorithm)

Limiter

    

 Limit (Limiter)
 

Description: Limiter
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Limit Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

K Magnitude gain 1  Float YES (-∞:0.0) or
(0.0:∞)

Bottom Lower output saturation value 0  Float YES (-∞:Top)

Top Higher output saturation value 1  Float YES (-∞:∞)

LimiterType Type of limiting curve: linear,
atan

linear  Enumeration YES  

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

Limit models two different types of limiting nonlinearities.1.
For every input, there is an output value.2.
If linear:3.

If atan:

where:
x(n) is input for sample n
V l is the Bottom parameter

V h is the Top parameter

K is the K parameter
y(n) is output for sample n
Shown below are input/output characteristics of Limit with parameters K = 1, Bottom4.
= −1, and Top = 1 for linear and atan types.  
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 Limit Component Signal Plot
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 LinearQuantizer Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LinearQuantizer
(algorithm)

Uniform Quantizer with Step Number Output

 LinearQuantizer (Uniform Quantizer with Step
Number Output)
 

Description: Uniform Quantizer with Step Number Output
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: LinearQuantizer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

Levels Number of quantization
levels

128  Integer YES [2:∞)

Low Lowest quantization level -3  Float YES (-∞:High)

High Highest quantization level 3  Float YES (-∞:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 amplitude quantized signal real NO

3 stepNumber quantization level index int NO

 

 Notes/Equations

The input signal is quantized to the number of levels given by the Levels parameter.1.
For every input, there is an output at both output ports.2.
Quantization levels start at Low, end at High, and are uniformly spaced in between.3.
Input is mapped to the closest quantization level.4.
Quantized input is output to the amplitude port. Its quantization level index is output5.
to the stepNumber port as an integer from 0 (corresponding to the quantization level
of Low) to Levels - 1 (corresponding to the quantization level of High).

See:
AdaptLinQuant (algorithm)
Quantizer (algorithm)
Quantizer2D (algorithm)
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 LookUpTable Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LookUpTable (algorithm) Mapper using Indexed Lookup
Table

LookUpTableFxp
(hardware)

Fixed Point Look Up Table

 LookUpTable (Mapper Using Indexed Lookup Table)

Description: Mapper using Indexed Lookup Table
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: LookUpTable Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Values Table of output
values

[-1; 1]  None NO

 Input Ports

Port Name Signal Type Optional

1 input int NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

The LookUpTable model implements a lookup table indexed by an integer-valued1.
input.
For every input, there is an output value.2.
The input must lie between 0 and N − 1, inclusive, where N is the size of the table3.
(size of first dimension of the Values parameter). If the Values parameter is a multi-
dimensional array, then the output is going to be an array whose number of
dimensions is one less than the number of dimensions of the Values parameter. The
first element (or slice across the first dimension) of the Values array is indexed by a
zero-valued input. An error occurs if the input value is out of the array bounds.
For details on creating arrays of data for parameter values, refer to Multidimensional4.
Arrays.

file:/display/genesys2009/Using+Math+Language#UsingMathLanguage-Vectors%2CMatrices%2CandMultidimensionalArrays
file:/display/genesys2009/Using+Math+Language#UsingMathLanguage-Vectors%2CMatrices%2CandMultidimensionalArrays
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 MaxMin Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

MaxMin
(algorithm)

Maximum or Minimum Value
Function

    

 MaxMin (Maximum or Minimum Value Function)
 

Description: Maximum or Minimum Value Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: MaxMin Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

N Number of samples 10  Integer NO [0:∞)

MaxOrMin Output value: min, max max  Enumeration YES  

Compare Compare input value or magnitude:
valueIn, magnitudeIn

valueIn  Enumeration YES  

OutputType Output value or magnitude: valueOut,
magnitudeOut

valueOut  Enumeration YES  

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

3 index int NO

 

 Notes/Equations

MaxMin finds the minimum or minimum value or magnitude of N input values.1.
For every N input values, one value is output.2.
If Compare = valueIn, the input with the maximum or minimum value is located,3.
otherwise the input with the maximum or minimum magnitude is located.
If OutputType = magnitudeOut, the magnitude of the result is output, otherwise the4.
result is output.
The default parameters output the maximum value among N=10 input samples. The5.
index of the maximum is output to the index port where 0 locates the first input
value.
Use MaxMin to operate over multiple data streams by preceding it with a Commutator6.
and setting the N parameter appropriately.



SystemVue - Algorithm Design Library

484

 PattMatch Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PattMatch
(algorithm)

Pattern Cross Correlator using
Template

    

 PattMatch (Pattern Cross Correlator using Template)
 

Description: Pattern Cross Correlator using Template
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: PattMatch Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

TempSize Number of samples in template 32  Integer NO (0:∞)

WinSize Number of samples in search template 176  Integer NO [TempSize:∞)

 Input Ports

Port Name Description Signal Type Optional

1 templ template
input

real NO

2 window window input real NO

 Output Ports

Port Name Description Signal Type Optional

3 index index output int NO

4 values cross-correlation output real NO

 

 Notes/Equations

The PattMatch model accepts a template and a search window and tries to find the1.
position in the search window where the template matches best.
At every execution of this model, TempSize samples are read from the templ input2.
and WinSize samples are read from the window input. At the same time, one sample
is written to the index output and (WinSize − TempSize + 1) samples are written to
the values output.
The algorithm for finding the best template match position starts by placing the3.
template at the left end of the window (first samples of template and window are
aligned) and calculating the cross-correlation between them. Then the template is
shifted across the window one sample at a time and the cross-correlation is
computed at each step until the template reaches the right end of the window (last
samples of template and window are aligned). The cross-correlation values are
output on the values output. The index output is the value of the shift (in number of
samples) that gives the largest cross-correlation.
The cross-correlation values are normalized against the energy of the window under4.
the template:

where T is the template, W is the window, n is the index value, and T size equals

TempSize.
Note that if the template is identical to a certain segment of the window, then the
cross-correlation value C(n) for that segment will be 1.0. Therefore, the index with
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the highest cross-correlation value may not be the best match if that value is greater
than 1.0.
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 PcwzLinear Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PcwzLinear
(algorithm)

Piecewise Linear
Mapper

    

 PcwzLinear (Piecewise Linear Mapper)
 

Description: Piecewise Linear Mapper
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: PcwzLinear Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Breakpoints Endpoints and breakpoints in the mapping [-1-j, j, 1-j]  Complex
array

NO

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal real NO

 

 Notes/Equations

PcwzLinear implements a piecewise linear mapping from the input to the output.1.
For every input, there is one output value.2.
Mapping is given by a sequence of (x,y) pairs that specify breakpoints in the function.3.
The (x,y) pairs are expressed in the Breakpoints parameter in the complex form, i.e.
x+jy. The sequence of x values must be increasing.
The function implemented by PcwzLinear can be represented by drawing straight4.
lines between the (x,y) pairs in sequence. Additionally, the first breakpoint is
extended to x=−∞, and the last breakpoint is extended to x=+∞. Each input is
treated as a point on the x axis, and the corresponding y value is output.
For example, the default mapping is the tent map. Inputs between  −1.0 and 0.0 are5.
linearly mapped into the range  −1.0 to 1.0. Inputs between 0.0 and 1.0 are mapped
into the same range, but with opposite slope, 1.0 to  −1.0. If the input is  −2.0, the
output will be  −1.0. If the input is +2.0, the output will again be  −1.0.
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 Quantizer2D Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Quantizer2D
(algorithm)

2-Dimensional Quantizer using Threshold List

    

 Quantizer2D (2-Dimensional Quantizer using
Threshold List)
 

Description: 2-Dimensional Quantizer using Threshold List
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Quantizer2D Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

VxMax Maximum real output level 1  Float YES (-∞:∞)

VxMin Minimum real output level -1  Float YES (-
∞:VxMax)

Nx Number of real output levels 16  Integer YES [1:∞)

VyMax Maximum imaginary output level 1  Float YES (-∞:∞)

VyMin Minimum imaginary output level -1  Float YES (-
∞:VyMax)

Ny Number of imaginary output levels 16  Integer YES [1:∞)

QuantList User-defined quantization points   Complex
array

NO  

 Input Ports

Port Name Signal Type Optional

1 input complex NO

 Output Ports

Port Name Signal Type Optional

2 output complex NO

 

 Notes/Equations

The complex number input is mapped to one of a finite set of complex numbers.1.
For every input, one value is output.2.
An arbitrary set of output points can be specified with the QuantList parameter.3.
Otherwise, the parameters VxMax, VxMin, Nx, VyMax, VyMin and Ny can be used to
create a rectangular grid of output points.
Each input is mapped to the nearest output point, where the metric used to4.
determine the nearest output point is the Euclidean distance. This type of a quantizer
is also referred to as a Voronoi or a nearest neighbor vector quantizer.
2D Quantizer with Three Output Points shows an example where three output points5.
P1, P2, and P3 have been specified. The entire 2D plane is then divided into 3
regions, R1, R2, and R3, which are shown by the dotted lines. Any input point in
region R1 is mapped to the output point P1 (and similarly for the other regions).
2D Quantizer with Output Points On a Grid illustrates how a rectangular grid of6.
output points can be created by using the parameters VxMax, VxMin, Nx, VyMax,
VyMin and Ny.
Due to the regular lattice structure of this quantizer, it can be implemented efficiently
in terms of speed. Therefore, it is more efficient to use this second method of
specifying a quantizer than using a list of output points.
When a list is used to specify output points, data is entered for the QuantList7.
parameter as array of complex values. Data entered as an explicit array has the
form:
QuantList = [1, 0.707+0.707j, j, −0.707+0.707j, −1, −0.707−0.707j, −j,
0.707−0.707j]
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The above list can be used to create a quantizer for an 8PSK receiver whose signal
set consists of 8 points equally spaced on a unit circle. Quantizer2D shows the points
and the decision regions (in dotted lines) for this quantizer.

See:
AdaptLinQuant (algorithm)
LinearQuantizer (algorithm)
Quantizer (algorithm)

 

 2D Quantizer with Three Output Points

 

 2D Quantizer with Output Points On a Grid

 

 Quantizer2D
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 Quantizer Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Quantizer
(algorithm)

Quantizer using Threshold List

    

 Quantizer (Quantizer using Threshold List)
 

Description: Quantizer using Threshold List
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Quantizer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable

Thresholds Quantization thresholds (increasing order) [0]  Floating point array NO

Levels Output levels (if empty use 0, 1, 2, ...)   Floating point array NO

 Input Ports

Port Name Description Signal Type Optional

1 input  real NO

 Output Ports

Port Name Description Signal Type Optional

2 output  real NO

3 stepNumber Level number of the quantization from 0 to N int NO

 Notes/Equations

Quantize the input to one of N+1 possible output levels found in the Levels1.
parameter using N thresholds from the Thresholds parameter.
For every input, one sample is output to both output ports.2.
Thresholds must be ordered in ascending value.3.
For an input less than or equal to the n-th threshold, but larger than all previous4.
thresholds, Levels[n] is output, and the value n−1 is output to the stepNumber port.
If the input is less or equal to the first threshold, then output is the first level,5.
Levels[1]. If the input is greater than all thresholds, output is Levels[N+1].
If Levels is specified, there must be one more level than thresholds. The default for6.
Levels is 0, 1, 2, ... N.
Quantizer takes on the order of log N iterations to find the correct level.7.

See:
AdaptLinQuant (algorithm)
LinearQuantizer (algorithm)
Quantizer2D (algorithm)
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 Reverse Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

reverse
(algorithm)

Data Reverser

 reverse

Description: Data Reverser
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Reverse Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

N Number of data items read and
written

64  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 Notes/Equations

A block of N samples is input, and that block of N samples is output in the reverse1.
input order.
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 SchmittTrig Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SchmittTrig
(algorithm)

Schmitt Trigger

    

 SchmittTrig (Schmitt Trigger)
 

Description: Schmitt Trigger
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SchmittTrig Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

ILow Lower input trigger value -1  Float YES (-∞:IHigh)

IHigh Higher input trigger value 1  Float YES (-∞:∞)

OLow Lower output trigger value -1  Float YES (-∞:OHigh)

OHigh Higher output trigger value 1  Float YES (-∞:∞)

 Input Ports

Port Name Signal Type Optional

1 input real NO

 Output Ports

Port Name Signal Type Optional

2 output real NO

 

 Notes/Equations

SchmittTrig is a Schmitt trigger with programmable levels.1.
For every input, one value is output.2.
The output signal versus input signal plot, with parameters ILow = −1, IHigh = 1,3.
OLow = −1, and OHigh = 1, is shown below.

See:
Hysteresis (algorithm)

 

 SchmittTrig Signal Plot
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 SlidWinAvg Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SlidWinAvg
(algorithm)

Sliding-Window
Averager

 SlidWinAvg (Sliding-Window Averager)

Description: Sliding-Window Averager
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: SlidWinAvg Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

WindowSize Size of sliding window 3  Integer NO (1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 input input signal real NO

 Output Ports

Port Name Description Signal Type Optional

2 output output signal real NO

 Notes/Equations

The average of the sample values captured in the most recent window of inputs is1.
output.
For every input, an averaged value is output.2.
Samples before the first are zero valued.3.

See:
Integrator (algorithm)
IntegratorCx (algorithm)
IntegratorInt (algorithm)
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 Transpose Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Transpose
(algorithm)

Data
Transposer

    

 Transpose (Data Transposer)
 

Description: Data Transposer
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Transpose Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

SamplesInRow Number of input samples constituting a
row

8  Integer NO [1:∞)

NumberOfRows Number of rows in the input matrix 8  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

 Output Ports

Port Name Signal Type Optional

2 output anytype NO

 

 Notes/Equations

Let M be the NumberOfRows value and N be the SampleInRow value.1.
M × N samples are input in the sequence: x 1,1 x 1,2 ... x 1,N , x 2,1 x 2,2 ... x 2,N , ...2.

, x M,1 x M,2 ... x M,N

N × M samples are output in transposed order, i.e. in the sequence: x 1,1 x 2,1 ... x3.

M,1 , x 1,2 x 2,2 ... x M,2 , ... , x 1,N x 2,N ... x M,N

Transpose is a form of interleaver for M input streams of N samples.4.

See:
reverse (algorithm)
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 VarDelay Part
Categories: C++ Code Generation (algorithm), Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

VarDelay
(algorithm)

Variable Delay

 VarDelay (Variable Delay)

Description: Variable Delay
Domain: Untimed
C++ Code Generation Support: YES (see Note)
Associated Parts: VarDelay Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime Tunable Range

MaxDelay Maximum
delay

10  Integer NO [0:∞)

 Input Ports

Port Name Signal Type Optional

1 input anytype NO

2 control int YES

 Output Ports

Port Name Signal Type Optional

3 output anytype NO

Note
This model does not support C++ code generation if the port type is resolved to envelope signal (sim) or
variant (sim).

 Notes/Equations

VarDelay introduces a varying delay to the input signal.1.
This model reads 1 sample from the input and writes 1 sample to the output.2.
The delay in samples is controlled by the signal applied to the control port.3.
MaxDelay specifies the maximum control input. A buffer of MaxDelay samples is used4.
to store the most recent samples and is initialized with zero values.
The control input determines which sample in the buffer is output. A control value of5.
0 or less outputs the most recent input. A control value of MaxDelay or greater
outputs the oldest sample in the buffer. A control value of N where 0 < N < MaxDelay
outputs the sample from the buffer that was read N executions back.
This model can be used with the CrossCorr (algorithm) model to synchronize signals.6.
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 Variance Part
Categories: Signal Processing (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Variance
(algorithm)

Variance Function

 Variance (Variance Function)

Description: Variance Function
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: Variance Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

BlockSize Number of inputs to process between each mean
and variance estimate

1  Integer NO [1:∞)

 Input Ports

Port Name Signal Type Optional

1 in real NO

 Output Ports

Port Name Signal Type Optional

2 mean real NO

3 variance real NO

 Notes/Equations

The Variance model calculates a running estimate of the mean and variance of the1.
input signal. These estimates are reported every BlockSize input samples.
At every execution of this model, BlockSize samples are read from the input and one2.
sample is written to the mean and variance outputs.
The mean and variance values written to the mean and variance outputs respectively3.
are not the mean and variance of the last block of BlockSize samples. They are the
mean and variance of all samples read from the beginning of the simulation.



SystemVue - Algorithm Design Library

496

 Sinks
The  Sinks library provides parts that can record and/or post-process (perform
measurements on) the input they receive. Several commonly used measurements are
provided, such as spectrum analysis, EVM, CCDF, BER, etc.

For more information see About Sinks (algorithm).

 Contents
BER FER Part (algorithm)
BER IS Part (algorithm)
CCDF Part (algorithm)
DataPort Part (algorithm)
EVM Part (algorithm)
FlexDCA Sink Part (algorithm)
RMSE Part (algorithm)
Sink Part (algorithm)
SpectrumAnalyzer Part (algorithm)
WriteBaseBandStudioFile Part (algorithm)
WriteFile Part (algorithm)
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 About Sinks
 Access to Envelope Signal Characterization
Frequency in a Dataset
When an envelope signal with characterization frequency greater than 0 is saved using a
Sink (algorithm), the variable <Sink Instance Name>_Fc is saved in the dataset. This is
the characterization frequency of the input signal.

 

 PE Estimator Usage
This section explains the use of the probability of error (PE) measurement models BER_IS
(algorithm) and BER_FER (algorithm).

The basic system models and the PE simulation concepts and methodology are explained.

 

 Typical Baseband and RF System Models

Communication systems can be classified broadly as baseband or RF systems. Typically,
baseband systems use the PAM data format although other formats, such as pulse width
modulation and pulse position modulation, can be used also. RF systems use a wide
variety of modulation schemes, such as QAM, PSK schemes (QPSK, DQPSK, PI4DQPSK),
and others, such as MSK and FSK. The primary interest is to measure the probability-of-
symbol error (Ps) or bit-error rate (BER) of the system.

In the following figure, a general model of a baseband system link is represented in part
(a) and general RF system models are represented in parts (b) and (c).

 

 Typical Baseband and RF Systems

An RF system consists of the input bit stream, Transmit Data Encoder, Transmit Baseband
Network, RF Modulator, Transmit RF Network, RF Channel, Receive RF Network, RF
Demodulator, Receive Baseband Network, Receive Data Decoder, and the output bit
stream. The RF system can have a single data channel, or can have I and Q data
channels. The Baseband system omits the RF sections. However, the following discussion
applies to both systems.

 

 Baseband System Model

The bit stream is often in the NRZ (non-return-to-zero) data format. The Transmit Data
Encoder is used for different purposes such as to convert the NRZ data format to another
format: for example, multi-level PAM (pulse amplitude modulation) symbol format, or
error control coding.

The Baseband Channel has a transmit and receive side and is typically a bandwidth limited
environment with intersymbol interference and noise introduced in the channel. The
Receive Data Decoder is used to convert the received symbols to the desired output
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binary data stream.

 

 RF System Model

Often, the bit stream for this system is also in the NRZ data format. The Transmit Data
Encoder is used again to convert the NRZ data format to another format or for error
control coding. Typically, the Transmit Baseband Network is used to band limit the
frequency spectra of the data symbols, and often introduces intersymbol interference to
the symbol stream.

The RF modulator can be of many types. Some formats (such as QAM and QPSK) use I
and Q data channels while others (such as BPSK) contain a single data channel.

The RF networks and channel include items such as transmit IF and RF filtering,
upconverters, high-power amplifiers, coaxial cable, antennas, line-of-sight link, receive RF
and IF filters, and receive low-noise amplifier.

The RF Demodulator converts the RF energy back to a baseband symbol stream that
includes symbol distortions, interference, and noise. Typically, the Receive Baseband
Network is used to filter the received symbol stream to reduce symbol distortion and
noise. The Receive Data Decoder is used to convert the received symbols to the desired
output bit stream.

 

 PE Measurement Concepts

The probability of error of a system is measured by comparing the output data stream to
the input data stream. The BER gives the average number of output bit-errors per input
bit; for example, a 10 -6 BER means that, on the average, 1 output bit-error occurs with
10 6 input bits.

When the data streams being compared are not simple 2-level (binary) data streams, the
measurement is with respect to the data symbols and is called the probability of symbol
error (Ps) measurement.

Typical hardware Ps/BER measurements are based on the exact number of symbol/bit-
errors and the number of symbols/bits transmitted. This is called a Monte Carlo
measurement.

For the PE measurement to be statistically significant, the number of bits transmitted
should be much greater than 1/PE (as a rule of thumb).

The relative variance of the PE for N transmitted bits is:

VAR = (1 - PE) / (PE × N)

This implies that, for a PE of 10 -6 , with a relative variance of 0.01, a sample size N of
approximately 10 8 bits is required.

The following figure shows the confidence bands on the PE measurement versus total
number of bits observed.

For the program PE measurement, the number of samples required is established by
setting the relative variance for the PE measurement. As can be seen, for a PE of 1.0 × 10
-k with 100 × 10 k samples measured, there is a 99% confidence that the actual PE is
between 0.77 × 10 -k and 1.3 × 10 -k .

For a low PE uncertainty, a smaller variance is required. However, a smaller variance
requires a larger number of transmitted bits.

 

 PE Confidence Bands
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 Simulation Concepts

Simulation is performed in discrete time steps. At each time step, the signals generated
by all the sources are propagated through the system and the outputs are evaluated.
Noise can be introduced in the system by means of the random noise sources available.
Another method of introducing noise is to use the electrical models of components and to
define their noise properties by means of parameters such as noise figure or noise
temperature. This is a useful feature that permits you to build an accurate physical model
of an actual system. An equivalent noise source is generated automatically that represents
the noise properties of the electrical component. No distinction is made between data
sources and noise sources during simulation when evaluating the output of the system
and the output measured is the net effect due to all sources.

No assumption is made about the nature of the noise at the system output. The statistics
of the noise at the output depend on the transformations the noise undergoes when
propagating through the system. Thus, the effects of nonlinearities in the system can be
simulated accurately.

 

 Measurement Taps

The PE performance of a system is calculated by comparing the transmitted data (also
referred to as V ref ) with the output data of the receiver (referred to as the V test ). V ref

can be measured at either the pre-encoder tap or the post encoder tap of the transmitter
(see the figure Typical Baseband and RF Systems). Correspondingly, V test should be

measured at the post-decoder tap or the pre-decoder tap at the receiver. The choice
depends on the system under consideration. For example, if the data encoder consists of
an NRZ to 4-level PAM data converter, the post-encoder and pre-decoder taps are
convenient measurement taps for the reference and test signals, respectively. However
the NRZ data bits can be encoded first with an error correction encoder prior to converting
these to a 4-level PAM format. Then the data decoder would consist of a 4-level PAM to
binary converter followed by an error correction decoder and the PE performance of the
entire system could be measured by comparing the pre-encoder signal to the post-
decoder signal.

The signal-to-noise ratio of the system cannot be measured by monitoring the receiver
output because the output is the combined effect of the data signals and the noise.
Therefore, the signal and noise statistics cannot be measured separately. You must either
calculate the SNR by examining the structure of the system and the statistical properties
of the noise sources, or make other measurements (depending on the system) to
determine the SNR.

However, you can introduce noise in the system by placing an external noise source.
Typically, such a noise source would be introduced in the channel. If this external noise
source is the predominant source of noise in the system, the SNR can be calculated by
measuring the power of the noise source and the power of the data signal separately.
Then an additional measurement tap (labelled L and called the Reference noise tap) is
required as shown in the following figure (also see the figure Typical Baseband and RF
Systems).

 

 Introduction of Noise from an External Source into a System
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In the preceding figure, the noiseless channel block represents effects of the channel such
as attenuation of the signal, propagation delay, distortion, and fading. The noise signal
measured at the Reference noise tap is called ENref and the data signal that is used to

measure the signal energy is called ESref . ESref can be measured at any tap in the system

prior to the point where the noise is introduced.

 

 Noise Sources

The nature of the noise introduced in the channel depends on whether the system is a
baseband or RF system. Typically, external noise is generated by using the Noise source
that is a baseband or RF noise source. The output of the Noise source can be directly
added to the signal in the channel.

Another important aspect is the spectral characteristic of the Noise source (see the
following figure). Output of the Noise source is a bandlimited white noise signal whose
bandwidth is dependent on the time step at which the simulation is carried out. The time
interval between two consecutive noise samples To , is determined by the parameter

TStep in the Noise source. The (baseband) bandwidth of the noise is equal to 1/(2 ×
TStep) and the power spectral density is constant over this bandwidth.

 

 Spectral Characteristic of the Noise Source

Let

σ = RMS value of the output of the Noise source in volts
To = simulation time step in seconds

Rref = default reference resistance is 50 Ohms

Sn(f) = one-sided power spectral density of the bandlimited white noise in W/Hz

Then

Sn (f) = No (W/Hz) for 0 ≤ f ≤ 

(Hz)

where

No = 

Therefore, the auto-correlation function of the noise is given by

Rn(τ) = 

Because the noise is sampled every T o seconds, the correlation between the noise

samples is given by R n (k T o ), where k is an integer; therefore, the correlation between

the noise samples is zero. In the case of a Gaussian noise source, the samples are also
independent.
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 Relationship between SNR, Es/No, and Eb/No

The signal-to-noise ratio of a system can be calculated in different ways. The ratio of the
signal power to the noise power is one such measure and is denoted as the SNR of the
system. A measure that is used more commonly is the ratio of the energy per symbol to
the power spectral density of the noise (Es/No), or the ratio of the energy per bit to the
power spectral density of the noise (Eb/No).

The berMC4 component measures the power in E Sref and E Nref from which the desired

signal-to-noise ratio is calculated as follows.

Define the following:

P ESref = power in the E Sref signal in Watts

P ENref = power in the E Nref signal in Watts

T o = simulation time step in seconds

T s = symbol time in seconds

Es/No is calculated according to the equations:

If the noise signal is in a baseband representation, then

If the noise signal is in a complex envelope representation, then

To convert Es/No to Eb/No, let each symbol carry L bits of information. Then Eb/No is
simply given by Eb/No = (Es/No)/L.
SNR is simply given by SNR = P ESref / P ENref.

 

 Error Detection

Error detection is performed by sampling V ref and V test every T s seconds (here T s is the

symbol time) and comparing the samples. If the samples do not lie within the same
threshold levels, an error is declared. The ratio of the number of errors counted to the
total number of bits transmitted is the estimated PE.

 

 Setting Up BER Simulations

Three important points must be considered when setting up a BER measurement:

Synchronizing test (V test ) and reference (V ref ) signals

Choosing the optimal sampling instant
Scaling V test and V ref appropriately

Each point is discussed in the following sections. For these discussions, BER sink refers to
BER_IS (algorithm) or BER_FER (algorithm).

 

 Synchronizing Test and Reference Signals

A successful BER simulation requires that Vtest and Vref are synchronized. Otherwise, the
BER measurement result are most likely to be close to 0.5 (50%). Vtest and Vref can be
synchronized in one of two ways: Manual Synchronization and Automatic Synchronization.

Manual Synchronization
If the exact delay between V test and V ref is known, synchronization can be achieved

easily by introducing the same amount of delay in Vref. In this case, set the

DelayBound parameter of the BER sink to 0 to turn off the auto synchronization
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feature.
The exact delay between V test and V ref can be found in several ways:

Sometimes the delay introduced by each component in the path between V test

and V ref is known. In this case, adding the delays introduced by each

component gives the exact delay between V test and V ref.

V test and V ref can be recorded (using Sink (algorithm)) and plotted. Often, by

observing the plots, the delay between the two signals can be determined.
Cross-correlation (see CrossCorr (algorithm)) can be used to measure the delay
between V test and V ref.

When determining the delay by observing the plots of V test and V ref versus

time or by using cross-correlation, turn off noise and other impairments in the
system (set power level of noise sources very low and make amplifiers linear).
When these impairments are turned off, the V test waveform is close to the ideal

waveform, which helps determine the delay more easily and accurately.

Automatic Synchronization
If the exact delay between V test and V ref is unknown, the auto synchronization

feature of the BER sink can be used. In this case, the DelayBound parameter of the
BER sink must be set to a value that is an upper bound of the exact delay between
the two signals. The BER sink then cross-correlates the two signals and tries to
estimate the delay between them. Since the auto synchronization feature relies on
cross-correlation to estimate the delay, the BER sink may not be able to always
synchronize the two signals, especially at low signal-to-noise ratios.
An upper bound of the delay between V test and V ref can be found using any of the

three ways described above used to find the exact delay.
Knowing the upper bound of the delay introduced by each of the components in
the path between V test and V ref and adding these upper bounds.

Observing the plots of V test and V ref versus time.

Using cross-correlation (CrossCorr (algorithm)) to get an initial estimate of the
delay and adding a few simulation time steps to it.

When the auto synchronization feature is used, no delay needs to be added to
the reference signal. However, if the upper bound of the delay is large (greater
than 50 symbol periods) and if a lower bound of the delay (DL) between V test

and V ref is known, then we recommend that V ref is delayed by this amount

(DL) and DelayBound is reduced by the same amount (DL). This setting reduces
the memory used by the BER sink and speeds up the synchronization process.
For example, assume that the delay introduced by the transmitter and receiver
filters is 20 msec and the delay introduced by the rest of the components (e.g.
RF channel) has an upper bound of 35 msec. One way to set up the BER
simulation is to not delay the reference signal at all and set the DelayBound
parameter of the BER sink to 55 msec. Another (recommended) way is to delay
the reference signal by 20 msec and set DelayBound to 35 msec.

 

 Choosing the Optimal Sampling Instant

The BER sink downsamples V test and V ref to one sample per symbol before it compares

them in order to detect errors. The first sample of V ref is taken at the time instant

specified by the Start parameter. If auto synchronization is turned off (DelayBound = 0),
then the first sample of V test is also taken at Start. If auto synchronization is turned on,

then the first sample of V test is taken at Start+Delay, where Delay is the delay the BER

sink estimated.

The optimal sampling instant is the instant where there is no ISI (intersymbol
interference) or where the minimum ISI occurs. For systems, using root raised cosine
filters at the transmitter and receiver, the optimal sampling instant is at the center of the
symbol period. Therefore, set the Start parameter of the BER sink as follows:

if no delay is introduced in the reference signal, set Start to
N x SymbolTime + int( (SampPerSym - 1) / 2 ) x TStep
where N is a positive integer, SymbolTime is the symbol period, SampPerSym is the
number of samples per symbol in V test and V ref , and TStep is the simulation time

step for V test and V ref.

if a delay of D is introduced in the reference signal, set Start to
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N x SymbolTime + int( (SampPerSym - 1) / 2 ) x TStep + D

If your system has differential encoding/decoding, synchronization loops, carrier recovery
sub-systems, or other sub-systems that need time to reach their steady state, set N to a
value that is large enough to enable the entire system to reach steady state.

 

 Scaling of Test and Reference Signals

If the automatic threshold setting is used (BER sink ThresholdSetting parameter set to
automatically ) then the error detection thresholds are set to (2 x i - N ) / N, i = 1, 2, ...,
N, where N is the number of thresholds (BER sink NumThresholds parameter).
NumThresholds must be set to the number of signal levels minus 1 (3 for 4-PAM, 7 for 8-
PAM, 3 for 16-QAM (3 levels per axis), 7 for 64-QAM (7 levels per axis)). The expected
signal levels are located at the midpoints between the thresholds, that is at (2 x i - 2 - N)
/ N, i = 1, 2, ... , N + 1. Both V test and V ref must be scaled appropriately so that when

these are sampled at the optimal sampling instant and assuming ideal conditions (no noise
or other distortions) these generate samples at the expected levels. Turning off the noise
and the rest of the impairments in the system and plotting the eye diagrams for Vtest and
Vref can help determine the signal levels at the optimal sampling instant and therefore,
the appropriate scale factors.
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 BER_FER Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BER_FER
(algorithm)

Bit and Frame Error Rate
Measurement

 BER_FER (Bit and Frame Error Rate Measurement)

Description: Bit and Frame Error Rate Measurement
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: BER FER Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

StartStopOption Sink collection mode:
Auto, Samples, Time

Auto  Enumeration NO  

SampleStart Sample number to start
data collection

0  Integer NO [0:∞)

SampleStop Sample number to stop
data collection

Num_Samples
- 1

 Integer NO [SampleStart:∞)

SampleDelayBound Upper bound of delay
between test and ref
inputs in number of
samples

0  Integer NO [0:∞)

TimeStart Time to start data
collection

Start_Time s Float NO [0:∞)

TimeStop Time to stop data
collection

Stop_Time s Float NO [TimeStart:∞)

TimeDelayBound Upper bound of delay
between test and ref
inputs

0 s Float NO [0:∞)

BitsPerFrame Bits per frame 100  Integer NO [1:∞)

EstRelVariance BER estimation relative
variance

0.01  Float YES [0:1)

StatusUpdatePeriod Status update period in
number of bits

1000  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 ref reference bit stream int NO

2 test test bit stream int NO

 Notes/Equations

The BER_FER model can be used to measure the BER (bit error rate) and FER (frame1.
error rate) of a system. In some systems, FER is referred to as PER (packet error
rate) or BLER (block error rate). The input signals to the reference (REF) and test
(TEST) inputs must be bit streams. The bit streams must be synchronized, otherwise
the BER/FER estimates are wrong.
The Start parameter defines when data processing starts. The end of data processing2.
depends on the settings of the Stop and EstRelVariance parameters:

If EstRelVariance is 0.0, then data processing ends when Stop is reached.
If EstRelVariance is greater than 0.0, then data processing ends when
EstRelvariance is met or when Stop is reached. In this case, Stop acts as an
upper bound on how long the simulation runs just in case the simulation takes
too long for EstRelVariance to be met. In this mode of operation, messages are
printed in the simulation log showing the value of estimation relative variance as
the simulation progresses. The EstRelVariance parameter can be used to control
the quality of the BER estimate obtained. The lower the value of EstRelVariance
the more accurate the estimate is.
For more details, refer to PE Measurement Concepts (algorithm). Note that the
equation for the estimation relative variance described in this section assumes
that the errors happen randomly (as in the case of an AWGN channel) and not in
bursts (as in the case of a fading channel).
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The BitsPerFrame parameter sets the number of bits in each frame. A frame is3.
considered to be in error if at least one of the bits in the frame is detected
incorrectly. If the bit errors are independent identically distributed events then BER
and FER are related through the equation FER = 1 − (1 − BER)BitsPerFrame.
To estimate BER/FER over an exact number of frames set EstRelVariance to 0.0 and
Stop to Start + N × BitsPerFrame − 1, where Start is the value of the Start
parameter, BitsPerFrame is the value of the BitsPerFrame parameter and N is the
number of frames to be simulated.
The StatusUpdatePeriod parameter can be used to control how often estimation4.
relative variance status messages are reported to the simulation log.
For the theoretical BER expressions for commonly used modulation formats see5.
Theoretical BER Curves (algorithm).
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 BER_IS Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

BER_IS
(algorithm)

Error Probability Measurement using Improved Importance Sampling

 BER_IS (Error Probability Measurement using
Improved Importance Sampling)

Description: Error Probability Measurement using Improved Importance Sampling
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: BER IS Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Start Start time for data collection Start_Time s Float NO [0:∞)

Stop Stop time for data collection
when EstRelVariance is not met

Stop_Time s Float NO (Start:∞)

EstRelVariance Estimation relative variance 0.01  Float NO (0:1]

DelayBound Upper bound of delay for
synchronizing inputs
(synchronizer is turned off
when DelayBound = 0.0)

0.0 s Float NO [0:∞)

SymbolTime Symbol time 10e-6 s Float NO [TStep:∞)†

SystemType System type: PAM, QAM,
QPSK, DQPSK, PI4DQPSK

PAM  Enumeration NO  

NumThresholds Number of thresholds for the
error detection

1  Integer NO [1:∞)

ThresholdSetting Threshold setting option:
automatic, manual

automatic  Enumeration NO  

Thresholds Threshold values [0]  Floating point
array

NO  

NoiseBandwidth Noise bandwidth 50e3 Hz Float NO (0:∞)

SNR_Option SNR option: Es/No, Eb/No Es/No  Enumeration NO  

SNR_Start Start value for SNR sweep 5  Float NO (-∞:∞)

SNR_Step Step value for SNR sweep 1  Float NO (-∞:∞)

SNR_NumSteps Number of steps for SNR sweep 5  Integer NO [0:∞)

StatusUpdatePeriod Status update period in number
of symbols

100  Integer NO [1:∞)

 Input Ports

Port Name Description Signal Type Optional

1 reference reference data
input

real NO

2 test test signal input real NO

 Notes/Equations

The BER_IS model measures the probability of error based on the Improved1.
Importance Sampling (IIS) method [1 - 3], which can quickly estimate error
probabilities for PAM, QAM, QPSK, DQPSK, and π/4-DQPSK systems. In order to
reduce simulation time, error events are made to occur more frequently by modifying
the probability density function of the noise. To compensate for this, a weighting
function is used to adjust the error probability so that the resulting estimate is
unbiased.
Note that the IIS method is system dependent and so BER_IS cannot be used to
estimate error probability for other systems.
The input1 signal is the reference data input and should have no distortion or2.
intersymbol interference. The input2 signal is the one against which the BER
measurement is made.
The Start parameter defines when data processing starts. The end of data processing3.
depends on the settings of the Stop and EstRelVariance parameters. Data processing
ends when EstRelvariance is met or when Stop is reached, that is, Stop acts as an
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upper bound on how long the simulation runs just in case the simulation takes too
long for EstRelVariance to be met.
The EstRelVariance parameter is used to control the quality of the BER estimate4.
obtained. The lower the value of EstRelVariance the more accurate the estimate is
and the longer the simulation runs. For more details, refer to PE Measurement
Concepts (algorithm). Note that the equation for the estimation relative variance
described in this section assumes that the errors happen randomly (as in the case of
an AWGN channel) and not in bursts (as in the case of a fading channel).
The Start parameter also defines the first sampling instant for the test and reference5.
signals and therefore needs to be set so that the signals are sampled at the optimal,
zero ISI (InterSymbol Interference) sampling instant. This is typically the center of
the reference signal symbol period.

If the test and reference signals are already synchronized (DelayBound = 0)
then they are sampled every SymbolTime sec starting at Start.
If the test and reference signals are not synchronized (DelayBound parameter is
greater than 0) then the test signal is first synchronized to the reference signal
by cross correlating them to estimate the delay between them. Then the
reference signal is sampled every SymbolTime sec starting at Start and the test
signal is sampled every SymbolTime sec starting at Start + Delay, where Delay
is the estimated delay between test and reference.

The DelayBound parameter specifies an upper bound for the delay between the test6.
and reference signals. If DelayBound is set to 0, then the test and reference signals
are assumed to be synchronized and no synchronization is performed. If DelayBound
> 0, then cross correlation is performed between the test and reference signals to
determine the delay between them. In this case, DelayBound is used as the
maximum lag at which the cross correlation is computed. If the actual delay between
test and reference is bigger than DelayBound, the simulation results will be
unexpected.
The SymbolTime parameter defines the symbol duration and is used to sample the7.
input signals once in every symbol period.
The SystemType parameter defines the modulation type used in the system. As8.
mention earlier, the IIS method is system dependent.
When SystemType is PAM or QAM then the number of detection thresholds needs to9.
be specified in the NumThresholds parameter. NumThresholds is one less than the
number of levels. For example, for a PAM-4 system, there are 4 levels and 3
thresholds. For a 64-QAM system, there are 8 levels (on each axis) and 7 thresholds.
The ThresholdSetting parameter defines how the detection thresholds are set.10.

If ThresholdSetting is set to automatic, then the thresholds are set at equal
distance between the ideal signal levels, which are assumed to be equally
spaced between -1 and 1. For example, for a PAM-4 system, the ideal levels are
-1, -1/3, 1/3, 1 and so the thresholds are set to -2/3, 0, 2/3.
If ThresholdSetting is set to manual, then the thresholds need to be specified in
the Thresholds array parameter. The values of the Thresholds array must be
between -1 and 1 and they should be sorted in increasing order.
In either case, the reference signal needs to be scaled so that when
downsampled (once every symbols period) it is in the range [-1, 1]. The test
signal also needs to be scaled so that when downsampled (once every symbols
period) it is in the range [-1, 1] if there is no distortion (ISI, distortion from
non-linearities, etc). If distortion is present then the downsampled test signal
will be slightly outside the range [-1, 1] but this should be due only to distortion
and not to gain (signal amplification/attenuation) factors between the point of
the reference generation and the point of detection.

The BER_IS model adds white Gaussian noise to the test signal (there is no need for11.
an external noise source). The NoiseBandwidth parameter is used in the calculation
of the noise variance. To get the theoretical results in an AWGN (Additive White
Gaussian Noise) environment, set NoiseBandwidth to one half of the symbol rate ( 1 /
(2 × SymbolTime ) ). The noise variance also depends on the SNR value. Since the
BER_IS model adds noise to the signal internally it can reuse the same input signals
and sweep the noise power to generate an entire BER waterfall curve. The
SNR_Start, SNR_Stop, and SNR_Step parameters are used to set this internal sweep.
The SNR_Option parameter specifies whether the SNR values are E s / N o or E b / N o.

The StatusUpdatePeriod parameter controls how often status messages are printed to12.
the simulation log. These messages show the value of the estimation relative
variance for the highest SNR as the simulation progresses. In addition, to these
messages every time the estimation relative variance is met for a specific SNR value,
a message is printed in the simulation log and that SNR value is removed from the
internal SNR sweep. This parameter does not affect the simulation results. It only
controls the frequency of the messages in the simulation log.
Symbol Error Probability and Bit Error Probability13.
The BER_IS model can measure the symbol error probability or symbol error rate P se

for a single channel. For a system with only one channel, such as PAM, the bit error
probability or bit error rate P be can be calculated by P be = P se / L, where L is the

number of bits per symbol (for example, for a PAM-8 system L = 3). Note that the
above formula assumes that Gray coding was used to map the bits to symbols and
that symbol errors occur only between adjacent symbols, so that a symbol error
translates to one bit error.
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For systems with I and Q channels, such as QAM, QPSK, π/4-DQPSK, two BER_IS
models must be used to measure the symbol error rate for each channel, P seI and P

seQ. Then P se for the whole system can be calculated by P se = P seI + P seQ − P seI

× P seQ.

To calculate the bit error rate P be for a system with two channels, first calculate the

bit error rate for each channel P beI and P beQ using the equations P beI = P seI / L

and P beQ = P seQ / L, where L is the number of bits per symbol in each channel (for

example, for QPSK L = 1, for 16-QAM L = 2, for 64-QAM L = 3). Again, the
assumptions that Gray coding was used to map the bits to symbols and that symbol
errors occur only between adjacent symbols are made. After P beI and P beQ have

been calculated, the bit error rate for the whole system is given by P be = (P beI + P

beQ) / 2.

Simulation Time Improvement with IIS Simulation14.
For a QAM system with a bit error rate of 10 -6, a Monte Carlo simulation requires
approximately 10 8 bits for a reasonable accuracy (estimation relative variance of
0.01). For the same system and accuracy an IIS simulation requires only 800 bits
[1].
Here are some steps to follow in order to set up a successful BER simulation using15.
BER_IS:

Scale the test and reference signals appropriately as explained in note 9.
Decide whether you will synchronize the test and reference signals manually or
you will use the synchronization feature of the BER_IS model.
If you decide to synchronize the test and reference signals manually

determine the delay between them (this can be done by using the
CrossCorr model or by plotting the two signals and visually estimating the
delay)
delay (using the Delay model) the reference signal by the delay determined
connect the delayed reference signal to the reference input
connect the test signal to the test input
set the DelayBound parameter to 0

If you decide to use the synchronization feature of the BER_IS model
determine an upper bound of the delay between the test and reference
signals (this can be done by using the CrossCorr model or by plotting the
two signals and visually estimating the delay)
connect the reference signal to the reference input
connect the test signal to the test input
set the DelayBound parameter to the upper bound of the delay you
determined

Set the Start parameter to the center of the symbol period of the reference
signal. If you have manually synchronized the test and reference signals by
adding delay in the reference signal make sure you account for this delay when
setting Start.
Set the Stop parameter to an upper bound of how much time you want to
simulate.
Set the EstRelVariance parameter to the desired value for the accuracy you
want.
Set SymbolTime, SystemType, and NumThresholds based on the system you
want to simulate.
Decide whether to use automatic or manual threshold setting and set the
ThresholdSetting and Thresholds parameters accordingly.
Set the NoiseBandwidth parameter to the noise bandwidth of your system. For
theoretical results in an AWGN environment NoiseBandwidth must be set to one
half of the symbol rate ( 1 / (2 × SymbolTime ) ).
Set SNR_Option, SNR_Start, SNR_Step, and SNR_NumSteps to the appropriate
values that will generate the BER waterfall curve you want.
Set StatusUpdatePeriod to the desired value.

For the theoretical BER expressions for commonly used modulation formats see16.
Theoretical BER Curves (algorithm).
For general information regarding sinks, refer to About Sinks (algorithm).17.
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 CCDF Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

CCDF_Env
(algorithm)

Complementary Cumulative Distribution Function (CCDF)

CCDF_Cx (algorithm) Complementary Cumulative Distribution Function (CCDF)

 CCDF_Cx

Description: Complementary Cumulative Distribution Function (CCDF)
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: CCDF Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Start Start time for data collection Start_Time s Float NO [0:∞)

Stop Stop time for data collection Stop_Time s Float NO [Start:∞)

NumBins Number of points in the CCDF
curve

100  Integer NO [3:65535]

OutputPeakMean Output signal peak and mean
values: NO, YES

NO  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal complex NO

 Notes/Equations

The CCDF_Cx model computes the complementary cumulative distribution function1.
(CCDF) of a complex signal. As its name suggests, CCDF is the complement of the
cumulative distribution function (CDF). The relationship between CCDF and CDF is
CCDF = 1 - CDF.
The calculation of the CCDF is described below:

Calculate the RMS value for all measured samples; this becomes the 0 dB point
on the x-axis.
Normalize all samples to the RMS value in units of dB.
Split the x-axis in equal width NumBin bins starting from minimum measured
power to maximum measured power.
Determine which x-axis bin each sample belongs to.
Calculate the total number of samples that are greater than or equal to each x-
axis bin and output it as a percent of the number of samples measured.

In addition to the CCDF measurement, this model can provide PeakPower (the peak2.
power for the input signal) and MeanPower (the mean or average power of the input
signal). To compute and output MeanPower and PeakPower, set the parameter
OutputPeakMean to YES.
The CCDF measurement is a very common measurement performed on 2G, 3G and3.
4G wireless signals. The CCDF curve shows the probability that the instantaneous
signal power will be higher than the average signal power by a certain amount of dB.
The independent axis of the CCDF curve shows power levels in dB with respect to the
average signal power level (0 dB corresponds to the average signal power level). The
dependent axis of the CCDF curve shows the probability that the instantaneous signal
power exceeds the corresponding power level on the independent axis. The following
figure shows the CCDF curve for a WiMax 802.16e Downlink signal. In the figure, you
can see that the instantaneous signal power exceeds the average signal power (0 dB)
for 35% of the time. You can also see that the instantaneous signal power exceeds
the average signal power by 5 dB for only 7% of the time.
 

 CCDF measurement for a WiMax 802.16e Downlink Signal
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The amount of data collected and on which the CCDF measurement is performed is4.
controlled by the Start and Stop parameters. Data collection always begins at the
time instant specified by Start and ends at the time instant specified by Stop.
In most wireless communication systems with framed or burst data, the CCDF5.
measurement must be performed on the active part of the signal (idle parts between
frames/burst should be excluded).
For general information regarding sinks, refer to About Sinks (algorithm).6.

See:
CCDF_Env (algorithm)

 CCDF_Env

Description: Complementary Cumulative Distribution Function (CCDF)
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: CCDF Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Start Start time for data collection Start_Time s Float NO [0:∞)

Stop Stop time for data collection Stop_Time s Float NO [Start:∞)

NumBins Number of points in the CCDF
curve

100  Integer NO [3:65535]

OutputPeakMean Output signal peak and mean
values: NO, YES

NO  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Notes/Equations

The CCDF_Env model computes the complementary cumulative distribution function1.
(CCDF) of an envelope signal. For more details on the CCDF measurement see
CCDF_Cx (algorithm).
For general information regarding sinks, refer to About Sinks (algorithm).2.

See:
CCDF_Cx (algorithm)
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 DataPort Part
 Terminal: Standard Data Port Terminal

Categories: Sinks (algorithm), Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

DataPort
(algorithm)

 DataPort (Standard Data Port Terminal)

Description:
Category:
Domain:
Associated Part: DataPort Part (algorithm)

 Parameters

Name Description Default Symbol Unit Type Range

PORT Port number 1   int [0, ∞)

Direction Data direction: Input, Output, (none) Input   enum  

Data Type Data type: Any Type, Fixed Point, Floating Point (Real),
Integer, Complex, Envelope Signal, Variant, Floating
Point (Real) Matrix, Integer Matrix, Complex Matrix

Any
Type

  enum  

Bus Is this a bus: NO, YES NO   enum  

Commutative Bus ordering matters: NO, YES NO   enum  

Optional Is this port optional: NO, YES NO   enum  

ZO Impedance 50  Ohm real (-∞,
∞)

 Port

Port Name Description Signal Type Optional

settable settable Schematic Data
Port

settable settable

 Notes/Equations

DataPort is a port only model that defines an input or an output for a subnetwork.1.
For any number of DataPort parts in one subnetwork, one DataPort must have a2.
PORT parameter set to 1.
Data flow subnetworks uses only Input or Output for the Direction parameter.3.
For further information on buses, see Connection Terminology (users).4.
If this port connects to a bus and Commutative is NO, connection line ordering must5.
be maintained.
If Optional is NO, this port must be connected in a simulation.6.
ZO is the reference impedance for the port. Data flow subnetworks do not use this7.
parameter.
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 EVM Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

EVM_Env
(algorithm)

Error Vector Magnitude
Measurement

EVM_Cx (algorithm) Error Vector Magnitude
Measurement
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 EVM_Cx

Description: Error Vector Magnitude Measurement
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: EVM Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Start Start time for data
collection

Start_Time s Float NO [0:∞)

SymTime Symbol duration
time

10e-6 s Float NO [TStep:1000*TStep]†

SymBurstLen Burst length in
number of
symbols

100  Integer NO [1:∞)

MeasType Measurement
type: EVM RMS,
EVM Peak, C0,
Frequency error,
Droop, Error
sequence,
Magnitude error
sequence, Phase
error sequence,
Sampled data

EVM RMS  Enumeration NO  

ModType Modulation type:
BPSK, QPSK,
HPSK, PI/4
DQPSK, PSK8,
PSK16, QAM4,
QAM16, QAM32,
QAM64, QAM128,
QAM256, PAM4,
PAM8, User
defined

QPSK  Enumeration NO  

Constellation Complex
constellation
values

[1+j, 1-j, -
1-j, -1+j]

 Complex
array

NO  

OptimizeSamplingInstant Automatically find
optimal sampling
instant: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal complex NO

 Notes/Equations

 

The EVM_Cx model is used to perform an EVM (Error Vector Magnitude)1.
measurement for a complex signal. EVM measurements are used to evaluate the
modulation accuracy of modulators. It is used, for example, in the IS-54 TDMA digital
cellular to set the minimum specifications for modulation accuracy of π/4-DQPSK
modulators.
The defining equations for the EVM measurement follow the definition in the EIA/TIA
IS-54-B TDMA Cellular System Dual-Mode Mobile Station-Base Station Compatibility
Standard, section 2.1.3.3.1.3.3 (Error Vector Magnitude Requirement). Let Z(k)
denote the actual complex vectors (I and Q) produced by observing the real
transmitter through an ideal receiver filter at instants k, one symbol period apart.
S(k) is defined as the ideal reference symbol (normalized such that its maximum
energy symbol falls on the unit circle). Then, Z(k) is modeled as:

where

W = e Dr+jDa , accounts for both a frequency offset (Da radians/symbol
phase rotation) and an amplitude change rate (of Dr nepers/symbol)

C0 is a complex constant origin offset (in Volts)

C1 is a unitless complex constant representing the arbitrary phase and
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output power of the transmitter, and

E(k) is the residual vector error on sample S(k) (in Volts)

The sum square error vector is

where N is equal to SymBurstLen and C 0 , C 1 , W are chosen such as to minimize

the above expression.
EVM (rms) is defined to be the rms value of | E(k) | normalized by the rms value of |
S(k) |. Therefore,

The symbol EVM at symbol k is defined as

which is the vector error magnitude at symbol k normalized by the rms value of |
S(k) |.
The MeasType parameter determines the output of the component.2.

If MeasType = EVM RMS, the output is the EVM(rms) value as defined in the
equations of note 1. This value is not in percent.To get EVM RMS in percent,
multiply by 100.
If MeasType = EVM Peak, the output is max{ EVM(k) }, where the maximum is
evaluated over k = 0, 1, ... , N-1. This value is not in percent.To get EVM Peak
in percent, multiply by 100.
If MeasType = C0, the output is

 dB
If MeasType = Frequency error, the output is

 Hz
If MeasType = Droop, the output is

 dB
If MeasType = Error sequence, the output is the sequence

If MeasType = Magnitude Error sequence, the output is the magnitude error
sequence (in Volts). For the definition of magnitude error, see the following
figure.
If MeasType = Phase Error sequence, the output is the phase error sequence (in
degrees). For the definition of phase error, see the following figure.
If MeasType = Sampled data, the output is the downsampled (1 sample per
symbol period) input signal.

 

 Magnitude and Phase Error

The ModType parameter is used to select one of the pre-defined or a user-defined3.
signal constellation. All signal constellations (including user- defined) are normalized
so that the maximum magnitude constellation point lies on the unit circle. For
example, for a QPSK constellation, all four IQ points lie on the unit circle.
For a PAM-type signal (includes BPSK, 4-PAM, 8-PAM) the Q-channel of the signal is
set to 0.0.
The following figure shows a few examples of the IQ constellation sets used in the
EVM measurement.
The HPSK option is for an HPSK signal that has equal gains applied to the I and Q
channels resulting in a 4-point constellation. In effect, this is the same as a QPSK
constellation. If the gains applied to the I and Q channels are different, the resulting
constellation has 8 points and using the HPSK option gives the wrong results; in this
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case, the User defined option should be used, which enables you to specify an
arbitrary constellation in the Constellation parameter.
The Start and OptimizeSamplingInstant parameters define how the input signal is4.
downsampled. Note that the EVM algorithm operates on the downsampled input
signal.
If OptimizeSamplingInstant is set to NO, the input signal is downsampled at one
sample per symbol period starting at Start. If Start is not an exact multiple of the
simulation time step, interpolation is used to find the input signal values in between
the available samples.
If OptimizeSamplingInstant is set to YES, the input signal is downsampled at one
sample per symbol period starting at StartDownSampling, where StartDownSampling
is swept from Start to ( Start + SymTime ) with a step of (simulation time step) / 10.
This way the optimal sampling instant can be found. The optimal value for
StartDownSampling is displayed on the status window and can be used in subsequent
simulations as the value of Start with OptimizeSamplingInstant set to NO. This
setting results in faster simulations and gives the correct results as long as no
parameter that can affect the optimal sampling instant (for example the delay of a
filter) is changed. If such a parameter changes, then OptimizeSamplingInstant should
be set to YES.
Another way to find when the optimal sampling instant is, without setting the
OptimizeSamplingInstant parameter to YES, is to observe the eye diagram and find
where its maximum opening occurs.

 

 Examples of IQ-Constellations as Used in EVM Measurement

For general information regarding sinks, refer to About Sinks (algorithm).5.

See:
EVM_Env (algorithm)



SystemVue - Algorithm Design Library

516

 EVM_Env

Description: Error Vector Magnitude Measurement
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: EVM Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Start Start time for data
collection

Start_Time s Float NO [0:∞)

SymTime Symbol duration
time

10e-6 s Float NO [TStep:1000*TStep]†

SymBurstLen Burst length in
number of
symbols

100  Integer NO [1:∞)

MeasType Measurement
type: EVM RMS,
EVM Peak, C0,
Frequency error,
Droop, Error
sequence,
Magnitude error
sequence, Phase
error sequence,
Sampled data

EVM RMS  Enumeration NO  

ModType Modulation type:
BPSK, QPSK,
HPSK, PI/4
DQPSK, PSK8,
PSK16, QAM4,
QAM16, QAM32,
QAM64, QAM128,
QAM256, PAM4,
PAM8, User
defined

QPSK  Enumeration NO  

Constellation Complex
constellation
values

[1+j, 1-j, -
1-j, -1+j]

 Complex
array

NO  

OptimizeSamplingInstant Automatically find
optimal sampling
instant: NO, YES

YES  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

 Notes/Equations

 

The EVM_Env model is used to perform an EVM (Error Vector Magnitude)1.
measurement for an envelope signal. For more details on the EVM measurement see
EVM_Cx (algorithm).
For general information regarding sinks, refer to About Sinks (algorithm).2.

See:
EVM_Cx (algorithm)
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 FlexDCA_Sink Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

FlexDCA_Sink
(algorithm)

Stream simulation samples to the Agilent FlexDCA
Application

 FlexDCA_Sink

Description: Stream simulation samples to the Agilent FlexDCA Application
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: FlexDCA Sink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

NumberOfInputs Number of inputs. 1  Integer NO

ContinuousMode Run simulation continuously.: NO,
YES

YES  Enumeration NO

NumBitsToSkip Number of bits to skip before
writing to text file.

0  Integer NO

NumPatternToSimulate Number of patterns to simulate. 1  Integer NO

BitRate Original bit rate. Sample_Rate Hz Float NO

PatternLength Number of bits per period for
periodic bit pattern.

127  Integer NO

AdvancedParameters Display advanced parameters.: NO,
YES

NO  Enumeration NO

SetupFile Name of setup file to recall   Filename NO

Simulation start always sets FlexDCA to Eye mode. The reason is that the amount of data buffered
for jitter analysis is many magnitudes higher than the amount needed for Eye or Scope mode. By starting
FlexDCA in Eye mode, old data can be quickly flushed out of the buffer. For the same reason, if transient
is observed in Jitter mode to make eye closed, switch to Eye mode until eye diagram is clear
before switching back to Jitter mode.

No more than one FlexDCA_Sink can be placed on the same schematic.

Before you start SystemVue, make sure FlexDCA software is not already running.

FlexDCA requires patterned (periodic) bits for jitter analysis. For example, use PRBS (algorithm) model
in Bits Part (algorithm) for the bit source.

 FlexDCA_Sink UI Properties

If desired, click the Advanced Options ... button on the bottom left corner of FlexDCA_Sink UI to view
the parameter list. The mapping between the parameters in the parameter list and the setup controls
shown in the Graphic User Interface described here should be straightforward.

Most of the setup controls in the User Interface is self explanatory. In the following we
only cover a few key setup controls.

Number of Inputs FlexDCA can support up to 8 channels of inputs. Specify how1.
many channels are desired and the input pins on the placed part will adjust
accordingly.
Number of Bits to Skip Specify how many bits to skip before streaming the data to2.
FlexDCA. Typically it is used to avoid sending transient data into the FlexDCA.
Pattern Length FlexDCA requires patterned (periodic) bits for jitter analysis, so3.
provide pattern length here. For example, if you use PRBS (algorithm) model in
Bits Part (algorithm) as the bit source and the LFSR_Length is 12, then the pattern
length is 2^12 - 1 = 4095.
Run Simulation Continuously By default, simulation will run continuously and4.
streaming bits into FlexDCA. If unchecked, please specify how many patterns to
simulate.



SystemVue - Algorithm Design Library

518

 FlexDCA Control Basics

Color Grade Display To have the Eye diagram displayed in color grade, mouse right
click on the eye diagram area, then select "Color Grade" as shown here:
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Mode Selection Either use menu "Setup -> Mode" or the big ellipse-shaped button
on the top-right corner of the display. The simulation will always set FlexDCA to its
Eye mode.

A separate license has to be purchased in order to use the Jitter
mode.

Channel Selection Notice a row of rectangle areas on the bottom side of the
display. Click on any one of the 4 rectangles on the right side will bring up a channel
activation dialog that looks like the following. Toggle the round shaped button to turn
ON/OFF the display for the channel.

In Jitter mode (which needs a separate license), only one channel can be active.

Auto-Scale Use menu "Control -> Auto Scale" to auto-scale the displays as
needed (e.g. if the Eye diagram is not centered).
Pattern Parameters Critical pattern parameters such as Pattern Length and Data
Rate are set up automatically at the start of simulation. However, you can modify
them during simulation by clicking on the Trigger rectangle and go to the Pattern
Lock Setup tab of the dialog opened as shown here.

At simulation start, these parameters will be reset by the simulation. Also, all the "Auto Detect"
functions (and their corresponding check boxes) are disabled by the simulation.

 Notes/Links

An example of using FlexDCA_Sink can be found in IBIS AMI Modeling.wsv under1.
Model Building Examples (examples)
To learn about FlexDCA and for software download, go to2.
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http://www.agilent.com/find/FlexDCA

 Printer (Data File Writer)

Description: Data File Writer
Category: Sinks
Domain: Timed
Associated Part:

 Parameters

Name Description Default Symbol Unit Type Range

StartStopOption Sink collection mode: Auto,
Samples, Time

Auto   enum  

SampleStart Sample number to start data
collection

0   int [0,∞)

SampleStop Sample number to stop data
collection

Num_Samples -
1

  int [SampleStart,∞)

TimeStart Time to start data collection Start_Time  sec real [0,∞)

TimeStop Time to stop data collection Stop_Time  sec real [TimeStart,∞)

File Output filename 'print.txt'   filename  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal multiple anytype NO

 Notes/Equations

Printer prints out one sample from each input port per line.1.
The output file is a text file that contains data in ADS Ptolemy format specific to the2.
input data type: real array (for floating-point (real), fixed, and integer scalar input
data), complex array, string array, real matrix, integer matrix, fixed-point matrix, or
complex matrix. For format information, refer to Understanding File Formats in the
ADS Ptolemy Simulation manual.
For general information regarding sinks, refer to About Sinks (algorithm).3.

http://www.agilent.com/find/FlexDCA
http://www.agilent.com/find/FlexDCA


SystemVue - Algorithm Design Library

521

 RMSE Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RMSE
(algorithm)

Root Mean Square Error Measurement

 RMSE (Root Mean Square Error Measurement)

Description: Root Mean Square Error Measurement
Domain: Untimed
C++ Code Generation Support: NO
Associated Parts: RMSE Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

StartFrame Start frame 0  Integer NO [0:∞)

FramesToAverage Number of frames to measure 1  Integer NO [1:∞)

FrameLength Frame length in number of
samples

Num_Samples  Integer NO [1:∞)

DisplayOption Display option: RMS, dB RMS  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 InRef Input reference
signal

complex NO

2 InTest Input test signal complex NO

 Notes/Equations

The RMSE model is used to calculate the root mean squared error between the two1.
input signals.
Input data is collected starting at sample StartFrame × FrameLength and ending at2.
sample (FramesToAverage + StartFrame) × FrameLength − 1.
The root mean square error is calculated according to the equation3.

where,
Nf is the number of frames to average

Lf is the frame length

I1(i, j), Q1 (i, j) and I2 (i, j), Q2 (i, j) are the in-phase and quadrature parts,

respectively, of the input signals.
If DisplayOption is set to RMS, then the value as calculated by the above equations is4.
saved in the dataset. If DisplayOption is set to dB, then 20×log10( RMSE ) is saved
in the dataset.
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 Sink Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Sink
(algorithm)

Data Sink
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 Sink (Data Sink)

Description: Data Sink
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Sink Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

StartStopOption Sink collection mode:
Auto, Samples, Time

Auto  Enumeration NO  

SampleStart Sample number to
start data collection

0  Integer NO [0:∞)

SampleStop Sample number to
stop data collection

Num_Samples -
1

 Integer NO [SampleStart:∞)

TimeStart Time to start data
collection

Start_Time s Float NO [0:∞)

TimeStop Time to stop data
collection

Stop_Time s Float NO [TimeStart:∞)

SinkTarget Location where
simulation data is
written: DataSet, File,
Both

DataSet  Enumeration NO  

ContinuousMode Run simulation in
continuous mode:
NO, YES

NO  Enumeration NO  

WindowSize Number of samples to
collect and display in
dynamically updated
graph

500  Integer NO [1:∞)

DisableDataCollect Disable the collection
of data: NO, YES

NO  Enumeration NO  

Graph Graph to display the
data in (if empty no
graph is created)

  Text NO  

Table Table to display the
data in (if empty no
table is created)

  Text NO  

BlockSize Number of samples to
collect from each
input before writing
to file as one data
block

Num_Samples  Integer NO [1:∞)

ToSingleFile Write data from all
inputs to the same
file: NO, YES

YES  Enumeration NO  

DataFileName Data file name SinkData  Filename NO  

DataFileType Data file format:
ASCII, Binary,
SignalStudio, N5106A

ASCII  Enumeration NO  

SkipFrequency Do not write
characterization
frequency (for
complex envelope
data) to file: NO, YES

NO  Enumeration NO  

NormalizeWaveform Normalize input
signal magnitude to
[-1,1] range before
writing to file: NO,
YES

YES  Enumeration NO  

ClippingLevel Clipping voltage level 1.0 V Float NO (0:∞)

Persistence Keep sink data in
dataset when
workspace is saved:
NO, YES

Data_Persistence  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input Input Signal multiple anytype NO
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Important Note: When writing data to files, neither ASCII file nor Binary file is for use with other
Agilent products (such as VSA 89601A software). ASCII file is solely for logging simulation data when
needed. Binary file is to temporarily store large amount of simulation data to be post processed by
MathLang script (users). (See SignalDownloader_E4438C (algorithm) part as an example of how to
use MathLang script (users) to post process Binary file).

 Setup UI
A custom UI is provided for this model that allows easy set up.

 Main Options Tab

The Output Data To drop down box provides three choices on how the simulation data
will be stored:

DataSet: simulation data is stored in a dataset; data in the dataset can be plotted in
graphs/tables (see Graph and Table Tab on how to automatically create a graph or
table at the end of the simulation) as well as post processed in equation pages.
File: simulation data is written into one (or more) file(s).
Both: simulation data is stored in a dataset as well as written into one (or more)
file(s).
When File or Both is selected a tab called File Options Tab appears that allows
setting the file format as well as other properties of how data will be written to the
file(s).

The Save Sink Data with Workspace checkbox allows you to save (checkbox is
checked) or not save (checkbox is unchecked) the sink data with the workspace. Of
course, this is only relevant when the simulation data is stored in a dataset (DataSet or
Both selected in the Output Data To drop down box). By default, when the workspace is
saved the data collected by the sink and stored in the dataset is not saved with the
workspace. Not saving the simulation data collected by the sink with the workspace can
significantly reduce the size of the workspace, which in turn speeds up the operations of
saving and opening it. This is especially true for simulations that produce large amounts of
data (millions of data points). For simulations that produce small amounts of data, not
saving that data with the workspace is not going to provide any perceivable benefit. By
default, the state of the Save Sink Data with Workspace checkbox is controlled by the
Data_Persistence variable, which is tied to the state of the Data Persistence checkbox in
the Options tab of the Data Flow Analysis (sim). When the Data Persistence checkbox is
checked the value of the Data_Persistence variable is 1 and when the Data Persistence
checkbox is unchecked the value of the Data_Persistence variable is 0.

The Data Collection area allows you to control how much simulation data will be
collected. The amount of data to be collected can be specified in terms of Samples or
Time. Start and Stop values for the data collection are specified in the From and To
fields. Note that for data collection based on Samples sample indices start at 0. The
variables Num_Samples, Start_Time, and Stop_Time used as default values in the From
and To fields are defined in the Number of Samples, Start Time, and Stop Time fields
in the General tab of the Data Flow Analysis (sim). The default data collection mode (
Automatic) will do data collection based on Time if the input signal has a defined sample
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rate. Otherwise, it will do data collection based on Samples. The Automatic and
Samples data collection modes are guaranteed to work for any simulation. The Time
data collection mode will work only if the input signal has a defined sample rate.
Otherwise, the simulation will terminate with an error.

The Continuous Run and Runtime Tuning area allows you to set up the simulation to
run in an interactive continuous mode (when the Enable Continuous run and Runtime
tuning checkbox is checked). In this mode:

the simulation will keep running even after all the sinks have collected the data that
has been requested
for each sink that has the Enable Continuous run and Runtime tuning checkbox
checked a dynamic plot is created where the input signal is plotted; since the
dynamic plot can only plot a fixed number of samples (Window Size field) the
waveform will appear to be moving (just as in the case of an oscilloscope or vector
signal analyzer) unless it is periodic and the Window Size is set to a value that
represents the exact number of samples in an integer number of periods
all parameters/variables that are tunable can be tuned while the simulation is running
the data collection (in the dataset or file) can be optionally disabled (Disable Data
Collection checkbox)

An example of a dynamic plot is shown below.

A right mouse click on the dynamic plot brings up a menu where you can

enable a marker; its coordinates X and Y are shown at the top right corner of the plot
enable an offset (marker); the differences between its coordinates and the
coordinates of the marker are also shown at the top right corner of the plot (dX and
dY)
move the offset (marker) to the same point as the marker
configure the axes; allows you to choose a number of different formats to be
displayed: Log Mag (dB), Linear Mag, Real (I), Imag (Q), Wrap Phase, Unwrap Phase,
I-Q, Constellation, Trelis-Eye, Group Delay, Log Mag (lin)
set the Y-axis limits; allows you to select between auto-scaling the Y-axis or fixing its
top and bottom limits

 File Options Tab
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The Filename field sets the name of the file where the simulation data will be written. If a
relative path is specified, then the path is relative to the directory where the workspace is
located. For a new workspace that has not been saved yet, the path is relative to the
workspace that was the starting point. For example, if you create a new workspace
starting with the Blank template then the paths are relative to the Templates directory of
your SystemVue installation.

The Produce Separate Files for each Sink Input (add Suffix) checkbox allows (when
checked) the creation of a separate file for each input signal. The first input signal uses
the filename that was entered in the Filename field. The other inputs use filenames with
the suffixes _1, _2, ... For example, if the filename entered is LTE.wfm, the second input
will use filename LTE_1.wfm and so on. If this checkbox is not checked then all the input
signals are saved in the same file.

The File Format drop down box is used to select the format of the file to be written. The
supported formats are:

ASCII: This creates an ASCII text file with the values of the input signals. Each input
is written in its own column (if the Produce Separate Files for each Sink Input
(add Suffix) checkbox is not checked). In addition, if the input signal has a defined
sample rate, then the first column has the time stamps of the signal samples.
Binary: In this format, every sample of the input signal is written to the file using 8
bytes "double" format. If the input signal is complex, the real and imaginary parts
are written in the order of: #1 Real, #1 Imaginary, #2 Real, #2 Imaginary, #3 Real,
#3 Imaginary, ... When there are multiple input signals written into a single file (
Produce Separate Files for each Sink Input (add Suffix) checkbox is not
checked), the order of the data is also impacted by the value of the Write to File
every ___ Samples field. Let's assume the sink has been set up to Write to File
every 10 Samples, and there are 3 complex input signals (s1, s2, s3). The order of
the data in the file will be (the lines shown below separating the data points are only
for readability; binary files do not have a concept of lines):
s1 #1 Real, s1 #1 Imaginary, s1 #2 Real, s1 #2 Imaginary, ..., s1 #10 Real, s1 #10
Imaginary,
s2 #1 Real, s2 #1 Imaginary, s2 #2 Real, s2 #2 Imaginary, ..., s2 #10 Real, s2 #10
Imaginary,
s3 #1 Real, s3 #1 Imaginary, s3 #2 Real, s3 #2 Imaginary, ..., s3 #10 Real, s3 #10
Imaginary,
s1 #11 Real, s1 #11 Imaginary, s1 #12 Real, s1 #12 Imaginary, ..., s1 #20 Real, s1
#20 Imaginary,
s2 #11 Real, s2 #11 Imaginary, s2 #12 Real, s2 #12 Imaginary, ..., s2 #20 Real, s2
#20 Imaginary,
s3 #11 Real, s3 #11 Imaginary, s3 #12 Real, s3 #12 Imaginary, ..., s3 #20 Real, s3
#20 Imaginary,
s1 #21 Real, s1 #21 Imaginary, s1 #22 Real, s1 #22 Imaginary, ..., s1 #30 Real, s1
#30 Imaginary,
s2 #21 Real, s2 #21 Imaginary, s2 #22 Real, s2 #22 Imaginary, ..., s2 #30 Real, s2
#30 Imaginary,
s3 #21 Real, s3 #21 Imaginary, s3 #22 Real, s3 #22 Imaginary, ..., s3 #30 Real, s3
#30 Imaginary,
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...

...
SignalStudio: This is the Agilent Signal Studio  encrypted waveform format.
N5106A: This is a binary waveform format that is targeted for use by the Agilent
N5106A PXB MIMO Receiver Tester .

The Advanced File Options area allows control of advanced properties for file writing:

The Write to File every ___ Samples field sets the block size in which the
simulation data is written to the file(s). For example, if the sink has been set up to
collect 1000 samples and Write to File every ___ Samples is set to 100, then the
sink will write data to the file each time it collects 100 samples (a total of 10 times).
In the case of multiple input signals the value of this field impacts the order data is
written in the Binary format as described above. Setting this field to a large value
means the simulator has to store large amounts of data in memory before writing it
to the file. Setting this field to a small value means the simulator has to access the
file many times, which may slow down the simulation. A value of approximately 1M
samples provides a good trade off between memory consumption and speed.
The Exclude RF Carrier data for Modulated Signals checkbox can be used to
disable (when checked) writing the input signal characterization frequency to the file.
This is only relevant when the ASCII or Binary formats are used. If left unchecked,
the input signal characterization frequency will be written to the file. In the case of
ASCII format, the characterization frequency is written in its own column before the
columns representing the signal values but after the column representing the time
stamps (when the input signal has a defined sample rate). In the case of Binary
format, a block of Write to File every ___ Samples values equal to the input
signal characterization frequency is written before all blocks of the same size holding
input signal values.
The Normalize Data Values checkbox allows normalization of the input signal
values before writing them to the file. This is only relevant when SignalStudio or
N5106A formats are used. When this checkbox is checked, the input signal values
are normalized so that both the real and imaginary parts fall in the range [-1.0, 1.0].
This is done by dividing all input values with the maximum absolute real or imaginary
part value, that is, max( abs( Re{input[i]} ), abs( Im{input[i]} ) ), where input[i] is
the ith collected input sample and the maximum is over all collected samples. When
this checkbox is left unchecked the input signal values are written to the file without
any pre or post processing.
The Clip Values with Magnitudes Greater Than checkbox allows limiting the
magnitude of the real and imaginary part values that are written to the file (when the
checkbox is checked) to a desired level (set in the field to the right of the checkbox).
This is only relevant when SignalStudio or N5106A formats are used and the
Normalize Data Values checkbox is not checked. Limiting the magnitude of the real
and imaginary part values is useful in the cases where these files are intended to be
played back in an arbitrary waveform generator instrument. The reason is that these
instruments have a predefined full scale level and will clip anything above it (for
Agilent instruments this level is typically 1V). When this checkbox is checked and
clipping does occur a warning message is issued. This way a user can decide whether
they want to scale their data to avoid clipping from occurring when the files are
played back in the instrument. When this checkbox is left unchecked the input signal
values are written to the file without any pre or post processing.

 Graph and Table Tab

http://www.home.agilent.com/agilent/product.jspx?nid=-536902344.0.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?nid=-536902344.0.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
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This tab allows you to automatically create a graph and/or table displaying the collected
data at the end of the simulation. Simply check the appropriate checkboxes in the Graph
and/or Table areas. The name of the graph/table can also be specified. By default these
names are the same as the sink's instance name followed by the word Graph or Table.
This tab is available only when the simulation data is stored in a dataset (DataSet or
Both selected in the Output Data To drop down box).

 Advanced Options

Pressing the Advanced Options button brings up a dialog box with the sink's parameters
in table form. This allows setting the values of parameters that are represented with drop
down boxes, radio buttons, or checkboxes in the custom UI to variables. The following
table describes the association of these parameters to the different UI controls.
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Parameter Name Associated UI control Tab UI control is
located

StartStopOption Automatic/Samples/Time radio buttons Main Options

SampleStart From field next to Samples radio button Main Options

SampleStop To field next to Samples radio button Main Options

TimeStart From field next to Time radio button Main Options

TimeStop To field next to Time radio button Main Options

SinkTarget Output Data To drop down button Main Options

ContinuousMode Enable Continuous run and Runtime tuning checkbox Main Options

WindowSize Window Size field Main Options

DisableDataCollect Disable Data Collection checkbox Main Options

Graph Create and Display a Graph checkbox and associated Name
field

Graph and Table

Table Create and Display a Table checkbox and associated Name
field

Graph and Table

BlockSize Write to File every ___ Samples field File Options

ToSingleFile Produce Separate Files for each Sink Input (add Suffix)
checkbox

File Options

DataFileName Filename field File Options

DataFileType File Format drop down box File Options

SkipFrequency Exclude RF Carrier data for Modulated Signals checkbox File Options

NormalizeWaveform Normalize Data Values checkbox File Options

ClippingLevel Clip Values with Magnitudes Greater Than checkbox and
associated field

File Options

Persistence Save Sink Data with Workspace checkbox Main Options

 MathLang Equation in Sink
You can execute a MathLang Equation (users) in Sink to post-process simulation data,
although the preferred method is to create an Equation object on the workspace tree and
doing any post-processing there.

Where the Sink's built-in MathLang equation execution becomes handy is when you need
to perform an action when a Sink is done collecting data, such as downloading data to an
instrument. Two good examples are the E4438C_SignalDownloader part and the
N5106A_SignalDownloader part. These two parts download simulation waveforms into
instruments and are sub-circuit parts that build on the Sink part. They both use the Math
Language code in the Sink Equation to communicate and control the instruments for
instruments setup and waveform downloading.

Currently, the Equation provided to the Sink will only be executed at the end of the simulation. It does
not recognize the functions such as Initialize(), Run() and Finalize() that are supported by the MathLang
(algorithm) part. Support for these functions in the Sink will be available in future releases of SystemVue.

To create or access the equation used by the Sink, simply right click on the part after it is placed inside
the schematic of your design, and choose "Edit Equation". An equation editor will appear.

 M_State

You can access simulation information from a Math Language variable built into the Sink
called M_State. The M_State variable is a structure that is pre-filled with some fields
described below. For example, you can access the sampling rate for the simulation data
using the following syntax in the Equation:

sampleRate = M_State.SampleRate;

The following describes the fields provided to you in the M_State structure:

Fc Carrier frequency for the simulation data if they are for modulated RF signal

FileName When written data into a file, this is the absolute file name, i.e. it includes absolute path
to the file

MaxVal The maximum value of all the samples captured by the Sink. In complex samples, it is
the maximum of all the real and imaginaryvalues.

MinVal Opposite to MaxVal

NumberOfInputs The number of input streams that go into the Sink

NumberOfSamples The number of samples from each individual input stream that are captured by the
Sink

SampleRate Sample rate of the simulation data

For examples of how to use the information from M_State, see the
SignalDownloader_E4438C part and the SignalDownloader_N5106A part. Both are
parts that use sub-network models that embed a Sink in their sub-network. The Equation
for the Sink post processes the simulation data before sending it to the instruments, and it
relies on M_State to provide critical instrument set up information such as carrier
frequency, sampling rate, waveform file name, etc.
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 SpectrumAnalyzer Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SpectrumAnalyzerEnv
(algorithm)

Spectrum Analyzer for Complex Envelope
Signals

SpectrumAnalyzerCx (algorithm) Spectrum Analyzer for Real and Complex Signals

 SpectrumAnalyzerCx (SpectrumAnalyzerCx)

Description: Spectrum Analyzer for Real and Complex Signals
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SpectrumAnalyzer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Mode Mode of operation:
TimeGate, ResBW

TimeGate  Enumeration NO  

Start Start time for data
collection

Start_Time s Float NO [0:∞)

SegmentTime Segment time Stop_Time -
Start_Time +
Time_Spacing

s Float NO [16*TStep:∞)†

ResBW Resolution bandwidth Freq_Resolution Hz Float NO (0:∞)

NumSegments Number of segments to
be processed

1  Integer NO [1:∞)

Overlap Segment overlap in
percent

0.0  Float NO [0:100)

Window Window applied to
collected data:
Uniform, Hanning,
Gaussian Top, Flat Top,
Blackman Harris

Uniform  Enumeration NO  

FStart Start frequency -100.0e9 Hz Float NO (-∞:∞)

FStop Stop frequency 100.0e9 Hz Float NO (FStart:∞)

SpectrumType Output spectrum type:
Complex Voltage,
Power/Phase

Power/Phase  Enumeration NO  

SpectrumDisplay Spectrum display
option: Double Sided,
Single Sided

Double Sided  Enumeration NO  

RefR Reference resistance 50.0 ohm Float NO (0:∞)

Persistence Not saving sink data in
the workspace file
reduces the file size:
NO, YES

Data_Persistence  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal complex NO

In releases prior to 2009.05, in order to get a clean spectrum for a periodic signal, the SegmentTime
parameter had to be set to T − TStep, where T is the signal period and TStep is the simulation time step
for the input signal.
In release 2009.05 (and later), in order to get a clean spectrum for a periodic signal, the SegmentTime
parameter has to be set to T.
As a result, workspaces created with the 2008.12 release might not give identical results when simulated
in the 2009.05 (or later) release. This is true regardless of whether the input signal is periodic or not.

 Notes/Equations

The SpectrumAnalyzerCx model can be used to measure the spectrum of a real or a1.
complex signal. It works very similar to the SpectrumAnalyzerEnv (algorithm) model.
The only difference is that it can display Single Sided or Double Sided spectra (set in
the SpectrumDisplay parameter). Single Sided spectra are valid only when the input
signal is real. If the input signal is complex then the value of the SpectrumDisplay
parameter is ignored and the spectrum computed and displayed is always the Double
Sided one.
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In a Double_Sided spectrum, each spectral tone represents an A·ejw
c
t term,

where A is a complex number. Since ejw
c
t has constant magnitude of 1, the

associated power is A2/RefR.
When SpectrumType is Complex Voltage the resulting spectrum is the complex
values A at each frequency.
When SpectrumType is Power/Phase the resulting spectra are the power (A2

/RefR) and phase (phase of A) at each frequency.
In a Single_Sided spectrum, each spectral tone represents an A·cos( wct + θ )

term, where A and θ are real numbers. The associated power is A2/( 2·RefR ),
since for a non-constant magnitude signal we need to use its rms value (for
power calculations).
When SpectrumType is Complex Voltage the resulting spectrum is the complex
values A·(cos(θ) + j·sin(θ)) at each frequency.
When SpectrumType is Power/Phase the resulting spectra are the power (A2/(
2·RefR )) and phase (θ) at each frequency.

This model can be used directly with complex signals, whereas in order to connect a2.
complex signal to the SpectrumAnalyzerEnv (algorithm) a CxToEnv (algorithm)
converter has to be placed in between.
For more details see the documentation of SpectrumAnalyzerEnv (algorithm).3.

 SpectrumAnalyzerEnv (SpectrumAnalyzerEnv)

Description: Spectrum Analyzer for Complex Envelope Signals
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SpectrumAnalyzer Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

Mode Mode of operation:
TimeGate, ResBW

TimeGate  Enumeration NO  

Start Start time for data
collection

Start_Time s Float NO [0:∞)

SegmentTime Segment time Stop_Time -
Start_Time +
Time_Spacing

s Float NO [16*TStep:∞)†

ResBW Resolution bandwidth Freq_Resolution Hz Float NO (0:∞)

NumSegments Number of segments to
be processed

1  Integer NO [1:∞)

Overlap Segment overlap in
percent

0.0  Float NO [0:100)

Window Window applied to
collected data: Uniform,
Hanning, Gaussian Top,
Flat Top, Blackman
Harris

Uniform  Enumeration NO  

FStart Start frequency 0.0 Hz Float NO [0:∞)

FStop Stop frequency 100.0e9 Hz Float NO (FStart:∞)

SpectrumType Output spectrum type:
Complex Voltage,
Power/Phase

Power/Phase  Enumeration NO  

RefR Reference resistance 50.0 ohm Float NO (0:∞)

Persistence Not saving sink data in
the workspace file
reduces the file size: NO,
YES

Data_Persistence  Enumeration NO  

 Input Ports

Port Name Description Signal Type Optional

1 input input signal envelope NO

In releases prior to 2009.05, in order to get a clean spectrum for a periodic signal, the SegmentTime
parameter had to be set to T − TStep, where T is the signal period and TStep is the simulation time step
for the input signal.
In release 2009.05 (and later), in order to get a clean spectrum for a periodic signal, the SegmentTime
parameter has to be set to T.
As a result, workspaces created with the 2008.12 release might not give identical results when simulated
in the 2009.05 (or later) release. This is true regardless of whether the input signal is periodic or not.

 Notes/Equations

The SpectrumAnalyzer model can be used to measure the spectrum of a real1.
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baseband or a complex envelope signal. In the following notes TStep is used to
denote the simulation time step and fc is used to denote the signal characterization
frequency (fc = 0 for a real baseband signal and fc>0 for a complex envelope signal).
The SpectrumAnalyzer has two modes of operation: TimeGate and ResBW. The mode2.
of operation is selected in the Mode parameter.
In both modes of operation the model collects data starting at Start and until
NumSegments segments that overlap by Overlap% are collected. Each segment is
windowed by the specified Window, the spectrum of each segment is computed, and
finally the spectra are averaged. The only difference between the two modes of
operation is that

in TimeGate mode, the duration of each segment is SegmentTime.
in ResBW mode, the duration of each segment is NENBW/ResBW, where NENBW
is the the Normalized Equivalent Noise Bandwidth of the window used.

The spectrum of a basedband signal extends from 0 Hz to 1/(2 × TStep) Hz. The3.
spectrum of an RF signal extends from fc − 1/(2 × TStep) Hz to fc + 1/(2 × TStep)
Hz. When fc < 1/(2 × TStep), the spectrum extends to negative frequencies. The
spectral content at these negative frequencies is conjugated, mirrored, and added to
the spectral content of the closest positive frequency. This way, the negative
frequency tones are displayed on the positive frequency axis as would happen in a
real spectrum analyzer measurement instrument. This process can introduce an error
in the displayed frequency for the mirrored tones. The absolute error introduced is
less than Δf/2, where Δf is 1/SegmentTime (in TimeGate mode) and ResBW/NENBW
(in ResBW mode). The FStart and FStop parameters are used to control the
frequencey range over which the spectrum will be calculated. If FStart and Fstop are
outside the limits mentioned above they are reset to the lower and higher limits
respectively.
The SpectrumType parameter is used to select the type of spectrum to be computed.4.
The computed spectrum is always a Single Sided spectrum. See SpectrumAnalyzerCx
(algorithm) for details regarding Single Sided and Double Sided spectra and the
interpretation of Complex Voltage and Power/Phase spectra.

If SpectrumType is Complex Voltage, then the computed spectrum is the
complex amplitude voltage spectrum. The result is saved in the dataset in a
complex variable named <InstanceName>, where <InstanceName> is the
model's instance name.
If SpectrumType is Power/Phase, then there are two spectra computed: the
power spectrum and the phase spectrum. The results are saved in the dataset in
two real variables named <InstanceName>_Power and
<InstanceName>_Phase, where <InstanceName> is the model's instance name.

 Windowing in spectral analysis and how to choose the right window5.

Windowing is necessary in transform-based (FFT) spectrum estimation. Without
windowing, the estimated spectrum can suffer from spectral leakage that can cause
misleading measurements or masking of weak signal spectral detail by spurious
artifacts.
Every time a window is applied to a signal, leakage occurs, that is, power from one
spectral component leaks into the adjacent ones. Leakage from strong spectral
components can result in hiding/masking of nearby weaker spectral components.
Even strong spectral components can be affected by leakage. For example, two
strong spectral components close to each other can appear as one due to leakage.
Choosing the right window for a spectral measurement is very important. The choice
of window depends on what is being measured and what the trade-offs between
frequency resolution (ability to distinguish spectral components of comparable
strength that are close to each other) and dynamic range (ability to measure signals
with spectral components of widely varying strengths and distributed over a wide
range) are.
Windows can be characterized by their Normalized Equivalent Nosie BandWidth
(NENBW). Equivalent Noise Bandwidth (ENBW) compares a window to an ideal,
rectangular filter. It is the equivalent width of a rectangular filter that passes the
same amount of white noise as the window. The Normalized ENBW (NENBW) is the
ENBW multiplied by the time duration of the signal being windowed. In general, for
the same length of signal processed, the higher the NENBW of a window the higher
its dynamic range (less leakage) and the poorer its frequency resolution. The NENBW
of the windows available in the SpectrumAnalyzer is given in the table below:

Window NENBW

Uniform 1

Hanning 1.5

Gaussian Top 2.215

Flat Top 3.819

Blackman Harris 2.021

Some general guidelines for choosing a window are given below:

Do not use a window (set Window to Uniform) when analyzing transients.
For periodic signals whose spectral components have comparable strengths and
when the signal segment processed includes an exact integer multiple of
periods, the best results are obtained if no window is used (set Window to
Uniform). Any start up transients should be excluded.
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For periodic signals whose spectral components have significantly different
strengths and/or when the signal segment processed does not include an exact
integer multiple of periods, the use of a window can improve the detection of
the weaker spectral components. The higher the NENBW the more likely the
weaker spectral components will be detected. However, this trades-off
frequency resolution and so if the spectral components are very close to each
other the weaker one might remain unresolved. To improve frequency resolution
while still maintaining a good dynamic range use a window but process a longer
signal segment.
For aperiodic signals such as modulated signals (QPSK, QAM, GSM, EDGE,
CDMA, OFDM) the use of a window is highly recommended. The window will
attenuate the signal at both ends of the signal segment processed to zero. This
makes the signal apear periodic and reduces leakage.

The definitions of the windows available in the SpectrumAnalyzer model are given6.
below (N is the length of the window in number of samples):

 References

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall,1.
1989, Chapter 9, section 9.7.
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 WriteBaseBandStudioFile Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

WriteBaseBandStudioFile (algorithm) Base Band Studio Formatted File Writer

WriteBaseBandStudioFileNormalize
(algorithm)

Base Band Studio Formatted File Writer with Input
Normalization

 WriteBaseBandStudioFile

Description: Base Band Studio Formatted File Writer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: WriteBaseBandStudioFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

File Input file name file.bin  Filename NO  F

StartStopOption Sink collection
mode: Auto,
Samples, Time

Auto  Enumeration NO   

SampleStart Sample number
to start data
collection

0  Integer NO [0:∞)  

SampleStop Sample number
to stop data
collection

Num_Samples
- 1

 Integer NO [SampleStart:∞)  

TimeStart Time to start data
collection

Start_Time s Float NO [0:∞)  

TimeStop Time to stop data
collection

Stop_Time s Float NO [TimeStart:∞)  

 Input Ports

Port Name Description Signal Type Optional

1 IQ IQ data complex NO

2 Marker14R Real Bit 14 Marker int YES

3 Marker14I Imag Bit 14 Marker int YES

4 Marker15R Real Bit 15 Marker int YES

5 Marker15I Imag Bit 15 Marker int YES

 Notes/Equations

Write IQ complex data and boolean markers in the Base Band Studio format to a file1.
named by the File parameter.
Each Base Band Studio sample consists of a pair of 16 bit signed integers which2.
encode the IQ and up to 4 marker values. The first integer hold the real parts while
the second integer hold the imaginary parts.
If Marker14R or Marker14I is connected, the IQ will have 14 bit quantization. If only3.
Marker15R or Marker15I is connected, then the IQ will have 15 bit quantization.
Otherwise, the IQ will have 16 bit quantization.
The IQ input is a complex value with the I value in the imaginary part and the Q4.
value in the real part. If the input is outside the range [-1, 1), the value is clipped to
this range before quantization.
A marker input is resolved to a zero bit, only if the marker input is zero. The marker5.
bits occupy the least significant bits (LSB) of both integers. The marker name, e.g.
Marker15R, indicate which bit and which integer hold the bit value, e.g. Marker15R
states the LSB (15) of the first integer (R) is used store Marker15R. The next greater
LSB is bit 14.
A Browse button is provided at the lower left corner of the properties window to6.
provide a relative path for File. This path is relative to the folder from which the
workspace is loaded. If an absolute path is desired, directly enter the full path into
the Value column.
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See Sink (algorithm) for a description of the output control parameters.7.
The Base Band Studio format has implementation in ADS and is used in Agilent8.
instrumentation. For more information, see CM BB StudioStreamWrite .

 Important Links

Learn more about Baseband Studio  from Agilent Technologies1.
Also see the following related parts:2.
ReadBaseBandStudioFile (algorithm)
WriteBaseBandStudioFileNormalize (algorithm)

 WriteBaseBandStudioFileNormalize

Description: Base Band Studio Formatted File Writer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: WriteBaseBandStudioFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

File Input file name file.bin  Filename NO  F

StartStopOption Sink collection
mode: Auto,
Samples, Time

Auto  Enumeration NO   

SampleStart Sample number
to start data
collection

0  Integer NO [0:∞)  

SampleStop Sample number
to stop data
collection

Num_Samples
- 1

 Integer NO [SampleStart:∞)  

TimeStart Time to start data
collection

Start_Time s Float NO [0:∞)  

TimeStop Time to stop data
collection

Stop_Time s Float NO [TimeStart:∞)  

 Input Ports

Port Name Description Signal Type Optional

1 IQ IQ data complex NO

2 Marker14R Real Bit 14 Marker int YES

3 Marker14I Imag Bit 14 Marker int YES

4 Marker15R Real Bit 15 Marker int YES

5 Marker15I Imag Bit 15 Marker int YES

 Notes/Equations

Write IQ complex data and boolean markers in the Base Band Studio format to a file1.
named by the File parameter.
Each Base Band Studio sample consists of a pair of 16 bit signed integers which2.
encode the IQ and up to 4 marker values. The first integer hold the real parts while
the second integer hold the imaginary parts.
If Marker14R or Marker14I is connected, the IQ will have 14 bit quantization. If only3.
Marker15R or Marker15I is connected, then the IQ will have 15 bit quantization.
Otherwise, the IQ will have 16 bit quantization.
The IQ input is a complex value with the I value in the imaginary part and the Q4.
value in the real part. The I and Q are normalized to the range [-1, 32767/32768]
before quantization. The normalization value is saved to a file whose name is formed
by appending ".Normalization.txt" to the File parameter value. The normalization file
is intended for use by ReadBaseBandStudioFile (algorithm).
A marker input is resolved to a zero bit, only if the marker input is zero. The marker5.
bits occupy the least significant bits (LSB) of both integers. The marker name, e.g.
Marker15R, indicate which bit and which integer hold the bit value, e.g. Marker15R
states the LSB (15) of the first integer (R) is used store Marker15R. The next greater
LSB is bit 14.
A Browse button is provided at the lower left corner of the properties window to6.
provide a relative path for File. This path is relative to the folder from which the
workspace is loaded. If an absolute path is desired, directly enter the full path into
the Value column.
See Sink (algorithm) for a description of the output control parameters.7.

http://edocs.soco.agilent.com/display/ads2009U1/CM+BB+StudioStreamWrite
http://edocs.soco.agilent.com/display/ads2009U1/CM+BB+StudioStreamWrite
http://www.home.agilent.com/agilent/product.jspx?nid=-536902334.0.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?nid=-536902334.0.00&amp;cc=US&amp;lc=eng
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The Base Band Studio format has implementation in ADS and is used in Agilent8.
instrumentation. For more information, see CM BB StudioStreamWrite .

 Important Links

Learn more about Baseband Studio  from Agilent Technologies1.
Also see the following related parts:2.
ReadBaseBandStudioFile (algorithm)
WriteBaseBandStudioFileNormalize (algorithm)

http://edocs.soco.agilent.com/display/ads2009U1/CM+BB+StudioStreamWrite
http://edocs.soco.agilent.com/display/ads2009U1/CM+BB+StudioStreamWrite
http://www.home.agilent.com/agilent/product.jspx?nid=-536902334.0.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?nid=-536902334.0.00&amp;cc=US&amp;lc=eng
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 WriteFile Part
Categories: Sinks (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

WriteN6030File
(algorithm)

N6030 Formatted File Writer

 WriteN6030File

Description: N6030 Formatted File Writer
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: WriteFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range

StartStopOption Sink collection
mode: Auto,
Samples, Time

Auto  Enumeration NO  

SampleStart Sample number to
start data
collection

0  Integer NO [0:∞)

SampleStop Sample number to
stop data collection

Num_Samples
- 1

 Integer NO [SampleStart:∞)

TimeStart Time to start data
collection

Start_Time s Float NO [0:∞)

TimeStop Time to stop data
collection

Stop_Time s Float NO [TimeStart:∞)

FileI I input file name file_i.bin  Filename NO  

FileQ Q input file name file_q.bin  Filename NO  

NormalizeData Normalize data to
avoid clipping: NO,
YES

YES  Enumeration NO  

FullScaleFactor Full scale factor for
peak value

1.0  Float NO [0.000030517578125:1]

 Input Ports

Port Name Description Signal Type Optional

1 input IQ data complex NO

 Notes/Equations

This model writes IQ data into the files FileI and FileQ using the N6030 format. Data1.
is recorded as 16 bit signed integers.
IQ data is represented as a complex value with the I value in the real part and the Q2.
value in the imaginary part.
The StartStopOption parameter specifies the data collection mode:3.

if set to Samples the data collection will start at sample SampleStart and stop at
SampleStop.
if set to Time the data collection will start at time TimeStart and stop at
TimeStop.
if set to Auto then all of SampleStart, SampleStop, TimeStart, and TimeStop
need to be specified and the model will decide at runtime whether SampleStart/
SampleStop or TimeStart/TimeStop will be used. The decision is based on
whether the input signal has a sampling rate defined. If there is no sampling
rate defined (e.g. signal coming out of a SineGen (algorithm) source with
SampleRateOption set to UnTimed) then SampleStart/SampleStop is used.
Otherwise, TimeStart/TimeStop is used.

The FileI and FileQ parameters are used to define the output files for the I and Q4.
data. The files can be specified with a full path name or a relative path name.
Relative path names are relative to the directory where the workspace is located.
The NormalizeData parameter controls whether the data will be clipped or normalized5.
before it is written to the files.

if set to NO, no normalization is done. Data values outside the range [-
FullScaleFactor, FullScaleFactor] are clipped to the limits of this range. A
warning message is also displayed to make the user aware that clipping
occured.
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if set to YES, no clipping is performed and the data written to the files is a
scaled (normalized) version of the input data so that it is always in the range [-
FullScaleFactor, FullScaleFactor]. The scaling factor used is displayed in an
information message in the Errors window as well as in the simulation log.

See:
ReadN6030File (algorithm)
WriteBaseBandStudioFile (algorithm)
Sink (algorithm)

 Important Links

Learn more about N6030 Arbitrary Waveform Generator  from Agilent Technologies1.

http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=474770&amp;ct=PRODUCT&amp;id=474770
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=474770&amp;ct=PRODUCT&amp;id=474770
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 Sources
 About Sources
Sources are parts with only outputs, i.e. they provide stimulus to a simulation. Every
simulation must have at least one source.

In addition to data, sources can optionally associate time with each output sample. To
achieve reproducibility, all sources keep time with a 64 bit unsigned integer. The effective
time step for the source is represented as a unit quantity with 20 bits of fraction allowing
for a precision of 0.95367 10 -6 (from 2 -20) or approximately 1 ppm. The remaining 44
bits allow for 1.7592 10 13 (from 2 44 - 1) time steps.

At times, the 64 bit time quantity is converted to a double precision floating point quantity
which has only 53 bits of precision. Therefore, the internal time resolution can only be
maintained for 8.5899 10 9 (from 2 53 - 20 - 1) time steps and degrades slowly to a
minimum precision 1.9531 10 -3 (from 2 -(53 - 44)) of one time step.

All source parameter values that are specified in time are rounded to the nearest
representation. Parameters that are specified in frequency have their representation in
time as a reciprocal are also rounded to the nearest representation. If a source cannot
represent a parameter within a 10 -6 relative error, an error message is generated and the
simulation is stopped. Choose a higher effective sample rate (lower effective time step) to
resolve this error.

For example, a 1 Hz source has a time step of 1 s.

Source time range has range [0, 1.7592 10 13) seconds or [0, 4.8867 10 9) hours or
[0, 2.0361 10 8) days or [0, 5.57 10 5) years.
A time parameter of 1 - 2 -21 s is rounded to 1 s and has range [-8.7960 10 12,
8.7960 10 12] s.
A frequency parameter of 1/(1 - 2 -21) Hz is rounded to 1 Hz and has range [5.6844
10 -14, 1.0485 10 6] Hz.

Sub classes:

Timed Sources (algorithm)
Untimed Sources (algorithm)

 Contents
Bits Part (algorithm)
ChirpGen Part (algorithm)
ComplexExpGen Part (algorithm)
Const Part (algorithm)
DataPort Part (algorithm)
Diagonal M Part (algorithm)
GaussianNoiseGen Part (algorithm)
Identity M Part (algorithm)
IID Gaussian Part (algorithm)
IID Uniform Part (algorithm)
Impulse Part (algorithm)
NoiseFMask Part (algorithm)
Oscillator Part (algorithm)
PulseGen Part (algorithm)
Ramp Part (algorithm)
RampGen Part (algorithm)
RampSweepGen Part (algorithm)
ReadBaseBandStudioFile Part (algorithm)
ReadFile Part (algorithm)
SineGen Part (algorithm)
SineSweepGen Part (algorithm)
SquareGen Part (algorithm)
SquareSweepGen Part (algorithm)
WalshCode Part (algorithm)
WaveForm Part (algorithm)
Window Part (algorithm)

 About Bit Rate Sources
Super class:

Untimed Burst Sources (algorithm)
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New bit values are generated at frequency, BitRate, while the part is operating at some
sample rate. BitRate cannot exceed the sample rate.

Parameters:

BitRate. Default is from the Data Flow Analysis sample rate.1.

For other parameter descriptions, see Untimed Burst Sources (algorithm).
 

 About File Sources
Super class:

Untimed Burst Sources (algorithm)

These parts are classified as file readers where samples are read sequentially from File,
decoded and output.
s function = 0 always output the first sample in the file, and so on. For s function definition,

see Untimed Burst Sources (algorithm).

Parameters:

File. Default varies by model. A Browse button is provided at the lower left corner of1.
the properties window to provide a relative path for File. This path is relative to the
folder from which the workspace is run. If an absolute path is desired, directly enter
the full path into the Value column.
Periodic. Default is YES. If YES, the file is reread from the beginning after an end of2.
file condition. Otherwise, zeros are output.

For other parameter descriptions, see Untimed Burst Sources (algorithm).

The following table (and plots) summarize the behavior of the file based sources. The plots
were generated using the ReadFile model with a file whose contents were the numbers
from 1 to 10:

Plot # Periodic BurstMode BurstLength What is output

1 NO OFF Any file content output once followed by zeros

2 YES OFF Any file content output repeatedly

3 NO Single > file content file content zero padded to BurstLength and output once

4 YES Single > file content file content repeated to BurstLength and output once

5 NO or
YES

Single = file content file content output once

6 NO or
YES

Single < file content file content truncated to BurstLength and output once

7 NO Multiple > file content file content zero padded to BurstLength and output in
bursts

8 YES Multiple > file content file content repeated to BurstLength and output in bursts

9 NO or
YES

Multiple = file content file content output in bursts

10 NO or
YES

Multiple < file content file content truncated to BurstLength and output in bursts

 

 Plot 1

 

 Plot 2



SystemVue - Algorithm Design Library

541

 

 Plot 3

 

 Plot 4

 

 Plot 5

 

 Plot 6



SystemVue - Algorithm Design Library

542

 

 Plot 7

 

 Plot 8

 

 Plot 9

 

 Plot 10



SystemVue - Algorithm Design Library

543

 About Time Burst Sources
Super class:

Timed Sources (algorithm).

These parts have burst mode capability. If burst mode is enabled, the output is defined on
one (BurstMode is Single) or more (BurstMode is Multiple) segments of BurstPeriod (BP)
seconds. The burst time, t burst, is t source modulo BP. For t source definition, see Timed

Sources (algorithm).

A signal format exists within a burst period. There can be a delay of BurstDelay (DB)
seconds at the beginning and a signal length of BurstLength (BL) seconds after the delay.
A quiescent value that is defined for each part is the output for those times outside of the
specific signal definition, DB ≤ t burst < DB + BL, but within the burst period.

If BurstMode is OFF, the specific signal time t function is t source, otherwise t function is t burst

- DB when DB ≤ t burst < DB + BL and unused elsewhere.

Parameters:

BurstMode (B). Default is OFF.1.
BurstLength (BL). Default is 100 μs.2.
BurstPeriod (BP). Default is 200 μs.3.
BurstDelay (DB). Default is 0 μs.4.

For other parameter descriptions, see Timed Sources (algorithm).

The following plots show the output of a SineGen (algorithm) source with Amplitude = 1
V, Offset = 0 V, Frequency = 20 kHz, Phase = 0°, and different burst configurations.
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 About Timed Sources
Super class:

Sources Category (algorithm)

Sub classes:

Time Burst Sources (algorithm)
Time Swept Sources (algorithm)

Parts whose signal generation require a sense of time are members of this class. If
SampleRateOption is Timed from Schematic, then time information comes from the part
ports, otherwise the SampleRate parameter is used. If SampleRateOption is set to
Untimed, the output is simply stripped of time information.

Let t sys be the simulation time which begins at 0 seconds.

Specific signal definition begins at InitialDelay (D) seconds, i.e. t source ≥ 0 where t source

is t sys - D. A fill value defines the signal for t sys < D. Typically, a fill value is some form

of zero.

The combined signal is sampled from t sys = 0 at a fixed sample rate (S), i.e. t sys = n / S

for n = 0, 1, 2 ...

Parameters:

ShowAdvancedParameters. Default is NO.1.
SampleRateOption (SO). Default is Timed from Schematic.2.
SampleRate (S). Default is from the Data Flow Analysis sample rate.3.
InitialDelay (D). Default is zero seconds.4.

 About Time Swept Sources
Super class:

Timed Sources (algorithm)

These parts are defined by an instantaneous frequency which is swept from StartFreq (F1)
to StopFreq (F2) in a SweepPeriod (SP) time interval. The sweep time, t sweep is derived

from t source. t sweep is t source modulo SP. For t source definition, see Timed Sources

(algorithm).

The instantaneous frequency F(t sweep) is:

F(t sweep) = F1 + (F2 - F1) (t sweep / SP), if FSweepType is linear.

F(t sweep) = F1 + (F2 - F1) log 10 (1 + 9 (SP - t sweep) / SP), if FSweepType is log.

F(t sweep) is swept linearly in log 10 scale.

Parameters:

FSweepType (FT). Default is linear.1.
StartFreq (F1). Default is 1 KHz.2.
StopFreq (F2). Default is 10 KHz.3.
SweepPeriod (SP). Default is set from the data flow analysis field, Stop Time, thus4.
enabling a single sweep.

For other parameter descriptions, see Timed Sources (algorithm).
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 About Untimed Burst Sources
Super class:

Untimed Sources (algorithm)

Sub classes:

Bit Rate Sources (algorithm)
File Sources (algorithm)

These parts have burst mode capability. If burst mode is enabled, the output is defined on
one (BurstMode is Single) or more (BurstMode is Multiple) BurstPeriod (BP) sample
segments. The burst sample number, s burst, is s source modulo BP. For s source definition,

see Untimed Sources (algorithm).

A signal format exists within a burst period. There can be a delay of BurstDelay (DB)
samples at the beginning and a signal length of BurstLength (BL) samples after the delay.
A quiescent value that is defined for each part is the output for those sample numbers
outside of the specific signal definition, DB ≤ s burst < DB + BL, but within the burst

period.

If BurstMode is OFF, the specific signal sample number s function is s source, otherwise s

function is s burst - DB when DB ≤ s burst < DB + BL and unused elsewhere.

Parameters:

BurstMode. Default is OFF.1.
BurstLength (BL). Default is 100 samples.2.
BurstPeriod (BP). Default is 200 samples.3.
BurstDelay (DB). Default is 0 samples.4.

For other parameter descriptions, see Untimed Sources (algorithm).

 About Untimed Sources
Super class:

Sources Category (algorithm)

Sub classes:

Untimed Burst Sources (algorithm)

Parts whose signal generation is defined only on sample numbers are members of this
class. Time information can be associated with the output, if SampleRateOption is Timed
from Schematic when time information comes from the part ports, or if SampleRateOption
is Timed from SampleRate when the SampleRate parameter is used.

Let s sys be the simulation sample number which begins at 0.

Specific signal definition begins at InitialDelay (D) samples, i.e. s source ≥ 0 where s source

is s sys - D. A fill value defines the signal for s sys < D. Typically, a fill value is some form

of zero.

Parameters:

ShowAdvancedParameters. Default is NO.1.
SampleRateOption (SO). Default is Timed from Schematic.2.
SampleRate (S). Default is from the Data Flow Analysis sample rate.3.
InitialDelay (D). Default is 0 sample delays.4.
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 Bits Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RandomBits
(algorithm)

Random Bit Generator

DataPattern
(algorithm)

Patterned Data Source

PRBS (algorithm) Pseudo Random Binary Sequence Generator

    

 DataPattern (Patterned Data Source)
 

Description: Patterned Data Source
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Bits Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

DataPattern Data pattern:
PN9, PN15,
FIX4,
_4_1_4_0,
_8_1_8_0,
_16_1_16_0,
_32_1_32_0,
_64_1_64_0

PN9  Enumeration YES  T

BitRate Output bit rate Sample_Rate Hz Float NO [0:SampleRate]  

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output boolean NO

 

 Notes/Equations

This model generates one of eight specific bit patterns.1.
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For the DataPattern parameter:2.
if PN9 is selected, a 511-bit pseudo-random test pattern is generated according
to CCITT Recommendation O.153
if PN15 is selected, a 32767-bit pseudo-random test pattern is generated
according to CCITT Recommendation O.151
if FIX4 is selected, a zero-stream is generated
if x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream
is generated, with the period being 2 × x. In the first half period, x bits are 1s,
and in second half period, x bits are 0s.

For other parameter descriptions, see Bit Rate Sources (algorithm).3.
Fill value is 0.4.
Quiescent value is 0.5.
The bit sequence is restarted when s function is zero. For s function definition, see6.

Untimed Burst Sources (algorithm).

See:
PRBS (algorithm)
RandomBits (algorithm)
WalshCode (algorithm)

 

 References

CCITT, Recommendation O.151(10/92).1.
CCITT, Recommendation O.153(10/92).2.

    

 PRBS (Pseudo Random Binary Sequence Generator)
 

Description: Pseudo Random Binary Sequence Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Bits Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range Symbol

LFSR_Length Linear
feedback
shift register
length

12  Integer YES [2:31] L

LFSR_InitState Linear
feedback
shift register
initial state

1  Integer YES [1:2<sup>L</sup>-
1]

IS

BitRate Output bit
rate

Sample_Rate Hz Float NO [0:SampleRate]  

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output
sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst
sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples
from start of
one burst to
start of next

200  Integer YES [1:∞) BP

BurstDelay Sample
delay within
burst before
the start of
the burst
length
interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output boolean NO

 

 Notes/Equations

PRBS generates a pseudo-random bit sequence, using a linear feedback shift register1.
(LFSR).
The LFSR_Length parameter sets the length of the LFSR as well as selects a2.
maximal-length shift-register code with periodicity 2 LFSR_Length − 1.
The LFSR_InitState parameter sets the initial state of the LFSR. Different3.
LFSR_InitState values will generate uncorrelated sequences.
For other parameter descriptions, see Bit Rate Sources (algorithm).4.
Fill value is 0.5.
Quiescent value is 0.6.
The bit sequence is restarted when s function is zero. For s function definition, see7.

Untimed Burst Sources (algorithm).

See:
LFSR (algorithm)
DataPattern (algorithm)
RandomBits (algorithm)
WalshCode (algorithm)
    

 RandomBits (Random Bit Generator)
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Description: Random Bit Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Bits Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

ProbOfZero Probability of
zero bit value

0.5  Float YES [0:1] P

BitRate Output bit rate Sample_Rate Hz Float NO [0:SampleRate]  

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start
of next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the
start of the
burst length
interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output boolean NO

 

 Notes/Equations

This model generates a random bit sequence, in which the probability of a 0 bit is1.
ProbOfZero and the probability of a 1 bit is 1 - ProbOfZero.
For other parameter descriptions, see Bit Rate Sources (algorithm).2.
Fill value is 0.3.
Quiescent value is 0.4.
The repeatability of the bit sequence generated by this model can be controlled by5.
the Repeatable Random Sequences check box in the Option tab of the DF Analysis
dialog (sim).

See:
LFSR (algorithm)
DataPattern (algorithm)
PRBS (algorithm)
WalshCode (algorithm)
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 ChirpGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ChirpGen
(algorithm)

Frequency Chirp
Generator

 ChirpGen

Description: Frequency Chirp Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ChirpGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Amplitude Peak sine
wave voltage
amplitude

1 V Float YES (-∞:∞) A

Offset DC offset
voltage

0 V Float YES (-∞:∞) DC

StartFreq Start
frequency

1e3 Hz Float YES (0:SampleRate/4] F1

StopFreq Stop
frequency

10e3 Hz Float YES (0:SampleRate/4] F2

Phase Phase 0 deg Float YES (-∞:∞) PH

SweepPeriod Time period
to complete a
sweep

Stop_Time s Float YES [1/SampleRate:∞) SP

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

 Output Ports

Port Name Signal Type Optional

1 output real NO

2 frequency real NO

 Notes/Equations

The ChirpGen model outputs a sine wave with Amplitude , Phase and Offset and1.
swept in the frequency domain from StartFreq to StopFreq over the time interval
SweepPeriod .
Let F(t sweep) be the instantaneous time domain sweep frequency defined in Time2.

Swept Sources (algorithm).
The waveform value, A sin(2 π (F(t sweep) t sweep + PH / 360)) + DC, is output.3.

F(t sweep) is output at the frequency port in Hertz. The maximum frequency domain4.

spectral frequency is obtained when the time domain F(t sweep) value is at its

maximum value of ( ( StopFreq + StartFreq ) / 2 ).
For other parameter descriptions, see Time Swept Sources (algorithm).5.
Fill value is 0.6.
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See:
ComplexExpGen (algorithm)
SineGen (algorithm)
SineSweepGen (algorithm)
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 ComplexExpGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ComplexExpGen
(algorithm)

Complex Exponential
Source

    

 ComplexExpGen (Complex Exponential Source)
 

Description: Complex Exponential Source
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ComplexExpGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Amplitude Peak sine
wave voltage
amplitude

1 V Float YES ( -∞:∞ ) A

Offset DC offset
complex
voltage

0 V Complex
number

YES  DC

Frequency Frequency 5e3 Hz Float YES [ 0:SampleRate/4
]

F

Phase Phase 0 deg Float YES ( -∞:∞ ) PH

QuadraturePolarity Quadrature
polarity:
normal,
inverted

normal  Enumeration YES  QP

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output complex NO

 Notes/Equations
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The function, A e Q (2 π (F t 
function

 + PH / 360)) + DC, is output. Q is j for normal1.
Quadrature Polarity, otherwise Q is -j. For t function definition, see Time Burst Sources

(algorithm).
For other parameter descriptions, see Time Burst Sources (algorithm).2.
Fill value is 0.3.
Quiescent value is DC.4.

See:
Oscillator Nonlinear Gain
SineGen (algorithm)
SineSweepGen (algorithm)

file:/pages/createpage.action?spaceKey=sv201007&amp;title=Oscillator+Nonlinear+Gain&amp;linkCreation=true&amp;fromPageId=107087365
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Oscillator+Nonlinear+Gain&amp;linkCreation=true&amp;fromPageId=107087365
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 Const Part
Categories: C++ Code Generation (algorithm), Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Const (algorithm) Constant Generator

ConstFxp
(hardware)

Fixed Point Constant

    

 Const (Constant Generator)
 

Description: Constant Generator
Domain: Timed
C++ Code Generation Support: YES (see Note)
Associated Parts: Const Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Value Value 0  None YES  V

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output anytype NO

 

Note
This model does not support C++ code generation if the port type is resolved to variant (sim) or if
SampleRateOption is NOT set to UnTimed.

 Notes/Equations

Output a constant signal with value given by the Value parameter. For discussion on1.
the variant type, see Variant (sim).
For other parameter descriptions, see Untimed Sources (algorithm).2.
Fill value is 0.3.

See:
Identity_M (algorithm)
IdentityCx_M (algorithm)
Diagonal_M (algorithm)
DiagonalCx_M (algorithm)
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 Diagonal_M Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Diagonal_M (algorithm) Diagonal Matrix Generator

DiagonalCx_M
(algorithm)

Output matrix diagonal
elements

 Diagonal_M (Diagonal Matrix Generator)

Description: Diagonal Matrix Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Diagonal M Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

DiagonalElements Output matrix
diagonal elements

[1, 2]  Floating point
array

NO  E

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output real matrix NO

 Notes/Equations

Diagonal_M is a constant square matrix source whose dimensions are specified by1.
the RowsCols parameter.
The constant matrix is formed by inserting values from the real DiagonalElements2.
array parameter into the diagonal elements beginning at element [1,1]. Zeroes are
inserted at the off diagonal elements.
The number of elements in DiagonalElements must be at least RowCols.3.
For other parameter descriptions, see Untimed Sources (algorithm).4.
Fill value is a real matrix zero.5.

See:
DiagonalCx_M (algorithm)
Identity_M (algorithm)
IdentityCx_M (algorithm)
Const (algorithm)

 DiagonalCx_M (Output matrix diagonal elements)

Description: Output matrix diagonal elements
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Diagonal M Part (algorithm)

 Model Parameters
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Name Description Default Units Type Runtime
Tunable

Range Symbol

DiagonalElements Output matrix
diagonal elements

[1, j]  Complex
array

NO  E

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output complex matrix NO

 Notes/Equations

DiagonalCx_M is a constant square matrix source whose dimensions are specified by1.
the RowsCols parameter.
The constant matrix is formed by inserting values from the complex2.
DiagonalElements array parameter into the diagonal elements beginning at element
[1,1]. Zeroes are inserted at the off diagonal elements.
The number of elements in DiagonalElements must be at least RowCols.3.
For other parameter descriptions, see Untimed Sources (algorithm).4.
Fill value is a complex matrix zero.5.

See:
Diagonal_M (algorithm)
Identity_M (algorithm)
IdentityCx_M (algorithm)
Const (algorithm)
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 GaussianNoiseGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

GaussianNoiseGen
(algorithm)

Gaussian Noise
Generator

 GaussianNoiseGen (Gaussian Noise Generator)

Description: Gaussian Noise Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: GaussianNoiseGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

NDensity Noise power
spectral
density

4.00388587e-
21

W Float YES [0:∞) ND

RefR Reference
resistance

50 ohm Float NO (0:∞)  

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial
output time
delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

Output additive white Gaussian noise (AWGN) that is characterized by the NDensity1.
parameter over the bandwidth specified by the SampleRate parameter into RefR
ohms.
The Gaussian noise has zero mean and standard deviation of √ {NDensity ×2.
(SampleRate / 2) × RefR}.
NDensity is the noise density in Watts/Hz and is related to temperature T in Kelvin as3.
k × T where k is the Boltzmann constant (1.3806504e-23). At the standard system
temperature of 290 Kelvin (16.85 Celsius), the NDensity is 4.00388587e-21 Watts/Hz
(-173.975 dBm/Hz).
For other parameter descriptions, see Time Burst Sources (algorithm).4.
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Fill value is 0.5.
Quiescent value is 0.6.

See:
IID_Gaussian (algorithm)
IID_Uniform (algorithm)
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 IID_Gaussian Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

IID_Gaussian
(algorithm)

IID Gaussian Noise Waveform

 IID_Gaussian (IID Gaussian Noise Waveform)

Description: IID Gaussian Noise Waveform
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: IID Gaussian Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

StdDev Standard
deviation

1 V Float YES (-∞:∞) SD

Offset Offset value 0 V Float YES (-∞:∞) O

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

Identically independently distributed variates with Gaussian distribution as specified1.
by mean from the Offset parameter and standard deviation from the StdDev
parameter are output. The output is commonly referenced as additive white Gaussian
noise (AWGN).
For other parameter descriptions, see Untimed Burst Sources (algorithm).2.
Fill value is 0.3.
Quiescent value is 0.4.

See:
IID_Uniform (algorithm)
GaussianNoiseGen (algorithm)
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 IID_Uniform Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

IID_Uniform
(algorithm)

IID Uniform Noise
Waveform

 IID_Uniform (IID Uniform Noise Waveform)

Description: IID Uniform Noise Waveform
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: IID Uniform Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

LoLevel Low voltage
level

0 V Float YES (-∞:∞) VL

HiLevel High voltage
level

1 V Float YES (LoLevel:∞) VH

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

Identically independently distributed variates with uniform distribution between the1.
LoLevel and HiLevel parameters is output.
For other parameter descriptions, see Untimed Burst Sources (algorithm).2.
Fill value is 0.3.
Quiescent value is 0.4.

See:
IID_Gaussian (algorithm)
GaussianNoiseGen (algorithm)
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 Impulse Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Impulse
(algorithm)

Impulse
Waveform

 Impulse (Impulse Waveform)

Description: Impulse Waveform
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Impulse Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Level Impulse level 1 V Float YES (-∞:∞) L

ScaleBySampleRate Scale
impulse level
by sample
rate: NO,
YES

NO  Enumeration NO   

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

Level or Level × SR is output for t function in [0, 1/S) where SR is the effective output1.

sample rate. Zero is output everywhere else.
If SampleRateOption is Timed from Sample Rate or Timed from Schematic and
ScaleBySampleRate is YES, then Level is multiplied by SR. This normalizes the
impulse to have unity area, i.e. a delta function δ(InitialDelay). This option
should be used when looking at the frequency response of filters.
If SampleRateOption is UnTimed, ScaleBySampleRate is ignored.

Jitter may occur, if the time parameters are not expressed as an integer multiple of2.
1/S.
For other parameter descriptions, see Time Burst Sources (algorithm).
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3.
Fill value is 0.4.
Quiescent value is 0.5.

See:
PulseGen (algorithm)
SquareGen (algorithm)
SquareSweepGen (algorithm)
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 PulseGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

PulseGen
(algorithm)

Pulse Waveform
Generator

 PulseGen (Pulse Waveform Generator)

Description: Pulse Waveform Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: PulseGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

LoLevel Low voltage
level

0 V Float YES ( -∞:∞ ) VL

HiLevel High voltage
level

1 V Float YES ( LoLevel:∞ ) VH

Period Pulse
waveform
period

200e-6 s Float YES [ 2/SampleRate:∞ ) PP

Phase Phase 0 deg Float YES ( -∞:∞ ) PH

PulseWidth Pulse width
at 50%
waveform
levels

100e-6 s Float YES [ EdgeTime:Period-
EdgeTime ]

PW

EdgeTime Rising and
falling edge
times (0%
to 100%
values)

50e-6 s Float YES [
1/SampleRate:Period/2
]

E

Polarity Signal
polarity:
normal,
inverted

normal  Enumeration YES  P

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial
output time
delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports
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Port Name Signal Type Optional

1 output real NO

 Notes/Equations

A pulse W(t) with a rise and a fall interval is defined on t from [0, PP).1.
The output W(t) for normal Polarity is:2.

VL + (VH - VL) (t / E), for 0 ≤ t < E
VH, for E ≤ t < PW
VH - (VL - VH) (t - PW) / E, for PW ≤ t < PW + E
VL, for PW + E ≤ t < PP

For inverted Polarity, the pulse output begins at VH and grows downward to VL, and3.
so on.
For simulation time t function, t is (t function + (PH' / 360) PP) modulo PP, where PH' is4.

((PH modulo 360) + 360) modulo 360.
If zero PH, t is t function modulo PP. For t function definition, see Time Burst Sources

(algorithm).
For other parameter descriptions, see Time Burst Sources (algorithm).5.
Fill value is 0.6.
The quiescent value is:7.

VL, if Polarity (P) is normal
VH, otherwise

See:
Impulse (algorithm)
SquareGen (algorithm)
SquareSweepGen (algorithm)
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 RampGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RampGen
(algorithm)

Ramp Waveform Generator

 RampGen (Ramp Waveform Generator)

Description: Ramp Waveform Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: RampGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

LoLevel Low voltage
level

0 V Float YES ( -∞:∞ ) VL

HiLevel High voltage
level

1 V Float YES ( LoLevel:∞ ) VH

Frequency Waveform
frequency

5e3 Hz Float YES [ 0:SampleRate/4
]

F

Phase Phase 0 deg Float YES ( -∞:∞ ) PH

Symmetry Symmetry in
percent

100  Float YES [ 0:100 ] RS

Polarity Signal
polarity:
normal,
inverted

normal  Enumeration YES  P

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

A triangular waveform W(t) is defined on t from [0, 1/F).1.
Let t inflection be the time of the waveform inflection. t inflection is RS / 100 / F.2.
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For normal Polarity, the output W(t) is:3.
VL + (VH - VL) (t / t inflection) for 0 ≤ t < t inflection

VH + (VL - VH) ((t - t inflection) / ((1 / F) - t inflection)) for t inflection ≤ t < 1 / F.

For inverted polarity, the waveform begins with VH and goes to VL.4.
For simulation time, t function , t is (t function + PH' / 360 / F) modulo (1 / F), where5.

PH' = ((PH modulo 360) + 360) modulo 360.
If zero PH, t is t function modulo (1 / F). For t function definition, see Time Burst

Sources (algorithm).
For other parameter descriptions, see Time Burst Sources (algorithm).6.
Fill value is 0.7.
Quiescent value is (VL + VH) / 2.8.

See:
Ramp (algorithm)
RampSweepGen (algorithm)
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 Ramp Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Ramp
(algorithm)

Ramp
Waveform

 Ramp (Ramp Waveform)

Description: Ramp Waveform
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Ramp Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

StepPerSample Step value per
simulation sample

1  Float YES (-
∞:∞)

SS

InitialValue Initial ramp voltage
value

0  Float YES (-
∞:∞)

I

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

A ramp waveform is generated.1.
The waveform begins with value I at s function = 0 and increments by SS for each2.

sample thereafter.
For other parameter descriptions, see Untimed Sources (algorithm).3.
Fill value is 0.4.
The default parameters counts samples from 0.5.

See:
RampGen (algorithm)
RampSweepGen (algorithm)
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 RampSweepGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

RampSweepGen
(algorithm)

Ramp Sweep Waveform
Generator

 RampSweepGen (Ramp Sweep Waveform Generator)

Description: Ramp Sweep Waveform Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: RampSweepGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

LoLevel Low voltage
level

0 V Float YES ( -∞:∞ ) VL

HiLevel High voltage
level

1 V Float YES ( LoLevel:∞ ) VH

FSweepType Frequency
sweep type:
linear, log

linear  Enumeration YES  FT

StartFreq Start
frequency

1e3 Hz Float YES (0:SampleRate/4] F1

StopFreq Stop
frequency

10e3 Hz Float YES (0:SampleRate/4] F2

Phase Phase 0 deg Float YES ( -∞:∞ ) PH

SweepPeriod Time period
to complete a
sweep

Stop_Time s Float YES [1/SampleRate:∞) SP

Symmetry Symmetry in
percent

100  Float YES [ 0:100 ] RS

Polarity Signal
polarity:
normal,
inverted

normal  Enumeration YES  P

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

 Output Ports

Port Name Signal Type Optional

1 output real NO

2 frequency real NO

 Notes/Equations

Let F(t sweep) be the instantaneous sweep frequency defined in Time Swept Sources1.

(algorithm).
A triangular waveform W(t') is defined on t' from [0, 1 / F(t sweep)). Let t inflection be2.

RS / 100 / F(t sweep).

Let t be (t sweep + (PH' / 360 / F(t sweep))) modulo (1 / F(t sweep)), where PH' = ((PH3.

modulo 360) + 360) modulo 360.
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If PH is zero, t is t sweep modulo (1 / F(t sweep)).

For normal Polarity, the output W(t) is:4.
VL + (VH - VL) t / t inflection , if 0 ≤ t < t inflection

VH + (VL - VH) ((t - t inflection) / ((1 / F(t sweep)) - t inflection)), if t inflection ≤ t < 1 /

F(t sweep)

For inverted Polarity, the output W(t) is:5.
VH + (VL - VH) t / t inflection , if 0 ≤ t < t inflection

VL + (VH - VL) ((t - t inflection) / ((1 / F(t sweep)) - t inflection)), if t inflection ≤ t < 1 /

F(t sweep)

F(t sweep) is output at the frequency port in Hertz.6.

For other parameter descriptions, see Time Swept Sources (algorithm).7.
Fill value is 0.8.

See:
Ramp (algorithm)
RampGen (algorithm)
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 ReadBaseBandStudioFile Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ReadBaseBandStudioFile
(algorithm)

Base Band Studio Format File Reader

 ReadBaseBandStudioFile

Description: Base Band Studio Format File Reader
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ReadBaseBandStudioFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

File Input file name file.bin  Filename NO  F

Periodic Repeat file data
when end of file
is reached: NO,
YES

YES  Enumeration YES  P

MarkerFormat marker bits:
Zero Markers
(16 Bit IQ),
Two Markers
(15 Bit IQ),
Four Markers
(14 Bit IQ)

Zero Markers
(16 Bit IQ)

 Enumeration NO  M

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports
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Port Name Description Signal Type Optional

1 IQ IQ data complex NO

2 Marker14R Real Bit 14 Marker int YES

3 Marker14I Imag Bit 14 Marker int YES

4 Marker15R Real Bit 15 Marker int YES

5 Marker15I Imag Bit 15 Marker int YES

 Notes/Equations

This model reads complex IQ data and, optionally, markers in the Base Band Studio1.
format from a file named by the File parameter.
Each Base Band Studio sample consists of a pair of 16 bit signed integers. The first2.
integer hold the real parts while the second integer hold the imaginary parts.
The MarkerFormat parameter specify how IQ data are encoded and how many3.
markers are output. IQ data may have 14, 15 or 16 bit quantizations. With 14 bit
quantization, there are four marker values, i.e. Marker14I, Marker14R, Marker15R
and Marker15I. With 15 bit quantization, there are two marker values, Marker15R
and Marker15I. With 16 bit quantization, there are no marker values.
IQ is represented as a complex value with the I value in the imaginary part and the Q4.
value in the real part. Both I and Q are normalized such that the absolute value of
either never exceed unity. However, the IQ can be rescaled with a value that is read
from a normalization file. The file name is formed from the Base Band Studio file
name appended with ".Normalization.txt". This file can be editted. If such file is not
available in the same folder as File, there is no scaling.
Marker15R is taken from the least significant bit (LSB) of the first 16 bit integer.5.
Marker15I is taken from the LSB of the second 16 bit integer. Similarly, Marker14R
and Marker14I are formed from the next higher LSB. These markers output zero or
one. Zeros are output for a no marker value.
The Base Band Studio format has implementation in ADS and is used in Agilent6.
instrumentation. For more information, see CM BB StudioStreamRead .
For other parameter descriptions, see File Sources (algorithm).7.
Fill values are complex zeroes for IQ and integer zeros for the markers.8.
Quiescent values are complex zeroes for IQ and integer zeros for the markers.9.

 Important Links

Learn more about Baseband Studio  from Agilent Technologies1.
Also see the following related models:2.
ReadFile (algorithm)
ReadN5106AFile (algorithm)
ReadN6030File (algorithm)
ReadSignalStudioFile (algorithm)
WriteBaseBandStudioFile (algorithm)
WriteBaseBandStudioFileNormalize (algorithm)

http://edocs.soco.agilent.com/display/ads2009U1/CM+BB+StudioStreamRead
http://edocs.soco.agilent.com/display/ads2009U1/CM+BB+StudioStreamRead
http://www.home.agilent.com/agilent/product.jspx?nid=-536902334.0.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?nid=-536902334.0.00&amp;cc=US&amp;lc=eng
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 ReadFile Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

ReadFile (algorithm) Waveform Output from File

ReadN5106AFile (algorithm) N5106A Format File Reader

ReadN6030File (algorithm) N6030 Format File Reader

ReadSignalStudioFile
(algorithm)

Time domain signal generator with signalstudio encrypted file based
data

    

 ReadFile (Waveform Output from File)
 

Description: Waveform Output from File
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ReadFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

File Input file name file.txt  Filename NO  F

Periodic Repeat file data
when end of file
is reached: NO,
YES

YES  Enumeration YES  P

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 

 Notes/Equations

This model reads float data in ASCII text form from a file named by the File1.
parameter.
Float data are separated by spaces or a new line.2.
For other parameter descriptions, see File Sources (algorithm).3.
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Fill value is 0.4.
Quiescent value is 0.5.

See:
ReadN5106AFile (algorithm)
ReadN6030File (algorithm)
ReadSignalStudioFile (algorithm)
ReadBaseBandStudioFile (algorithm)
Sink (algorithm)

 ReadN5106AFile

Description: N5106A Format File Reader
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ReadFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

File Input file
name

myn5106a.bin  Filename NO  F

Periodic Repeat file
data when end
of file is
reached: NO,
YES

YES  Enumeration YES  P

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start
of next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the
start of the
burst length
interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output complex NO

 Notes/Equations

This model reads float data in N5106A binary format from a file named by the File1.
parameter.
N5106A is a binary waveform format that is targeted for use by the Agilent N5106A2.
PXB MIMO Receiver Tester.
For other parameter descriptions, see File Sources (algorithm).3.
Fill value is 0.4.
Quiescent value is 0.5.

See:
ReadFile (algorithm)
ReadN6030File (algorithm)
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ReadSignalStudioFile (algorithm)
ReadBaseBandStudioFile (algorithm)
Sink (algorithm)

 Important Links

The main purpose for this file reader is to read back the I/Q data written into a1.
N5106A file by the Sink (algorithm)
Learn more about the PXB/N5106A  instrument from Agilent Technologies.2.
To download the N5106A PXB MIMO Receiver Tester SW to run on your PC in3.
simulated mode, visit the download site  from Agilent Technologies.
Also see the related part:4.
SignalDownloader_N5106A (algorithm)

 ReadN6030File

Description: N6030 Format File Reader
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ReadFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

FileI Input file name file_i.bin  Filename NO  FI

FileQ Input file name file_q.bin  Filename NO  FQ

Periodic Repeat file data
when end of file
is reached: NO,
YES

YES  Enumeration YES  P

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Description Signal Type Optional

1 output IQ data complex NO

 Notes/Equations

This model reads I and Q data from the N6030 formatted files FileI and FileQ to form1.
a complex IQ output.
If one file is longer than the other, the shorter file will be zero padded. A warning is2.
generated for this condition.
IQ data is represented as a complex value with the I value in the real part and the Q3.
value in the imaginary part.
For other parameter descriptions, see File Sources (algorithm).4.
Fill value is 0.0 + j·0.0.5.
Quiescent value is 0.0 + j·0.0.6.

http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=1455099&amp;ct=PRODUCT&amp;id=1455099
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1611642&amp;nid=-536902260.800382&amp;id=1611642
http://www.home.agilent.com/agilent/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1611642&amp;nid=-536902260.800382&amp;id=1611642
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See:
ReadFile (algorithm)
ReadN5106AFile (algorithm)
ReadSignalStudioFile (algorithm)
ReadBaseBandStudioFile (algorithm)
WriteN6030File (algorithm)

 Important Links

Learn more about N6030 Arbitrary Waveform Generator  from Agilent Technologies1.

 ReadSignalStudioFile

Description: Time domain signal generator with signalstudio encrypted file based data
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: ReadFile Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

WaveformFile Choose to either use one
of the waveform files from
SystemVue or provide a
waveform file.: Built In,
User Defined

Built In  Enumeration NO   

File input file name esg.wfm  Filename NO   

BuiltInFile Interal Signal Studio
waveforms: 2TONE,
12TONE, CDMA2K_9CHAN,
CDMA2K_PILOT,
EDGE_1C_BURST,
EDGE_1C_CONT,
GSM_1C_BURST,
GSM_1C_CONT, QAM16,
QPSK, WCDMA_1DPCH,
WCDMA_TM1_64DPCH_1C,
WCDMA_TM1_64DPCH_4C,
WCDMA_TM4,
WIMAX_10MHZ_64QAM,
WIMAX_10MHZ_QPSK,
WLAN20MHZ54M64QAM

WLAN20MHZ54M64QAM  Enumeration NO   

Periodic Repeat file data when end
of file is reached: NO, YES

YES  Enumeration NO  P

SetCarrierFrequency Set RF carrier frequency:
NO, YES

NO  Enumeration NO   

RFCarrier RF carrier frequency (used
to overide what is specified
in the waveform file)

1.0e9 Hz Float NO (0:∞) fc

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option: Timed
from source data, Timed
from SampleRate, Timed
from Schematic

Timed from source data  Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO (0:∞) S

InterpolationType Interpolation method:
Sample and hold, Linear,
Lagrange

Sample and hold  Enumeration NO   

InterpolationOrder Lagrange interpolation
order

4  Integer NO [2:∞)  

InitialDelay Initial output time delay 0 s Float YES [0:∞) D

BurstMode Burst mode: OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time length 100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period from start of
one burst to start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay within burst
before the start of the
BurstLength interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=474770&amp;ct=PRODUCT&amp;id=474770
http://www.home.agilent.com/agilent/product.jspx?cc=US&amp;lc=eng&amp;pageMode=OV&amp;pid=474770&amp;ct=PRODUCT&amp;id=474770
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Port Name Signal Type Optional

1 output envelope NO

Currently without SystemVue's LTE or WiMax license, no waveform files created by Signal Studio
software can be read; with SystemVue's LTE or WiMax license, the corresponding waveform file (i.e.
LTE or WiMax) created by Signal Studio software can be read.

With WaveformFile = Built In, there are 17 waveforms available for playback.

The ReadSignalStudioFile model can read all Agilent Signal Studio waveform format files created by other
Agilent EESof products such as ADS.

 Notes/Equations

This model reads data in Signal Studio file format either from a built-in waveform file1.
(WavefromFile=Built In) or from a file specified by the File parameter (WavefromFile=
User Defined).
The SetCarrierFrequency parameter controls the carrier frequency assigned to the2.
output signal:

if set to NO, then the carrier frequency used is the one saved in the file header.
if set to YES, then the carrier frequency used is the one specified in the
RFCarrier parameter.

The Periodic parameter controls what happens when the simulation requires more3.
data than what is stored in the file:

if set to NO, then the additional data needed has a value of 0 + j·0.
if set to YES, then the data in the file is repeated.

The SampleRateOption parameter allows the user to select the sampling rate of the4.
output signal:

if set to Timed from source data, then the sampling rate that is saved in the file
header is used.
if set to Timed from SampleRate, then the sampling rate specified in the
SampleRate parameter is used.
if set to Timed from Schematic, then the sampling rate is automatically
determined based on the rest of the schematic (for more details see Sampling
Rate Resolution (sim)).

If SampleRateOption is not set to Timed from source data, then interpolation is5.
needed to get the signal values in between the actual signal samples that have been
recorded at a different sampling rate. The InterpolationType parameter specifies the
interpolation method that will be used. There are three available option: Sample and
hold, Linear, and Lagrange. When Lagrange is selected the order of interpolation is
specified in the InterpolationOrder parameter.
Understand how BurstMode works  (algorithm) and how it interacts with6.
Periodic mode  (algorithm).

In a nutshell, you can think of BurstMode = OFF equivalent to: BurstMode =1.
Single, BurstLength = BurstPeriod = "Infinity", and BurstDelay = 0.
When BurstMode = Multiple, each and every burst should have identical2.
waveform signals. The gap between BurstPeriod and BurstLength is padded
with 0's.
Within the duration of BurstLength, if BurstLength is longer than the duration of3.
the waveform provided by the Signal Studio waveform file, the following will
happen:

If Periodic = NO, then once all the samples contained in the Signal Studio1.
waveform file have been read out, 0's are padded for either direct output
(when SampleRateOption = Timed from source data) or for interpolation
(when SampleRateOption = Timed from SampleRate or Timed from
Schematic).
If Periodic = YES, then the samples contained in the Signal Studio2.
waveform file will be repeatly read out for either direct output (when
SampleRateOption = Timed from source data) or for interpolation (when
SampleRateOption = Timed from SampleRate or Timed from
Schematic)

See:
ReadFile (algorithm)
ReadN5106AFile (algorithm)
ReadN6030File (algorithm)
ReadBaseBandStudioFile (algorithm)
Sink (algorithm)

 Important Links

Learn more about Signal Studio SW  from Agilent Technologies.1.
Also see the Sink (algorithm) part on how to write modulated RF simulation data into2.
a Signal Studio file.

http://www.home.agilent.com/agilent/product.jspx?nid=-536902344.0.00&amp;cc=US&amp;lc=eng
http://www.home.agilent.com/agilent/product.jspx?nid=-536902344.0.00&amp;cc=US&amp;lc=eng
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 SineGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SineGen
(algorithm)

Sine Wave
Output

    

 SineGen (Sine Wave Output)
 

Description: Sine Wave Output
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SineGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Amplitude Peak sine
wave voltage
amplitude

1 V Float YES ( -∞:∞ ) A

Offset DC offset
voltage

0 V Float YES ( -∞:∞ ) DC

Frequency Frequency 5e3 Hz Float YES [ 0:SampleRate/4
]

F

Phase Phase 0 deg Float YES ( -∞:∞ ) PH

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 

 Notes/Equations

The function, A sin(2 π (F t function + PH / 360)) + DC, is output. For t function1.

definition, see Time Burst Sources (algorithm).



SystemVue - Algorithm Design Library

579

For other parameter descriptions, see Time Burst Sources (algorithm).2.
Fill value is 0.3.
Quiescent value is DC.4.

See:
Oscillator Nonlinear Gain
ComplexExpGen (algorithm)
SineSweepGen (algorithm)Oscillator Nonlinear Gain

file:/pages/createpage.action?spaceKey=sv201007&amp;title=Oscillator+Nonlinear+Gain&amp;linkCreation=true&amp;fromPageId=107087701
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Oscillator+Nonlinear+Gain&amp;linkCreation=true&amp;fromPageId=107087701
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Oscillator+Nonlinear+Gain&amp;linkCreation=true&amp;fromPageId=107087701
file:/pages/createpage.action?spaceKey=sv201007&amp;title=Oscillator+Nonlinear+Gain&amp;linkCreation=true&amp;fromPageId=107087701
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 SineSweepGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SineSweepGen
(algorithm)

Sine Wave Generator with Frequency Sweep

 SineSweepGen (Sine Wave Generator with Frequency
Sweep)

Description: Sine Wave Generator with Frequency Sweep
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SineSweepGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

Amplitude Peak sine
wave voltage
amplitude

1 V Float YES (-∞:∞) A

Offset DC offset
voltage

0 V Float YES (-∞:∞) DC

FSweepType Frequency
sweep type:
linear, log

linear  Enumeration YES  FT

StartFreq Start
frequency

1e3 Hz Float YES (0:SampleRate/4] F1

StopFreq Stop
frequency

10e3 Hz Float YES (0:SampleRate/4] F2

Phase Phase 0 deg Float YES (-∞:∞) PH

SweepPeriod Time period
to complete a
sweep

Stop_Time s Float YES [1/SampleRate:∞) SP

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial output
time delay

0 s Float YES [0:∞) D

 Output Ports

Port Name Signal Type Optional

1 output real NO

2 frequency real NO

 Notes/Equations

The SineSweepGen model outputs a sine wave with Amplitude , Phase and Offset and1.
swept in the frequency domain from StartFreq to 2*StopFreq over the time interval
SweepPeriod.
Let F(t sweep) be the instantaneous time domain sweep frequency defined in Time2.

Swept Sources (algorithm).
The waveform value, A sin(2 π (F(t sweep) t sweep + PH / 360)) + DC, is output.3.

F(t sweep) is output at the frequency port in Hertz. The maximum frequency domain4.

spectral frequency is obtained when the time domain F(t sweep) value is at its
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maximum value of ( StopFreq + StartFreq ).
For other parameter descriptions, see Time Swept Sources (algorithm).5.
Fill value is 0.6.

See:
ChirpGen (algorithm)
ComplexExpGen (algorithm)
SineGen (algorithm)
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 SquareGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SquareGen
(algorithm)

Square Wave Generator

 SquareGen (Square Wave Generator)

Description: Square Wave Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SquareGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

LoLevel Low voltage
level

0 V Float YES (-∞:∞) VL

HiLevel High voltage
level

1 V Float YES (LoLevel:∞) VH

Frequency Waveform
frequency

5e3 Hz Float YES [0:SampleRate/4] F

Phase Phase 0 deg Float YES (-∞:∞) PH

DutyCycle Duty cycle in
percent

50  Float YES [100*Frequency/SampleRate:100*(1-
Frequency/SampleRate)]

DC

Polarity Signal
polarity:
normal,
inverted

normal  Enumeration YES  P

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial
output time
delay

0 s Float YES [0:∞) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES  B

BurstLength Burst time
length

100e-6 s Float YES [1/SampleRate:∞) BL

BurstPeriod Time period
from start of
one burst to
start of next

200e-6 s Float YES [1/SampleRate:∞) BP

BurstDelay Time delay
within burst
before the
start of the
BurstLength
interval

0 s Float YES [0:BurstPeriod-BurstLength] DB

 Output Ports

Port Name Signal Type Optional

1 output real NO

 Notes/Equations

A square wave W(t) is defined on the t from [0, 1 / F ).1.
Let t edge be the terminating edge of the square wave at DC / 100 / F.2.
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The output W(t) for normal Polarity is:3.
VH, for 0 ≤ t < t edge

VL, for t edge ≤ t < 1 / F

For inverted Polarity, the square wave begins at VL and goes to VH.4.
For simulation time t function, t is (t function + PH' / 360 / F) modulo (1 / F), where PH'5.

is ((PH modulo 360) + 360) modulo 360.
If zero PH, t is t function modulo (1 / F). For t function definition, see Time Burst

Sources (algorithm).
For other parameter descriptions, see Time Burst Sources (algorithm).6.
Fill value is 0.7.
The quiescent value is:8.

VL, if Polarity (P) is normal
VH, otherwise

See:
SquareSweepGen (algorithm)
Impulse (algorithm)
PulseGen (algorithm)
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 SquareSweepGen Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

SquareSweepGen
(algorithm)

Square Sweep Wave
Generator

 SquareSweepGen (Square Sweep Wave Generator)

Description: Square Sweep Wave Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: SquareSweepGen Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

LoLevel Low voltage
level

0 V Float YES (-∞:∞) VL

HiLevel High voltage
level

1 V Float YES (LoLevel:∞) VH

FSweepType Frequency
sweep type:
linear, log

linear  Enumeration YES  FT

StartFreq Start
frequency

1e3 Hz Float YES (0:SampleRate/4] F1

StopFreq Stop
frequency

10e3 Hz Float YES (0:SampleRate/4] F2

Phase Phase 0 deg Float YES (-∞:∞) PH

SweepPeriod Time period
to complete
a sweep

Stop_Time s Float YES [1/SampleRate:∞) SP

DutyCycle Duty cycle in
percent

50  Float YES [100*max(StartFreq,StopFreq)/SampleRate:100*(1-
max(StartFreq,StopFreq)/SampleRate)]

DC

Polarity Signal
polarity:
normal,
inverted

normal  Enumeration YES  P

ShowAdvancedParams Show
advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit
sample rate

Sample_Rate Hz Float NO (0:∞) S

InitialDelay Initial
output time
delay

0 s Float YES [0:∞) D

 Output Ports

Port Name Signal Type Optional

1 output real NO

2 frequency real NO

 Notes/Equations

Let F(t sweep) be the instantaneous sweep frequency defined in Time Swept Sources1.

(algorithm).
A square wave function W(t') is defined on t' from [0, 1 / F(t sweep)). Let t edge be DC2.

/ 100 / F(t sweep) be the terminating edge of the square wave.

Let t be (t sweep + (PH' / 360 / F(t sweep))) modulo (1 / F(t sweep)), where PH' = ((PH3.
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modulo 360) + 360) modulo 360.
If PH is zero, t is t sweep modulo ( 1 / F(t sweep)).

For normal Polarity, the output W(t) is:4.
VH, if 0 ≤ t < t edge

VL, if t edge ≤ t < 1 / F(t sweep)

For inverted Polarity, the output W(t) is:5.
VL, for 0 ≤ t < t edge

VH, for t edge ≤ t < 1 / F(t sweep)

F(t sweep) is output at the frequency port in Hertz.6.

For other parameter descriptions, see Time Swept Sources (algorithm).7.
Fill value is 0.8.

See:
SquareGen (algorithm)
Impulse (algorithm)
PulseGen (algorithm)
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 WalshCode Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

WalshCode
(algorithm)

Walsh Code
Generator

 WalshCode (Walsh Code Generator)

Description: Walsh Code Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: WalshCode Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

WalshCodeType Walsh code type:
Walsh, Hadamard,
OVSF_3GPP

Walsh  Enumeration YES  T

Length Code length (power
of 2)

8  Integer YES [1:8192]
†

L

Index Code index 0  Integer YES [0:Length
- 1]

I

ShowAdvancedParams Show advanced
parameters: NO,
YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed
from SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

 Output Ports

Port Name Signal Type Optional

1 output int NO

 Notes/Equations

One of three Walsh spreading codes are output.1.
For Length (L), spreading codes specified with different Index (I) values are2.
orthogonal.
After L bits (chips), the code is reused.3.
The Index parameter is N in the Walsh description or selects a matrix row in the4.
Hadamard or OVSF_3GPP description.
The output (chip) has index K in the Walsh description or is the K-th element of the5.
matrix row in the Hadamard or OVSF_3GPP description.
For Walsh, the walsh codes are defined as:6.

where
N is the index of the walsh code, [0, Length-1]
N = n J-1 n J-2 ...n 1 n 0
K is the index of the chip in a walsh code, [0, Length-1]
K = k J-1 k J-2 ...k 1 k 0
J = log 2(Length)

r 0 (n) = n J-1
r 1 (n) = n J-1 +n J-2
r 2 (n) = n J-2 +n J-3
.
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.

.
r J-1 (n) = n 1 +n 0
For Hadamard, the walsh codes are defined as:7.

.

.

.

For OVSF_3GPP, the walsh codes are defined as:8.

For other parameter descriptions, see Untimed Sources (algorithm).9.
Fill value is 0.10.

See:
RandomBits (algorithm)
PRBS (algorithm)
DataPattern (algorithm)

 References

3GPP Technical Specification 25.213 V3.0.0 "Spreading and modulation (FDD)",1.
October 1999
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 WaveForm Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

WaveForm
(algorithm)

Arbitrary Waveform

    

 WaveForm (Arbitrary Waveform)
 

Description: Arbitrary Waveform
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: WaveForm Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

ExplicitValues Waveform
values

[1; 1; 1; 0;
0; 0]

V None NO  V

Offset DC offset
voltage

0 V None YES  DC

Periodic Periodic signal:
NO, YES

YES  Enumeration YES  P

ShowAdvancedParams Show advanced
parameters:
NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate
option:
UnTimed,
Timed from
SampleRate,
Timed from
Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample
rate

Sample_Rate Hz Float NO ( 0:∞ ) S

InitialDelay Output sample
delay

0  Integer YES [ 0:∞ ) D

BurstMode Burst mode:
OFF, Single,
Multiple

OFF  Enumeration YES   

BurstLength Burst sample
length

100  Integer YES [1:∞) BL

BurstPeriod Samples from
start of one
burst to start of
next

200  Integer YES [1:∞) BP

BurstDelay Sample delay
within burst
before the start
of the burst
length interval

0  Integer YES [0:BurstPeriod-
BurstLength]

DB

 Output Ports

Port Name Signal Type Optional

1 output anytype NO

 

 Notes/Equations

A waveform specified by ExplicitValues biased by DC is output. For discussion on the1.
variant type, see Variant (sim).
ExplicitValues is best defined with Equations. Equations can be localized to a2.
schematic by creating an Equations tab in the design for the schematic.

Create a waveform of scalars by defining a variable that is a column vector, e.g.
the statement, u = [0; 1; 2; 3; 4], creates a [5 x 1] matrix and defines a ramp
of 5 samples. Note that statement, v = [1 2 3 4 5], creates a row vector which
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is a [1 x 5] matrix and defines a waveform that is row vector of 1 sample.
Create a waveform of vectors by defining a variable that is a matrix, e.g. the
statement, u =[0 0; 1 2; 2 4; 3 6; 4 8] creates a [5 x 2] matrix and defines a
vector of 2 ramp waveforms of 5 samples long.
Create a waveform of matrices by defining a variable with the first matrix value
and appending additional matrices with an additional right index. When finished,
use the permute function to rotate the additional right index to the row index
position. For example, the following steps creates a [5 x 2 x 2] matrix and
defines a matrix of 4 ramp waveforms of 5 samples long.

Define u as a [2 x 2] zero matrix with the statement, x = zeros(2, 2).1.
Add the next 4 samples to u with the compound statement, u(:,:,2) = [1 2;2.
3 4]; u(:,:,2) = [2 4; 6 8]; ... ; u(:,:,5) = [4 8; 12 16].
Permute the indices of u with the statement, u = permute(u, [3 1 2]).3.

Note that waveforms of matrices with dimensionality greater than 2 can be
constructed using the previous technique.

s function = 0 always refer to first waveform value, and so on. For s function definition,3.

see Untimed Burst Sources (algorithm).
If the Periodic parameter is YES, the waveform may be repeated, otherwise the4.
waveform is followed by DC.
For other parameter descriptions, see Untimed Burst Sources (algorithm).5.
Fill value is 0.6.
Quiescent value is the previous output.7.

See:
ReadFile (algorithm)
Window (algorithm)
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 Window Part
Categories: Sources (algorithm)

The models associated with this part are listed below. To view detailed information on a
model (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

Window
(algorithm)

Window Generator

    

 Window (Window Generator)
 

Description: Window Generator
Domain: Timed
C++ Code Generation Support: NO
Associated Parts: Window Part (algorithm)

 Model Parameters

Name Description Default Units Type Runtime
Tunable

Range Symbol

WindowType Window type:
RECTANGLE,
BARTLETT, HANNING,
HAMMING, BLACKMAN,
STEEPBLACKMAN,
KAISER

HANNING  Enumeration YES  T

Length Window sample length 256  Integer YES [4:∞) L

ZeroPad Number of zero values
appended to length

0  Integer YES [0:∞) Z

KaiserParameter Beta parameter 0  Float YES  Beta

ShowAdvancedParams Show advanced
parameters: NO, YES

NO  Enumeration NO   

SampleRateOption Sample rate option:
UnTimed, Timed from
SampleRate, Timed
from Schematic

Timed from
Schematic

 Enumeration NO  SO

SampleRate Explicit sample rate Sample_Rate Hz Float NO ( 0:∞
)

S

InitialDelay Output sample delay 0  Integer YES [ 0:∞
)

D

 Output Ports

Port Name Signal Type Optional

1 output real NO

 

 Notes/Equations

A periodic waveform consist of Length (L) samples of a window as selected by1.
WindowType (T) followed by ZeroPad (Z) zero samples.
The window is centered around its maximum in L samples.2.
The KaiserParameter (Beta) value controls the stopband attenuation of the Kaiser3.
window. A larger absolute value gives greater stopband attenuation.
For other parameter descriptions, see Untimed Sources (algorithm).4.
Fill value is 0.5.

See:
ReadFile (algorithm)
WaveForm (algorithm)

 References

Leland Jackson, Digital Filters and Signal Processing, 2nd ed., Kluwer Academic1.
Publishers, ISBN 0-89838-276-9, 1989.
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