
Tutorials

SystemVue
2016.08

Tutorials 2

Notices

© Keysight Technologies, Inc. 1983-2016

1400 Fountaingrove Pkwy., Santa Rosa, CA 95403-1738, United States

All rights reserved.

No part of this documentation may be reproduced in any form or by any means (including electronic storage

and retrieval or translation into a foreign language) without prior agreement and written consent from

Keysight Technologies, Inc. as governed by United States and international copyright laws.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is

delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995),

or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in

FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause.

Use, duplication or disclosure of Software is subject to Keysight Technologies' standard commercial license

terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than

Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no

greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2)

(November 1995), as applicable in any technical data.

Portions of this software are licensed by third parties including open source terms and conditions.

For detail information on third party licenses, see .Notice

http://edadocs.software.keysight.com/display/engdoc/SV_Notice

Contents

Tutorials . 9
Simulation Control and Scripting . 10

Simulation Control and Scripting . 10
Controlling SystemVue from External Programs . 10

Controlling SystemVue from External Programs 10
Exploring the Workspace Using Visual Basic . 10
Running Scripts Using Visual Basic . 14
Running a BER Analysis Controlled From LabVIEW MATLAB or C Sharp . .
18

Optimizing a Simulation . 35
Optimizing a Simulation . 35
Intermod Optimization . 35
Peak to Average Power Ratio Optimization . 42
EVM Optimization . 45

Using MATLAB Script For Sequence Control . 49
Overview . 49
A Simple Sequence . 50
How to Run the Sequence . 50
Example of a more Advanced Sequence . 51

Performing a Monte Carlo Analysis on a Design . 52
Performing a Monte Carlo Evaluation on a Design 52
Monte Carlo Data Flow Example . 52
Monte Carlo Example (Receiver Monte Carlo.wsv) 61

Running a Yield Analysis on a Design . 66
Running a Yield Evaluation on a Design . 66
Data Flow Yield Example . 66
Spectrasys Yield Example . 71

Sweeping a Simulation . 78
Sweeping a Simulation . 78
Sweep Spectrasys Example (Receiver Sweep.wsv) 78

Libraries and Applications . 82
Libraries and Applications . 82
Getting Started With DPD . 82

Getting Started With DPD . 82
Measurement Platforms . 82
Hardware DPD Measurement - Manual . 85
Hardware DPD Measurement - Auto . 94
DPD Cosimulation . 97

RF Design . 101
RF Design . 101
Getting Started with Spectrasys . 101

Create a System Schematic . 101

Adding a System Analysis . 102
Run the Simulation . 104
Add a Graph or Table . 105

Embedding Spectrasys in Data Flow using RF_Link . 107
Embedding Spectrasys in Data Flow using RF_Link 107
Simple TX RX . 108

Hardware Design . 119
Hardware Design . 119

Contents . 119
Getting Started with Hardware Design . 119

Introduction . 119
Terminologies . 121
Brief Notes on Hardware Description Languages 121
Before Starting . 127

Fixed Point Representation . 132
Introduction . 132
Fixed Point Parameters . 134
Bit Manipulation . 140

HDL Code Generation . 141
Introduction . 141
Example 1: Fixed point parts from Hardware Design library 143
Example 2: Imported HDL code using the HDL part 158
What Can Go wrong? . 163

C + + to HDL Using Catapult Design . 164
Introduction . 164
SystemVue Flow in Catapult C Example . 168

Fixed Point Optimization . 172
Introduction . 173
Fixed Point Analysis Table . 173
Sweep Analysis . 181

HDL Co-simulation . 184
Introduction . 185
Co-simulating existing HDL code . 186
Co-simulating generated HDL code . 198
Co-simulating HDL code of a MultiRate Design 210
Differences of Co-simulation using ModelSim/Questa and Riviera Pro . 212

FPGA Implementation . 213
Stage 1: Develop the digital design . 213
Stage 2: Determine the targeted FPGA . 214
Stage 3: Generate the HDL code . 216
Stage 4: Resume the conventional FPGA design development in the
Synthesis tool . 217

Using Xilinx IP Cores . 222
Introduction . 222
Compiling Xilinx IP core simulation libraries . 223
Co-simulating Xilinx IP Core . 223

HDL Code Generation of sub-systems with Xilinx IP Cores 229
SystemVue M9703A and M9703B FPGA Design Flow 231

Required Hardware and Software . 231
Overview of SystemVue M9703 FDK Design Flow 232
Design Entry and Software Simulation . 240
M9703 FPGA Programming File Generation . 291
M9703 Instrument Co-simulation with SystemVue 293
Tutorial of SystemVue M9703 FPGA Design Flow 306

SystemVue U5303A FPGA Design Flow . 319
Required Hardware and Software . 319
Overview of SystemVue U5303A FDK Design Flow 320
Design Entry and Software Simulation . 328
U5303A FPGA Programming File Generation . 372
U5303A Instrument Co-simulation with SystemVue 375
Tutorial of SystemVue U5303A FPGA Design Flow 388

Algorithm Design . 399
Algorithm Design . 399

Contents . 399
Getting Started with Data Flow . 399

Phase 1- Start SystemVue with a Blank Template 399
Phase 2- Create the System Design . 401
Phase 3- Run the Simulation . 403
Phase 4- Creating Additional Graphs . 405

Working with MATLAB Script . 406
Working with MATLAB Script . 406
Simple Unirate Model . 407
Model with State . 414
Multirate Model . 424
Multirate Model with Bus IO . 432
Model with Array IO . 435
Time Domain Power Measurements . 449
Histogram . 452
Spectrum Averaging . 455
Converting UFMC Simulation Script . 459

Understanding Data Flow Simulation . 482
Understanding Data Flow Simulation . 482
Single Rate System Tutorial . 484
Single Rate Scheduling Tutorial . 487
Multi-Rate System Tutorial . 489
Multi-Rate Scheduling Tutorial . 491
CD to DAT Sampling Rate Conversion Tutorial . 493
Baseband and RF . 495
Envelope Bandpass Filter . 498
Baseband, IF and RF . 500
Timed from Schematic . 503
Timed from SampleRate . 506

Frequency Response vs Sample Rate . 509
Filtering vs Sample Rate . 513
Deadlock . 516
Sample Rate Inconsistency . 520

C++ Model Development . 522
Example 1: Building Your First Custom C++ Model Library 522
Example 2: Developing Your First Custom C++ Model 528
Example 3: Developing a Gardner Timing Recovery C++ Model 532
Example 4: Writing Fixed Point Models . 535
Example 5: Writing a Timed Data Flow Model . 538
Example 6: Writing a Timed Data Flow Model that Overrides the Latency
Calculation . 541
Example 7: Writing a Timed Data Flow Model uses Envelope Signals . . 543
Example 8: Writing a Timed Data Flow Model that Overrides the
Characterization Frequency Propagation . 544
Example 9: Writing C++ Models that Control the Simulation 545
Example 10: Using MATLAB Generated C Libraries in C++ Models 549

C++ Code Generation . 553
Introduction . 553
Example: Using A Gardner Timing Recovery C++ Model in a Code
Generated System . 553

Subnetwork Recursion: Automatically Constructing Repetitive Data Flow
Schematics . 555

Introduction . 555
Example 1: Constructing the Fourier Series Approximation of a Square
Wave using Subnetwork Recursion . 556
Example 2: Calculating Factorial using Subnetwork Recursion 556

Cosimulation with SystemC . 557
Example 1: Setting Up the SystemCCosim Model 558
Example 2: Template SystemC Model and SystemC Datatypes 561
Example 3: Custom Parameters . 564
Example 4: Multirate Ports . 566
Example 5: Clock signals . 571

Measurement Automation . 574
Measurement Automation . 574
Getting Started with Measurement Automation . 574

Introduction . 574
A Brief Introduction to Keysight Command Expert Software 575
Use Tcpip to Control Instrument in MATLAB Script Equations 579

Using Command Expert to Create Custom Instrument Links 580
Introduction . 580
Before You Start . 581
A Brief Introduction to CommandExpertLink Part's Dialog 581
Steps to Configure CommandExpertLink Part to Upload Data from
Instrument(s) . 585
Notes . 588

Using Command Expert in MATLAB Script . 588
Introduction . 588
Create Control Sequence in Command Expert . 589
Use Command Expert Sequence in Equations Environment 590
Examples . 591

Using Waveform Sequencer Composer . 592
Using Waveform Sequencer Composer . 592

Verification Test Bench Tutorial . 601
General VTB Development Flow . 601
VTB Example . 601

Workspace Preparation . 601
DUT Configuration . 602
Workspace Verification . 603
SystemVueEngine Simulation . 604
Simulation Results Verification and Workspace Finalization 604
Workspace Publishing . 604

Tutorials 8

9 Tutorials

Tutorials

Simulation Control and Scripting

Libraries and Applications

RF Design

Hardware Design

Algorithm Design

Measurement Automation

Verification Test Bench Tutorial

Tutorials 10

Simulation Control and Scripting

Simulation Control and Scripting

In this tutorial section, you will learn how to control simulation from within the
SystemVue application and from external programs such as LabVIEW and MATLAB.

Controlling SystemVue from External Programs

Optimizing a Simulation

Using MATLAB Script For Sequence Control

Performing a Monte Carlo Analysis on a Design

Running a Yield Analysis on a Design

Sweeping a Simulation

Controlling SystemVue from External Programs

Controlling SystemVue from External Programs

You can automate SystemVue use using the COM interface together with the VB
scripting capabilities that are built into the product. The documentation for
scripting is available at .User's Guide > Using SystemVue > Scripts

Exploring the Workspace Using Visual Basic

Running Scripts using Visual Basic

Running a BER Analysis Controlled From LabVIEW, MATLAB, or C#

Exploring the Workspace Using Visual Basic

Exploring the Workspace Using Visual Basic

VBBrowser

The VBBrowser communicates to SystemVuethrough the COM interface. The
source code for the VBBrowser is located in
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\Visual
Basic\Browser\MainForm.vb"

The executable is available in
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\Visual
Basic\Browser\VBBrowser.exe"

The files VBBrowser.exe and Interop.GENESYS.dll were created following the
instructions found in ReadMe.txt located in the same directory. This application will
let you explore an opened workspace, with it, you can find the path to the items in
your workspace to use in your automation scripts.

http://edadocs.software.keysight.com/display/sv201608/Scripts

11 Tutorials

1.

2.

SystemVue Browser

The VBBrowser is used to browse objects in SystemVue. This is an interactive
program that allows a user to see what functions are available to call within the
script processor. The program communicates with one active instance of the
SystemVue program. The browser looks at the current workspace and retrieves
objects and items from it.

Running the VBBrowser

There are two ways to launch the VBBrowser

Run the VBBrowser while you have an instance of SystemVue running. If
multiple instances of SystemVue are open, the VBBrowser will attach to the
first instance.

Launch the VBBrower without SystemVue running. The VBBrowser will
launch as well as SystemVue.

If you load another workspace in SystemVue while the VBBrowser is
running it is best to click the Go To Root button to avoid errors. Clicking
the Refresh or Up button will throw an error and then load the root.

Contents of the VBBrowser

The workspace name reported at the root level of VBBrowser can be different
than the actual file name if the user has changed the file name manually. When
creating syntax using the workspace name, you may need to use the name of
the workspace file on the hard disk and not the name reported by the
VBBrowser.

General

Tutorials 12

1.

2.

3.

General

The Selected Item box contains the syntax for the script that you can execute by
clicking the Execute Method button.

The Context drop box contains three items

Application.Manager (default) Sets the Item List to the context of the
workspace tree.

Application.Menu Sets the Item List to the context of the current Menu Bar in
SystemVue

Application.StdMenu - Sets the Item List to the context of the standard Menu
Bar in SystemVue

Lists

Item List - The window contains a list of all the items found in the current context. If
nothing appears in the window you can click the Refresh button to refresh the
context. Clicking on an item in this list will show you a list of sub items. Note that
the sub items correspond to the items inside the opened workspace. Notice that as

13 Tutorials

you click items, the text in the selected item box changes. The first thing you
should see (in the default context) in the Item list is the name of the workspace(s)
that are loaded in SystemVue. In the example above you would see
Data Flow Template

as the first item on the list.

Variable List - The window contains a list of properties, variables, or parameters
that are associated with the current item. Items in this list can be called as a
property to an item.

Method List - The window contains a list of the methods that can be used with the
current item. Notice that by double clicking on a method the ExecuteScript window
pops up with current syntax of the method you have selected. This syntax is
generated from the Selected Item text box and the method you have clicked. This is
what would pop up if you double clicked the Save() method.

You can execute this one line script by clicking on OK. A script processor
window will not pop up in SystemVue, so you may not always know if it worked
or not. If you need to execute many lines it is suggested to use a script. The
ExecuteScript window is best used as a guide to get the correct syntax for
writing your own script.

Buttons

Up - The button sets the Item List to the parent item of the current Item List
window

Execute Method The button will bring up the ExecuteScript window that shows the
syntax for the current Selected Item and gives the option to run it or not.

Refresh - The button reloads the items in the three lists.

Go To Root - The button sets the Item List to the top most parent.

Tutorials 14

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

Example 1: Set a variable using the VBBrowser

In this example, you will control a SystemVue variable from the VBBrowser. We will
be using a similar technique in the C#, LabVIEW and MATLAB examples in the
following tutorials. To learn more about this example, see Introduction: SystemVue

.Eb/N0 Sweep for BER

Close all, but keep one SystemVue instance running on your PC.

Open the example "Comms\BER\QPSK_BER_Coded_Viterbi.wsv"

Open the equations.Equation1

Start VBBrowser.exe, located in your Examples directory:
"Tutorials\Simulation_Control_and_Scripting\Scripting\Visual
Basic\Browser\VBBrowser.exe", position this window so that you can see it
and the equations in SystemVue.Equation1

In the , you should see "QPSK_BER_Coded_Viterbi", double click on Item List
it and traverse to the EbN0 value (the first item you see in the is the Item List
WorkspaceVariables; once you double click on it, you will see its item list;
double click on VarBlock and then you will see the variable EbN0). The
VBBrowser should report that your selected item is "Application.Manager.
QPSK_BER_Coded_Viterbi.WorkspaceVariables.VarBlock.\[EbN0\].".

In the , click on . In the , double click on Variable List Data Method List Set
.(BSTR)

The VBBrowser will open an dialog. In this dialog, change ExecuteScript BSTR
to 8. As you are clicking the button in this dialog, look at the OK NDensity
Variable in . You will see it change as the new EbN0 is applied.Equation1

Example 2: Run a simulation using the VBBrowser

In this example, you will run a simulation using the VBBrowser using the variable
you set above. It is assumed that you have SystemVue and VBBrowser still open.

In the VBBrowser, click on the button. This will reset the path to Go To Root
the top.

In the , traverse to the Uncoded_QPSK_BER_Analysis analysis. The Item List
VBBrowser should report that your selected item is "Application.Manager.
QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Analysis.".

In the , double click on .Method List RunAnalysis()

The VBBrowser will open an dialog. In this dialog, click the ExecuteScript OK
button.

Running Scripts Using Visual Basic

http://edadocs.software.keysight.com/display/svss/Running+a+BER+Analysis+Controlled+From+LabVIEW+MATLAB+or+C+Sharp
http://edadocs.software.keysight.com/display/svss/Running+a+BER+Analysis+Controlled+From+LabVIEW+MATLAB+or+C+Sharp

15 Tutorials

1.

2.

Running Scripts Using Visual Basic

Running a Script from Microsoft Excel

Microsoft Excel has a Visual Basic for an Applications (VBA) engine that you can
use to script other applications that support a COM interface. In the case of
SystemVue, this means that a script can be written in Microsoft Excel that opens
SystemVue, does something such as load a workspace and run simulations,
collects data, and processes the data. For information on accessing the VBScript
development editor in Microsoft Excel, see your version of Excel's Help. For
Microsoft Excel 2010, see .Getting Started with VBA in Excel 2010

The global windows name for SystemVue's COM server is GENESYS. To use the
COM server SystemVue, you must register it with the Windows operating system by
name so that a script can access it (including run an instance of it). To register or
unregister the COM server refer toRegister COM Interface

The bitness of the Excel executable must match the bitness of the COM server.
For instance, you need to install 64-bit Excel to call 64-bit SystemVue.

The following code shows a simple script which simply opens an instance of
SystemVue:

Sub myScript()
 Dim comServer As Object ' Declare variable that
references our COM server
 Set comServer = CreateObject("Genesys.Application")
' Open an instance of the application
 comServer.Application.Visible = True ' By default
the application is hidden, we make it visible using this
 command
End Sub

The example instructions below are for Microsoft Excel 2010.

Example 1:

Create a VBA macro to run the Bluetooth example workspace In this example, you
will create a more involved VBA script which opens SystemVue, opens the example
workspace named "Comms\Bluetooth.wsv", runs a particular analysis that is
located in the workspace, gets data from the dataset, and imports the data into an
excel spreadsheet. # Open a new workbook in Microsoft Excel

Create a new Microsoft Excel VBA macro called , refer to RunBluetoothExample

the to assist in following the steps below.Getting Started with VBA in Excel 2010

Enabled the in Microsoft Excel.Developer Ribbon

Click on button in the .Macros Developer Ribbon

http://msdn.microsoft.com/en-us/library/ee814737.aspx
http://edadocs.software.keysight.com/display/sv201608/Calling+Scripts+From+External+Programs#CallingScriptsFromExternalPrograms-RegistertheSystemVueCOMInterface
http://msdn.microsoft.com/en-us/library/ee814737.aspx

Tutorials 16

3.

4.

1.

2.

In the , enter the new macro name Macro Dialog RunBluetoothExample

and hit the button.Create

Copy and paste the following code into the new macro:

 Dim comServer As Object ' Declare variable that
references our COM server
 Set comServer = CreateObject("Genesys.Application")
' Open an instance of the application
 comServer.Application.Visible = True ' By default
the application is hidden, we make it visible using this
 command
 Dim path As String
 comServer.Manager.FileOpenExample "Comms\Bluetooth.
wsv"
 path = comServer.Manager.GetExeDir()
 Set WsDoc = comServer.Manager.GetWorkspaceByIndex(0)
 WsDoc.SetEqnWorkingDir (path)
 WsDoc.Analyses.DF1.RunAnalysis
 S1 = WsDoc.Analyses.DF1_Data.Eqns.VarBlock.S1.
GetValue()
 Dim oXL As Excel.Application
 Dim oWB As Excel.Workbook
 Dim oSheet As Excel.Worksheet
 Dim oRng As Excel.Range
 Dim iNumQtrs As Integer
 Set oXL = Excel.Application ' Activate Excel
 oXL.Visible = True
 ' Set active Workbook
 Set oWB = oXL.Workbooks.Application.ActiveWorkbook
 ' Set active Sheet
 Set oSheet = oWB.ActiveSheet
 ' output first 2500 datapoints to excel
 For i = 0 To 2499
 oSheet.Cells(i + 1, 1).Value = S1(i)
 Next i
 Exit Sub
Err_Handler:
 MsgBox Err.Description, vbCritical, "Error: " &
Err.Number

Add the reference to the COM interface, by selecting Tools > References..
menu pick, and select GENESYS.
Note, if you don't see GENESYS - make sure you have registered the

.SystemVue COM interface

Run the macro by clicking on the green play button.

http://edadocs.software.keysight.com/display/sv201608/Calling+Scripts+From+External+Programs#CallingScriptsFromExternalPrograms-RegistertheSystemVueCOMInterface
http://edadocs.software.keysight.com/display/sv201608/Calling+Scripts+From+External+Programs#CallingScriptsFromExternalPrograms-RegistertheSystemVueCOMInterface

17 Tutorials

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Example 2:

Extend the VBA macro to extract additional data and plot the results In this
example, you will extend the macro above to extract S1, S2, S1_Time and S2_Time.
Additionally, you will create a simple GUI to run the macro and plot the results.

Edit the macro created in the prior example.RunBluetoothExample

Add commands to define and import S1_Time, S2, and S2_Time.

Add commands to define column names:

Column A: S1_Time

Column B: S1

Column C: S2_Time

Column D: S2

Add commands to copy the imported S1, S1_Time, S2, and S2_Time data
into the appropriate columns spreadsheet. Note, as we have added labels -
the data must start in row 2.

Verify your changes by running the macro.

Insert a line chart into Sheet1.Scatter

Right click on the chart and choose the command.Select Data...

Right click the button in the dialog, define:Add Select Data Source

Series Name: S1

Series X Values: =Sheet1!$A2:$A2501

Series Y Values: =Sheet1!$B2:$B2501

Right click the button in the dialog, define:Add Select Data Source

Series Name: S2

Series X Values: =Sheet1!$C2:$C2501

Series Y Values: =Sheet1!$D2:$D2501

Add a button to Sheet1, by clicking using menu in ribbon. Insert Developer
Have this button execute the .RunBlueToothMacro

Right click on the button and . Relabel button to Edit Text
RunBlueToothMacro.

Optional: Use in the ribbon to create a macro to Record Macro Developer
clear columns A-D. Add a button to run this macro and label it
ClearBluetoothData.

Running a Script from a Visual Basic Program

This example is similar to the previous two examples that use VBA in Microsoft
Excel. For this example, we use a standalone executable written in Visual Basic to
open the Comms/Bluetooth.wsv workspace, run the analysis, and extract and
display data. The solution to this example is in: Examples/Tutorials

Tutorials 18

1.

2.

3.

4.

5.

/Simulation_Control_and_Scripting/Scripting/Visual Basic/Visual Studio
/RunBluetoothExample.sln. To customize it, you can use Visual Studio Visual Basic

 (free from Microsoft).Express Edition

Example 3:

Run the Visual Basic program

Run the RunBluetoothExample.exe located at: Examples/Tutorials
/Simulation_Control_and_Scripting/Scripting/Visual Basic/Visual Studio
/RunBluetoothExample.exe.
The following window will be displayed, but without data.

Hit the button. This will launch SystemVue in the Run Bluetooth Example
background. If the SystemVue option has been checked then Visible
SystemVue will become visible once it has loaded.

Once SystemVue is loaded, the visual basic program calculates the analysis
, extracts the results from the dataset, and plots the data in a chart as DF1

seen above.

Clear the data using the button.Clear Bluetooth Data

Close or exit the SystemVue_Visual_Basic.exe. Notice that the instance of
SystemVue will be closed also.

Running a BER Analysis Controlled From LabVIEW MATLAB or C Sharp

http://www.microsoft.com/express/Downloads
http://www.microsoft.com/express/Downloads

19 Tutorials

1.

2.

3.

4.

5.

Running a BER Analysis Controlled From LabVIEW, MATLAB, or C#

In this section, we will review the COM interface examples that ship with
SystemVue. All except the last example in this section perform the following steps,
native in each environment:

Launch SystemVue

Open a workspace

Sweep a variable

Run a simulation

Retrieve the result

To simplify the use of the COM interface of SystemVue, we have created an
example NET DLL component, .SystemVueNET.dll

Introduction: SystemVue Eb/N0 Sweep for BER

In this section, we review the workspace used in the first three COM interface
examples. In each of these examples, we will be performing a bit error rate (BER)
analysis by sweeping the Eb/N0 parameter. We can implement this sweep natively
in SystemVue using a . The workspace example is located in parameter sweep
"Examples\Comms\BER\QPSK_BER_Coded_Viterbi.wsv". In this workspace, we will
be sweeping the Uncoded_QPSK_Design over multiple parameters Eb/N0 values.

Below is the schematic, note the four distinct sections, transmitter, channel,
receiver, and BER measurement:

As we perform the BER analysis for an Eb/N0 value, we calculate and modify the
value of noise density (NDensity) of the channel:

http://edadocs.software.keysight.com/display/sv201608/Parameter+Sweep

Tutorials 20

Below is the parameter sweep in SystemVue, we will be reimplementing this
control for the COM interface examples. If you hit calculate now, you can zoom into
the channel and see the NDensity as it is being updated for each sweep point.

Finally, after we calculate the Eb/N0 sweep in SystemVue, we can see the BER
waterfall plot:

To accomplish this sweep, we first define an equation block declaring that Eb/N0
will be swept:

% Eb/No = energy per bit / noise density

% EbN0 is defined in a separate equation block to enable
% updating the variable using external control. See the
% Automation section in the notes.

EbN0=tune(3)

21 Tutorials

In another equation block, we calculate the NDensity using the swept Eb/N0 value:

ModPower_dBm = 13 % modulator output power in dBm
SymbolRate = 51.2e+6
ModPower_W = 10^((ModPower_dBm-30)/10);
ModPower_Vrms = sqrt(50*ModPower_W);
ModCarrier = 300e6;
ModAmpSensitivity = ModPower_Vrms*sqrt(2);
SymbolTime = 1/SymbolRate
BitsPerSymbol = 2
% Eb/No = energy per bit / noise density
Eb_dBm = ModPower_dBm - 10*log10(SymbolRate *
BitsPerSymbol)
No_dBm = Eb_dBm - EbN0
NDensity = No_dBm

Note, since we are using the COM interface, we must declare Eb/N0 in a separate
equation block. By doing so, as we change Eb/N0 over COM, the second equation
block will be automatically calculated before the simulation is run.

In this example, we swept Eb/N0 and displayed the BER results. In the following
sections, we will use the SystemVue COM interface to implement the sweep in the
following environments:

Visual C#

Simplifying the COM Interface using NET DLL component

Performing the BER Analysis

LabVIEW

MATLAB

Visual C#

In this example, we use Visual C# to perform the Eb/N0 sweep. The executable is
provided at:
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\C#\QPSK_BER.
exe"

When you start it, you will see:

Tutorials 22

This custom application enables you to:

Hit the Run button to perform the sweep

Hide and unhide the visibility using the check box provided.

To see the sweep in action, unhide SystemVue, zoom into the channel, and watch
the NDensity parameter update as each sweep point is evaluated.

The Visual Studio solution is supplied in the "Examples\Scripting\C#\Visual Studio"
directory. To customize it, you can use (free Visual Studio 2010 C# Express Edition
from Microsoft).

Simplifying the COM Interface using NET DLL component

To help with all of the Eb/N0 examples, we supply an example NET DLL
component, named SystemVueNET.dll. This DLL allows us to simplify the
management of the COM interface for the QPSK BER examples implemented in , C#

, and .LabVIEW MATLAB

In this DLL, we define a class called SystemVue, the file located in
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\C#\Visual
Studio\SystemVueNET\SystemVue.cs":

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

http://www.microsoft.com/express/Downloads/

23 Tutorials

using Microsoft.Win32;

namespace SystemVueExample
{
 public class SystemVue
 {

 // Instance of SystemVue application
 GENESYS.Application m_app;

 // Constructor, called when a instance of this
class is created
 public SystemVue()
 {
 try
 {
 // Start a new instance of SystemVue
 m_app = new GENESYS.Application();
 }
 catch
 {
 // If we have a exception, the COM
server is probably not registered.
 // Register it by running SystemVue.exe
/regserver
 m_app = null;
 }

 }

 // Member boolean to track visibility
 bool m_bVisible = false;

 // Method to set/get Visible property of
SystemVue - by default SystemVue will start hidden
under COM control
 public bool Visible
 {
 get { return m_bVisible; }
 set
 {
 m_bVisible = value;
 if (m_app != null)
 {
 m_app.Application.Visible =
m_bVisible;
 }
 }
 }

 // Some external environments need a separate
method to set visibility
 public void SetVisible(bool bVisible)

Tutorials 24

 {
 Visible = bVisible;
 }

 // Destructor
 ~SystemVue()
 {
 // Close and save all workspaces
 try
 {
 for (int i = 0; i < m_app.Manager.
GetWorkspaceCount(); i++)
 {
 GENESYS.Workspace workspace = m_app.
Manager.GetWorkspaceByIndex(i);
 // COM interface does not support
quitting without saving, so save to temp file, and then
delete it
 string file = Path.
GetTempFileName();
 workspace.SaveAs(file);
 File.Delete(file);
 }
 }
 catch
 {
 }

 // Quit the application
 if (m_app != null)
 m_app.Quit();
 }

 // Run a VB script command
 public bool RunScript(string csScript)
 {
 bool bStatus = true;

 try
 {
 // Run a script, assuming Visual Basic
 m_app.Application.RunScript(csScript,
GENESYS.ScriptLanguage.genLangVBScript);
 }
 catch
 {
 bStatus = false;
 }

 return bStatus;
 }

 // Open a workspace, given the path

25 Tutorials

 public bool OpenWorkspace(string sPath)
 {
 string sCommand;

 sCommand = "OpenWorkspace(\"";
 sCommand += sPath.Replace('/', '\\'); //
SystemVue 2011.10 and earlier must have backslashes
 sCommand += "\")";

 return RunScript(sCommand);

 }

 public bool OpenExampleWorkspace(string sPath)
 {
 string sCommand;

 sCommand = "FileOpenExample(\"";
 sCommand += sPath.Replace('/', '\\'); //
SystemVue 2011.10 and earlier must have backslashes
 sCommand += "\")";

 return RunScript(sCommand);

 }

 private void SetAutoCalcOff(string sParamPath)
 {
 // See if this is a varblock and turn off
automation
 try
 {
 int iIndex = sParamPath.IndexOf(".
VarBlock"); // if not found, exception thrown and
caught below
 string sVarBlockPath = sParamPath.Remove
(iIndex);
 GENESYS.IItem equationBlock = GetItem
(sVarBlockPath);
 RunScript("autocalc=false\r\n" +
sVarBlockPath + ".SetProperty \"AutoCalc\", autocalc");
 }
 catch
 {
 // If not found, igore as it is not
equation block
 }
 }

 // Set a scalar double parameter
 public bool SetStringParameter(string
sParamPath, string sParamValue)
 {

Tutorials 26

 bool bSuccess = true;

 SetAutoCalcOff(sParamPath);

 bSuccess = RunScript(sParamPath + ".Set(
\"'" + sParamValue + "\")");

 return bSuccess;
 }

 // Set a scalar double parameter
 public bool SetParameter(string sParamPath, doub
le sParamValue)
 {
 bool bSuccess = true;

 SetAutoCalcOff(sParamPath);

 bSuccess = RunScript(sParamPath + ".Set("
+ sParamValue + ")");

 return bSuccess;
 }

 // Get data from dataset, assuming double
 public double GetData(string sDataName)
 {
 GENESYS.IItem item = GetItem(sDataName);

 double data = 0.0;

 if (item != null)
 {
 for (int i = 0; i < item.GetVarCount();
i++)
 {
 string itemName = item.GetVarName
(i);
 if (itemName == "Data")
 {
 data = (double)(((GENESYS.IItem)
item).GetVarValue(i));
 break;
 }
 }
 }

 return data;
 }

 // Find a item in a Genesys item
 public GENESYS.IItem GetItem(string sItemName)
 {

27 Tutorials

 GENESYS.IItem me = null;
 if (m_app != null)
 {
 me = (GENESYS.IItem)m_app.Manager;
 me = GetItem(me, sItemName);
 }
 return me;
 }

 // Find a item, given a path
 static GENESYS.IItem GetItem(GENESYS.IItem
parent, string sItemName)
 {
 GENESYS.IItem item = parent;

 string[] path = sItemName.Split('.');
 try
 {
 foreach (string itemName in path)
 {
 if (item != null)
 item = item.GetItemByName
(itemName);
 }
 }
 catch
 {
 item = null;
 }
 return item;
 }
 }
}

Performing the BER Analysis

In the Visual Studio solution, the QPSK_BER project defines the GUI and control for
the BER sweep. Most of the implementation of this application are in the
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\C#\Visual
Studio\QPSK_BER\QPSK_BER.cs" file. The RunAnalysis method (shown below)
performs the sweep. We use created in the previous section to SystemVueNET.dll
interface to the SystemVue COM interface.

public void RunAnalysis()
{
 // Create a new instance only if needed
 if (systemVue == null)
 {
 // Start a new instance of SystemVue
 systemVue = new SystemVueExample.SystemVue();

Tutorials 28

1.

2.

3.

4.

5.

6.

 // Open the workspace
 systemVue.OpenExampleWorkspace("Comms/BER
/QPSK_BER_Coded_Viterbi.wsv");

 systemVue.Visible = Visible;

 }

 // Sweep Eb/N0 -2 to 10 and calculate the BER
 for (int EbN0 = -2; EbN0 <= 10; EbN0++)
 {
 // Set the NDenstity parameter
 systemVue.SetParameter("QPSK_BER_Coded_Viterbi.
WorkspaceVariables.VarBlock.[EbN0]", EbN0);

 // Run the analysis
 systemVue.RunScript(
 "QPSK_BER_Coded_Viterbi.Analyses.
Uncoded_QPSK_BER_Analysis.RunAnalysis");

 // Read BER from dataset
 double BER = systemVue.GetData(
 "QPSK_BER_Coded_Viterbi.Analyses.
Uncoded_QPSK_BER_Data.Eqns.VarBlock.B11_BER");

 QPSK_BER.SimulationResult newSim = new QPSK_BER.
SimulationResult();
 newSim.BER = BER;
 newSim.EbN0 = EbN0;
 newSim.Test = BER > .1 ? "Fail" : "Pass";
 m_SimulationResults.Add(newSim);
 }
}

Example 1: Run the C# QPSK_BER program

In this example, you will run the QPSK_BER program that was installed with
SystemVue. By running this, you will be able to observe how SystemVue can be
controlled by an external program.

Under your SystemVue install directory, open the directory:
Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\C#

Double click on QPSK_BER.exe

Click on the button, it will take a few seconds for SystemVue to load. As Run
SystemVue is running under COM control, the SystemVue GUI will be hidden.

After the run is complete, uncheck the checkbox .Hide SystemVue

Open the design and zoom into the Designs/Uncoded_QPSK_Design Noise
 part so you can easily see the parameter. The C# program Density NDensity

modifies the Eb/N0 value which is used to calculate the variable.NDensity

29 Tutorials

6.

7.

8.

9.

1.

2.

a.

b.

3.

a.

b.

c.

4.

5.

6.

a.

b.

c.

7.

Arrange the SystemVue and the windows so you can SystemVue BER Tester
see both on your screen.

Click the button in the .Clear Results SystemVue BER Tester

Click the and observe the parameter update as the sweep Run NDensity
points are calculated.

Open the and equations in the workspace, arrange the EbN0 Equation1
windows so you can see both. Click again in the . Run SystemVue BER Tester
To enable this control, the value is required to be set in a different set EbN0
of equations from where it is used. The property of Auto Calculate Equation1
equations forces the reevaluate of as the value is changed by NDensity EbN0
the external program.

Example 2: Create a Custom C# Console Application

In this example, you will build a custom C# program that will run the BER example
on the command line (also referred to as a). To customize this, Console Application
you will need to have installed.Visual Studio C# Express Edition

Copy the
Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\C#\Visual
Studio

In the copied directory, double click on . In the Solution SystemVueNET.sln
Explorer tab, you will see two projects:

QPSK_BER: Defines BER sweep and BER tester GUI.

SystemVue_NET: Defines a simple utility DLL that controls the
SystemVue COM automation layer. You will be using the DLL in the
standalone executable.

To build and run the example GUI:BER Tester

Right click on project in the and select QPSK_BER Solution Explorer
.Debug > Start New Instance

Explore the and the QPSK_BER/QPSK_BER.cs SystemVueNET
 files to see how they work by setting breakpoints in the /SystemVue.cs

 method in .RunAnalysis() QPSK_BER.cs

After you are finished exploring, exit the BER tester GUI.

Now you will create a new standalone executable that can run the BER test
as a command line executable.

In the , right-click on in the Solution Explorer Solution 'SystemVueNET'
 and select .Solution Explorer Add > New Project...

In the dialog:Add New Project

Select the project.Visual C# > Windows > Console Application

Set the name of your project to .My_QPSK_BER

Click the button.OK

http://www.microsoft.com/express/Downloads/

Tutorials 30

7.

8.

9.

10.

11.

12.

13.

In the , right-click on the new project and Solution Explorer My_QPSK_BER
select .Add Reference...

In the dialog, select the tab and select the Add Reference Projects
 project. This will allow you to call into the methods in the SystemVueNET

methods of the library.SystemVueNET

Edit the file in the newly created project.Program.cs My_QPSK_BER

In the method, add the following code:Main

// Start a new instance of SystemVue
SystemVueExample.SystemVue systemVue = new
SystemVueExample.SystemVue();

// SystemVue by default will come up hidden, unhide
SystemVue
systemVue.Visible = true;

// Wait for user to hit a key to exit the program
Console.WriteLine("Press any key to exit...");
Console.ReadKey();

In the , right-click on the new project and Solution Explorer My_QPSK_BER
select . This will set this project to be the default Set as StartUp Project
project built and debugged by Visual Studio.

Hit the function key to compile and run . (Alternatively, you F5 My_QPSK_BER
can right-click on the project and select My_QPSK_BER Debug > Start New

.) SystemVue will be started and unhidden by the C# code. The Instance
application will then wait until you press a key to exit.

Add the following code to the method, after the line that unhides Main

SystemVue.

// Open the workspace
systemVue.OpenExampleWorkspace("Comms/BER
/QPSK_BER_Coded_Viterbi.wsv");

// Sweep Eb/N0 -2 to 10 and calculate the BER
for (int EbN0 = -2; EbN0 <= 10; EbN0++)
{
 // Set the NDenstity parameter
 systemVue.SetParameter("QPSK_BER_Coded_Viterbi.
WorkspaceVariables.VarBlock.[EbN0]", EbN0);

 // Run a simple VB command in SystemVue to run
the appropriate analysis
 systemVue.RunScript("QPSK_BER_Coded_Viterbi.
Analyses.Uncoded_QPSK_BER_Analysis.RunAnalysis()");

31 Tutorials

13.

14.

 // Read BER from dataset
 double BER = systemVue.GetData("QPSK_BER_Coded_V
iterbi.Analyses.Uncoded_QPSK_BER_Data.Eqns.VarBlock.
B11_BER");

 string result = "Eb/N0 = " + EbN0 + "\tBER = "
+ BER;
 Console.WriteLine(result);
}

Hit the function key to compile and run .F5 My_QPSK_BER

LabVIEW

In this example, we use LabVIEW to implement the BER analysis.

To run it, you will need to install LabVIEW Run-Time Engine available free from
National Instruments.

As in the previous example, we use to manage the SystemVue SystemVueNET.dll
COM interface.

The LabVIEW vi is defined in the
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\LabVIEW\QPSK_BER.
vi" file. You will need LabVIEW to open the vi file.

The LabVIEW application provides the implementation for:

Starting SystemVue and loading the workspace:

Tutorials 32

1.

2.

3.

4.

Toggling the visibility of SystemVue:

Sweeping over the Eb/N0 and displaying the resultant BER:

To see the full LabView implementation, click on the image below:

Note, LabVIEW 2011 does not automatically recognize .NET DLLs compiled with VS
2010. To use .NET DLLs compiled with VS 2010, a .config file must be supplied. For
more information see " ".Loading .NET 4.0 Assemblies in LabVIEW

Example 3: Run the compiled LabVIEW Run-Time QPSK_BER program

Double click on the LabVIEW vi file located in your SystemVue install
directory at:
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\LabVIEW\QPSK_BER.
vi."

Open the Operate tab and choose the Change to Run Mode.

Open the Operate tab again and choose Run.

http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/configuring_clr_version/

33 Tutorials

4.

5.

Optionally, rerun the example with SystemVue unhidden by running the steps
in the .prior C# example

In the "
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\LabVIEW\"
directory, double clock on the file. This image shows you QPSK_BER_vi.png
the implementation of the LabVIEW control of SystemVue, compare the
LabVIEW implementation with the C# code. You can also view RunAnalysis
the LabVIEW implementation by open the Window tab and click Show Block
Diagram.

MATLAB

In this example, we use MATLAB to implement the BER analysis. The MATLAB
script is defined in the
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\MATLAB\QPSK_BER.
m" file. When you run the script, you will see:

As in the previous example, we use created above to interface to SystemVueNET.dll
the SystemVue COM interface.

% Find the directory path where this file is located
pathToDLL = fileparts(mfilename('fullpath'));

Tutorials 34

% Load the assembly in this directory (source code in
C# example area)
%NET.addAssembly([pathToDLL '/SystemVueNET.dll']);

% Open SystemVue and the workspace that we are
interested in
if exist('systemVue') == false
 % Start a new instance of SystemVue
 systemVue = SystemVueExample.SystemVue();

 % Hide SystemVue
 systemVue.Visible = false;

 % Open the workspace
 systemVue.OpenExampleWorkspace('Comms/BER
/QPSK_BER_Coded_Viterbi.wsv');
end

% Index into results matrix
i = 1;

% Sweep Eb/N0 -2 to 10 and calculate the BER
for j =-2:10,

 % Set EbN0
 EbN0(i) = j;
 systemVue.SetParameter('QPSK_BER_Coded_Viterbi.
WorkspaceVariables.VarBlock.[EbN0]', EbN0(i));

 % Run the analysis
 systemVue.RunScript('QPSK_BER_Coded_Viterbi.
Analyses.Uncoded_QPSK_BER_Analysis.RunAnalysis');

 % Read BER from dataset
 data = systemVue.GetData('QPSK_BER_Coded_Viterbi.
Analyses.Uncoded_QPSK_BER_Data.Eqns.VarBlock.B11_BER');
 BER(i) = data;

 % Display NDensity and BER on the console window
 disp(['Eb/N0 = ' num2str(EbN0(i)), ' BER = ',
num2str(BER(i))]);

 % Increment index into results matrix
 i = i+1;

end

%plot the results
semilogy(EbN0,BER)
xlabel('Eb/N0')
ylabel('BER')
title('Uncoded QPSK BER Analysis')

35 Tutorials

1.

2.

3.

4.

1.

1.

2.

1.

Example 4: Run the MATLAB QPSK_BER program

Start MATLAB.

Drag and drop the QPSK_BER.m file located in the SystemVue install
directory at
"Examples\Tutorials\Simulation_Control_and_Scripting\Scripting\MATLAB\"
into the MATLAB . This will run the BER test.Command Window

Double click the QPSK_BER.m file to open it in an editor, compare the
MATLAB implementation with the C# code.RunAnalysis

Optionally, rerun the example with SystemVue unhidden by running the steps
in the .prior C# example

This example requires MATLAB 2011a or higher to run because SystemVueNET.
dll is built using .NET 4.0.

Optimizing a Simulation

Optimizing a Simulation

This section has a series of tutorials that demonstrate how to optimize designs
created in Spectrasys or Data Flow.

Optimizing Spectrasys Designs

Intermod Optimization

Optimizing Data Flow Designs

Peak to Average Power Ratio Optimization

EVM Optimization

Intermod Optimization

In this tutorial example, you will create and perform an optimization on path
measurements in Spectrasys. An optimization tunes variables and recalculates one
or more analyzes to evaluate data and determine if a set of goals is met. Any path
measurement in Spectrasys can be optimized. The purpose of the example below is
to reduce the intermod channel power (TIMCP3) while maintaining the cascaded
gain (CGAIN).

Open the workspace under <SystemVue OptimizationUsingSpectrasys.wsv
Installation Directory>\Examples\Tutorials\Simulation_Control_and_Scripting.

Creating a New Optimization

Create a new optimization by adding a new item and then selecting Add
 from the Evaluations submenu.Optimization...

Tutorials 36

2.

1.

2.

For the optimization to work, it must have at least one analysis to run. The
analyzes that the optimization can run are shown on the General tab. An
optimization can run multiple analyzes, but in this example only one analysis
is available. Select the System1 analysis.

Creating Goals

To use a Spectrasys path measurement as an optimization goal, you must use the
extractsweptdata function to get the measurement at a particular node.

Set the to since we will create our Default Dataset System1_Data_Path1
goals from measurements in this dataset.

Using the extractsweptdata data function, define a measurement that will
return the TIMCP3 value at the output node of the design (node 2). The
syntax should look like the following:

extractsweptdata(TIMCP3, NodeNames, '2')

This function will return the TIMCP3 measurement at the node 2 in Path1.

37 Tutorials

2.

3.

4.

5.

6.

7.

For this example, we want TIMCP3 at the node 2 to be less than -95 dBm. To
enter this as a goal select the less than operator (), enter -95 as the Op Target
, and set the to (dBm).Target Units

Set the weight to 1 and leave the min and max values blank.

The first goal should now look like the following:

The second goal is to hold the cascaded gain (CGAIN) to 10 dB. You do not
want to reduce intermods at the cost of reducing the cascaded gain, so
holding the cascaded gain is a more important priority. For optimization,
goals with higher weights are considered more important. Try creating the
next goal for the CGAIN measurement.

The second goal might look like the following:

Note the error is calculated using current values of the Current
measurements.

Enter 1.5 as the value. When running the Stop if the Total Error is less than
optimization the error will be recalculated between each iteration, Current
and the error will be updated whenever the current error is an Best
improvement. Optimization will stop once the error is less than 1.5.Best

There is no maximum iteration limit. Optimization will continue to run so
long as the stop condition is not met or until the user selects .Stop

Tutorials 38

1.

2.

Selecting Variable to Tune

Tuned variables must exist for Optimization to work. Refer to for Tuning Variable
how to create a tuned variable. In optimization properties on the tab, we Variables
define which tuned variables the optimizer will use. If no tuned variables are
specified, then the optimizer will use all available tuned variables by default.

In this example, four tuned variable have been defined in the equation block

called . Select the button to load Equation
the tuned variables into the optimization variables tab. These are the
variables that will be tuned to achieve the optimization goals.

By default, the range for each tuned variable is . To 0 < variable < infinity
reduce optimization time, it is good practice to define a range for each
variable. Set the RF1_GAIN and RF2_GAIN max value to 25. Set the max
value for RF1_P1DB and RF2_P1DB to 15 and 30 respectively.

http://edadocs.software.keysight.com/display/sv201608/Tuning+Variables

39 Tutorials

2.

Selecting the Optimization Method

To setup the optimization gradient method and set the pattern options, open the
optimization properties and select the Method tab.

Tutorials 40

1.

2.

For this example, the gradient method has been set to the default method of
Automatic. The Automatic gradient method cycles through all available gradient
algorithms until no further improvement is possible. The delta, which is the amount
the tuned variables, will be perturbed, has been set to 1e-3. The delta can be
increased if the optimization converges too slowly, or decreased it if the
optimization fails to improve. The delta should fall within the range 0.1 > delta > 1e-
8. For this example, the option Allow Multivariate Optimization has been turned on.
All other options have been left as their default setting. For more information on the
other options on this page, see .Method Tab

Running the Optimization

To run the Optimization, right click the optimization on the workspace tree
and select .Run (Calculate)

Notice during the optimization in the Simulation Status window reports the
 error and error. If the error is less than the stopping Best Current Best

condition defined in the tab, the optimization will stop.Goals

If an optimization is manually stopped, optimization will do a final
calculation using the tuned values for the error solution.Best

http://edadocs.software.keysight.com/display/sv201608/Creating+an+Optimization#CreatinganOptimization-Method(Advanced)

41 Tutorials

2.

3.

4.

5.

Optimization reaches an error of about 1.49 after about 30 seconds (time will
vary per computer). Open the System1_Data_Path1 dataset and look at the
CGAIN and TIMCP3 variables to confirm that the optimization has produced
expected results. CGAIN is approximately equal to 10 dB, and the TIMCP3 is
-93.5 dBm. The value -93.5 is not below the goal we original defined, but
because we set the stopping error condition to 1.5 this is acceptable.

On completion, the tuned values for the best error are calculated. View the
tuned window or equation block to see that the tune variables have changed.

View the simulation log to see information about the optimization run.

Tutorials 42

5.

1.

2.

3.

4.

For more information, refer to the .Optimization

Peak to Average Power Ratio Optimization

This tutorial example shows how to perform an optimization for a Data Flow design.
The optimization setup is using one goal and one variable.

Open the example <SystemVue Installation
Directory>\Examples\Tutorials\Simulation_Control_and_Scripting\OptimizationUsingDataFlow.
wsv

Open in the folder. This design generates a QPSK Design1 1. PeakToAverage
signal with a symbol rate of 0.5 MHz sampled at 4 MHz.

Run and open the Equations page to Design1 Analysis PostProcessingEqns1
see what the peak to average power ratio is (variable). PeakToAverageRatio
The current system settings result in a peak to average power ratio of 5.46
dB. This may be too high for a power amplifier that may be connected to the
output of the modulator so our goal is to set up an optimization to reduce
the peak to average power ratio to less than 3 dB. The variable we are going
to vary is the raised cosine filter factor.RollOff

http://edadocs.software.keysight.com/display/sv201608/Optimization

43 Tutorials

4. Right-click the folder and select > > 1. PeakToAverage Add Evaluations Add
.Optimization

In the tab, select in the the General Design1 Analysis Analyzes to calculate
area.

In the tab, set to [Equations] and in the Goals Default Dataset or Equations
grid below add the measurement with a target of < 3.PeakToAverageRatio

Tutorials 44

4.

In the tab, press the button. This will populate Variables Get Tuned Variables
the grid with all tuned variables (tuned variables are part parameters that
have their checkbox checked or variables in Equations pages that are Tune
assigned using the operator; see Equations tab of). Uncheck =tune Design1
the checkboxes next to and . Finally define the A1.dBc1out Design2.RollOff
Min and Max values for .Design1.RollOff

45 Tutorials

4.

5.

6.

7.

1.

Leave everything in the tab in its default state and press the Method OK
button to apply the changes you made.

Now run the optimization by right clicking on the item on the Optimization1
workspace tree and selecting . The optimizer starts and Run (calculate now)
after a few seconds, it achieves the goal of 3 dB or less peak to average ratio.
Open the Equations page and verify that the PostProcessingEqns1

 is less than 3. The value should be close to 2.576. If you PeakToAverageRatio
open and zoom in the filters area, you will see that the value of Desing1

 factor that achieved this 2.576 dB peak to average ratio is 0.773 (you RollOff
can also see this value in the tab of).Equations Design1

The factor of 0.773 gave us almost half a dB of safety guard from our RollOff
3 dB target. However, the higher value of factor results in higher RollOff
bandwidth for the output signal. Let's try to reduce the factor but still RollOff
meet the peak to average 3 dB target.

Double click on and in the tab add a second goal Optimization1 Goals
defined by > 2.75 with the weight of 1. Run the PeakToAverageRatio
optimizer again and after it completes observe the peak to average ratio in

 (2.89) and the factor (0.709).PostProcessingEqns1 RollOff

EVM Optimization

This tutorial example shows how to perform an optimization for a Data Flow design.
The optimization setup is using one goal and one variable.

Tutorials 46

1.

2.

3.

4.

Open the example <SystemVue Installation
Directory>\Examples\Tutorials\Simulation_Control_and_Scripting\OptimizationUsingDataFlow.
wsv

Open in the folder. This is the same system as in (it Design2 2. EVM Design1
generates a QPSK signal with a symbol rate of 0.5 MHz sampled at 4 MHz)
with the addition of a non-linear amplifier at the output of the modulator.

Run and observe the EVM (variable) in Design2 Analysis AmpOut_EVM_RMS
the dataset . The measured EVM is 7.6%. Let's set up an Design2_Data
optimization to reduce EVM to less than 3% by varying the amplifier's

 parameter.dBc1out

Right-click on the folder and select > > 2. EVM Add Evaluations Add
.Optimization...

In the tab, select in the area.General Design2 Analysis Analyzes to calculate

47 Tutorials

4.

In the tab, set to and in Goals Default Dataset or Equations Desing2_Data
the grid below add the measurement with a target of < AmpOut_EVM_RMS
3.

Tutorials 48

4.

In the tab, press the button. This will populate Variables Get Tuned Variables
the grid with all tuned variables (tuned variables are part parameters that
have their checkbox checked or variables in Equations pages that are Tune
assigned using the operator; see Equations tab of). Uncheck the =? Design1
checkboxes next to and . Finally define the Design1.RollOff Design2.RollOff
Min and Max values for .A1.dBc1out

49 Tutorials

4.

5.

Leave everything in the tab in its default state and press the Method OK
button to apply the changes you made.

Now run the optimization and after it completes open the dataset
 and verify that the is less than 3%. The Desing2_Data AmpOut_EVM_RMS

value should be close to 2.0%. If you open and zoom in the amplifier Desing2
area, you will see that the value of parameter that achieved the dBc1out
desired EVM is 1.546 W.

Using MATLAB Script For Sequence Control

Overview

Many applications require running multiple simulations sequentially. For example,
in an LTE Bit Error Rate (BER) measurement over a device, one simulation can
generate waveform(s) that will be downloaded into RF Signal Synthesizer(s) to
modulate the RF signals that will stimulate the device. Another simulation will then
use measurement equipment such as the Keysight Technologies MXA's to capture
the output RF signal from the device and feed the measured data back into the
simulation to be demodulated for BER analysis.

Furthermore, in order to characterize the device's performance, it might be
necessary to adjust certain settings of some instruments several times and make
the measurements after each instrument adjustment. For example, it might be
necessary to change a DC bias level and see how the BER is impacted by it.

These are the applications where sequence control can be used.

Tutorials 50

SystemVue provides a powerful and flexible sequence control mechanism that is
based on .MATLAB scripting

Refer to on the typical way of controlling Using Command Expert In MATLAB Script
instrument from environment. For LXI-compliant MATLAB Script scripting
instruments, you can alternatively .use Tcpip

A Simple Sequence

In the above example, there are two simulations:

DF_Gen_Waveform(Waveform Generation) that performs a Data Flow
over the designSimulation Waveform Generation(Schematic)

DF_Meas_BER(Measure BER) that performs a over the Data Flow Simulation
 designMeasure BER (Schematic)

The critical built-in functions used are:MATLAB Script

runanalysis - executes the specified Data Flow Simulation

getvariable - gets the simulation result data

Obviously, the BER result is stored in a variable named inside MeasuredBER_BER
the simulation results of .DF_Meas_BER_Data(DF_Meas_BER)

Notice that the page, i.e. the Sequence Control ~ A MATLAB Script Equation
script, is located at the same level on the workspace tree as the workspace (i.e.
project) name.

How to Run the Sequence

You can use either of the following two ways to run the sequence (the sequence
 page must be open):MATLAB Script Equation

click the triangle button (the 4th icon) on the second toolbarGREEN

click the button next to the Equation editor areaGo

http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Equations

51 Tutorials

Example of a more Advanced Sequence

In the following sequence, we will vary the DC bias (provided by an LXI compliant
DC supply), measure the BER at each of the different bias levels, and finally put the
measured BER results into the simulation results.
The additional function used in this example are:MATLAB Script

setvariable - brings the value stored in a variable into the measurement
results storage area (i.e.) of the simulationData Set

num2str - converts a number to a string

fprintf- writes a string to the opened tcpip port

The use of the operation to concatenate the strings when []
creating the command stringdcCmdStr

How the accumulated BER results are stored in the myBers
variable and how this variable is with the operator transposed '
when calling on the last line.setvariable(...)

% 5 DC Levels starting at 3.5V at a step of 0.5V
DCLevels = (3.5:0.5:5.0);

% Number of DC's
numDCs = length(DCLevels);

% Place holder for the 5 BER's to be measured
myBers = zeros(1, numDCs);

% Generate modulated RF signals
runanalysis('DF_Gen_Waveform');

% Create tcpip communication with DC supply
dcSply = tcpip('111.222.333.444', 5025);
fopen(dcSply);

% Loop the DC levels and make the measurement
% at each level
for idx = 1:1:numDCs
 dcCmdStr = [':VOLT ' num2str(DCLevels(idx))];
 fprintf(dcSply, dcCmdStr);
 % make sure the DC is settled
 fprintf(dcSply, '*OPC?');
 statusRes = fgets(dcSply);

 % Measure BER at this DC bias
 runanalysis('DF_Meas_BER');

 % Get the measured BER and store it away

http://edadocs.software.keysight.com/display/sv201608/Equations

Tutorials 52

1.

1.

1.

2.

3.

 myBers(idx) = getvariable('DF_Meas_BER_Data', 'Measu
redBER_BER');
end

% Now close communication with DC supply
fclose(dcSply);

% Now bring the stored 5 BER's into the simulation
results
% and name the variable AllBers
setvariable('DF_Meas_BER_Data', 'AllBers', myBers');

Performing a Monte Carlo Analysis on a Design

Performing a Monte Carlo Evaluation on a Design

This section has a series of tutorials that demonstrate how to run a Monte Carlo
evaluation on designs created in Data Flow or Spectrasys.

Monte Carlo for Data Flow Designs

Monte Carlo Data Flow Example

Monte Carlo for Spectrasys Designs

Monte Carlo Spectrasys Example

Monte Carlo Data Flow Example

This tutorial example shows how to perform a Monte Carlo evaluation on a Data
Flow design.

Open the example <SystemVue Installation
Directory>\Examples\Tutorials\Simulation_Control_and_Scripting\MonteCarloForDataFlow.
wsv

Open in the folder. This design generates a QPSK Design1 1. PeakToAverage
signal with a symbol rate of 0.5 MHz sampled at 4 MHz.

53 Tutorials

3.

4.

Run and open the Equations page to Design1 Analysis PostProcessingEqns1
see what the peak to average power ratio is (variable). PeakToAverageRatio
The current system settings result in a peak to average ratio of 3.95 dB. With
a Monte Carlo simulation, you can see how a certain measurement varies
when we statistically vary a system parameter. In this example, we are going
to vary (based on a uniform distribution from 0 to 1) the raised cosine filter

 factor and see how the peak to average power ratio is affected.RollOff

Right-click on the folder and select > > 1. PeakToAverage Add Evaluations
.Add Monte Carlo ...Evaluation

In the tab, select under .General Design1 Analysis Analyses to calculate

In the tab, set to [Equations] Measurements Default Dataset or Equations
and in the grid below add the measurement.PeakToAverageRatio

Tutorials 54

4.

In the tabVariables

Press the button. This will populate the grid in Get Tuned Variables
the top left area with all tuned variables (tuned variables are part
parameters that have their checkbox checked or variables in Tune
Equations pages that are assigned using the operator; see =tune
Equations tab of).Design1

Select each of the rows with and and A1.dBc1out Design2.RollOff
press the button to remove them.Remove

Select the remaining row (where factor is defined) Design1.RollOff
and set its distribution (top right corner) to . Uncheck the Uniform Use

 checkbox. Now define by how much the variable will Percentages (%)
be perturbed (down and up) from its nominal value (shown in the top
right area just above the drop-down menu). For our Distribution
example the nominal value of is 0.5 so in order to Design1.RollOff
perturb it based on a uniform distribution between 0 and 1, we need
to set the field to 0.5 and the field to 0.5. We can also set Down Up
the and (this applies more to distributions that Min Max Hard Limits
can generate arbitrarily big magnitude values like the , , Normal Beta

).Lognormal

55 Tutorials

4.

5.

6.

Press the button to apply the changes you made. Now we are ready to OK
run the Monte Carlo analysis. Right click on and select MonteCarlo1 Run

. A dataset is generated.(calculate now) MonteCarlo1_Data

It is a good idea to check whether we have a good distribution for the
perturbed variable . To do this, open the dataset Design1.RollOff

, right click on the variable and select MonteCarlo1_Data Settings Add to
 > . In the window that Graph New Graph Series Wizard... Graph Series Wizard

opens select in the area and then press Histogram Type of Series Selected
the button. In the window change the OK MonteCarlo1_Settings Properties
equation in the column from histogram(Settings) to histogram(Variable
Settings, 10, 0, 1). In the tab, uncheck the checkbox and Y-Axis Auto-Scale
set the and values to 0 and 20 respectively. Finally, press the Min Max OK
button. A histogram of the perturbed variable is created.Design1.RollOff

Tutorials 56

6.

7.

8.

9.

10.

As you can see, the value of 0 (in the tab of Random Seed General
) does not generate a good distribution for 100 runs (see MonteCarlo1

 field in the).Number of Samples General tab of _MonteCarlo1

Try a few different values until you get a good distribution. The Random Seed
higher the number of runs () the more likely you will get a Number of Samples
good distribution for an arbitrary seed value. The 4351, seems Random Seed
to give a reasonably good uniform distribution.

Now we are ready to look at the results. Open the MonteCarlo1_Data
dataset, right-click on the variable and select PeakToAverageRatio Add to

 > . This creates a plot of the value Graph New Graph PeakToAverageRatio
versus the index of the 100 runs we performed.

You can examine this graph for any extreme values, see which run produced
them (move the mouse over the point in the graph and the pop up will show
the independent and dependent values; the independent value is the run
index), and go back in the dataset to find out what the value of the perturbed
variable (variable) was for that run.Settings

57 Tutorials

10.

11.

1.

2.

3.

Now let's create a histogram of the values. Double-click PeakToAverageRatio
the graph and change the equation in the PeakToAverageRatio Variable
column from PeakToAverageRatio to histogram(PeakToAverageRatio, 10).
In the tab, uncheck the checkbox and set the and Y-Axis Auto-Scale Min Max
values to 0 and 20 respectively. Finally, press the button. The histogram OK
of values is created.PeakToAverageRation

By examining this histogram you can identify sensitive areas in your design,
that is, areas where small variations in the design variable Desing1.RollOff
can cause large changes in the systems behavior (PeakToAverageRatio
measurement).

Next we will set up a Monte Carlo analysis for an EVM simulation.

Open in folder . This design generates a 16-QAM signal with Design2 2. EVM
0.25 MHz symbol rate sampled at 2 MHz.

Run and observe the variable in the Design2 Analysis AmpOut_EVM_RMS
 dataset. The current system settings result in an EVM of Design2_Data

3.278%.

Tutorials 58

3.

4.

Now let's set up a Monte Carlo simulation to see how EVM varies when we
vary the amplifiers parameter (based on a uniform distribution from dBc1out
0.5 W to 2 W).

Right-click on the folder and select > > 2. EVM Add Evaluations Add Monte
.Carlo Analysis...

In the tab, select in the area General Design2 Analysis Analyses to calculate
and set to 12345.Random Seed

In the tab, set to Measurements Default Dataset or Equations Design2_Data
and in the grid below add the measurement.AmpOut_EVM_RMS

59 Tutorials

4.

In the tabVariables

Press the button. This will populate the grid in Get Tuned Variables
the top left area with all tuned variables (tuned variables are part
parameters that have their checkbox checked or variables in Tune
Equations pages that are assigned using the operator; see =?
Equations tab of).Design2

Select each of the rows with and and Design1.RollOff Design2.RollOff
press the button to remove them.Remove

Select the remaining row (where is defined) and set its A1.dBc1out
distribution (top right corner) to . Uncheck the Uniform Use

 checkbox. Now define by how much the variable will Percentages (%)
be perturbed (down and up) from its nominal value (shown in the top
right area just above the drop-down menu). For our Distribution
example the nominal value of is 1 so in order to perturb it A1.dBc1out
based on a uniform distribution between 0.5 and 2, we need to set the

 field to 0.5 and the field to 1. We can also set the and Down Up Min
 (this applies more to distributions that can generate Max Hard Limits

arbitrarily big magnitude values like the , ,).Normal Beta Lognormal

Tutorials 60

4.

5.

6.

7.

Press the button to apply the changes you made and run the Monte Carlo OK
analysis (right-click on it and select).Run (calculate now)

When the analysis completes, open the dataset, right-MonteCarlo2_Data
click on the variable and select > AmpOut_EVM_RMS Add to Graph New

. In the window that opens select Graph Series Wizard... Graph Series Wizard
 in the area and then press the button. Histogram Type of Series Selected OK

In the window go to the MonteCarlo2_AmpOut_EVM_RMS Properties Y-Axis
tab, uncheck the checkbox and set the and values to 0 Auto-Scale Min Max
and 40 respectively. Finally, press the button. A histogram of the OK

 values is created.AmpOut_EVM_RMS

61 Tutorials

7.

1.

2.

3.

By examining this histogram you can identify sensitive areas in your design,
that is, areas where small variations in the design variable can dBc1out
cause large changes in the systems behavior (AmpOut_EVM_RMS
measurement).

Monte Carlo Example (Receiver Monte Carlo.wsv)

This example illustrates how a Monte Carlo evaluation is coupled with parameters
statistics to determine the overall system performance of a basic receiver. The
system parameters that will be examined are Cascaded Gain and Cascaded Noise
Figure.

For this tutorial example, click Help / Open Example in SystemVue and open
the Tutorials\Simulation_Control_and_Scripting\Receiver Monte Carlo.wsv
workspace.

Create a schematic.

Create a System Analysis with a Path
The Monte Carlo analysis controls another analysis. In this case, it is a
system analysis. Since the path measurements will be used in the Monte
Carlo analysis a path must be added also. See Getting Started with

 for additional information on adding a system analysis and a Spectrasys
path.

Create variables that the Monte Carlo analysis will modify.
Tuned variables are needed for the Monte Carlo analysis. A tuned variable
can be created by checking the check-box for the given part Tune
parameter.

In the schematic shown above the tuned variables are shown in .teal
A summary of all tuned variables is shown in the tune window.

Tutorials 62

3.

4.

5.

Assign statistical limits and distributions to variables as desired.
Each tuned variable can have a particular statistical distribution assigned to
it. See Parameter Statistics for additional information.
The tab can be accessed by clicking the Parameters 'Advanced Options...'

button () on the Part Parameters page. The
following image depicts the statistical configuration for the LNA.

Create a Monte Carlo analysis.

Set the general information

http://edadocs.software.keysight.com/download/attachments/40714586/Parameter%20Statistics.png?version=1&modificationDate=1471572067000&api=v2

63 Tutorials

5.

Add measurements

Select the variables

Tutorials 64

5.

6.

7.

Run the Monte Carlo analysis

Plotting the results

The histogram function is used to plot the results.
When plotting the results of a system or Spectrasys path measurement an
additional function is needed to extract Monte Carlo data at a particular node
along the path. The function is used for that purpose. After extractsweptdata
creating a new graph the measurement can be entered as follows. This
measurement shows that a histogram will be plotted for the Cascaded Noise
figure measurement for the node named '3'.

65 Tutorials

7.

Port numbers are automatically generated based on the order in which
the ports (or sources) are placed in the schematic. In the schematic for
this example, the LO is port 2 and the output is port 3. If the order of the
parts on your schematic is different from this, you will need to select the
correct node name in the measurement to display same results.

This is the histogram of the cascaded noise figure.

The setup for the cascaded gain graph is identical of that to the cascaded noise

figure except the measurement of CGAIN (cascaded gain) is used instead of CNF

(cascaded noise figure).

Tutorials 66

7.

1.

2.

Running a Yield Analysis on a Design

Running a Yield Evaluation on a Design

This section has a series of tutorials that demonstrate how to run Yield evaluation
on designs created in Spectrasys or Data Flow.

Yield for Data Flow Designs

Data Flow Yield Example

Yield for Spectrasys Designs

Spectrasys Yield Example

Data Flow Yield Example

This tutorial example shows how to perform a Yield evaluation on a Data Flow
design.

Open the example <SystemVue Installation
Directory>\Examples\Tutorials\Simulation_Control_and_Scripting\YieldForDataFlow.
wsv.

Open in the folder. This design generates a 16-Design1 1. EVM for RF Amp
QAM signal with a symbol rate of 0.25 MHz sampled at 2 MHz. The signal is
amplified using an amplifier designed in Spectrasys () using .RF_Amp RF_Link

http://edadocs.software.keysight.com/display/sv201608/RF_Link

67 Tutorials

2.

3.

4.

Run , open the dataset, and observe the Design1 Analysis Design1_Data
 variable. The current system settings result in an EVM of AmpOut_EVM_RMS

2.4%. In this example, we will set up a Yield analysis to find out the
percentage of amplifiers that will pass an EVM test of less than 2.8%, when
the output 1 dB compression point () varies based on a normal OP1dB
distribution with a mean of 31.5 dBm and a standard deviation of 0.5 dBm.

Right-click the folder and select > > 1. EVM for RF Amp Add Evaluations Add
.Yield Analysis...

In the tab, select in the area, General Design1 Analysis Analyses to calculate
set to 4351 (see for how to Random Seed Monte Carlo Data Flow Example
select a good seed), and check the Create Report in Simulation Log
checkbox.

Tutorials 68

4.

In the tab, set to and in Targets Default Dataset or Equations Design1_Data
the grid below add the measurement with a target of < AmpOut_EVM_RMS
2.8.

In the tabVariables

69 Tutorials

4.

5.

6.

Press the button. This will populate the grid in Get Tuned Variables
the top left area with all tuned variables (tuned variables are part
parameters that have their checkbox checked or variables in Tune
Equations pages that are assigned using the operator).=tune

Select the first row (where is defined). By default the RFAmp_1.OP1dB
distribution (top right corner) is set to . Uncheck the Normal Use

 checkbox and set the to 0.5 dBm.Percentages (%) Standard Deviation

Press the button to apply the changes you made and run the Yield OK
analysis (right-click on it and select).Run (calculate now)

When the analysis completes, open the window (typically Simulation Log
located at the bottom of the screen) to see the resulting yield and the full
report (if you have checked the checkbox in Create Report in Simulation Log
the tab of the Yield analysis). For this example, only 95% of the General
amplifiers would pass the EVM test.

Tutorials 70

71 Tutorials

1.

Spectrasys Yield Example

This tutorial example demonstrates how to create and perform a yield evaluation to
see how statistical variation of part parameters affects overall system performance
of a basic receiver. A yield evaluation performs a Monte Carlo evaluation, but also
compares the results of each round (sample) to one or more targets. The results of
a Yield show how many rounds passed or failed the yield targets.

For this tutorial example, click Help / Open Example in SystemVue and open
the Tutorials\Simulation_Control_and_Scripting\Receiver Yield.wsv workspace.

Tutorials 72

1.

2.

3.

4.

Create a schematic.

Create a System Analysis with a Path
The yield evaluation controls another analysis. In this case, it is a system
analysis. Since the path measurements will be used in the Yield evaluation a
path must be added also. See for additional Getting Started with Spectrasys
information on adding a system analysis and a path.

Create variables that the yield evaluation will modify.
Tuned variables are needed for the Yield. A tuned variable can be created by
checking the check-box for the given part parameter.Tune

In the schematic shown above the tuned variables are shown in .teal
A summary of all tuned variables is shown in the tune window.

Assign statistical limits and distributions to variables as desired.
Each tuned variable can have a particular statistical distribution assigned to
it. See Parameter Statistics for additional information.
The can be accessed by clicking the Parameter Statistics Tab 'Advanced

 button () on the Part Parameters Options...'
page. The following image depicts the statistical configuration for the LNA.

73 Tutorials

4.

5.

a.

b.

Create a Yield Evaluation.

Set the general information.

Add targets.
When creating a Yield target for a Spectrasys path measurement an
additional function is needed to extract a value at a particular node

Tutorials 74

5.

b.

c.

along the path. The function is used for that extractsweptdata
purpose. For this example, we are using the path measurements
CGAIN and CNF at the output (node 3) for our yield target
measurements.

Port numbers are automatically generated based on the order in
which the ports (or sources) are placed in the schematic. In the
schematic for this example, the LO is port 2 and the output is
port 3. If the order of the parts on your schematic is different
than this you will need to select the correct node name in the
measurement to display same results.

Select the variables.

http://edadocs.software.keysight.com/display/sv201608/function_extractsweptdata

75 Tutorials

5.

c.

6.

7.

Run the Yield evaluation.

View Yield output data.
After the yield has finished calculating, the yield output dataset will contain a
variable for each target measurement defined. Each variable contains an
array of measurement values, one for each round of calculation. The result of
the target evaluation for each round is stored in the variable. An Error Error
value of zero represents a passing round. Comparing the data, we can see
that during the first 15 rounds there were 3 errors. Recalling that our targets
were and we can see that CGAIN contributed to the CGAIN > 16 CNF < 12
first three failures.

Tutorials 76

7.

8.

Yield also creates two output variables called and . The Yield YieldRatio
variable is the number of rounds that passed, and the variable Yield

 is the percentage of rounds that passed. This information is also YieldRatio
displayed in the Simulation log as seen below.

77 Tutorials

8. Plotting the results.
The function is used to plot the results from the yield dataset.histogram

This is the histogram of the cascaded noise figure from the yield data
.extractsweptdataCNFNodeNames3

The setup for the cascaded gain graph is identical to that of the cascaded
noise figure except the yield data is extractsweptdataCGAINNodeNames3
used instead.

http://edadocs.software.keysight.com/display/sv201608/function_histogram

Tutorials 78

8.

1.

Sweeping a Simulation

Sweeping a Simulation

This section has a series of tutorials that demonstrate how to run a sweep on
designs created in Spectrasys or Data Flow.

Sweep for Spectrasys Designs

Sweep Spectrasys Example

Sweep for Data Flow Designs

For all the tutorial examples mentioned here please use the
MonteCarloForDataFlow.wsv workspace under <SystemVue Installation
Directory>\Examples\Tutorials\Simulation_Control_and_Scripting directory.

Sweep Spectrasys Example (Receiver Sweep.wsv)

This example illustrates how to use a sweep to determine the system performance
of a basic receiver. The Cascaded Gain for the receiver will be examined across the
receiver input frequency range.

For this tutorial example, click Help / Open Example in SystemVue and open
the Tutorials\Simulation_Control_and_Scripting\Receiver Sweep.wsv
workspace.

Create a schematic.

79 Tutorials

1.

2.

3.

4.

Create a System Analysis with a Path
The sweep controls an analysis. In this case a system analysis. Since path
measurements will be plotted a path must be added also. See Getting

 for additional information on adding a system Started with Spectrasys
analysis and a path.

Create variables that the sweep will control.
A tuned variable is needed for the sweep. A tuned variable can be created in
the equation block or by checking the checkbox for a given part Tune
parameter. In this case, an equation block will be used to tie the RF, LO, and
IF frequencies together.

The receiver input frequency variable must be set as the frequency FRF
in the Source and the LO frequency variable must be set for the FLO
frequency of the oscillator.

Create a Sweep evaluation.
This particular sweep has been configured to sweep the variable from FRF
1700 to 1900 in steps of 25. The units for these variables are specified by the
parts using these variables in the schematic and are in MHz.

Tutorials 80

4.

5.

6.

Run the Sweep

Plotting the results
When plotting the results of a system or Spectrasys path measurement an
additional function is needed to extract swept data at a particular node along
the path. The function is used for that purpose. After extractsweptdata
creating a new graph, the measurement can be entered as follows. This
measurement shows that the Cascaded Gain (CGAIN) measurement for the
node named '3' will be plotted.

http://edadocs.software.keysight.com/display/sv201608/function_extractsweptdata

81 Tutorials

6.

Port numbers are automatically generated based on the order in which
the ports (or sources) are placed in the schematic. In the schematic for
this example, the LO is port 2 and the output is port 3. If the order of the
parts on your schematic is different from this, you will need to select the
correct node name in the measurement to display same results.

This is of a plot of the cascaded gain as a function of the swept receiver input
frequency. The response shows the anticipated drop in power at the front
end filter corner frequencies of 1700 and 1900 MHz by 3 dB.

Tutorials 82

1.

a.

b.

c.

2.

a.

b.

c.

d.

e.

f.

3.

a.

b.

c.

4.

a.

b.

c.

Libraries and Applications

Libraries and Applications

Getting Started With DPD

Getting Started With DPD

Getting Started With DPD

Contents

Measurement Platforms

Hardware Requirements

Software Requirements

Platform Calibration

Hardware DPD Measurement - Manual

Open DPD UI

Step 1: Create DPD Stimulus

Step 2: Capture DUT Response

Step 3: DPD Model Extraction

Step 4: Apply DPD

Step 5: Verify DPD Response

Hardware DPD Measurement - Auto

Open DPD UI

Platform Setup

Linearize PA DUT

DPD Cosimulation

ADS Cosimulation

GoldenGate Cosimulation

X-Parameters Cosimulation

Measurement Platforms

1. Hardware Requirements

DPD hardware verification platform needs a Keysight Modular instrument and/or
Keysight signal generator (ESG/PSG/MXG), a Keysight signal analyzer (PSA/MXA
/PXA) and the power amplifier DUT. Throughout this document, ESG and PXA are
chosen as an example.

83 Tutorials

1.

The connection of the instruments is shown in the following figure. The “10 MHz
OUT” of the Keysight signal generator should be connected to the “EXT REF IN”
input on the signal analyzers. Also, the “EVENT1” output of the signal generator
should be connected with “EXT Trigger” input 1 of the signal analyzer.

:Capture PA Input

Figure 1. Connection of the Keysight signal generator, Keysight PXA

:Capture PA Output

Figure 2. Connection of the Keysight ESG, Keysight PXA and the amplifier device under

test

2. Software Requirements

Keysight IO Libraries Suite
Keysight IO Libraries Suite is needed to capture data from Keysight spectrum
analyzers. It is recommended to use the latest version i.e. 16.2.15823.0.
Open Keysight Connection Expert from folder ‘Keysight IO Libraries Suite’ in
the Start menu. Click ‘Add Instrument’ in the toolbar to add the signal
analyzer. It can be manually added by specifying the IP address or hostname.

Tutorials 84

1.

2.

a.

b.

Data Capture tools
Two methods are supported to capture PA response data from vector signal
analyzer (MXA/PXA, or PXI modular): Keysight 89600 VSA software and
Keysight Command Expert.

Figure 3. Two ways to transfer data from Instruments to SystemVue

89600 VSA software. It is very convenient, but the license is required.

Firstly please make 89600 VSA software gets the remote control of the
signal analyzer. Open 89600 VSA software and click Utilities-
>Hardware->Configurations. In the popup, click the ‘+’ button to add
new configurations. In the instrument list, select the target instrument.
You may want to rename this configuration before clicking OK. Don’t
forget to select the new configuration as the current Analyzer
configuration after clicking OK.

85 Tutorials

2.

b. Command Expert. It is for free but it requires extra knowledge about
SCPI commands to do some customization according to the
instrument type.

Version: Command Expert 1.1 or higher version

Download location: http://www.keysight.com/find
/commandexpert

CommandSet: X-Series Signal Analyzers LTE FDD Commands /
A.08.03

Support Models: N9030A PXA, N9020A MXA

3. Platform Calibration

There would be power gain or loss in the path between signal generator and the
power amplifier DUT due to preamplifier (if any) or cable. In other words, the power
at the input port of the DUT would in most cases not equal to the RF power set in
the signal generator. This difference would influence the performance of DPD.
Hence, the path gain/loss should be measured and taken into consideration in the
DPD solution. The calibration process will be discussed in .Measure Path Gain/Loss

Hardware DPD Measurement - Manual

1. Open DPD UI for Hardware DPD Measurement - Manual

To open DPD UI for manual flow, click Tools->Applications->DPD->HW->User
.Defined – Manual

The following window will pop up.

http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/commandexpert

Tutorials 86

To use the example workspace, it is strongly recommended to copy the whole example

folder from to a DPD UserDefined HardwareVerfication $SystemVue\Examples\DPD

writable folder, where stands for the SystemVue installation folder, typically $SystemVue

 . If you have done so, navigate to the C:\Program Files\SystemVue<Version_Number>

new destination in above dialog, select and click open. The DPD_UserDefined.wsv

following GUI will be shown. We’ll discuss the details in this GUI later.

87 Tutorials

1.

Otherwise, if you haven’t copied the files, the GUI can copy the workspace for you.

Please navigate to the folder in which you want to save the files, e.g. and click C:\test

open.

The GUI will copy to the new folder. However, other files such DPD_UserDefined.wsv

as I/Q data files and the .setx file will not be copied automatically. You still need to copy

these files manually. The following warning message will be popped up in this case.

If you want to open an existing workspace other than the example, please directly open

the workspace in ‘open’ dialog shown above.

It should be noted that there are strong dependencies between the GUI and the

workspace. The GUI may not work properly if you modify the corresponding workspace.

2. Step 1: Create DPD Stimulus

Step 1 () is to download waveform into a signal generator.Create DPD Stimulus

Tutorials 88

1.

2.

3.

4.

5.

6.

7.

8.

Set Current Iteration
Iterative DPD is supported in SystemVue. This parameter specifies the
current iteration. Please refer to for more details.Current Iteration

Set System Parameters
This group of parameters specifies the system configurations. Please refer to

 for more details.System Parameters
It should be noted that and Ratio here are just for Bandwidth Oversampling
display. They are not actually used in the workspace. The real sampling rate
of the signal is explicitly set by Sampling Rate. In other words, the setting of
Bandwidth and Oversampling Ratio would not affect the signal. These two
textboxes are just for you to note down the signal characteristics.

Set Clipping Parameters
Multi-carrier signals typically have high PAPR which would drive PA to its
saturation region very quickly and lower the PAE. A classic clipping and
filtering method is provided in SystemVue for Crest Factor Reduction.
Please refer to for more details.Clipping Parameters

Set Input Parameters
The stimulus signal can be read from I/Q data files (.txt), Signal Studio
waveforms (.wfm) and 89600 VSA software recordings (.sdf), or generated by
wireless libraries in SystemVue. Please refer to for more Input Parameters
details.

Set Download Parameters
After configuring the input signal, now we set the download parameters.
Please refer to for more details.Download Parameters

Download Waveforms
After setting all parameters, now we can click button to Download Waveform
download the signals into the signal generator. Please refer to Create DPD

 for more details.Stimulus
You may notice that there are obvious differences between the background
of ‘ ’ button and the other buttons e.g. ‘Download Waveform Go To ESG Web

. Those buttons with light color are ‘MUST DO’ buttons, which means Control’
these actions are mandatory in DPD manual flow. Clicking those buttons will
run a corresponding analysis in the workspace. Those buttons with dark color
correspond to optional actions, clicking which will either show intermediate
results or bring certain graphs in front.

Show Results
Check the results in this step. Please refer to for more DPD Stimulus Results
details.

http://edadocs.software.keysight.com/display/sv201608/Current+Iteration
http://edadocs.software.keysight.com/display/sv201608/System+Parameters
http://edadocs.software.keysight.com/display/sv201608/Clipping+Parameters
http://edadocs.software.keysight.com/display/sv201608/Input+Parameters
http://edadocs.software.keysight.com/display/sv201608/Download+Parameters
http://edadocs.software.keysight.com/display/sv201608/Create+DPD+Stimulus
http://edadocs.software.keysight.com/display/sv201608/Create+DPD+Stimulus
http://edadocs.software.keysight.com/display/sv201608/DPD+Stimulus+Results

89 Tutorials

8.

1.

2.

Measure Path Gain/Loss
After downloading signal to signal generator, open VSA software and choose
the right configuration so that it connects to the analyzer. Make sure the
signal generator and analyzer are connected directly. Click the “ ” band power
button in the toolbar to measure the signal power as shown in the following
picture. Read the result in the bottom or the upper right.
In the following example, the RF Power in the signal generator is set to -5
dBm, while the measured power from VSA is about -5.79dBm, hence the
path gain is -0.79dB.

You can also measure the power in the signal analyzer and calculate the
Path Gain.

3. Step 2: Capture DUT Response

Step 2 () is to capture the input and output signals of power Capture DUT Response
amplifier DUT from PSA/MXA/PXA.
Through Step 2 to Step 5, parameter is read-only. Upon Current Iteration
completion of each iteration, please change Current Iteration in . It will be Step 1
passed to the followed steps automatically. Please refer to for Current Iteration
more details.

Set Capture Parameters
Before data capture, please set the capture parameters. Please refer to

 for more details.Capture Parameters

Capture PA Input
Two approaches are supported for DPD measurement. The first method is to
measure both PA input and output signals, the second one is to calculate PA
input and measure PA Output.

http://edadocs.software.keysight.com/display/sv201608/Current+Iteration
http://edadocs.software.keysight.com/display/sv201608/Capture+Parameters

Tutorials 90

2.

a.

b.

3.

4.

1.

2.

Method 1: Measure both PA Input and Output signals
For method 1, please select ‘ ’ as ‘->’. Connect signal PA Input Type
analyzer directly with a signal generator. Then click ‘ Capture RF Input’
button to capture PA input signal.

Method 2: Calculate PA input, Measure PA output
For method 2, please select ‘ ’ as ‘ ’. The PA Input Type Baseband Signal
PA input signal is calculated from the baseband design in SystemVue.
Click ‘ ’ to store the input signal.Save BB Input

Capture PA Output
After PA input is successfully captured, please connect the PA DUT between
the signal analyzer and signal generator. Then click ‘ ’ Capture RF Output
button to capture PA output signal.

Show Results
You can click these buttons to check the PA input power, output power, AM-
AM characteristics and AM-PM characteristics. Please refer to DUT Response

 for more details.Results

4. Step 3: DPD Model Extraction

This step is to extract the DPD model using the PA input and output signals
captured in the previous step.

Set Model Extraction Parameters
Please refer to for more details.DPD Setting

http://edadocs.software.keysight.com/display/sv201608/DUT+Response+Results
http://edadocs.software.keysight.com/display/sv201608/DUT+Response+Results
http://edadocs.software.keysight.com/display/sv201608/DPD+Setting

91 Tutorials

2. Do Model Extraction
Use : select this checkbox if you want to use your Custom Model Extractor
own IP of model extraction. Otherwise, the model extractor provided in
SystemVue DPD library will be used.

Once you select to use the custom model extractor, the ‘Customize Model
’ button would be activated. Click this button to open the Extractor

MATLAB_Script model of the custom model extractor. A simple algorithm is
provided in this model. The definition of each input/output port is described
in the comments. Please refer to these comments, follow the definition and
input your implementation in this model. Then it will be used in the
simulation.

Use : similar with ‘ ’, you Custom Pre-Distorter Use Custom Model Extractor
can import your own IP for pre-distorter.
It should be noted that typically you should simultaneously enable/disable

Tutorials 92

2.

3.

1.

2.

these two customized models.
Click ‘ ’ to run the analysis. The DPD model coefficients Do Model Extraction
will be saved in two separate text files for the real part and image part
respectively.

Show Results
Click these buttons to show DPD AM-AM characteristics, DPD AM-PM
characteristics, spectrum, DPD model coefficients as well as NMSE.

In this example, memory order and nonlinear order are set to 2 and 7
respectively. The extracted DPD model coefficients are shown below.

5. Step 4: Apply DPD

Set Download Parameters
 here indicates the output power of the signal generator, which RF Power

defines the mean power of the signal w/ DPD. Click will set RF Use Default
power to a suggested value at which the extracted DPD model is supposed
to give good performance on the PA DUT. This default value is calculated
from the lower level design and takes into consideration. We may Path Gain
tune this parameter to find the best power at which the DPD model shows
the largest improvements.
The other parameters are read-only and kept the same as in . Please Step 1
refer to for more details on the other parameters.Download Parameters

Apply DPD
Click button to download the pre-distorted signal into Download Waveform
the signal generator.
If ALC is OFF in the signal generator, please by clicking Do Power Search

 after signal downloading.Amplitude->Do Power Search

http://edadocs.software.keysight.com/display/sv201608/Download+Parameters

93 Tutorials

2.

3.

4.

1.

2.

3.

Capture DPD-PA Output
Click to capture the DPD-PA response.Capture Waveform

Check DPD-PA Response
Click the following buttons to check the DPD-PA response, including AM-AM
characteristics, AM-PM characteristics, input power and output power of the
combination of DPD+PA. Please refer to for more DPD Response Results
details.

6. Step 5: Verify DPD Response

This step is to verify DPD response and compare the results in terms of spectrum,
ACP and/or EVM.

Check Download Parameters
The download parameters are kept the same as in , so that we can Step 4
compare the results of w/ DPD and w/o DPD under the same conditions.

Download Signal
Click button to download the original signal (w/o DPD) Download Waveform
into the signal generator.

Capture Waveform
Click button to capture the PA output signal.Capture Waveform

http://edadocs.software.keysight.com/display/sv201608/DPD+Response+Results

Tutorials 94

3.

4. Verify DPD Response
Click button to configure the spectrum, ACP and EVM Config Meas.
measurement. Then click button to run the analysis. Verify DPD Response
Then click , (if active), and button to Spectrum EVM ACP PA Output Power
check the results comparison.

Please refer to for more details.DPD Response Verification Results

Hardware DPD Measurement - Auto

In SystemVue, DPD measurement automation solution is provided, which is very
convenient to use.

1. Open DPD UI for Hardware DPD Measurement – Auto

To open DPD UI for auto flow, please click Tools->Applications->DPD->HW->User
. The autoflow uses the same example workspace as the manual Defined – Auto

flow, i.e. in DPD_UserDefined.wsv $SystemVue\Examples\DPD\DPD UserDefined
, where stands for the SystemVue installation HardwareVerfication $SystemVue

folder, typically . For more details, C:\Program Files\SystemVue<Version_Number>
see .Open DPD UI for Hardware DPD Measurement - Manual
The following UI is displayed if it is successfully opened.

http://edadocs.software.keysight.com/display/sv201608/DPD+Response+Verification+Results

95 Tutorials

2. Platform Setup

Two approaches are supported for DPD measurement automation. The first method
is to measure both PA input and output signals, the second one is to calculate PA
input and measure PA Output.
The first method is depicted in the following figure. As can be seen, a power
splitter, a switch and a DC power analyzer are needed. The DC power analyzer is
controlled by SystemVue so that it adjusts current to control switch. To capture PA
input signal, the upper line is turned on so that the signal is directly transmitted
from MXG to MXA. To capture PA output signal, the lower line is turned on so that
the signal is transmitted through PA DUT. The whole flow is automated in
SystemVue. Users can just click the button in SystemVue to start the Run
measurement. This method is most accurate, but requires additional signal routing
as depicted.

Tutorials 96

The second method is depicted in the following figure, which uses only 1 real RF

measurement as the PA input signal is estimated by simulation, while the PA output

signal is captured from the measurement. It requires only a single connection which

allows automation and modeling iterations. The PA DUT is connected between MXG and

MXA to measure PA Output. Obviously, this method is physically faster by eliminating

one measurement compared to the first method. It is typical of industry practice today. It

linearizes the entire system, not just the PA

, and provides acceptable accuracy for quick Evaluation and MFG Test applications.

3. Linearize PA DUT

After setting up the hardware platform, please configure the parameters in DPD UI.
In tab, configure , and Signal Setting System Parameters Input Parameters Clipping

. In tab, configure and Parameters Hardware Setting Download Parameters Capture

. In tab, configure . And in Parameters DPD Setting DPD Setting Measurement

http://edadocs.software.keysight.com/display/sv201608/System+Parameters
http://edadocs.software.keysight.com/display/sv201608/Input+Parameters
http://edadocs.software.keysight.com/display/sv201608/Clipping+Parameters
http://edadocs.software.keysight.com/display/sv201608/Clipping+Parameters
http://edadocs.software.keysight.com/display/sv201608/Download+Parameters
http://edadocs.software.keysight.com/display/sv201608/Capture+Parameters
http://edadocs.software.keysight.com/display/sv201608/Capture+Parameters
http://edadocs.software.keysight.com/display/sv201608/DPD+Setting

97 Tutorials

 tab, configure , and Setting Spectrum Measurement EVM Measurement ACP
. Please click the corresponding links for more details.Measurement

After setting the parameters, please click button to start the measurement. Run
The progress messages are displayed in the . Once finished, check the Progress Bar
results in the tab, including , , Results DPD Stimulus Results DUT Response Results

, and DUT Model Extraction Results DPD Response Results DPD Response
.Verification Results

You can also to sweep certain key parameters in DPD flow. After Enable Sweep

configuring the , you can click button to start the sweep. Once Parameter Sweep Run

finished, you can check including spectrum, ACP, EVM and NMSE.Sweep Results

DPD Cosimulation

Besides , SystemVue also provides DPD Cosimulation Hardware DPD Measurement
with ADS, GoldenGate and X-Parameters. These three cosimulations use the same
example workspace which can be found in DPD_Cosimulation.wsv

, where stands for the $SystemVue\Examples\DPD\DPD Cosimulation $SystemVue
SystemVue installation folder, typically C:\Program Files\SystemVue

.<Version_Number>
The cosimulation flow is similar with . However, Hardware DPD Measurement - Auto
it need not any hardware support.

1. ADS Cosimulation

To open DPD ADS Cosimulation UI, click Tools->Applications->DPD->Co-Sim-
. See for more >ADS Cosim Open DPD UI for Hardware DPD Measurement - Manual

details. The ADS Cosim UI is shown below.

http://edadocs.software.keysight.com/display/sv201608/Spectrum+Measurement
http://edadocs.software.keysight.com/display/sv201608/EVM+Measurement
http://edadocs.software.keysight.com/display/sv201608/ACP+Measurement
http://edadocs.software.keysight.com/display/sv201608/ACP+Measurement
http://edadocs.software.keysight.com/display/sv201608/Run+and+Stop
http://edadocs.software.keysight.com/display/sv201608/Progress+Bar
http://edadocs.software.keysight.com/display/sv201608/DPD+Stimulus+Results
http://edadocs.software.keysight.com/display/sv201608/DUT+Response+Results
http://edadocs.software.keysight.com/display/sv201608/DUT+Model+Extraction+Results
http://edadocs.software.keysight.com/display/sv201608/DPD+Response+Results
http://edadocs.software.keysight.com/display/sv201608/DPD+Response+Verification+Results
http://edadocs.software.keysight.com/display/sv201608/DPD+Response+Verification+Results
http://edadocs.software.keysight.com/display/sv201608/Parameter+Sweep
http://edadocs.software.keysight.com/display/sv201608/Parameter+Sweep
http://edadocs.software.keysight.com/display/sv201608/Run+and+Stop
http://edadocs.software.keysight.com/display/sv201608/Sweep+Results

Tutorials 98

Configure and the other parameters.ADS Setting

Get PA characteristics and determine the RF power to extract DPD model. Refer to PA

 for more details.Characteristic

Click button to start the simulation.Run

2. GoldenGate Cosimulation

To open DPD GoldenGate Cosimulation UI, click Tools->Applications->DPD->Co-
. Refer to Sim->GoldenGate Cosim Open DPD UI for Hardware DPD Measurement -

 for more details. The GoldenGate Cosim UI is shown below.Manual

http://edadocs.software.keysight.com/display/sv201608/ADS+Setting
http://edadocs.software.keysight.com/display/sv201608/PA+Characteristic
http://edadocs.software.keysight.com/display/sv201608/PA+Characteristic
http://edadocs.software.keysight.com/display/sv201608/Run+and+Stop

99 Tutorials

Configure and the other parameters.GoldenGate Setting

Get PA characteristics and determine the RF power to extract DPD model. Refer to PA

 for more details.Characteristic

Click button to start the simulation.Run

3. X-Parameters Cosimulation

To open DPD ADS Cosimulation UI, click Tools->Applications->DPD->Co-Sim->X-
. Refer to Parameter Cosim Open DPD UI for Hardware DPD Measurement - Manual

for more details. The X-Parameter Cosim UI is shown below.

http://edadocs.software.keysight.com/display/sv201608/GoldenGate+Setting
http://edadocs.software.keysight.com/display/sv201608/PA+Characteristic
http://edadocs.software.keysight.com/display/sv201608/PA+Characteristic
http://edadocs.software.keysight.com/display/sv201608/Run+and+Stop

Tutorials 100

Configure and the other parameters.X-Parameters Setting

Get PA characteristics and determine the RF power to extract DPD model. Refer to PA

 for more details.Characteristic

Click button to start the simulation.Run

You can also to sweep certain key parameters in DPD Enable Sweep
cosimulation flow. After configuring the , you can click Parameter Sweep Run
button to start the sweep. Once finished, you can check Sweep Results
including spectrum, ACP, EVM and NMSE.

http://edadocs.software.keysight.com/display/sv201608/X-Parameters+Setting
http://edadocs.software.keysight.com/display/sv201608/PA+Characteristic
http://edadocs.software.keysight.com/display/sv201608/PA+Characteristic
http://edadocs.software.keysight.com/display/sv201608/Run+and+Stop
http://edadocs.software.keysight.com/display/sv201608/Parameter+Sweep
http://edadocs.software.keysight.com/display/sv201608/Parameter+Sweep
http://edadocs.software.keysight.com/display/sv201608/Run+and+Stop
http://edadocs.software.keysight.com/display/sv201608/Sweep+Results

101 Tutorials

1.

2.

3.

4.

RF Design

RF Design

Getting Started with Spectrasys

Embedding Spectrasys in Data Flow using RF_Link

Getting Started with Spectrasys

Spectrasys uses a new simulation technique called SPARCA that brings RF
architecture design to a whole new level. This walkthrough helps you design a
simple RF chain and measure the architecture's noise and gain performance.

The for analyzing an RF system are:basic steps

Create a System Schematic

Adding a System Analysis

Run the Simulation

Add a Graph or Table

Create a System Schematic

Spectrasys supports all linear models and behavioral non-linear models. The
behavioral models can be found on the system toolbar or in the part selector.

Create the following system schematic (default parameters for all models will be
used). For additional help, click here.creating a schematic

http://edadocs.software.keysight.com/display/sv201608/Creating+a+Simple+Schematic

Tutorials 102

1.

2.

3.

4.

5.

6.

7.

Select the ' ' from the system toolbar or part selector.Amp (2nd & 3rd Order)

Move the cursor and click inside the schematic window to place the part.

Use the prior steps to place a fixed , , and Attenuator Coupler (Single Dir)
.Isolator

Place a at the input. Now add a carrier by double-clicking the Source (Multi)
source and clicking the button. A source user interface will appear. Add
Change the power level to .-20 dBm

Place an on the output of the isolator and the coupler.Output Port

Press the " key on the keyboard to place an output port.O

Make sure each part output is wired to the subsequent part input.

Use the ' ' key when a part is highlighted to repeatedly move the part F4
text to default locations around the part.

Select the desired options and click .OK

Adding a System Analysis

After creating a schematic a system analysis must be created. There a several ways
to accomplish this. Only one way will be shown here. For additional information on

 click here.adding analyses

To add a system analysis:

Right-click a in the where you want the analysis located.folder workspace tree

http://edadocs.software.keysight.com/display/sv201608/Analysis

103 Tutorials

Select from the selected sub menus as shown above.RF System Analysis...

The following 'System Analysis Parameter' dialog box will appear.

If path measurements are desired \(i.e. cascaded gain or cascaded noise figure\)
click on the tab.Paths

Tutorials 104

Click the button.Add All Paths From All Sources

Node numbers may be different than shown above depending on the node
numbers in your schematic. For more information, see .specifying paths

Click the dialog button.OK

Run the Simulation

Analysis data must be created before it can be plotted or displayed in tables. The
analysis can be enabled to 'Automatically Recalculate' or may need to be manually
calculated. If the analysis has been set to 'Automatically Recalculate' datasets will
appear in the workspace tree after the analysis. If the manual calculation is needed
the calculate button will appear red and so will other items in the workspace tree.
Click the calculate button to update the system analysis and create the necessary
datasets.

After calculation the workspace tree should look like:

http://edadocs.software.keysight.com/display/sv201608/Specifying+Paths

105 Tutorials

For more information, see .datasets

Add a Graph or Table

There are several ways to display data in
SystemVue

. Only one way will be demonstrated here. For additional information on , graphs
click here.

The easiest way to add a in Spectrasys is by spectral power, phase, or voltage plot
right clicking the node to be viewed and selecting 'System1_Data: New Power Plot

' from the submenu ' '. (The output of the attenuator at Node x Add New Graph/Table
was selected in the following figure)

The following graph will appear:

http://edadocs.software.keysight.com/display/sv201608/Datasets
http://edadocs.software.keysight.com/display/sv201608/Graphs

Tutorials 106

To add a (a path number be defined first) level diagram right click on the ending
 of the path and selecting 'node System1_Data_Path1: New Level Diagram of CGAIN

' from the ' ' submenu.(Cascaded Gain) Add New Graph / Table

The following level diagram will appear:

107 Tutorials

Follow the same process as adding a level diagram to a predefined of add table
common measurements except select 'System1_Data_Path1: New Table of

' from the ' ' submenu. For additional Measurements Add New Graph / Table path
 information click here.measurement

The default table will look like:

Right-click on the table data to see additional table options.

Embedding Spectrasys in Data Flow using RF_Link

Embedding Spectrasys in Data Flow using RF_Link

The examples in this tutorial section show how to use RF designs created in
Spectrasys in a Data Flow simulation. Before such a design is used in a Data Flow
simulation it should simulate without errors with Spectrasys. Embedding a
Spectrasys RF design in a Data Flow simulation is done through the use of . RF_Link
For more information about the theory of operation, limitations, etc. see RF/Data

. For more examples look in the directory <SystemVue Flow Cosimulation
Installation Directory>\Examples\RF Architecture Design.

http://edadocs.software.keysight.com/display/sv201608/Spectrasys+Measurement+Index
http://edadocs.software.keysight.com/display/sv201608/Spectrasys+Measurement+Index
http://edadocs.software.keysight.com/display/sv201608/RF_Link
http://edadocs.software.keysight.com/display/sv201608/RF+Dataflow+Cosimulation
http://edadocs.software.keysight.com/display/sv201608/RF+Dataflow+Cosimulation

Tutorials 108

1.

1.

2.

3.

Simple TX RX

Simple TX RX

This tutorial example shows how to use a simple Spectrasys transmitter and
receiver in a Data Flow simulation.

Basic familiarity with Spectrasys is assumed.

During this tutorial example, you may see a lot of errors coming from graphs.
This is because the graphs are pre-configured to show data that will be created
later on in the tutorial.

Open the example <SystemVue Installation
Directory>\Examples\Tutorials\RF_Design\Simple_TX_RX.wsv.

Open the design in the folder. This design generates a QPSK_TX_RX Designs
QPSK signal using Data Flow parts. The symbol rate is 0.5 MHz and the
modulator output frequency is 100 MHz. Our goal is to create an RF
transmitter that will amplify the signal and upconvert it to 2.1 GHz and a
receiver that will demodulate the signal.

Run and observe the spectrum (QPSK_TX_RX Analysis QPSK_TX_RX_ModOut
graph), eye diagram (graph), and EVM (QPSK_TX_RX_Eye QPSK_TX_RX_Data
dataset) at the output of the modulator.

109 Tutorials

3.

Tutorials 110

3.

4.

5.

6.

Create a new design (right click on the folder and select > Designs Add
 >) and call it . Place (from the Designs Add Sub-Network Model... TX_Design

RF_Design part library) a MultiSource, an RFAMP, and an output port. Set
the Multisource to generate a CW signal at 100 MHz (same as our modulator
output frequency) and -50 dBm. Set the amplifier parameters as shown in
the schematic below.

Add a System analysis (right click on the folder and select > Analyses Add
 >). In the tab set Analyses Add RF System Analysis... General Design To
 to , and in the tab create two paths Simulate TX_Design Paths Quick Sweep

(one for and one for).Compression Curve Frequency Response

Run analysis. Right click on the output port and select the System1
 and to create compression Compression Curve Power Out vs Frequency

curve and output power vs frequency graphs.

111 Tutorials

6.

Tutorials 112

6.

7.

8.

Now drag from the workspace tree on the design. TX_Design QPSK_TX_RX
An RF_Link part is automatically instantiated. Connect it at the output of the
modulator. Double-click on the RF_Link part and check the Calculate

 check-box and uncheck the Thermal Noise Add source thermal noise to input
checkbox. Activate the parts connected to the output of RF_Link.

Run again and observe the spectrum (QPSK_TX_RX Analysis
 graph), eye diagram (graph), and QPSK_TX_RX_ModOut QPSK_TX_RX_Eye2

EVM (dataset) at the output of the modulator. Make sure QPSK_TX_RX_Data
you unhide the second series in the graph. You can QPSK_TX_RX_ModOut
clearly see the spectral regrowth caused by the non-linear amplifier. EVM
also increased to 7%.

113 Tutorials

8.

9.

10.

Open and add a filter at the output of the amplifier to reduce the TX_Design
spectral regrowth.

Tutorials 114

10.

11.

Run analysis and observe the compression curve and output power System1
vs frequency graphs. The power vs frequency is no longer flat.

Run again and observe the spectrum (QPSK_TX_RX Analysis
 graph), eye diagram (graph), and QPSK_TX_RX_ModOut QPSK_TX_RX_Eye2

EVM (dataset) at the output of the modulator. The QPSK_TX_RX_Data
spectral regrowth caused by the non-linear amplifier has been reduced but
the EVM increased to 9.5%.

115 Tutorials

11.

12.

13.

14.

Finally, let's add a mixer to the to upconvert the signal to 2.1 GHz.TX_Design

Run analysis and observe the compression curve and output power System1
vs frequency graphs.

In change of the filter (at the output of RF_Link) to QPSK_TX_RX FCenter B7
2100 MHZ and run again. Observe the spectrum (QPSK_TX_RX Analysis

 graph), eye diagram (graph), and QPSK_TX_RX_ModOut QPSK_TX_RX_Eye2
EVM (dataset) at the output of the modulator. Since the QPSK_TX_RX_Data
two spectra plotted in the graph are centered at QPSK_TX_RX_ModOut
different frequencies, hide the series to be able to see the ModOut_Power
spectrum at the output of RF_Link. EVM is now over 10%.

Tutorials 116

14.

15. Now let's create a receiver. Add a new design and call it . Place RX_Design
(from the RF_Design part library) a MultiSource and a Zero IF Receiver
(ZIF_Rx). Set the Multisource to generate a CW signal at 2100 MHz (same as
our RF_Link output frequency) and -50 dBm. Set the ZIF_Rx parameters as
shown in the schematic below.

117 Tutorials

15.

16.

17.

Now drag from the workspace tree on the design. RX_Design QPSK_TX_RX
An RF_Link part is automatically instantiated. Connect it at the output of the
first RF_Link. Double-click on it and check the Calculate Thermal Noise
check-box and uncheck the checkbox. Add source thermal noise to input
Activate the parts connected to its output.

Observe the eye diagram (graph) at the output of the QPSK_TX_RX_Eye3
receiver.

Tutorials 118

17.

119 Tutorials

Hardware Design

Hardware Design

Contents

Getting Started with Hardware Design

Fixed Point Representation

HDL Code Generation Tutorial

C Plus Plus to HDL Using Catapult Design

Fixed Point Optimization

HDL Cosimulation Tutorial

FPGA Implementation

Using Xilinx IP Cores

FPGA Design Flow For M9703A 8-channels High-Speed Digitizer

FPGA Design Flow For U5303A 2-channels High-Speed Digitizer

Getting Started with Hardware Design

Introduction

This tutorial introduces the tools and features available in SystemVue to develop,
verify and implement signal processing algorithms in Field Programmable Gate
Arrays (FPGAs). The Figure below illustrates the general design flow and the
associated tools and features in each stage of that flow

Tutorials 120

This tutorial consists of the following sections:

Fixed Point Representation

This introduces the Hardware Design Library and Fixed Point section
Representation.

HDL Code Generation (Hardware Design)

This describes how to generate HDL code (Verilog and VHDL) from a section
SystemVue design developed using the Hardware Design Library.

C++ to HDL using Catapult design

This illustrates how to migrate C++ based design to HDL design using section
SystemVue flow in Catapult.

Fixed Point Optimization

This explains how to use the floating point analysis table.section

HDL Cosimulation (Hardware Design)

This explains in detail how to conduct HDL cosimulation using ModelSimsection
/Questa and Riviera Pro HDL simulators.

FPGA Implementation

This describes the flow of implementing a generated HDL code on Xilinx section
FPGA prototyping board and verify the results using JTAG and ChipScope.

Using Xilinx IP Cores

121 Tutorials

Using Xilinx IP Cores

This describes the steps required to cosimulate Xilinx IP cores inside section
SystemVue and generate HDL codes for hardware designs that contain Xilinx IP
cores.

Terminologies

FPGA: Field Programmable Gate Arrays. For more information, you can refer
to .here

Cosimulation: is the process of simulating HDL-based designs inside
SystemVue environment. For more information refer to HDL Cosimulation

 and ,With ModelSim and Questa HDL Cosimulation with Riviera-PRO

Code Generation: is the process of generating HDL code that describes the
 in the associated sub-network.Hardware Design

Hardware Design: is a design developed in SystemVue using the parts of
Hardware Design library.

HDL: hardware description language

VHSIC: Very High-Speed Integrated Circuit

Brief Notes on Hardware Description Languages

The hardware description languages are used to describe the operation and the
schematics of a digital design. They were originally created to assist in design
simulation rather than schematic descriptions. This is a more portable and
convenient alternative to creating a circuit from elements. As a result, HDL
language constructs can be i.e., suitable for synthesis and simulation, synthesizable
and i.e., suitable only for simulation.non-synthesizable
VHDL and Verilog are two widespread HDL languages.

VHDL stands for VHSIC Hardware Description Language. It is a standard HDL
language that is used to describe digital hardware devices, systems and
components. A VHDL-based design consists of at least one entity and one or more
architectures. The entity section is used to declare the I/O ports of the circuit, while
the architecture section is used to list the description code. The Verilog-based
design consists of at least one module where the functions and procedures are
defined. Standardized design libraries are included prior to the entity declaration in
VHDL. Example: "library ieee;" and "use ieee.std_logic_1164.all;". STD_LOGIC and
STD_LOGIC_VECTOR are basic data types used in VHDL, defined in IEEE standard
1164. STD_LOGIC can represent the following values: 1, 0, U (undefined), X
(unknown), Z (high impedance), W (weak), H (weak 1), L (weak 0), - (don't care).
STD_LOGIC_VECTOR is an array of STD_LOGIC. On the other hand, there is no
concept of packages in Verilog.

In the following comparison table, we summarize the main elements of HDL codes
as implemented using Verilog and VHDL.

 VHDL Verilog

http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://edadocs.software.keysight.com/display/sv201608/HDL+Cosimulation+With+ModelSim+and+Questa
http://edadocs.software.keysight.com/display/sv201608/HDL+Cosimulation+With+ModelSim+and+Questa
http://edadocs.software.keysight.com/display/sv201608/HDL+Cosimulation+With+Riviera+PRO

Tutorials 122

Language type Strong typed Weak typed

Identifiers case-
sensitivity

case-insensitive case-sensitive

Ports declaration entity counter is
Port (
CLK : in STD_LOGIC;
CLR : in STD_LOGIC;
DOUT : out STD_LOGIC_VECTOR (7 downto 0)\\);
end counter;

module counter(clk, clr, dout);
input clk;
input clr;
output [7:0] dout;

Signals
declaration

signal value: std_logic_vector(7 downto 0); wire [7:0] combinational_value;
reg [7:0] register_value;

Concurrent
assignments

c <= a and b; assign c = a & b;

Conditional
assignments

c <= a when sw='1' else b; assign c = sw ? a : b;

Processes process (CLK,CLR) is
begin
if CLR='1' then
val<="00000000";
elsif rising_edge(CLK) then
val<=val+1;
end if;
end process;

always @ (posedge CLK or
posedge CLR) begin
if (CLR) val<=0;
else val<=val+1;
end

Nonblocking
Sequential
assignments

process (CLK) is
begin
if rising_edge(CLK) then
val<=val+1;
val2<=val;
end if;
end process;

always @ (posedge CLK) begin
val<=val+1;
val2<=val;
end

Structural
description

counter_inst: component counter
port map(CLK => CLK, CLR => CLR, DOUT =>
counter_value);

counter counter_inst(.CLK(CLK),.
CLR(CLR),.counter_value(DOUT));

Component
Declaration

component counter is
Port (CLK : in STD_LOGIC; CLR : in STD_LOGIC;
DOUT : out STD_LOGIC_VECTOR (7 downto 0));
end component counter;

No need

123 Tutorials

Operators +
-
*
mod
not

+
_
*
%
~

VHDL Code Example

This example shows a portion of the VHDL code generated using SystemVue for the
fixed point counter () from the Hardware Design library.CounterFxp

--

--
-- CounterFxp - VHDL source
--
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.p_fxp.all;

entity CounterFxp is
 generic(
 dataOutWL : natural;
 dataOutIWL : integer;
 dataOutSGN : natural;

 Overflow : natural;
 Quantization : natural;
 SaturationBits : integer;

 FxpInitValue : integer := 0;
 StepFxp : integer := 0;
 Direction : integer := 0
);
 port(
 -- Port: Inputs
 rst : in std_logic;
 clk : in std_logic;
 ce : in std_logic;
 ENABLE : in std_logic;
 RESET : in std_logic;

 -- Port: Outputs
 RDY : out std_logic;

http://edadocs.software.keysight.com/display/sv201608/CounterFxp

Tutorials 124

 dataOut : out std_logic_vector(dataOutWL-1
downto 0)
);

end CounterFxp;

architecture CounterFxp_Arch of CounterFxp is

 signal countExt : std_logic_vector (dataOutWL
downto 0);
 signal count : std_logic_vector (dataOutWL-1
 downto 0);
 constant internalSGN : boolean := (dataOutSGN = 0
and Direction = 1) or dataOutSGN = 1;

begin

 count <= FxpConvert(countExt,
 (dataOutWL+1, dataOutIWL+1,
internalSGN),
 (dataOutWL, dataOutIWL,
to_boolean(dataOutSGN)),
 ToFxpQznModeT(Quantization),
ToFxpOvfModeT(Overflow), SaturationBits);

 process (CLK)
 begin
 if CLK'event and clk = '1' then
 if rst = '1' then
 if dataOutSGN = 1 then
 countExt <= std_logic_vector
(to_signed(FxpInitValue, (dataOutWL+1)));
 else
 countExt <= std_logic_vector
(to_unsigned(FxpInitValue, (dataOutWL+1)));
 end if;
 else
 if CE = '1' then
 if RESET = '1'then
 if dataOutSGN = 1 then
 countExt <= std_logic_vector
(to_signed(FxpInitValue, (dataOutWL+1)));
 else
 countExt <= std_logic_vector
(to_unsigned(FxpInitValue, (dataOutWL+1)));
 end if;
 elsif ENABLE = '1' then
 if Direction = 0 then
 if dataOutSGN = 1 then
 countExt <=
std_logic_vector(signed(count) + to_signed(StepFxp,
dataOutWL+1));
 else

125 Tutorials

 countExt <=
std_logic_vector(unsigned(count) + to_unsigned(StepFxp,
dataOutWL+1));
 end if;
 else
 if dataOutSGN = 1 then
 countExt <=
std_logic_vector(signed(count) - to_signed(StepFxp,
dataOutWL+1));
 else
 countExt <=
std_logic_vector(unsigned(count) - to_unsigned(StepFxp,
dataOutWL+1));
 end if;
 end if;
 end if;
 end if;
 end if;
 end if;
 end process;

 dataOut <= count;
 rdy <= CE;

end CounterFxp_Arch;

Verilog Code Example

This example shows a portion of the Verilog code generated using SystemVue for
the fixed point counter () from the Hardware Design library.CounterFxp

//--

//
// CounterFxp - Verilog source
//
//--

module CounterFxp(dataOut, rdy, enable, reset, rst,
clk, ce);

 parameter dataOutWL = 0, dataOutIWL = 0, dataOutSGN
= 0;
 parameter Quantization = 0, Overflow = 0,
SaturationBits = 0;
 parameter [dataOutWL-1:0] FxpInitValue = 0;
 parameter [dataOutWL-1:0] StepFxp = 0;
 parameter Direction = 0;
 parameter internalSGN = (!dataOutSGN & Direction) |
dataOutSGN;

http://edadocs.software.keysight.com/display/sv201608/CounterFxp

Tutorials 126

 input clk, rst, enable, reset, ce;
 output rdy;
 output [dataOutWL-1:0] dataOut;

 wire [dataOutWL-1:0] count;
 reg [dataOutWL:0] countExt;

 assign rdy = ce;
 assign dataOut = (dataOutSGN) ? $signed(count) :
count;

 fxpconvert #(.xWL(dataOutWL+1), .xIWL(dataOutIWL+1),
.xSGN(internalSGN),
 .yWL(dataOutWL), .yIWL(dataOutIWL), .
ySGN(dataOutSGN),
 .quantMode(Quantization),
 .ovfMode(Overflow),
 .satBits(SaturationBits)
) convertCount(count, countExt);

 always@(posedge clk) begin
 if (rst) begin
 if (dataOutSGN) begin
 countExt = $signed(FxpInitValue); end
 else begin
 countExt = FxpInitValue;
 end end
 else begin
 if (ce) begin
 if (reset) begin
 if (dataOutSGN) begin
 countExt = $signed
(FxpInitValue); end
 else begin
 countExt = FxpInitValue;
 end end
 else if (enable) begin
 if (Direction) begin
 if (dataOutSGN) begin
 countExt = $signed(count) -
$signed(StepFxp); end
 else begin
 countExt = count - StepFxp;
 end end
 else begin
 if (dataOutSGN) begin
 countExt = $signed(count) +
$signed(StepFxp); end
 else begin
 countExt = count + StepFxp;
 end
 end

127 Tutorials

 end
 end
 end
 end

endmodule

Before Starting

Depending on the tutorials that you are going to follow, you may need to install the
following software:

Riviera Pro from Aldec: For HDL Cosimulation Tutorial

ModelSim/Questa from Mentor Graphics: For HDL Cosimulation Tutorial

Catapult from Mentor Graphics: For C Plus Plus to HDL Using Catapult
Design

ISE from Xilinx: For , HDL Code Generation Tutorial FPGA Implementation
, and .Tutorial Using Xilinx IP Cores Tutorial

Quartus from Altera: For and HDL Code Generation Tutorial FPGA
.Implementation

For software version compatibility, refer to System Requirements

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

Tutorials 128

1.

2.

3.

4.

5.

6.

7.

After installing the required software, configure the installation paths in the Code
Generation tab of which is shown in the figure below:Global Options

Software Setup Verification For Training

Before going through the steps below, make sure that you are able to open each of
the following software without any licensing problem:

Riviera Pro from Aldec

ModelSim/Questa from Mentor Graphics

ISE from Xilinx

Quartus from Altera

Open SystemVue

Go to Help -> Open Example...

Go to Hardware Design -> HDLCodeGeneration --> NCO

Open NCO.wsv

Save the workspace in a new location <Example_Location>

Double-Click on HDL Code Generation NCO

Configure it as shown in the figure below and then click Generate

http://edadocs.software.keysight.com/display/sv201608/Code+Generation+Tab
http://edadocs.software.keysight.com/download/attachments/40715601/GlobalOptions.png?version=1&modificationDate=1471572354000&api=v2

129 Tutorials

7.

8. Make sure that Xilinx ISE project will be invoked as shown below. If so, this is
a sign that your Xilinx setup is correct.

Tutorials 130

8.

9.

10.

11.

12.

13.

Double-click on the NCO block in the NCO_System schematic and make sure
there are four models in the model list as shown in the figure below. If so,
this is a sign that your Riviera PRO setup is correct

Switch to NCO (ModelSim) model and run the simulation. If it works, this is a
sign that ModelSim/Questa Setup is correct

Close Xilinx ISE program

Double-Click on HDL Code Generation NCO

Configure it as shown in the following figures:

131 Tutorials

13.

a.

b.

c.

14.

Add the clock value as shown below

Click on "Update IO Pins..." as shown below

then click Generate

Tutorials 132

14. Make sure that Altera Quartus project will be invoked as shown in the figure
below. If so, this is a sign that your Altera setup is correct.

Compiling Xilinx IP core simulation libraries

For , you need to compile the Xilinx IP core libraries Using Xilinx IP Cores Tutorial
which may take time. It is recommended to compile these libraries in advance by
following the steps in Using Xilinx IP Cores > Compiling Xilinx IP core simulation
libraries

Fixed Point Representation

Prerequisite

SystemVue 2012.06 or higher with Hardware Design Library

For software version compatibility, refer to System Requirements

Associated tutorial workspace

Examples\Tutorial\Hardware_Design\Basics\Fixed-PointParameters.wsv

Introduction

SystemVue FixedPoint Data Type has the computational behavior of SystemC 2.2TM

fixed point type based on . IEEE Std. 1666 Language Reference Manual (LRM)TM

The fixed point representation based on that standard is as follows:

http://edadocs.software.keysight.com/display/sv201608/System+Requirements
http://edadocs.software.keysight.com/display/sv201608/Supported+Data+Types#SupportedDataTypes-SystemVueFixedPointDataType
http://www.accellera.org/downloads/standards/systemc
http://standards.ieee.org/getieee/1666/index.html

133 Tutorials

FxpDataType<WL, IWL, IsSigned, Q_mode, S_mode, n_bits>
where,

WL - total wordlength

IWL - integer wordlength

IsSigned - Unsigned number for and Signed Number for .Zero One

Q_mode - Quantization mode; determines the behavior when the number to
be represented requires more precision than is available

S_mode - Saturation mode; determines the behavior when the number to be
represented is outside the dynamic range covered

n_bits - number of saturated bits (used by Saturation mode)

The figure provides an overview of the fixed point representation. Note that the
decimal point determines the weights across different bits. Also, the MSB has a
negative weight if it is and a positive weight if it is . The range of numbers zero one
using this representation is Asymmetric: -2^(WL-1) to 2^(WL-1)-1, where WL is the
wordlength.

Tutorials 134

This tutorial provides a brief description of the fixed point representation and
explains the fixed point parameters used in the parts of Hardware Design library. In
addition, it demonstrates the functionality of some bit manipulation parts available
in the Hardware Design Library.

The fixed point representation used in the Hardware Design Library is the 2's
 type. To negate a number of type, complement its binary complement

representation and then add 1 to the result.

Fixed Point Parameters

Fixed point data type is described by several parameters that are documented in
. In this tutorial, we will focus on four parameters: Fixed Point Simulation

Wordlength, Integer wordlength, Saturation mode, Quantization mode.

http://edadocs.software.keysight.com/display/sv201608/Fixed+Point+Simulation

135 Tutorials

Wordlength

A fixed point number of wordlength WL can represent 2^WL different values. The
minimum and maximum value can be determined by setting the Integer wordlength
and IsSigned parameters. The range of values bounded by the minimum and
maximum values is the dynamic range of the fixed point number.

Integer wordlength

This defines the portion of the WL bits that are used for representing integer
numbers. The sign bit is included in the integer wordlength.

Examples

<WL,IWL,IsSigned> 11101001

<8,8,0> 11101001. 128+64+32+0+8+0+0+1= → 233

<8,8,1> 11101001. -128+64+32+0+8+0+0+1 = → -23

<8,1,0> 1.1101001 1+1/2+1/4+0+1/16+0+0+1/128= → 1.8203125

<8,1,1> 1.1101001 -1+1/2+1/4+0+1/16+0+0+1/128= → -0.1796875

<8,0,0> .11101001 1/2+1/4+1/8+0+1/32+0+0+1/256= → 0.91015625

<8,0,1> .11101001 -1/2+1/4+1/8+0+1/32+0+0+1/256= → -0.08984375

Saturation mode

This mode defines how to represent numbers that are outside the dynamic range of
the fixed point representation. The supported modes are , , ,SAT SAT_ZERO SAT_SYM

, and . The following subsections describe each one of these WRAP WRAP_SM
modes using a fixed point representation x<WL=3,IWL=3,IsSigned=1>.

SAT: Saturation

Positive : Set to when x > MAX,MAX

Negative : Set to when x < MINMin

Tutorials 136

SAT_ZERO: Saturation to Zero

Positive : Set to when x > MAX,zero

Negative : Set to when x < MINzero

SAT_SYM: Symmetrical Saturation

Positive : Set to when x > MAX,MAX

Negative : Set to when x < MIN-MAX

137 Tutorials

WRAP: wrap around overflow operation

Saturation Bits are set to zero

Positive: When x exceeds MAX, it wraps around it and starts
from MIN (This is the effect of zero out all bits after MSB)

Negative: When x exceeds MIN, it wraps around it and starts
from MAX (This is the effect of zero out all bits after MSB)

Saturation Bits are set to value.nonzero

The value of the saturation bits determines the number of MSB
bits be saturated or set to 1. The sign bit is retained so that
positive numbers remain positive and negative numbers
remain negative. To illustrate this mode, the positive and
negative cases are explained through example of saturating a
fixed point number and saturation bits = 3x<5,5,1>

Positive: When x reaches 0 1 1 1 1 = 15, three MSB bits are
saturated: the sign bit (which remains as is), MSB-1 and the
MSB-2 bits. As a result, incrementing by 1 will result in 0 1 1 x
0 0 = 12.

Negative: When x reaches 1 0 0 0 0 = -16, three MSB bits are
saturated: the sign bit (which remains as is) MSB-1 and the
MSB-2 bits. As a result, decrementing by 1 (adding 1 1 1 1) x
will result in 1 0 0 1 1 = -13.

This is the default Saturation mode, the default
value of saturation bits is .zero

In the figure below, WRAP_1 refers to WARP mode with
saturation bits = 1, WRAP_2 refers to WARP mode with
saturation bits = 2.

Tutorials 138

WRAP_SM: It is a variation of the WRAP mode that avoids the strong non-
linear behavior caused by the wrap-around operation.

In the figure below, WRAP_SM_1 refers to WRAP_SM mode with saturation
bits = 1, WRAP_SM_2 refers to WRAP_SM mode with saturation bits = 2.

Quantization mode

This mode defines the quantization threshold that determines the transition
between two consequent fixed point values.

RND: Round towards plus infinity

Redundant MSB bit will be added to the remaining bits.(round the
value to the closest representable number):

has hardware cost but removes negative bias

RND_CONV: Convergent rounding

RND_INF: Round towards infinity

RND_MIN_INF: Round towards minus infinity

Redundant bits are dropped.

139 Tutorials

RND_ZERO: Round towards zero

For positive numbers: redundant bits are deleted

For negative numbers: redundant MSB bit is added

TRN: Truncation (Default): simple but slight negative bias

TRN_ZERO: Truncation to zero

The following figure shows the behavior of , and using RND TRN TRN_ZERO
a fixed point representation x<WL=3,IWL=3,IsSigned=1>.

Below are some additional examples:

Examples

Quantization
mode

<WL=4,IWL=2,IsSigned=0> <WL=3,IWL=2,→
IsSigned=0>

<WL=4,IWL=2,IsSigned=1> <WL=4,IWL=3,→
IsSigned=1>

RND 01.01 = 1.25 = 1.5→ 01.1 10.11 = -1.25 = -1→ 11.0

RND_INF 01.01 = 1.25 = 1.5→ 01.1 10.11 = -1.25 = -1.5→ 10.1

RND_MIN_INF 01.01 = 1.25 = 1.0→ 01.0 10.11 = -1.25 = -1.5→ 10.1

TRN 01.01 = 1.25 = 1.0→ 01.0 10.11 = -1.25 = -1.5→ 10.1

After obtaining some background about different fixed point parameters, open
Fixed-PointParameters.wsv workspace at
Examples\Tutorial\Hardware_Design\Basics and follow the steps and (2) Overflow

 in the note to explore the behavior of fixed (3) Quantization Tutorial_Description
point parameters at different settings.

Tutorials 140

Bit Manipulation

The following are some bit-level controls that can be performed in SystemVue
using the Hardware Design library.

Bit Extraction

Bit extraction is the operation of extracting a fixed point portion with wordlength
WL1 from another fixed point number WL2, where WL1 < WL2. This can be done
using , which extracts a group of bits starting from the bit = LSB ExtractFxp
parameter until bit = MSB parameter.

The format and signed/unsigned nature of the input is not taken into account,
the output will always be an unsigned integer, i.e. Wordlength = Integer
Wordlength.

The figure below is an example of using in Fixed-PointParameters.wsv ExtractFxp
example.

Bit Merging

Bit merging is the operation of combining two fixed point numbers with wordlength
WL1 and WL2 into a larger fixed point number with wordlength WL = WL1 + WL2.
This can be done using .BitMergeFxp

The formats and signed/unsigned natures of the inputs are not taken into
account, the output will always be an unsigned integer, i.e. Wordlength =
Integer Wordlength.

The figure below is an example of using in Fixed-PointParameters.wsv BitMergeFxp
example.

ParallelToSerial

The parallel to serial operation divides a fixed point number of wordlength WL into
several fixed point numbers produced at the output of wordlength = BlockSize.
When BlockSize is = 1, the fixed point number is produced at the output bit by bit.

http://edadocs.software.keysight.com/display/sv201608/ExtractFxp
http://edadocs.software.keysight.com/display/sv201608/ExtractFxp
http://edadocs.software.keysight.com/display/sv201608/BitMergeFxp
http://edadocs.software.keysight.com/display/sv201608/BitMergeFxp

141 Tutorials

This operation is done using .ParToSerFxp
The figure is an example of using in Fixed-PointParameters.wsv ParToSerFxp
example.

SerialToPrallel

The serial to parallel operation combines several fixed point numbers of wordlength
= WL into a single fixed point number with wordlength = BlockSize x WL. This
operation is done using .SerToParFxp
The figure is an example of using in Fixed-PointParameters.wsv SerToParFxp
example.

Open Fixed-PointParameters.wsv workspace at
Examples\Tutorial\Hardware_Design\Basics and follow the steps under section 1-

 in the note to explore the behavior of bit-level Bit Manipulation Tutorial_Description
controls introduced above.

HDL Code Generation

Prerequisite

SystemVue 2012.06 or higher with Hardware Design Library

For software version compatibility, refer to System Requirements

Associated workspaces

HDL_CODE_GEN.wsv in
Examples\Tutorials\Hardware_Design\CodeGen\SimpleDesign

CustomHDL_CodeGen.wsv in
Examples\Tutorials\Hardware_Design\CodeGen\ExistingHDL

We recommend that you copy the complete directory of
 to your local directory to Examples\Tutorials\Hardware_Design

avoid file writing permission issues on default installation
directory.

Introduction

http://edadocs.software.keysight.com/display/sv201608/ParToSerFxp
http://edadocs.software.keysight.com/display/sv201608/ParToSerFxp
http://edadocs.software.keysight.com/display/sv201608/SerToParFxp
http://edadocs.software.keysight.com/display/sv201608/SerToParFxp
http://edadocs.software.keysight.com/display/sv201608/System+Requirements

Tutorials 142

1.

2.

3.

Introduction

The capability in SystemVue provides an easy path from HDL Code Generation
schematic design to hardware. The general HDL code generation flow is shown in
the figure below. The flow starts by creating SystemVue using sub-network model
synthesizeable Fixed-Point parts from , as well as Hardware Design Library
imported HDL code through the and . This sub-HDL cosim block XilinxIPIntegrator
network can be then used to generate HDL code for the model inside it. The target
of the code generation process can be one of the following:

HDL only: generates the HDL files of the synthesizeable fixed point parts
inside the sub-network in addition to several additional HDL files for
simulation, clock and reset handling.

Xilinx FPGA: in addition to the HDL files, a Xilinx ISE project is created to
target Xilinx FPGA devices (Virtex 4/5/ and 6)

Altera FPGA: in addition to the HDL files, a Quartus II project is created to
target Altera FPGA devices (Cyclone IV E/GX,Stratix IV, Stratix V).

For more details, refer to .Understanding the Generated HDL

This tutorial covers the following examples of generating HDL code from a sub-
network that contains:

Example 1: Fixed point parts from .Hardware Design Library

Example 2: Imported HDL code using the HDL part.

http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation
http://edadocs.software.keysight.com/display/sv201608/Sub+Network+Models
http://edadocs.software.keysight.com/display/sv201608/Hardware+Design+Library
http://edadocs.software.keysight.com/display/sv201608/HdlCosim
http://edadocs.software.keysight.com/display/sv201608/XilinxIPIntegrator
http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation#HDLCodeGeneration-UnderstandingtheGeneratedHDL
http://edadocs.software.keysight.com/display/sv201608/Hardware+Design+Library

143 Tutorials

1.

2.

3.

1.

2.

3.

4.

1.

2.

Example 1: Fixed point parts from Hardware Design library

This tutorial demonstrates

The general HDL code generation flow for sub-networks that are built using
Fixed point parts from the .Hardware Design Library

Examine the output files and folders of the HDL code generation process.

Demonstrate the RTL schematic of the generated HDL design on Xilinx FPGA

Open the workspace. This workspace contains four folders:HDL_CODE_GEN.wsv

DFF_Design: This is a code generation example of a synchronous element. It
illustrates also the difference between different elements. i.e., memory
register, delay and latch.

FFT_Design: This is a code generation example of synchronous digital
processing parts. It illustrates also parameter, which can be found in latency
similar parts such as the CORDIC parts.

Gain_Design: This is a code generation example of an asynchronous element.
It illustrates also the concept of as a result of the full precision bit growth
multiplication.

MAC_Design: This is a code generation example of a simple digital design. It
illustrates also the concept of and in digital design.overflow pipelining

In the following sections, each of the designs above is described. Then the general
steps of HDL code generation flow are listed.

DFF_Design

Design Description

The DFF design is composed of three memory elements:

Delay: this memory element is implemented as a shift register, which upon
reset, clear the content of the last register only.

Register: It is a delay part with delay value = 1 and initial value = 0.

Latch: This is a register with a control input "latch" to hold the value at its
input.

Tutorial Steps

Right click on in the workspace tree and select DFF_Analysis Run (calculate
now)

Check the results on . The results should be identical to the figure DFF_Graph
below

http://edadocs.software.keysight.com/display/sv201608/Hardware+Design+Library

Tutorials 144

2.

3.

4.

a.

b.

5.

6.

Double-click on Add to HDL Code Generator1 Code_Gen_Subsys (DFF_Unit)
the code generation list if it is not on the list yet (refer the following screen
capture for the final configuration).

Make sure that the following options are set in the HDL Code Generation
Options dialog:

The option "Automatically add generated model to Part model list" is
checked

The is and is Target HDL only Test Vector Generation OFF

Run the HDL code generation by clicking "Generate"

In the DFF_Schematic, double-click on the Code_Gen_SubSys sub-network.
Note that the managed model list contains the following models:

145 Tutorials

6.

a.

b.

c.

d.

7.

8.

9.

a.

b.

c.

DFF_Unit

DFF_Unit [ModelSim]: Generated automatically.

DFF_Unit [Riviera Pro, Fxp]: Generated if the path to Riviera Pro
Executable is specified in the Global Options.

DFF_Unit [Riviera Pro, Dbl]: Generated if the path to Riviera Pro
Executable is specified in the Global Options.
Switch its model to or DFF_Unit [ModelSim] DFF_Unit [Riviera Pro, Fxp]
. Make sure that you have a compatible ModelSim or Riviera Pro
installed before executing the following step. For more information,
refer to .System Requirements

Run the Analysis again. SystemVue will co-simulate the generated HDL file
and the results will be compared against the output of the memory elements
at Diff_Sys1, Diff_Sys2, and Diff_Sys3 sub-networks.

You may need to set to as shown below if Compilation Mode Always
encountering simulation errors when necessary tools have already been
correctly installed:

For verification, check whether diff_val1, diff_val2, and diff_val3 are all zero.
You will note that diff_val2 is not zero. This is because the first sample of

 in DFF_Data is zero while the first sample of HDL_DFF_Sig_input_2
is one.Ref_DFF_Sig_input_2

The actual implementation of the delay memory will produce slightly
different results. Since it is implemented as a shift register of length 5,
the reset signal at the beginning of the simulation will reset the last
register only in the implemented shift register. Hence, the first output
sample of the delay will be zero, followed by four samples at the initial
value.

Review the generated HDL files in CodeGen\SimpleDesign folder. You will
find the following files:

DFF_Unit_HDL: It contains the generated HDL source files.

DFF_Unit_HDL_Riviera: It contains the Riviera Pro project that was
generated for building the XML library of the targeted sub-network.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

Tutorials 146

9.

c.

1.

2.

3.

4.

HDL Cosimulation: This folder is generated as a result of cosimulation
using ModelSim.

For more information about the generated files and folders refer to Understanding
.the Generated HDL

Design RTL schematic results

The figure below shows Design in SystemVue and the corresponding RTL DFF_Unit
schematic of that design in FPGA. Note that the DFF_Unit design is interfaced to a
clock and reset generation circuit. The design that combines the DFF_Unit sub-
network design and this clock/reset generation circuit is named

 as shown on the right side of the figure below. This DFF_Unit_CoSimWrapper
wrapper design is the top-level design/entity used for co-simulating generated
HDL code inside SystemVue.

To generate the RTL schematic diagram using Xilinx ISE tool, you should first
generate an HDL code targeting Xilinx FPGA to generate a corresponding ISE
project of the design. Open the generated ISE project, and do the following
steps below that are also shown in the figure below:

Select the top-level design in the project tree

Initiate the RTL schematic generation by double-clicking on "View RTL
Schematic". Then select "Start the Explorer Wizard"

Add all the elements in the "Available Elements" list to the "Selected
Elements"

Click "Create Schematic"

http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation#HDLCodeGeneration-UnderstandingtheGeneratedHDL
http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation#HDLCodeGeneration-UnderstandingtheGeneratedHDL

147 Tutorials

1.

2.

FFT_Design

This example generates Verilog files. Since Verilog simulation is only supported
by 32-bit ModelSim, make sure you with use 32-bit SystemVue for this exercise
32b ModelSim specified for in Global Options HDL Code Generation Options
dialog.

Design Description

The FFT design is composed of an that receives a complex sinusoidal FFT part
signal as an input. The size of FFT is 64. The sampling rate of the simulation is 1000
kHz while the frequency of the generated sinusoidal signal is 128 kHz. Since the
FFT size is 64, the sinusoidal signal should appear at the 8th sample (bin) of the 64
samples (bins) at the output.

The complex digital signal processing units such as FFT, FIR and Cordic-based
parts, are implemented using pipeline architecture. Hence, there is a latency
involved with the actual implementation of these units. The latency specifies the
number of clock cycles required after resetting the unit to produce a valid output.
The latency can be set manually or automatically. Refer to the part documentation
to determine its latency. For the FFT unit in this example, the latency is set to 257.

In order to track the results at the output of the FFT, a separate synchronization
unit is implemented which produces a periodic spike every 64 clock cycles, where
the first spike is delayed by 257 clock cycles.

Tutorial Steps

Right click on in the workspace tree and select FFT_Analysis Run (calculate
now)

Check the results on . The results should be identical to the figure FFT_Graph
below which shows the FFT output and the Synchronization signal.

http://edadocs.software.keysight.com/display/sv201608/FFT_Fxp
http://edadocs.software.keysight.com/display/sv201608/FFT_Fxp

Tutorials 148

2.

3.

4.

a.

b.

Double-click on . Add to HDL Code Generator2 Code_Gen_Subsys (FFT_Unit)
the code generation list if it is not on the list yet (refer the following screen
capture for the final configuration).

Make sure that the following options are set in the HDL Code Generation
Options dialog:

The option "Automatically add generated model to Part model list" is
asserted

The is and is Target HDL only Test Vector Generation ON

When is set , SystemVue run Test Vector Generation ON
simulation to generate test vectors at first and then generate
HDL codes. For complex designs, generating test vectors can be
time-consuming. Then generated test vectors are saved as txt
files in the generated HDL folder, and they can be read by HDL
testbench directly to simulate using ModelSim.

149 Tutorials

4.

b.

5.

6.

7.

8.

9.

Run the HDL code generation by clicking Generate

Switch the model in the Code_Gen_SubSys sub-network to the code
generated model: or . Make FFT_Unit [ModelSim] FFT_Unit [Riviera Pro, Dbl]
sure that you have a compatible ModelSim or Riviera Pro installed before
executing the following step. For more information, refer to System

.Requirements

Run again. SystemVue will co-simulate the generated HDL file FFT_Analysis
and the results will be compared against the output of the Fixed point model
of FFT using .AvgSqrErr part

For Verification, make sure that in dataset is zero.diff_val FFT_Data

Review the generated HDL files in CodeGen\SimpleDesign folder. Since the
Test Vector Generation is ON, the following .txt files are generated inside
CodeGen\SimpleDesign\FFT_Unit_HDL folder: , , Re_In.txt Im_In.txt

 and . These files contain the input and Re_Out_SVU.txt Im_Out_SVU.txt
output data samples collected during simulating the schematic that contains
the targeted sub-network for HDL code generation.

In folder CodeGen\SimpleDesign\FFT_Unit_HDL, a batch file
FFT_Unit_SimTB.bat can be executed to run ModelSim simulation
automatically using generated input test vectors and Re_In.txt Im_In.txt
, the simulation results at output ports are logged in and Re_Out.txt

 , which can be compared to the log generated using Im_Out.txt
SystemVue in and .Re_Out_SVU.txt Im_Out_SVU.txt

For more information about the generated files and folders refer to
.Understanding the Generated HDL

Design RTL schematic results

The figure below shows Design in SystemVue and the corresponding RTL FFT_Unit
schematic of that design in FPGA.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements
http://edadocs.software.keysight.com/display/sv201608/System+Requirements
http://edadocs.software.keysight.com/display/sv201608/AvgSqrErr_M
http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation#HDLCodeGeneration-UnderstandingtheGeneratedHDL

Tutorials 150

1.

2.

3.

4.

a.

b.

Gain_Design

Make sure you also install device package for this exercise, Altera Stratix
otherwise you will encounter errors during code generation.

Design Description

The Gain design is composed of a gain part that multiplies the input signal by 2.5
and output the results at full precision. The input precision settings are (WL=3+sign
bit, IWL=3+sign bit). The gain part is configured to produce the results of the
multiplication at the output at full precision. As a result, the output wordlength at
the output will increase. This is known as the bit growth, which is one of the most
critical issues encountered in fixed point algorithm design. To determine the
precision of the output, determine the least precision required to resemble 2.5. In
this case, it is (WL=3, IWL=2). Hence the precision of the output is (WL_input +
WL_gain, IWL_input + IWL_gain) = (4+3, 4+2) = (7,6).

To verify the results. Perform HDL code generation for this example by following
the Tutorial steps below.

Tutorial Steps

Right click on in the workspace tree and select Gain_Analysis Run (calculate
now)

Check the results on .Gain_Graph

Double-click on . Add HDL Code Generator 3 Code_Gen_Subsys (Gain_Unit)
to the code generation list.

Make sure that the following options are set in the HDL Code Generation
Options dialog:

The option "Automatically add generated model to Part model list" is
asserted

Make sure that the path to Altera Quartus II executable is
specified in the Global Options before performing the next step

The Target is and The Test Vector Generation is Altera_FPGA OFF

151 Tutorials

4.

b.

5.

6.

7.

8.

While HDL code generator can support HDL code generation for
multiple sub-networks at the same time when the Target option
is set to , this is not the case if the code generation HDL_Only
target is a specific FPGA such as Altera or Xilinx. In this case, the
user has to choose a specific sub-network. For this reason, a new
sub-network appears if Xilinx or Altera FPGA target is chosen.

Run the HDL code generation by clicking "Generate"

Switch the model of the Code_Gen_SubSys part to the code generated
model: or . Make sure that Gain_Unit [ModelSim] Gain_Unit [Riviera Pro, Dbl]
you have a compatible ModelSim or Riviera Pro installed before executing
the following step. For more information, refer to .System Requirements

Run the Analysis again. SystemVue will co-simulate the generated HDL file
and the results will be compared against the output of the Gain part at
Diff_Sys sub-network.

To verify, make sure that diff_val is zero. Also, to verify the precision of the
Gain output, go to the I/O page of Gain_Unit [ModelSim] (HDL@Data Flow
Models) dialog as shown in the figure below:Properties

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

Tutorials 152

8.

9. Review the generated files in Gain_Unit_FPGA and Gain_Unit_HDL folder.

Try to change the precision of the FloatToFixed point converter at the input of the
gain, or change the gain value inside the Gain_unit model. Examine the bit growth
at the output.

Design RTL schematic results

The figure below shows Gain_Unit Design in SystemVue and the corresponding RTL
schematic of that design in FPGA.

MAC_Design

Design Description

This design contains three sub-networks: The original Multiply and accumulate unit
(MAC unit), a copy of this unit for code generation () and a sub-Code_Gen_Subsys1
network that includes four cascaded MAC units ().Code_Gen_Subsys2
Examine the MAC_Unit design. Note that for fixed input value, the output of the
multiplier is fixed. Since the input of the model is , the output of the multiplier is one
also fixed at . However, at the adder, the input grows continuously by adding 1.5

153 Tutorials

1.

2.

the fixed value 1.5 to the accumulated one from previous clock cycle. Hence, the
output of the adder is incrementing by every clock cycle. The output resolution 1.5
of the adder is Signed (8, 4), an overflow will occur when the adder output change
from to since is beyond the dynamic range of Signed (8, 4). For a simulation 7.5 9 9
duration of 12 samples, this overflow will occur twice.

The overflow events can be discovered easily using . To Fixed Point Analysis table
produce this table after the simulation, Double-click on , go to the MAC_Analysis

page and Check "Collect Fixed Point Statistics" option. The content of the Options
table at the end of the simulation is shown below. The overflow is marked in red.

Tutorial Steps

Right click on in the workspace tree and select MAC_Analysis Run (calculate
now)

Check the results on . The results should be identical to the MAC_Graph
figure below

http://edadocs.software.keysight.com/display/sv201608/Fixed+Point+Simulation#FixedPointSimulation-FixedPointAnalysisTable

Tutorials 154

2.

3.

4.

5.

a.

b.

c.

Since the Overflow option in the adder is set to , the value of SAT_ZERO
the output upon overflow will be reset to zero. Hence, the accumulator
process will be reset. Try setting the Overflow option to and note Wrap
the difference in the output.

Double-click on sub-network and change the Part Code_Gen_SubSys1
behavior from to as shown in the figure Disable, short Use Active Model
below:

Double-click on . Add HDL Code Generator 4 Code_Gen_Subsys1 (MAC_Unit)
to the code generation list.

Make sure that the following options are set in the HDL Code Generation
Options dialog:

The option "Automatically add generated model to Part model list" is
asserted

The Target is and Test Vector Generation is Xilinx FPGA OFF

Leave the default settings in the Sub-network Configuration section as
is.

155 Tutorials

5.

c.

6.

7.

8.

Run the HDL code generation by clicking "Generate"

As a result, Xilinx ISE program will be invoked. Review the generated files in
 and folder.MAC_Unit_FPGA MAC_Unit_HDL

To examine the maximum speed at which the design can run on the targeted
FPGA, double-click on as shown Generate Post-Synthesis Simulation Model
in the figure below

Tutorials 156

8.

9.

10.

11.

12.

Check the at the end of the generated report in the Console Timing Summary
window, you will find the following results: Minimum period: 2.887ns
(Maximum Frequency: 346.392MHz)

In Xilinx ISE, you can generate the RTL schematic of the MAC_Unit
design by double-clicking on under View RTL Schematic Synthesize-

 Process.XST

Close the invoked Xilinx ISE program.

Switch the model of the Code_Gen_SubSys1 part to the code generated
model: or . Make sure that MAC_Unit [ModelSim] MAC_Unit [Riviera Pro, Dbl]
you have a compatible ModelSim or Riviera Pro installed before executing
the following step. For more information, refer to .System Requirements

Run again. SystemVue will co-simulate the generated HDL file MAC_Analysis
and the results will be compared against the output of the original MAC_Unit
sub-networks.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

157 Tutorials

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

For verification, make sure that in MAC_Data dataset is zero.diff_val

Double-click on sub-network and change the Part Code_Gen_SubSys2
behavior from to .Disable, short Use Active Model

Check the content of the Cascaded_MAC_Unit. Note that this model uses
four cascaded stages of MAC_Unit design. The stages are separated by
delays which are currently shorted. These delays are used to pipelining
improve the Maximum clock rate that can be achieved with the cascaded
design.

Pipeline registers are usually used to reduce the critical path that can be
developed by cascading processing units.

Double-click on . Add HDL Code Generator 5 Code_Gen_Subsys2 (MAC_Unit)
to the code generation list and click Generate

On the invoked Xilinx ISE program, double-click on Generate Post-Synthesis
.Simulation Model

Check the at the end of the generated report in the Console Timing Summary
window, you will find the following results: Minimum period: 10.970ns
(Maximum Frequency: 91.156MHz)

Close the invoked Xilinx ISE program.

Open the Design and remove the Short status from all Cascaded_MAC_Unit
the delay elements. This can be done by holding the key and clicking on Ctrl
each delay part then lick on the Short icon as shown in the figure below:

Double-click on . Click again.HDL Code Generator 5 Generate

On the invoked Xilinx ISE program, double-click on Generate Post-Synthesis
.Simulation Model

Check the at the end of the generated report in the Console Timing Summary
window, you will find the following results: Minimum period: 4.102ns
(Maximum Frequency: 243.795MHz)

Note how the speed of the cascaded system has increased from 91.156MHz to
243.795MHz as a result of the use of pipelining registers.

Tutorials 158

1.

2.

Design RTL schematic results

The figure below shows MAC_Unit Design in SystemVue and the corresponding
RTL schematic of that design in FPGA.

Example 2: Imported HDL code using the HDL part

In addition to the ability of generating HDL code for digital systems that are built
with fixed point parts from the Hardware Design library, it is possible also to import
customized HDL code into the digital system using the HDL block and to generate
HDL code for the entire system. In this example, two designs are considered, a
combinational logic design and a sequential logic design.

In many sequential logic designs, a and input ports may exist. In such Clock Reset
cases, users have two options:

Generate the Clock and Reset signals explicitly in the design and connect
them to HDL block.

Hide Clock and Reset input ports and let SystemVue generates them
automatically upon cosimulation (This option is demonstrated in the
sequential logic design case below).

To generate HDL code for designs that contain HDL block, a ModelSim license
is required since ModelSim is used by this block to compile and verify imported
HDL code before HDL code generation for the entire design.

Combinational Logic Design

This design takes two inputs A and B and calculates the output M as follows:

In addition, the output c is asserted in case the summation exceeds the dynamic
range of 16 bits. The design is shown in the figure below:

159 Tutorials

1.

a.

As seen in this design, the n-bit adder circuit is presented using a custom HDL
code. The HDL code (VHDL) is shown below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
--
entity ADDER is
generic(n: natural :=4);
port(A: in std_logic_vector(n-1 downto 0);
 B: in std_logic_vector(n-1 downto 0);
 carry: out std_logic;
 sum: out std_logic_vector(n-1 downto 0)
);
end ADDER;
--
architecture behv of ADDER is
-- define a temporary signal to store the result
signal result: std_logic_vector(n downto 0);
begin
 -- the 3rd bit carry the
 result <= ('0' & A)+('0' & B);
 sum <= result(n-1 downto 0);
 carry <= result(n);
end behv;
--

To add this HDL code into the design, drag and drop an HDL block from the
Hardware Design Library and apply the following settings:

HDL Files page

Tutorials 160

1.

a.

b.

c.

2.

a.

b.

3.

a.

b.

c.

4.

a.

Language: select the language based on the type of the HDL code to
be added. In this design, the adder code is VHDL

Mixed Language is not supported for HDL Code Generation.

Add the file from the follow location: Adder.vhd
CodeGen\ExistingHDL\HDL_Source\VHDL\Combinational

In the case of multiple files design using VHDL, the compilation
order is important, you can change the file order by using Up and
Down buttons. The files at the top are compiled first.

Set Compilation Mode to .Always

HDL Settings page

Top Level Entity/Module: As inferred from the VHDL code, the name of
the entity is .ADDER

Iteration Time: This is the amount of time for which the HDL simulation
is run in ModelSim during each invocation of the HDL model. The
value of iteration time must be a positive value. In this example, the
iteration time is set to 100 ns

I/O page

The name of the ports must match the names of input and output
ports of the top-level entity.

The of output ports is determined from the HDL code. wordlength
Since the Wordlength is parameterized (using parameter n), we define
a variable n_val in the Equation page " " in the workspace Equation1
tree. This variable is then used to represent the value of wordlength of
the output port sum.

The and the settings are determined integer wordlength Is Signed
based on the design. Since the output is always positive, the unsigned
setting is chosen. Also, since the input values are all integers, the
output of the summation is an integer. Hence, the wordlength =
integer wordlength (no fraction part)

Custom Parameters page

In this page, we set the values of the entity parameters. In this case,
parameter is set to the value of variable . If parameters are not n n_val
set, the default value specified in the HDL code will be applied.

Sequential Logic Design

This design generates a saw signal with configurable period. The values to are 1 32
stored in the LookUpTable, and a configurable address generator using re-loadable
counter generates the memory address to the LookUpTable. Since the number of

161 Tutorials

entries in the LookUpTable is 32, the Wordlength or the address should be 5. Upon
accessing the last value of the LookUpTable, a Load control signal is asserted at
the Load input port of the counter. The design is shown in the figure below:

As seen in this design, the Re-loadable Counter is presented using a custom HDL
code. The HDL code (VHDL) is shown below:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all; -- for the unsigned type

entity COUNTER is
 generic (
 WIDTH : in integer := 32);
 port (
 RST : in std_logic;
 CLK : in std_logic;
 LOAD : in std_logic;
 DATA : in std_logic_vector(WIDTH-1 downto 0);
 Q : out std_logic_vector(WIDTH-1 downto 0));
end entity COUNTER;

architecture RTL of COUNTER is
 signal CNT : unsigned(WIDTH-1 downto 0);
begin
 process(RST, CLK) is
 begin
 if RST = '1' then
 CNT <= (others => '0');
 elsif rising_edge(CLK) then
 if LOAD = '1' then
 CNT <= unsigned(DATA); -- type is converted to
unsigned
 else
 CNT <= CNT + 1;

Tutorials 162

1.

a.

b.

c.

2.

a.

b.

3.

a.

b.

c.

 end if;
 end if;
 end process;

 Q <= std_logic_vector(CNT); -- type is converted back
to std_logic_vector
end architecture RTL;

To add this HDL code into the design, drag and drop an HDL block from the
Hardware Design Library and apply the following settings:

HDL Files page

Language: select the language based on the type of the HDL code to
be added. In this design, the adder code is VHDL

Mixed Language is not supported for HDL Code Generation.

Add the file from the follow location: Counter.vhd
CodeGen\ExistingHDL\HDL_Source\VHDL\Sequential

In the case of multiple files design using VHDL, the compilation
order is important, you can change the file order by using Up and
Down buttons. The files at the top are compiled first.

Set Compilation Mode to .Always

HDL Settings page

Top Level Entity/Module: As can be inferred from the VHDL code, the
name of the entity is the .counter

Iteration Time: This is the amount of time for which the HDL simulation
is run in ModelSim during each invocation of the HDL model. The
value of iteration time must be a positive value. Since the top-level
entity/module contains a clock then this is set as the clock period of
the . So, the iteration time is set to the sampling Auto Generated Clock
rate 1000 ns

I/O page

The name of the ports must match the names of input and output
ports of the top-level entity.

The of output ports is determined from the HDL code. wordlength
Since the Wordlength is parameterized (using parameter WIDTH), we
define a variable WIDTH_val in the Equation page " " in the Equation1
workspace tree. This variable is then used to represent the value of
wordlength of the output port Q.

http://edadocs.software.keysight.com/display/sv201608/HdlCosim#HdlCosim-AutoGenerateClock

163 Tutorials

3.

c.

4.

a.

The and the settings are determined integer wordlength Is Signed
based on the design. Since the output is always positive, unsigned
setting is chosen. Also, since the counter incrementing by '1', the
output value is always integer. Therefore, integer wordlength =
wordlength (no fractional part)

Custom Parameters page

In this page, we set the values of the entity parameters. In this case,
parameter is set to the value of variable . If WIDTH WIDTH_val
parameters are not set, the default value specified in the HDL code will
be applied.

After successful HDL code generation for the subnetwork " ", double-Subnetwork1
click on and switch the model to or Subnetwork1 Saw_Sig_Generator [ModelSim]

. Make sure that you have a compatible Saw_Sig_Generator [Riviera Pro, Dbl]
ModelSim or Riviera Pro installed before executing the following step. For more
information, refer to .System Requirements

Perform HDL cosimulation to verify the functionality of the generated HDL code.
The results should be similar to the figure below:

What Can Go wrong?

The Fixed-Point sub-network model used to generate HDL, contains only
synthesizeable Fixed-Point parts from . For example Hardware Design Library

 part or part are not synthesizeable. To ensure that a Fixed-FloatToFxp Sink
Point part is synthesizeable, see its documentation.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements
http://edadocs.software.keysight.com/display/sv201608/Hardware+Design+Library
http://edadocs.software.keysight.com/display/sv201608/FloatToFxp
http://edadocs.software.keysight.com/display/sv201608/Sink

Tutorials 164

The workspace has to be saved in user's local system before HDL code
generation.

C + + to HDL Using Catapult Design

Prerequisite

SystemVue 2012.06 or higher with Hardware Design Library

Catapult C (System Level Synthesis)

Visual Studio C++

For software version compatibility, refer to System Requirements

Associated workspaces

ConceptToImplementation_Mapper.wsv in Examples\Hardware
Design\ConceptToImplementation

We recommend you to copy the complete directory of
 to your Examples\Hardware Design\ConceptToImplementation

local directory to avoid file writing permission issues on default
installation directory.

Introduction

This tutorial describes in detail the flow of creating a SystemVue model starting
from Bit-true C++ code for HLS Synthesis. Hardware designs are usually developed
using bit-accurate datatypes in hardware design languages such as VHDL and
Verilog. Bit accurate C/C++ code is based on native C integer types, bit-accurate
integer and fixed-point types. The transition from Bit-Accurate C++ code to
SystemVue model is done using SystemVue flow in Catapult C HLS software as
shown in the figure below.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

165 Tutorials

As seen from the figure, the flow starts with Bit-true C++ code. Catapult C uses this
code as an input and generates two outputs: HDL code that can be used later to
generate bit files for FPGAs and also a SystemVue Model library () which is .dll
generated through SystemVue flow in Catapult C. This library can be then imported
into SystemVue.

In this tutorial, we use the bit-true C++ code and source files mapper.h mapper.c
that can be found in Examples\Hardware
Design\ConceptToImplementation\source. The contents of these files are listed
below.

mapper.h

#ifndef _MAPPER_H
#define _MAPPER_H
// Copyright 1983 Keysight Technologies, Inc

#include "ac_fixed.h"

void Mapper(ac_int<6,false> *dataIn, ac_int<4,false>
*realOut, ac_int<4,false> * imagOut);

#endif

mapper.cpp

Tutorials 166

// Copyright 1983 Keysight Technologies, Inc
#include "mapper.h"
#include <complex>

const std::complex<int> QAM_64[64] =
{
 std::complex<int>(1, 1), std::complex<int>(3, 1),
std::complex<int>(1, 3), std::complex<int>(3, 3),
std::complex<int>(7, 1), std::complex<int>(5, 1),
std::complex<int>(7, 3), std::complex<int>(5, 3),
 //s5s4s3s2s1s0=000000
=000001
=000010
=000011
=000100
=000101
=000110 =000111
 std::complex<int>(1, 7), std::complex<int>(3, 7),
std::complex<int>(1, 5), std::complex<int>(3, 5),
std::complex<int>(7, 7), std::complex<int>(5, 7),
std::complex<int>(7, 5), std::complex<int>(5, 5),
 //s5s4s3s2s1s0=001000
=001001
=001010
=001011
=001100
=001101
=001110 =001111
 std::complex<int>(15, 1), std::complex<int>(13, 1
), std::complex<int>(15, 3), std::complex<int>(13,
3), std::complex<int>(9, 1), std::complex<int>(11,
1), std::complex<int>(9, 3), std::complex<int>(11,
3),
 //s5s4s3s2s1s0=010000
=010001
=010010
=010011
=010100
=010101
=010110 =010111
 std::complex<int>(15, 7), std::complex<int>(13, 7
), std::complex<int>(15, 5), std::complex<int>(13,
5), std::complex<int>(9, 7), std::complex<int>(11,
7), std::complex<int>(9, 5), std::complex<int>(11,
5),
 //s5s4s3s2s1s0=011000
=011001
=011010
=011011
=011100
=011101
=011110 =011111

167 Tutorials

 std::complex<int>(1, 15), std::complex<int>(3, 15
), std::complex<int>(1, 13), std::complex<int>(3,
13), std::complex<int>(7, 15), std::complex<int>(5
, 15), std::complex<int>(7, 13), std::complex<int>
(5, 13),
 //s5s4s3s2s1s0=100000
=100001
=100010
=100011
=100100
=100101
=100110 =100111
 std::complex<int>(1, 9), std::complex<int>(3, 9),
std::complex<int>(1, 11), std::complex<int>(3, 11),
std::complex<int>(7, 9), std::complex<int>(5, 9),
std::complex<int>(7, 11), std::complex<int>(5, 11),
 //s5s4s3s2s1s0=101000
=101001
=101010
=101011
=101100
=101101
=101110 =101111
 std::complex<int>(15, 15), std::complex<int>(13,
15), std::complex<int>(15, 13), std::complex<int>(
13, 13), std::complex<int>(9, 15), std::complex<in
t>(11, 15), std::complex<int>(9, 13), std::
complex<int>(11, 13),
 //s5s4s3s2s1s0=110000
=110001
=110010
=110011
=110100
=110101
=110110 =110111
 std::complex<int>(15, 9), std::complex<int>(13, 9
), std::complex<int>(15, 11), std::complex<int>(13
, 11), std::complex<int>(9, 9), std::complex<int>(
11, 9), std::complex<int>(9, 11), std::complex<int
>(11, 11)
 //s5s4s3s2s1s0=111000
=111001
=111010
=111011
=111100
=111101
=111110 =111111
};

#pragma design top
void Mapper(ac_int<6,false> *dataIn, ac_int<4,false>
*realOut, ac_int<4,false> * imagOut)
{

Tutorials 168

1.

2.

3.

1.

2.

3.

4.

 unsigned short index = *dataIn;
 *realOut = QAM_64[index].real();
 *imagOut = QAM_64[index].imag();
}

SystemVue Flow in Catapult C Example

The following sections describe in detail the steps required to transform a Bit-True
C/C++ code into a SystemVue Model. Before moving to the next sections, copy the

 and files into another location, we will refer to it in this mapper.h mapper.cpp
tutorial as .<CatapultExampleFolder>

Setting SystemVue Flow in Catapult SL

Start Catapult SL software

Open and select at the left side of the dialog Tools->Set Options …. Flows
box

Click on and add the directory Add <SystemVue
 in the Flow Search Path, and click Apply Installation>\ModelBuilder\Catapult

& Save, click OK to close the dialog. Close Catapult and restart it.

Creating Catapult C Project

Prepare a project folder in a write-permissible location. We will refer to that
folder as . Ignore this step if you have already done <CatapultExampleFolder>
so.

Make sure that you have copied the contents of <SystemVue
Installation>\Examples\Hardware

 to Design\ConceptToImplementation\source <CatapultExampleFolder>

Click and set as File -> Set Working Directory … <CatapultExampleFolder>
working directory

Click and name the project and click OKFile -> New -> Project Mapper

Click on in the Task Bar and add and Add Input Files mapper.h mapper.cpp
that have been copied to . See the figure below<CatapultExampleFolder>

169 Tutorials

4.

5.

6.

7.

1.

2.

Click , you will see View -> Other Windows -> Flow Manager SystemVue
available in Flow Manager

Click on in the Flow Manager window and then click SystemVue Enable

Make sure to Set SystemVue model directory to
 and click Apply. This will create <CatapultExampleFolder>\SystemVueFlow

SystemVue Folder automatically if it is not created in
.<CatapultExampleFolder>

Setting Up the Design

Make sure that you are using a compatible compiler with Catapult-C. The
compiler used by Catapult-C can be set at and Tools -> Set Options... -> Input
then set the appropriate at Section. Refer to Catapult-C Type Compiler Home
Release Documentation for the compatible compiler versions

Under Task Bar click Setup Design

Select and Set Design Frequency to 50 MHzclk

Tutorials 170

2.

3.

1.

2.

3.

4.

a.

b.

5.

a.

b.

Select and click Technology -> Xilinx -> VIRTEX-4 -> Base FPGA Library
Apply

Running Catapult Design Flow

Click On to generate RTLGenerate RTL

This will generate VHDL under Output Files under Project Files

Also, at the end of the flow, SystemVue C++ model is generated as indicated
by the generation log. See the figure below.

As a result, the followings are generated under
folder:<CatapultExampleFolder>\SystemVueFlow

source folder: it contains the source code for the SystemVue model of
the mapper.

Configure-for-vs2012.bat: is a batch file for generating Visual Studio
solutions (32 and 64-bits) using CMake.

Double-click on to Run this batch file. As a result, Configure-for-vs2012.bat
two folders are generated:

build-win32-vs2012: contains the 32-bit SystemVue model visual
studio solution.

171 Tutorials

5.

b.

1.

2.

3.

1.

2.

3.

4.

5.

build-win64-vs2012: contains the 64-bit SystemVue model visual
studio solution.

Building SystemVue Model in Visual Studio

To build SystemVue model for SystemVue 32-bit (64-bits), double-click to
open the solution under (SystemVueFlow build-win32-vs2012 build-win64-

). It should start Visual Studio 2012 with the solution loaded.vs2012

Inside Visual Studio 2012, select the Build configurationRelease

Right-click on the project and select .INSTALL Rebuild
This will produce a new folder inside output-vs2012

 directory. This folder contains: <CatapultExampleFolder>\SystemVueFlow
 file and file under (Mapper.dll Mapper.pdb Release-SystemVue-Win32

) folder.Release-SystemVue-Win64

SystemVueFlow in Examples\Hardware
Design\ConceptToImplementation contains a reference of the correctly
generated dll file, you can compare the generated dll file against the
ones stored in that folder

Using Generated Library in SystemVue

Copy in Examples\Hardware ConceptToImplementation_Mapper.wsv
Design\ConceptToImplementation to <CatapultExampleFolder>

Open the workspace .ConceptToImplementation_Mapper.wsv

Drag and drop the generated to SystemVue. Alternatively, Go to Mapper.dll
 and add the library by click Tools -> Library Manager Add From File ...

Make sure that there is no older version of this .dll file in the library list.
If you found one, remove it before adding the generated fileMapper.dll

You will be able to see in the Part Selector A List.SystemVueFlow Parts

The part in the design was already setup to have M1 Mapper @
 in its managed model list. See the figure below.SystemVueFlow models

Tutorials 172

5.

6. Run the simulation using configuration and verify its functionality Catapult
compared to other models using with other configurations.

In Catapult configuration, the part uses M1 Mapper@SystemVueFlow
Model and the part uses ModelF1 FloatToFxp@Fxp

Fixed Point Optimization

Prerequisite

SystemVue with Hardware Design Library

For software version compatibility, refer to System Requirements

Associated workspaces

OptimizingCordic.wsv in
Examples\Tutorials\Hardware_Design\Demos\OptimizingCordic

RecursiveConstructDemo.wsv in
Examples\Tutorials\Hardware_Design\Demos\RecursiveConstructs

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

173 Tutorials

MovingAverage.wsv in
Examples\Tutorials\Hardware_Design\Demos\FixedPointStatistics

We recommend you to copy the complete directory of
 to your local directory to avoid file Examples\Tutorials\Hardware_Design

writing permission issues on default installation directory.

Introduction

FPGA-based implementations of digital signal processing algorithms are usually
done based on fixed point arithmetic to strive for cost and speed. To reduce cost, it
is necessary to use the fewest number of bits possible to represent signals in the
design. To improve speed, the number of iterations or stages in iterative algorithms
has to be as low as possible. Simulation-based optimization is one method to
determine the wordlength and other fixed point-related parameters. This tutorial
explains how to use the following features in SystemVue to optimize several fixed
point parameters in digital designs: and .Fixed point analysis table Sweep analysis

Fixed Point Analysis Table

Fixed point table is created automatically after simulating a design that contains
fixed point parts and when data flow analysis options are set properly to collect
fixed point analysis data as shown in the figure below:

The fixed point analysis table contains 8 columns:

Part- the instance name of the design block.

Tutorials 174

Model - the model used in the Part.

Signal - the name of the fixed point signal.

Precision - the fixed point number representation (± indicates signed, wl
denotes the register word length, denotes the length of the integer part).iwl

Overflows - shows the total number and percentage of overflows on the
signal.

Underflows - shows the total number and percentage of underflows on the
signal.

Max - the maximum value of the signal.

Min - the minimum value of the signal.

Overflows and underflows are generally undesirable, they are shown in red. The
figure is an example fixed point analysis table:

In the case of overflow or underflow events, the values of in the Max and Min
column the values depend on the settings of the parameter of the Saturation
associated part.

Example: Moving Average Filter

This example demonstrates how to use the Fixed Point Analysis Table to configure
the parameter in fixed point implementation of a moving averaging Wordlength
window filter. Open in workspace. This design Design1 MovingAverage.wsv
contains a floating point and a fixed point implementation of 8-tap moving average
filter. The fixed point implementation has a fixed wordlength of size across all WL
filtering stages. In addition, the minimal wordlength at the output of the fixed point
filter is analytically estimated in the part based on Schwarz's MATLAB_Script
inequality. The initial setting for the design is 16 and the standard deviation of WL

 source is 2^8 = . The design is shown in the IID Gaussian Noise Waveform 256
figure below.

175 Tutorials

1.

2.

3.

Hint: Since the number of coefficients of the averaging filter is a power of two
(8 = 2^3). The division by the number of samples () can be done 8 efficiently
using a bit shift operator.

Wordlength Customization

The initial wordlength setting of the fixed point filter design is sufficient to
cover the bitgrowth of the signal along the fixed point implementation of the
averaging window. The allows the user to examine Fixed Point Analysis Table
this bit growth and adjust the wordlength setting at each stage of the fixed
point design. To examine that, follow the step below

Right click on in the workspace tree and select Design1 Analysis Run
.(Calculate Now)

Double-click on . Note the bit growth along Design1_Data_FixedPointAnalysis
the outputs of the consecutive adders. The maximum value at the output A1
is while the maximum value at the output of is .1109 A7 2285

Tutorials 176

3.

4.

5.

6.

7.

8.

9.

10.

Note the underflow events occurred twice during the simulation at the
output of the part. Underflow event occurs when the fixed point ShiftFxp
representation of the resulting number does not have enough precision
because the ideal value is very small. As a result, the number becomes zero.
This is common in fixed point math when dividing a small number by a big
number.

To verify that, let us analyze the output of the floating point filter and find
how many positive values are below 1. Double-click on and Design1_Data
right click on the column, select Variable Add New Variable...

Set the to , and set to the following Name NumOfUnderflows Formula
equation

length(find ((Float_Output<1)&(Float_Output>0)))

This formula finds the number of values in that are between 0 Float_Output
and 1.

Click . Note that the calculated value is 2.OK

To resolve this underflow, set the at the output of the IntegerWordLength
shift operation to .WL-3

Right click on in the workspace tree and select Design1 Analysis Run
 again.(Calculate Now)

177 Tutorials

10.

11.

12.

Double-click on and note that the Design1_Data_FixedPointAnalysis
underflow events are resolved.

Double-click on graph. Note the perfect match between Output_Comparison
the output of the floating and fixed point implementation of the averaging
filter.

At this point, the user can customize the wordlength and integer wordlength
settings of the fixed point design based on the recorded Max and Min values
at the input and output of each part in the fixed point design. In addition to
the Max and Min values, users can examine the distribution of the values at

Tutorials 178

12.

the input and output ports of each part using the Fxp Analysis Reporter
(which is the window that is invoked at the end of the analysis). The figure
below shows the histogram of the values at the output of . To AdderFxp A5
obtain this histogram, double click on the part name on the AdderFxp A5 Fxp

 window, then set to .Analysis Reporter Variable to analyse dataOut

Setting Wordlength Based on Analytical Estimation

In Linear Time Invariant (LTI) systems, Schwarz’s inequality is used for estimating

the bit growth:

where and are the impulse response and input to the LTI system h[n] x[n]

respectively. A variation of that estimation is implemented in the MATLAB_Script

part as shown in the equation below

179 Tutorials

12.

13.

14.

15.

16.

The corresponding MATLAB Script implementation code is:

Sum_Of_x_2 = sum(input.^2);
Sum_Of_h_2 = 8;
Range = sqrt(Sum_Of_x_2 * Sum_Of_h_2);
output=1+ceil(log2(Range));

Note that the output of the part is the estimated wordlength. MATLAB_Script
The addition of 1 at the end is to cover the negative values as well. Follow
the steps below to configure the wordlength based on the analysis
implemented in this part.MATLAB_Script

Double-click on the graph. This graph shows the Wordlength_Estimation
output of the part which is the analytical estimation of the MATLAB_Script
required wordlength at the output of the fixed point filter. See the figure
below:

As can be inferred from that figure, is the estimated value. Double-WL=13
click on on the workspace tree and change the equation in Line 1 Equation 1
to

WL = 13;

Right click on in the workspace tree and select Design1 Analysis Run
.(Calculate Now)

Tutorials 180

16.

1.

2.

3.

4.

Verify that there is no overflow or underflow events in
 table.Design1_Data_FixedPointAnalysis

Overflow Detection

 table can be used to detect the events of overflow and Fixed Point Analysis
underflow. The section presented previously Wordlength Customization
showed an example of detecting underflow events. An overflow occurs when
the data value exceeds the maximum range that can be represented with its
fixed point representation. The following steps demonstrate how overflow
events are also reported in the table.Fixed Point Analysis

Double-click on on the workspace tree and change the equation Equation 1
in Line 1 to

WL = 12;

Right click on in the workspace tree and select Design1 Analysis Run
.(Calculate Now)

Double-click on and note that the overflow Design1_Data_FixedPointAnalysis
events that occurred at the output of the sixth and seventh adder and A6 A7
as well as ShiftFxp .S1

181 Tutorials

4. Double-click on graph. Note the impact of overflow Output_Comparison
events on the output of fixed point filter as shown in the figure below:

Sweep Analysis

Simulation-based fixed point parameter optimization is usually conducted by
evaluating the performance of the digital design at different fixed point parameters.
The performance can be measured in comparison to a reference design such as
floating point design and then the fixed point analysis can be adjusted accordingly.

In sweep analysis, users can select several design parameters for tuning, and
conduct several simulations at different values of these tunable parameters and
observe the corresponding results of these simulations.

Example: CORDIC Parameter Optimization

This example demonstrates a heuristic approach to determine the number of
 and in part to fulfill certain iterations wordlength CORDIC_VectoringFxp

performance criteria, e.g. precision. The CORDIC_VectoringFxp implements a
vector translation (rectangular to polar conversion) using the COordinate Rotational
DIgital Computer (CORDIC) algorithm.

Tutorials 182

The design below uses CORDIC part to estimate the phase shift of QPSK symbols.
The phase shift is simulated by complex rotation of the symbols produced by the

. The output of the CORDIC vectoring part (angle measured in radians) is Mapper
compared against the output of a floating point implementation of the CORDIC part
functionality (). The performance is measured by the average absolute RectToPolar
difference between the angles measured using CORDIC function and the one
measured by the part. This difference should be less than radian.RectToPolar 0.01

The CORDIC part is initially set at its default values as shown in the figure below.
The objective of this example is to optimize the and the WorkingWordlength
number of parameters. Hence, they are set for tuning as can be seen in Iterations
the column next to these parameters.Tune

To simplify the comparison between the floating and fixed point designs, the
 parameter is set to so that the fixed point CycleAccurate Non-cycle Accurate

model will have zero latency and no need to use a re-timing delay to align the
outputs of the floating and fixed point models.

183 Tutorials

Run . Note that the initial default settings have good precision Design 1 Analysis
since the Error variable obtained at the end of analysis is around Error is around
33e-6. Check the input signal in the graph shown Constellation_Before_Correction
below. This graph shows several QPSK symbols with phase shift of 20 degrees.

Note the graph as shown below. The estimated phase oscillates EstimatedAngle
around 20 degrees.

In the next steps, we are going to find the minimal values for the
 and the number of parameters in CORDIC part so WorkingWordlength Iterations

that the difference between the Error value should not exceed 0.01 radian.

Number of Iterations optimization

Double-click on the in the workspace tree. Note that we are going Iteration_Sweep
to examine the results of simulation for a number of iterations that varies from 3 to
13. The parameter will be set to its default value during this WorkingWordlength
sweep. By examining the results in the graph, it seems Iteration_Sweep_Results
that 7 iterations is the minimum number of iterations that results in value less Error
than 0.01.

Tutorials 184

Wordlength_Sweep

Double-click on the in the workspace tree. This sweep analysis Wordlength_Sweep
will generate the results of simulation for parameter that WorkingWordlength
varies from 8 to 16. The parameter will be set to its default number of iterations
value during this sweep. By examining the results in the

 graph, it shows that of 11 bits is Wordlength_Sweep_Results WorkingWordlength
the minimum wordlength that results in value less than 0.01.Error

Now verify that the remains below 0.01 when applying the findings of these Error
two sweeps in the part in :CORDIC Design 1

WorkingWordlength = 11. (Since the precision of the internal calculations is
set at this wordlength, set the to 9 as well).OutputWordlength

Iterations = 7.

Optimizing fixed point parameters is based on the assumption that the data
input values are within specific dynamic range. Otherwise, in order to support
the full range of input, the full internal precision should be set to (
InputWordlength+ OutputWordlength + log2(OutputWordlength)) .

HDL Co-simulation

Prerequisite

ModelSim SE/Questa from Mentor Graphics

Riviera PRO from Aldec

For software version compatibility, refer to System Requirements

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

185 Tutorials

Associated workspaces

CustomHDL_workspace.wsv in
Examples\Tutorials\Hardware_Design\CoSim\Custom_HDL

NCO_Cosim.wsv in
Examples\Tutorials\Hardware_Design\CoSim\Generated_HDL

MultiRate_Filtering.wsv in
Examples\Tutorials\Hardware_Design\CoSim\MultiRate

We recommend you to copy the complete directory of
 and Examples\Tutorials\Hardware_Design Examples\Hardware

 to your local directory to avoid file writing Design\HDLCodeGeneration\NCO
permission issues on default installation directory.

Introduction

In this tutorial, we demonstrate how to co-simulate HDL designs within SystemVue
environment. HDL designs are described in VHDL files () or Verilog files (). .vhd .v
These files can be obtained from:

Generated HDL Files: These are HDL files that are generated automatically
using the HDL code generation capability of SystemVue for a design
developed using the Hardware Design Library.

Custom HDL files: These are HDL files that are obtained from other sources.

MultiRate design: This is a special case of the first case (Generated HDL Files
) in which the HDL design is multirate (the sampling rates of the input and
output ports are different).

HDL cosimulation requires one of the two HDL simulators to be available:

Modelsim SE/Questa from Mentor Graphics

Riviera Pro from Aldec

The figure below summarizes the HDL-cosimulation flow in SystemVue

Tutorials 186

Co-simulating existing HDL code

In this tutorial, we are going to use the following designs:

Combinational logic design: n-bit Adder

Sequential logic design: n-bit counter

For this tutorial, VHDL examples are used. However, the same steps can be applied
for Verilog based designs.

Simple Combinational logic design

In combinational logic designs, the output signals depend only on the current
status of input signals. A number of combinational logic designs can be found
under CoSim\Custom_HDL\HDL_Source\VHDL\Combinational folder. In this
example, we are going to use the n-bit adder design described in . The Adder.vhd
contents of this file is shown below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
--
entity ADDER is
generic(n: natural :=4);

187 Tutorials

port(A: in std_logic_vector(n-1 downto 0);
 B: in std_logic_vector(n-1 downto 0);
 carry: out std_logic;
 sum: out std_logic_vector(n-1 downto 0)
);
end ADDER;
--
architecture behv of ADDER is
-- define a temparary signal to store the result
signal result: std_logic_vector(n downto 0);
begin
 -- the 3rd bit should be carry
 result <= ('0' & A)+('0' & B);
 sum <= result(n-1 downto 0);
 carry <= result(n);
end behv;
--

The following subsections provide will guide you on how to cosimulate this HDL
code using and inside SystemVue environment.ModelSim/Questa Riviera PRO

Co-simulation using ModelSim and Questa

General flow: Co-simulating HDL files with ModelSim/Questa can be done
using the HDL cosim block.

Open . On the workspace tree, open the schematic CustomHDL_workspace.wsv
design in . The design is shown in CoSim-Combinational > Comb_Design_Modelsim
figure below:

Double click on the HDL cosim block to bring up the Properties window.
Verify the following:

Tutorials 188

HDL Files page: The location of the HDL files are added. In this
tutorial, there is a single VHDL file, which is Adder.vhd.

The path of the file can be defined as the absolute or
relative path. Depending on how the user will be moving
the workspaces and HDL files around, one choice might
be better than the other. If the HDL source files will
remain in a fixed location, the absolute path might be
more practical. However, if the user is moving SystemVue
workspace along with the HDL source while maintaining
the folder and file structure, then the relative path is more
practical.

HDL settings page: The top level entry is the design is added. In this
tutorial, we can infer from the Adder.vhd file that the top entry is
ADDER. In addition, the determines the duration of Iteration Time
each clock cycle in the HDL simulation.

The iteration time will be used inside the HDL simulator
[ModelSim/Questa] only. SystemVue does not use the
time information of the HDL simulation. The value should
be an integer larger than .one

I/O page: The input and output ports are added. The names in this
listing should match the name of the ports in the HDL file that
describes the top-level entity. Note that you only need to specify the
port data type specifications (wordlength, integer wordlength, and Is
signed) for the output ports. These setting are based on the following
blocks that are used in the design and the desired representation
format of the output data.

Custom Parameters page: Any parameters used in the design are
added here. In this tutorial, the parameter used is and the value of n
that parameter is which is defined by an equation.n_val

Tip: The reason for defining a variable is to be able n_val
to control the value of the parameter (which is the n
adder wordlength) in the page and in the I/O Custom

 page at once.Parameters

Change the input, output and parameter values to examine the behavior of
the cosimulation.

Develop similar HDL cosim blocks for the and in comb.vhd multiplier.vhd
 folder.Cosim\Custom_HDL\HDL_Source\VHDL\Combinational\VHDL

189 Tutorials

1.

2.

Co-simulation using Riviera Pro

General flow: Co-simulating HDL files with Riviera Pro is done in two stages:

In Riviera Pro: Compile the design HDL files and generate the design
XML library file for SystemVue

In SystemVue: Load the generated XML library and instantiate the
generated Fixed point/Floating Point SystemVue parts of the HDL
design.

For this example, we are going to perform the two stages above to cosimulate the
 design using Riviera Pro:Adder

Stage 1 - in Riviera PRO

Start Riviera PRO

Go to to create a new workspace named File > New > Workspace...
.Custom_HDL_Project

Apply the settings as shown in the figure below

Click Next

Apply the settings as shown in the figure below

Tutorials 190

Click Finish

In the Design Manager window, select design, right click and Combinational
select to add the to it from Add -> Existing File ... Adder.vhd

 folder.CoSim\Custom_HDL\HDL_Source\VHDL\Combinational

Right click on design and select "Compile Designs"Combinational

191 Tutorials

Go to the Library manager window, right click on the in the ADDER
library and select systemvuecosimlibrary Generate Library for SystemVue

Make sure that the Library name is Riviera-PRO library
 as shown in the figure below and click .(systemvuecosimlibrary) OK

Note in the console window that Riviera PRO will run the systemvuegenmod
command to generate the library that is going to be RivieraProModelFactory.XML
loaded in SystemVue to be used for HDL cosimulation.

Type in Riviera PRO console to check the possible systemvuegenmod -help
parameters of this command. For more information, refer to HDL Cosimulation
With Riviera PRO

Stage 2 - in SystemVue

Open .CustomHDL_workspace.wsv

http://edadocs.software.keysight.com/display/sv201608/HDL+Cosimulation+With+Riviera+PRO
http://edadocs.software.keysight.com/display/sv201608/HDL+Cosimulation+With+Riviera+PRO

Tutorials 192

Load the generated XML library () using the RivieraProModelFactory.xml
Library manager (and then click).Tools > Library Manager... Add From File...

Find the library: in the current library list.Riviera-PRO library

On the workspace tree, open the schematic design in CoSim-Combinational
.> Comb_Design_RPRO

Double click on .ADDER_FXP

Verify the following setting in properties window:ADDER_FXP

Inputs page: The input ports and are added. Set the Integer A B
wordlength to be the same as the specified size in the parameter
page (which is 4).

Outputs page: Set the Integer wordlength to be the same as the
specified size in the parameter page (which is 4), and change the
cast to .Unsigned

Parameters page: note that the parameter is specified here.n

Clocks page: In this combinational logic design, no clock signals are
used. This page remains empty

Custom stimulators page: In this combinational logic design, no
stimulators signals such as are used. This page remains emptyRST

Waveform page: In this page, you can add the signals that you would
like to be plotted in the Waveform window if you chose to invoke
Riviera Pro in the Simulation Settings page. However, in this tutorial,
we are going to run the cosimulation within SystemVue environment,
so no signals will be added to this page.

Simulation Settings page: To run the cosimulation without invoking
Riviera PRO, select and Enable Batch Mode Quit simulator after

 optionscosimulation

The design is shown in figure below:

193 Tutorials

Run the simulation and verify the results.

Simple Sequential Design (Counter)

In sequential logic design, the output signals depend on the current status of input
signals and the history of input signals.

--
-- VHDL code for n-bit counter
-- this is the behavior description of n-bit counter
--
library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
--
entity counter is
generic(n: natural :=2);
port(clock: in std_logic;
 clear: in std_logic;
 count: in std_logic;
 Q: out std_logic_vector(n-1 downto 0)
);
end counter;
--
architecture behv of counter is
 signal Pre_Q: std_logic_vector(n-1 downto 0);
begin
 -- behavior describe the counter
 process(clock, count, clear)
 begin
 if clear = '1' then
 Pre_Q <= Pre_Q - Pre_Q;
 elsif (clock='1' and clock'event) then
 if count = '1' then
 Pre_Q <= Pre_Q + 1;
 end if;
 end if;
 end process;
 -- concurrent assignment statement
 Q <= Pre_Q;
end behv;

The following subsections provide will guide you on how to cosimulate this HDL
code using and inside SystemVue environment. The ModelSim/Questa Riviera PRO
main difference between cosimulating a sequential logic circuit such as the counter
above compared to a combinational logic circuit such as the adder in the previous
section is in handling the following input signals: and clocks Stimulator signals
such as RST.

Tutorials 194

Co-simulation using ModelSim and Questa

General flow: Co-simulating HDL files with ModelSim/Questa can be done
using the HDL cosim block.

Open . On the workspace tree, open the schematic CustomHDL_workspace.wsv
design in CoSim-Sequential > Seq_Design_Modelsim. The design is shown in figure
below:

Note that there are two instantiations of the counter in this design. One is without
Clock (CLK) and RST inputs (the simulator generates them internally)>. The other
one is with CLK and RST inputs and in this case, these input signals have to be
generated inside SystemVue environment.

When using ModelSim/Questa for cosimulation, the clock signal has to be
generated internally if the user would like to have a complete clock cycle for
each input sample.

Double click on the HDL cosim block of the top counter block (which has the
 and signals generated by internally using ModelSim/Questa) to CLK RST

bring up the Properties window. Verify the following:

HDL Files page: The location of the HDL files are added which is, in
this case, a single VHDL file: .counter.vhd

195 Tutorials

HDL settings page: The top level entry is the design is added
(counter). Note also that the and signals are added to the CLK RST
Optional settings.

If or signals are added to the optional settings in CLK RST
the page, they should NOT be added to the HDL settings I

 page./O

I/O page: The input and output ports are added. The names in this
listing should match the name of the ports in the HDL file that
describes the top level entity. Note that as and signals are CLK RST
not listed as they are added in the page.HDL settings

Custom Parameters page: Any parameters used in the design are
added here. In this tutorial, the parameter used is and the WIDTH
value of that parameter is which is defined by an WIDTH_val
equation.

Tip: The reason for defining a variable is to be WIDTH_val
able to control the value of the parameter (which WIDTH
is the Counter wordlength) in the page and in the I/O

 page at once.Custom Parameters

Run the simulation. Since there are two HDL cosim blocks in the schematic,
two instances of ModelSim/Questa processes will be invoked as shown in
the figure below:

Double click on the graph. Note the difference in output ModelSim_Results
rate between the two counters. The counter which has the clock generated
internally can simulate a complete clock cycle for each HDL cosim sample at
its input. However, if the clock is generated within SystemVue, the fastest
rate that can be simulated is one clock cycle for two SystemVue sample
periods, where the first sample holds the 'high' state of the clock and the
second sample holds the 'low' state of the clock.

Tutorials 196

Co-simulation using Riviera Pro

For this example, we are going to perform the two stages above to cosimulate the
 design using Riviera Pro:counter

Stage 1 - in Riviera PRO

Open the workspace using Riviera PRO that was Custom_HDL_Porject
created for the combinational logic circuit.ADDER

In the Design Manager window, right click on the workspace
 and select and name the design Custom_HDL_Project Add > New Design ...

.Sequential

Apply the settings as shown in the figure below

http://edadocs.software.keysight.com/download/attachments/40715538/AldecProject3.png?version=1&modificationDate=1471572347000&api=v2

197 Tutorials

In the Design Manager window, select design, right click and Sequential
select to add the to it from Add > Existing File ... counter.vhd

 folder.CoSim\Custom_HDL\HDL_Source\VHDL\Sequential

Right click on design and select "Compile Designs"Sequential

Now right click on the design and select to Sequential Set Design as Active
bring up the library in the Library window managersequential

Go to the Library manager window, right click on the in the COUNTER
sequential library and select Generate Library for SystemVue

Enable the and options and Overwrite file(s) Generate SystemVue library file
Name the Library name as and Riviera-PRO library (systemvuecosimlibrary)
click as shown in the figure below:OK

This will overwrite the XML library generated previously.
However, when loading the newly generated library, both the
combinational and sequential designs are listed in the library. If
you would like to have the sequential design in a different library,
you have to Generate SystemVue library in another folder that
does not contain the XML and m files generated for another
design.

Stage 2 - in SystemVue

Open .CustomHDL_workspace.wsv

Go to and then unload the previously added Tools > Library Manager...
RivieraProModelFactory XML library by selecting it and click on Remove

. Then load the newly generated XML library.Library

Find the library: in the current library list.Riviera-PRO library

On the workspace tree, open the schematic design in CoSim-Sequential >
Seq_Design_RPRO. Replace the counter in the design with COUNTER_FXP
from .Riviera-PRO library

Note that the library now contains the parts for both
combinational and sequential logic designs.

Tutorials 198

1.

2.

Verify the following setting in properties window:COUNTER_FXP

Inputs page: The input ports are added. Set the Integer wordlength to
be the same as the specified size in the parameter page (which is 5)
and change the cast to .Unsigned

Outputs page: Set the Integer wordlength to be the same as the
specified size in the parameter page (which is 5), and change the
cast to .Unsigned

Parameters page: note that the parameter is specified here.WIDTH

Clocks page: In this sequential logic design, clock signals are used.
Add the CLK signal to the clock window.

Custom stimulators page: In this sequential logic design, is used RST
as a stimulator signal. Add it the list and configure it as follows ('1
0us, 0 1us').

Waveform page: Add all signals on this page

Simulation Settings page: To run the cosimulation and invoke Riviera
PRO, make sure that option is not Run simulator in batch mode
selected

Run the simulation and verify the results.

Co-simulating generated HDL code

Co-simulating generated HDL code using ModelSim/Questa OR Riviera Pro can be
done easily by enabling the check box for “Automatically add generated model to
Part model list” in the dialog as shown below:HDL Code Generation Options

Open located at CoSim\Generated_HDLNCO_cosim.wsv

Double click on the design and take time to explore the components of NCO
the NCO design; namely, adder, comparator, multiplier, delay and look-up
table as shown in the figure below:

199 Tutorials

2.

3.

Before generating HDL code, verify that the paths to ModelSim/Questa
and Riviera Pro Executables are set in the Code Generation page of

 as shown belowGlobal Options

Double click on the , verify that the settings are HDL code generator NCO
similar to the ones are shown in the figure below:

http://edadocs.software.keysight.com/display/sv201608/Code+Generation+Tab

Tutorials 200

3.

4.

5.

Click Generate.

Double click on NCO sub-network and check the managed model list as
shown in the figure below

As can be seen from the figure, three models are generated

NCO [ModelSim]: This model is the HDL cosim block configured
automatically for cosimulation using ModelSim/Questa

NCO [Riviera Pro, Dbl]: This model is obtained from the which NCO_Library
is loaded automatically after HDL code generation for Riviera Pro
cosimulation. The Model is a fixed point model with floating point interface,
so the conversion to fixed point is done automatically inside the model.

201 Tutorials

1.

2.

3.

a.

b.

c.

d.

e.

4.

NCO [Riviera Pro, Fxp]: This model is obtained from the which NCO_Library
is loaded automatically after HDL code generation for Riviera Pro
cosimulation. The Model is a fixed point model with fixed point interface, so
fixed point converters may be required to connect this model with other non
fixed point parts.

Co-simulating generated HDL code using ModelSim and Questa

There are two modes of HDL Co-Simulation using ModelSim/Questa, the mode is
configured by checking the option Display HDL simulator Graphical User Interface
in tab:HDL Settings

Native Mode: In this mode, ModelSim/Questa GUI will not be invoked and
co-simulation using ModelSim/Questa will be executed behind the scene
and when finished, results will be updated automatically in SystemVue. This
mode is active when the option Display HDL simulator Graphical User

 in tab is NOT selected.Interface HDL Settings

Debugging Mode: In this mode, ModelSim/Questa GUI will be invoked and
co-simulation can be done step by step using ModelSim/Questa, results will
be updated automatically in SystemVue when the whole simulation duration
finished in ModelSim/Questa. This mode is active when the option Display

 in tab is selected.HDL simulator Graphical User Interface HDL Settings

To use ModelSim/Questa for HDL cosimulation, follow the steps below:

Since the option “Automatically add generated model to Part model list” is
checked in the dialog in the previous stage, HDL Code Generation Options
an HDL model is added to the NCO subsystem as shown in the figure below:

Switch the “HDL code generator NCO” model.

Take the time to explore the settings of the modelNCO [ModelSim]

In HDL files tab: Note the added HDL files in. These HDL files can be
found at “C:\SystemVue_Tutorials\HDL_Cosimulation\NCO_HDL\hdl”

Change the compilation Mode to Always

In HDL settings tab: Note the top level entity “NCO_CoSimWrapper”
and the optional setting CLK and RST.

Note that the iteration time is automatically set to the time spacing
parameter in the analysis.

Enable the option: “Display HDL simulator Graphical User Interface.

Tutorials 202

4.

5.

1.

a.

2.

a.

b.

c.

d.

Go to Tools>Options… and select the “Code Generation” tab. Set the
ModelSim/Questa Executable path. Note that for SystemVue 32 (64) bits,
ModelSim/Questa 32 (64) bits should be used.

Run the analysis

At this point, ModelSim SE/Questa will be invoked. Using ModelSim/Questa
Graphic Interface, you can debug the generated HDL code. SystemVue is halted
until the ModelSim/Questa session is terminated.

Debugging in ModelSim SE/Questa

In the next steps, we will take a brief look at one interactive debugging session
using the recently invoked ModelSim/Questa session. The debugging will start at
time 0. The simulation step is set to the sampling period 1000 ns.

Stepping One Clock Cycle

click , this will run the simulation for one clock cycle, and the run
reset signal can be observed as in the figure below:

Setting Break-Points

Expand in the The UserModel -> NCO_Inst -> AccumResetMpy
Structure (sim) window and double click on to open AccumResetMpy

 fileMpyFxp.vhd

Set a breakpoint at the output of the multiplier by clicking at the side
of line 93 as shown in the figure below:

Click on run -all

203 Tutorials

2.

d.

3.

a.

i.

ii.

b.

i.

The simulation will stop at line 93 with a blue arrow at the side of that
line.

Reading Signal Values

When a breakpoint is reached, typically users want to know one or
more signal values. There are several options for checking these
values:

Hover the mouse pointer over variable at line 90 and a dataOut
small box with information about the variable will pop up as
shown in the figure below:

Also, you can examine the variables of interests in the objects
window as shown in the figure below

Step In

When Step In is used on the following statement on line 90-93

dataOut <= FxpConvert(Product,
 (ProdWL, ProdIWL,
not(ProdUNSGN)),

Tutorials 204

3.

b.

i.

ii.

c.

i.

ii.

iii.

iv.

v.

vi.

4.

 (dataOutWL,
dataOutIWL, to_boolean(dataOutSGN)),
 ToFxpQznModeT
(Quantization), ToFxpOvfModeT(Overflow),
SaturationBits);

The debugger will first step into function to_boolean
(dataOutSGN), then ToFxpQznModeT(Quantization), then
ToFxpOvfModeT(Overflow), and then the function call
FxpConvert.

Stepping in is performed by clicking on .Step

Run All

It is possible to advance the simulation until no simulation
events are scheduled or until the simulation is stopped by a
code or a signal breakpoint.

Disable the breakpoint placed on line 93 in MpyFxp.vhd

Run All is performed by clicking on , run -all

Return to the automatically generated waveform window Wave -
 and click on (or press F). The Default Wave > Zoom > zoom full

final results of the simulation will be displayed as shown in the
figure below:

click this will run the simulation for 1024 clock cycles as
specified by the number of samples inside SystemVue.

To display the Sine wave in analog format, right click on
/nco_cosimwrappertopvhdlcosim_c/UserModel/dp2 wave as
then select as shown in the figure Format > Analog (Automatic)
below:

click . The whole Sine wave is displayed as shown in the figure below:

205 Tutorials

4.

1.

Note that 4 periods of the Sin wave is generated which matches the simulation
results in SystemVue.

If Test Vector Generation option is ON, the following files are also generated:

dp1.txt: test vector input for ModelSim/Questa simulation

dp2_SVU.txt: the test vector output generated by SystemVue
As a result, the following files are generated inside folder:NCO_HDL

HDLCodeGenerator.txt: is a log of the HDL code generation process

NCO_mtisim.do: this is .do file for ModelSim/Questa that can be executed
using the generated batch file NCO_SimTB

NCO_mtisim: contains the list of generated HDL files in hdl folder.

NCO_SimTB: This batch file executes ModelSim/Questa and run the
sequence of commands specified in the .do file.

Co-simulating generated HDL code using Riviera Pro

There are three modes of HDL Co-Simulation using Riviera Pro, the modes are
configured in the Simulation Setting tab:

Native Mode: In this mode, Riviera Pro GUI will not be invoked and co-
simulation using Riviera Pro will be executed behind the scene, and when
finished, results will be updated automatically in SystemVue. This mode is
active when the following options are selected:

Run simulator in batch mode

Quit simulator after cosimulation

Batch Mode: In this mode, the user will be able to see the details of co-
simulation operations but will not be able to enter commands interactively.
This mode is active when is selected and Run simulator in batch mode Quit

 is not selected.simulator after cosimulation

Debug Mode: In this mode, Riviera Pro will be invoked in interactive
debugging mode, in which users can set breakpoints, step through the
design under test and examine the signals and variables inside the design.
This mode is active when option is selected.Enable debug mode

To use Riviera Pro for HDL cosimulation, follow the steps below:

Double click on sub-network and switch to NCO NCO [Riviera Pro, Fxp]
model as shown in the figure below:

Tutorials 206

1.

2.

a.

i.

ii.

b.

c.

Riviera Pro models are automatically generated when:

the option “ Automatically add generated model to Part
model list” is asserted in the HDL code generation
interface and,

the path to Riviera Pro executable is defined in the "Code
Generation Page" of Global Options.,

Take the time to explore the settings of modelNCO [Riviera Pro, Fxp]

Inputs and : For ports with wordlength larger than one, the Outputs
decimal point is set automatically to zero. Users have to manually
adjust this parameter based on the design:

For input port, parameter can be left at zero since the dp1 Point
input signal coming from Constant part has its output integer
wordlength = wordlength = 10 (i.e., no fractional portion).

For output port, adjust parameter to 14 to match the dp2 Point
presentation of the signal coming out of the LookUpTable in the
NCO design as shown in the figure below

Clocks: Note that the clock port is added automatically to the clk
Clocks list so that it can be generated internally by Riviera Pro
simulator.

Custom Stimulators: Note that the reset signal and clock-enable RST
signal are added automatically in the list. The CE Custom Stimulators

 signal is formulated so that during the first iteration is a logic low RST

207 Tutorials

2.

c.

d.

e.

3.

1.

a.

2.

a.

from time 0 to 1/4 times the clock sampling period, a logic high from
time 1/4 to 3/4 times of the clock sampling period, a logic low for
remaining simulation time. This means that Reset signal is high during
first rising edge of the Clock signal that is generated automatically by
Riviera PRO simulator. The signal is logic high during all the CE
cosimulation time.

Waveforms Add all input and output ports to the waveforms list.

Simulation settings: Select Enable debug mode

Run the analysis

At this point, Riviera Pro simulator will be invoked to debug the design interactively.
SystemVue is halted until the Riviera Pro session is terminated.

Debugging in Riviera Pro

In the next steps, we will take a brief look at one interactive debugging session
using the recently invoked Riviera Pro session. The debugging will start at time 0 as
shown in the figure below

Stepping One Clock Cycle

The simulation session starts with a pre-configured time steps at 100

ns. Change the time step to 1000 ns and then click on or Run For
press . One clock cycle is simulated, and the reset signal can be (F5)
observed as in the figure below:

Setting Break-Points

Tutorials 208

2.

a.

b.

c.

d.

3.

a.

i.

ii.

Expand the design in the Design Manager Window and NCO_Design
double click on fileMpyFxp.vhd

Set a breakpoint at the output of the multiplier by double clicking at
the side of line 90 as shown in the figure below:

Click on or press Run All Shift+(F5)

The simulation will stop at line 90 with a yellow arrow at the side of
that line as shown in the figure below

Reading Signal Values

When a breakpoint is reached, typically users want to know one or
more signal values. There are several options for checking these
values:

Hover the mouse pointer over variable at line 90 and a dataOut
small box with information about the variable will pop up as
shown in the figure below:

Select all variables of interests (select lines 90-93) and Right
click on the selected area and then select and Add to -> Watch
all the variables in the selected area will be added to the watch
window as displayed in the figure below:

209 Tutorials

3.

b.

i.

ii.

c.

i.

ii.

iii.

iv.

d.

i.

Step In

When Step In is used on the following statement on line 90

dataOut <= FxpConvert(Product,
 (ProdWL, ProdIWL,
not(ProdUNSGN)),
 (dataOutWL,
dataOutIWL, to_boolean(dataOutSGN)),
 ToFxpQznModeT
(Quantization), ToFxpOvfModeT(Overflow),
SaturationBits);

The debugger will first step into function to_boolean
(dataOutSGN), then ToFxpQznModeT(Quantization), then
ToFxpOvfModeT(Overflow), and then the function call
FxpConvert.

Stepping in is performed by clicking on or press .Step In F7

Run All

It is possible to advance the simulation until no simulation
events are scheduled or until the simulation is stopped by a
code or a signal breakpoint.

Disable the breakpoint placed on line 90 in MpyFxp.vhd

Run All is performed by clicking on or press Run All Shift+F5

Return to the automatically generated waveform document

 and click on or click Untitled1.awc Zoom To Fit in View Ctrl+
*. The final results of the simulation will be displayed as shown
in the figure below:

Quit Simulator

To end the debugging session and return to SystemVue, click on

 or click Stop Simulation Shift+F6

Tutorials 210

1.

2.

a.

b.

3.

4.

Co-simulating HDL code of a MultiRate Design

A MultiRate design has input and output ports with different sampling rates.
However, the HDL co-simulation blocks are unirate (all ports has the same
sampling rate). If the HDL co-simulation blocks are instantiated automatically as
part of the HDL code generation, the sampling rate of the co-simulation block is
set to the sampling rates used in the design. The minimum common multiple

 example demonstrates the HDL cosimulation of two MultiRate_Filtering.wsv
Multirate filters . The multirate filters are 3 re-sampler and 3:2 resampler
implemented by cascading interpolating and decimating fixed point filters.

Open located at CoSim\MultiRateMultiRate_Filtering.wsv

Check the two multirate filter designs in D2U3_Design folder and
U2D3_Design folder.

In the D2U3_Design case, the input signal is at 6 MHz, then it is
downsampled to 3 MHz then upsampled to 9 MHz. Note that the
minimum common multiple of 6,3 and 9 is . Therefore, the HDL 18
cosimulation block will run at MHz.18

In the U2D3_Design case, the input signal is at 6 MHz, then it is
upsampled to 12 MHz then downsampled to 4 MHz. Note that the
minimum common multiple of 6,12 and 4 is . Therefore, the HDL 12
cosimulation block will run at MHz.12

Note the shorted Upsampler and Downsampler before and after
 and designs in and schematics U2D3 D2U3 Design1 Design2

respectively. Those parts are needed when running the HDL
cosimulation as will be seen in the following steps.

Generate the HDL code using and HDL Code Generator1 HDL Code
 workspace items.Generator2

Unshort the upsampler and downsampler before and after and U2D3 D2U3
designs in and in order to run the cosimulation correctly. Design1 Design2
The HDL cosimulation blocks are running at different rate than the input
signal . To unshort a part, double click on it and then select 6 MHz Use Active

 as shown in the figure below:Model

211 Tutorials

4.

5.

a.

b.

c.

d.

e.

or use the button in the toolbar (see figure below) to toggle disable to short

between the short status of the part when selected.

The HDL cosim blocks inserted to the designs after generating the HDL
code are unirate blocks (the input and output sampling rates are
identical). If the input and output sample rates of the original design are
different, the generated cosim block will run at a clock rate which is
least common multiple of sampling rates used in the design. Therefore,
those upsamplers and downsamplers before and after D2U3 and U2D3
should be active during the HDL cosim.

Go to managed model list in and models in Design1 and U2D3 D2U3
Design2 schematics, switch to an HDL cosimulation block using Modelsim
/Questa(r) or Riviera Pro(r), and run the simulation. Notice the results of the
HDL cosimulation in and . The CompareWaveform1 CompareWaveform2
figure below is for . Note that the graph contains the CompareWaveform1
following traces:

input: This is the trace of the signal generated at 6MHz

FloatingPoint: this is the signal at the output of the interpolation and
decimation floating point filters shown in Design1 and Design2
schematics.

FixedNative: this signal is produced by the fixed point filter
implementation using Hardware Design library.

FixedCombined: this is the signal that is produced by D2U3 or U2D3
designs or their corresponding HDL cosimulation blocks.

Tutorials 212

5.

e. FixedCascaded: this is the signal that is produced by the
implementation where the decimation and interpolation filters are in
two separate subnetworks. This allows the user to test the HDL code
generation for each stage independently before generating the code
for the whole design using the D2U3 or U2D3 designs.

Differences of Co-simulation using ModelSim/Questa and Riviera Pro

 ModelSim/Questa Riviera Pro

Input/Output Data Type setting Automatic Manual

Cosim across different clock domains Not Supported Supported

Support IP core gen Yes No

Bitness compatibility limitation Limited Not limited

Custom library Yes No

Automatic Floating/Fixed point conversion No Yes

Configurable Clock Generation No Yes

Configurable Reset Generation No Yes

Configurable Clock-Enable Generation No Yes

213 Tutorials

 ModelSim/Questa Riviera Pro

Simulator command-line control Yes No

FPGA Implementation

Prerequisite

SystemVue 2012.06 or higher with Hardware Design Library

Xilinx ISE

ModelSim SE / Questa

For software version compatibility, refer to System Requirements

Associated workspaces

NCO_Cosim.wsv in
Examples\Tutorials\Hardware_Design\CoSim\Generated_HDL

We recommend you to copy the complete directory of
 to your local directory to avoid file writing Examples\Tutorials

permission issues on default installation directory.

The FPGA implementation flow is composed of several stages. The following
sections detail the steps for each stage:

Stage 1: Develop the digital design

Open workspace and go to the design in the NCO_Cosim.wsv
 folder. Verify the functionality of the design shown in the HDL_Code_Generation

figure below.

Note that the table in the design stores 256 values of a complete sinusoidal cycle.
The logic implemented before the table is used to generate the address for
accessing these values. In this context, the maximum number of frequencies that
can be supported by this design is 128 different frequencies.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

Tutorials 214

The bit width of input (dp1) in the NCO example is 10 bits. However, we are going
to use only the first 4 bits. This can be done by changing the wordlength (and
IntegerWordLength) property of the constant input from “10” to “4” in the
schematic design of the NCO example.

Stage 2: Determine the targeted FPGA

After verifying the functionality of the design, double-click on the HDL code
generation icon in the workspace tree to open the HDL Code Generation Options
dialog as shown in the following figure:

Verify that the NCO design is added to the HDL generation table. Select the desired
output directory for generating the HDL code and necessary development files.
In the target configuration area, set the parameters as shown in the HDL Code

 dialog above. You can check the “automatically add generated Generation Options
model to part model list” to perform hardware co-simulation. This particular setting
is not used within the scope of this document.
The next steps in this stage involve setting the appropriate values for the design
parameters of the Project Setup, Clock/Reset, and I/O settings tabs inside the
Subnetwork Configuration area.

Project Setup:
Set the Generation Mode to ISE project, and the Synthesis tool to XST. The
FPGA settings on the right side are based on the FPGA chip used in the

215 Tutorials

development board. In this example, we use the ML 506 Xilinx FPGA
development board. The settings shown in Project tab of the HDL code
generation options window reflect the specifications of the FPGA chip in that
board.

Clock/Reset:
Set the FPGA system clock to 100 MHz, which is the clock rate of the main
oscillator of the ML-506 development board. For demonstration purposes,
make sure that the option “Use Xilinx clock management IP core to de-skew
clock” is checked. This will result in instantiating a Digital Clock Manager
(DCM) Xilinx IP core within the design. Select the System Clock Divide
Factor to 6.0.

The push buttons used in the development board are active high. In this example,
we are going to use one of these push buttons for reset signal. Therefore, set the
“Reset Input Active” to “High”. Also, for demonstration purposes, make sure the
“Generate System Clock Output” and “Generate Reset Output” options are checked.
Verify that the settings of the Clock/Reset tab match the settings in the figure
below:

Tutorials 216

I/O Setting:
In this tab, the I/O pins of the design are mapped to specific FPGA I/O pins.
(Click the if you don't see any pins.) This setting will be Update IO Pins...
reflected in the constraint files (.ucf) that will be generated as a result of the
next stage. The following I/O settings are entered in this tab:

– clk_in: AH15
– reset_in: AJ6
– ce: AC24
– dp<0-3>: U25, AG27, AF25, and AF26
– rst_out: F6

The rest of the I/O signals (including the output of the NCO design) will be mapped
to memory within the FPGA using ChipScope debugging tool in Stage 4.

Stage 3: Generate the HDL code

After including all the necessary settings in the Hardware Code Generation Options
Window, make sure that path for the ISE® tool and ModelSim/Questa® is correctly
listed in the Global options of Code Generation.

217 Tutorials

After verifying the path of Xilinx ISE and ModelSim/Questa executables, click on
“Generate” to generate the HDL code. The following files will be generated:
NCO_HDL folder: contains the generic HDL code of each element in the design.
NCO_FPGA folder: contains the necessary HDL, constraints and project files used
by the Synthesis tool (Xilinx ISE® in this example).

Stage 4: Resume the conventional FPGA design development in the
Synthesis tool

The Xilinx ISE® Synthesis and development tool will be opened automatically as a
result of the HDL code generation stage as described in the previous stage. See the
figure below:

This section assumes that the reader is familiar with the Xilinx ISE development
environment. For further details on the use of this tool. Refer to Xilinx ISE and
ChipScope documentations.

Take a moment to verify the code generation process. This includes the Design
Properties:

Tutorials 218

and the NCO design constraints:

In this design project, we are going to add a ChipScope® Definition and
Connection File to capture the output of the NCO design as well as other control
signals in the design as shown below:

219 Tutorials

To maintain the hierarchy of the design, make sure to set the corresponding
property to “Yes” in the Synthesis process properties as shown below:

This prevents the optimization process from modifying the hierarchy of the design,
and simplifies the process of instantiating the signals to the ChipScope ILA
element. The results of synthesizing the design are shown in the representation of
RTL schematic below. Note the instantiation of the DCM core, the reset generation
block, and the digital elements of the NCO design.

Tutorials 220

Double-click on NCO_FPGA_top.cfc that was added to the design to open the
ChipScope Prop Core Inserter. Add one ILA with 4 trigger ports as follows:

Trig0: width 1 – Basic with Edges: connect to dp1_Enable_IBUF

Trig1: width 4 – Basic with Edges: connect to dp1<0-3>

Trig2: width 16 – Basic with Edges: connect to dp2<0-15>

Trig3: width 1 – Basic with Edges: connect to reset_in

Set the Data to be as Triggers with Data Depth of 1024, and connect the Trigger
Clock to ClkDvOut.
Based on the setting above, generate the bit file using the ISE tool and open
chipscope to trigger the design.
Make sure that the associated switch with the dp1_Enable signal is asserted to 1.
The clock on the reset push button in the design to reset the NCO. Try different
values for dp1 input. The following figures show different sinusoidal signals for the
values 1, 2 and 3 in dp1.

NCO output when dp1 =1:

221 Tutorials

NCO output when dp1 =2:

NCO output when dp1 =3:

Tutorials 222

Using Xilinx IP Cores

Prerequisite

SystemVue 2012.06 or higher with Hardware Design Library

Xilinx ISE

ModelSim SE / Questa

For software version compatibility, refer to .System Requirements

Associated workspaces

QPSK_FixedP.wsv in
Examples\Tutorials\QPSK_Transceiver_Design\Fixed_Point

We recommend you to copy the complete directory of
 to Examples\Tutorials\QPSK_Transceiver_Design\Fixed_Point

your local directory to avoid file writing permission issues on
default installation directory.

Introduction

This tutorial describes in details how to incorporate Xilinx IP Core Gen in your
digital design using . The tutorial is composed of two sections: 1) XilinxIPIntegrator
Co-simulating Xilinx IP Core, 2) HDL Code Generation of sub-systems with Xilinx IP
Cores.

http://edadocs.software.keysight.com/display/sv201608/System+Requirements

223 Tutorials

1.

2.

3.

4.

5.

1.

2.

In this tutorial, we demonstrate how to import the Cordic IP Core to use it for phase
recovery and phase correction in QPSK transceiver in QPSK_FixedP.wsv workspace.
The phase correction uses the function, while the phase correction is done ATAN
using the function. This IP core will replace the Cordic block from the Rotate
Hardware Design library that is already used in the QPSK_FixedP.wsv workspace.

Compiling Xilinx IP core simulation libraries

Open Windows cmd window and type in: <ISE installation path>\compxlib.
exe -arch all -l all -lib all -s mti_se, where <ISE installation path> is the path
of ISE installation (it is the same as the path of ise.exe). For example: C:
\Xilinx\13.1\ISE_DS\ISE\bin\nt\compxlib.exe -arch all -l all -lib all -s mti_se

The above command execution may take a while, so be patient.

Then a new modelsim.ini file will be generated in the current directory of
cmd.

In ModelSim installation folder, remove the “read-only” priority of ModelSim
original modelsim.ini file and open it. (It is recommended to keep a copy of
the original ini file here.)

Open modelsim.ini file generated by compxlib command, find and copy all
path settings of Xilinx libs to original modelsim.ini under ModelSim
installation directory (that all uncommented content except “others =
$MODEL_TECH/../modelsim.ini”)

Save the updated modelsim.ini.

Co-simulating Xilinx IP Core

Open the QPSK_FixedP.wsv

Tutorials 224

2.

3.

4.

5.

6.

7.

8.

Save the workspace in a write-permissible area if you opened it from the
installation examples directory. This tutorial will refer to the full path of that
area as .<Example_Local_Directory>

Go to folder in the workspace tree and open model, and find Rx qpsk_demod
the blocks in the model.CORDIC qpsk_demod

Drag and drop part from the library. XilinxIPIntegrator Hardware Design
Double click on this part to open the part's dialog:Properties

Define the as .Path for generating IP <Example_Local_Directory>

Click on Launch CORE Generator

Go to to configure the targeted FPGA, type of the Project -> Project Options
generated HDL language and other simulation and code generation settings:
(For the tutorial, the default settings are used).

Find IP core in and double click on it. CORDIC Math Functions -> CORDIC
The IP core user interface will be invoked as shown belowCORDIC

225 Tutorials

8.

9.

a.

b.

c.

d.

e.

f.

Apply the following settings:
Page 1

Functional Selection: Arc Tan

Architectural Configuration: Parallel

Pipelining Mode: Optimal

Page 2

Phase Format: Radians

Input/Output Options: Input Width 16 , Output Width 32

Round Mode: Truncate

Tutorials 226

9.

f.

g.

h.

i.

10.

Page 3

Iterations: 0 (Set automatically by Xilinx IP COre Generator)

Precision: 0 (Set automatically by Xilinx IP COre Generator)

Optional Pins: is selectedPhase Output

Click . This may take a few minutes and a Generate Readme cordic_v4_0
dialog will mark the completion.

At this point, Xilinx IP Core will generate the following files in directory
\SystemVue_CoreGen_IP\<Example_Local_Directory>

XCO file (cordic_v4_0.xco): CORE Generator input file containing the
parameters used to regenerate a core.

227 Tutorials

1.

2.

a.

b.

Implementation Netlist (cordic_v4_0.ngc): Binary Xilinx implementation
netlist files containing the information required to implement the module in
a Xilinx (R) FPGA.

Instantiation Templates (cordic_v4_0.vho): Template files containing code
that can be used as a model for instantiating a CORE Generator module in a
VHDL design.

Simulation file (cordic_v4_0.vhd): This file is a VHDL wrapper file that is
provided to support functional simulation.

Return back to part's dialog in SystemVue, and follow XilinxIPIntegrator Properties
the steps below:

Click . This will update the list of IP Update IP Information In Selected Path
cores and their associated information with the ones found in

. See the figure below:<Example_Local_Directory>

Go to Co-Sim Settings page, and set

Compilation to Always

Clock port to clk

Tutorials 228

2.

b.

3.

4.

Go to page, click in and select . Change I/O Inherit from Model Top Level HDL
 of port from to and select Integer Word Length phase_output 32 3 Signed

Click to close the user interface and save the settings.OK

Place beside part, compare the XilinxIPIntegrator Fixed Point CORDIC Vectoring
outputs of both parts as shown in the figure below:

229 Tutorials

1.

2.

3.

4.

5.

Determine the difference in latencies between both parts and re-adjust the re-
timing delays accordingly.

According to the documentation of the part, the Fixed Point CORDIC Vectoring
latency of this part is equal to the number of iterations + 7 samples. Hence, the
original retiming-delay setting is 16+7=23.

HDL Code Generation of sub-systems with Xilinx IP Cores

Right click on part and select Fixed Point CORDIC Vectoring convert to
. Name it .subnetwork CORDIC_SVU

Right-click on part and select . XilinxIPIntegrator convert to subnetwork
Name it .CORDIC_XILINXIPIntegrator

Replace these two parts with their associated subnetworks,

When wiring the generated subnetwork, take into account that the
order of pins in the generated subnetwork symbol can be different from
the order of pins in the part itself.

To verify that the wiring is done correctly, run the simulation again and make
sure that the results have not changed.

Add both subnetworks to the HDL code generator and configure the HDL
code generation as shown in the figure below.

Select field for each and configure it as highlighted. In Subnetwork:
particular, make sure for subnetwork the CORDIC_XILINXIPIntegrator
FPGA target family configuration is consistent with what is in

 part's dialog earlier.XilinxIPIntegrator Properties

Tutorials 230

5.

6. Click Generate

At this point, two Xilinx ISE projects will be created and opened automatically for
 and in CORDIC_SVU CORDIC_XilinxIPIntegrator

 and <Example_Local_Directory>\CORDIC_SVU_FPGA
 folders respectively.<Example_Local_Directory>\CORDIC_XilinxIPIntegrator_FPGA

By synthesizing both projects (using Generate Post-Sythesis simulation model
process), we can obtain the Maximum Frequency and the resource consumption for

 and .CORDIC_SVU CORDIC_XilinxIPIntegrator
: Minimum period: 5.803ns (Maximum Frequency: 172.325MHz), and CORDIC_SVU

the resource consumption is as below

: Minimum period: 2.456ns (Maximum Frequency: 407.142CORDIC_XilinxIPIntegrator

MHz), and the resource consumption is as below

231 Tutorials

SystemVue M9703A and M9703B FPGA Design Flow

Required Hardware and Software

Following is the list of required hardware and software.

Required Hardware

M9703A AXIe 12-bit High-Speed Digitizer/Wideband Digital Receiver or
M9703B AXIe 12-bit High-Speed Digitizer/Wideband Digital Receiver
The M9703A or M9703B must be configured with –FDK option to enable its
FPGA programming capability. For M9703A or M9703B hardware
installation, see or .M9703A Startup Guide M9703B Startup Guide

M9502A AXIe 2-Slot Chassis or
 orM9505A AXIe 5-Slot Chassis

 M9514A AXIe 14-Slot Chassis
For M9502A and M9505A hardware installation, see M9502A and M9505A

. For M9514A hardware installation, see Startup Guide M9514A Startup Guide
.

M9536A AXIe Embedded Controller or
Connect a desktop with the AXIe chassis using M9048A PCIe Desktop

 and or Adapter Y1202A PCIe cable
Connect a laptop with the AXIe chassis using M9045B PCIe ExpressCard

 and Adapter Y1200B PCIe cable

When M9536A AXIe embedded controller is used, M9536A and M9703A
must be inserted into the same AXIe chassis. For M9536A hardware
installation, see M9536A Startup Guide

Required Software

SystemVue 2016.08 or later version (license bundle is required)W1462

Keysight IO Libraries Suite: version 17.2 update 2 or later version

For M9703A, Keysight MD1 High-Speed Digitizer Instrument Drivers and
: 1.14.9 or later Windows version is required.Soft Front Panel

For M9703B, : 1.12 or Keysight MD2 High-Speed Digitizer Instrument Drivers
later Windows version is required.

Xilinx ISE: version 14.7 or later

SystemVue M9703A or M9703B FPGA design flow consists of FPGA design
entry and software simulation, FPGA programming file generation and M9703A
or M9703B instrument co-simulation.

http://www.keysight.com/en/pd-2031289-pn-M9703A/Wideband-Digital-Receiver?nid=-35502.994570.00&cc=US&lc=eng
http://www.keysight.com/en/pd-2601652-pn-M9703B/axie-12-bit-high-speed-digitizer-wideband-digital-receiver?cc=HK&lc=eng&lsrch=true&searchT=M9703B
http://literature.cdn.keysight.com/litweb/pdf/M9703-90001.pdf
http://literature.cdn.keysight.com/litweb/pdf/M9703-90006.pdf?id=2665908
http://www.keysight.com/en/pd-1886662-pn-M9502A/axie-2-slot-chassis?cc=US&lc=eng
http://www.keysight.com/en/pd-1886664-pn-M9505A/axie-5-slot-chassis?cc=US&lc=eng
http://www.keysight.com/en/pd-2380596-pn-M9514A/axie-14-slot-chassis?cc=US&lc=eng
http://literature.cdn.keysight.com/litweb/pdf/M9502-90001.pdf
http://literature.cdn.keysight.com/litweb/pdf/M9502-90001.pdf
http://literature.cdn.keysight.com/litweb/pdf/M9514-90001.pdf
http://www.keysight.com/en/pd-1971237-pn-M9536A/axie-embedded-controller?nid=-33325.974837.00&cc=US&lc=eng
http://www.keysight.com/en/pd-2121728-pn-M9048A/pcie-desktop-adapter?cc=US&lc=eng
http://www.keysight.com/en/pd-2121728-pn-M9048A/pcie-desktop-adapter?cc=US&lc=eng
http://www.keysight.com/en/pd-2247326-pn-Y1202A/pcie-cable-x8-20m?nid=-33048.1046896&cc=US&lc=eng
http://www.keysight.com/en/pd-2053520-pn-M9045B/pcie-expresscard-adapter?nid=-33325.993293&cc=US&lc=eng
http://www.keysight.com/en/pd-2053520-pn-M9045B/pcie-expresscard-adapter?nid=-33325.993293&cc=US&lc=eng
http://www.keysight.com/en/pd-2247322-pn-Y1200B/pcie-cable-x1-to-x8-20m?nid=-33048.1046895&cc=US&lc=eng
http://literature.cdn.keysight.com/litweb/pdf/M9536-90001.pdf
http://www.keysight.com/en/pd-1985909/io-libraries-suite?nid=-33330.977662.00&cc=HK&lc=eng
http://www.keysight.com/main/software.jspx?ckey=2000051&lc=eng&cc=HK&nid=-11143.0.00&id=2000051
http://www.keysight.com/main/software.jspx?ckey=2000051&lc=eng&cc=HK&nid=-11143.0.00&id=2000051
http://www.keysight.com/main/software.jspx?ckey=2364464&lc=eng&cc=HK&nid=-11143.0.00&id=2364464

Tutorials 232

For FPGA design entry and software simulation, only SystemVue 2016.08 or
later version is required. And SystemVue can be installed on any PC no matter
whether it has the connection with AXIe chassis and M9703A or M9703B
instrument or not. Keysight IO Libraries Suite, Keysight MD1 High-Speed
Digitizer Instrument Driver, Keysight MD2 High-Speed Digitizer Instrument
Driver and Xilinx ISE are not required for this step.

For FPGA programming file generation, SystemVue and Xilinx ISE are required.
SystemVue and Xilinx ISE can be installed on any PC no matter whether it has
connection with AXIe chassis and M9703A or M9703B instrument or not.
Keysight IO Libraries Suite, Keysight MD1 High-Speed Digitizer Instrument
Driver and Keysight MD2 High-Speed Digitizer Instrument Driver are not
required for this step.

For instrument co-simulation, SystemVue, Keysight IO Libraries Suite M9703A
and are required. They Keysight MD1 High-Speed Digitizer Instrument Driver
must be installed on M9536A AXIe embedded controller or a PC that has PCIe
connection with the AXIe chassis. Xilinx ISE is not required for this step.

For instrument co-simulation, SystemVue, Keysight IO Libraries Suite M9703B
and are required. They Keysight MD2 High-Speed Digitizer Instrument Driver
must be installed on M9536A AXIe embedded controller or a PC that has PCIe
connection with the AXIe chassis. Xilinx ISE is not required for this step.

So you can do FPGA design entry, software simulation and FPGA programming
file generation on any PC that may have no connection with AXIe chassis and
M9703A or M9703B instrument. After the FPGA programming file is generated,
you can deploy the generated FPGA programming file to run M9703A or
M9703B instrument co-simulation on M9536A AXIe embedded controller or a
PC with PCIe connection with the AXIe chassis.

Please note that M9703A and M9703B have the same hardware. The difference
is that the driver for , while the driver for is the M9703A is MD1 driver M9703B
MD2 driver.

In this document, we use M9703 to represent both M9703A and M9703B.

Overview of SystemVue M9703 FDK Design Flow

Overview of M9703 High-Speed Digitizer

Based on the , the M9703 is an 8-channel, 12-bit wideband digital AXIe standard
receiver/digitizer, able to capture signals from DC up to 2 GHz at 1.6GS/s. A
channel interleaving capability allows waveform acquisition at up to 3.2 GS/s with
exceptional measurement accuracy.

M9703 Hardware Diagram

http://www.axiestandard.org/

233 Tutorials

 are 8 input ports from M9703 front panel. They go through that is IN1~IN8 DC Front-End

electable analog low pass filter (pass band frequency is 600MHz). Then the analog input

signals are fed into respective s to convert to digital signals.ADC

The digitizer architecture could be simply understood by the following data stream

scheme: For each analog channel, a front-end electronics converts the customer analog

signal into a digital stream of data (ADC). These digital streams are captured by a

processing FPGA (further called). The custom real-time processing usually DPU FPGA

provides a data reduction scheme to only store processed results into a temporary

memory buffer. Then the host application retrieves these processed data through the

PCIe data and control bus whose sustained data bandwidth is significantly lower than the

raw data bandwidth.

There are four on an M9703.DPU FPGA

IN1 and IN2 are inputted into DPU FPGA0.

IN3 and IN4 are inputted into DPU FPGA1.

Tutorials 234

IN5 and IN6 are inputted into DPU FPGA2.

IN7 and IN8 are inputted into DPU FPGA3.

The DPU FPGAs have two options, -LX2 and -SX3. For -LX2 option, the 4 DPU
FPGAs are all Xilinx FPGA. For -SX3 option, the 4 DPU XC6VLX195T -FF1156 -2
FPGAs are all Xilinx FPGA.XC6VSX315T -FF1156 -2

Each DPU FPGA opens a partial area for custom real-time processing. Below table
shows the FPGA resources are used for M9703 infrastructure, the remaining FPGA
resources can be used for custom real-time processing.

And each DPU FPGA has the following physical interface:

ADC parallel data streams input

Connectivity with two DDR3 memory and one QDRII memory

Inter FPGAs data stream connectivity

PCIe connectivity with backplane via PCIe switch

Control signals from CTRL FPGA

In SystemVue M9703 FPGA design flow, these physical interfaces are transparent
to users. SystemVue will provide some algorithm-level interfaces, such as OutPort,
Register, and BlockRegister so that users can use these interfaces easily without
caring about the format and protocol of the physical interfaces.
Each DPU FPGA is connected with two DDR3 SDRAM memories. The DDR3
SDRAM memories can be used to buffer the real-time processed data for PCIe
transfer with embedded controller or PC. The memory size of each DDR3 SDRAM
memory is indicated by M9703 option:
Option

: The size of each DDR3 SDRAM is 128M Byte. There are 8 DDR3 SDRAM for -M10
total four DPU FPGA, so the total memory size of one M9703 is 1G Byte.

: The size of each DDR3 SDRAM is 512M Byte. There are 8 DDR3 SDRAM for -M40
total four DPU FPGA, so the total memory size of one M9703 is 4G Byte.

: The size of each DDR3 SDRAM is 2G Byte. There are 8 DDR3 SDRAM for -M16
total four DPU FPGA, so the total memory size of one M9703 is 16G Byte.

M9703 DPU FPGAs Clock

All custom real-time processing are in the same system clock domain. The system
clock is synchronized with DPU FPGA input clock source. M9703 provides four
kinds of clock sources for its DPU FPGAs:

Internal clock
The internal clock is generated from M9703 module hardware.

235 Tutorials

External clock
The instruments external clock input connector (as shown in below figure) is
selected as the source.

The External Clock may be used to vary the sampling rate of the digitizer, it
must be continuously present if selected for the digitizer to operate
correctly. The input is AC coupled. The requirement of external clock signal
is:

External reference clock
The instruments external reference clock input connector (as shown in
below figure) is selected as the source.

For applications that require greater timing precision and long-term stability
than is obtainable from the internal clock, a 100 MHz Reference signal can
be used. The External Reference is nominally at 100 MHz. However,
frequencies in a range will be accepted.

Tutorials 236

If your input is not at exactly 100 MHz, you must remember to compensate
for the difference in your application since the digitizer and the driver has no
way to know about such deviations.

AXIe reference clock
This 100 MHz signal is provided via the AXIe backplane to the M9703
digitizer and may be selected as a reference clock.
This AXIe Reference may also be optionally locked to an external 10 MHz
input applied to the 'CLOCK IN' connector of the AXIe chassis. To implement
this, the 10 MHz signal must be present before the chassis is powered-up,
and when detected the chassis will automatically lock the AXIe Reference to
this signal.

All custom real-time processing on DPU FPGA run on DPU FPGA system clock.
When clock source is selected as Internal Clock, External Reference Clock or AXIe
Reference clock, the DPU FPGA system clock frequency is fixed. When M9703 is
configured as 1GS/s option (-SR1), the DPU FPGA system clock is 125MHz. All
custom real-time processing and ADC captured data in DPU FPGAs run on the
125MHz DPU FPGA system clock. When M9703 is configured as 1.6GS/s option (-
SR2), the DPU FPGA system clock is 200MHz. All custom real-time processing and
ADC captured data in DPU FPGAs run on the 200MHz system clock.

When clock source is selected as External Clock, the DPU FPGA system clock
frequency varies as the frequency of External Clock input. The DPU FPGA system
clock frequency is equal to one sixteenth of the frequency of External Clock input.
When M9703 is configured as 1GS/s option (-SR1), the frequency of External Clock
input is in range 1.8GHz ~ 2.0GHz, so the DPU FPGA system clock frequency is in
range 112.5MHz ~ 125MHz. When M9703 is configured as 1.6GS/s option (-SR2),
the frequency of External Clock input is in range 1.8GHz ~ 3.2GHz, so the DPU
FPGA system clock frequency is in range 112.5MHz ~ 200MHz.

DPU FPGA system clock frequency:

 1GS/s option (-SR1) 1.6GS/s option (-SR2)

Clock Source:
 OrInternal Clock

 OrExternal Reference Clock
AXIe Reference Clock

125MHz 200MHz

Clock Source:
External Clock

External Clock Frequency / 16
External Clock Range:
1.8GHz ~ 2.0GHz

External Clock Frequency / 16
External Clock Range:
1.8GHz ~ 3.2GHz

237 Tutorials

ADC Parallel Input Streams of M9703 DPU FPGAs

For ADC input to DPU FPGA, the incoming ADC data streams are de-multiplexed
into multiple parallel data streams at lower data rate and then perform some pre-
correction of the sampling defaults (e.g. linearity correction, interleave mismatches
correction). So for each sample, the 12-bit ADC data are extended to 16-bit after
the pre-correction.

In DPU FPGA, the parallel ADC input streams are all sampled based on DPU FPGA
system clock.

For normal sample mode (1.0GS/s for SR1 option and 1.6GS/s for SR2 option),
each DPU FPGA receives two channels ADC input streams. Below figure shows how
the ADC input streams are inputted into the custom real-time processing part.

Each ADC channel has 16 parallel streams. Every two system clock cycles, there
are valid ADC samples. The signal in above figure indicates when valid DATA VALID
ADC samples arrive.

Tutorials 238

For 1.0GS/s SR1 option, its DPU FPGA system clock is 125MHz and valid samples
arrive every two system clock cycles, so the total sample rate is: 16 parallel streams
x 125MS / 2 = 1.0GS/s. For 1.6GS/s SR2 option, its DPU FPGA system clock is
200MHz and valid samples arrive every two system clock cycles, so the total
sample rate is: 16 parallel streams x 200MS / 2 = 1.6GS/s.
Because each sample has 16-bit, every time the valid samples arrive, there are

(16 parallel samples/channel) x (16-bits/sample) x 2 channel = 512 bit

For interleaved sample mode (2.0GS/s for SR1 option and 3.2GS/s for SR2 option),
each DPU FPGA receives one channel ADC input streams. Below figure shows how
the ADC input streams are inputted into the custom real-time processing part.

Each ADC channel has 32 parallel streams. Every two system clock cycles, there
are valid ADC samples. The signal in above figure indicates when valid DATA VALID
ADC samples arrive.

239 Tutorials

For 2.0GS/s SR1 option, its DPU FPGA system clock is 125MHz and valid samples
arrive every two system clock cycles, so the total sample rate is: 32 parallel streams
x 125MS / 2 = 2.0GS/s. For 3.2GS/s SR2 option, its DPU FPGA system clock is
200MHz and valid samples arrive every two system clock cycles, so the total
sample rate is: 32 parallel streams x 200MS / 2 = 3.2GS/s.
Because each sample has 16-bit, every time the valid samples arrive, there are

(32 parallel samples/channel) x (16-bits/sample) x 1 channel = 512 bit

Overview of M9703 FPGA Design Flow

The SystemVue M9703 FPGA design flow consists of three steps: design entry and
software simulation, M9703 FPGA programming file auto generation and M9703
instrument co-simulation with SystemVue.

Design entry and software simulation
SystemVue provides a hierarchical subnet template to ask users to configure
M9703 four FPGAs and design FPGAs in a model-based environment. In
addition, SystemVue provides some software peripheral models to mimic the
hardware behaviors of M9703 FPGA interface, so users can run a pure
software simulation to debug and verify their FPGA design.

M9703 FPGA programming file auto generation
When the FPGA design in SystemVue schematic is verified by software
simulation and is ready for generating FPGA programming file, SystemVue
provides a "one-button-push" automatic flow to launch Xilinx ISE to
generate final M9703 FPGA programming files in background.

M9703 instrument co-simulation with SystemVue
After the M9703 FPGA programming files are generated, SystemVue
provides a M9703 instrument co-simulation model to connect SystemVue
with M9703 hardware. This model can download M9703 FPGA programming
file to DPU FPGAs, configure the user-defined FPGA registers and capture
data output from M9703 DPU FPGA to SystemVue. Users can verify the
custom real-time processing on real hardware in this step.

After M9703 instrument co-simulation verification, users can use AgMD1 IVI-C
or AgMD1 IVI-COM driver to create their own program to deploy the user-
defined DPU FPGA programming file and control M9703 instrument without
launching SystemVue.

AgMD1 IVI-C and AgMD1 IVI-COM driver are installed automatically when you
install Keysight MD1 High-Speed Digitizer Instrument Drivers and Soft Front
Panel.

For details of programming using AgMD1 IVI-C and AgMD1 IVI-COM, please
refer to the document of . You will get this document after IVI Driver Reference
installing Keysight MD1 High-Speed Digitizer Instrument Drivers and Soft Front
Panel.

Tutorials 240

Design Entry and Software Simulation

M9703 Design Template

M9703 Design Template is a set of hierarchical subnets to model M9703's
hardware architecture. It mimics and simplifies the behavior of M9703 DPU FPGAs'
interface, so that users can easily configure M9703 DPU FPGAs and enter model-
based FPGA design under M9703's hardware architecture. Then users can do
software simulation with M9703 Design Template to debug and verify whether their
real-time processing part works well under M9703's hardware architecture before
generating FPGA programming file.

When you drag-and-drop the top level subnet of M9703 Design Template from
workspace tree to a schematic, you will get a M9703 Design Template model in the
schematic. This model has a GUI to help you configure the M9703 interfaces and
working mode easily.

Below figure shows the top-level subnet of M9703 Design Template. The four DPU
FPGAs of M9703 are mimicked in the top-level subnet. For each mimicked DPU
FPGA, there is a green area . This area is mapped to Users Design Custom real-time

 part on the corresponding DPU FPGA hardware. Users can enter their processing
model-based FPGA design in the subnet of area.Users Design

M9703 DPU FPGAs' physical interfaces, such as ADC Input, Inter-FPGA link, DDR3
Memory link and PCIe link, are simplified in the M9703 Design Template subnets.
So users just need to connect their own real-time processing part with these
simplified interfaces in M9703 Design Template, instead of being familiar with the
sophisticated physical interfaces of M9703 hardware. It will save a lot of
development time. Then when you generate FPGA programming file, SystemVue
will provide an automatic flow to connect users' real-time processing part design
with the physical interfaces well and generate the final FPGA programming file.

241 Tutorials

M9703 Design Template Hierarchy

You can find the subnets architecture of M9703 Design Template in SystemVue
workspace tree from example workspace " <SystemVue installation dir>
\Examples\Hardware Design\M9703_FDK\M9703_Design_Template\

", as shown below:M9703_FDK_Design_Template.wsv

Top-level subnet: M9703_TEMPLATE

This subnet is the top level subnet of the M9703 Design Template. You can drag-
and-drop it from the workspace tree to a schematic to instantiate a M9703 Design
Template model in a schematic, and double click the model to open M9703 Design
Template GUI to configure the M9703 DPU FPGAs interfaces. All subnets and their
parameters are all controlled by the GUI, so you can use the GUI to configure the
M9703 DPU FPGA interface and working mode and all subnets under M9703
Design Template can be configured well automatically according to your input in
the GUI.

If you double click the subnet in workspace tree, you can open M9703_TEMPLATE
the subnet to view the implementation of the subnet. All things in this subnet
implementation have be pre-configured well and controlled by M9703 Design
Template GUI, so users need do nothing in this subnet.

Tutorials 242

In the M9703_TEMPLATE subnet, there is a subnet for custom real-time processing
FPGA design entry in the green area of each DPU FPGA. The subnets Users Design
and models in the other blue areas mimic M9703 DPU FPGAs hardware
architecture and provide the simplified interfaces for the custom real-time
processing part.

In workspace tree of M9703 Design Template, the subnets in folder
 – , , and User_Design_Subnets M9703_FPGA0 M9703_FPGA1 M9703_FPGA2

, are in green area in the top level M9703_FPGA3 Users Design M9703_TEMPLATE
subnet. You can enter your model-based FPGA design in these subnets for the
corresponding DPU FPGA.

Users FPGA Design subnets: M9703_FPGA0 ~ M9703_FPGA3

You can double click subnet in workspace tree to look into the M9703_FPGA x
implementation of the subnet, as shown below.

243 Tutorials

When you enable FPGAx in M9703 Design Template model GUI, the corresponding
subnet M9703_FPGAx is enabled. Above figure shows a blank M9703_FPGA0
subnet and its interface models have been placed in this subnet in advance. These
interface models are configured automatically according to your input in M9703
Design Template model GUI. Please don't modify anything in the blue "Read-Only"
area in order to keep these pre-configured IO ports working correctly. Users can
create their own model-based fixed-point design connecting with the defined
interface. See to get Users FPGA Design Interfaces in M9703 Design Template
details about how to connect model-based user application design with the defined
FPGA interface.

In summary, the hierarchy of M9703 design template is shown in below figure.

Tutorials 244

1.

2.

3.

1.

The top level is the M9703 Design Template model that you drag-and-drop
from the workspace tree to schematic. You can double click this model in a
schematic to open its GUI. You can configure M9703 interfaces and working
mode in the GUI.

Look into M9703 Design Template model (subnet), and M9703_TEMPLATE
you will go a lower level to view the implementation of the M9703 Design
Template. You can find the peripheral subnets and user FPGA design subnet
in this level. All things in this level are controlled by your input in M9703
Design Template model GUI automatically. Please don't modify anything in
this level.

Look into one of user FPGA design subnets, M9703_FPGA0 ~ M9703_FPGA3,
and you will go a lower level to create your own model-based design that
you want to implement on the corresponding M9703 DPU FPGA in this level.
The I/O ports have been placed in these subnets in advance and are also
controlled by your input in M9703 Design Template model GUI automatically.
So please don't modify anything in blue "Read-Only" area in these subnets.

Finally, you can follow the below steps to design M9703 DPU FPGAs using M9703
Design Template:

245 Tutorials

1.

2.

3.

4.

Find M9703 Design Template from SystemVue example workspace: <your
\Examples\Hardware SystemVue installation dir>

Design\M9703_FDK\M9703_Design_Template\
. Save this example workspace to your M9703_FDK_Design_Template.wsv

working directory or copy folder from workspace tree M9703DesignTemplate
of this example workspace to that of your own workspace.

Drag-and-drop subnet from workspace to a schematic. M9703_TEMPLATE
Double click the M9703 Design Template model in your schematic to open
its GUI. You can configure which FPGAs you want to use and the interface
(OutPort, Register, BlockRegister and Inter-FPGA I/O) of your selected
FPGAs.

Find the subnets whose corresponding DPU FPGA you enable M9703_FPGA x
in M9703 Design Template GUI. Double click them in workspace tree to open
the subnet. Then you can create your own model-based design and connect
your design with your defined FPGA interfaces. Note that you can only use
the models in SystemVue "Hardware Design Library", the models beyond this
library can't generate HDL codes and can't be implemented on M9703 DPU
FPGAs finally.

Then after you finish your model-based design entry, you can go back to the
top level schematic to create the input waveforms for the corresponding
input ports of M9703 Design Template model and link the output ports of
M9703 Design Template model to data sink models. Then you can run
SystemVue simulation to verify your M9703 FPGA design via SystemVue
software simulation.

Users FPGA Design Interfaces in M9703 Design Template

In , M9703 DPU FPGAs' physical interfaces Overview of M9703 High-Speed Digitizer
are introduced. Each DPU FPGA has the following physical interface:

ADC parallel data streams input

Connectivity with two DDR3 memory and one QDRII memory

Inter FPGAs data stream connectivity

PCIe connectivity with backplane via PCIe switch

Control signals from CTRL FPGA

In order to make the custom real-time processing part implement under M9703's
hardware architecture easily, M9703 Design Template simplifies these physical
interfaces. These simplified interfaces have less relationship with physical protocol,
and they are all algorithm-level interfaces, so users can connect these simplified
interfaces with their FPGA design easier. So users can save the time that is spent to
study the details of M9703 DPU FPGAs' physical interfaces.

There are 6 types simplified interfaces in M9703 Design Template:

ADC Input

OutPort

Tutorials 246

Register

BlockRegister

Inter-FPGA I/O

Trigger

You can configure these interfaces in M9703 Design Template model GUI for your
selected M9703 DPU FPGAs and connect your configured interfaces with your
model-based fixed-point design in the corresponding users FPGA design subnets (

).M9703_FPGA x

Register, and are optional interfaces. You BlockRegister, Inter-FPGA I/O Trigger
can configure whether to use them in M9703 Design Template model GUI.

These simplified interfaces have been placed in users FPGA design subnets
in advance, and the I/O ports of subnets are M9703_FPGA x M9703_FPGA x

controlled by your configuration in M9703 Design Template model GUI
automatically. Net labels of lines are used to connect these ports. Users can use
net labels to connect their own model-based design with these interfaces. For
details of how to use net labels of connection line, please refer to Connection Line

.Net Labels

ADC Input

ADC Input is corresponding to M9703 DPU FPGAs' physical interface ADC Input
(see). Users can use this interface to Overview of M9703 High-Speed Digitizer
connect ADC parallel input streams with their own FPGA design.

ADC Input in M9703 Design Template has the same behavior as it physical ADC
Input parallel streams. It provides parallel ADC input streams and a valid signal to
indicate whether the corresponding ADC parallel streams are valid. As described in

, there are valid parallel ADC samples Overview of M9703 High-Speed Digitizer
every two DPU FPGA system clock cycles.

Connect ADC input with your FPGA design in subnet M9703_FPGA0 ~
M9703_FPGA3:

In user FPGA design subnet ~ , ADC parallel input M9703_FPGA0 M9703_FPGA3
streams are a input bus with width 32 and a valid input port. They are configured
by M9703 Design Template model GUI automatically.

http://edadocs.software.keysight.com/display/source/Connection+Line+Net+Labels
http://edadocs.software.keysight.com/display/source/Connection+Line+Net+Labels

247 Tutorials

The input ports are connected to lines with Net Label. The Net Label of parallel
ADC input data is . Net Label of ADC input valid signal is . So ADC(0:31) ADCValid
user can use Net Label name to connect the parallel ADC input with their own
model-based FPGA design.

As described in , ADC input data Overview of M9703 High-Speed Digitizer ADC(0:31)
is related M9703 ADC sample mode:

For mode: Normal, all 8 channels

IN1 and connect with ;IN2 FPGA0

IN3 and connect with ;IN4 FPGA1

IN5 and connect with ;IN6 FPGA2

IN7 and connect with .IN8 FPGA3

ADC(0:15) are 16 parallel ADC samples of the first channel for current FPGA. ADC(0)
is the oldest sample and is the newest sample. ADC(15)

 are 16 parallel ADC samples of the second channel for current FPGA. ADC (16:31)
 is the oldest sample and is the newest sample.ADC(16) ADC(31)

For example, and connect with . In subnet , IN5 IN6 FPGA2 M9703_FPGA2 ADC(0:15)
are 16 parallel samples of and are 16 parallel samples of .IN5 ADC(16:31) IN6

Tutorials 248

For mode:Interleaved, 1+3+5+7

IN1 connects with ;FPGA0

IN3 connects with ;FPGA1

IN5 connects with ;FPGA2

IN7 connects with .FPGA3

 are 32 parallel samples of the connected channel of the current FPGA. ADC(0:31)
 is the oldest sample and is the newest sample.ADC(0) ADC(31)

For example, if connects with for interleaved mode, in subnet IN5 FPGA2
, are 32 parallel samples of .M9703_FPGA2 ADC(0:31) IN5

For mode:Interleaved, 2+4+6+8

IN2 connects with ;FPGA0

IN4 connects with ;FPGA1

IN6 connects with ;FPGA2

IN8 connects with .FPGA3

ADC(0:31) are 32 parallel samples of the connected channel of the current FPGA.
 is the oldest sample and is the newest sample.ADC(0) ADC(31)

For example, if connects with for interleaved mode, in subnet IN2 FPGA0
, are 32 parallel samples of .M9703_FPGA0 ADC(0:31) IN2

Configure ADC input mode in GUI of M9703 Design Template:

ADC sample mode can be configured in M9703 Design Template model GUI. Then
in each FPGA tab of the GUI, the connection relationship between ~ and IN1 IN8 ADC

 is also shown.(0:31)

For example, mode and tab:Normal, all 8 channels FPGA0

249 Tutorials

For example, mode and tab:Interleaved, 1+3+5+7 FPGA1

Tutorials 250

Each line of bus is an input port of ADC sample and its data type is FADC(0:31)
.ixed-point

Its is bit.WordLength 16

251 Tutorials

Its is bit when is (Input Range: -1V~1V); Integer WordLength 1 Full Scale 2V
Its is bit when is (Input Range: -0.5V~0.Integer WordLength 0 Full Scale 1V
5V)

It's .Signed

Full Scale can be set in M9703 Design Template model GUI:

The data type of M9703 Design Template model's input ports ~ is . IN1 IN8 Real
M9703 Design Template will quantize the input waveforms to get fixed-point Real
ADC sample value for according to M9703's ADC behavior. It will ADC(0:31)
quantize the waveform to a number with and then Real fixed-point WordLength 12
extend the . and are 12bit fixed-point number to 16bit Integer WordLength Signed
always as described above. Please refer to Overview of M9703 High-Speed Digitizer
for M9703's ADC behavior.

Subnets that can help you remove ADCValid:

ADCValid is Net Label of the non-bus ADC valid input port. Its data type is also
.fixed-point

Its is bit.WordLength 1

Its is bitInteger WordLength 1

It's .UnSigned

ADCValid alternates between and always. When is , the 0 1 ADCValid 1
corresponding are valid ADC samples. When is , ADC(0:31) ADC(0:31) ADCValid 0
will hold their current values. So every two samples, there is a valid .ADC(0:31)

Tutorials 252

If you want to get all valid ADC parallel samples (valid signal is always 1, so all ADC
samples are valid. Then you need not ADC valid signal), two subnets

 and are provided in example workspace: ADCConvert_16To8 ADCConvert_32To16
\Examples\Hardware <your SystemVue installation dir>

Design\M9703_FDK\M9703_Design_Template\ M9703_FDK_Design_Template.wsv

Because is 1 every two samples, the width of bus needs go down 2 ADCValid ADC
times when you get all valid parallel streams.

For mode, the width of bus ADC become from 16 to 8, you Normal, all 8 channels
can use subnet as below to get all valid parallel ADC samples ADCConvert_16To8
for two channels.

For or mode, the width of bus ADC Interleaved, 1+3+5+7 Interleaved, 2+4+6+8
become from 32 to 16, you can use subnet as below to get all ADCConvert_32To16
valid parallel ADC samples for one channel.

253 Tutorials

It is not mandatory to connect all lines with user's FPGA design in ADC(0:31)
subnets . For example, if you just want to use M9703_FPGA0~M9703_FPGA3 IN1
and don't use for , then you can only connect to your design IN2 FPGA0 ADC(0:15)
and don't use in subnet .ADC(16:31) M9703_FPGA0

Net Label Key Words for ADC Input

ADC parallel input data: ADC(0:31)

ADC Valid: ADCValid

Use the net labels to connect your design with ADC input interface in M9703
user design subnets M9703_FPGA0 ~ M9703_FPGA3.

OutPort

Users can process ADC input samples with their own FPGA design in subnets
. Then the processed results can be outputted via M9703_FPGA0~M9703_FPGA3

. Users can define multiple and each their desired output result can OutPort OutPort
be outputted via the corresponding . Because users' output results from OutPort
M9703 Design Template user FPGA design subnets (M9703_FPGA0~M9703_FPGA3
) are data type, the corresponding can be defined as users Fixed-point OutPort
desired data format (, and).Fixed-point WordLength Integer WordLength IsSigned

Because the real-time processed results from M9703 DPU FPGAs may be high-
speed data stream, PCIe bandwidth may not be enough to fetch all results to PC
without data loss. And also, software running on PC is usually too slow to process
the real-time processed results from M9703 hardware. So in M9703 FPGA design
flow, the real-time processed results are buffered to DDR3 SDRAM on M9703 at
first, because the data bandwidth between DPU FPGA and DDR3 SDRAM is much
larger than PCIe data bandwidth. User can specify a block of SDRAM for the data
buffering. When the block of SDRAM is filled in, SystemVue that runs a M9703
instrument co-simulation on a computer can read back the buffered results via
PCIe. Then SystemVue can parse PCIe data format to user defined OutPort Fixed-

 data type automatically.point

So user just need define their own data type for software OutPort Fixed-point
simulation and M9703 instrument co-simulation and don't need care the physical
DDR3 and PCIe protocol and data format. SystemVue will automatically generate
HDL wrapper to convert between user defined OutPort data format and DDR3 and
PCIe data format during generating M9703 DPU FPGA programming file.

Define your own OutPort in GUI of M9703 Design Template:

Tutorials 254

For each M9703 DPU FPGA, can be defined in the corresponding OutPort FPGA x
tab of M9703 Design Template model GUI:

As shown in the interface diagram, each is represented as a set of ports: OutPort
 output port, output port and input port. It's a typical DataOut ValidOut ReadyIn

data stream style interface. is the data values output. shows the DataOut ValidOut
corresponding is valid when it's , otherwise when it's , the DataOut 1 0
corresponding is not valid. shows the following hardware is ready DataOut ReadyIn
to receive the current output. When both and are , a data ValidOut ReadyIn 1
transfer occurs.

Click button to open a new GUI to define the for each DPU Config Outport OutPort
FPGA.

255 Tutorials

In the configuration GUI, user can define multiple . User needs OutPort OutPort
define the following items for each :OutPort

Name

WordLength

Integer WordLength

Sign

Name is a meaningful string to help you to identify each . , OutPort WordLength
 and specify the format for data of the Integer WordLength, Sign fixed-point

corresponding . The fixed point format is just used to specify . Both OutPort DataOut
 and are 1 bit unsigned integer (its value is 0 or 1).ValidOut ReadyIn

In each row, an is defined. There is a number on the left of OutPort OutPort's Name
. The number is the of each . The index is a very useful number for index OutPort
each defined . In user FPGA design subnets , OutPort M9703_FPGA0~M9703_FPGA3

 are IO ports. This is the for each defined . The OutPort bus index bus index OutPort
index is .one-based

OutPort has two working modes:

Same Sample Rate Mode: checkbox Using Same Sample Rate for all output
 is checked. All defined share the same signal. So port OutPorts ValidOut

they will generate valid output in the same rate. In this mode, you can define
up to for each M9703 FPGA, and the maximum bit width of 16 OutPorts
each OutPort is 1024.

Non-Same Sample Rate Mode: checkbox Using Same Sample Rate for all
 is unchecked. Each defined has its own signal. output port OutPort ValidOut

So they can generate valid output in different rates. In this mode, the sum of
all bit width must be less or equal to 1024.OutPorts'

Connect OutPort with your FPGA design in subnet M9703_FPGA0 ~ M9703_FPGA3:

Tutorials 256

In user FPGA design subnet ~ , the IO ports of your M9703_FPGA0 M9703_FPGA3
defined in GUI are configured by M9703 Design Template model GUI OutPort
automatically. You don't need edit them and you just need use net labels to
connect your model-based design with the pre-configured IO ports.

The interface is represented by a set of fixed-point . If you defined OutPort bus ports
 for , the interface will be:N OutPort FPGAx OutPort

Data output bus: DataOut(1:N)

Valid output bus: For Mode ; For Non- Same Sample Rate , ValidOut(1:N)
Mode . All defined will share the Same Sample Rate , ValidOut(1) OutPort

same .ValidOut(1)

Ready input bus: For Mode, ; For Non- Same Sample Rate ReadyIn(1:N)
Mode . All defined will share the Same Sample Rate , (1)ReadyIn OutPort

same .ReadyIn(1)

The number of and fixed-point data type of each are defined in OutPort DataOut
GUI of M9703 Design Template. The fixed-point data type of all and ValidOut

 is one bit logic (unsigned, word length = integer word length = 1).ReadyIn

257 Tutorials

For each , it has a set of ports output, output and OutPort DataOut()x ValidOut()x
 input. The set of ports follows the handshaking rule of . So ReadyIn()x AXI4-stream

you also need follow the AXI4-stream handshaking rule to deal with the timing of
, and ports in your application design logic. You can use DataOut ValidOut ReadyIn

net labels , and to connect the set of ports with DataOut()x ValidOut()x ReadyIn()x
your application design ports.

In Mode, is the bus index between (is the Non- Same Sample Rate x 1:N N
number of your defined).OutPort

In Mode for is the bus index between Same Sample Rate , DataOut(), x x (1:N
is the number of your defined For and N). OutPort ValidOut()x ReadyIn(), x x

can only be 1.

For example, if you define 2 in GUI of M9703 Design Template, you can:OutPorts

In Mode: Non- Same Sample Rate

Connect the data output of the first to the line with net label OutPort
;DataOut(1)

Connect the valid output of the first to the line with net label OutPort
;ValidOut(1)

Connect the ready input of the first to the line with net label OutPort ReadyIn
;(1)

Connect the data output of the second to the line with net label OutPort
;DataOut(2)

Connect the valid output of the second to the line with net label OutPort
;ValidOut(2)

Connect the ready input of the second to the line with net label OutPort
;ReadyIn(2)

In Mode Same Sample Rate ,

Connect the data output of the first to the line with net label OutPort
;DataOut(1)

Connect the data output of the second to the line with net label OutPort
;DataOut(2)

Just generate one valid out for all output data in your FPGA design and
connect it to the line with net label ;ValidOut(1)

Connect the line with net label as input to your FPGA design to ReadyIn(1)
control your output

For each , your fixed-point design needs follow handshaking OutPort AXI4-stream
rule for the timing of data, valid and ready signals. When both and ValidOut ReadyIn
are , a data transfer occurs.1

If you define in GUI, don't use net labels , N OutPort DataOut()x
 and that is beyond the range of . ValidOut()x ReadyIn()x x 1 to N

Otherwise, when you run the simulation, SystemVue will post you
an error.

Tutorials 258

Especially, in Mode if for and Same Sample Rate , x ValidOut()x
is not when you run the simulation, SystemVue will ReadyIn() x 1,

post you an error.

The fixed-point data format of your data output must match with
the corresponding definition in GUI of M9703 Design OutPort
Template. And the fixed-point data format of your ValidOut()x
must be one-bit logic (word length = integer word length = 1,
unsigned). Otherwise, SystemVue will post an error when running
the simulation.

In M9703 Design Template, each selected FPGA has an model M9703MemoryBus
to link its input with and output buses of subnet DataOut ValidOut M9703_FPGAx
and generate output to input bus of subnet. You can ReadyIn M9703_FPGAx
observe it in subnet:M9703_TEMPLATE

When SystemVue generates FPGA programming file automatically, it inserts an N-
to-1 AXI4-stream switcher to connect N defined to FPGA DDR3 RAM AXI4 OutPorts
interface. It also packages different OutPort data with header indicators. The
M9703MemoryBus model will mimic the hardware behavior to generate ReadyIn
feedback for user's application design when you do the software simulation.

OutPort on top level M9703 Design Template model and M9703CosimBus model:

As your desired results are outputted via , the results will be outputted from OutPort
top level M9703 Design Template model in software simulation, and will be
outputted from model in M9703 instrument co-simulation.M9703CosimBus

259 Tutorials

For top level M9703 Design Template model, it has a set of output bus ports for
each FPGA, and . They have the same function as FPGA _DataOutx FPGA _ValidOutx
the output from M9703 user FPGA design subnets . M9703_FPGA0 ~ M9703_FPGA3
But as it mimics the hardware behavior and when SystemVue reads data from
M9703, actually the data have been buffered in on-board DDR3 SDRAM. So it
doesn't need a port anymore.ReadyIn

For M9703CosimBus model, its output ports are similar as top level M9703 Design
Template model. It has also a set of output bus ports for each FPGA, FPGA _Datax
and and doesn't need port.FPGA _Valid x ReadyIn

Tutorials 260

For the top level M9703 Design Template model and M9703CosimBus model, the
values of in subnets can be DataOut OutPort M9703_FPGA0~M9703_FPGA3

outputted through but the behavior of the will be FPGAx_DataOut, FPGAx_ValidOut
different . Please refer to.

Net Label Key Words for OutPort

If you define , the net label you can use to connect your FPGA design N OutPort
in subnets:M9703_FPGA0~M9703_FPGA3

For mode: , Non-Same Sample Rate DataOut(1:N) ValidOut(1:N)
and . and are output ReadyIn(1:N) DataOut(1:N) ValidOut(1:N)
ports and is input port.ReadyIn(1:N)

For mode: , and Same Sample Rate DataOut(1:N) ValidOut(1)
. and are output ports and ReadyIn(1) DataOut(1:N) ValidOut(1)
 is input port.ReadyIn(1)

Register

Register is an optional FPGA interface. You can define arbitrary number of Registers
as long as it can be implemented on . Each reserves a value DPU FPGA Register
that can be configured dynamically after FPGA programming file is generated. It
can make your generated FPGA programming file more flexible.

Configure Register in M9703 Design Template GUI:

You can enable or disable in M9703 Design Template model GUI by Register
checking or unchecking checkbox as shown below.Register

261 Tutorials

Register interface is a set of reserved registers whose values can be re-fixed-point
configured at the beginning of a simulation, and then the values are kept Register
until the end of simulation. After you enable , you can click Register Config Register
button to open a new GUI:

You can define the number of and the fixed-point data format of each Registers
 in this GUI. You can also specify for each defined , then the Register Value Register

value of each Register will be set at the beginning of a simulation.

If you generate M9703 FPGA programming file for a M9703 Design Template with
defined , the number of Registers and the fixed-point data format of each Registers
Register are fixed in FPGA implementation, but you can still re-configure the value
of each Register. Then when you run SystemVue and M9703 Co-Simulation, all
Register values will be re-configured before ADC data capture and kept until the
end of the Co-Simulation.

Connect Register with your FPGA design in subnet M9703_FPGA0 ~ M9703_FPGA3:

In subnet for user's application fixed-point design, input M9703_FPGAx Register bus
port has been configured in advance.

Tutorials 262

If you define interface in GUI of M9703 Design Template, you can use the Register
 input port for your application fixed-point design. Assuming you defined Register N

Registers in GUI, you can use the line with net label from Register bus Register(x)
input to get Register value for your fixed-pointed design.Register(1:N)

For example, if you defined two Registers in GUI of M9703 Design Template, the
first one with name and the second one with name , threshold1 threshold2
assuming that they are the thresholds in your design. You leave the two Registers
in order to adjust the thresholds flexibly. Then in subnet, you can M9703_FPGAx
get the values of the defined Registers for your application design in this way:

Draw a line and double click it to input its net label . Then this Register(1)
line will be the input of Register .threshold1

Draw a line and double click it to input its net label . Then this Register(2)
line will be the input of Register .threshold2

Then you can connect the lines with Register net label to your own fixed-point
design.

If you don't define any in GUI of M9703 Design Register
Template, you can't use the Register net label. In addition, you
can't use the net label that is beyond the range you Register()x x
defined.

263 Tutorials

Besides, your defined Fixed-point data format of each Register
must be consistent with your FPGA design, otherwise, an error
will be posted when your run SystemVue simulation.

Net Label Key Words for Register

Register()x , where is a number between 1 to N (N is the x
Register number you defined).

BlockRegister

BlockRegister is an optional FPGA interface. You can define arbitrary number of
as long as it can be implemented on . Each BlockRegister DPU FPGA BlockRegister

reserves a table of values that can be configured dynamically after FPGA
programming file is generated. It can make your generated FPGA programming file
more flexible. In your M9703 FPGA design subnets, you can use an address to look
up the values of the table, just like looking up a RAM.

Configure BlockRegister in M9703 Design Template GUI:

You can enable or disable it in M9703 Design Template GUI by checking or
unchecking checkbox as shown below.BlockRegister

BlockRegister is similar as interface. It is a table of reserved Register fixed-point
memories (A memory is a block of registers that have the same fixed-point data
format. The block of registers can be accessed via address. So a memory is like a
RAM.)

Tutorials 264

After you enable , you can click button to open BlockRegister Config BlockRegister
a new GUI:

You can define the number of and the fixed-point data format of BlockRegister
each in this GUI. You can also specify and for each BlockRegister Length Value
defined , is the table size and is the values of all BlockRegister Length Value
element of the table. must be a row vector whose size is equal to your Value
specified value. Then the values of each will be set at the Length BlockRegister
beginning of a simulation.

BlockRegister values can be re-configured before capturing ADC input data, and
then the values are kept until the end of simulation. You can define BlockRegister
the number of and the fixed-point data format of each BlockRegisters BlockRegister
in GUI of M9703 Design Template. You can also specify the values for each defined

, then the values of each will be initialized for BlockRegister BlockRegister
simulation.

If you generate M9703 FPGA programming file for a M9703 Design Template with
defined BlockRegisters, the number of BlockRegisters and the fixed-point data
format of each BlockRegister are fixed in FPGA implementation, but you can still re-
configure the values of each BlockRegister. Then when you run SystemVue and
M9703 Co-Simulation, all BlockRegister values will be re-configured before ADC
data capture and kept until the end of the Co-Simulation.

Connect BlockRegister with your FPGA design in subnet M9703_FPGA0 ~
M9703_FPGA3:

In subnet for user's application fixed-point design, M9703_FPGAx BlockRegister
ports have been configured in advance. If you define BlockRegister interface in the
GUI of M9703 Design Template, you can use the ports for your BlockRegister
application fixed-point design.

265 Tutorials

Because a BlockRegister is like a block of RAM, so it has the memory mapper IO
ports. For a BlockRegister, its memory mapped IO ports are:

BlockRegAddr: it is an output bus port of user's application design. Users can use
this port to output the address to look up the corresponding value. The fixed-point
data format of this port must be:

Word length = ceil(log2(Length of BlockRegister))
Integer word length = ceil(log2(Length of BlockRegister))
Unsigned
Length of BlockRegister is defined in the GUI of M9703 Design Template.

BlockRegRd: it is an output bus port of user's application design. Users can use this
port to output "Read Enable". When the "Read Enable" is high, the look-up value at
the current address will be valid at the next simulation sample.

The fixed-point data format of this port must be:
Word length = Integer word length = 1
Unsigned

BlockRegData: it is an input bus port of user's application design. Users can get the
look-up value from this port. Note that which input samples of this port are valid
depends on output port BlockRegRd.

The fixed-point data format of this port is defined in GUI of M9703 Design
Template.

Because you can define multiple in M9703 Design Template GUI, BlockRegister
above three ports are all ports. Assuming that you defined , the bus N BlockRegister

 interface in subnet are three ports: BlockRegister M9703_FPGAx bus BlockRegAddr(
, and . You can use net labels)1:N BlockRegRd()1:N BlockRegData()1:N

, and to access one of the defined BlockRegAddr()x BlockRegRd()x BlockRegData()x
.BlockRegister

For example, if you have below definition in the GUI:BlockRegister

Tutorials 266

Assuming that the two are defined for two coefficients re-BlockRegister
configurable FIR filter in FPGA0, the length is 32 for both of them.

Then in subnet , you can use the like:M9703_FPGA0 BlockRegister

Connect the "CoefI" address output port of your design to the line with net
label .BlockRegAddr(1)

Connect the "CoefI" read enable output port of your design to the line with
net label .BlockRegRd(1)

Connect the "CoefI" look-up value input port of your design to the line with
net label .BlockRegData(1)

Connect the "CoefQ" address output port of your design to the line with net
label .BlockRegAddr(2)

Connect the "CoefQ" read enable output port of your design to the line with
net label .BlockRegRd(2)

Connect the "CoefQ" look-up value input port of your design to the line with
net label .BlockRegData(2)

The fixed point data format of and must be:BlockRegAddr(1) BlockRegAddr(2)

Word length = Integer word length = 5 (because the length of BlockRegister
is defined as 32)

Unsigned

The fixed point data format of and input is:BlockRegRd(1) BlockRegRd(2)

Word length = 1

Integer word length = 1

Unsigned

The fixed point data format of and input is:BlockRegData(1) BlockRegData(2)

267 Tutorials

Word length = 16

Integer word length = 1

Signed

As defined in GUI.

The timing of interface is shown below:BlockRegister

In users' application design subnet, you can generate M9703_FPGAx BlockRegAddr
and output and read back . When you output BlockRegRd BlockRegData

 as 0, will hold the current value at the next clock cycle; BlockRegRd BlockRegData
While you output as 1, will be updated to the look-up BlockRegRd BlockRegData
value of the current address at the next clock cycle.

Net Label Key Words For BlockRegister

BlockRegAddr()x

BlockRegRd()x

BlockRegData()x

where is a number between (is the number of your x 1 to N N
definedBlockRegister).

Inter-FPGA I/O

As shown in , there are dedicated high Overview of M9703 High-Speed Digitizer
speed data links between four FPGAs on a M9703 digitizer. Between each two
FPGAs, there are independent bi-direction data links. The effective throughput of
each direction is about 1GB/s.

Configure Inter-FPGA I/O in M9703 Design Template GUI:

In tab of M9703 Design Template GUI, there is a checkboxOverview Inter-FPGA I/O
. You can check it to enable or uncheck it to disable . Inter-FPGA I/O Inter-FPGA I/O
Please note that when you enable or disable , all Inter-FPGA I/O Inter-FPGA I/O
between all four FPGAs are all enabled or disabled. The diagram can also show the

 status (for enabled; for disabled).Inter-FPGA I/O blue grey

Tutorials 268

When is enabled, in all enabled FPGA tabs, interface Inter-FPGA I/O Inter-FPGA I/O
is shown in their diagrams.

269 Tutorials

Connect Inter-FPGA I/O with your FPGA design in subnet M9703_FPGA0 ~
M9703_FPGA3:

For each DPU FPGA, it has four independent Inter-FPGA interface – UpIn, UpOut,
 and . For and interfaces, they are the same as DownIn DownOut UpOut DownOut
 interface. It has data and valid output and a ready intput. For , its OutPort UpOut

interface is output ports and and input port . UpOutData UpOutValid UpOutReady
For , its interface is output ports and and DownOut DownOutData DownOutValid
input port .DownOutReady

For and interfaces, they just have data and valid input ports and they UpIn DownIn
have NOT backward ready output. For , its interface is input ports UpIn UpInData
and . For , its interface is output ports and UpInValid DownIn DownInData

.DownInValid

Because the production and consumption of inter-FPGA data stream are both
designed by users, users know how to process the received data stream. So they
don't need generate a ready signal backward to data production side to control the
data stream. In this way, the inter-FPGA interface is simpler and the latency of
inter-FPGA data transfer is minimum. For most real-time signal processing, the low
latency between FPGAs can make design simpler and consume less FPGA
hardware resources.

All ports of are bus ports. The data bit width between FPGA is Inter-FPGA I/O NOT
64 bits. In order to make the latency between FPGAs minimum, we don't add any
arbitration for multiple data streams. So if you have multiple data streams, you
need concatenate them as 64 bits format in your FPGA design.

In subnet , the fixed-point data format of , M9703_FPGA0 ~ M9703_FPGA3 UpInData
, and ports must be:UpOutData DownInData DownOutData

WordLength = 64

Integer WordLength = 64

Unsigned

Tutorials 270

In subnet , the fixed-point data format of M9703_FPGA0 ~ M9703_FPGA3 UpInValid
, , , , and ports DownInValid UpOutValid UpOutReady DownOutValid DowOutReady
must be:

WordLength = 1

Integer WordLength = 1

Unsigned

If the fixed-point data format in your FPGA design doesn't match the required fixed-
point data format, when you run a software simulation, SystemVue will post an
error.

Inter-FPGA data stream transfer behavior:

The latency between two FPGAs varies between 70~80 clock cycles, which means
transmitted FPGA send a valid data and 70~80 clock cycles later the receiving
FPGA can receive the data. In M9703 Design Template software simulation
behavior, we set the latency as maximum 80 clock cycles. You have to consider the
latency effect in your own FPGA design.

The bandwidth between two FPGAs is about 1GB/s. It's a average bandwidth, the
instant bandwidth may variable slightly. So you need add a small FIFO on
consumption sides of inter-FPGA data stream. Usually, a depth 32 FIFO is enough
for removing the bandwidth variation effect. If your FPGA working frequency is
200MHz (-SR2 option), then 1GB/s bandwidth means that you can only send 5
samples every 8 clock cycles. On transmitted side, you have to buffer the data with
a FIFO according to ready input signal.

For example, you want to send FPGA0 data to FPGA1 and align with data stream in
FPGA1, then you need add a FIFO to removing the effect of latency and bandwidth
variation on receiving side FPGA1, considering latency 80 cycles and bandwidth
variation 32 cycles, you may select a FIFO with depth 128 to make your inter-FPGA
data transfer work safely. On transmitted side FPGA0, you also need add a FIFO,
the FIFO can only be read when ready input is high. The depth of FIFO can be
decided according to your actual transfer throughput and data transfer length.

When is enabled, all four directions of inter-FPGA interface Inter-FPGA I/O
 are all enabled. Then in your FPGA design UpIn, UpOut, DownIn and DownOut

subnets, you have to generate values for all output ports – UpOutData,
. If you don't use any of them, you UpValid, DownOutData and DownOutValid

also need to connect some dummy values (for example, constant 0 with <64,
64, unsigned> fixed-point format for data output and constant 0 with <1,1,
unsigned> fixed-point format for valid output) for these output ports.

Net Label Key Words For Inter-FPGA I/O

For direction:UpOut

UpOutData (output port)

UpOutValid (output port)

UpOutReady (input port)

271 Tutorials

For direction:UpIn

UpInData (input port)

UpInValid (input port)

For direction:DownOut

DownOutData (output port)

DownOutValid (output port)

DownOutReady (input port)

For direction:DownIn

DownInData (input port)

DownInValid (input port)

Trigger

In M9703 digitizer, each DPU FPGA has trigger input signals from control FPGA.
Users can configure the trigger source, and then once the trigger condition is met,
the trigger signals will reach to each DPU FPGA at the same time. Users can use
the input trigger signals on each DPU FPGA to assist their own real-time signal
processing. In SystemVue M9703 FPGA flow, we provide design, simulation, FPGA
implementation and digitizer hardware control for trigger.

 Trigger Interface on DPU FPGA

The Trigger interface on each DPU FPGA are 3 input fixed-point signals:

TriggerFlag: It represents whether it's triggered on the current FPGA system
clock cycle. When it's 1, it represents that it's triggered on the current FPGA
system clock cycle; When it's 0, it represents that it's not triggered on the
current FPGA system clock cycle. Its fixed-point format is <WordLength = 1,
IntegerWordLength = 1, Unsigned>.

TriggerIntegerPos: It represents the ADC sample index before the trigger
instant. Because the ADC samples are inputted to DPU FPGA parallel, on
each FPGA system clock cycle, there are ADC samples are NumParallel
inputted (for normal sampling mode and NumParallel=16 NumParallel=32
for interleaved sampling model). And also the block of the input ADC
samples hold for two FPGA system clock cycles and input signal is ADCValid
used to represent whether the block of ADC samples are valid on the current
FPGA system clock cycles. So will be an integer between TriggerIntegerPos 0
and Its fixed-pointed format is <WordLength=7, NumParallel-1.
IntegerWordLength=7, Unsigned>.

TriggerFractionPos: It represents the precise trigger position between the
trigger instant and the next ADC sample. It's a value in the range . Its [0, 1)
fixed-pointed format is <WordLength=32, IntegerWordLength=0,
Unsigned>.

Tutorials 272

In each DPU FPGA design subnet , the 3 Trigger input ports are pre-M9703_FPGAx
configured.

If you configure to use the trigger interface in your DPU FPGA in M9703 Design
Template GUI, you can connect the 3 input ports to your FPGA design using the
pre-configured Net Labels: , and as shown below.TFlag TIntegerPos TFractionPos

Only when you select to use Trigger interface in M9703 Design Template GUI,
the 3 input ports are enabled and you can connect them to your design. (You
can also leave them open even you enable the trigger ports.)

273 Tutorials

Otherwise, if you configure to not use Trigger interface, the 3 input ports are
disabled. You can't connect them to your design.

Net Label Key Words For Trigger:

TFlag

TIntegerPos

TFractionPos

Trigger Simulation in M9703 Design Template

In tab of M9703 Design Template GUI, there is a button for Trigger Overview
Settings.

You can click it to open a new GUI to configure the trigger mode for M9703 FPGA
design and simulation.

You can select to not to use trigger interface or use the trigger interface and
specify the triggers time in a time vector.

None

Tutorials 274

Trigger interface is not used. The 3 trigger input ports are disabled in M9703_FPGAx
subnet. You can't connect them with your FPGA design.

Time Vector

You specify a time vector. On each time point of the time vector, a trigger will be
generated. This trigger mode is used to generate triggers at any desired instants.
Then you can simulate whether your FPGA design works well with your specified
triggers.

A trigger can arrive on any instant, below figure shows the 3 trigger input ports
behavior on DPU FPGA when a trigger arrives.

For example, a trigger arrives at 1.3 * (ADC sampling period). The ADC sample
index before the trigger instant is 1, so TriggerIntegerPos will be 1 for this trigger.
And the ADC sampling period normalized time from trigger instant to the next ADC
sample is 0.7, so TriggerFractionPos will be 0.7 for this trigger.

The 3 trigger input ports work at FPGA system clock. And FPGA system clock
period is times of ADC sampling period. So for each block of NumParallel/2

ADC parallel input samples, there are 2 FPGA system clock cycles. NumParallel
When a trigger arrives, the 3 trigger input signal values will be valid from the next
block of ADC input samples. And is 1 for only one FPGA NumParallel TriggerFlag
system clock cycles. The values of and will TriggerIntegerPos TriggerFractionPos
hold until the next trigger.

When a trigger arrives exactly on an ADC sample position, this ADC sample's index
will be and will be 0. For example, a trigger TriggerIntegerPos TriggerFractionPos
arrives at 2 * (ADC sampling period). Its will be 2 and its TriggerIntegerPos

 will be 0.TriggerFractionPos

275 Tutorials

Corresponding to M9703 hardware behavior, if a trigger is too close to its
previous trigger, it can't be generated.

So the rule is that when a trigger is generated, the next trigger has to be
generated after 40 FPGA system clock cycles. All triggers that are specified
within the 40 FPGA system clock cycles will be ignored.

In design subnet, the parameter is the M9703_FPGAx FPGAWorkingCLKFreq
FPGA system clock frequency.

Trigger Configuration for M9703 Hardware Co-Simulation

In model GUI, there is a button. You can click it M9703ACosimBus Trigger Settings
to open a new GUI to configure the actual trigger source for M9703 hardware co-
simulation.

You can select None to disable the actual trigger source. Then input to TriggerFlag
DPU FPGA will be 0.

Tutorials 276

You can select to configure the actual trigger source.Trigger Setting

The actual trigger source can be all enabled channels and External Trigger source.
External Trigger 1~3 are corresponding to the 3 Trigger Input ports on M9703
digitizer front panel. External Trigger 4 is from AXIe chassis back plane and is
reserved for multi-modules synchronization.

Trigger Edge:

The defines which one of the two possible transitions will be used to Trigger Edge
initiate the trigger when it passes through the specified . Positive Trigger Voltage
slope indicates that the signal is transitioning from a lower voltage to a higher
voltage. Negative slope indicates the signal is transitioning from a higher voltage to
a lower voltage.

Trigger Voltage:

The specifies the voltage at which the selected trigger source will Trigger Voltage
produce a valid trigger. All trigger circuits have sensitivity levels that must be
exceeded in order for reliable triggering to occur.

Both the external trigger input and channel triggers have a hysteresis of 5% of Full
 -- The span of the voltage input of the Digitizer (negative to positive) Scale Range

including the configured offset voltage.

On external trigger, the is ±5 V, therefore the digitizer will trigger Full Scale Range
on signals with a peak-to-peak amplitude > 0.5 V. The input range of Trigger
Voltage is ±5 V for .Ext1~Ext4

When using the channel triggers, the trigger level must be set within Offset ± Scale
. For example, when is 0 V and is 2 V, the input range of all enable Offset Scale
channels is ±2 V.

M9703 Design Template GUI

You can find M9703 Design Template from SystemVue Example workspace
.M9703_FDK_Design_Template.wsv

277 Tutorials

You can find subnet in SystemVue of M9703_TEMPLATE (model) Workspace Tree
this example and drag-and-drop it to a SystemVue top level schematic. Then you
will see the M9703 design template model as show below:

Input Ports:

http://edadocs.software.keysight.com/display/source/Workspace+Tree

Tutorials 278

It has 8 input ports that are all floating point (real) data type input. The input ports
 are corresponding to the input ports on the front panel of M9703 IN1 ~ IN8

instrument. Because the M9703 design template is used for software simulation,
you need create input waveforms for the input ports of M9703 design template in
SystemVue. Then you can simulate your M9703 FPGA designs with your input
waveforms.

You can configure the clock source and sample mode in the GUI of M9703 Design
Template. Then the M9703's sample rate can be displayed in the GUI. It supports
both internal and external clock modes and also interleaved channel mode. When
you run simulation, SystemVue will check the sample rates of input waveform and
M9703. If they are not the same, the simulation will post an error.

These input ports are all optional input ports, which means you need not connect
all of them. For example, you just want to use FPGA0 of M9703 in Normal, 8

 mode, then you can just create input waveforms and connect and channels IN1 IN2
and leave the other input ports open. If you just want to use FPGA0 of M9703 in

 mode, then you can just create input waveforms and connect Interleaved, 1+3+5+7
 and leave the other input ports open.IN1

For all enabled input ports, the SystemVue will check its connectivity when
running simulation. For example, if you enable FPGA0 in Normal, 8 channels
mode, it means you enable and . Then you have to provide input IN1 IN2
waveforms for both and . If you leave one of them open, SystemVue will IN1 IN2
post an error when you run the simulation.

Output Ports:

It has 8 output ports For each in , it has a pair of bus bus . FPGAx FPGA0 ~ FPGA3
output ports, .FPGA _x DataOut and FPGA _ValidOutx

The bus widths of FPGA DataOut and FPGA _ValidOutx_ x :

The custom real-time processing results are outputted through in M9703 OutPort
Design Template subnet . are defined in M9703_FPGA0~M9703_FPGA3 OutPorts
the GUI of M9703 Design Template. You can define as two modes: OutPorts Non-

.SameSampleRate mode and SameSampleRate mode

For mode, the bus widths of andNon-SameSampleRate FPGAx_DataOut FPGAx
 are the same and are equivalent to the number that you defined _ValidOut OutPort

in M9703 Design Template GUI. For example, you define two in M9703 OutPort
Design Template GUI for FPGA0. Then FPGA0_ is the output data of DataOut(1)
your first of FPGA0 and is the corresponding valid OutPort FPGA0_ValidOut(1)
indicator of . When is 1, it indicates the FPGA0_DataOut(1) FPGA0_ValidOut(1)
corresponding data sample of is valid. Similarly, FPGA0_DataOut(1) FPGA0_DataOut

 and are the output pair of the second of FPGA0.(2) FPGA0_ValidOut(2) OutPort

For mode, the bus widths of are equivalent to SameSampleRate FPGA DataOutx
the number that you defined in M9703 Design Template GUI. The bus OutPort
widths of is 1. All share the same . For FPGA _ValidOutx OutPorts' DataOut ValidOut
example, you define two in M9703 Design Template GUI for FPGA0. Then OutPorts

 is the output data of your first of FPGA0 and FPGA0_DataOut(1) OutPort

http://edadocs.software.keysight.com/display/source/Nets+Connection+Lines+and+Buses

279 Tutorials

 is the output data of your second of FPGA0. The output FPGA0_DataOut(2) OutPort
of is the valid indicator of both and FPGA0_ValidOut FPGA0_DataOut(1)

. When is 1, it indicates the corresponding data FPGA0_DataOut(2) FPGA0_ValidOut
sample of and are valid.FPGA0_DataOut(1) FPGA0_DataOut(2)

All output ports are SystemVue The fixed-point data format fixed-point data type.
(wordlength, integer wordlength and signed) of is defined in FPGA _DataOutx
M9703 Design Template GUI. The is one-bit logic output, so its FPGA _ValidOutx
wordlength and integer wordlength are 1 and unsigned.

All output pair of and are optional. For example, if FPGA _DataOutx FPGA _ValidOutx
you just use FPGA0, there will not be output signal from andFPGA _DataOutx FPGAx

 of ._ValidOut FPGA1 ~ FPGA3

After drag-and-drop subnet from workspace tree to a M9703_TEMPLATE
Schematic, you can double click the M9703 Design Template model in Schematic
to open its GUI. You can use this GUI to configure the M9703 DPU FPGAs
interfaces.

Overview Tab:

The first tab of the GUI is . It is used to configure the top level attributions Overview
of M9703 Design Template.

Channel Setting

It has three options:

Normal, all 8 channels: Normal Mode, 8 channels

http://edadocs.software.keysight.com/display/svss/Fixed+Point+Simulation

Tutorials 280

Interleaved, 1+3+5+7: Interleaved Mode, 4 combined channels, sample rate
x2

Interleaved, 2+4+6+8 : Interleaved Mode, 4 combined channels, sample rate
x2

Scale

It has two options: and . It's the full voltage range for input signal. This 1V 2V
parameter in M9703 Design Template is used to mimic the ADC input full scale.
There is a corresponding parameter for controlling the real M9703 instrument in

 model. The input value exceeding this full scale will be limited to M9703ACosimBus
the maximum or minimum value of this scale.

Offset

This parameter is used to mimic the offset adjust of M9703's input amplifier. There
is a corresponding parameter for controlling the real M9703 instrument. The valid
range is from .-2*Scale to 2*Scale

Input Range

It is a read-only item to show the valid range of input signal based on specified
 and parameters.Scale Offset

Clock Settings

You can click button to open a new GUI to set the clock and the final Configure
sample rate for your current configuration will be shown on the right side.

After clicking button, a new GUI will be opened. You can select to use Configure
 or (External Clock Source) clock mode.Internal External

When you select clock mode, you have two clock options that can result in Internal
two different sample rates. When is set as , Channel Setting Normal, all 8 channels
you can set the sample rate as for option or for option. 1.0GS/s SR1 1.6GS/s SR2
While when is set as or Channel Setting Interleaved, 1+3+5+7 Interleaved, 2+4+6+8
, you can set the sample rate as for option or for option.2.0GS/s SR1 3.2GS/s SR2

When you select clock mode, you can set the sample rate in a range. When Ext Clk
you use an actual M9703 instrument, you need to provide an external clock input
with the corresponding frequency.

281 Tutorials

When is set as , the valid sample rate range Channel Setting Normal, all 8 channels
is . But you need pay attention to the option of your 0.9 ~ 1.6 GSample/s SR1/SR2
M9703 instrument. If your M9703 instrument has SR1 option, the valid sample rate
range is only 0.9 ~ 1.0GSample/s, while valid sample rate range is 0.9 ~ 1.6
GSample/s for SR2 option. The M9703 Design Template subnet is only used for
FPGA design entry and software simulation, so you can use the full sample rate
range, but when you use real M9703 instrument, you need pay attention to its SR1
/SR2 option.

In mode, the real external clock frequency that you need Normal, all 8 channels
input to M9703 instrument is 2 times of the sample rate.

When is set as or , the Channel Setting Interleaved, 1+3+5+7 Interleaved, 2+4+6+8
valid sample rate range is . But you need pay attention to the 1.8 ~ 3.2 GSample/s

 option of your M9703 instrument. If your M9703 instrument has SR1 SR1/SR2
option, the valid sample rate range is only 1.8 ~ 2.0GSample/s, while valid sample
rate range is 1.8 ~ 3.2GSample/s for SR2 option. The M9703 Design Template
subnet is only used for FPGA design entry and software simulation, so you can use
the full sample rate range, but when you use real M9703 instrument, you need pay
attention to its SR1/SR2 option.

In or mode, the real external clock Interleaved, 1+3+5+7 Interleaved, 2+4+6+8
frequency that you need input to M9703 instrument is the same as the sample rate.

The GUI gives you a hint for the valid range according to SR2 option case.

The clock setting configuration doesn't affect the M9703 DPU FPGA programming file

generation. So if your M9703 instrument is used with different clock setting that results in

different sample rate. Your generated FPGA programming files also works. But a warning

will be shown in the GUI of M9703CosimBus model to ask you to notice this difference,

because it may cause different results in comparison to original software simulation.

FPGA Settings

Tutorials 282

This figure shows your current DPU FPGAs configuration of M9703. You can select
at least one DPU FPGA on this figure for FPGA design entry and software
simulation. The input ports will also be adjusted on this figure according to the
specified parameter.Channel Setting

You can also enable or disable in this area. Each DPU FPGA has Inter-FPGA I/O
four Inter-FPGA I/O ports – . If one DPU FPGA UpOut, UpIn, DownOut and DownIn
is selected and Inter-FPGA I/O is enabled, all of the four Inter-FPGA I/O ports of
this DPU FPGA are enabled.

As shown in this area, FPGA0 that receives IN1 and IN2 is the uppermost DPU
FPGA and FPGA3 that receive IN7 and IN8 is the lowermost DPU FPGA. So
FPGA0's DownOut is connected with FPGA1's UpIn and FPGA0's DownIn is
connected with FPGA1's UpOut. And so on, for the rest DPU FPGAs' Inter-FPGA I
/O. So the four DPU FPGAs in one M9703 instrument can be connected in a chain.

The UpOut/UpIn of FPGA0 and DownOut/DownIn of FPGA3 are not used so far.
They will be reserved to link with the adjacent M9703 instruments that are inserted
in the same AXIe chassis as the current M9703 instrument in future.

FPGAx Tab:

283 Tutorials

For each selected DPU FPGA in "FPGA Settings" in "Overview" tab, there will be a

corresponding "FPGAx" tab in this M9703 Design Template GUI. And all tab UI of the

selected FPGA are the same. In FPGAx tab, you can define FPGA interface ("Register",

"BlockRegister" and "OutPort") for the current FPGA.

 Configuration Mode

This parameter is used to specify how to configure the current FPGA interface,
specify FPGA interface in the current GUI or copy interface configuration from
another FPGA. The capability of copying from another FPGA setting will be useful
when you want to apply the same FPGA interface settings for multiple FPGAs.

The default option is "Configure Standalone". When this option is selected, you use
the current tab GUI to configure the corresponding FPGA interface. As long as you
select "Configure Standalone" for FPGA0, you can find the option "Copy Settings
From FPGA0" in the other FPGA tabs. And so on, for the rest FPGAs. It means that
only the FPGA that is configured in its own tab GUI can be copied by the other
FPGA tabs.

For example, if you enable FPGA0 and FPGA1. In FPGA0 tab, you set parameter
"Configuration Mode" as "Configure Standalone" and configure FPGA0 interface in
FPGA0 tab. Then in FPGA1 tab, you will have two options "Configure Standalone"
and "Copy Settings From FPGA0" for parameter "Configuration Mode".

Similarly, if you select "Configure Standalone" in FPGA1 tab, then you will have two

options "Configrue Standalone" and "Copy Settings From FPGA1" in FPGA0 tab.

Otherwise, if you select "Copy Settings From FPGA0" in FPGA1 tab, then there will
be no option "Copy Settings From FPGA1" in FPGA0 tab.

 FPGA Settingsx

Tutorials 284

In area, a diagram of FPGA interface is shown.FPGA Settingsx x

It shows the interface that you configure for FPGA . The M9703_FPGAx subnet in x
that you design the custom real-time processing for DPU FPGA will have the
corresponding I/O ports according to your configuration in this area. Each DPU
FPGA has the following interface types:

ADC Input

Register

BlockRegister

OutPort

Inter-FPGA I/O

Register, and are optional interface types.BlockRegister Inter-FPGA I/O

 ADC Input

Each DPU FPGA receives the corresponding ADC input. In normal 8 channels
mode, each DPU FPGA receives two ADC channels input. In interleaved 4 channels
mode, each DPU FPGA receives one ADC channel input. In M9703_FPGAx subnet,
there is an input bus that you can connect with your real-time ADC(0:31)
processing part to get the parallel ADC input streams. The interface diagram shows
how the ADC input parallel streams correspond to bus.ADC(0:31)

For example, if you set mode, IN1 and IN2 are inputted to Normal, all 8 channels
FPGA0. You can see IN1 is connected to and IN2 is connected to ADC(0:15) ADC

 in the interface diagram. It means that input from IN1 is converted to 16 (16:31)
parallel input streams and you can get these parallel streams from , ADC(0:15)
where is the oldest sample and is the newest sample. Input from ADC(0) ADC(15)
IN2 is converted to 16 parallel input streams and you can get these parallel
streams from , where is the oldest sample and is the ADC(16:31) ADC(16) ADC(31)
newest sample.

285 Tutorials

If you set mode, IN1 is inputted to FPGA0. You can see IN1 is Interleaved, 1+3+5+7
connected to in the interface diagram. It means that input from IN1 is ADC(0:31)
converted to 32 parallel input streams and you can get these parallel streams from

, where is the oldest sample and is the newest sample.ADC(0:31) ADC(0) ADC(31)

 Register

 Register Checkbox

Check/uncheck this box to enable/disable the "Register" interface for the current
FPGA. When the box is checked, the corresponding Register interface will be
shown in the FPGA interface diagram below the checkbox, and a button "Config
Register" is also shown.
Note that this box is disabled (grey) when the current FPGA tab is set as "Copy
Settings From Another FPGA" in parameter "Configuration Mode". The status of the
box will be copied from another FPGA and can't be edited in the current FPGA tab.

 Config Register Button

Push this button to open a new GUI to define the Register interface. This button is
only shown when Register checkbox is checked.

Click "Add" button to add a new row to define a new Register.
Click "Remove" button to remove a selected row (Register).
There is no limitation of the number of Registers, as long as the FPGA has enough
area to implement them.

For the definition of a Register, you need input:

Name: a string to represent the name of the Register.

WordLength: Word Length (bits number) to represent the Register. Register
is a fixed-point data. About SystemVue fixed-point data type, please refer to
SystemVue documentation: Home > Simulation > Data Flow > Fixed Point

 Simulation .

Integer WordLength: Integer Word Length (bits number to represent
integer).

Sign: 0->unsigned; 1->signed.

Tutorials 286

Value: The value of current Register. You can input a floating-point value or
equation variable name. The floating-point value will be converted to fixed-
point type automatically (There may be overflow and quantization for the
conversion. The default rule of overflow is Wrap and default rule of
quantization is Truncate).

Note that if the current FPGA tab is set as "Copy Settings From Another FPGA",
whether the current "Register" checkbox and "Config Register" button are enabled
depends on the settings on the source FPGA tab. If the "Register" checkbox is
checked in source FPGA tab, the checkbox is also checked and is disabled to edit
on the current FPGA tab. In this case, "Config Register" button in the current FPGA
tab is enabled and you can click it to open the Register definition GUI. But the
definition of Register is copied from the source FPGA setting, so you can't add and
remove Register and can't edit the name the fixed-point data format (WordLength,
Integer WordLength and Sign) of Register. But you can edit the "Value" of defined
Register.

For example, we can define FPGA interface for FPGA0 in its own FPGA tab GUI. And
we copy the FPGA interface settings from FPGA0 to FPGA1 tab. Then when you
click "Config Register" button in FPGA1 tab, you can see that the Register definition
is copied from FPGA0 and you can only edit the "Value" of defined Register.

The of each Register must be a .Value scalar variable or a constant

 BlockRegister

For BlockRegister, it has "BlockRegister" checkbox and "Config BlockRegister"
button, which is similar as the setting of Register. The difference is that when you
click "Config BlockRegister" to open BlockRegister definition GUI, BlockRegister
has an additional attribute "Length" that specified the depth of each BlockRegister.
The value of must be a scalar variable or a constant integer.Length

287 Tutorials

There is no limitation of the number of BlockRegisters and the depth of each
BlockRegister, as long as the FPGA has enough area to implement them.

The of each BlockRegister should be a , where N is the value Value 1xN vector
of for the corresponding BlockRegister. For example, in above figure, Length
The of BlockReg1 must be a 1x32 vector, as of BlockReg1 is Value CoefI Length
32.

 OutPort

OutPort is the mandatory FPGA interface. So it is unlike Register and BlockRegister,
you have to define OutPort and there is no checkbox to disable OutPort.
When you click "Config Output" button, you can open a new GUI to define the
OutPort.

You can use Add or Remove button to create a new OutPort or remove a selected
OutPort.

When is unchecked, each defined Using Same Sample Rate for all output port
OutPort has its own ValidOut signal to indicate whether the current DataOut is
valid. So the valid sample rates of OutPorts may be different. In this mode, the
maximum number of OutPort is 16 and the maximum WordLength is 1024 for each
OutPort.

Tutorials 288

When is checked, all defined OutPorts Using Same Sample Rate for all output port
share the same ValidOut signal to indicate whether the current DataOut is valid. So
the valid samples are generated in the same rate for all OutPorts. In this mode, the
sum of all OutPorts' WordLength can't be larger than 1024.

The OutPort data type is also SystemVue fixed-point. So you can define the follow
attributes of an OutPort:

Name: a string to represent the name of an OutPort.

WordLength: Word Length (the bits number) of an OutPort.

Integer WordLength: Integer Word Length (the bits number to represent
integer) of an OutPort.

Sign: 0->unsigned; 1->signed.

Note that if the current FPGA tab is set as "Copy Settings From Another FPGA", the
OutPort definition will be copied from the source FPGA OutPort definition. When
you click "Config Output" button, you can view the copied OutPort definition, but
can't edit anything.

Inter-FPGA I/O

When you enable in tab, the interface will Inter-FPGA I/O Overview Inter-FPGA I/O
be shown in all enabled tab. And you need to connect ports FPGAx Inter-FPGA I/O
in the corresponding subnet. Please refer to M9703_FPGAx Inter-FPGA I/O

. Otherwise, if you don't enable in tab, the description Inter-FPGA I/O Overview
 interface will not be displayed in tab and you don't need Inter-FPGA I/O FPGAx

connect these ports in the corresponding subnet.Inter-FPGA I/O M9703_FPGAx

Software Simulation Behavior Description

After finishing the design entry in M9703 Design Template, users can create test
waveforms and input them to the corresponding input ports of M9703 Design
Template model. The test waveform can be floating point, so you can use all
SystemVue models to create the waveforms. Note that the sample rate of input
waveform must be the same as the one that you specified in GUI of M9703 Design
Template. Then you can run SystemVue software simulation to debug and verify
your M9703 FPGAs design.

The of M9703 Design Template model have been described in this tutorial . OutPort
The simulation behavior of output signals will be described in this part.

The output signals of four FPGAs are independent and the simulation behaviors of
the four FPGAs are the same. So we can just study the simulation behavior of one
FPGA.

The FPGA interfaces – , and , are ADC input Register, BlockRegister Inter-FPGA I/O
simple and clear. Their behaviors have been described in previous parts. We will
emphasis on the simulation behavior of in this part.OutPort

For mode, we can define up to for one FPGA Non-Same Sample Rate 16 OutPorts
and the maximum word length can be bits for each . In the automatic 1024 OutPort
FPGA programming file generation flow, SystemVue will create an HDL wrapper to
connect an OutPort Connectivity IP core with the defined automatically. OutPorts
The connectivity IP will package and switch the data from all to the AXI4-OutPorts

289 Tutorials
1.

stream interface with data width 256 bits. The AXI4-stream interface provides a
data path to send data stream from FPGA to on-board DDR3 SDRAM. The diagram
implemented in FPGA programming file is shown below:

The connectivity IP has a FIFO for each . The FIFO only saves valid data OutPort
from its corresponding and generates to its corresponding . OutPort Ready OutPort
The outputs of all FIFOs are connected to the switcher, where is the N-to-1 N
number of defined . When the FIFO is full, it outputs as 0 to its OutPorts Ready
corresponding and isn't written in the new valid data. So only when both OutPort
Valid and Ready are 1, the OutPort Data can be transferred to DDR3 SDRAM.
Current data width of the switch is 128 bit.

In the connectivity IP, the data switching is based on package. It means that every
time the switcher arbitrates and selects an OutPort, it will read a package from the
selected OutPort FIFO. It will not arbitrate until the current package is transferred
completely. The connectivity IP will also add a header at the beginning of each
package to indicate which OutPort the current package comes from. The data
length of a package is 64 times of data width of DDR3 SDRAM AXI4-stream
interface (64*256 bits). The header length of a package is 2 times of data width of
DDR3 SDRAM AXI4-stream interface (2*256 bits). So the total length of a package
is 66 times of data width of DDR3 SDRAM AXI4-stream interface (66*256 bits). As
the word length of an OutPort is an arbitrary number less than 1024, the
connectivity IP will combine the valid data into a package and it may add some
zero-padding bits at the end of a package.

So the total effective throughput (discarding header) to DDR3 SDRAM is (128 * 64 /
where is N-to-1 switch data width.66) bit X FPGA working frequency, 128

In M9703 Design Template subnet, model is used to mimic the M9703AMemoryBus
behavior of the connectivity IP. of user design subnet are OutPorts M9703_FPGAx
connected to model, and this model generates input of M9703AMemoryBus Ready

 subnet.M9703_FPGAx

The connectivity IP is transparent to users and it's generated automatically
according to the definition. The purpose of the connectivity IP description OutPort
is to help you to understand the following rules for your subnet M9703_FPGAx
design:

Tutorials 290

1.

2.

3.

4.

5.

In real FPGA running, only when both and of an ValidOut ReadyIn OutPort
are 1, the corresponding is transferred to DDR3 SDRAM. Only the DataOut
data buffered in DDR3 SDRAM can be read back to SystemVue during
M9703 instrument co-simulation.

In software simulation, output samples of an of DataOut OutPort
 subnet are not the same as the corresponding M9703_FPGAx DataOut

output samples of M9703 Design Template top level subnet. But if you
extract all output samples transferred to DDR RAM (the DataOut
corresponding ValidOut and ReadyIn are both 1) of an M9703_FPGAx
subnet's OutPort as the results sequence of this OutPort, and extract all
DataOut output samples that their corresponding ValidOut are 1 for an
M9703 Design Template subnet' as this results sequence. OutPort OutPort's
The two results sequences are the exactly same.

In M9703 instrument co-simulation, output samples of an DataOut
 model's are not the same as output M9703ACosimBus OutPort DataOut

samples of the corresponding M9703 Design Template subnet's in OutPort
software simulation. But if you extract output samples that their DataOut
corresponding are 1 as results sequences, the results sequences ValidOut
from M9703 instrument co-simulation and software simulation are the
exactly same.

As we just care about the valid output samples, above and can guarantee 2 3
the valid output samples of an are the same between software OutPort
simulation and M9703 instrument co-simulation.

If the sum of all ' word lengths is not larger than OutPorts (128 * 64 / 66) ≈
 bits (the effect throughput to DDR3 SDRAM), even of all 124 ValidOut

 are always 1, the AXI4-Stream switch has enough bandwidth to OutPorts
transfer of all to DDR3 SDRAM. So when the sum of all DataOut OutPorts

' word lengths is not larger than bits, of all OutPorts 128 ReadyIn OutPorts
are always . You can use this condition to simply your subnet 1 M9703_FPGAx
design.

When the sum of all OutPorts' word lengths is larger than bits, it may cause 124
the connectivity IP outputs 0 to ReadyIn of an OutPort. Then you need add some
logics in M9703_FPGAx subnet design to buffer valid DataOut samples, if you don't
want to break the continuous data stream.

In SystemVue Example workspace , there is a M9703_FDK_Design_Template.wsv
subnet "ValidExtract".You can use this subnet to only extract valid data samples,
but it uses Dynamic Data Flow so need notice .the limitation of Dynamic Data Flow

For mode, it's actually a special case of Same Sample Rate Non-Same Sample Rate
mode. Because all has the same , SystemVue combines them OutPort ValidOut
together in background before switcher and just use a switcher.1-to-1

http://edadocs.software.keysight.com/display/svss/Introduction+to+Dynamic+Data+Flow+Simulation

291 Tutorials

M9703 FPGA Programming File Generation

After the verification of SystemVue software simulation, you can generate M9703
FPGA programming file with an automatic flow in SystemVue HDL Code Generator.
For information on how to add a HDL Code Generator, refer . HDL Code Generation
In HDL Code Generator, you can select the as . Target Keysight Modular Digitizer
Then Click to select the M9703 Design Template in your current schematic to Add
generate FPGA programming file.

You can select to generate FPGA programming file according which M9703_FPGAx
subnet. Only enabled subnets in M9703 Design Template GUI can M9703_FPGAx
be selected here.

For M9703, you have two options of . For most M9703A and Generate For Device
M9703B, they have XC6VLX195T DPU FPGA. So the option XC6VLX195T @Max 1.6

 is used. Only for M9703B with -B01 bundle, it has XC6VSX315T DPU FPGA GS/s
and -SR1 option (1.0 GS/s sample rate). So the option XC6VSX315T @Max 1.0GS

 will be used./s (-B01 Bundle)

Then just click . An automatic flow will be launch until you get the final Generate
M9703 FPGA programming files.

http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation

Tutorials 292

You can specify in HDL Code Generator GUI. Then Generated Module Name
SystemVue will generate a folder with the name of specified Generated Module

 in the Output Directory. The generated file structure is shown below:Name

For example, if you specify as Generated Module Name
, then a folder M9703_TEMPLATE_Cali_sweep_RFDK
 will be generated in the Output Directory. M9703_TEMPLATE_Cali_sweep_RFDK

There will be an folder and the corresponding folders under the xml FPGAx
 folder. For example, if you just generate M9703_TEMPLATE_Cali_sweep_RFDK

FPGA programming file for FPGA0, only folder is generated here. While if FPGA0
you generate FPGA programming file for , four folders FPGA0~FPGA3 FPGA0,

 will be generated here. The generated FPGA FPGA1, FPGA2 and FPGA3
programming file and ISE project are under the corresponding folder. Two FPGAx
xml files are generated in to describe the generated FPGA configuration xml folder
for the whole M9703 instrument.
In GUI of model, there is a parameter . You M9703ACosimBus FPGA Images Path
can select the top level folder, such as M9703_TEMPLATE_Cali_sweep_RFDK
folder, for this parameter. Then the GUI of can parse the folder M9703ACosimBus
structure and xml file to understand your generated FPGA configuration.

Please don't modify the generated FPGA folder manually. It may cause that
SystemVue can't pares it correctly and work with M9703 instrument correctly.

After clicking button, SystemVue generates HDL codes for selected Generate
subnet application design at first. Then SystemVue generates an HDL wrapper file
to connect with the generated application HDL codes automatically. The HDL
wrapper file contains some connectivity IP to link your defined FPGA interface with
M9703 FPGA infrastructure design that implements some foundational functions,
such as link with ADC data stream, DDR3 SDRAM and PCI Express on backplane.
Then SystemVue will create an ISE project and run this project to get the final
FPGA programming file. The whole flow is automatic. A diagram of the generation
flow is shown below.

293 Tutorials

M9703 Instrument Co-simulation with SystemVue

After the FPGA programming file is generated, you can use M9703ACosimBus
model to download your FPGA programming file to M9703 instrument and capture
the output results of FPGA to SystemVue simulation environment. You can find

 model in Part Selector under .M9703ACosimBus Hardware Design

Tutorials 294

M9703 Co-Simulation Model GUI

Place one model in a schematic to instantiate one M9703 M9703ACosimBus
instrument, and you can place multiple models to ask multiple M9703ACosimBus
M9703 instruments to work together in one SystemVue simulation.
Double click the model, you can open its GUI. You can use this M9703ACosimBus
GUI to configure a M9703 instrument. The GUI of has a similar M9703ACosimBus
architecture of the GUI of M9703 Design Template.

Overview Tab:

295 Tutorials

FPGA Images Path

Specify the generated M9703 FPGA image folder. You should specify the top level
folder of a generated M9703 FPGA image.

Then the GUI can parse the generated FPGA image and extract the configuration
that was implemented in the FPGA programming files. It can also find the
generated FPGA programming files. Then in FPGAx tab, you can specify which
programming file is used to program the corresponding FPGAx.

When you change FPGA Images Path, the below window will pop-up to ask you
how to specify the values for the defined and .Register BlockRegister

Tutorials 296

For a generated FPGA image, the configuration of Register and BlockRegister, such as

WordLength, Integer WordLength, Sign and Length, are fixed and you can't modify them

any more. But you can modify the values for the defined Register and BlockRegister.

So if you change FPGA Images Path from an old FPGA image to a new FPGA image,

you can specify whether you use the default values of new FPGA image or remain the

values you specified for the old FPGA image.

The default values of the new FPGA image are specified in M9703 Design Template
custom UI and recorded in the automatic FPGA image generation flow.

If you select to use the values of old FPGA image, all Register and BlockRegister
items that have the same names between the new and old FPGA images will
remain their values. For every new FPGA image's Register and BlockRegister item
that has not the same name in the old FPGA image, the GUI will prompt you to
input its value.

For example, if the old FPGA image has Registers with names Reg1 and Reg2 and
the new FPGA image has Registers with name Reg2 and Reg3. You have selected
the old FPGA image and specified Reg1=1 and Reg2=2 in the GUI of
M9703ACosimBus model. Then you change FPGA Images Path to select the new
FPGA image. The pop-up window will show. If you select Yes to use the default
values of new FPGA image, the values of Reg2 and Reg3 of the new FPGA image
will be loaded according to their default values. Otherwise, you select No to remain
the values of the old FPGA image, Reg2 will keep its value 2 because there is a
Register with the same name in the old FPGA image. And the GUI will prompt you
to input a new value for Reg3 because there is no Register with the same name in
the old FPGA image.

Instrument Address and Options

Specify an M9703 instrument according to its address. When you open the GUI, it
will detect all M9703 instruments connected to this computer and list the detected
M9703 instruments addresses. Then you can select an M9703 instrument.

The default value of instrument address is a blank option and shows Please select
 in GUI. When you select a detected real M9703 instrument an instrument …

address, the GUI will initialize the selected M9703 instrument and extract its
hardware options. It usually takes several seconds to initialize a M9703 instrument.

If you have specified a valid M9703 instrument address and click to save the Ok
parameters of model, then when you open the GUI next time, M9703ACosimBus
the GUI will detect all connected M9703 instruments again and check whether the
address that was specified last time is still in current connected instruments list. If
so, the GUI will initialize the previously configured M9703 instrument, otherwise, it
will switch to the blank option.

The GUI will extract M9703 instrument hardware options during the instrument
initialization. After an M9703 instrument is initialized successfully, you can view all
its hardware options by clicking button.Option

297 Tutorials

In addition, the GUI will also check whether the selected M9703 instrument has any
conflict with the generated FPGA programming files. It will check whether the
selected M9703 instrument has FDK option (the M9703 instrument has to have FDK
option to use a customized FPGA programming file). If not, the M9703 instrument
can't be selected and the M9703 address will be switched to blank option
automatically.

 Calibration

It has three options: , and .None Fast Full

None: It will not do M9703 instrument self-calibration at the beginning of
simulation.

Fast: It will do M9703 instrument self-calibration for the current instrument
parameters setting at the beginning of simulation. It usually takes several
seconds for the fast self-calibration.

Full: It will do M9703 instrument self-calibration for all instrument
parameter setting at the beginning of simulation. It usually takes about one
minute for the full self-calibration.

Channel Setting

It has three options: andNormal, all 8 channels, Interleaved, 1+3+5+7 Interleaved,
2+4+6+8.

It's read-only for model. The Channel Setting value is gotten M9703ACosimBus
from the specified FPGA image file, so it shows the channel setting that you
configured for your own FPGA programming file.

Tutorials 298

Note: If you configured channel setting as Interleaved mode and generate the
FPGA programming file, you have to use an M9703 instrument with INT option in
order to use your FPGA programming file. The GUI will check your selected M9703
instrument. If the selected M9703 instrument has no option, it will pop-up an INT
error window and ask you to change to another M9703 FPGA image or change to
another M9703 instrument.

Scale

It has two options: 1V and 2V. It's the full voltage range for input signal. This
parameter is used to control the ADC input full scale of M9703 instrument.

Offset

This parameter is used to control the offset adjust of M9703's input amplifier. The
valid range is from -2*Scale to 2*Scale. When the input signals ride on a DC value,
you can use the offset adjustment to make the input signals be in the center of
valid input range of M9703 instrument, which can get the optimal quantization
results.

Input Range

It is a read-only item to show the valid range of input signal based on specified
Scale and Offset parameters.

Clock Settings

In the Clock Settings area, there is a button and a read-only Sample Configure
Rate display. You can click Configure button to set clock options. The final sample
rate that the M9703 instrument works on is related to M9703 hardware option,
channel setting and clock configuration and will be displayed in the GUI.

After clicking button, a new GUI will be opened to configure the clock of Configure
M9703 instrument.

There are four clock options. Please refer to Overview of M9703 High-Speed
 for the details of clock options.Digitizer

299 Tutorials

 Cosim Mode

There are two options: and .Single Pass Repeative

Single Pass:

It only asks M9703 digitizer to do data capture once.

When M9703 instrument starts to capture the data, M9703 FPGAs will get raw data
samples from ADCs and then the raw ADC input samples go through your own
FPGA design logics to generate your defined OutPort format output samples.
M9703 digitizer will buffer a number of continuous your defined OutPort format
output samples in on-board DDR3 RAM without any data loss. The number is
specified in next parameter "Sample Number Per Capture".

After the "Sample Number Per Capture" samples of the first data capture are
outputted, M9703ACosimBus model will not output valid samples any more, that
means that output ports FPGA0_Valid ~ FPGA3_Valid are always 0 after the first
data capture.

Repeative:

After the "Sample Number Per Capture" samples of a data capture are outputted,
M9703ACosimBus model will do next data capture and output "Sample Number
Per Capture" samples for next data capture until the end of simulation.

 Sample Number Per Capture

It's the number of valid output samples for each data capture. It's the same for all
four FPGAs.

If there are multiple OutPorts defined for FPGAx, M9703ACosimBus model will
output valid samples for each OutPorts alternatively. The number specified in
"Sample Number Per Capture" is the sum of all OutPorts' valid samples for each
data capture. You can't specify the valid output samples number for each OutPort,
because it depends on the actual valid samples generation rate for each OutPort.
For a given buffer size, you can't forecast whether the buffer size is enough to save
a specified number of valid samples for an OutPort.

For example, given the buffer size is fixed and you have two OutPorts, OutA and
OutB. If the actual valid samples generation rate for OutA and OutB is similar, the
buffer size is enough to capture NumX valid samples for both OutA and OutB. But if
the actual valid samples generation rate of OutA is large and that of OutB is very
small, the buffer size may not be enough to capture NumX valid samples for OutB.
So you can only specify the sum number of all OutPorts' valid samples, then
SystemVue can forecast whether M9703 instrument has enough buffer size for your
data capture. If M9703 instrument hasn't enough buffer size for your specified
"Sample Number Per Capture", SystemVue will post an error during simulation and
tell you the maximum number for "Sample Number PerCapture" according to your
current configuration.

 TimeOut

It specifies the maximum time limitation for an M9703 instrument to buffer "Sample
Number Per Capture" valid output samples to DDR3 SDRAM for each data capture.
If M9703 instrument can't save enough valid output samples within this TimeOut
time, SystemVue simulation will abort.

Tutorials 300

It is usually used to avoid SystemVue simulation hang because your FPGA design
doesn't generate valid output samples. Sometimes, you FPGA design only
generates valid output samples under a specific condition, such as detecting a
synchronization signal. If your input analog signals to M9703 instrument don't
contain the synchronization signal, your FPGA design will not generate valid output
samples and your SystemVue simulation will hang. So you can use this parameter
to avoid the simulation hang.

FPGA Settings

FPGA Settings area displays the FPGA architecture according to your current
configuration. You can use the checkboxes in this area to select which FPGAs on
M9703 instrument you want to enable and use. There is the corresponding FPGAx
tab for each selected FPGA. After specifying a valid FPGA image, you can configure
each selected FPGA in its corresponding FPGAx tab.

Bandwidth Limitation

It specifies whether to use or bypass an analog filter before each ADC on M9703
instrument.
If M9703 instrument has F05 option, it's mandatory to use the 600MHz bandwidth
analog filter.
If M9703 instrument has F10 option, you can select "N/A" to bypass the analog
filter or select "600MHz" to use the filter.

FPGAx Tab

301 Tutorials

FPGAx tab is used to configure the real FPGAx on M9703 instrument.

FPGA Programming File Selection

It specifies which FPGA programming file will be programmed to the real FPGAx on
M9703 instrument.

The GUI will parse your specified FPGA image folder and extract all generated
FPGA programming files to list here. At most you can generate four FPGA
programming files for subnet design M9703_FPGA0 ~ M9703_FPGA3 in M9703
Design Template. You can also just select one or some subnets design for FPGA
programming files generation in HDL Code Generator.

You can specify a programming file for different FPGAs on M9703 instrument. For
example, you can just generate one FPGA programming file using M9703_FPGA0
subnet design, and specify to use this programming file in all four FPGAx tabs,
which means that you can program this FPGA programming file to four FPGAs on
M9703 instrument. Then the four FPGAs will have the same function. (But you can
still specify different values of Register and BlockRegister for the four FPGAs
programmed by the same programming file.)

FPGA Programming File Generation Status

Tutorials 302

This area can help you to know the generation result of FPGA programming file that
you specified at .FPGA Programming File Selection

The left part of this area will display some read-only information to tell you whether
the FPGA programming file is generated successfully. If it's generated, whether
there is any timing constraints violation.

The right part of this area is a button . You can click this button Launch ISE to View
to open Xilinx ISE GUI and load the ISE project for your specified programming file
generation. Then you can view all generation reports in ISE environment. Especially
you can view timing report when the read-only information on the left shows some
timing constraints violations.

FPGAx Settings

This area displays the FPGAx interface. The M9703 Design Template has a similar
area in its custom UI. You can define the FPGAx interface of Register, BlockRegister
and OutPort in M9703 Design Template custom UI. And in the custom UI of
M9703ACosimBus model, you can view the generated FPGA interface of Register,
BlockRegister and OutPort in the specified FPGA programming file. You can modify
the values of Register and BlockRegister in this GUI, but you can't modify the
interface format, such as WordLength, because the interface format is fixed for
generated FPGA programming file.

Register and BlockRegister checkboxes

The two checkboxes are read-only in this UI. If Register or BlockRegister interface
was defined in your specified FPGA programming file, the corresponding checkbox
will be shown checked and the corresponding FPGA interface will be shown in the
FPGA interface figure in the GUI.

Config Register Button

If Register interface was defined when generating the specified FPGA programming
file, this button will be shown in the FPGA interface figure. After you click this
button, a new UI will be opened.

303 Tutorials

You can view "Name", "WordLength", "Integer WordLength" and "Sign" of the
defined Register in your specified FPGA programming file, but you can't modify
them because they are fixed for a generated FPGA programming file. But you can
modify "Value" of Register to re-configure the Register values for M9703
instrument co-simulation.

You can use a float-point number as the value of a Register or use a variable that is
defined in equation.

 Config BlockRegister Button

If BlockRegister interface was defined when generating the specified FPGA
programming file, this button will be shown in the FPGA interface figure. After you
click this button, a new UI will be opened.

You can view "Name", "WordLength", "Integer WordLength", "Sign" and "Length" of
the defined BlockRegister in your specified FPGA programming file, but you can't
modify them because they are fixed for a generated FPGA programming file. But
you can modify "Value" of BlockRegister to re-configure the BlockRegister values
for M9703 instrument co-simulation.

You can use a vector with the corresponding "Length" as the value of a
BlockRegister or use a variable that is defined in equation.

Config OutPort Button

Tutorials 304
1.

OutPort is a mandatory FPGA interface, so Config OutPort button and the OutPort
interface is always shown in the FPGA interface figure.
After you click this button, a new UI will be opened.

You can view "Name", "WordLength", "Integer WordLength" and "Sign" of the
defined OutPort in your specified FPGA programming file, but you can't modify
them because they are fixed for a generated FPGA programming file. Nothing can
be modified for the defined OutPort interface in a generated FPGA programming
file.

M9703 Co-Simulation Model Simulation Behavior Description

M9703ACosimBus model has the same output ports as M9703 Design Template
subnet, but it hasn't any input port. Usually, you can connect the output ports of
M9703ACosimBus model to the same bus wires as M9703 Design Template subnet
to reuse the data analysis design of software simulation for M9703 instrument co-
simulation.

When you have connected M9703ACosimBus model well in a schematic, you can
run SystemVue simulation. Then SystemVue will do the following steps to link with
real M9703 instrument and capture the results data back SystemVue.

SystemVue On PC

305 Tutorials

1.

2.

3.

4.

5.

6.

7.

8.

SystemVue leverage MD1 driver to download specified FPGA programming
files to enabled FPGAs, configure the enabled FPGAs according to your
settings in the custom UI of M9703ACosimBus and do self-calibration for all
enabled FPGAs.

If Register or BlockRegister is defined in the FPGA programming file,
SystemVue writes initial values for the defined Register or BlockRegister on
enabled FPGAs.

After writing the initial values of Register and BlockRegister for all enabled
FPGAs, all enabled FPGAs are ready to capture data. Then SystemVue asks
M9703 to send a "Start" signal to all enabled FPGAs, the "Start" signal is
guaranteed to reach all enabled FPGAs at the same time. Then all enabled
FPGAs can capture ADC input data from the same starting time.

The enabled FPGAs process the real-time ADC input data stream as
designed in user application design and generate OutPort data streams.

The OutPort data streams are packaged and switched and then buffered into
M9703 on-board DDR RAM.

In the GUI of M9703ACosimBus model, there is a parameter "Samples
Number Per Capture". When SystemVue detects that DDR RAM has buffered
enough OutPort data for specified "Samples Number Per Capture",
SystemVue will stop ADC data capture and read back the buffered OutPorts
data via PCI Express connection between M9703 instrument and PC.

SystemVue will automatically convert PCI Express data format to user
defined OutPort data format and output the OutPort data via the output
ports of M9703ACosimBus model. As the OutPort data streams are buffered
in DDR RAM based on packages, they will also be outputted based on
packages from the output ports of M9703ACosimBus model.

After all enabled FPGAs output "Sample Number Per Capture" samples, if
you're using "Single Pass" co-sim mode, SystemVue will not ask M9703
instrument to capture data and ValidOut of all enabled FPGAs will be 0 until
the end of simulation. If you're using "Repeative" co-sim mode, SystemVue
will go to step (3) and ask M9703 instrument to capture data again.

For mode, the data buffered in DDR3 RAM is based on the Non-Same Sample Rate
OutPort package. One package just includes valid output data from one OutPort,
and the package header will have the information of OutPort index. So when
SystemVue read data from DDR3 RAM, it is also OutPort package based. The
number of samples in one package is not fixed, and it's variable as the word length
of OutPort.

When you just define one OutPort, all packages are for this OutPort and all physical
bandwidth between FPGA and DDR3 RAM is used for this OutPort data. So the
valid output of the OutPort will be always 1.

When you define multiple OutPorts, M9703ACosimBus model will output valid
samples for each OutPorts alternatively. It means that ValidOut of OutPorts will be
1 alternatively. The number of "Sample Number Per Capture" is the sum of all
OutPorts' valid samples for each data capture. You can't specify the valid output

Tutorials 306

samples number for each OutPort, because it depends on the actual valid samples
generation rate for each OutPort. For a given buffer size, you can't forecast whether
the buffer size is enough to save a specified number of valid samples for an
OutPort.

For example, we defined two OutPorts, OutA and OutB for FPGA0 and define one
OutPort OutC for FPGA1. When SystemVue read back OutA package, DataOut of
OutA will output valid data, and ValidOut of OutA is 1; while ValidOut of OutB is 0
during the time. When SystemVue read back OutB package, DataOut of OutB will
output valid data, and ValidOut of OutB is 1; while ValidOut of OutA is 0 during the
time. OutA and OutB will output valid data alternatively, and for each output
sample, only one OutPort data is valid.
While for FPGA1, ValidOut of OutC will always be 1 and DataOut of OutC will
always output valid data.

For both FPGA0 and FPGA1, every data capture generates "Sample Number Per
Capture" output samples. The OutPort output samples within one data capture are
gotten by processing a span of continuous ADC data stream. While when a new
data capture starts, the data stream is not continuous with the previous data
capture.

It is shown in below figure:

For mode, it's a special case of mode, Same Sample Rate Non-Same Sample Rate
it actually just have one combined output branch. So in this mode, FPGA _ValidOutx
is always .1

Tutorial of SystemVue M9703 FPGA Design Flow

We will use a simple FIR example to go through the whole M9703 FPGA design
flow. You can find the tutorial example from "Help > Open Examples > Hardware
Design > M9703_FDK > M9703_FDK_Tutorial".

In normal 8 channels mode, two ADC input channels are connected to a FPGA. In
this FIR example, we want to connect IQ signal of a baseband signal to the two
channels and ask the IQ signals to go through the FIR filters with the same
coefficients. We implemented two set of FIR coefficients, one is for Low Pass Filter
and the other is for High Pass Filter. We defined a Register to select which set of
coefficients are used.

307 Tutorials

We can use FPGA0 and FPGA1 of M9703 to do software simulation. Then we can
run the automatic flow to generate FPGA programming file and use the generated
FPGA programming file for M9703 instrument co-simulation.

Design the FIR Example for M9703 FPGA

We need start from a blank M9703 Design Template. So you can open "Help >
Open Examples > Hardware Design > M9703_FDK > M9703_Design_Template >
M9703_Design_Template.wsv" and save it to a writable directory.

Then you can drag-and-drop a M9703_TEMPLATE subnet to a schematic and
double click it to open its custom UI.

In the custom UI, you need to uncheck FPGA2 and FPGA3 in FPGA Settings area,
because we just use FPGA0 and FPGA1 for software simulation in this example.
Besides, you need click "Configure" button in Clock Settings area to open the Clock
Configuration GUI and select to use "Internal" clock mode at 1.6 GSample/S
sample rate.

Then you can click FPGA0 tab to configure the FPGA interface for FPGA0. As we
just use Register in this example, you need to uncheck BlockRegister checkbox in
this UI. Then you can click "Config Register" and "Config OutPort" buttons to
configure Register and OutPort individually.

Tutorials 308

For Register configuration, we just need 1 bit to switch two FIR coefficients, so we
can configure Register as below. We can give Value as 0 to switch to LPF FIR filter
for FPGA0.

For OutPort configuration, we can define OutI and OutQ for IQ data output from the
FIR filters. And the fixed-point data format is defined as Signed, wordlength = 16,
integer wordlength = 2.

309 Tutorials

Then you can click FPGA1 tab to configure FPGA interface of FPGA1. You need select

"Copy Settings From FPGA0" for Configuration Mode, as we want to use the same FPGA

design for both FPGA0 and FPGA1. Then all configurations are copied from FPGA0 tab,

you just need click "Config Register" in FPGA1 tab to give Value of FPGA1 Register as 1

to select HPF FIR for FPGA1.

You have used the custom UI to configure the FPGA interfaces for M9703 FPGAs. Then

you need create FPGA design for M9703 FPGA. Open M9703_FPGA0 subnet

schematic, all interface ports are pre-configured, you need create FIR design in this

schematic and connect the FIR design with the FPGA interfaces.

Go to "Hardware Design Library" in Part Selector and drag a FIR_Fxp model to
M9703_FPGA0. Double click this model to open its parameters UI. You need modify
its OutputWordLength, OutputIntegerWordLength and OutputIsSigned as <16, 2,
Signed> to match your OutPort data format definition. Then click "Filter Designer"
to open FIR coefficients design UI.

Tutorials 310

In filer coefficients design UI, configure the parameters as shown below for low pass

filter:

After clicking OK, you can save the coefficients for FIR_Fxp model. You can copy the

FIR_Fxp model and paste it to M9703_FPGA0, then you have the FIR filters with the

same coefficients for I and Q data paths.

In the same way, you can design coefficients for high pass filter as below parameter

configuration:

311 Tutorials

1.

2.

You can refer to M9703_FPGA0 in "Help > Open Examples > Hardware Design >

M9703_FDK > M9703_FDK_Tutorial > tutorial.wsv" for the whole FPGA design.

Please note:

Subnet is used to convert 16 parallel input streams to 8 ADCConvert_16To8
parallel streams and make all 8 parallel data valid at every clock cycle. This
design just process one of 8 parallel data, it's a 8 times decimation.

Because the wordlength of both OutA and OutB are 16 bits, the total bit
width of all OutPorts is 32 bits, which is less than 124 bits (the effect
throughput to DDR3 SDRAM). So ReadyIn of OutA and OutB will always be 1
and we can simply the design without connecting ReadyIn input ports.

Tutorials 312

After the design of FPGA0, we can copy the design for FPGA1, as we want to use
the same design for both FPGA0 and FPGA1.
In workspace tree, you can delete the existing M9703_FPGA1 at first.

Then copy M9703_FPGA0 in workspace tree.

Then paste to User_Design_Subnets folder in workspace tree.

313 Tutorials

At last, you need rename the new pasted subnet as "M9703_FPGA1".

Then you have finished the FPGA design in M9703 Design Template.

Software Simulation

After FPGA design entry in M9703 Design Entry, we can create a testbench in
SystemVue top level schematic to test the FIR design by software simulation.

We need find IID_Gaussian model in "Algorithm Design" library in part selector and
drag it to top level schematic. Then we can set its parameters and connect its
output to IN1~IN4 of M9703 Design Template subnet to get a Gaussian white noise
test signal for our FPGA design. Please note that you have to set the SampleRate of
the IID_Gaussian model as 1.6GHz to match your configuration in the custom UI of
M9703 Design Template.

Then you need refer to the top level schematic of "Help > Open Examples > Hardware

Design > M9703_FDK > M9703_FDK_Tutorial > tutorial.wsv" to connect models like

below to get the spectrum of IQ signals from both FPGA0 and FPGA1.

Tutorials 314

Please be careful for the net labels of wires, so that you can get the correct wires

connection. Besides, because the actual data rates of filtered IQ signals are 100MHz,

you need use "SetSampleRate" models to set their sample rate before Spectrum models.

When you connect the top level testbench well, you can run SystemVue simulation. Then

you can draw the spectrums of I and Q filtered signals from FPGA0 in figure

"DF1_Design3_F0_I_Power". As you have set Register of FPGA0 as 0 to select Low

Pass Filter, you can see the results as below figure.

You can draw the spectrums of I and Q filtered signals from FPGA1 in figure

"DF1_Design3_F1_I_Power". As you have set Register of FPGA1 as 1 to select High

Pass Filter, you can see the results as below figure.

315 Tutorials

Generate FPGA Programming File

After you finish software simulation to verify the function of your FPGA design, you
can add a "HDL Code Generator" to launch the automatic FPGA programming file
generation flow.
You can right click a folder in workspace tree and select to Add HDL Code
Generator.

In added HDL Code Generator, you can click Add button to select your

M9703_TEMPLATE subnet for FPGA image generation. Then select to use "Keysight

Modular Digitizer" mode and click "Generate" button. SystemVue will launch an automatic

flow to generate the final FPGA programming file.

Tutorials 316

M9703 Instrument Co-Simulation

After your FPGA programming file is generated, you can find M9703ACosimBus
model in "Algorithm Design" library and drag it to the top level testbench
schematic. Double click the model to open its GUI and configure as below:

317 Tutorials

Uncheck FPGA2 and FPGA3 in FPGA Settings area, as we just use FPGA0 and FPGA1

in this example.

Select the path of your generated FPGA image in parameter "FPGA Image Path".

You have to install Agilent IO Library and MD1 driver and have M9703 instrument
that powers on and connects with your computer. Otherwise, you can't see any
instrument listed in this UI for selection.
Then in the top level testbench, you can connect the M9703ACosimBus model with
the same wires as M9703 Design Template and disable Gaussian noise model and
M9703 Design Template subnet, as shown below:

Tutorials 318

When you connect the M9703ACosimBus model well, you can run the SystemVue

simulation. M9703ACosimBus model will find the actual M9703 instrument and do the co-

simulation. You can leave IN1~IN4 of M9703 instrument open, then it will get the filtering

results for the floor noise.

When the co-simulation is finished, you can observe the spectrum in the same figures:

319 Tutorials

SystemVue U5303A FPGA Design Flow

Required Hardware and Software

Following is the list of required hardware and software.

Required Hardware

U5303A PCIe 12-bit High-Speed Digitizer with On-Board Signal Processing
The U5303A hardware should have -SR1 or -SR2 option for 1.0GS/s or 1.6
GS/s sample rate. The U5303A hardware with -SR0 option for 500MS/s
sample rate is NOT supported by this flow, as it has a different hardware
configuration.
The U5303A must be configured with –FDK option to enable its FPGA
programming capability. For U5303A hardware installation, see U5303A

.Startup Guide

A PC with PCIe x8 Gen2 slot. The U5303A instrument can be installed in
PCIe x8 Gen2 slot directly.

Required Software

SystemVue 2016.08 or later version (license bundle is required)W1462

Keysight IO Libraries Suite: version 17.2 update 2 or later version

Keysight MD2 High-Speed Digitizer Instrument Drivers: 1.12 or later
Windows version is required.

Xilinx ISE: version 14.7 or later

SystemVue U5303A FPGA design flow consists of FPGA design entry and
software simulation, FPGA programming file generation and U5303A
instrument co-simulation.

http://www.keysight.com/en/pd-2292102-pn-U5303A/pcie-12-bit-high-speed-digitizer-with-on-board-signal-processing?nid=-35502.1059482.00&cc=US&lc=eng
http://literature.cdn.keysight.com/litweb/pdf/U5303-90001.pdf?id=2366682
http://literature.cdn.keysight.com/litweb/pdf/U5303-90001.pdf?id=2366682
http://www.keysight.com/en/pd-1985909/io-libraries-suite?nid=-33330.977662.00&cc=HK&lc=eng
http://www.keysight.com/main/software.jspx?ckey=2364464&lc=eng&cc=HK&nid=-11143.0.00&id=2364464

Tutorials 320

For FPGA design entry and software simulation, only SystemVue 2016.08 or
later version is required. And SystemVue can be installed on any PC no matter
whether U5303A instrument is installed on it or not. Keysight IO Libraries Suite,
Keysight MD2 High-Speed Digitizer Instrument Driver and Xilinx ISE are not
required for this step.

For FPGA programming file generation, SystemVue and Xilinx ISE are required.
SystemVue and Xilinx ISE can be installed on any PC no matter whether
U5303A instrument is installed on it or not. Keysight IO Libraries Suite and
Keysight MD2 High-Speed Digitizer Instrument Driver are not required for this
step.

For U5303A instrument co-simulation, SystemVue, Keysight IO Libraries Suite
and Keysight MD2 High-Speed Digitizer Instrument Driver are required. They
must be installed on the same PC that U5303A instrument is installed on. Xilinx
ISE is not required for this step.

So you can do FPGA design entry, software simulation and FPGA programming
file generation on any PC without U5303A instrument installation. After the
FPGA programming file is generated, you can deploy the generated FPGA
programming file to run U5303A instrument co-simulation on the PC with
U5303A instrument installation.

Overview of SystemVue U5303A FDK Design Flow

Overview of U5303A High-Speed Digitizer

Based on the PCIe, the U5303A is an 2-channel, 12-bit wideband digital receiver
/digitizer, able to capture signals from DC up to 2 GHz at 1.6GS/s. A channel
interleaving capability allows waveform acquisition at up to 3.2 GS/s with
exceptional measurement accuracy.

U5303A Hardware Diagram

321 Tutorials

IN1 and are 2 input ports from U5303A front panel. They go through IN2 DC Front-
 that are electable analog low pass filter (pass band frequency is 600MHz). End

Then the analog input signals are fed into respective s to convert to digital ADC
signals.
The digitizer architecture could be simply understood by the following data stream
scheme: For each analog channel, a front-end electronics converts the customer
analog signal into a digital stream of data (ADC). These digital streams are
captured by a processing FPGA (further called). The custom real-time DPU FPGA
processing usually provides a data reduction scheme to only store processed
results into a temporary memory buffer. Then the host application retrieves these
processed data through the PCIe data and control bus whose sustained data
bandwidth is significantly lower than the raw data bandwidth.

There is one on a U5303A. It's Xilinx FPGA.DPU FPGA XC6VLX195T -FF1156 -2

IN1 and IN2 are inputted into DPU FPGA0.

The DPU FPGA opens a partial area for custom real-time processing. Below table
shows the FPGA resources are used for U5303A infrastructure, the remaining FPGA
resources can be used for custom real-time processing.

And the DPU FPGA has the following physical interface:

ADC parallel data streams input

Connectivity with two DDR3 memory and one QDRII memory

Inter FPGAs data stream connectivity

PCIe connectivity with backplane via PCIe switch

Control signals from CTRL FPGA

In SystemVue U5303A FPGA design flow, these physical interfaces are transparent
to users. SystemVue will provide some algorithm-level interfaces, such as OutPort,
Register and BlockRegister, so that users can use these interfaces easily without
caring about the format and protocol of the physical interfaces.
The DPU FPGA is connected with two DDR3 SDRAM memories. The DDR3 SDRAM
memories can be used to buffer the real-time processed data for PCIe transfer with
embedded controller or PC. The memory size of each DDR3 SDRAM memory is
indicated by U5303A option:
Option

: The size of each DDR3 SDRAM is 512M Byte. There are 2 DDR3 SDRAM for -M10
the DPU FPGA, so the total memory size of one U5303A is 1G Byte.

: The size of each DDR3 SDRAM is 1G Byte. There are 2 DDR3 SDRAM for the -M20
DPU FPGA, so the total memory size of one U5303A is 2G Byte.

: The size of each DDR3 SDRAM is 2G Byte. There are 2 DDR3 SDRAM for the -M40
DPU FPGA, so the total memory size of one U5303A is 4G Byte.

U5303A DPU FPGA Clock

Tutorials 322

U5303A DPU FPGA Clock

All custom real-time processing are in the same system clock domain. The system
clock is synchronized with DPU FPGA input clock source. U5303A provides three
kinds of clock sources for its DPU FPGA:

Internal clock
The internal clock is generated from U5303A module hardware.

External clock
The instruments external clock input connector (as shown in below figure) is
selected as the source.

323 Tutorials

The External Clock may be used to vary the sampling rate of the digitizer, it
must be continuously present if selected for the digitizer to operate
correctly. The input is 50Ω AC coupled. The requirement of external clock
signal is:

Tutorials 324

External reference clock
The instruments external reference clock input connector (as shown in
below figure) is selected as the source.

For applications that require greater timing precision and long-term stability
than is obtainable from the internal clock, a 100 MHz Reference signal can
be used. The input is 50 Ω terminated and AC coupled.

If your input is not at exactly the specified value, you must remember to
compensate for the difference in your application since the digitizer and the
driver have no way to know about such deviations.

325 Tutorials

If synchronization between several digitizers is required, the reference signal
should be applied to all of them.

All custom real-time processing on DPU FPGA run on DPU FPGA system clock.
When clock source is selected as Internal Clock or External Reference Clock, the
DPU FPGA system clock frequency is fixed. When U5303A is configured as 1GS/s
option (-SR1), the DPU FPGA system clock is 125MHz. All custom real-time
processing and ADC captured data in DPU FPGAs run on the 125MHz DPU FPGA
system clock. When U5303A is configured as 1.6GS/s option (-SR2), the DPU FPGA
system clock is 200MHz. All custom real-time processing and ADC captured data
in DPU FPGAs run on the 200MHz system clock.

When clock source is selected as External Clock, the DPU FPGA system clock
frequency varies as the frequency of External Clock input. The DPU FPGA system
clock frequency is equal to one sixteenth of the frequency of External Clock input.
When U5303A is configured as 1GS/s option (-SR1), the frequency of External
Clock input is in range 1.8GHz ~ 2.0GHz, so the DPU FPGA system clock frequency
is in range 112.5MHz ~ 125MHz. When U5303A is configured as 1.6GS/s option (-
SR2), the frequency of External Clock input is in range 2.0GHz ~ 3.2GHz, so the
DPU FPGA system clock frequency is in range 125MHz ~ 200MHz.

DPU FPGA system clock frequency:

 1GS/s option (-SR1) 1.6GS/s option (-SR2)

Clock Source:
 OrInternal Clock

External Reference Clock

125MHz 200MHz

Clock Source:
External Clock

External Clock Frequency / 16
External Clock Range:
1.8GHz ~ 2.0GHz

External Clock Frequency / 16
External Clock Range:
2.0GHz ~ 3.2GHz

ADC Parallel Input Streams of U5303A DPU FPGA

For ADC input to DPU FPGA, the incoming ADC data streams are de-multiplexed
into multiple parallel data streams at lower data rate and then perform some pre-
correction of the sampling defaults (e.g. linearity correction, interleave mismatches
correction). So for each sample, the 12-bit ADC data are extended to 16-bit after
the pre-correction.

In DPU FPGA, the parallel ADC input streams are all sampled based on DPU FPGA
system clock.

For normal sample mode (1.0GS/s for SR1 option and 1.6GS/s for SR2 option),
each DPU FPGA receives two channels ADC input streams. Below figure shows how
the ADC input streams are inputted into the custom real-time processing part.

Tutorials 326

Each ADC channel has 16 parallel streams. Every two system clock cycles, there
are valid ADC samples. The signal in above figure indicates when valid DATA VALID
ADC samples arrive.

For 1.0GS/s SR1 option, its DPU FPGA system clock is 125MHz and valid samples
arrive every two system clock cycles, so the total sample rate is: 16 parallel streams
x 125MS / 2 = 1.0GS/s. For 1.6GS/s SR2 option, its DPU FPGA system clock is
200MHz and valid samples arrive every two system clock cycles, so the total
sample rate is: 16 parallel streams x 200MS / 2 = 1.6GS/s.
Because each sample has 16-bit, every time the valid samples arrive, there are

(16 parallel samples/channel) x (16-bits/sample) x 2 channel = 512 bit

For interleaved sample mode (2.0GS/s for SR1 option and 3.2GS/s for SR2 option),
each DPU FPGA receives one channel ADC input streams. Below figure shows how
the ADC input streams are inputted into the custom real-time processing part.

327 Tutorials

Each ADC channel has 32 parallel streams. Every two system clock cycles, there
are valid ADC samples. The signal in above figure indicates when valid DATA VALID
ADC samples arrive.

For 2.0GS/s SR1 option, its DPU FPGA system clock is 125MHz and valid samples
arrive every two system clock cycles, so the total sample rate is: 32 parallel streams
x 125MS / 2 = 2.0GS/s. For 3.2GS/s SR2 option, its DPU FPGA system clock is
200MHz and valid samples arrive every two system clock cycles, so the total
sample rate is: 32 parallel streams x 200MS / 2 = 3.2GS/s.
Because each sample has 16-bit, every time the valid samples arrive, there are

(32 parallel samples/channel) x (16-bits/sample) x 1 channel = 512 bit

Overview of U5303A FPGA Design Flow

The SystemVue U5303A FPGA design flow consists of three steps: design entry and
software simulation, U5303A FPGA programming file auto generation and U5303A
instrument co-simulation with SystemVue.

Design entry and software simulation
SystemVue provides a hierarchical subnet template to ask users to configure
U5303A four FPGAs and design FPGAs in a model-based environment. In

Tutorials 328

addition, SystemVue provides some software peripheral models to mimic the
hardware behaviors of U5303A FPGA interface, so users can run a pure
software simulation to debug and verify their FPGA design.

U5303A FPGA programming file auto generation
When the FPGA design in SystemVue schematic is verified by software
simulation and is ready for generating FPGA programming file, SystemVue
provides a "one-button-push" automatic flow to launch Xilinx ISE to
generate final U5303A FPGA programming files in background.

U5303A instrument co-simulation with SystemVue
After the U5303A FPGA programming files are generated, SystemVue
provides a U5303A instrument co-simulation model to connect SystemVue
with U5303A hardware. This model can download U5303A FPGA
programming file to DPU FPGAs, configure the user-defined FPGA registers
and capture data output from U5303A DPU FPGA to SystemVue. Users can
verify the custom real-time processing on real hardware in this step.

After U5303A instrument co-simulation verification, users can use AgMD2 IVI-C
or AgMD2 IVI-COM driver to create their own program to deploy the user-
defined DPU FPGA programming file and control U5303A instrument without
launching SystemVue.

AgMD2 IVI-C and AgMD2 IVI-COM driver are installed automatically when you
install .MD2 High-Speed Digitizer Instrument Drivers

For details of programming using AgMD2 IVI-C and AgMD2 IVI-COM, please
refer to the document of . You will get this document after IVI Driver Reference
installing .MD2 High-Speed Digitizer Instrument Drivers

Design Entry and Software Simulation

U5303A Design Template

U5303A Design Template is a set of hierarchical subnets to model U5303A's
hardware architecture. It mimics and simplifies the behavior of U5303A DPU
FPGAs' interface, so that users can easily configure U5303A DPU FPGAs and enter
model-based FPGA design under U5303A's hardware architecture. Then users can
do software simulation with U5303A Design Template to debug and verify whether
their real-time processing part works well under U5303A's hardware architecture
before generating FPGA programming file.

When you drag-and-drop the top level subnet of U5303A Design Template from
workspace tree to a schematic, you will get a U5303A Design Template model in
the schematic. This model has a GUI to help you configure the U5303A interfaces
and working mode easily.

http://www.keysight.com/main/software.jspx?ckey=2364464&lc=eng&cc=US&nid=-11143.0.00&id=2364464
http://www.keysight.com/main/software.jspx?ckey=2364464&lc=eng&cc=US&nid=-11143.0.00&id=2364464

329 Tutorials

Below figure shows the top-level subnet of U5303A Design Template. The DPU
FPGA of U5303A is mimicked in the top-level subnet. For the mimicked DPU FPGA,
there is a green area . This area is mapped to Users Design Custom real-time

 part on the corresponding DPU FPGA hardware. Users can enter their processing
model-based FPGA design in the subnet of area.Users Design

U5303A DPU FPGAs' physical interfaces, such as ADC Input, DDR3 Memory link
and PCIe link, are simplified in the U5303A Design Template subnets. So users just
need connect their own real-time processing part with these simplified interfaces in
U5303A Design Template, instead of being familiar with the sophisticated physical
interfaces of U5303A hardware. It will save a lot of development time. Then when
you generate FPGA programming file, SystemVue will provide an automatic flow to
connect users' real-time processing part design with the physical interfaces well
and generate the final FPGA programming file.

U5303A Design Template Hierarchy

You can find the subnets architecture of U5303A Design Template in SystemVue
workspace tree from example workspace " <SystemVue installation dir>
\Examples\Hardware Design\U5303_FDK\U5303_Design_Template\

", as shown below:U5303A_FDK_Design_Template.wsv

Tutorials 330

Top-level subnet: U5303_TEMPLATE

This subnet is the top level subnet of the U5303A Design Template. You can drag-
and-drop it from the workspace tree to a schematic to instantiate a U5303A Design
Template model in a schematic, and double click the model to open U5303A
Design Template GUI to configure the U5303A DPU FPGA interfaces. All subnets
and their parameters are all controlled by the GUI, so you can use the GUI to
configure the U5303A DPU FPGA interface and working mode and all subnets
under U5303A Design Template can be configured well automatically according to
your input in the GUI.

If you double click the subnet in workspace tree, you can open U5303_TEMPLATE
the subnet to view the implementation of the subnet. All things in this subnet
implementation have be pre-configured well and controlled by U5303A Design
Template GUI, so users need do nothing in this subnet.

In U5303_TEMPLATE subnet, there is a subnet for custom real-time processing
FPGA design entry in the green area of the DPU FPGA. The subnets Users Design
and models in the other blue areas mimic U5303A DPU FPGA hardware
architecture and provide the simplified interfaces for the custom real-time
processing part.

In workspace tree of U5303A Design Template, the subnet in folder
 – , are in green area in top level User_Design_Subnets U5303_FPGA0 Users Design

 subnet. You can enter your model-based FPGA design in this U5303_TEMPLATE
subnet for the DPU FPGA.

Users FPGA Design subnets: U5303_FPGA0

You can double click subnet in workspace tree to look into the U5303_FPGA0
implementation of the subnet, as shown below.

331 Tutorials

Above figure shows a blank U5303_FPGA0 subnet and its interface models have
been placed in this subnet in advance. These interface models are configured
automatically according to your input in U5303A Design Template model GUI.
Please don't modify anything in the blue "Read-Only" area in order to keep these
pre-configured IO ports working correctly. Users can create their own model-based
fixed-point design connecting with the defined interface. See Users FPGA Design

 to get details about how to connect model-Interfaces in U5303A Design Template
based user application design with the defined FPGA interface.

In summary, the hierarchy of U5303A design template is shown in below figure.

Tutorials 332

1.

2.

3.

1.

2.

The top level is the U5303A Design Template model that you drag-and-drop
from the workspace tree to schematic. You can double click this model in a
schematic to open its GUI. You can configure U5303A interfaces and working
mode in the GUI.

Look into U5303A Design Template model (subnet), and U5303_TEMPLATE
you will go a lower level to view the implementation of the U5303A Design
Template. You can find the peripheral subnets and user FPGA design subnet
in this level. All things in this level are controlled by your input in U5303A
Design Template model GUI automatically. Please don't modify anything in
this level.

Look into the user FPGA design subnet, U5303_FPGA0, and you will go a
lower level to create your own model-based design that you want to
implement on the corresponding U5303A DPU FPGA in this level. The I/O
ports have been placed in this subnet in advance and are also controlled by
your input in U5303A Design Template model GUI automatically. So please
don't modify anything in blue "Read-Only" area in this subnet.

Finally, you can follow the below steps to design U5303A DPU FPGA using U5303A
Design Template:

Find U5303A Design Template from SystemVue example workspace: <your
\Examples\Hardware SystemVue installation dir>

Design\U5303_FDK\U5303_Design_Template\
. Save this example workspace to your U5303A_FDK_Design_Template.wsv

working directory or copy folder from workspace tree U5303DesignTemplate
of this example workspace to that of your own workspace.

333 Tutorials

2.

3.

4.

Drag-and-drop subnet from workspace to a schematic. U5303_TEMPLATE
Double click the U5303A Design Template model in your schematic to open
its GUI. You can configure the interface (OutPort, Register and
BlockRegister) of the DPU FPGA.

Find the subnet. Double click them in workspace tree to open U5303_FPGA0
the subnet. Then you can create your own model-based design and connect
your design with your defined FPGA interfaces. Note that you can only use
the models in SystemVue "Hardware Design Library", the models beyond this
library can't generate HDL codes and can't be implemented on U5303A DPU
FPGA finally.

Then after you finish your model-based design entry, you can go back to the
top level schematic to create the input waveforms for the corresponding
input ports of U5303A Design Template model and link the output ports of
U5303A Design Template model to data sink models. Then you can run
SystemVue simulation to verify your U5303A FPGA design via SystemVue
software simulation.

Users FPGA Design Interfaces in U5303A Design Template

In , U5303A DPU FPGAs' physical Overview of U5303A High-Speed Digitizer
interfaces are introduced. The DPU FPGA has the following physical interface:

ADC parallel data streams input

Connectivity with two DDR3 memory and one QDRII memory

PCIe connectivity with backplane via PCIe switch

Control signals from CTRL FPGA

In order to make the custom real-time processing part implement under U5303A's
hardware architecture easily, U5303A Design Template simplifies these physical
interfaces. These simplified interfaces have less relationship with physical protocol,
and they are all algorithm-level interfaces, so users can connect these simplified
interfaces with their FPGA design easier. So users can save the time that is spent to
study the details of U5303A DPU FPGAs' physical interfaces.

There are 5 types simplified interfaces in U5303A Design Template:

ADC Input

OutPort

Register

BlockRegister

Trigger

You can configure these interfaces in U5303A Design Template model GUI for your
selected U5303A DPU FPGAs and connect your configured interfaces with your
model-based fixed-point design in the users FPGA design subnet ().U5303_FPGA0

Register, BlockRegister and are optional interfaces. You can configure Trigger
whether to use them in U5303A Design Template model GUI.

Tutorials 334

These simplified interfaces have been placed in users FPGA design subnet
in advance, and the I/O ports of subnet are U5303_FPGA0 U5303_FPGA0

controlled by your configuration in U5303A Design Template model GUI
automatically. Net labels of lines are used to connect these ports. Users can use
net labels to connect their own model-based design with these interfaces. For
details of how to use net labels of connection line, please refer to Connection Line

.Net Labels

ADC Input

ADC Input is corresponding to U5303A DPU FPGAs' physical interface ADC Input
(see). Users can use this interface to Overview of U5303A High-Speed Digitizer
connect ADC parallel input streams with their own FPGA design.

ADC Input in U5303A Design Template has the same behavior as it physical ADC
Input parallel streams. It provides parallel ADC input streams and a valid signal to
indicate whether the corresponding ADC parallel streams are valid. As described in

, there are valid parallel ADC samples Overview of U5303A High-Speed Digitizer
every two DPU FPGA system clock cycles.

Connect ADC input with your FPGA design in subnet U5303_FPGA0:

In user FPGA design subnet , ADC parallel input streams are a input U5303_FPGA0
bus with width 32 and a valid input port. They are configured by U5303A Design
Template model GUI automatically.

The input ports are connected to lines with Net Label. The Net Label of parallel
ADC input data is . Net Label of ADC input valid signal is . So ADC(0:31) ADCValid
user can use Net Label name to connect the parallel ADC input with their own
model-based FPGA design.

http://edadocs.software.keysight.com/display/source/Connection+Line+Net+Labels
http://edadocs.software.keysight.com/display/source/Connection+Line+Net+Labels

335 Tutorials

As described in , ADC input data Overview of U5303A High-Speed Digitizer ADC(0:
 is related U5303A ADC sample mode:31)

For mode:Normal, 2 channels

IN1 and connect with ;IN2 FPGA0

ADC(0:15) are 16 parallel ADC samples of the first channel for current FPGA. ADC(0)
is the oldest sample and is the newest sample.ADC(15)

 are 16 parallel ADC samples of the second channel for current FPGA. ADC (16:31)
 is the oldest sample and is the newest sample.ADC(16) ADC(31)

For mode:Interleaved, channel 1

IN1 connects with ;FPGA0

ADC(0:31) are 32 parallel samples of the connected channel of the current FPGA.
 is the oldest sample and is the newest sample.ADC(0) ADC(31)

For mode:Interleaved, channel 2

IN2 connects with ;FPGA0

ADC(0:31) are 32 parallel samples of the connected channel of the current FPGA.
 is the oldest sample and is the newest sample.ADC(0) ADC(31)

For example, if connects with for interleaved mode, in subnet IN2 FPGA0
, are 32 parallel samples of .U5303_FPGA0 ADC(0:31) IN2

Configure ADC input mode in GUI of U5303A Design Template:

ADC sample mode can be configured in U5303A Design Template model GUI. Then
in FPGA Settings tab of the GUI, the connection relationship between , and IN1 IN2

 is also shown.ADC(0:31)

For example, mode and tab:Normal, 2 channels FPGA Settings

Tutorials 336

For example, mode and tab:Interleaved, channel 1 FPGA Settings

337 Tutorials

Tutorials 338

Each line of bus is an input port of ADC sample and its data type is FADC(0:31)
.ixed-point

Its is bit.WordLength 16

Its is bit when is (Input Range: -1V~1V); Integer WordLength 1 Full Scale 2V
Its is bit when is (Input Range: -0.5V~0.Integer WordLength 0 Full Scale 1V
5V)

It's .Signed

Full Scale can be set in U5303A Design Template model GUI:

The data type of U5303A Design Template model's input ports ~ is . IN1 IN2 Real
U5303A Design Template will quantize the input waveforms to get fixed-point Real
ADC sample value for according to U5303A's ADC behavior. It will ADC(0:31)
quantize the waveform to a number with and then Real fixed-point WordLength 12
extend the . and are 12bit fixed-point number to 16bit Integer WordLength Signed
always as described above. Please refer to Overview of U5303A High-Speed

 for U5303A's ADC behavior.Digitizer

Subnets that can help you remove ADCValid:

ADCValid is Net Label of the non-bus ADC valid input port. Its data type is also
.fixed-point

Its is bit.WordLength 1

Its is bitInteger WordLength 1

It's .UnSigned

339 Tutorials

ADCValid alternates between and always. When is , the 0 1 ADCValid 1
corresponding are valid ADC samples. When is , ADC(0:31) ADC(0:31) ADCValid 0
will hold their current values. So every two samples, there is a valid .ADC(0:31)

If you want to get all valid ADC parallel samples (valid signal is always 1, so all ADC
samples are valid. Then you need not ADC valid signal), two subnets

 and are provided in example workspace: ADCConvert_16To8 ADCConvert_32To16
\Examples\Hardware <your SystemVue installation dir>

Design\U5303_FDK\U5303_Design_Template\ U5303A_FDK_Design_Template.wsv

Because is 1 every two samples, the width of bus needs go down 2 ADCValid ADC
times when you get all valid parallel streams.

For mode, the width of bus ADC become from 16 to 8, you can Normal, 2 channels
use subnet as below to get all valid parallel ADC samples for ADCConvert_16To8
two channels.

Tutorials 340

For or mode, the width of bus ADC Interleaved, channel 1 Interleaved, channel 2
become from 32 to 16, you can use subnet as below to get all ADCConvert_32To16
valid parallel ADC samples for one channel.

It is not mandatory to connect all lines with user's FPGA design in ADC(0:31)
subnet . For example, if you just want to use and don't use U5303_FPGA0 IN1 IN2
for DPU FPGA, then you can only connect to your design and don't use ADC(0:15)

in subnet .ADC(16:31) U5303_FPGA0

ADC parallel input data: ADC(0:31)

ADC Valid: ADCValid

Use the net labels to connect your design with ADC input interface in U5303A
user design subnet U5303_FPGA0.

OutPort

Users can process ADC input samples with their own FPGA design in subnet
. Then the processed results can be outputted via . Users can U5303_FPGA0 OutPort

define multiple and each their desired output result can be outputted via OutPort
the corresponding . Because users' output results from U5303A Design OutPort
Template user FPGA design subnet () are data type, the U5303_FPGA0 Fixed-point
corresponding can be defined as users desired data format (OutPort Fixed-point

, and).WordLength Integer WordLength IsSigned

341 Tutorials

Because the real-time processed results from U5303A DPU FPGA may be high-
speed data stream, PCIe bandwidth may not be enough to fetch all results to PC
without data loss. And also, software running on PC is usually too slow to process
the real-time processed results from U5303A hardware. So in U5303A FPGA design
flow, the real-time processed results are buffered to DDR3 SDRAM on U5303A at
first, because the data bandwidth between DPU FPGA and DDR3 SDRAM is much
larger than PCIe data bandwidth. User can specify a block of SDRAM for the data
buffering. When the block of SDRAM is filled in, SystemVue that runs a U5303A
instrument co-simulation on a computer can read back the buffered results via
PCIe. Then SystemVue can parse PCIe data format to user defined OutPort Fixed-

 data type automatically.point

So user just need define their own data type for software OutPort Fixed-point
simulation and U5303A instrument co-simulation and don't need care the physical
DDR3 and PCIe protocol and data format. SystemVue will automatically generate
HDL wrapper to convert between user defined OutPort data format and DDR3 and
PCIe data format during generating U5303A DPU FPGA programming file.

Define your own OutPort in GUI of U5303A Design Template:

For each U5303A DPU FPGA, can be defined in the tab of OutPort FPGA Settings
U5303A Design Template model GUI:

As shown in the interface diagram, each is represented as a set of ports: OutPort
 output port, output port and input port. It's a typical DataOut ValidOut ReadyIn

data stream style interface. is the data values output. shows the DataOut ValidOut
corresponding is valid when it's , otherwise when it's , the DataOut 1 0

Tutorials 342

corresponding is not valid. shows the following hardware is ready DataOut ReadyIn
to receive the current output. When both and are , a data ValidOut ReadyIn 1
transfer occurs.

Click button to open a new GUI to define the for the DPU Config Outport OutPort
FPGA.

In the configuration GUI, user can define multiple . User needs OutPort OutPort
define the following items for each :OutPort

Name

WordLength

Integer WordLength

Sign

Name is a meaningful string to help you to identify each . , OutPort WordLength
 and specify the format for data of the Integer WordLength Sign fixed-point

corresponding . The fixed point format is just used to specify . Both OutPort DataOut
 and are 1 bit unsigned integer (its value is 0 or 1).ValidOut ReadyIn

In each row, a is defined. There is a number on the left of . OutPort OutPort's Name
The number is the of each . The index is a very useful number for each index OutPort
defined . In user FPGA design subnet , are IO OutPort U5303_FPGA0 OutPort bus
ports. This is the for each defined . The index is .index bus index OutPort one-based

OutPort has two working modes:

Same Sample Rate Mode: checkbox Using Same Sample Rate for all output
 is checked. All defined share the same signal. So port OutPorts ValidOut

they will generate valid output in the same rate. In this mode, you can define
up to for each U5303 FPGA, and the maximum bit width of each 16 OutPorts
OutPort is 1024.

343 Tutorials

Non-Same Sample Rate Mode: checkbox Using Same Sample Rate for all
 is unchecked. Each defined has its own signal. output port OutPort ValidOut

So they can generate valid output in different rates. In this mode, the sum of
all bit width must be less or equal to 1024.OutPorts'

Connect OutPort with your FPGA design in subnet U5303_FPGA0:

In user FPGA design subnet , the IO ports of your defined in U5303_FPGA0 OutPort
GUI are configured by U5303A Design Template model GUI automatically. You
don't need edit them and you just need use net labels to connect your model-
based design with the pre-configured IO ports.

The interface is represented by a set of fixed-point . If you defined OutPort bus ports
 for DPU FPGA, the interface will be:N OutPort OutPort

Data output bus: DataOut(1:N)

Valid output bus: For Mode ; For Non- Same Sample Rate , ValidOut(1:N)
Mode . All defined will share the Same Sample Rate , ValidOut(1) OutPort

same .ValidOut(1)

Ready input bus: For Mode, ; For Non- Same Sample Rate ReadyIn(1:N)
Mode . All defined will share the Same Sample Rate , (1)ReadyIn OutPort

same .ReadyIn(1)

Tutorials 344

The number of and fixed-point data type of each are defined in OutPort DataOut
GUI of U5303A Design Template. The fixed-point data type of all and ValidOut

 is one bit logic (unsigned, word length = integer word length = 1).ReadyIn

For each , it has a set of ports output, output and OutPort DataOut()x ValidOut()x
 input. The set of ports follows the handshaking rule of . So ReadyIn()x AXI4-stream

you also need follow the AXI4-stream handshaking rule to deal with the timing of
, and ports in your application design logic. You can use DataOut ValidOut ReadyIn

net labels , and to connect the set of ports with DataOut()x ValidOut()x ReadyIn()x
your application design ports.

In Mode, is the bus index between (is the Non- Same Sample Rate x 1:N N
number of your defined).OutPort

In Mode for is the bus index between Same Sample Rate , DataOut(), x x (1:N
is the number of your defined For and N). OutPort ValidOut()x ReadyIn(), x x

can only be 1.

For example, if you define 2 in GUI of U5303A Design Template, you can:OutPorts

In Mode: Non- Same Sample Rate

Connect the data output of the first to the line with net label OutPort
;DataOut(1)

Connect the valid output of the first to the line with net label OutPort
;ValidOut(1)

Connect the ready input of the first to the line with net label OutPort ReadyIn
;(1)

Connect the data output of the second to the line with net label OutPort
;DataOut(2)

Connect the valid output of the second to the line with net label OutPort
;ValidOut(2)

Connect the ready input of the second to the line with net label OutPort
;ReadyIn(2)

In Mode Same Sample Rate ,

Connect the data output of the first to the line with net label OutPort
;DataOut(1)

345 Tutorials

Connect the data output of the second to the line with net label OutPort
;DataOut(2)

Just generate one valid out for all output data in your FPGA design and
connect it to the line with net label ;ValidOut(1)

Connect the line with net label as input to your FPGA design to ReadyIn(1)
control your output

For each , your fixed-point design needs follow handshaking OutPort AXI4-stream
rule for the timing of data, valid and ready signals. When both and ValidOut ReadyIn
are , a data transfer occurs.1

If you define in GUI, don't use net labels , N OutPort DataOut()x
 and that is beyond the range of . ValidOut()x ReadyIn()x x 1 to N

Otherwise, when you run the simulation, SystemVue will post you
an error.

Especially, in Mode if for and Same Sample Rate , x ValidOut()x
is not when you run the simulation, SystemVue will ReadyIn() x 1,

post you an error.

The fixed-point data format of your data output must match with
the corresponding definition in GUI of U5303A Design OutPort
Template. And the fixed-point data format of your ValidOut()x
must be one-bit logic (word length = integer word length = 1,
unsigned). Otherwise, SystemVue will post an error when running
the simulation.

In U5303A Design Template, each selected FPGA has an model M9703MemoryBus
(because OutPort of M9703A and U5303A have the same behavior, M9703A and
U5303A share the same MemoryBus simulation model) to link its input with DataOut
and output buses of subnet and generate output to ValidOut U5303_FPGA0

 input bus of subnet. You can observe it in ReadyIn U5303_FPGA0
 subnet:U5303_TEMPLATE

When SystemVue generates FPGA programming file automatically, it inserts an N-to-1

AXI4-stream switcher to connect N defined to FPGA DDR3 RAM AXI4 OutPorts

Tutorials 346

interface. It also packages different OutPort data with header indicators. The

M9703MemoryBus model will mimic the hardware behavior to generate ReadyIn

feedback for user's application design when you do the software simulation.

OutPort on top level U5303A Design Template model and U5303ACosimBus model:

As your desired results are outputted via , the results will be outputted from OutPort
top level U5303A Design Template model in software simulation, and will be
outputted from model in U5303A instrument co-simulation.U5303ACosimBus

For top level U5303A Design Template model, it has a set of output bus ports for
DPU FPGA, and . They have the same function as FPGA0_DataOut FPGA0_ValidOut
the output from U5303A user FPGA design subnet . But as it mimic U5303_FPGA0
the hardware behavior and when SystemVue reads data from U5303A, actually the
data have been buffered in on-board DDR3 SDRAM. So it doesn't need a ReadyIn
port anymore.

For U5303ACosimBus model, its output ports are similar as top level U5303A
Design Template model. It has also a set of output bus ports for DPU FPGA,

 and and doesn't need port.FPGA0_Data FPGA0_Valid ReadyIn

347 Tutorials

For the top level U5303A Design Template model and U5303ACosimBus model, the
values of in subnet can be outputted through DataOut OutPort U5303_FPGA0

but the behavior of the will be different . Please FPGA0_DataOut, FPGA0_ValidOut
refer to and Software Simulation Behavior Description U5303 Co-Simulation Model

.Simulation Behavior Description

If you define , the net label you can use to connect your FPGA design N OutPort
in subnet:U5303_FPGA0

For mode: , Non-Same Sample Rate DataOut(1:N) ValidOut(1:N)
and . and are output ReadyIn(1:N) DataOut(1:N) ValidOut(1:N)
ports and is input port.ReadyIn(1:N)

For mode: , and Same Sample Rate DataOut(1:N) ValidOut(1)
. and are output ports and ReadyIn(1) DataOut(1:N) ValidOut(1)
 is input port.ReadyIn(1)

Register

Register is an optional FPGA interface. You can define arbitrary number of Registers
as long as it can be implemented on . Each reserves a value DPU FPGA Register
that can be configured dynamically after FPGA programming file is generated. It
can make your generated FPGA programming file more flexible.

Configure Register in U5303A Design Template GUI:

You can enable or disable in U5303A Design Template model GUI by Register
checking or unchecking checkbox as shown below.Register

Tutorials 348

Register interface is a set of reserved registers whose values can be re-fixed-point
configured at the beginning of a simulation, and then the values are kept Register
until the end of simulation. After you enable , you can click Register Config Register
button to open a new GUI:

You can define the number of and the fixed-point data format of each Registers
 in this GUI. You can also specify for each defined , then the Register Value Register

value of each Register will be set at the beginning of a simulation.

If you generate U5303A FPGA programming file for a U5303A Design Template
with defined , the number of Registers and the fixed-point data format of Registers
each Register are fixed in FPGA implementation, but you can still re-configure the
value of each Register. Then when you run SystemVue and U5303 Co-Simulation,
all Register values will be re-configured before ADC data capture and kept until the
end of the Co-Simulation.

Connect Register with your FPGA design in subnet U5303_FPGA0:

In subnet for user's application fixed-point design, input U5303_FPGA0 Register bus
port has been configured in advance.

349 Tutorials

If you define interface in GUI of U5303A Design Template, you can use the Register
 input port for your application fixed-point design. Assuming you defined Register N

Registers in GUI, you can use the line with net label from Register bus Register(x)
input to get Register value for your fixed-pointed design.Register(1:N)

For example, if you defined two Registers in GUI of U5303A Design Template, the
first one with name and the second one with name , threshold1 threshold2
assuming that they are the thresholds in your design. You leave the two Registers
in order to adjust the thresholds flexibly. Then in subnet, you can U5303_FPGA0
get the values of the defined Registers for your application design in this way:

Draw a line and double click it to input its net label . Then this Register(1)
line will be the input of Register .threshold1

Draw a line and double click it to input its net label . Then this Register(2)
line will be the input of Register .threshold2

Then you can connect the lines with Register net label to your own fixed-point
design.

If you don't define any in GUI of U5303A Design Template, you can't Register
use the Register net label. In addition, you can't use the net label Register()x
that is beyond the range you defined.x

Tutorials 350

Besides, your defined Fixed-point data format of each Register must be
consistent with your FPGA design, otherwise, an error will be posted when your
run SystemVue simulation.

Register()x , where is a number between (is the Register number you x 1 to N N
defined).

BlockRegister

BlockRegister is an optional FPGA interface. You can define arbitrary number of
as long as it can be implemented on . Each BlockRegister DPU FPGA BlockRegister

reserves a table of values that can be configured dynamically after FPGA
programming file is generated. It can make your generated FPGA programming file
more flexible. In your U5303A FPGA design subnet, you can use address to look up
the values of the table, just like looking up a RAM.

Configure BlockRegister in U5303A Design Template GUI:

You can enable or disable it in U5303A Design Template GUI by checking or
unchecking checkbox as shown below.BlockRegister

BlockRegister is similar as interface. It is a table of reserved Register fixed-point
memories (A memory is a block of registers that have the same fixed-point data
format. The block of registers can be accessed via address. So a memory is like a
RAM.)

351 Tutorials

After you enable , you can click button to open BlockRegister Config BlockRegister
a new GUI:

You can define the number of and the fixed-point data format of BlockRegister
each in this GUI. You can also specify and for each BlockRegister Length Value
defined , is the table size and is the values of all BlockRegister Length Value
element of the table. must be a row vector whose size is equal to your Value
specified value. Then the values of each will be set at the Length BlockRegister
beginning of a simulation.

BlockRegister values can be re-configured before capturing ADC input data, and
then the values are kept until the end of simulation. You can define BlockRegister
the number of and the fixed-point data format of each BlockRegisters BlockRegister
in GUI of U5303A Design Template. You can also specify the values for each
defined , then the values of each will be initialized for BlockRegister BlockRegister
simulation.

If you generate U5303A FPGA programming file for a U5303A Design Template
with defined BlockRegisters, the number of BlockRegisters and the fixed-point data
format of each BlockRegister are fixed in FPGA implementation, but you can still re-
configure the values of each BlockRegister. Then when you run SystemVue and
U5303 Co-Simulation, all BlockRegister values will be re-configured before ADC
data capture and kept until the end of the Co-Simulation.

Connect BlockRegister with your FPGA design in subnet U5303_FPGA0:

In subnet for user's application fixed-point design, U5303_FPGA0 BlockRegister
ports have been configured in advance. If you define BlockRegister interface in the
GUI of U5303A Design Template, you can use the ports for your BlockRegister
application fixed-point design.

Tutorials 352

Because a BlockRegister is like a block of RAM, so it has the memory mapper IO
ports. For a BlockRegister, its memory mapped IO ports are:

BlockRegAddr: it is an output bus port of user's application design. Users can use
this port to output the address to look up the corresponding value. The fixed-point
data format of this port must be:

Word length = ceil(log2(Length of BlockRegister))
Integer word length = ceil(log2(Length of BlockRegister))
Unsigned
Length of BlockRegister is defined in the GUI of U5303A Design Template.

BlockRegRd: it is an output bus port of user's application design. Users can use this
port to output "Read Enable". When the "Read Enable" is high, the look-up value at
the current address will be valid at the next simulation sample.

The fixed-point data format of this port must be:
Word length = Integer word length = 1
Unsigned

BlockRegData: it is an input bus port of user's application design. Users can get the
look-up value from this port. Note that which input samples of this port are valid
depends on output port BlockRegRd.

The fixed-point data format of this port is defined in GUI of U5303A Design
Template.

Because you can define multiple in U5303A Design Template GUI, BlockRegister
above three ports are all ports. Assuming that you defined , the bus N BlockRegister

 interface in subnet are three ports: BlockRegister U5303_FPGA0 bus BlockRegAddr(
, and . You can use net labels)1:N BlockRegRd()1:N BlockRegData()1:N

, and to access one of the defined BlockRegAddr()x BlockRegRd()x BlockRegData()x
.BlockRegister

For example, if you have below definition in the GUI:BlockRegister

353 Tutorials

Assuming that the two are defined for two coefficients re-BlockRegister
configurable FIR filter in FPGA0, the length is 32 for both of them.

Then in subnet , you can use the like:U5303_FPGA0 BlockRegister

Connect the "CoefI" address output port of your design to the line with net
label .BlockRegAddr(1)

Connect the "CoefI" read enable output port of your design to the line with
net label .BlockRegRd(1)

Connect the "CoefI" look-up value input port of your design to the line with
net label .BlockRegData(1)

Connect the "CoefQ" address output port of your design to the line with net
label .BlockRegAddr(2)

Connect the "CoefQ" read enable output port of your design to the line with
net label .BlockRegRd(2)

Connect the "CoefQ" look-up value input port of your design to the line with
net label .BlockRegData(2)

The fixed point data format of and must be:BlockRegAddr(1) BlockRegAddr(2)

Word length = Integer word length = 5 (because the length of BlockRegister
is defined as 32)

Unsigned

The fixed point data format of and input is:BlockRegRd(1) BlockRegRd(2)

Word length = 1

Integer word length = 1

Unsigned

The fixed point data format of and input is:BlockRegData(1) BlockRegData(2)

Tutorials 354

Word length = 16

Integer word length = 1

Signed

As defined in GUI.

The timing of interface is shown below:BlockRegister

In users' application design subnet, you can generate U5303_FPGA0 BlockRegAddr
and output and read back . When you output BlockRegRd BlockRegData

 as 0, will hold the current value at the next clock cycle; BlockRegRd BlockRegData
While you output as 1, will be updated to the look-up BlockRegRd BlockRegData
value of the current address at the next clock cycle.

BlockRegAddr()x

BlockRegRd()x

BlockRegData()x

where is a number between (is the number of your x 1 to N N
definedBlockRegister).

Trigger

In U5303A digitizer, the DPU FPGA has trigger input signals from control FPGA.
Users can configure the trigger source, and then once the trigger condition is met,
the trigger signals will reach to the DPU FPGA. Users can use the input trigger
signals on the DPU FPGA to assist their own real-time signal processing. In
SystemVue U5303A FPGA flow, we provide design, simulation, FPGA
implementation and digitizer hardware control for trigger.

 Trigger Interface on DPU FPGA

The Trigger interface on each DPU FPGA are 3 input fixed-point signals:

TriggerFlag: It represents whether it's triggered on the current FPGA system
clock cycle. When it's 1, it represents that it's triggered on the current FPGA
system clock cycle; When it's 0, it represents that it's not triggered on the
current FPGA system clock cycle. Its fixed-point format is <WordLength = 1,
IntegerWordLength = 1, Unsigned>.

TriggerIntegerPos: It represents the ADC sample index before the trigger
instant. Because the ADC samples are inputted to DPU FPGA parallel, on
each FPGA system clock cycle, there are ADC samples are NumParallel
inputted (for normal sampling mode and NumParallel=16 NumParallel=32

355 Tutorials

for interleaved sampling model). And also the block of the input ADC
samples hold for two FPGA system clock cycles and input signal is ADCValid
used to represent whether the block of ADC samples are valid on the current
FPGA system clock cycles. So will be an integer between TriggerIntegerPos 0
and Its fixed-pointed format is <WordLength=7, NumParallel-1.
IntegerWordLength=7, Unsigned>.

TriggerFractionPos: It represents the precise trigger position between the
trigger instant and the next ADC sample. It's a value in the range . Its [0, 1)
fixed-pointed format is <WordLength=32, IntegerWordLength=0,
Unsigned>.

In the DPU FPGA design subnet , the 3 Trigger input ports are pre-U5303_FPGA0
configured.

If you configure to use the trigger interface in your DPU FPGA in U5303A Design
Template GUI, you can connect the 3 input ports to your FPGA design using the
pre-configured Net Labels: , and as shown below.TFlag TIntegerPos TFractionPos

Tutorials 356

Only when you select to use Trigger interface in U5303A Design Template GUI,
the 3 input ports are enabled and you can connect them to your design. (You
can also leave them open even you enable the trigger ports.)

Otherwise, if you configure to not use Trigger interface, the 3 input ports are
disabled. You can't connect them to your design.

Net Label Key Words For Trigger:

TFlag

TIntegerPos

TFractionPos

Trigger Simulation in U5303A Design Template

In tab of U5303A Design Template GUI, there is a button for Trigger Overview
Settings.

357 Tutorials

You can click it to open a new GUI to configure the trigger mode for U5303A FPGA
design and simulation.

You can select to not to use trigger interface or use the trigger interface and
specify the triggers time in a time vector.

None

Trigger interface is not used. The 3 trigger input ports are disabled in U5303_FPGA0
subnet. You can't connect them with your FPGA design.

Time Vector

Tutorials 358

You specify a time vector. On each time point of the time vector, a trigger will be
generated. This trigger mode is used to generate triggers at any desired instants.
Then you can simulate whether your FPGA design works well with your specified
triggers.

A trigger can arrive on any instant, below figure shows the 3 trigger input ports
behavior on DPU FPGA when a trigger arrives.

For example, a trigger arrives at 1.3 * (ADC sampling period). The ADC sample
index before the trigger instant is 1, so TriggerIntegerPos will be 1 for this trigger.
And the ADC sampling period normalized time from trigger instant to the next ADC
sample is 0.7, so TriggerFractionPos will be 0.7 for this trigger.

The 3 trigger input ports work at FPGA system clock. And FPGA system clock
period is times of ADC sampling period. So for each block of NumParallel/2

ADC parallel input samples, there are 2 FPGA system clock cycles. NumParallel
When a trigger arrives, the 3 trigger input signal values will be valid from the next
block of ADC input samples. And is 1 for only one FPGA NumParallel TriggerFlag
system clock cycles. The values of and will TriggerIntegerPos TriggerFractionPos
hold until the next trigger.

When a trigger arrives exactly on an ADC sample position, this ADC sample's index
will be and will be 0. For example, a trigger TriggerIntegerPos TriggerFractionPos
arrives at 2 * (ADC sampling period). Its will be 2 and its TriggerIntegerPos

 will be 0.TriggerFractionPos

Corresponding to U5303A hardware behavior, if a trigger is too close to its
previous trigger, it can't be generated.

So the rule is that when a trigger is generated, the next trigger has to be
generated after 40 FPGA system clock cycles. All triggers that are specified
within the 40 FPGA system clock cycles will be ignored.

In design subnet, the parameter is the U5303_FPGA0 FPGAWorkingCLKFreq
FPGA system clock frequency.

Trigger Configuration for U5303A Hardware Co-Simulation

In model GUI, there is a button. You can click it U5303ACosimBus Trigger Settings
to open a new GUI to configure the actual trigger source for U5303A hardware co-
simulation.

359 Tutorials

You can select None to disable the actual trigger source. Then input to TriggerFlag
DPU FPGA will be 0.

You can select to configure the actual trigger source.Trigger Setting

The actual trigger source can be all enabled channels and External Trigger source.
External Trigger 1~3 are corresponding to the 3 Trigger Input ports on U5303A
digitizer front panel. External Trigger 4 is not used for U5303A.

Trigger Edge:

Tutorials 360

The defines which one of the two possible transitions will be used to Trigger Edge
initiate the trigger when it passes through the specified . Positive Trigger Voltage
slope indicates that the signal is transitioning from a lower voltage to a higher
voltage. Negative slope indicates the signal is transitioning from a higher voltage to
a lower voltage.

Trigger Voltage:

The specifies the voltage at which the selected trigger source will Trigger Voltage
produce a valid trigger. All trigger circuits have sensitivity levels that must be
exceeded in order for reliable triggering to occur.

Both the external trigger input and channel triggers have a hysteresis of 5% of Full
 -- The span of the voltage input of the Digitizer (negative to positive) Scale Range

including the configured offset voltage.

On external trigger, the is ±5 V, therefore the digitizer will trigger Full Scale Range
on signals with a peak-to-peak amplitude > 0.5 V. The input range of Trigger
Voltage is ±5 V for .Ext1~Ext4

When using the channel triggers, the trigger level must be set within Offset ± Scale
. For example, when is 0 V and is 2 V, the input range of all enable Offset Scale
channels is ±2 V.

U5303A Design Template GUI

You can find U5303A Design Template from SystemVue Example workspace
.U5303A_FDK_Design_Template.wsv

You can find subnet in SystemVue of U5303_TEMPLATE (model) Workspace Tree
this example and drag-and-drop it to a SystemVue top level schematic. Then you
will see the U5303 design template model as show below:

http://edadocs.software.keysight.com/display/source/Workspace+Tree

361 Tutorials

Input Ports:

It has 2 input ports that are all floating point (real) data type input. The input ports
 are corresponding to the input ports on the front panel of U5303A IN1 ~ IN2

instrument. Because the U5303A design template is used for software simulation,
you need create input waveforms for the input ports of U5303A design template in
SystemVue. Then you can simulate your U5303A FPGA designs with your input
waveforms.

You can configure the clock source and sample mode in the GUI of U5303A Design
Template. Then the U5303A's sample rate can be displayed in the GUI. It supports
both internal and external clock modes and also interleaved channel mode. When
you run simulation, SystemVue will check the sample rates of input waveform and
U5303A. If they are not the same, the simulation will post an error.

These input ports are all optional input ports, which means you need not connect
all of them. For example, you just want to use DPU FPGA of U5303 in Normal, 2

 mode, then you can just create input waveforms and connect and channels IN1 IN2
. If you just want to use DPU FPGA of U5303 in mode, then Interleaved, channel 1
you can just create input waveforms and connect and leave input port IN1 IN2
open. If you just want to use DPU FPGA of U5303 in mode, Interleaved, channel 2
then you can just create input waveforms and connect and leave input port IN2 IN1
open.

For all enabled input ports, the SystemVue will check its connectivity when
running simulation. For example, if you use DPU FPGA in Normal, 2 channels
mode, it means you enable and . Then you have to provide input IN1 IN2
waveforms for both and . If you leave one of them open, SystemVue will IN1 IN2
post an error when you run the simulation.

Output Ports:

It has 2 output ports For DPU FPGA of U5303A, it has a pair of bus output bus .
ports, .FPGA0_DataOut and FPGA0_ValidOut

The bus widths of FPGA0 DataOut and FPGA0_ValidOut_ :

http://edadocs.software.keysight.com/display/source/Nets+Connection+Lines+and+Buses

Tutorials 362

The custom real-time processing results are outputted through in U5303A OutPort
Design Template subnet . are defined in the GUI of U5303A U5303_FPGA0 OutPorts
Design Template. You can define as two modes: OutPorts Non-SameSampleRate

.mode and SameSampleRate mode

For mode, the bus widths of andNon-SameSampleRate FPGA0_DataOut FPGA0
 are the same and are equivalent to the number that you defined _ValidOut OutPort

in U5303A Design Template GUI. For example, you define two in U5303A OutPort
Design Template GUI for FPGA0. Then is the output data of FPGA0_DataOut(1)
your first of FPGA0 and is the corresponding valid OutPort FPGA0_ValidOut(1)
indicator of . When is 1, it indicates the FPGA0_DataOut(1) FPGA0_ValidOut(1)
corresponding data sample of is valid. Similarly, FPGA0_DataOut(1) FPGA0_DataOut

 and are the output pair of the second of FPGA0.(2) FPGA0_ValidOut(2) OutPort

For mode, the bus widths of are equivalent to SameSampleRate FPGA0 DataOut
the number that you defined in U5303A Design Template GUI. The bus OutPort
widths of is 1. All share the same . For FPGA0_ValidOut OutPorts' DataOut ValidOut
example, you define two in U5303A Design Template GUI for FPGA0. Then OutPorts

 is the output data of your first of FPGA0 and FPGA0_DataOut(1) OutPort
 is the output data of your second of FPGA0. The output FPGA0_DataOut(2) OutPort

of is the valid indicator of both and FPGA0_ValidOut FPGA0_DataOut(1)
. When is 1, it indicates the corresponding data FPGA0_DataOut(2) FPGA0_ValidOut

sample of and are valid.FPGA0_DataOut(1) FPGA0_DataOut(2)

All output ports are SystemVue The fixed-point data format fixed-point data type.
(wordlength, integer wordlength and signed) of is defined in FPGA0_DataOut
U5303A Design Template GUI. The is one-bit logic output, so its FPGA0_ValidOut
wordlength and integer wordlength are 1 and unsigned.

After drag-and-drop subnet from workspace tree to a U5303_TEMPLATE
Schematic, you can double click the U5303A Design Template model in Schematic
to open its GUI. You can use this GUI to configure the U5303A DPU FPGAs
interfaces.

Overview Tab:

http://edadocs.software.keysight.com/display/svss/Fixed+Point+Simulation

363 Tutorials

The first tab of the GUI is . It is used to configure the top level attributions Overview
of U5303A Design Template.

Channel Setting

It has three options:

Normal, 2 channels: Normal Mode, 2 channels

Interleaved, channel 1: Interleaved Mode, 1 combined channel, sample rate
x2

Interleaved, channel 2: Interleaved Mode, 1 combined channel, sample rate
x2

Scale

It has two options: and . It's the full voltage range for input signal. This 1V 2V
parameter in U5303A Design Template is used to mimic the ADC input full scale.
There is a corresponding parameter for controlling the real U5303A instrument in

 model. The input value exceeding this full scale will be limited to U5303ACosimBus
the maximum or minimum value of this scale.

Offset

This parameter is used to mimic the offset adjust of U5303A's input amplifier. There
is a corresponding parameter for controlling the real U5303A instrument. The valid
range is from .-2*Scale to 2*Scale

Input Range

Tutorials 364

It is a read-only item to show the valid range of input signal based on specified
 and parameters.Scale Offset

Clock Settings

You can click button to open a new GUI to set the clock and the final Configure
sample rate for your current configuration will be shown on the right side.

After clicking button, a new GUI will be opened. You can select to use Configure
 or (External Clock Source) clock mode.Internal External

When you select clock mode, you have two clock options that can result in Internal
two different sample rates. When is set as , you Channel Setting Normal, 2 channels
can set the sample rate as for option or for option. While 1.0GS/s SR1 1.6GS/s SR2
when is set as or , Channel Setting Interleaved, channel 1 Interleaved, channel 2
you can set the sample rate as for option or for option.2.0GS/s SR1 3.2GS/s SR2

When you select clock mode, you can set the sample rate in a range. When Ext Clk
you use an actual U5303A instrument, you need to provide an external clock input
with the corresponding frequency.

When is set as , the valid sample rate range is Channel Setting Normal, 2 channels
. But you need to pay attention to option of your 0.9 ~ 1.6 GSample/s SR1/SR2

U5303A instrument. If your U5303A instrument has SR1 option, the valid sample
rate range is only 0.9 ~ 1.0GSample/s, while valid sample rate range is 1.0 ~ 1.6
GSample/s for SR2 option. The U5303A Design Template subnet is only used for
FPGA design entry and software simulation, so you can use the full sample rate
range, but when you use real U5303A instrument, you need to pay attention to its
SR1/SR2 option.

In mode, the real external clock frequency that you need input Normal, 2 channels
to U5303A instrument is 2 times of the sample rate.

When is set as or , Channel Setting Interleaved, channel 1 Interleaved, channel 2
the valid sample rate range is . But you need to pay attention 1.8 ~ 3.2 GSample/s
to option of your U5303A instrument. If your U5303A instrument has SR1 SR1/SR2
option, the valid sample rate range is only 1.8 ~ 2.0GSample/s, while valid sample

365 Tutorials

rate range is 2.0 ~ 3.2GSample/s for SR2 option. The U5303A Design Template
subnet is only used for FPGA design entry and software simulation, so you can use
the full sample rate range, but when you use real U5303A instrument, you need to
pay attention to its SR1/SR2 option.

In or mode, the real external clock Interleaved, channel 1 Interleaved, channel 2
frequency that you need input to U5303A instrument is the same as the sample
rate.

The GUI gives you a hint for the valid range.

The clock setting configuration doesn't affect the U5303A DPU FPGA programming file

generation. So if your U5303A instrument is used with different clock setting that results

in different sample rate. Your generated FPGA programming files also works. But a

warning will be shown in the GUI of U5303CosimBus model to ask you to notice this

difference because it may cause different results in comparison to original software

simulation.

FPGA Settings

This figure shows your current DPU FPGA configuration of U5303A. The input ports
will be adjusted on this figure according to the specified Channel Setting
parameter.

FPGA Settings Tab:

Tutorials 366

In tab, you can define FPGA interface ("Register", "BlockRegister" and FPGA Settings

"OutPort") for DPU FPGA of U5303A.

FPGA0 Settings

In area, a diagram of DPU FPGA interface is shown.FPGA0 Settings

It shows the interface that you configure for DPU FPGA. The subnet U5303_FPGA0
in that you design the custom real-time processing for DPU FPGA will have the
corresponding I/O ports according to your configuration in this area. The DPU
FPGA has the following interface types:

ADC Input

Register

367 Tutorials

BlockRegister

OutPort

Register and are optional interface types.BlockRegister

ADC Input

The DPU FPGA receives the corresponding ADC input. In mode, Normal, 2 channels
the DPU FPGA receives two ADC channels input. In or Interleaved, channel 1

 mode, the DPU FPGA receives one ADC channel input. In Interleaved, channel 2
 subnet, there is an input bus that you can connect with U5303_FPGA0 ADC(0:31)

your real-time processing part to get the parallel ADC input streams. The interface
diagram shows how the ADC input parallel streams correspond to bus.ADC(0:31)

For example, if you set mode, and are inputted to Normal, 2 channels IN1 IN2
FPGA0. You can see is connected to and is connected to IN1 ADC(0:15) IN2 ADC

 in the interface diagram. It means that input from is converted to 16 (16:31) IN1
parallel input streams and you can get these parallel streams from , ADC(0:15)
where is the oldest sample and is the newest sample. Input from ADC(0) ADC(15)

 is converted to 16 parallel input streams and you can get these parallel IN2
streams from , where is the oldest sample and is the ADC(16:31) ADC(16) ADC(31)
newest sample.

If you set mode, is inputted to FPGA0. You can see is Interleaved, channel 1 IN1 IN1
connected to in the interface diagram. It means that input from is ADC(0:31) IN1
converted to 32 parallel input streams and you can get these parallel streams from

, where is the oldest sample and is the newest sample.ADC(0:31) ADC(0) ADC(31)

 Register

Register Checkbox

Check/uncheck this box to enable/disable the interface for the DPU FPGA. Register
When the box is checked, the corresponding interface will be shown in the Register
FPGA interface diagram below the checkbox, and a button is also Config Register
shown.

Config Register Button

Click this button to open a new GUI to define the interface. This button is Register
only shown when checkbox is checked.Register

Tutorials 368

Click button to add a new row to define a new Register.Add
Click button to remove a selected row (Register).Remove
There is no limitation of the number of Registers, as long as the FPGA has enough
area to implement them.

For the definition of a , you need input:Register

Name: a string to represent the name of the Register.

WordLength: Word Length (bits number) to represent the Register. Register
is a .fixed-point data

Integer WordLength: Integer Word Length (bits number to represent
integer).

Sign: 0->unsigned; 1->signed.

Value: The value of current Register. You can input a floating-point value or
equation variable name. The floating-point value will be converted to fixed-
point type automatically (There may be overflow and quantization for the
conversion. The default rule of overflow is Wrap and default rule of
quantization is Truncate).

The of each must be a or .Value Register scalar variable a constant

BlockRegister

For , it has checkbox and button, BlockRegister BlockRegister Config BlockRegister
which is similar as setting of Register. The difference is that when you click Config

 to open definition GUI, has an additional BlockRegister BlockRegister BlockRegister
attribute that specified the depth of each . The value of Length BlockRegister Length
must be a scalar variable or a constant integer.

http://edadocs.software.keysight.com/display/svss/Fixed+Point+Simulation

369 Tutorials

There is no limitation of the number of and the depth of each BlockRegisters
, as long as the FPGA has enough area to implement them.BlockRegister

Note

The of each BlockRegister should be a , where N is the Value 1xN vector
value of for the corresponding BlockRegister. For example, in Length
above figure, The of BlockReg1 must be a 1x32 vector, as Value CoefI

 of BlockReg1 is 32.Length

OutPort

OutPort is the mandatory FPGA interface. So it is unlike and , Register BlockRegister
you have to define and there is no checkbox to disable .OutPort OutPort
When you click button, you can open a new GUI to define the Config Output

.OutPort

You can use or button to create a new OutPort or remove a selected Add Remove
.OutPort

Tutorials 370

When is unchecked, each defined Using Same Sample Rate for all output port
 has its own signal to indicate whether the current is OutPort ValidOut DataOut

valid. So the valid sample rates of may be different. In this mode, the OutPorts
maximum number of is 16 and the maximum is 1024 for each OutPort WordLength

.OutPort

When is checked, all defined Using Same Sample Rate for all output port OutPorts
share the same signal to indicate whether the current is valid. So ValidOut DataOut
the valid samples are generated in the same rate for all . In this mode, the OutPorts
sum of all ' can't be larger than 1024.OutPorts WordLength

The data type is also SystemVue . So you can define the follow OutPort fixed-point
attributes of an :OutPort

Name: a string to represent the name of an OutPort.

WordLength: Word Length (the bits number) of an OutPort.

Integer WordLength: Integer Word Length (the bits number to represent
integer) of an OutPort.

Sign: 0->unsigned; 1->signed.

Software Simulation Behavior Description

After finishing the design entry in U5303A Design Template, users can create test
waveforms and input them to the corresponding input ports of U5303A Design
Template model. The test waveform can be floating point, so you can use all
SystemVue models to create the waveforms. Note that the sample rate of input
waveform must be the same as the one that you specified in GUI of U5303A Design
Template. Then you can run SystemVue software simulation to debug and verify
your U5303A FPGAs design.

The of U5303A Design Template model have been described in this tutorialOutPort
. The simulation behavior of output signals will be described in this part.

The FPGA interfaces – , and , are simple and clear. ADC input Register BlockRegister
Their behaviors have been described in previous parts. We will emphasis on the
simulation behavior of in this part.OutPort

For mode, we can define up to for DPU FPGA Non-Same Sample Rate 16 OutPorts
and the maximum word length can be bits for each . In the automatic 1024 OutPort
FPGA programming file generation flow, SystemVue will create a HDL wrapper to
connect an OutPort Connectivity IP core with the defined automatically. OutPorts
The connectivity IP will package and switch the data from all to the AXI4-OutPorts
stream interface with data width 256 bits. The AXI4-stream interface provides a
data path to send data stream from FPGA to on-board DDR3 SDRAM. The diagram
implemented in FPGA programming file is shown below:

http://edadocs.software.keysight.com/display/svss/Fixed+Point+Simulation

371 Tutorials

1.

2.

The connectivity IP has a FIFO for each . The FIFO only saves valid data OutPort
from its corresponding and generates to its corresponding . OutPort Ready OutPort
The outputs of all FIFOs are connected to the switcher, where is the N-to-1 N
number of defined . When the FIFO is full, it outputs as 0 to its OutPorts Ready
corresponding and isn't written in the new valid data. So only when both OutPort
Valid and Ready are 1, the OutPort Data can be transferred to DDR3 SDRAM.
Current data width of the switch is 128 bit.

In the connectivity IP, the data switching is based on package. It means that every
time the switcher arbitrates and selects an OutPort, it will read a package from the
selected OutPort FIFO. It will not arbitrate until the current package is transferred
completely. The connectivity IP will also add a header at the beginning of each
package to indicate which OutPort the current package comes from. The data
length of a package is 64 times of data width of DDR3 SDRAM AXI4-stream
interface (64*256 bits). The header length of a package is 2 times of data width of
DDR3 SDRAM AXI4-stream interface (2*256 bits). So the total length of a package
is 66 times of data width of DDR3 SDRAM AXI4-stream interface (66*256 bits). As
the word length of an OutPort is an arbitrary number less than 1024, the
connectivity IP will combine the valid data into a package and it may add some
zero-padding bits at the end of a package.

So the total effective throughput (discarding header) to DDR3 SDRAM is (128 * 64 /
where is N-to-1 switch data width.66) bit X FPGA working frequency, 128

In U5303A Design Template subnet, model is used to mimic M9703AMemoryBus
the behavior of the connectivity IP. of user design subnet OutPorts U5303_FPGA0
are connected to model, and this model generates M9703AMemoryBus Ready
input of subnet.U5303_FPGA0

The connectivity IP is transparent to users and it's generated automatically
according to the definition. The purpose of the connectivity IP description OutPort
is to help you to understand the following rules for your subnet U5303_FPGA0
design:

In real FPGA running, only when both and of an ValidOut ReadyIn OutPort
are 1, the corresponding is transferred to DDR3 SDRAM. Only the DataOut
data buffered in DDR3 SDRAM can be read back to SystemVue during
U5303A instrument co-simulation.

Tutorials 372

2.

3.

4.

5.

In software simulation, output samples of an of DataOut OutPort
 subnet are not the same as the corresponding U5303_FPGA0 DataOut

output samples of U5303A Design Template top level subnet. But if you
extract all output samples transferred to DDR RAM (the DataOut
corresponding and are both 1) of an ValidOut ReadyIn U5303_FPGA0
subnet's OutPort as the results sequence of this OutPort, and extract all

 output samples that their corresponding are 1 for an DataOut ValidOut
U5303A Design Template subnet' as this results sequence. OutPort OutPort's
The two results sequences are the exactly same.

In U5303 instrument co-simulation, output samples of an DataOut
 model's are not the same as output U5303ACosimBus OutPort DataOut

samples of the corresponding U5303A Design Template subnet's in OutPort
software simulation. But if you extract output samples that their DataOut
corresponding are 1 as results sequences, the results sequences ValidOut
from U5303A instrument co-simulation and software simulation are the
exactly same.

As we just care about the valid output samples, above and can guarantee 2 3
the valid output samples of an are the same between software OutPort
simulation and U5303A instrument co-simulation.

If the sum of all ' word lengths is not larger than OutPorts (128 * 64 / 66) ≈
 bits (the effect throughput to DDR3 SDRAM), even of all 124 ValidOut

 are always 1, the AXI4-Stream switch has enough bandwidth to OutPorts
transfer of all to DDR3 SDRAM. So when the sum of all DataOut OutPorts

' word lengths is not larger than bits, of all OutPorts 128 ReadyIn OutPorts
are always . You can use this condition to simply your subnet 1 U5303_FPGA0
design.

When the sum of all ' word lengths is larger than bits, it may cause OutPorts 124
the connectivity IP outputs 0 to of an . Then you need add some ReadyIn OutPort
logics in subnet design to buffer valid samples, if you don't U5303_FPGA0 DataOut
want to break the continuous data stream.

In SystemVue Example workspace , there is a U5303A_FDK_Design_Template.wsv
subnet " ".You can use this subnet to only extract valid data samples, ValidExtract
but it uses Dynamic Data Flow so need notice .the limitation of Dynamic Data Flow

For mode, it's actually a special case of Same Sample Rate Non-Same Sample Rate
mode. Because all has the same , SystemVue combines them OutPort ValidOut
together in background before switcher and just use a switcher.1-to-1

U5303A FPGA Programming File Generation

After the verification of SystemVue software simulation, you can generate U5303A
FPGA programming file with an automatic flow in SystemVue HDL Code Generator.
For information on how to add a HDL Code Generator, please refer to HDL Code

. In HDL Code Generator, you can select the as Generation Target Keysight Modular
. Then Click to select the U5303A Design Template in your current Digitizer Add

schematic to generate FPGA programming file.

http://edadocs.software.keysight.com/display/svss/Introduction+to+Dynamic+Data+Flow+Simulation
http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation
http://edadocs.software.keysight.com/display/sv201608/HDL+Code+Generation

373 Tutorials

Please note that only M9703A Design Template (subnet name: M9703_TEMPLATE)
and subnets are valid U5303A Design Template (subnet name: U5303_TEMPLATE)
subnet for mode, this GUI will prompt error if you select Keysight Modular Digitizer
an invalid subnet.

For U5303A, you have 3 options of .Generate For Device

If your U5303A has -LX2 option, it's 4 DPU FPGA are all Xilinx XC6VLX195T
FPGAs. Then if your U5303A has -SR2 option, it's sample rate is 1.6GS/s,
then you should select the option .XC6VLX195T @Max 1.6GS/s

If your U5303A has -LX2 and -SR1 option, its DPU FPGAs are Xilinx
XC6VLX195T and its sample rate is 1.0GS/s, then you should select the
option .XC6VLX195T @1.0GS/s

While if your U5303A has -SX3 option, its DPU FPGAs are all Xilinx
XC6VSX315T FPGAs. U5303A with -SX3 option can only have -SR2 option
(1.6GS/s sample rate). So you should select the option XC6VSX315T @Max

.1.6GS/s

Then just click . An automatic flow will be launch until you get the final Generate
U5303A FPGA programming files.

You can specify in HDL Code Generator GUI. Then Generated Module Name
SystemVue will generate a folder with the name of specified Generated Module

 in the Output Directory. The generated file structure is shown below:Name

Tutorials 374

For example, if you specify as , Generated Module Name U5303_TEMPLATE_tutorial
then a folder will be generated in the Output Directory. U5303_TEMPLATE_tutorial
There will be an folder and the corresponding folders under the xml FPGA0

 folder. The generated FPGA programming file and ISE U5303_TEMPLATE_tutorial
project are under the corresponding folder. Two xml files are generated in FPGA0

 to describe the generated FPGA configuration for the whole U5303A xml folder
instrument.
In GUI of model, there is a parameter . You U5303ACosimBus FPGA Images Path
can select the top level folder, such as folder, for this U5303_TEMPLATE_tutorial
parameter. Then the GUI of can parse the folder structure and U5303ACosimBus
xml file to understand your generated FPGA configuration.

Do not modify the generated FPGA folder manually. It may cause that
SystemVue can't pares it correctly and work with U5303A instrument correctly.

After clicking button, SystemVue generates HDL codes for selected Generate
subnet application design at first. Then SystemVue generates a HDL wrapper file to
connect with the generated application HDL codes automatically. The HDL wrapper
file contains some connectivity IP to link your defined FPGA interface with U5303A
FPGA infrastructure design that implements some foundational functions, such as
link with ADC data stream, DDR3 SDRAM and PCI Express on backplane. Then
SystemVue will create an ISE project and run this project to get the final FPGA
programming file. The whole flow is automatic. A diagram of the generation flow is
shown below.

375 Tutorials

U5303A Instrument Co-simulation with SystemVue

After the FPGA programming file is generated, you can use U5303ACosimBus
model to download your FPGA programming file to U5303A instrument and capture
the output results of FPGA to SystemVue simulation environment. You can find

 model in Part Selector under .U5303ACosimBus Hardware Design

Tutorials 376

377 Tutorials

U5303A Co-Simulation Model GUI

Place one model in a schematic to instantiate one U5303A U5303ACosimBus
instrument, and you can place multiple models to ask multiple U5303ACosimBus
U5303A instruments to work together in one SystemVue simulation.
Double click the model, you can open its GUI. You can use this U5303ACosimBus
GUI to configure a U5303A instrument. The GUI of has a similar U5303ACosimBus
architecture of the GUI of U5303 Design Template.

Overview Tab:

FPGA Images Path

Specify the generated U5303A FPGA image folder. You should specify the top level
folder of a generated U5303A FPGA image.

Then the GUI can parse the generated FPGA image and extract the configuration
that was implemented in the FPGA programming files. It can also find the
generated FPGA programming files.

When you change FPGA Images Path, the below window will pop-up to ask you
how to specify the values for the defined and .Register BlockRegister

Tutorials 378

For a generated FPGA image, the configuration of Register and BlockRegister, such as

WordLength, Integer WordLength, Sign and Length, are fixed and you can't modify them

any more. But you can modify the values for the defined Register and BlockRegister.

So if you change FPGA Images Path from an old FPGA image to a new FPGA image,

you can specify whether you use the default values of new FPGA image or remain the

values you specified for the old FPGA image.

The default values of the new FPGA image are specified in U5303 Design Template
custom UI and recorded in the automatic FPGA image generation flow.

If you select to use the values of old FPGA image, all and Register BlockRegister
items that have the same names between the new and old FPGA images will
remain their values. For every new FPGA image's and item Register BlockRegister
that has not the same name in the old FPGA image, the GUI will prompt you to
input its value.

For example, if the old FPGA image has with names Reg1 and Reg2 and Registers
the new FPGA image has with name Reg2 and Reg3. You have selected Registers
the old FPGA image and specified Reg1=1 and Reg2=2 in the GUI of
U5303ACosimBus model. Then you change FPGA Images Path to select the new
FPGA image. The pop-up window will show. If you select Yes to use the default
values of new FPGA image, the values of Reg2 and Reg3 of the new FPGA image
will be loaded according to their default values. Otherwise, you select No to remain
the values of the old FPGA image, Reg2 will keep its value 2 because there is a
Register with the same name in the old FPGA image. And the GUI will prompt you
to input a new value for Reg3 because there is no Register with the same name in
the old FPGA image.

Instrument Address and Options

Specify an U5303A instrument according to its address. When you open the GUI, it
will detect all U5303A instruments connected to this computer and list the
detected U5303A instruments addresses. Then you can select an U5303A
instrument.

379 Tutorials

The default value of instrument address is a blank option and shows Please select
 in GUI. When you select a detected real U5303A instrument an instrument …

address, the GUI will initialize the selected U5303A instrument and extract its
hardware options. It usually takes several seconds to initialize a U5303A
instrument.

If you have specified a valid U5303A instrument address and click to save the Ok
parameters of model, then when you open the GUI next time, the U5303ACosimBus
GUI will detect all connected U5303A instruments again and check whether the
address that was specified last time is still in current connected instruments list. If
so, the GUI will initialize the previously configured U5303A instrument, otherwise, it
will switch to the blank option.

The GUI will extract U5303A instrument hardware options during the instrument
initialization. After an U5303A instrument is initialized successfully, you can view all
its hardware options by clicking button.Option

In addition, the GUI will also check whether the selected U5303A instrument has
any conflict with the generated FPGA programming files. It will check whether the
selected U5303A instrument has option (the U5303A instrument has to have FDK

 option to use a customized FPGA programming file). If not, the U5303A FDK
instrument can't be selected and the U5303A address will be switched to blank
option automatically.

Calibration

It has three options: , and .None Fast Full

None: It will not do U5303A instrument self-calibration at the beginning of
simulation.

Fast: It will do U5303A instrument self-calibration for the current instrument
parameters setting at the beginning of simulation. It usually takes several
seconds for the fast self-calibration.

Full: It will do U5303A instrument self-calibration for all instrument
parameter setting at the beginning of simulation. It usually takes about one
minute for the full self-calibration.

Tutorials 380

Channel Setting

It has three options: andNormal, 2 channels, Interleaved, channel 1 Interleaved,
channel 2.

It's read-only for model. The Channel Setting value is gotten U5303ACosimBus
from the specified FPGA image file, so it shows the channel setting that you
configured for your own FPGA programming file.

Note: If you configured channel setting as Interleaved mode and generate the
FPGA programming file, you have to use an U5303A instrument with option in INT
order to use your FPGA programming file. The GUI will check your selected U5303A
instrument. If the selected U5303A instrument has no option, it will pop-up an INT
error window and ask you to change to another U5303 FPGA image or change to
another U5303 instrument.

Scale

It has two options: 1V and 2V. It's the full voltage range for input signal. This
parameter is used to control the ADC input full scale of U5303A instrument.

Offset

This parameter is used to control the offset adjust of U5303A's input amplifier. The
valid range is from -2*Scale to 2*Scale. When the input signals ride on a DC value,
you can use the offset adjustment to make the input signals be in the center of
valid input range of U5303A instrument, which can get the optimal quantization
results.

Input Range

It is a read-only item to show the valid range of input signal based on specified
Scale and Offset parameters.

Clock Settings

In the Clock Settings area, there is a button and a read-only Sample Configure
Rate display. You can click Configure button to set clock options. The final sample
rate that the U5303A instrument works on is related to U5303A hardware option,
channel setting and clock configuration and will be displayed in the GUI.

After clicking button, a new GUI will be opened to configure the clock of Configure
U5303A instrument.

381 Tutorials

There are three clock options. Refer to Overview of U5303A High-Speed Digitizer
for the details of clock options.

Cosim Mode

There are two options: and .Single Pass Repeative

Single Pass:

It only asks U5303A digitizer to do data capture once.

When U5303A instrument starts to capture the data, U5303A FPGA will get raw
data samples from ADCs and then the raw ADC input samples go through your own
FPGA design logics to generate your defined OutPort format output samples.
U5303A digitizer will buffer a number of continuous your defined OutPort format
output samples in on-board DDR3 RAM without any data loss. The number is
specified in next parameter " ".Sample Number Per Capture

After the " " samples of the first data capture are Sample Number Per Capture
outputted, model will not output valid samples any more, that U5303ACosimBus
means that output ports is always 0 after the first data capture.FPGA0_Valid

Repeative:

After the " " samples of a data capture are outputted, Sample Number Per Capture
 model will do next data capture and output "U5303ACosimBus Sample Number Per

" samples for next data capture until the end of simulation.Capture

Sample Number Per Capture

It's the number of valid output samples for each data capture.

If there are multiple defined for DPU FPGA in OutPorts Non-SameSampleRate
mode, model will output valid samples for each U5303ACosimBus OutPorts
alternatively. The number specified in " " is the sum of Sample Number Per Capture
all ' valid samples for each data capture. You can't specify the valid output OutPorts
samples number for each , because it depends on the actual valid samples OutPort
generation rate for each . For a given buffer size, you can't forecast whether OutPort
the buffer size is enough to save a specified number of valid samples for an
OutPort.

When you use mode or only define one , you will only SameSampleRate OutPort
have one output, so for each data capture, model will ValidOut U5303ACosimBus
output valid samples for all defined .Sample Number Per Capture OutPort

Tutorials 382

For example, given the buffer size is fixed and you have two OutPorts, OutA and
OutB, and you use mode. If the actual valid samples Non-SameSampleRate
generation rate for OutA and OutB is similar, the buffer size is enough to capture
NumX valid samples for both OutA and OutB. But if the actual valid samples
generation rate of OutA is large and that of OutB is very small, the buffer size may
not be enough to capture NumX valid samples for OutB. So you can only specify
the sum number of all OutPorts' valid samples, then SystemVue can forecast
whether U5303A instrument has enough buffer size for your data capture. If
U5303A instrument hasn't enough buffer size for your specified "Sample Number

", SystemVue will post an error during simulation and tell you the Per Capture
maximum number for " " according to your current Sample Number PerCapture
configuration.

TimeOut

It specifies the maximum time limitation for an U5303A instrument to buffer "
" valid output samples to DDR3 SDRAM for each data Sample Number Per Capture

capture. If U5303A instrument can't save enough valid output samples within this
TimeOut time, SystemVue simulation will abort.

It is usually used to avoid SystemVue simulation hang because your FPGA design
doesn't generate valid output samples. Sometimes, your FPGA design only
generates valid output samples under a specific condition, such as detecting a
synchronization signal. If your input analog signals to U5303A instrument don't
contain the synchronization signal, your FPGA design will not generate valid output
samples and your SystemVue simulation will hang. So you can use this parameter
to avoid the simulation hang.

FPGA Settings

FPGA Settings area displays the FPGA architecture according to your current
configuration. You can configure the DPU FPGA in tab.FPGA Settings

Bandwidth Limitation

It specifies whether to use or bypass an analog filter before each ADC on U5303A
instrument.
If U5303A instrument has F05 option, it's mandatory to use the 600MHz bandwidth
analog filter.
If U5303A instrument has F10 option, you can select "N/A" to bypass the analog
filter or select "600MHz" to use the filter.

FPGA Settings Tab

383 Tutorials

FPGA Programming File Generation Status

This area can help you to know the generation result of FPGA programming file.

The left part of this area will display some read-only information to tell you whether
the FPGA programming file is generated successfully. If it's generated, whether
there is any timing constraints violation.

The right part of this area is a button . You can click this button Launch ISE to View
to open Xilinx ISE GUI and load the ISE project for your specified programming file
generation. Then you can view all generation reports in ISE environment. Especially
you can view timing report when the read-only information on the left shows some
timing constraints violations.

FPGA0 Settings

Tutorials 384

This area displays the DPU FPGA interface. The U5303A Design Template has a
similar area in its GUI. You can define the DPU FPGA interface of , Register

 and in U5303A Design Template GUI. And in the GUI of BlockRegister OutPort
 model, you can view the generated FPGA interface of , U5303ACosimBus Register

 and in the specified FPGA programming file. You can modify BlockRegister OutPort
the values of and in this GUI, but you can't modify the Register BlockRegister
interface format, such as WordLength, because the interface format is fixed for
generated FPGA programming file.

Register and BlockRegister checkboxes

The two checkboxes are read-only in this GUI. If or interface Register BlockRegister
was defined in your specified FPGA programming file, the corresponding checkbox
will be shown checked and the corresponding FPGA interface will be shown in the
FPGA interface figure in the GUI.

Config Register Button

If interface was defined when generating the specified FPGA programming Register
file, this button will be shown in the FPGA interface figure. After you click this
button, a new GUI will be opened.

You can view " ", " ", " " and " " of the Name WordLength Integer WordLength Sign
defined in your specified FPGA programming file, but you can't modify Register
them because they are fixed for a generated FPGA programming file. But you can
modify " " of to re-configure the Register values for U5303A Value Register
instrument co-simulation.

385 Tutorials

You can use a float-point number as the value of a Register or use a variable that is
defined in equation.

 Config BlockRegister Button

If interface was defined when generating the specified FPGA BlockRegister
programming file, this button will be shown in the FPGA interface figure. After you
click this button, a new GUI will be opened.

You can view " ", " ", " ", " " and " " of Name WordLength Integer WordLength Sign Length
the defined in your specified FPGA programming file, but you can't BlockRegister
modify them because they are fixed for a generated FPGA programming file. But
you can modify " " of to re-configure the BlockRegister values Value BlockRegister
for U5303A instrument co-simulation.

You can use a vector with the corresponding " " as the value of a Length
 or use a variable that is defined in equation.BlockRegister

Config OutPort Button

OutPort is a mandatory FPGA interface, so Config OutPort button and the OutPort
interface is always shown in the FPGA interface figure.
After you click this button, a new UI will be opened.

Tutorials 386

1.

2.

3.

4.

5.

6.

You can view " ", " ", " " and " " of the Name WordLength Integer WordLength Sign
defined in your specified FPGA programming file, but you can't modify OutPort
them because they are fixed for a generated FPGA programming file. Nothing can
be modified for the defined interface in a generated FPGA programming OutPort
file.

U5303A Co-Simulation Model Simulation Behavior Description

U5303ACosimBus model has the same output ports as U5303A Design Template
subnet, but it hasn't any input port. Usually, you can connect the output ports of

 model to the same bus wires as U5303A Design Template U5303ACosimBus
subnet to reuse the data analysis design of software simulation for U5303A
instrument co-simulation.

When you have connected model well in a schematic, you can U5303ACosimBus
run SystemVue simulation. Then SystemVue will do the following steps to link with
real U5303A instrument and capture the results data back SystemVue.

SystemVue On PC

SystemVue leverage MD2 driver to download specified FPGA programming
files to DPU FPGA, configure the DPU FPGA according to your settings in the
GUI of and do self-calibration for the DPU FPGA.U5303ACosimBus

If or is defined in the FPGA programming file, Register BlockRegister
SystemVue writes initial values for the defined or on Register BlockRegister
DPU FPGA.

After writing the initial values of and for DPU FPGA, Register BlockRegister
DPU FPGA is ready to capture data. Then SystemVue asks U5303A to send a
"Start" signal to DPU FPGA. Then DPU FPGA can capture ADC input data.

The DPU FPGA process the real-time ADC input data stream as designed in
user application design and generate data streams.OutPort

The data streams are packaged and switched and then buffered into OutPort
U5303A on-board DDR RAM.

387 Tutorials

6.

7.

8.

In the GUI of model, there is a parameter "U5303ACosimBus Samples
". When SystemVue detects that DDR RAM has buffered Number Per Capture

enough data for specified " ", OutPort Samples Number Per Capture
SystemVue will stop ADC data capture and read back the buffered OutPorts
data via PCI Express connection between U5303A instrument and PC.

SystemVue will automatically convert PCI Express data format to user
defined data format and output the data via the output OutPort OutPort
ports of model. As the data streams are buffered U5303ACosimBus OutPort
in DDR RAM based on packages, they will also be outputted based on
packages from the output ports of model.U5303ACosimBus

After DPU FPGA output " " samples, if you're Sample Number Per Capture
using " " co-sim mode, SystemVue will not ask U5303A instrument Single Pass
to capture data and of DPU FPGA will be 0 until the end of ValidOut
simulation. If you're using " " co-sim mode, SystemVue will go to Repeative
step (3) and ask U5303A instrument to capture data again.

For mode, the data buffered in DDR3 RAM is based on the Non-Same Sample Rate
 package. One package just includes valid output data from one , OutPort OutPort

and the package header will have the information of index. So when OutPort
SystemVue read data from DDR3 RAM, it is also package based. The OutPort
number of samples in one package is not fixed, and it's variable as the word length
of .OutPort

When you just define one , all packages are for this and all physical OutPort OutPort
bandwidth between FPGA and DDR3 RAM is used for this data. So the OutPort
valid output of the will be always 1.OutPort

When you define multiple , model will output valid OutPorts U5303ACosimBus
samples for each alternatively. It means that of will be OutPorts ValidOut OutPorts
1 alternatively. The number of " " is the sum of all Sample Number Per Capture

' valid samples for each data capture. You can't specify the valid output OutPorts
samples number for each , because it depends on the actual valid samples OutPort
generation rate for each . For a given buffer size, you can't forecast whether OutPort
the buffer size is enough to save a specified number of valid samples for an OutPort
.

For example, we defined two , OutA and OutB for FPGA0 and define one OutPorts
OutPort OutC for FPGA1. When SystemVue read back OutA package, DataOut of
OutA will output valid data, and ValidOut of OutA is 1; while ValidOut of OutB is 0
during the time. When SystemVue read back OutB package, DataOut of OutB will
output valid data, and ValidOut of OutB is 1; while ValidOut of OutA is 0 during the
time. OutA and OutB will output valid data alternatively, and for each output
sample, only one OutPort data is valid.
While for FPGA1, ValidOut of OutC will always be 1 and DataOut of OutC will
always output valid data.

Tutorials 388

For both FPGA0 and FPGA1, every data capture generates "Sample Number Per
Capture" output samples. The OutPort output samples within one data capture are
gotten by processing a span of continuous ADC data stream. While when a new
data capture starts, the data stream is not continuous with the previous data
capture.

It is shown in below figure:

For mode, it's a special case of mode, Same Sample Rate Non-Same Sample Rate
it actually just have one combined output branch. So in this mode, FPGA0_ValidOut
is always .1

Tutorial of SystemVue U5303A FPGA Design Flow

We will use a simple FIR example to go through the whole U5303A FPGA design
flow. You can find the tutorial example from "Help > Open Examples > Hardware
Design > U5303_FDK > U5303_FDK_Tutorial".

In mode, two ADC input channels are connected to a FPGA. Normal, all 8 channels
In this FIR example, we want to connect IQ signal of a baseband signal to the two
channels and ask the IQ signals to go through the FIR filters with the same
coefficients. We implemented two set of FIR coefficients, one is for Low Pass Filter
and the other is for High Pass Filter. We defined a to select which set of Register
coefficients are used.

We can use U5303A Design Template subnet to do software simulation. Then we
can run the automatic flow to generate FPGA programming file and use the
generated FPGA programming file for U5303A instrument co-simulation.

Design the FIR Example for U5303A FPGA

We need start from a blank U5303A Design Template. So you can open "Help >
Open Examples > Hardware Design > U5303_FDK > U5303_Design_Template >
U5303_Design_Template.wsv" and save it to a writable directory.

Then you can drag-and-drop a subnet to a schematic and U5303_TEMPLATE
double click it to open its GUI.

In U5303A Design Template GUI, you need click " " button in Clock Configure
Settings area to open the Clock Configuration GUI and select to use " " Internal
clock mode at sample rate.1.6 GSample/S

389 Tutorials

Then you can click to configure the DPU FPGA interface. As we just FPGA Settings
use in this example, you need uncheck checkbox in this GUI. Register BlockRegister
Then you can click " " and " " buttons to configure Config Register Config OutPort

 and individually.Register OutPort

For configuration, we just need 1 bit to switch two FIR coefficients, so we Register
can configure as below. We can give as 0 to switch to LPF FIR filter Register Value
or give as 1 to switch to HPF FIR filter for DPU FPGA.Value

Tutorials 390

For configuration, we can define OutI and OutQ for IQ data output from the OutPort
FIR filters. And the fixed-point data format is defined as Signed, wordlength = 16,
integer wordlength = 2.

You have used the GUI to configure the FPGA interfaces for U5303A DPU FPGA.
Then you need create FPGA design for U5303A FPGA. Open subnet U5303_FPGA0
schematic, all interface ports are pre-configured, you need create FIR design in this
schematic and connect the FIR design with the FPGA interfaces.

Go to "Hardware Design Library" in Part Selector and drag a FIR_Fxp model to
. Double click this model to open its parameters UI. You need modify U5303_FPGA0

its OutputWordLength, OutputIntegerWordLength and OutputIsSigned as <16, 2,
Signed> to match your OutPort data format definition. Then click "Filter Designer"
to open FIR coefficients design UI.

391 Tutorials

In filer coefficients design UI, configure the parameters as shown below for low pass

filter:

After clicking OK, you can save the coefficients for FIR_Fxp model. You can copy the

FIR_Fxp model and paste it to , then you have the FIR filters with the U5303_FPGA0

same coefficients for I and Q data paths.

In the same way, you can design coefficients for high pass filter as below parameter

configuration:

Tutorials 392

1.

2.

You can refer to in "Help > Open Examples > Hardware Design > U5303_FPGA0

U5303_FDK > U5303_FDK_Tutorial > tutorial.wsv" for the whole FPGA design.

Please note:

Subnet is used to convert 16 parallel input streams to 8 ADCConvert_16To8
parallel streams and make all 8 parallel data valid at every clock cycle. This
design just process one of 8 parallel data, it's a 8 times decimation.

Because the wordlength of both OutA and OutB are 16 bits, the total bit
width of all OutPorts is 32 bits, which is less than 124 bits (the effect
throughput to DDR3 SDRAM). So ReadyIn of OutA and OutB will always be 1
and we can simply the design without connecting ReadyIn input ports.

Then you have finished the FPGA design in U5303A Design Template.

Software Simulation

393 Tutorials

Software Simulation

After FPGA design entry in U5303A Design Entry, we can create a testbench in
SystemVue top level schematic to test the FIR design by software simulation.

We need find IID_Gaussian model in "Algorithm Design" library in part selector and
drag it to top level schematic. Then we can set its parameters and connect its
output to IN1 and IN2 of U5303A Design Template subnet to get a Gaussian white
noise test signal for our FPGA design. Please note that you have to set the
SampleRate of the IID_Gaussian model as 1.6GHz to match your configuration in
the GUI of U5303A Design Template.

Then you need refer to the top level schematic of "Help > Open Examples > Hardware

Design > U5303_FDK > U5303_FDK_Tutorial > tutorial.wsv" to connect models like

below to get the spectrum of IQ signals from U5303A DPU FPGA.

When you connect the top level testbench well, you can run SystemVue simulation. Then

you can draw the spectrums of I and Q filtered signals from DPU FPGA in figure

Tutorials 394

"Design1 Analysis_Design1_F0_I_Power". If you set as 0 to select Low Register Value

Pass Filter, you can see the results as below figure.

Or if you set as 1 to select High Pass Filter, you can see the results Register Value
as below figure.

Generate FPGA Programming File

After you finish software simulation to verify the function of your FPGA design, you
can add a "HDL Code Generator" to launch the automatic FPGA programming file
generation flow.
You can right click a folder in workspace tree and select to Add HDL Code
Generator.

395 Tutorials

In added HDL Code Generator, you can click Add button to select your

 subnet for FPGA image generation. Then select to use "U5303_TEMPLATE Keysight

" mode and click " " button. SystemVue will launch an Modular Digitizer Generate

automatic flow to generate the final FPGA programming file.

Tutorials 396

U5303A Instrument Co-Simulation

After your FPGA programming file is generated, you can find U5303ACosimBus
model in "Hardware Design" library and drag it to the top level testbench
schematic. Double click the model to open its GUI and configure as below:

Select the path of your generated FPGA image in parameter "FPGA Image Path".

You have to install Agilent IO Library and MD2 driver and have U5303A instrument
that powers on and connects with your computer. Otherwise, you can't see any
instrument listed in this GUI for selection.
Then in the top level testbench, you can connect the model with U5303ACosimBus
the same wires as U5303A Design Template and disable Gaussian noise model and
U5303A Design Template subnet, as shown below:

397 Tutorials

When you connect the model well, you can run the SystemVue U5303ACosimBus

simulation. model will find the actual U5303A instrument and do the U5303ACosimBus

co-simulation. You can leave IN1 and IN2 of U5303A instrument open, then it will get the

filtering results for the floor noise.

When the co-simulation is finished, you can observe the spectrum in the same figures.

Setting as 0:Register Value

Tutorials 398

Setting as 1:Register Value

399 Tutorials

1.

2.

Algorithm Design

Algorithm Design

Contents

Getting Started with Data Flow

Working with MATLAB Script

Understanding Data Flow Simulation

C++ Model Development

C++ Code Generation

Subnetwork Recursion

Cosimulation with SystemC

Getting Started with Data Flow

A workspace file in SystemVue is the basic database used to store anything related
to a user , , , , , and so on. A Data Flow design data graphs analysis equations
simulation in SystemVue requires at least two basic components in a workspace.

A Design: This is used to define how the data flow parts connect together to
form a complete System. The Schematic is the graphical view of the design.
You can also view the Design as a list of parts (the PartList tab).

A Data Flow Analysis: This is the simulation controller that determines
sample rate and start time. For more details about data flow technology, see

.Introduction to Data Flow Simulation

In this tutorial, you will create a simple design using a and a , sine generator sink
run the simulation, and view the output in a .graph

To build a simple simulation, let us start with the Blank workspace containing a
Blank Design and a .Data Flow Analysis

Phase 1- Start SystemVue with a Blank Template

Start SystemVue. If you encounter any problem in starting SystemVue, then
see documentation to make sure the SystemVue has been Installation
installed properly.

If you see a welcome dialog (as shown below), you can also see the Tutorial
videos. For now, click on the button to proceed with this tutorial.Close

http://edadocs.software.keysight.com/display/sv201608/Designs
http://edadocs.software.keysight.com/display/sv201608/Datasets
http://edadocs.software.keysight.com/display/sv201608/Graphs
http://edadocs.software.keysight.com/display/sv201608/Analysis
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Designs
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation
http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/Graphs
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Installation

Tutorials 400

A dialog appears. Select a template Getting Started with SystemVue Blank
in this dialog box (as shown below) and click . Optionally, you could open OK
other , watch tutorial videos, open shipped with templates examples
SystemVue, or open a recently used workspace using this dialog box. If you
do not see this dialog, then you can enable it in of Startup Tools > Options
and then select .Display the Start Page

http://edadocs.software.keysight.com/display/sv201608/Templates
http://edadocs.software.keysight.com/display/sv201608/Examples

401 Tutorials

The SystemVue opens the template (as shown below). The Blank Blank
template includes a schematic with name , a Design Design1 (Schematic)

 with name , and an with name Data Flow Analysis Design1 Analysis Equation
. Although we will not be using in this tutorial, it is Equation1 Equations

useful to know that are a powerful tool that enables post-Equations
processing of data, control over inputs to simulations, and definition of user-
defined custom models. For more details on how to use equations, see

.Equations documentation

Phase 2- Create the System Design

To add a to the design, follow these steps:Sine Generator

http://edadocs.software.keysight.com/display/sv201608/Designs
http://edadocs.software.keysight.com/display/sv201608/Analysis
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/Equations

Tutorials 402

Click inside the schematic. The schematic window appears and the
part selector may display (depending on its last state).

If part selector is not displayed (usually, it is docked on the right of
the screen), click the button in the the Show Part Selector Schematic

. Toolbar

Under , switch to the library. You Current Library: Algorithm Design
may have many libraries available.

There are a lot of parts in the catalog, so type Algorithm Design sine
into the field and press or click the green arrow.Filter By: Enter

Now, click the part, and then click anywhere in the SineGen
schematic to place the Sine Generator.

To add a to the schematic, follow these steps.Data Sink

Change the to in the and press .sine sink Filter By: field Enter

Click the part in the selector, and then click in the schematic to Sink
place it. If you click directly on the SineGen output pin, the two parts
connect.

If you did not connect them automatically, connect the Generator to
the Sink. See .Connecting Parts

Connect using a line (connector).

Mouse over the SineGen output pin. The cursor
changes to a line-connector cursor.

Click and drag the line to the pin.Sink

Release the mouse to connect the two parts.

Or, connect by dragging the sink. The connecting node turns
green and stick to the SineGen pin as you drag the part.

Note that you do not need to use the for the most frequently used Part Selector
parts. There are keyboard shortcuts to place those parts quickly. For instance,
to place the part, you could just press and then click on the SineGen Shift-S
schematic; or to place the Sink, you could press and click on the schematic. S
For more information, see .Appendix A Keystroke Commands

http://edadocs.software.keysight.com/display/sv201608/Schematic+Toolbar
http://edadocs.software.keysight.com/display/sv201608/Schematic+Toolbar
http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/Connecting+Parts
http://edadocs.software.keysight.com/display/sv201608/Appendix+A+Keystroke+Commands

403 Tutorials

To plot the results in a automatically after simulation, double click the Graph
 to open its properties. Select the tab (as shown below) Sink Graph and Table

and check ; this plots the data collected by sink Create and Display a Graph
on a graph using the name defined on this tab (in the figure below, it is S2

).Graph

Phase 3- Run the Simulation

To , click on the button in the the run a simulation Run Analysis
. This runs the simulation, stores the data collected by the Schematic Toolbar

 in a named Design1 Analysis_Design1_Data, and creates a Sink Dataset
graph named as set in the properties. For further details S2 Graph Sink
about dataset, see documentation. After running the simulation, Datasets
the is displayed automatically. If you close the window or it gets S2 Graph
covered up, you can double click on in the workspace tree to open S2 Graph
it again, just like any other workspace tree item.

http://edadocs.software.keysight.com/display/sv201608/Graphs
http://edadocs.software.keysight.com/display/sv201608/Schematic+Toolbar
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/Datasets
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/Datasets

Tutorials 404

Save the workspace by using or and name it File -> Save File -> Save As...
.My First Simulation

Other than using the button to run a simulation, you can Run Analysis
also use one of the following methods to run the simulation:

Right-click the analysis and select from the menu.Calculate Now

Press F5 (this only updates out of date items).

Double-click the analysis (open to change it) and when done, click
the button in the dialog.Calculate Now Analysis

405 Tutorials

1.

2.

3.

4.

5.

6.

7.

Phase 4- Creating Additional Graphs

Once the simulator runs using the settings from the Analysis, it creates a dataset.
This is a "bunch" of data variables aggregated into a single container. All of the
data variables from the simulation are stored here. You can create and Tables

 using this data, post-process it, and compare data from multiple datasetsGraphs
/runs.

To create a graph, follow these steps.

Click the button () on the toolbar (New Item Workspace Tree

).

Select , and the window appears.Add Graph... Graph Series Wizard

Select the series plot type. For instance, select to see the Spectrum
spectrum of your signal.

Select the variable that you want plotted (S2 in this example). Some plot
types require more than one variable.

Click the button and the window appears.OK Graph Properties

If desired, change the graph , and add a title to the .Name Graph Heading

Click .OK

http://edadocs.software.keysight.com/display/sv201608/Tables
http://edadocs.software.keysight.com/display/sv201608/Graphs
http://edadocs.software.keysight.com/display/sv201608/Graph+Series+Wizard
http://edadocs.software.keysight.com/display/sv201608/Graph+Properties

Tutorials 406

7.

For more details about datasets, see . To learn about creating tables from Datasets
data in dataset, see .Creating Tables

Working with MATLAB Script

Working with MATLAB Script

MATLAB Script is an interpreted programming language that allows you to easily
develop algorithms. It is MATLAB compatible but does not support all the
programming features of MATLAB. Also, it does not provide all the functions that
MATLAB provides. For more details on MATLAB Script, see .Using MATLAB Script

This section covers a series of tutorials that demonstrate how to use MATLAB Script
to create simulation models and post process simulation data. It also describes
techniques that improve simulation performance of MATLAB Script code.

MATLAB Script also enables you to use your full version of MATLAB for access
functionality that is in your toolboxes. You can use your MATLAB installation from a
workspace equation, a design equation, a MATLAB Script model or the command
prompt by switching to “Use MATLAB” in the right click menu.

Using MATLAB Script to Create Simulation Models

http://edadocs.software.keysight.com/display/sv201608/Datasets
http://edadocs.software.keysight.com/display/sv201608/Creating+Tables
http://edadocs.software.keysight.com/display/sv201608/Using+MATLAB+Script

407 Tutorials

1.

2.

3.

4.

5.

1.

2.

3.

1.

Using MATLAB Script to Create Simulation Models

For all the tutorial examples mentioned here, use the workspace <SystemVue
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\MATLAB_Script_Modeling.
wsv.

Simple Unirate Model

Model with State

Multirate Model

Multirate Model with Bus IO

Model with Array IO

Using MATLAB Script to Post Process Simulation Data

For all the tutorial examples mentioned here, use the workspace <SystemVue
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\PostProcessingSimulationData.
wsv.

Post processing of simulation data can be done in pages on the Equations
workspace tree. In order to access dataset variables from an page, the Equations

 function must be called.using

Time Domain Power Measurements

Histogram

Spectrum Averaging

Converting MATLAB Simulation Script to SystemVue Model-based Design

The following tutorial uses a wireless communication simulation script as an
example and guides you how to convert a typical MATLAB simulation script for
wireless communication into a model-based design in SystemVue. The example
MATLAB script, UFMC_OFDM___TransceiverChain.m, was created and made
publicly available by Alcatel-Lucent. The MATLAB script file is located in
<SystemVue Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\UFMC_OFDM___TransceiverChain.
m and the corresponding converted workspace is in <SystemVue Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\Converting_UFMC_Simulation_Script.
wsv.

Converting UFMC Simulation Script

Simple Unirate Model

In this tutorial example, you will create a simple unirate (reads one input sample
and writes one output sample at a time) MATLAB Script model that processes the
input signal by applying a polynomial expression. There is already an existing
SystemVue model that does this (see); but assuming such model does Polynomial
not exist, you could create one.

http://edadocs.software.keysight.com/display/sv201608/function_using
http://edadocs.software.keysight.com/display/sv201608/Polynomial

Tutorials 408

1.

2.

3.

4.

5.

Open the workspace under <SystemVue MATLAB_Script_Modeling.wsv
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script.

Open in the folder .Design1 1. Simple Unirate Model

Place down the MATLAB Script part by picking it from the or Part Selector
using the shortcut key M and a left mouse click on the schematic.

Connect the MATLAB Script part between the SineGen source and the
 Sink.MATLABScriptModel

By default, the MATLAB Script part has one input and one output, and they
are both unirate. Double click on the MATLAB Script part and go to the I/O
tab to confirm this.

409 Tutorials

5.

6.

7.

Go to the tab and press the Custom Parameters Define Custom Parameters...
button. In the dialog that pops up, press the button to add a Add Parameter
new parameter called and set its description, default value, PolyCoeffs
validation, and so on, as shown in the figure.

Tutorials 410

7.

8.

9.

Press the button to apply the changes.OK

Click on the cell of the parameter and replace the default Value PolyCoeffs
value of [0, 1, 1] with [1.2, -3.4, 1.6, 0.45, -0.6, 0.23, 0.14, -0.12] (this is the
same value used in the parameter of the Polynomial part in Coefficients
Design1).

Go to the tab and try writing some MATLAB Script code that Equations
computes the variable from the variable and the output input PolyCoeffs
array parameter using the direct polynomial computation formula

where is , is , and is . Keep in mind that MATLAB y output x input a PolyCoeffs
Script arrays are indexed starting at 1, so PolyCoeffs(1) is the 0-th order term
a . The code will look like the following:0

output = PolyCoeffs(1);

for i = 2 : length(PolyCoeffs)
 output = output + PolyCoeffs(i) * input^(i-1)
end

411 Tutorials

9.

10.

11.

12.

13.

The code first assigns to the 0-th order term a , and the loop adds output 0 for

the higher order terms (again keep in mind that since MATLAB Script arrays
are indexed starting at 1, PolyCoeffs(i) is the coefficient of the (i-1)-th power
of x).

Finally, change the name to (to signify that this is an Designator Direct
implementation using a direct computation of the polynomial summation
expression; different implementations will be tried later) and press the OK
button.

Run the simulation () and observe the results in Design1 Analysis
. As seen, the built-in SystemVue model and the Design1_Graph Polynomial

MATLAB_Script model that was created produce the same results.

Now let us compare the performance. Set the in Number of Samples Design1
 to 10000, deactivate (open) the MATLAB_Script part and the Analysis

 Sink and run the simulation. Check the MATLABScriptModel Simulation Log
and find the reported. It should be on the order of 0.5 sec. Execution time
Now deactivate (open) the Polynomial part and the Sink and CppModel
activate the MATLAB_Script part and the Sink and run MATLABScriptModel
the simulation again. Find the reported in the . Execution time Simulation Log
It should be on the order of 5 min.

The simulation times reported here may vary based on the CPU
performance of your machine.

http://edadocs.software.keysight.com/display/sv201608/Polynomial

Tutorials 412

13.

14.

15.

One factor that affects performance is the time it takes to execute the code
in the MATLAB_Script model compared to the overhead of communicating
data to and from MATLAB_Script engine for every execution of the model.
The number of times this communication with the MATLAB_Script engine
happens can be reduced by setting the parameter of the Vectorization
MATLAB_Script model. For every execution of the MATLAB_Script model, the
simulator will send number of samples to the Port Rate * Vectorization
MATLAB_Script engine and then tell the engine to execute Vectorization
number of times. At the end it will read number of Port Rate * Vectorization
samples from every output.

Double click on the MATLAB_Script model and press the Advanced Options...
button. The Parameters tab will show the parameter you defined PolyCoeffs
as well as the parameter. Set 10 and then run the Vectorization Vectorization
simulation again. reported in the should be on Execution time Simulation Log
the order of 30 sec, which is approximately an improvement of 10 times. Set

100 and then run the simulation again. should Vectorization Execution time
be on the order of 5 sec, which is approximately an improvement of 60 times
(compared to the original time).

Although this is a significant improvement, the MATLAB_Script model is still much

slower than the built-in model. This difference in performance is due to the

interpretive nature of MATLAB_Script in contrast to the compiled nature of the built-

in C++ model. There are certain ways to improve the performance of

MATLAB_Script models that will be discussed next.

413 Tutorials

15.

16.

One of the biggest performance bottlenecks in MATLAB_Script code is for
loops iterating over elements of arrays and performing some operation.
MATLAB_Script can efficiently handle operations on entire arrays without
having to iterate over each array element. If the loop can be replaced by for
some vector or matrix math, then simulation performance can improve
dramatically. Let us explore how to rewrite the MATLAB_Script code without
a loop. Make a copy of the MATLAB Script part, call it for Direct Vectorized
and connect it between the SineGen source and the MATLABScriptModel
Sink. Deactivate (open) the MATLAB_Script part and activate the Direct
Polynomial part and the Sink. Reset the in CppModel Number of Samples

 to 1000 and the parameter of the Design1 Analysis Vectorization Vectorized
MATLAB_Script part to 1.

The polynomial evaluation sum

looks like the dot product of two vectors. MATLAB_Script can efficiently
compute the dot product of two vectors and by simply multiplying V1 V2
them (*). To make the multiplication works as a dot product, make sure V1 V2
that is a 1 x array and is a x 1 array. This way * is going to be V1 N V2 N V1 V2
a 1 x 1 array representing the dot product of and . is already V1 V2 PolyCoeffs
a vector, although we do not know whether the user will enter it as a row
vector (1 x) or a column one (x 1). We can use to colon (:) operator to N N
convert in a column vector from whatever form it was entered. PolyCoeffs
Now create a row vector with values [1, , , , ..., ,]. If is a scalar x x2 x3 xN-1 xN x
and is a vector, .^ will create a vector of the same shape (row or column) P x P

Tutorials 414

16.

17.

18.

19.

1.

2.

3.

4.

as but with values equal to raised to the power of each element of . P x P
Using this information, try updating the MATLAB_Script code in the Equations
tab of the MATLAB_Script part to compute the polynomial sum Vectorized
without using a for loop. The code might look like this:

N = length(PolyCoeffs);
Exponents = 0:N-1;
InPowers = input.^Exponents;
output = InPowers * PolyCoeffs(:);

Run the simulation () and observe the results in Design1 Analysis
. Verify that the output from the built-in SystemVue Design1_Graph

 model and the MATLAB_Script model are the same.Polynomial

Now compare the performance of this new MATLAB_Script model to the first
one. Set the in to 10000, deactivate Number of Samples Design1 Analysis
(open) the Polynomial part and the Sink, and run the simulation. CppModel
Execution time (with the parameter set to 1), should be on the Vectorization
order of 5 min (same as with the model). Set to 100 and Direct Vectorization
run the simulation again. Execution time should be on the order of 5 sec but
less than what was recorded with the model.Direct

Increase the parameter to 1000 and compare both models (Vectorization
 and) again. Both models simulate faster compared to Direct Vectorized

 = 100 and the relative speedup of the model Vectorization Vectorized
compared to the model should be more evident. To get a more Direct
accurate estimate of the speedup increase the in Number of Samples

 to 100000, and simulate both models (and Design1 Analysis Direct Vectorized
) with the parameter to 1000. The model should Vectorization Vectorized
simulate in approximately half the time to the one does.Direct

Model with State

In this tutorial example, you will create three simple MATLAB_Script models that
show how to preserve state information between consecutive executions. One of
the models is going to be a source.

Open the workspace <SystemVue Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\MATLAB_Script_Modeling.
wsv.

Open in the folder .Design2 2. Model with State

First, we will create a sinusoid source. Place down the MATLAB_Script part
by picking it from the or using the shortcut key M and a left Part Selector
mouse click on the schematic.

By default, the MATLAB_Script part has one input and one output. Double
click on the MATLAB_Script part, go to the tab, and delete the input port I/O
by first selecting any editable cell in the input port row and then pressing the

 button.Delete Port

http://edadocs.software.keysight.com/display/sv201608/Polynomial

415 Tutorials

4.

5.

6.

Connect the MATLAB_Script part to the Sink.SourceOut

Tutorials 416

6.

7.

Go to the tab and press the Custom Parameters Define Custom Parameters...
button. In the dialog that pops up, press the button to add Add Parameter
parameters, as shown. These parameters specify the , , Amplitude Frequency
and of the generated sinusoid waveform. The parameter Phase SampleRate
specifies at what time intervals (1/) samples of the sinusoid SampleRate
waveform will be generated.

Press the button to apply the changes.OK

417 Tutorials

7.

8. Go to the tab and try writing some MATLAB_Script code that will Equations
generate a sine waveform of the form = ·sin(2·π· ·output Amplitude Frequency t
+). This expression can be used as is in the MATLAB_Script code. The Phase
only problem is we need to increment by 1/ every time the t SampleRate
code is executed. This means the model needs to remember the value of t
from the previous execution, and it also needs a way to give an initial value. t
This is what variables are used for. Persistent variables preserve persistent
their value over successive executions of the MATLAB_Script model. Their
initial value is the value [], which is used to initialize them by checking empty
whether they are empty (use the function). The code might look like isempty
this:

persistent MyTime;

if (isempty(MyTime))
 MyTime = 0.0;
end

output = Amplitude * sin(2 * pi * Frequency *
MyTime + Phase);
MyTime = MyTime + 1.0 / SampleRate;

The code first declares the variable to be a one. It then MyTime persistent
checks whether it is empty and initializes to 0. This will happen only in the
first execution of the model. After the first execution, will no longer MyTime
be empty, the isempty() function will return a status, and the line false

http://edadocs.software.keysight.com/display/sv201608/function_isempty

Tutorials 418

8.

9.

10.

11.

 = 0.0 will not be executed again. The rest of the code just evaluates MyTime
the sinusoid waveform at = and then updates with the t MyTime MyTime
correct value for the next execution of the model.

Press the button to apply the changes you made.OK

Deactivate (open) the Sinks , , and , ZeroCrossingDetected PosCross NegCross
and run . Open and observe the generated Design2 Analysis Design2_Graph
waveform (ignore the errors about undefined function or variable for
'ZeroCrossingDetected', 'PosCross', and 'NegCross'; these errors occur
because the associated Sinks were deactivated). For a of 1 MHz SampleRate
and a sine wave of 10 kHz, you should receive 100 samples per Frequency
period of the sine wave. Since 1000 samples were simulated (see Number of

), you should see 10 periods of the sine wave. Samples in _Design2 Analysis
This is what the graph displays. However, the x-axis represents sample
number and not time (this will be addressed later in this tutorial). Play with
the parameters , , , and , observe the SampleRate Amplitude Frequency Phase
graph, and determine if the model is working properly. Reset the parameters
to their default values before moving to the next step.

Now create a new MATLAB_Script model that takes as input the signal
generated by the sinusoid source and tries to detect zero-crossings (outputs
1 when a zero-crossing is detected and 0 otherwise). Place a new
MATLAB_Script part on the schematic and connect it between the source
output and the Sink . Activate the Sink ZeroCrossingDetected

.ZeroCrossingDetected

419 Tutorials

11.

12.

13.

The default one input and one output setup are sufficient for this
MATLAB_Script model. No parameters need to be defined, so go to its
Equations tab and try writing some MATLAB_Script code to detect zero-
crossings. Detecting a zero-crossing requires knowledge of the current
signal sample as well as the previous one. Make sure you use persistent
variables to keep track of the previous sample. The code might look like this:

persistent PrevIn;

if (isempty(PrevIn))
 PrevIn = 0.0;
end

if ((input == 0) || (input * PrevIn < 0))
 output = 1.0;
else
 output = 0.0;
end

PrevIn = input;

This code declares a persistent variable called , initializes it, and uses PrevIn
the fact that if you multiply two numbers one of which is positive and one
which is negative (in this case, a zero-crossing must have occurred between
the two samples), the result is negative.

Tutorials 420

13.

14.

Run and observe the waveforms in . As Design2 Analysis Design2_Graph
seen, the red waveform () goes high (1) every time a ZeroCrossingDetected
zero-crossing is detected

Finally, refine the zero-crossing detector model to distinguish between
positive and negative zero-crossings. Positive zero-crossings are indicated
by a value of 0.5 on a output and negative zero-crossings are posCross
indicated by a value of -0.5 on a output. Place a new negCross
MATLAB_Script part on the schematic. Double click on it and go to the I/O
tab. Rename the output port to and add a new port called posCross negCross
.

421 Tutorials

14.

15.

16.

Connect the new part between the source output and the Sinks (PosCross
and). Activate both Sinks.NegCross

Although the persistent variable technique described in this tutorial example
is used to track the previous input value, there is an alternative way, which
relies on persistent variables but is slightly more seamless and avoids

Tutorials 422

16.

17.

executing the isempty() check every time the models executes. The MATLAB
 model allows users to define three functions: , , Script Initialize Run Finalize

(see . As implied by their How the Simulator invokes the MATLAB Script Block
names, is executed only once at the beginning of the simulation, Initialize Run
is executed repeatedly during the simulation, and is executed only Finalize
once at the end of the simulation. By default, if you write code in the

 tab without specifying any function name, it is assumed to be the Equations
code of the function. For this refined zero-crossing detector model, use Run
the function to initialize the and variable Initialize predefined persistent
called . The code might look like this:M_State

function Initialize
 M_State.PrevIn = 0.0;
end

function Run
 posCross = 0.0;
 negCross = 0.0;

 if ((input == 0) || (input * M_State.PrevIn
< 0))
 if (M_State.PrevIn > 0)
 negCross = -0.5;
 else
 posCross = 0.5;
 end
 end

 M_State.PrevIn = input;
end

The variable is actually a structure variable that can hold data of any M_State
type (scalar, array, cell array) and size. Just follow its name with a dot '.' and
a name (for example, MyVar) and a new variable will be created
automatically.

Run and observe the waveforms in . As Design2 Analysis Design2_Graph
seen, the green waveform () goes high (0.5) every time a positive PosCross
zero-crossing is detected and the orange waveform () goes low NegCross
(-0.5) every time a negative zero-crossing is detected.

http://edadocs.software.keysight.com/display/sv201608/MATLAB+Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB+Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script#MATLAB_Script-matlab_script_block

423 Tutorials

17.

18. Before finishing this tutorial example, let us address the issue of why the
signal generated from an MATLAB_Script source is plotted versus sample
number and not versus time. The MATLAB_Script model is an Untimed
model, meaning it cannot set timing properties for the simulation. The fact
that a parameter was defined for it does not make it a SampleRate Timed
model. If there is a need to generate a signal with time information using an
MATLAB_Script source, the MATLAB_Script part needs to be followed by the

 model, as shown below.SetSampleRate

http://edadocs.software.keysight.com/display/sv201608/SetSampleRate

Tutorials 424

18.

1.

2.

3.

Multirate Model

In this tutorial example, you will create a multirate (reads more than one input
sample and/or writes more than one output sample at a time) MATLAB_Script
model that tries to find a certain bit pattern in a block of data (the SystemVue built-
in model will be used as a reference to validate the MATLAB_Script PattMatch
code).

Open the workspace <SystemVue Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\MATLAB_Script_Modeling.
wsv.

Open in the folder .Design3 3. Multirate Model

Here is a description of the system in .Design3

http://edadocs.software.keysight.com/display/sv201608/PattMatch

425 Tutorials

3.

4.

5.

The , , and models are used WaveForm RandomBits AsyncCommutator
to create blocks of bits, where the first few bits are always a known bit
pattern (training sequence). The exact bit pattern of the training
sequence and the size of the data block can be set in the Equations
page .InEqns3

The bits are converted to an NRZ waveform using the BitFormatter
model.

A sample rate is assigned to the NRZ waveform using the
 model.SetSampleRate

The NRZ waveform is filtered by an interpolating (interpolation factor
of 8) Root-Raised-Cosine filter designed for a symbol rate of 1 MHz.

Noise and delay are added to the signal. The noise standard deviation
and the delay are set in the Equations page .InEqns3

Then the signal is filtered by a decimating (decimation factor of 8)
Root-Raised-Cosine filter designed for a symbol rate of 1 MHz. The
decimation phase of the filter is automatically computed in the
Equations page .InEqns3

The output of the filter goes through a to recover the bits (in Quantizer
NRZ form).

The output of the filter is also connected to the input of the Window
 model. The input is connected to the output of PattMatch Template

the model (which generates the training sequence). The WaveForm
 model outputs the cross-correlation between the PattMatch Window

and the input as well as the index (shift) at which the cross-Template
correlation maximum occurred.

If you change the in System Sample Rate Design3 Analysis
, you might be required to redesign the filters.

The total delay introduced by this system is 4 + floor(/ 8) + 4, where Delay
the first and last 4 are the delays introduced by the FIR filters and , F1 F2

 is the delay in the model (this is set in the Equations page Delay Delay
) and 8 is the interpolation/decimation factor. For the initial value of InEqns3

 = 42, the total delay is 13.Delay

Deactivate (open) the Sinks and and run CrossCorrOutM DelayOutM Design3
 (ignore any errors about undefined function or variable for Analysis

'CrossCorrOutM' and 'DelayOutM' for the moment; these occur because the
associated Sinks were deactivated). Look at . The value Delay_Table3
recorded in the Sink (connected to the output of) DelayOut index PattMatch
matches the computed delay of 13. By observing the (red) and BitsIn BitsOut
(blue) waveforms in , it can be confirmed that the BitsIn_BitsOut_Graph3
introduced delay is 13. An offset of 2 and -2 is applied to and , BitsIn BitsOut
respectively, to vertically separate the two waveforms so that bit patterns
can be easily identified. As seen, the bit at index 12 in the waveform BitsIn
corresponds to the bit at index 25 in the waveform (a delay of 13 BitsOut

http://edadocs.software.keysight.com/display/sv201608/WaveForm
http://edadocs.software.keysight.com/display/sv201608/RandomBits
http://edadocs.software.keysight.com/display/sv201608/AsyncCommutator
http://edadocs.software.keysight.com/display/sv201608/BitFormatter
http://edadocs.software.keysight.com/display/sv201608/SetSampleRate
http://edadocs.software.keysight.com/display/sv201608/Quantizer
http://edadocs.software.keysight.com/display/sv201608/PattMatch
http://edadocs.software.keysight.com/display/sv201608/WaveForm
http://edadocs.software.keysight.com/display/sv201608/PattMatch
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/PattMatch

Tutorials 426

5.

6.

7.

8.

bits). Try a few different values for the variable in and verify Delay InEqns3
that the delay recorded in the Sink matches the expected one of 4 DelayOut
+ floor(/ 8) + 4 = 8 + floor(/ 8).Delay Delay

The goal of this tutorial is the create an MATLAB_Script model that behaves
the same as the built-in SystemVue model.PattMatch

Place down the MATLAB_Script part by picking it from the Part Selector or
using the shortcut key M and a left mouse click on the schematic.

Double click on the MATLAB_Script part and go to the Custom Parameters
tab. Press the button. In the dialog that pops Define Custom Parameters...
up, press the button to add parameters, as shown. Press the Add Parameter

 button to apply the changes.OK

http://edadocs.software.keysight.com/display/sv201608/PattMatch

427 Tutorials

8.

9.

Click , then change the values of the custom parameters as shown:OK

Tutorials 428

9. Go to the tab and rename the input and output ports to TemplateIn and IO
DelayOut, respectively. Add two more ports as shown (the names shown in
the column are updated as soon as you apply the Symbol Port Name
changes). Make sure you set the values in the column, as shown Port Rates
(the entries in this column make use of the parameters defined in the Custom

 tab).Parameters

By defining port rates greater than 1, the model becomes a multirate one,
meaning it will read and/or write multiple samples every time it executes.
The way this model has been defined, each time it executes, it will read
(consume) samples from the port and TemplateSize TemplateIn WindowSize
samples from the port, and it will write (produce) 1 sample at the WindowIn

 port and samples at the DelayOut WindowSize − TemplateSize + 1
 port. The samples at the CrossCorrOut WindowSize − TemplateSize + 1
 port correspond to the cross-correlation values between the CrossCorrOut

 data points read from the port and the WindowSize WindowIn TemplateSize
data points read from the port for the TemplateIn WindowSize −

 different positions (shifts) the data can have in TemplateSize + 1 TemplateIn
the block, starting at the position where the first data point in both WindowIn

 and align (shift of 0) to the position where the last data WindowIn TemplateIn
point in both and align (shift of WindowIn TemplateIn WindowSize −

). The 1 sample at the port corresponds to the TemplateSize DelayOut
position (shift) where the maximum cross-correlation occurred.

When an MATLAB_Script part port is defined to have a rate greater than one:

429 Tutorials

9.

10.

if it is an input port, the data collected from the port will be placed in
an array whose first dimension is the same as the port rate; if the
input data is not scalar but a matrix, then the data collected from the
port is placed in a multi-dimensional array whose first dimension is
the same as the port rate

if it is an output port, the MATLAB_Script code you write that
produces the data for the port needs to place the data in an array
whose first dimension is the same as the port rate (otherwise zero
padding or truncation will occur); if the output data is not scalar but a
matrix, then the data produced for the port needs to be placed in a
multi-dimensional array whose first dimension is the same as the port
rate

For the example, we are working on, since all input and output data
are scalar real or integer numbers, we should expect that TemplateIn
will be a x 1 real array and will be a TemplateSize WindowIn

 x 1 real array. The MATLAB_Script code we write should WindowSize
produce a single value for the variable (port) and a DelayOut

 x 1 array for the (WindowSize − TemplateSize + 1) CrossCorrOut
variable (port).

Go to the tab and using the information presented above and the Equations
equations in the documentation of the model try writing some PattMatch
MATLAB_Script code to implement the function of the PattMatch model.
Keep in mind that MATLAB_Script arrays are indexed starting at 1. The code
might look like this:

CrossCorrOut = zeros(WindowSize-TemplateSize+1,1);

for n=0:WindowSize-TemplateSize

 Numerator = 0.0;
 Denominator = 0.0;

 for m=1:TemplateSize
 Numerator = Numerator + TemplateIn(m) *
WindowIn(m+n);
 Denominator = Denominator + WindowIn(m+n) *
WindowIn(m+n);
 end

 if (Denominator > 0.0)
 CrossCorrOut(n+1) = Numerator / Denominator;
 else
 CrossCorrOut(n+1) = 0.0;
 end
end

http://edadocs.software.keysight.com/display/sv201608/PattMatch

Tutorials 430

10.

11.

12.

13.

DelayOut = find(CrossCorrOut == max(CrossCorrOut),
1) - 1;

The variable is first initialized to an all zero array with the CrossCorrOut
correct dimensions x 1. Then for every (WindowSize − TemplateSize + 1)
possible shift (0 to) we compute the n WindowSize − TemplateSize
numerator and denominator of the expression found in the doc PattMatch
and if the denominator is non-zero we divide the two to get the cross-
correlation. Notice that the computed cross-correlation value is assigned to
the + 1 element of the array. This is because 0 ≤ ≤ n CrossCorrOut n
WindowSize − TemplateSize, but the index for an MATLAB_Script array has
to be greater than 0. Finally, the is computed using the DelayOut find()
function to find the index of the maximum array element (1 is CrossCorrOut
subtracted to account for the fact the first array element CrossCorrOut
correspond to a shift (delay) of 0).

Set the name to , press the OK button, and connect the Designator Direct
MATLAB_Script part as shown below.

Activate the Sinks and and run . CrossCorrOutM DelayOutM Design3 Analysis
Look at . The values recorded in the and Delay_Table3 DelayOut DelayOutM
Sinks should match. Look at . The waveforms CrossCorr_Graph3 CrossCorrOut
and should also match. Play with a few different values of CrossCorrOutM

 in and verify that the detected delays in match Delay InEqns3 Delay_Table3
and are equal to the expected delay of 8 + floor(/ 8). You may also Delay
want to uncheck the checkbox in the Repeatable Random Sequences Options
tab of , run a few simulations and observe how the cross-Design3 Analysis
correlation waveforms in change with every simulation CrossCorr_Graph3
but always agree with each other.

The execution time for the above simulation is on the order of 2 sec. Let's try
re-writing the MATLAB_Script code in vectorized form (removing the for
loop).

The simulation times reported here may vary based on the CPU
performance of your machine.

http://edadocs.software.keysight.com/display/sv201608/PattMatch
http://edadocs.software.keysight.com/display/sv201608/function_find

431 Tutorials

13.

14.

15.

Make a copy of the MATLAB_Script part, call it and Direct Vectorized
connect it as shown below. Deactivate (open) the MATLAB_Script part.Direct

The sums for the numerator and denominator look very much like the dot
product of two vectors so they can be efficiently computed using vector
math, eliminating the inner for loop. The code might look like this:

CrossCorrOut = zeros(WindowSize-TemplateSize+1,1);

for n=0:WindowSize-TemplateSize

 WindowBlock = WindowIn(n+1:n+TemplateSize).';
 Numerator = WindowBlock*TemplateIn;
 Denominator = WindowBlock*WindowBlock.';

 if (Denominator > 0.0)
 CrossCorrOut(n+1) = Numerator / Denominator;
 else
 CrossCorrOut(n+1) = 0.0;
 end
end

DelayOut = find(CrossCorrOut == max(CrossCorrOut),
1) - 1;

The variable is first initialized to an all zero array with the CrossCorrOut
correct dimensions x 1 as in the (WindowSize − TemplateSize + 1) Direct
implementation. Then for every possible shift (0 to n WindowSize −

) we first extract the -element-long portion of the TemplateSize TemplateSize
 array that will overlap with the and we transpose it (.' WindowIn TemplateIn

operator). The and arrays are both column vectors (x WindowIn TemplateIn N
1) but for the dot product to work we need to multiply a row vector (1 x) by N
a column vector (x 1). This is why we transpose the N WindowBlock

Tutorials 432

15.

16.

1.

2.

3.

extracted subvector. Then we use the regular array MATLAB_Script
multiplication to compute the () as dot product of Numerator Denominator
the vectors and (and WindowBlock TemplateIn WindowBlock WindowBlock
transposed). The rest of the code is the same as before.

Run and verify that the new MATLAB_Script model gives Design3 Analysis
the same results as the built-in SystemVue one. The simulation PattMatch
time is still on the order of 2 sec. You may have to run the simulation much
longer (set variable in to a bigger number) to see the speedup N InEqns
benefits of writing code in vectorized form.

Multirate Model with Bus IO

In this tutorial example, we extend the model created in to process Multirate Model
a set of input signals.WindowIn

Open the workspace <SystemVue Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\MATLAB_Script_Modeling.
wsv.

Open in the folder .Design4 4. Multirate Model with Bus IO

The system in is very similar to the system in (see Design4 Design3 Multirate
 for a detailed description) but instead of having one path (noise Model

addition and signal delay) between the "transmitter" (the interpolating FIR
filter) and the "receiver" (the decimating FIR filter), the transmitted F1 F2
signal goes through four paths each of which has its own delay (settable in
the Equations page). If we wanted to detect the delay for each path InEqns4
using the model we would need four instances of it since this PattMatch
model has single port (not multi-port) inputs. In contrast, the MATLAB_Script
part can be configured to have multi-port inputs/outputs so that it can

http://edadocs.software.keysight.com/display/sv201608/PattMatch
http://edadocs.software.keysight.com/display/sv201608/PattMatch

433 Tutorials

3.

4.

5.

process multiple signals connected at one input. This is the reason the four
signals at the outputs of the decimating FIR filters have been combined into
a bus of size four.

Copy the MATLAB_Script part created in the Vectorized Multirate Model
tutorial and paste it in . Connect it in the "place holder" area at the Design4
bottom right corner of the design (its outputs should be connected to the
Sinks and).DelayOutM CrossCorrM

Double click on it and go to the tab. Check the checkboxes in the I/O
 column for the , , and ports.MultiPort WindowIn DelayOut CrossCorrOut

When an MATLAB_Script part port is defined to be a multi-port

if it is an input port, the data collected from the port will be placed in
a cell array with as many top level cells as the size of (number of
signals connected to) the multi-port

if the port is unirate, then each top level cell will contain a
single input sample (could be scalar or matrix depending on
the data type of the input signal)

if the port is multirate, then each top level cell will contain an N
x 1 array of input samples, where is the port rate (again each N
input sample could be scalar or matrix depending on the data
type of the input signal)

if it is an output port, the MATLAB_Script code you write that
produces the data for the port needs to place the data in a cell array
with as many top level cells as the size of (number of signals
connected to) the multi-port

Tutorials 434

5.

6.

if the port is unirate, then each top level cell should contain a
single output sample (could be scalar or matrix depending on
the data type of the input signal)

if the port is multirate, then each top level cell should contain
an x 1 array of output samples, where is the port rate N N
(again each input sample could be scalar or matrix depending
on the data type of the input signal)

For the example we are working on, we should expect that will be TemplateIn
a x 1 real array (has not been defined to be a multi-TemplateSize TemplateIn
port) and will be a cell array with four cells, each of which will be a WindowIn

 x 1 real array. The MATLAB_Script code we write should WindowSize
produce a cell array of four cells (each cell containing a single value) for the

 variable (port) and a cell array of four cells (each cell containing a DelayOut
 x 1 array) for the variable (WindowSize − TemplateSize + 1) CrossCorrOut

(port).

Go to the tab and update the code to handle the multi-port inputEquations
/output signals. Remember that accessing the individual cells of a cell array
in MATLAB_Script can be done using curly braces {} and that indices for cell
arrays also start at 1. The code might look like this:

CellArraySize = size(WindowIn);
NumChannels = CellArraySize(1);

for Channel = 1:NumChannels

 CrossCorrOut{Channel} = zeros(WindowSize-
TemplateSize+1,1);

 for i=0:WindowSize-TemplateSize

 WindowBlock = WindowIn{Channel}(i+1:
i+TemplateSize).';
 Numerator = WindowBlock*TemplateIn;
 Denominator = WindowBlock*WindowBlock.';

 if (Denominator > 0.0)
 CrossCorrOut{Channel}(i+1) = Numerator
/ Denominator;
 else
 CrossCorrOut{Channel}(i+1) = 0.0;
 end
 end

 DelayOut{Channel} = find(CrossCorrOut{Channel}
== max(CrossCorrOut{Channel}), 1) - 1;
end

435 Tutorials

6.

7.

8.

This code is almost identical to the one in the implementation in Vectorized
the tutorial with the addition of an outer for loop to process Multirate Model
each signal in the multi-port and the use of the {} to access the individual
cells in a cell array.

Unfortunately, there is no way to operations on cell arrays so vectorize
there is no way to eliminate the outer for loop that iterates over the
individual cells of the cell arrays.

Press the OK button to apply all the changes you made.

Run . Look at and verify that values listed Design4 Analysis Delay_Table4
match the expected delays for each path 8 + floor(/ 8), where Delayi Delayi
is the delay in the i-th path (set in).InEqns4

Model with Array IO

In this tutorial example, you will create simple MATLAB_Script models that process
arrays. With the model one can change the rate of the incoming MATLAB_Script
stream of arrays (e.g. produce arrays at the output for each arrays read), N M
change the number of array dimensions, or keep the same number of dimensions
but increase/decrease their size. The format of this tutorial is slightly different than
the previous ones: the focus is not in trying to write efficient MATLAB_Script code
(although one of the examples in this section is a case where efficiency is
discussed) but in trying to understand how arrays are processed, how multirate
affects the input and output arrays, etc.

The important thing to remember is that when a port is defined to have a rate R
greater than 1 then

for an input port the MATLAB_Script model will collect samples from its R
input and put them in an array whose first dimension is ; if the input R
samples happen to be arrays then a multi-dimensional array is created, e.g.
if the input is an x array then the MATLAB_Script code will see an x M N R M
x array.N

for an output port the MATLAB_Script model expects to receive an array
whose first dimension is ; if the desired output is an array then the R
MATLAB_Script code should create a multi-dimensional array for this
output, e.g. if the desired output is an x array then the MATLAB_Script M N
code should create an x x array (if the first dimension of the output R M N
array does not match the rate truncation or zero-padding will occur).R

All the examples shown below are located in the workspace <SystemVue
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\MATLAB_Script_Modeling.
wsv inside the workspace folder . All the examples in this 5. Model with Array IO
folder use MATLAB_Script parts with one input and one output. This is not a
limitation; it is only done for simplicity so that the basic concepts can be better
understood. You can have MATLAB_Script parts processing arrays with multiple
inputs and/or outputs each of which can have its own rate.

http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script

Tutorials 436

1.

2.

When you run these examples you will see different values than the ones are
shown in the tables in this section. The reason is that the source is a random
Gaussian one and the checkbox in the Repeatable Random Sequences Options
tab of the Data Flow Analysis is not checked.

Unirate Example

Open design .1. Unirate

In this design, we create a 3 x 3 array of random normally distributed
numbers and pass it to an MATLAB_Script part. The MATLAB_Script part is
configured with one input and one output both of which have a rate of 1 (this
is the default configuration). The MATLAB_Script code is the single line

output = input(1:2:end,end:-2:1);

Can you figure out what this code will produce at the output?

Since the input rate is 1, the input is going to be a 3 x 3 array. input(1:2:end,
end:-2:1) takes a subset of the rows and columns of the array. More
specifically, the 1:2:end (start at 1, use a step of 2, and finish at the range
last available index () of the associated dimension) will evaluate (when end
associated with the first dimension of a 3 x 3 array) to [1, 3] and the range
end:-2:1 (start at the last available index () of the associated dimension, end
use a step of -2, and finish at 1) will evaluate (when associated with the first
dimension of a 3 x 3 array) to [3, 1]. The length of both ranges is 2, so the
resulting sub-array (which is going to be assigned to output) is a 2 x 2 array.
So we are picking the array elements of rows 1 and 3 and columns 1 and 3
from the original array and assigning them to the output array. In addition,
since the column goes backwards ([3, 1] instead of [1, 3]) the elements range
of column 3 are going to be assigned to column 1 in the output array and the
elements of column 1 are going to be assigned to column 2 in the output
array. Let's verify this by looking at .Table1

http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-OptionstabfortheDataFlowAnalysis

437 Tutorials

2.

3.

1.

Indeed,

the (,) element in the output array is the (,) element in the 1 1 1 3
input array (is element in the [, 3] array evaluated from the row 1 1 1

 1:2:end and is element in the [, 1] array evaluated from range 3 1 3
the column end:-2:1) (see columns marked in purple in)range Table1

the (,) element in the output array is the (,) element in the 1 2 1 1
input array (is element in the [, 3] array evaluated from the row 1 1 1

 1:2:end and is element in the [3,] array evaluated from range 1 2 1
the column end:-2:1) (see columns marked in pink in)range Table1

the (,) element in the output array is the (,) element in the 2 1 3 3
input array (is element in the [1,] array evaluated from the row 3 2 3

 1:2:end and is element in the [, 1] array evaluated from range 3 1 3
the column end:-2:1) (see columns marked in brown in)range Table1

the (,) element in the output array is the (,) element in the 2 2 3 1
input array (is element in the [1,] array evaluated from the row 3 2 3

 1:2:end and is element in the [3,] array evaluated from range 1 2 1
the column end:-2:1) (see columns marked in black in)range Table1

In this example,

the input rate stayed the same (there is one output array generated
for each input array processed)

the output array has the same number of dimensions as the input
array

the output array dimensions (2 x 2) are smaller than the input ones (3
x 3)

Multirate Output Example

Open design .2. Multirate Output

Tutorials 438

1.

2. In this design, we create two arrays, a 4 x 1 and a 4 x 3, of random normally
distributed numbers and pass them to two MATLAB_Script parts. The
MATLAB_Script parts are identical (one input with rate 1 and one output with
rate 4).

The MATLAB_Script code is the single line

439 Tutorials

2.

output = input;

Can you figure out what this code will produce at the output?

For the MATLAB_Script part with the 4 x 1 array input, since the input rate is
1, the input is going to be a 4 x 1 array. This is assigned to output, which has
a rate of 4. Remember that the first dimension of an array corresponding to
an output port is associated with the port's rate, that is, how many output
samples will be produced at each execution on the MATLAB_Script model. In
this case, if we "remove" the first dimension we end up with a scalar. So the
output of this MATLAB_Script part is going to be scalar values, which come
out at 4 times the rate the input 4 x 1 arrays are consumed. Let's verify this
by looking at .Table2_1

Similarly, for the MATLAB_Script part with the 4 x 3 array input, since the input

rate is 1, the input is going to be a 4 x 1 array. This is assigned to output, which

has a rate of 4. Again, if we "remove" the first dimension we end up with a one-

dimensional vector of size 3. So the output of this MATLAB_Script part is going to

be dimensional vectors of size 3, which come out at 4 times the rate the input 4 x 3

Tutorials 440

2.

3.

4.

arrays are consumed. Let's verify this by looking at .Table2_2

In this example,

the output rate is 4 times the input rate

the output arrays have different number of dimensions compared to
the input arrays

Now try changing the output port rate from 4 to 6 and run the simulation
again. Since the output array's first dimension is still 4, the output will be
padded with 2 "zero" samples. For the MATLAB_Script part with the 4 x 1
array input the padded values are scalar zeros. For the MATLAB_Script with
the 4 x 3 array input the padded values are 1 x 3 arrays with all their
elements set to 0.

441 Tutorials

4.

5. Now try changing the output port rate from 4 to 3 and run the simulation
again. Since the output array's first dimension is still 4, the last row in output
will be omitted.

Tutorials 442

5.

1.

2.

Multirate Input Example

Open design .3. Multirate Input

In this design, we create two arrays, a 1 x 3 and a 2 x 2, of random normally
distributed numbers and pass them to two MATLAB_Script parts. The
MATLAB_Script parts are identical (one input with rate 3 and one output with
rate 1).

443 Tutorials

2.

The MATLAB_Script code is the single line

output = input;

Can you figure out what this code will produce at the output?

For the MATLAB_Script part with the 1 x 3 array input, since the input rate is
3, the input is going to be a 3 x 1 x 3 array. This is assigned to output, which
has a rate of 1. Therefore, the output of this MATLAB_Script part is going to
be 3 x 1 x 3 arrays, which come out at 1/3 times the rate the input 1 x 3
arrays are consumed. Let's verify this by looking at .Table3_1

Tutorials 444

2.

3.

1.

Similarly, for the MATLAB_Script part with the 2 x 2 array input, since the input

rate is 3, the input is going to be a 3 x 2 x 2 array. This is assigned to output,

which has a rate of 1. Therefore, the output of this MATLAB_Script part is going to

be 3 x 2 x 2 arrays, which come out at 1/3 times the rate the input 2 x 2 arrays are

consumed. Let's verify this by looking at .Table3_2

In this example,

the output rate is 1/3 times the input rate

the output arrays have a different number of dimensions compared to
the input arrays

Multirate Input and Output Example

Open design .4. Multirate Input and Output

445 Tutorials

1.

2. In this design, we create a 2 x 2 array of random normally distributed
numbers and pass it to two MATLAB_Script parts. The MATLAB_Script parts
are identical (one input with rate 10 and one output with rate 5).

The MATLAB_Script code in the MATLAB_Script part isM1

output = zeros(5, 2, 2);

Tutorials 446

2.

3.

4.

output(1, :, :) = input(1, :, :) + input(10,
:, :);
output(2, :, :) = input(2, :, :) + input(9,
:, :);
output(3, :, :) = input(3, :, :) + input(8,
:, :);
output(4, :, :) = input(4, :, :) + input(7,
:, :);
output(5, :, :) = input(5, :, :) + input(6,
:, :);

Can you figure out what this code will produce at the output?

For the MATLAB_Script part , since the input rate is 10, the input is going M1
to be a 10 x 2 x 2 array. The output is first initialized to a 5 x 2 x 2 array of
zeros. Since the output rate is 5, the output of this MATLAB_Script part is
going to be 2 x 2 arrays, which come out at 1/2 times the rate the input 2 x 2
arrays are consumed. The rest of the code computes the 5 output 2 x 2
matrices.

the 1 output 2 x 2 matrix is the sum of the 1 and 10 2 x 2 input st st th

matrices

the 2 output 2 x 2 matrix is the sum of the 2 and 9 2 x 2 input nd nd th

matrices

the 3 output 2 x 2 matrix is the sum of the 3 and 8 2 x 2 input rd rd th

matrices

the 4 output 2 x 2 matrix is the sum of the 4 and 7 2 x 2 input th th th

matrices

the 5 output 2 x 2 matrix is the sum of the 5 and 6 2 x 2 input th th th

matrices

Let's verify this by looking at .Table4

447 Tutorials

4.

5.

1.

2.

The operation of this MATLAB_Script part can be generalized to "the i th

output 2 x 2 matrix is the sum of the i and i from the end 2 x 2 input th th

matrices." Can you write a for loop that does that?

for i = 1:5;
 output(i, :, :) = input(i, :, :) + input(11
-i, :, :);
end

Since the for loop index is used to index in an array can you write this code in
vectorized form (without the use of the for loop? Double click on the
MATLAB_Script part to see this implementation.M2

In this example,

the output rate is 1/2 times the input rate

the output arrays have the same number of dimensions compared to
the input arrays

the output array dimensions (2 x 2) are the same as the input ones (2
x 2)

Array Averaging

Open design .5. Array Averaging

In this design, we have two random sources that generate a random number
with mean () 0 (instance) and 1 (instance) and standard deviation (Offset I1 I2

) 1. In the top path, we interleave samples from these sources using a StdDev
. Since source is connected to the first input of the Commutator I1

Commutator and source is connected to its second input and the C1 I2
 parameter is set to 1, the samples at the output of will be BlockSize C1

alternating between samples from and I2_ starting with . Then we pack I1 I1
the samples at the output of into 1 x 2 arrays in form. What C1 RowMajor
this means is that the (1,1) elements in the arrays coming out of are P4
random numbers normally distributed with mean 0 and standard deviation of

http://edadocs.software.keysight.com/display/sv201608/Commutator

Tutorials 448

2.

3.

1 and the (1,2) elements in the arrays coming out of are random numbers P4
normally distributed with mean 1 and standard deviation of 1. These arrays
are then sent to an MATLAB_Script part, which has one input with rate 1000
and one output with rate 1. The code in the MATLAB_Script part is the single
line:

output = mean(input);

Can you figure out what this code will produce at the output?

Since the input rate is 1000, the input is going to be a 1000 x 1 x 2 array. The
 function averages along the first non-singleton array dimension (in our mean

case this is the first dimension of 1000) and reduces this dimension to 1. So
the output is going to be a 1 x 1 x 2 array. Since we are averaging random
numbers we expect the average to be close to their mean. Therefore, the
(1,1,1) output array element should be close to 0 and the (1,1,2) output array
element should be close to 1. Let's verify this by looking at .Table5

Indeed, the array (see columns marked red and blue) has three dimensions Out1

(there are three indices following its name in the columns showing its contents),

the first dimension has size 1 (the first index only takes the value of 1), the second

dimension has size 1 (the second index only takes the value of 1), and the third

dimension has size 2 (the third index takes the values 1 and 2). The value of the

(1,1,1) element is close to 0 (the mean of the samples from source) and the I1

value of the (1,1,2) element is close to 1 (the mean of the samples from source).I2

In the bottom path, we again interleave samples from the two random
sources using a . However, the parameter of the Commutator BlockSize
Commutator is set to 1000. Therefore, its output will interleave blocks of C2
1000 samples from the two source starting with source . The output of I1 C2
is packed into 1000 x 2 arrays in form. What this means is that ColumnMajor

http://edadocs.software.keysight.com/display/sv201608/function_mean
http://edadocs.software.keysight.com/display/sv201608/Commutator

449 Tutorials

3.

1.

2.

the first column (:,1) in the arrays coming out of contains the block of P1
1000 samples coming out of and the second column (:,2) in the arrays I1
coming out of contains the block of 1000 samples coming out of . The P1 I2
arrays at the output of are sent to an MATLAB_Script part, which has one P1
input with rate 1 and one output with rate 1. The code in the MATLAB_Script
part is again the single line:

output = mean(input);

Can you figure out what this code will produce at the output?

Since the input rate is 1, the input is going to be a 1000 x 2 array. The mean
function averages along the first non-singleton array dimension (in our case
this is the first dimension of 1000) and reduces this dimension to 1. So the
output is going to be a 1 x 2 array. Since we are averaging random numbers
we expect the average to be close to their mean. Therefore, the (1,1) output
array element should be close to 0 and the (1,2) output array element should
be close to 1. This can be verified by looking at above. The array Table5 Out2
(see columns marked green and orange) has two dimensions (there are two
indices following its name in the columns showing its contents), the first
dimension has size 1 (the first index only takes the value of 1), and the
second dimension has size 2 (the second index takes the values 1 and 2). The
value of the (1,1) element is close to 0 (the mean of the samples from source

) and the value of the (1,2) element is close to 1 (the mean of the samples I1
from source).I2

Time Domain Power Measurements

In this tutorial example, we will post-process simulation data to compute some
useful power measurements.

Open the workspace under <SystemVue PostProcessingSimulationData.wsv
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script.

Open in the folder . This Design1 1. Time Domain Power Measurements
design generates a QPSK signal with a symbol rate of 0.5 MHz sampled at 4
MHz.

http://edadocs.software.keysight.com/display/sv201608/function_mean

Tutorials 450

2.

3.

The trajectory plot is shown in Graph1

Add an Equations page in folder and 1. Time Domain Power Measurements
call it . Try writing some MATLAB Script code that PostProcessingEqns1
computes the instantaneous power of the signal at the output of the
modulator. This signal is saved in the variable in the dataset ModOut

. Assume the reference resistance is 50 Ohms. The signal at the Desing1_Data
output of the modulator is represented in a complex envelope form. For a
complex envelope signal the power is | | / (2 ·), where is the v(t) v(t) 2 R R
reference resistance and the scaling factor of 2 is used because v(t)
represents the signal envelope (not the real signal) and the mean power of
the carrier is 0.5.

In order to be able to access dataset variables from an Equations page,
you need to use the function.using

Add some more code to compute the mean power, the maximum
instantaneous power, the peak to average ratio, the time instant the
maximum instantaneous power occurs, and the percentage of time the
instantaneous power exceeds the average power by 3 dB. The code might
look like this:

using('Design1_Data');

Power = abs(ModOut).^2 / (2.0 * 50.0);
MeanPower = mean(Power);
MaxPower = max(Power);

http://edadocs.software.keysight.com/display/sv201608/function_using

451 Tutorials

3.

4.

PeakToAverageRatio = 10 * log10(MaxPower /
MeanPower);

Idx = find(Power == MaxPower);
MaxPowerTime = ModOut_Time(Idx);

PercentOfTimeAboveMeanPowerPlus3dB = 100 * length(
find(Power > MeanPower*2)) / length(Power);

First the function is used to get access to dataset variables. The using
instantaneous power is computed using the expression | | / (2 ·). The v(t) 2 R

 function is used to get the magnitude of the signal and the element-wise abs
power operator () is used to compute the squares of all elements in the .^
variables . and are easily computed by calling ModOut MeanPower MaxPower
the and functions respectively. The in dB can mean max PeakToAverageRatio
then be computed from and . To find the time instant MeanPower MaxPower
where the maximum instantaneous power occurs, we use the function find
with the argument == . This returns the index of the Power PowerMax Power
array element that is equal to . We then use this index to extract MaxPower
the time value the maximum occurred by indexing into the ModOut_Time
dataset variable (the independent time associated with). Finally, to ModOut
find the percentage of time the instantaneous power exceeds the average
power by 3 dB, we again use the function with the argument > find Power

 * 2. This returns all the indices (in a row vector) of the MeanPower Power
array elements whose values are greater than * 2 (3 dB higher MeanPower
than the average power). is then PercentOfTimeAboveMeanPowerPlus3dB
computed by taking the ratio of the number of elements () in the row length
vector returned by to the number of elements of .find Power

Press Ctrl+G or click the button from the Equation Toolbar to Run Equations
execute the code you have written. The values of the variables will be shown
in the . The power values are in (since values Variable Viewer Watts ModOut
are in).Volts

http://edadocs.software.keysight.com/display/sv201608/function_using
http://edadocs.software.keysight.com/display/sv201608/function_abs
http://edadocs.software.keysight.com/display/sv201608/function_mean
http://edadocs.software.keysight.com/display/sv201608/function_max
http://edadocs.software.keysight.com/display/sv201608/function_find
http://edadocs.software.keysight.com/display/sv201608/function_find
http://edadocs.software.keysight.com/display/sv201608/function_length
http://edadocs.software.keysight.com/display/sv201608/function_find
http://edadocs.software.keysight.com/display/sv201608/Workspace+Variables

Tutorials 452

4.

5.

6.

1.

Right click on the variable and select > . A Power Add to Graph New Graph
graph showing the instantaneous power vs time is created. Try placing a
marker at the time point sec and visually verify that it is MaxPowerTime
where the maximum occurs.

Experiment with different values of the Raised Cosine filters' factor RollOff
and see how the , , , and MeanPower MaxPower PeakToAverageRatio

 vary.PercentOfTimeAboveMeanPowerPlus3dB

Histogram

In this tutorial example, we will post-process simulation data to create a histogram.
There is already a function in SystemVue, which we will use as a histogram
reference to validate our code.

http://edadocs.software.keysight.com/display/sv201608/function_histogram

453 Tutorials

1.

2.

3.

4.

Open the workspace under <SystemVue PostProcessingSimulationData.wsv
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script.

Open in the folder . This design generates a random Design2 2. Histogram
number that is normally distributed with zero mean and standard deviation of
1. The simulation generates 10000 numbers saved in the array variable in S1
the dataset .Design2_Data

Add an Equations page in folder and call it 2. Histogram
. Use the function to get access to the variables PostProcessingEqns2 using

in the dataset and call the function to create a Design2_Data histogram
histogram of with 11 bins.S1

using('Design2_Data');

x = histogram(S1, 11);

The function will create a histogram with 11 equal width bins histogram
starting from the minimum value of to the maximum value of . If the S1 S1
boundaries of the bins are , = 1, 2, ..., 12, the histogram values , = bins(i) i x(i) i
1, 2, ..., 11, are the number of values in , such that ≤ < . v S1 bins(i) v bins(i+1)
The number of values in that is exactly equal to 12 (the maximum v S1 bins()
value of) are counted in the last histogram value 11 .S1 x()

Click the button in the Equations page window to run the Run Equations
code you have written. Right-click on the variable and select x Add to Graph
> . A graph showing the histogram of the values is created.New Graph S1

http://edadocs.software.keysight.com/display/sv201608/function_using
http://edadocs.software.keysight.com/display/sv201608/function_histogram
http://edadocs.software.keysight.com/display/sv201608/function_histogram

Tutorials 454

4.

5. Try writing some MATLAB Script code that computes the histogram of the S1
same way the function does.histogram

To get a vector of equally spaced values (bin boundaries) starting at N a
and ending at used the function.b linspace

The code might look like this:

using('Design2_Data');

x = histogram(S1, 11);

DataMin = min(S1);
DataMax = max(S1);

bins = linspace(DataMin, DataMax, 12);

y = zeros(11, 1);

for i = 1:length(y);
 indices = find(bins(i) <= S1 & S1 < bins(i+1)
);
 y(i) = length(indices);
end

indices = find(S1 == bins(i+1));
y(i) = y(i) + length(indices);

setindep('y', 'bins');

http://edadocs.software.keysight.com/display/sv201608/function_histogram
http://edadocs.software.keysight.com/display/sv201608/function_linspace

455 Tutorials

5.

6.

We first find the minimum and maximum values of and create the bin S1
boundaries using the function. Then we initialize our histogram to linspace y
a zero array of 11 elements (it is important to define as a column vector; y
otherwise it will not plot properly on graphs). Then we use the function find
to get the indices of the values in that satisfy the condition ≤ < S1 bins(i) v

 (values inside bin). To get a count of these values we use the bins(i+1) i length
function on the vector. Finally, using and again we get the indices find length
number of values in that are exactly equal to the right boundary of the S1
last bin (= 12 = max()) and we add it to the last histogram bins(i+1) bins() S1
value = 11 (at the end of the for loop the value of the loop index is the y(i) y() i
last value it got, that is, length(y) = 11). The last call to the setindep
function creates a dependent/independent relationship between the
variables and so that can be properly plotted on a graph.y bins y

Click the button in the Equations page window to run the Run Equations
code you have written. Right click on the variable and select y Add to Graph
> to plot on the same graph as . Verify that Add to 'PostProcessEqn2_x' y x
the values of and match.x y

y is not going to be plotted as a bar graph but as a line graph. The
 function sets a certain property on the variable it returns to histogram

make it plot in a bar graph form. Setting such a property on the variable
, which is computed in the Equations page using a sequence of y

MATLAB Script statements (assignments, for loops, function calls, etc.),
is not a supported feature.

Spectrum Averaging

http://edadocs.software.keysight.com/display/sv201608/function_linspace
http://edadocs.software.keysight.com/display/sv201608/function_find
http://edadocs.software.keysight.com/display/sv201608/function_length
http://edadocs.software.keysight.com/display/sv201608/function_find
http://edadocs.software.keysight.com/display/sv201608/function_length
http://edadocs.software.keysight.com/display/sv201608/function_setindep
http://edadocs.software.keysight.com/display/sv201608/function_histogram

Tutorials 456

1.

2.

3.

4.

Spectrum Averaging

In this tutorial example, we will extend the custom equations in the Spectrum
graph to allow averaging spectra of multiple segments.

Open the workspace under <SystemVue PostProcessingSimulationData.wsv
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script.

Open in the folder . This is the same design Design3 3. Spectrum Averaging
as in the folder , which Design1 1. Time Domain Power Measurements
generates a QPSK signal with a symbol rate of 0.5 MHz sampled at 4 MHz.

Run , open the dataset , right click on the Design3 Analysis Design3_Data
variable , and select > . In the ModOut Add to Graph New Graph Series Wizard

 window, select in the Graph Series Wizard Spectrum Select Type of Series
area, and press the button. Press the button again and a graph OK OK
showing the spectrum of the signal is created.ModOut

Double-click on the graph, and press the button in the first row of the Edit...
grid. The window opens again. Press the Graph Series Wizard Edit Equations
button. An Equations page opens with some equations that calculate the
spectrum of a time-domain signal. Dismiss all the windows that have opened

457 Tutorials

4.

5.

by pressing the buttons. The function inside the Cancel MySpectrumAnalyzer
folder is a simplified version of the equations inside 3. Spectrum Averaging
the page of the window wrapped into Custom Equations Graph Series Wizard
a function.

Add an Equations page in folder and call it 3. Spectrum Averaging
. Try writing some MATLAB Script code that breaks PostProcessingEqns3

down the signal into segments (you can define to be a variable ModOut N N
in this Equations page), computes the spectrum of each segment by calling
the function, and averages the spectra.MySpectrumAnalyzer

In order to be able to access dataset variables from an Equations page,
you need to use the function.using

The code might look like this:

using('Design3_Data');

N = 1;

BlockSize = floor(length(ModOut) / N);

MySpec = zeros(BlockSize, 1);

for i = 1:N
 ModOutI = ModOut((i-1)*BlockSize+1 :
i*BlockSize);
 TimeVecI = ModOut_Time((i-1)*BlockSize+1 :
i*BlockSize);
 [MySpecI, MyFreq] = MySpectrumAnalyzer(
ModOutI, TimeVecI);
 MySpec = MySpec + MySpecI;
end

MySpec = MySpec / N;
MyFreq = MyFreq + ModOut_Fc;

setindep('MySpec', 'MyFreq');
setdisplayunit('MySpec', 'dBm');
setdisplayunit('MyFreq', 'Hz');

We first compute the number of samples () of each segment by BlockSize
dividing the length of the variable with (the number of segments). ModOut N
We use the function to make sure has an integer value. Then floor BlockSize
we define the variable that will hold the averaged spectrum and we MySpec
initialize it to a vector of zeros (it is important to define this as a column
vector; otherwise it will not plot properly on graphs). Next we use a for loop
to get non-overlapping segments of data from the N ModOutI ModOut
variable and the corresponding time vector from the TimeVecI ModOut_Time
variable, call the function to compute their spectrum MySpectrumAnalyzer

http://edadocs.software.keysight.com/display/sv201608/function_using
http://edadocs.software.keysight.com/display/sv201608/function_floor

Tutorials 458

5.

6.

7.

8.

9.

and add all the spectra to the variable. Finally, we divide MySpec MySpec
with to get the averaged value and offset by (the N MyFreq ModOut_Fc
characterization frequency of the signal). The last three lines set up ModOut
a dependent/independent relationship between the variables and MySpec

 and set the units for these variables so that can be properly MyFreq MySpec
plotted on a graph.

Click the button in the Equations page Run Equations PostProcessingEqns3
window to run the code you have written. Right click on the variable MySpec
and select > . A graph showing the spectrum of Add to Graph New Graph

 is created.ModOut

The spectrum in this graph should look the same as the one we created
earlier.

Go to , set to 10000, and simulate Design3 Analysis Number of Samples
again.

Go to , set to 10, and click the button. PostProcessingEqns3 N Run Equations
You can see the results of averaging 10 spectra in the graph plotting MySpec
.

459 Tutorials

9.

1.

Converting UFMC Simulation Script

In this tutorial, we will convert an MATLAB script,
UFMC_OFDM___TransceiverChain.m, to a SystemVue model-based design using

 models and workspace tree equations. MATLAB_Script
UFMC_OFDM___TransceiverChain.m was created and made publicly available by
Alcatel-Lucent. This script demonstrates how a typical wireless communication
simulation is done in MATLAB. The MATLAB script file is located in <SystemVue
Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\UFMC_OFDM___TransceiverChain.
m and the converted SystemVue workspace is in <SystemVue Installation
Directory>\Examples\Tutorials\Algorithm_Design\MATLAB_Script\Converting_UFMC_Simulation_Script.
wsv. You need to have MATLAB R2014a or later installed on your machine in order
to run the tutorial workspace in SystemVue because the script uses certain
functions that are not available in MATLAB Script.

After examing UFMC_OFDM___TransceiverChain.m, you will understand that
lines 1 to 294 is used to setup the parameters and structures (and PAR

) for the main simulation loops. You can create a workspace PARderived
equation, name it "Setup", and directly copy lines 1 to 294 to the workspace
equation. The only change between UFMC_OFDM___TransceiverChain.m and
the "Setup" equation in the tutorial workspace is line 106, where PAR.NTTIs =
10000 is changed to PAR.NTTIs = 100 to reduce the simulation time for
demonstration purpose. Once the "Setup" equation is created, right click on
the equation editing area, turn off "Auto-calculate", and select "Use MATLAB
<version>". The reason to select the retail MATLAB version is because the
script uses functions like "chebwin" which is not available in MATLAB Script
mode.

http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script

Tutorials 460

1.

%
==
===================
% MatLab Script “UFMC_OFDM___TransceiverChain.m”
Terms of Use
% Version: 2014-03-21
%
% This MatLab script was created and is made
available free of charge
% by Alcatel-Lucent Deutschland AG, Lorenzstraße 10,
70435 Stuttgart
% (“Alcatel-Lucent”).
%
% You may use this script for any purpose, and you
may modify the
% contents of this script and incorporate the
script into your own
% scripts in whole or in part.
%
% If you use this script without modification, you
must preserve the
% copyright notice identifying Alcatel-Lucent. If
you incorporate this
% script into your own scripts, you must include
into them a notice
% stating that portions of the script were created
by Alcatel-Lucent.
%
% Alcatel-Lucent does not provide any technical
support for the script
% or for MatLab itself. For enquiries related to
the above, you may
% contact
% Frank Schaich, e-mail frank.schaich@acatel-
lucent.com, or
% Thorsten Wild, e-mail thorsten.wild@alcatel-
lucent.com.
%
% Alcatel-Lucent does not provide any
representation or warranty with
% regard to the functionality of this script, and
Alcatel-Lucent does
% does not assume any liability for the
functionality of this script.
% Furthermore, Alcatel-Lucent does not represent,
warrant, guarantee
% or otherwise assume any liability for the fitness
of the script for
% any particular purpose and for any consequences
the use of this
% script may have.
%

461 Tutorials

1.

% By making available the script, Alcatel-Lucent
does not provide an
% express or implied license as to any of its or
its related companies’
% patents or patent applications . The granting of
rights embodied
% in this notice relates only to the script itself.
%
% MatLab is software licensed separately by The
MathWorks, Inc.
%
%
==
====================
%
% Further technical details on UFMC can be found in
the following
% references (and references therein):
% [1] F. Schaich, T. Wild, Y. Chen , “Waveform
contenders for 5G –
% suitability for short packet and low latency
transmissions”,
% accepted for IEEE VTCs’14, Seoul, Korea,
April 2014
% [2] V. Vakilian, T. Wild, F. Schaich, S.t. Brink,
J.-F. Frigon,
% "Universal-Filtered Multi-Carrier Technique fo
r Wireless Systems
% Beyond LTE", 9th International Workshop on
Broadband Wireless Access
% (BWA) @ IEEE Globecom'13, Atlanta, GA, USA,
December 2013.

clear all

%%
%%%%%%%%%%%%%%%%%%%%
%%% simplified UFMC
chain: %%%
%%% single-user, no delay, AWGN, BPSK/QPSK, ZF/MF
/MMSE and FFT based %%%
%%% detection, UFMC and CP-
OFDM %%%
%%
%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Parameter settings %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tutorials 462

1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% burst placing, modulation %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PAR.blockShift = 28;% frequency shift of lowest-
frequency block in subcarriers
PAR.nPRB = 10;% Allocation width in number of
subbands (sub-band width defined in PAR.blockSize
below)
PAR.DataSource = 'QPSK'; % 'BPSK', 'QPSK'

PAR.Constellation{1} = [-1 1 ; 1 0]; %
BPSK signal constellation
PAR.Constellation{2} = [(+1+1i)/sqrt(2) 0 0 ; ... %
QPSK signal constellation (Gray mapping)
 (+1-1i)/sqrt(2) 0 1 ; ...
 (-1+1i)/sqrt(2) 1 0 ; ...
 (-1-1i)/sqrt(2) 1 1];

PAR.Tx.Flag_UndoFilterResponse = 1; %if flag set to
1: filter response in pass-band is undone in Tx to
uniform power distribution beteen subcarriers.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Parameteres for Rx %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PAR.Rx.ZF = 0; %ZF active? 1 --> active, 0 --> not
active
PAR.Rx.MF = 0; %MF active? 1 --> active, 0 --> not
active
PAR.Rx.MMSE = 0; %MMSE active? 1 --> active, 0 --
> not active
PAR.Rx.FFTbasedRx = 1; %FFT based detection
active? 1 --> active, 0 --> not active
PAR.Rx.ChanEst = 'viaKnownSymbs'; %'viaKnownSymbs'
(ideal yet, i.e. all symbols used as pilots)
PAR.Rx.flag_CFOcomp_on = 1; % CFO compensation
(time domain) done in receiver: 1 = yes; 0 = no

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Settings regarding synchronization
misalignments per alloc and per layer %%%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PAR.rCFO = 0.0;%relative carrier frequency offset
in subcarrier spacings

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% General settings %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
PAR.SNR_dB = [0:10];
PAR.NsymbsperTTI = 14;% number of Multi-carrier
symbols per TTI (i.e. per simulation drop)

463 Tutorials

1.

PAR.FFTsize = 1024;
PAR.lFIR = 74; % filter length: 1 means OFDM, >1
uses a Dolph-Chebychev FIR filter
PAR.FilterPar_dB = 40; % sideband attenuation
(design parameter of Dolph-Chebychev filters)
PAR.blockSize = 12; % width of subband in number of
subcarriers (needs to match to Filterbandwidth)
PAR.CPlength = 73; % length of OFDM CP in samples
PAR.NTTIs = 100; % number of TTIs/drops

if (PAR.Tx.Flag_UndoFilterResponse && (PAR.Rx.ZF ||
PAR.Rx.MF || PAR.Rx.MMSE))
 error('PAR.Tx.Flag_UndoFilterResponse and at
least one of the linear receivers is active. PAR.Tx.
Flag_UndoFilterResponse is only applicable to FFT
based Rx!')
end

%% Initialization
%%%%%%%%%%%%%%%%%%%%%%%%%
%%% basic parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%

% number of samples per multicarrier symbol
if (PAR.lFIR == 1) % OFDM
 PARderived.lMCsym = PAR.FFTsize + PAR.CPlength;
else
 PARderived.lMCsym = PAR.FFTsize + PAR.lFIR -1;
end

switch PAR.DataSource
 case {'BPSK'}
 PARderived.Bit_per_Symbol = 1;
 case {'QPSK'}
 PARderived.Bit_per_Symbol = 2;
end

PARderived.nSNR = length(PAR.SNR_dB);

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Signal generation %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

% OFDM CP and CP removal
% matrix for cyclic prefix addition
CPadd = zeros(PAR.CPlength+PAR.FFTsize,PAR.FFTsize);
CPadd(1:PAR.CPlength,(PAR.FFTsize-PAR.CPlength+1):
end) = diag(ones(1,PAR.CPlength));
CPadd((PAR.CPlength+1):end,:) = diag(ones(1,PAR.
FFTsize));
PARderived.Tx.CPadd=CPadd;
% matrix for cyclic prefix removal
CPrem = zeros(PAR.FFTsize,PAR.CPlength+PAR.FFTsize);

Tutorials 464

1.

CPrem(:,(PAR.CPlength+1):end) = diag(ones(1,PAR.
FFTsize));
PARderived.Rx.CPrem=CPrem;

% Allocation widths
PARderived.nUsedCarr = PAR.nPRB*PAR.blockSize;
% allocated subcarriers
PARderived.allocatedSubcarriers = [1 : PARderived.
nUsedCarr] + PAR.blockShift;

% Generation of IDFT spreading matrices carrying
the relevant columns of the IDFT matrice with size
PAR.FFTsize
% Dimension of the matrices: [PAR.FFTsize x
PARderived.nUsedCarr]
PARderived.V = zeros(PAR.FFTsize,PARderived.
nUsedCarr);
for c = 1:PARderived.nUsedCarr %loop through all
allocated subcarriers
 SubcarrierIndex=PARderived.allocatedSubcarriers
(c);
 PARderived.V([1:PAR.FFTsize],c) = exp(2*pi*1i*([
1:PAR.FFTsize]-1)*SubcarrierIndex/PAR.FFTsize); %
generation of the IDFT vector
end

% final multicarrier modulation matrix T
if PAR.lFIR == 1 % OFDM
 V=PARderived.V;
 T=(1/norm(V))*CPadd*V; %CP-OFDM = IDFT
spreading matrices plus CP addition
 PARderived.T = T;
else % UFMC
 f = chebwin(PAR.lFIR,PAR.FilterPar_dB); %Dolph-
Chebyshev
 % initialize helper matrices
 F_all = [];
 V_all = zeros(PAR.FFTsize*PAR.nPRB,PARderived.
nUsedCarr);
 for iPRB = 1:PAR.nPRB
 % shift to center carrier
 blockShift = PARderived.allocatedSubcarriers
(1)-1; %edge of the allocation
 carrierind = blockShift + (PAR.blockSize+1)/
2 + (iPRB-1)*PAR.blockSize; % center carrier
 centerFshift = zeros(PAR.lFIR,1);
 for k = 1:PAR.lFIR
 centerFshift(k) = exp(2*pi*1i*(k-1)
*carrierind/PAR.FFTsize);
 end
 % frequency-shifted FIR window
 f1 = f.*centerFshift;
 PARderived.Filterresponse_shifted{iPRB}=f1;

465 Tutorials

1.

 % generate Toeplitz matrix for convolution
 F{iPRB} = toeplitz([f1;zeros(PAR.FFTsize-1,1
)],[f1(1),zeros(1,PAR.FFTsize-1)]);
 % stacked Toeplitz matrices implement
multicarrier modulation
 F_all = [F_all F{iPRB}];
 % generate expanded IDFT matrix
 V_all((1+(iPRB-1)*PAR.FFTsize):(iPRB*PAR.
FFTsize), ...
 (1+(iPRB-1)*PAR.blockSize):(iPRB*PAR.
blockSize)) = ...
 PARderived.V(:,(1+
(iPRB-1)*PAR.blockSize):(iPRB*PAR.blockSize));
 end
 T = F_all*V_all;
 % Final normalized multicarrier modulation
matrix
 TimeDomainSig=T*ones(PARderived.nUsedCarr,1);
 T=T/sqrt(mean(abs(TimeDomainSig).^2)/PARderived.
nUsedCarr*PAR.FFTsize);
 PARderived.T = T;
 %determine FreqResp in pass-band
 TimeDomainSig=T*ones(PARderived.nUsedCarr,1);
 FreqDomSig_oversampled=fft([TimeDomainSig.'
zeros(1,2*PAR.FFTsize-length(TimeDomainSig))])/sqrt
(PAR.FFTsize);
 FreqDomSig=FreqDomSig_oversampled(1:2:end);
 if PAR.Tx.Flag_UndoFilterResponse
 PARderived.PredistortionResponse=(FreqDomSig
(PARderived.allocatedSubcarriers+1)./(mean(abs
(FreqDomSig(PARderived.allocatedSubcarriers+1)))));
 else
 PARderived.PredistortionResponse=ones(1,
PARderived.nUsedCarr);
 end
end

%CFO generation (matrix-multiplication in time
domain), per Alloc and per Layer
T = PARderived.T; %Modulation matrix, perfectly
time and frequency alligned
Gamma = diag(exp((1j*2*pi*PAR.rCFO*(1:PARderived.
lMCsym))/PAR.FFTsize));
PARderived.Gamma = Gamma;
PARderived.GT = Gamma*T; % Modulation matrix
(Signal) and CFO matrix combined

%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Signal detection %%%
%%%%%%%%%%%%%%%%%%%%%%%%%
% static receive filters (for AWGN)

Tutorials 466

1.

V = PARderived.V;
Gamma = PARderived.Gamma;
T = PARderived.T;
GT = PARderived.GT;

if PAR.Rx.ZF %ZF active
 if ((PAR.CPlength ~= 0)&(PAR.lFIR == 1)) % OFDM
w/ CP
 if PAR.Rx.flag_CFOcomp_on == 0
 w_ZF = pinv((1/norm(V))*V);
 else
 w_ZF = pinv((1/norm(Gamma(PAR.CPlength+1
:end,PAR.CPlength+1:end)*V))*Gamma(PAR.CPlength+1:
end,PAR.CPlength+1:end)*V);
 end
 PARderived.w_ZF = w_ZF;
 else % UFMC
 if PAR.Rx.flag_CFOcomp_on == 0
 w_ZF = pinv(T);
 else
 w_ZF = pinv(GT);
 end
 PARderived.w_ZF = w_ZF;
 end
end
if PAR.Rx.MF % MF
 % OFDM with CP
 if ((PAR.CPlength ~= 0)&(PAR.lFIR == 1))
 if PAR.Rx.flag_CFOcomp_on == 0
 w_MF = (1/norm(V))*(V)';
 else
 w_MF = ((1/norm(Gamma(PAR.CPlength+1:
end,PAR.CPlength+1:end)*V))*Gamma(PAR.CPlength+1:
end,PAR.CPlength+1:end)*V)';
 end
 D = zeros(PARderived.nUsedCarr,PARderived.
nUsedCarr);
 for ii=1:PARderived.nUsedCarr
 D(ii,ii) = 1/(w_MF(ii,:)*w_MF(ii,:)');
 end
 PARderived.w_MF = D*w_MF;
 else%UFMC
 if PAR.Rx.flag_CFOcomp_on == 0
 w_MF = T';
 else
 w_MF = GT';
 end
 % normalize it
 %row-wise - each carrier must be normalized
 D = zeros(PARderived.nUsedCarr,PARderived.
nUsedCarr);
 for ii=1:PARderived.nUsedCarr

467 Tutorials

1.

 D(ii,ii) = 1/(w_MF(ii,:)*w_MF(ii,:)');
 end
 PARderived.w_MF = D*w_MF;
 end
end
if PAR.Rx.MMSE %MMSE
 if ((PAR.CPlength ~= 0)&(PAR.lFIR == 1)) % OFDM
with CP
 V_normalized=1/norm(V)*V;
 GV = Gamma(PAR.CPlength+1:end,PAR.CPlength+1
:end)*V_normalized;
 for isnr = 1:PARderived.nSNR
 nvar = 1/(10^(0.1*PAR.SNR_dB(isnr))); %
perfect knowledge of noise power assumed
 if PAR.Rx.flag_CFOcomp_on == 0
 w_MMSE{isnr} = inv(V_normalized'*V_n
ormalized + nvar*diag(ones(size(V_normalized,2),1)))
*V_normalized';
 else
 w_MMSE{isnr} = inv(GV'*GV +
nvar*diag(ones(size(GV,2),1)))*GV';
 end
 PARderived.w_MMSE.SNR{isnr} = w_MMSE
{isnr};
 end
 else %UFMC
 for isnr = 1:PARderived.nSNR
 nvar = 1/(10^(0.1*PAR.SNR_dB(isnr))); %
perfect knowledge of noise power assumed
 if PAR.Rx.flag_CFOcomp_on == 0
 w_MMSE{isnr} = inv(T'*T + nvar*diag
(ones(size(T,2),1)))*T';
 else
 w_MMSE{isnr} = inv(GT'*GT +
nvar*diag(ones(size(GT,2),1)))*GT';
 end
 PARderived.w_MMSE.SNR{isnr} = w_MMSE
{isnr};
 end
 end
end

Tutorials 468

1.

2.

3.

Run the "Setup" equation; this will generate the variables needed for the
simulation, especially the structure variables and , in the PAR PARderived

. Note that if retail MATLAB has not been launched Workspace Variables
before during the current SystemVue session, running the equation will take
extra time to launch MATLAB.

In UFMC_OFDM___TransceiverChain.m, lines 296 to 444 are used for the
main simulation loops. The top level loop starts at line 298

for isnr = 1:PARderived.nSNR

which loops over SNR (signal to noise ratio). The second level loop starts at
line 305

for iTTI = 1:PAR.NTTIs

which loops over TTI (transmission time interval). The transmitter (Tx) part of
the script is in lines 306 to 337 and the receiver (Rx) part of the script is in
lines 342 to 442. Finally, the post-processing of the simulation results is
done in lines 445 to 475. In SystemVue, the typical way to sweep over

http://edadocs.software.keysight.com/display/sv201608/Workspace+Variables

469 Tutorials

3.

4.

5.

variables like SNR is to use . can be used Sweep Data flow simulation control
to control the length of the simulation, which in this case is the number of
TTIs. The following steps will guide you through the details.

To create a tunable variable for sweep, you can create a workspace tree
equation called "TuneSNR", and copy lines 298 and 299 to the "TuneSNR"
equation. Comment out the for loop and make a tunable variable using isnr
the function, like the following script.tune

%for isnr = 1:PARderived.nSNR
isnr = tune(1); %isnr loop is moved to sweep
sqrt_nvar = 1/sqrt(10^(0.1*PAR.SNR_dB(isnr)));

By examining the variables between Tx part and Rx part of the script, you can
find that the variables (original signal), (Tx output signal without s_orig x
adding noise), and (pilot signal assuming no distortion) are the y_pilots
outputs of the Tx part. The signal received by Rx is actually a superposition y
of the noise signal added to the Tx output signal . In addition, variable n x iEb
in line 442 of the original script

iEb((iTTI-1)*PAR.NsymbsperTTI+1:iTTI*PAR.
NsymbsperTTI,isnr) = diag(x'*x/(PARderived.
nUsedCarr*PARderived.Bit_per_Symbol));

can be treated as a Tx output because it is derived from without any x
dependency on Rx part of the script. Based on this partition, you can start to
create a Tx model in SystemVue. First, create a and name it Schematic
"UFMC Design". Next, place an model on the schematic and MATLAB_Script
name it "Tx". Double click on the Tx model, then copy and MATLAB_Script
paste Tx part from lines 306 to 337 of the original script to the "Equations"
tab. Comment out

n = sqrt_nvar*(1/sqrt(2))*(randn(PARderived.lMCsym,
PAR.NsymbsperTTI)+j*randn(PARderived.lMCsym,PAR.
NsymbsperTTI));
y = x + n; %superimpose layers and add noise

in the "Equations" tab because noise addition will be handled in a separate
 model. Add line 442 from Rx part of the original script to the MATLAB_Script

end of the "Equations" tab, as described above. After the above steps, the
"Equations" tab of the Tx model should look like

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % Symbol vector generation %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

http://edadocs.software.keysight.com/display/sv201608/Sweeps
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SimulationControl
http://edadocs.software.keysight.com/display/sv201608/function_tune
http://edadocs.software.keysight.com/display/sv201608/Schematics
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script

Tutorials 470

5.

 switch PAR.DataSource
 case {'BPSK'} %BPSK
 s_orig = sign(randn(PARderived.
nUsedCarr,PAR.NsymbsperTTI));
 case {'QPSK'} %QPSK
 s_orig = (1/sqrt(2))*(sign(randn
(PARderived.nUsedCarr,PAR.NsymbsperTTI))+j*sign
(randn(PARderived.nUsedCarr,PAR.NsymbsperTTI)));
 end
 %s_pilots=s_orig; % ideal chanest so far,
each data symbol known and used as pilot

 %Predistortion to undo FilterResponse

 if (PAR.lFIR ~= 1 && PAR.Tx.
Flag_UndoFilterResponse && ~(PAR.Rx.ZF || PAR.Rx.MF
|| PAR.Rx.MMSE))%UFMC
 s = s_orig./repmat(PARderived.
PredistortionResponse.',1,PAR.NsymbsperTTI);
 s_pilots = s_orig./repmat(PARderived.
PredistortionResponse.',1,PAR.NsymbsperTTI);
 else
 s=s_orig;
 s_pilots=s_orig;
 end

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % Transformation to time domain %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %delay raus
 x = PARderived.GT*s; %signal of user of
interest including CFO (G)
 x_pilots = PARderived.T*s_pilots; %pilots
of user of interest (for ideal chanest, w/o CFO as
CFO compensated separately in time domain)

 % add noise
 %n = sqrt_nvar*(1/sqrt(2))*(randn
(PARderived.lMCsym,PAR.NsymbsperTTI)+j*randn
(PARderived.lMCsym,PAR.NsymbsperTTI));
 %y = x + n; %superimpose layers and add
noise
 y_pilots = x_pilots;

 %moved from Rx part of code
 iEb = diag(x'*x/(PARderived.
nUsedCarr*PARderived.Bit_per_Symbol));

Once the equation of the Tx model is completed, go to the "I/O" tab of the Tx
model and add the following output ports: , , , and .x y_pilots s_orig iEb

471 Tutorials

5.

6.

With the I/O specification, the variables , , , and after the x y_pilots s_orig iEb
evaluation of the Tx equation will be transferred to the output ports of the Tx
model. The Tx equation also needs variables , , and PAR PARderived sqrt_nvar
for evaluation. These variables can be passed in through custom parameters.
Go to the "Custom Parameters" tab, click on the "Define Custom
Parameters..." button, add parameters , , and in the PAR PARderived sqrt_nvar
"Define Custom Parameters" dialog. Because parameters and PAR

 are structured, set the "Validation" column of these two PARderived
parameters to <None>.

Click "OK" to save the custom parameter definition. In the "Custom
Parameters" tab of the Tx model, set the value of parameters , PAR

, and to variables , , and PARderived sqrt_nvar PAR PARderived sqrt_nvar
obtained from the respectively.Workspace Variables

Click "OK" in the Tx model properties dialog. The setup for the Tx model is
now completed.

To model the noise channel, place an model on the "UFMC MATLAB_Script
Design" schematic, name it "Channel". In the "Equations" tab of the Channel
model, you can copy and paste lines 334 to 336 directly from the original
script.

% add noise
n = sqrt_nvar*(1/sqrt(2))*(randn(PARderived.lMCsym,
PAR.NsymbsperTTI)+j*randn(PARderived.lMCsym,PAR.
NsymbsperTTI));
y = x + n; %superimpose layers and add noise

http://edadocs.software.keysight.com/display/sv201608/Workspace+Variables
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script

Tutorials 472

6.

7.

Then in the "I/O" tab of the Channel model, specify as Input port and as x y
Output port.

This equation also needs variables , , and . Go to the PAR PARderived sqrt_nvar
"Custom Parameters" tab of the Channel model, create and set the
parameters , , and in the same way as the PAR PARderived sqrt_nvar
customer parameters in the Tx model.

By examing Rx part of the script, you can find that the input signals for Rx
are , , and (for error computation). The outputs of Rx are y y_pilots s_orig

, , , , , , , SE_ZF symErr_ZF SE_MF symErr_MF SE_MMSE symErr_MMSE SE_FFT
and . The presence of these outputs depends on whether the symErr_FFT
corresponding settings (, , , PAR.Rx.ZF PAR.Rx.MF PAR.Rx.MMSE PAR.Rx.

) are turned on. If you run the original script in MATLAB or FFTbasedRx
examine the script,

SE_FFT(:,(iTTI-1)*PAR.NsymbsperTTI+1:iTTI*PAR.
NsymbsperTTI,isnr) = abs(s_orig-s_est_FFT).^2;
symErr_FFT(:,(iTTI-1)*PAR.NsymbsperTTI+1:iTTI*PAR.
NsymbsperTTI,isnr) = sum(s_HD_FFT~=s_orig);

there is a matrix (so-called "subframe") of size (PAR.nPRB * PAR.blockSize) x
 to be appended to for each TTI. PAR.NsymbsperTTI SE_{ZF, MF, MMSE, FFT}

Similarly, there is a matrix of size 1 x to be appended to PAR.NsymbsperTTI
 for each TTI. The matrices generated by symErr_{ZF, MF, MMSE, FFT}

looping over the TTIs are appended in the second dimension, and the bigger
matrices generated by looping over the SNRs are appended in the third
dimension. Therefore, in the original script, the size of SE_{ZF, MF, MMSE,

 after simulation is) x * FFT} (PAR.nPRB * PAR.blockSize (PAR.NsymbsperTTI
 x and the size of PAR.NTTIs) PARderived.nSNR symErr_{ZF, MF, MMSE, FFT}

after simulation is 1 x (*) x . PAR.NsymbsperTTI PAR.NTTIs PARderived.nSNR
In SystemVue, because the SNR loop is moved to and the TTI loop is Sweep
moved to , the Rx model only needs to output data flow simulation control
the matrices generated for each TTI.

SE_FFT = abs(s_orig-s_est_FFT).^2;
symErr_FFT = sum(s_HD_FFT~=s_orig);

http://edadocs.software.keysight.com/display/sv201608/Sweeps
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SimulationControl

473 Tutorials

7.

Based on this analysis, you can start to create a Rx model in SystemVue.
First, place an model on the "UFMC Design" schematic, MATLAB_Script
name it "Rx". Then copy and paste lines 341 to 441 from the original script to
the "Equations" tab of the Rx model with the following modifications:

a) comment out lines that create and SE_{ZF, MF, MMSE, FFT} symErr_{ZF,
(corresponding to lines 426 to 441 in the original script), MF, MMSE, FFT}

and replace them with the last section of the code below

b) comment out the line that creates (corresponding to sH_FFT_tmp(:,iTTI)
line 414 in the original script); this is because the loop index is moved to iTTI
the and is not used anywhere in the data flow simulation control sH_FFT_tmp
Rx part of the script

 % CP removal
 if (PAR.lFIR == 1) % OFDM
 y = PARderived.Rx.CPrem*y;
 end
 %% obtain symbol estimates
 for iNsymbsperTTI=1:PAR.NsymbsperTTI
 % ZF
 if PAR.Rx.ZF %ZF active?
 w_ZF = PARderived.w_ZF;
 s_est_ZF(:,iNsymbsperTTI) = w_ZF*y
(:,iNsymbsperTTI);
 % hard decision
 switch PARderived.Bit_per_Symbol
 case {1}
 s_HD_ZF(:,iNsymbsperTTI) =
sign(real(s_est_ZF(:,iNsymbsperTTI)));
 case {2}
 s_HD_ZF(:,iNsymbsperTTI) = (
1/sqrt(2))*(sign(real(s_est_ZF(:,iNsymbsperTTI))) +
j*sign(imag(s_est_ZF(:,iNsymbsperTTI))));
 end
 end
 % MF
 if PAR.Rx.MF %MF active?
 w_MF = PARderived.w_MF;
 s_est_MF(:,iNsymbsperTTI) = w_MF*y
(:,iNsymbsperTTI);
 % hard decision
 switch PARderived.Bit_per_Symbol
 case {1}
 s_HD_MF(:,iNsymbsperTTI) =
sign(real(s_est_MF(:,iNsymbsperTTI)));
 case {2}
 s_HD_MF(:,iNsymbsperTTI) = (
1/sqrt(2))*(sign(real(s_est_MF(:,iNsymbsperTTI))) +
j*sign(imag(s_est_MF(:,iNsymbsperTTI))));
 end
 end

http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SimulationControl

Tutorials 474

7.

 % MMSE
 if PAR.Rx.MMSE %MMSE active?
 w_MMSE{isnr} = PARderived.w_MMSE.SNR
{isnr};
 s_est_MMSE(:,iNsymbsperTTI) = w_MMSE
{isnr}*y(:,iNsymbsperTTI);
 % hard decision
 switch PARderived.Bit_per_Symbol
 case {1}
 s_HD_MMSE(:,iNsymbsperTTI)
= sign(real(s_est_MMSE(:,iNsymbsperTTI)));
 case {2}
 s_HD_MMSE(:,iNsymbsperTTI)
= (1/sqrt(2))*(sign(real(s_est_MMSE(:,
iNsymbsperTTI))) + j*sign(imag(s_est_MMSE(:,
iNsymbsperTTI))));
 end
 end
 % UFMC FFT based detection
 if (PAR.lFIR ~= 1 && PAR.Rx.FFTbasedRx)
%UFMC with FFT based detection active
 if PAR.Rx.flag_CFOcomp_on == 1 %
undo CFO
 y(:,iNsymbsperTTI) = y(:,
iNsymbsperTTI).*exp(-(1j*2*pi*PAR.rCFO*(1:
PARderived.lMCsym))/PAR.FFTsize).';
 end
 switch PAR.Rx.ChanEst %Frequency
domain estimation. Estimation of the frequency
response of the filters in pass-band.
 case {'viaKnownSymbs'} %all QAM
symbols used as pilots
 y_pilots_padded=[y_pilots(:,
iNsymbsperTTI).' zeros(1,2048-length(y_pilots))];
 H_oversampled = fft
(y_pilots_padded)/sqrt(PAR.FFTsize);
 H = H_oversampled(1:2:end);
 H_Alloc = H(PARderived.
allocatedSubcarriers+1)./s_orig(:,iNsymbsperTTI).';
 end
 y_padded=[y(:,iNsymbsperTTI).' zeros
(1,2048-length(y(:,iNsymbsperTTI)))];
 s_oversampled=fft(y_padded)/sqrt
(PAR.FFTsize);
 s_Rx=s_oversampled(1:2:end); %all
subcarriers unequalized
 s_est_FFT(:,iNsymbsperTTI) = s_Rx
(PARderived.allocatedSubcarriers+1)./H_Alloc;
 switch PARderived.Bit_per_Symbol
 case {1} %BPSK
 s_HD_FFT(:,iNsymbsperTTI) =
sign(real(s_est_FFT(:,iNsymbsperTTI)));
 case {2} %QPSK

475 Tutorials

7.

 s_HD_FFT(:,iNsymbsperTTI) =
(1/sqrt(2))*(sign(real(s_est_FFT(:,iNsymbsperTTI)))
+ j*sign(imag(s_est_FFT(:,iNsymbsperTTI))));
 end
 % OFDM FFT based
 elseif (PAR.lFIR == 1 && PAR.Rx.
FFTbasedRx) %OFDM with FFT based detection active
 if PAR.Rx.flag_CFOcomp_on == 1 %
undo CFO
 y(:,iNsymbsperTTI) = y(:,
iNsymbsperTTI).*exp(-(1j*2*pi*PAR.rCFO*(PAR.
CPlength+1:PARderived.lMCsym))/PAR.FFTsize).';
 end
 s_Rx=(fft(y(:,iNsymbsperTTI))/sqrt
(PAR.FFTsize)).';
 %generate 8 times oversampled
frequency sig.
% sH_FFT_tmp(:,iTTI)=(fft([y(:,
iNsymbsperTTI).' zeros(1,7*PAR.FFTsize)])/sqrt(PAR.
FFTsize)).'; %TTI is moved to data flow simulation
control
 %
 s_est_FFT(:,iNsymbsperTTI) = s_Rx
(PARderived.allocatedSubcarriers+1);
 switch PARderived.Bit_per_Symbol
 case {1} %BPSK
 s_HD_FFT(:,iNsymbsperTTI) =
sign(real(s_est_FFT(:,iNsymbsperTTI)));
 case {2} %QPSK
 s_HD_FFT(:,iNsymbsperTTI) =
(1/sqrt(2))*(sign(real(s_est_FFT(:,iNsymbsperTTI)))
+ j*sign(imag(s_est_FFT(:,iNsymbsperTTI))));
 end
 end
 end
 % track MSE and raw SER
% if (PAR.Rx.ZF)
% SE_ZF(:,(iTTI-1)*PAR.NsymbsperTTI+1:
iTTI*PAR.NsymbsperTTI,isnr) = abs(s_orig-s_est_ZF).^
2;
% symErr_ZF(:,(iTTI-1)*PAR.NsymbsperTTI+1
:iTTI*PAR.NsymbsperTTI,isnr) = sum(s_HD_ZF~=s_orig);
% end
% if (PAR.Rx.MF)
% SE_MF(:,(iTTI-1)*PAR.NsymbsperTTI+1:
iTTI*PAR.NsymbsperTTI,isnr) = abs(s_orig-s_est_MF).^
2;
% symErr_MF(:,(iTTI-1)*PAR.NsymbsperTTI+1
:iTTI*PAR.NsymbsperTTI,isnr) = sum(s_HD_MF~=s_orig);
% end
% if (PAR.Rx.MMSE)

Tutorials 476

7.

% SE_MMSE(:,(iTTI-1)*PAR.NsymbsperTTI+1:
iTTI*PAR.NsymbsperTTI,isnr) = abs(s_orig-
s_est_MMSE).^2;
% symErr_MMSE(:,(iTTI-1)*PAR.
NsymbsperTTI+1:iTTI*PAR.NsymbsperTTI,isnr) = sum
(s_HD_MMSE~=s_orig);
% end
% if (PAR.Rx.FFTbasedRx) %UFMC with FFT
based detection active
% SE_FFT(:,(iTTI-1)*PAR.NsymbsperTTI+1:
iTTI*PAR.NsymbsperTTI,isnr) = abs(s_orig-s_est_FFT).
^2;
% symErr_FFT(:,(iTTI-1)*PAR.NsymbsperTTI+
1:iTTI*PAR.NsymbsperTTI,isnr) = sum
(s_HD_FFT~=s_orig);
% end

 if (PAR.Rx.ZF)
 SE_ZF = abs(s_orig-s_est_ZF).^2;
 symErr_ZF = sum(s_HD_ZF~=s_orig);
 else
 SE_ZF = [];
 symErr_ZF = [];
 end
 if (PAR.Rx.MF)
 SE_MF = abs(s_orig-s_est_MF).^2;
 symErr_MF = sum(s_HD_MF~=s_orig);
 else
 SE_MF = [];
 symErr_MF = [];
 end
 if (PAR.Rx.MMSE)
 SE_MMSE = abs(s_orig-s_est_MMSE).^2;
 symErr_MMSE = sum(s_HD_MMSE~=s_orig);
 else
 SE_MMSE = [];
 symErr_MMSE = [];
 end
 if (PAR.Rx.FFTbasedRx) %UFMC with FFT based
detection active
 SE_FFT = abs(s_orig-s_est_FFT).^2;
 symErr_FFT = sum(s_HD_FFT~=s_orig);
 else
 SE_FFT = [];
 symErr_FFT = [];
 end

Once the "Equations" tab is ready, go to the "I/O" tab, specify SE_ZF,
andsymErr_ZF, MF, symErr_MF, MMSE, symErr_MMSE, FFT, SE_ SE_ SE_

 as Output ports, and specify , , and as Input symErr_FFT y y_pilots s_orig
ports.

477 Tutorials

7.

8.

9.

The Rx equation also needs variables and , so create custom PAR PARderived
parameters and the same way as the Tx model.PAR PARderived

For data collection and simulation control, create nine models on the Sink
"UFMC Design" schematic, name them "iEb", "SE_ZF", "symErr_ZF",
"SE_MF", "symErr_MF", "SE_MMSE", "symErr_MMSE", "SE_FFT", and
"symErr_FFT" respectively. Set data collection mode of each sink to use
"Samples" and collect samples from 0 to - 1. This setup will make PAR.NTTIs
the Data Flow simulator keep running the design until each sink collects PAR.

 number of matrices.NTTIs

On the "UFMC Design" schematic, connect output ports and s_orig y_pilots
of the Tx model to input ports and of the Rx model, s_orig y_pilots
respectively. Connect output port of the Tx model to input port of the x x
Channel model and connect output port of the Channel model to input port y
 of the Rx model. Connect output port of the Tx model to the "iEb" y iEb Sink

and connect output ports SE_ZF, symErr_ZF, MF, symErr_MF, MMSE, SE_ SE_
and of the Rx model to the symErr_MMSE, FFT, SE_ symErr_FFT

corresponding "SE_ZF", "symErr_ZF", "SE_MF", "symErr_MF", "SE_MMSE",
"symErr_MMSE", "SE_FFT", and
"symErr_FFT" .Sinks

http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/Sink

Tutorials 478

9.

10.

11.

Create a in the workspace tree, name it "UFMC Analysis" Data Flow Analysis
and set the Design to "UFMC Design".

Create a in the workspace tree, name it "UFMC Sweep". Select Sweep
"Analysis to Sweep" to "UFMC Analysis" and select "Parameters to Sweep" to
"Equations\TuneSNR\isnr". Set "Parameter Range" from 1 to PARderived.

 and make it a Linear sweep with Step Size equal to 1. The sweep will nSNR
handle the SNR loop in the original script.

http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Sweeps

479 Tutorials

11.

12.

13.

If you run "UFMC Analysis", you will get dataset variables SE_ZF, symErr_ZF,
and in MF, symErr_MF, MMSE, symErr_MMSE, FFT, SE_ SE_ SE_ symErr_FFT

the "UFMC Analysis_UFMC Design_Data" dataset. Note that with the default
settings, only FFT and are available. The size of SE_ symErr_FFT SE_{ZF, MF,

in the analysis dataset is x (MMSE, FFT} PAR.NTTIs PAR.nPRB * PAR.
) x , because Data Flow analysis creates a new blockSize PAR.NsymbsperTTI

dimension first and appends the collected data (matrices with size PAR.nPRB
 x) in the first dimension. Similarly, the x PAR.blockSize PAR.NsymbsperTTI

size of in the analysis dataset is x 1 symErr_{ZF, MF, MMSE, FFT} PAR.NTTIs
x because each collected data is a matrix with size 1 x PAR.NsymbsperTTI

.PAR.NsymbsperTTI

If you run "UFMC Sweep", you can observe that the sweep dataset variable
 from the sweep dataset UFMC Sweep_Data" has SE_{ZF, MF, MMSE, FFT} "

size (x by PARderived.nSNR * PAR.NTTIs) PAR.nPRB x (PAR.blockSize PAR.
. This is because the sweep simulation appends the analysis NsymbsperTTI)

dataset variable for each sweep point in the same first dimension. Similarly,
the size of in the sweep dataset is symErr_{ZF, MF, MMSE, FFT} (PARderived.

Tutorials 480

13.

14.

 x 1 x nSNR * PAR.NTTIs) PAR.NsymbsperTTI.

With the understanding of how SystemVue stores the swept data and
comparing it with how the data is stored in the original script, it is
straightforward to modify the post processing part (lines 446 to 475 of the
original script) to handle the sweep dataset inside SystemVue. For example,
line 458

RES.MSE_FFT(isnr) = mean(mean(squeeze(SE_FFT(:,:,
isnr))));

of the original script should be changed to

RES.MSE_FFT(isnr) = mean(mean(mean(squeeze(SE_FFT
(PAR.NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:)))));

in SystemVue. Similarly, line 473

RES.SER_FFT(isnr)= sum(sum(squeeze(symErr_FFT(:,:,
isnr)))) / (PAR.NTTIs*PAR.NsymbsperTTI*PARderived.
nUsedCarr);

of the original script should be changed to

RES.SER_FFT(isnr)= sum(sum(squeeze(symErr_FFT(PAR.
NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:)))) / (PAR.
NTTIs*PAR.NsymbsperTTI*PARderived.nUsedCarr);

in SystemVue.

Now you can create a workspace tree equation, name it "PostProcessing",
copy and paste the following modified code in the equation, and turn off
"Auto-calculate".

481 Tutorials

14.

using('UFMC Sweep_Data'); %using sweep dataset

%% compute simulation results (SER, EbN0 and MSE)
for isnr = 1:PARderived.nSNR
 % MSE
 if (PAR.Rx.ZF)
 RES.MSE_ZF(isnr) = mean(mean(mean(squeeze
(SE_ZF(PAR.NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:)))));
 end
 if (PAR.Rx.MF)
 RES.MSE_MF(isnr) = mean(mean(mean(squeeze
(SE_MF(PAR.NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:)))));
 end
 if (PAR.Rx.MMSE)
 RES.MSE_MMSE(isnr) = mean(mean(mean(squeeze
(SE_MMSE(PAR.NTTIs*(isnr-1)+1:PAR.
NTTIs*isnr,:,:)))));
 end
 if (PAR.Rx.FFTbasedRx)
 RES.MSE_FFT(isnr) = mean(mean(mean(squeeze
(SE_FFT(PAR.NTTIs*(isnr-1)+1:PAR.
NTTIs*isnr,:,:)))));
 end

 % Eb / N0
 RES.EbN0_dB(isnr) = 10*log10(mean(mean(iEb(PAR.
NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:))))+PAR.SNR_dB
(isnr); % SNR is in fact noise level

 % symbol error rate
 if (PAR.Rx.ZF)
 RES.SER_ZF(isnr)= sum(sum(squeeze(symErr_ZF
(PAR.NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:)))) / (PAR.
NTTIs*PAR.NsymbsperTTI*PARderived.nUsedCarr);
 end
 if (PAR.Rx.MF)
 RES.SER_MF(isnr)= sum(sum(squeeze(symErr_MF
(PAR.NTTIs*(isnr-1)+1:PAR.NTTIs*isnr,:,:)))) / (PAR.
NTTIs*PAR.NsymbsperTTI*PARderived.nUsedCarr);
 end
 if (PAR.Rx.MMSE)
 RES.SER_MMSE(isnr)= sum(sum(squeeze
(symErr_MMSE(PAR.NTTIs*(isnr-1)+1:PAR.
NTTIs*isnr,:,:)))) / (PAR.NTTIs*PAR.
NsymbsperTTI*PARderived.nUsedCarr);
 end
 if (PAR.Rx.FFTbasedRx)
 RES.SER_FFT(isnr)= sum(sum(squeeze
(symErr_FFT(PAR.NTTIs*(isnr-1)+1:PAR.
NTTIs*isnr,:,:)))) / (PAR.NTTIs*PAR.
NsymbsperTTI*PARderived.nUsedCarr);
 end
end

Tutorials 482

14.

15. Run "PostProcessing" equation. You should get the final result in a structure
variable in the . To visualize it, you can create Y RES Workspace Variables
versus X plot, and use the following code in the custom equation of the plot.

There is a preconfigured graph "MSE_FFT and SER_FFT vs EbN0" in the
tutorial workspace showing MST_FFT and SER_FFT versus EbN0 as shown in
the screenshot below.

Understanding Data Flow Simulation

Understanding Data Flow Simulation

Introduction

SystemVue is an design tool that enables Baseband electronic system-level (ESL)
and RF system architects and algorithm developers to design signal processing,
wireless communication, aerospace/defense and high-speed digital systems.

http://edadocs.software.keysight.com/display/sv201608/Workspace+Variables

483 Tutorials

1.

2.

3.

4.

5.

SystemVue uses . Similar to drawing a block model-based design methodology
diagram, in SystemVue, you construct a system by placing built-in or custom
models on and connecting input and output ports of the models to Schematic
specify the data dependency information. To be more specific, in SystemVue, you
actually place a on the schematic which consists of a set of polymorphic part

 and a symbol.models

To run a data flow simulation, you need to in the add a Data Flow Analysis
workspace tree and specify the schematic you want to simulate in the data flow
analysis. The following links guide you how to create and run a data flow simulation
and how to set up the data flow analysis.

Getting Started with Data Flow

Setting up the Data Flow Analysis

Simulation in SystemVue is based on . Before data flow models of computation
running a simulation, SystemVue data flow simulator will convert the schematic
into synchronous data flow (SDF) graph representation, analyze SDF multirate
consistency, identify deadlock, resolve sampling rates and compute a static
schedule for efficient simulation. Refer to for Introduction to Data Flow Simulation
details.

Single Rate and Multi-Rate Systems

The following examples will guide you through various aspects in data flow
simulation, including single rate system (all blocks execute at the same rate), the
multi-rate system (blocks run at different rates or there is a change of sampling
rate), and the concept of data flow information table synchronous data flow

. The tutorial examples can be found in <SystemVue installation scheduling
directory>\Examples\Tutorials\DataFlow\SynchronousDataFlow.wsv.

Single Rate System Tutorial

Single Rate Scheduling Tutorial

Multi-Rate System Tutorial

Multi-Rate Scheduling Tutorial

CD to DAT Sampling Rate Conversion Tutorial

Envelope Signal

In SystemVue, an represents EITHER a real signal x(t) OR an envelope signal
 x (t) = (x (t) + j x (t)) exp(j 2 π f t) with positive characterization analytic signal a i q c

frequency f > 0.c

SystemVue associates envelope data type with black color. A black-colored port
operates on envelope signal. SystemVue restricts an envelope-typed ports to have

 throughout a simulation. In other words, an constant characterization frequency
envelope-typed port operates on EITHER a real signal throughout a simulation, OR
an analytic signal with constant characterization frequency throughout a
simulation.

http://edadocs.software.keysight.com/display/sv201608/Schematics
http://edadocs.software.keysight.com/display/sv201608/Parts
http://edadocs.software.keysight.com/display/sv201608/Models
http://edadocs.software.keysight.com/display/sv201608/Analysis#Analysis-Toaddananalysis
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-ReadingDataFlowInformationTable
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition

Tutorials 484

1.

2.

3.

1.

2.

1.

2.

1.

2.

1.

2.

The following examples introduce how to use to model RF signal Envelope Signal
processing at a carrier frequency. The tutorial examples can be found in
<SystemVue installation directory>\Examples\Tutorials\DataFlow\EnvelopeSignal.
wsv.

Baseband and RF

Envelope Bandpass Filter

Baseband IF and RF

Timed System

The following examples introduce with respect to the sampling rate resolution
 parameter in and illustrate its relation to the SampleRateOption source models

 parameter in .System Sample Rate data flow analysis

Timed from Schematic

Timed from SampleRate

Filter and Sample Rate

In SystemVue, the data type filter models (filter models with black-envelope
colored ports) re-design the filter based on the incoming sampling rate during
simulation setup. In contrast, for numeric filter models (e.g., , , , FIR FIR_Cx FIR_Fxp

, ,), once they have been designed, the filter coefficients IIR IIR_Cx BiquadCascade
remain unchanged regardless of simulation sampling rates.

The following examples compare these two types of filters side by side with respect
to the change of simulation sampling rate.

Frequency Response vs Sample Rate

Filtering vs Sample Rate

Debugging

The following examples provide useful practices for debugging common data flow
simulation errors, including deadlock and sample rate inconsistency.

Deadlock

Sample Rate Inconsistency

Single Rate System Tutorial

This example will guide you to create a single rate system and to understand
, synchronous data flow production and consumption rates sampling rates in timed

, and .synchronous data flow data flow information table

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\SynchronousDataFlow.
wsv.

http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution
http://edadocs.software.keysight.com/display/sv201608/Source+Models
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal
http://edadocs.software.keysight.com/display/sv201608/FIR
http://edadocs.software.keysight.com/display/sv201608/FIR_Cx
http://edadocs.software.keysight.com/display/sv201608/FIR_Fxp
http://edadocs.software.keysight.com/display/sv201608/IIR
http://edadocs.software.keysight.com/display/sv201608/IIR_Cx
http://edadocs.software.keysight.com/display/sv201608/BiquadCascade
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-ReadingDataFlowInformationTable

485 Tutorials

2.

3.

4.

5.

Create a design as the following screenshot in under folder Design1 1. Single
.Rate System

For the three models, set the Frequency_ parameters to 75 KHz, SineGen
150 KHz, and 240 Khz respectively, and leave the rest parameters as default.

Make sure the model has three input ports. You can check it by double-Add
click the part, select "Advanced Options...", then select "Netlist" tab.

To create a model, you can first place a part on LPF ParksMcClellan filter
schematic, double-click it to open filter design dialog, select Lowpass
response and FIR, set to 160 Khz, to 200 Parks-McClellan PassFreq StopFreq
Khz, to 60 (which means -60dB), and leave the rest parameters StopRipple
as default.

http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/LPF+ParksMcClellan
http://edadocs.software.keysight.com/display/sv201608/filter

Tutorials 486

5.

6.

7.

8.

9.

This design is to filter out the 240 Khz sine signal from the combination of
three sine signals.

Run Data Flow Analysis.DF1

You can check the graph to verify the design. The input spectrum Spectrum
(red color) has three tones and the 240 Khz signal has been filtered out in the
output spectrum (blue color).

In Data Flow Analysis, if the check box is DF1 Display Data Flow Information
checked, SystemVue will display data flow information of the corresponding
schematic in a table after the simulation is completed. For Data Flow DF1
Analysis, the data flow information is displayed in in DF1_Data_DataFlowInfo
the workspace tree.

487 Tutorials

9.

10.

11.

12.

1.

2.

Refer to for the meaning of each Reading Data Flow Information Table
column. For , every model consumes and/or produces sample Design1 one
for each of its input and/or output port, which is shown in

 as the for each port (DF1_Data_DataFlowInfo DataFlowRate Input
) is 1 and the for each port (consumption rate DataFlowRate Output

) are 1. This type of system does not change sampling rate production rate
across functional models, so it is referred to as a system.Single Rate

The column in also shows that the SampleRate DF1_Data_DataFlowInfo
sampling rate remains 1 Mhz for all connections in the system.

It is useful to annotate the production rates, consumption rates, and
sampling rates on the schematic to understand the data flow behavior of the
systems. Can you do that? As shown in the screenshot below, the yellow
annotation next to each input / output port represents the consumption /
production rate of the associated model. The blue annotation next to the
connection (wire) represents the sampling rate of the signal across such
connection.

Single Rate Scheduling Tutorial

This example will let you the of a single rate feel synchronous data flow scheduling
system and understand the in data flow.data driven execution

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\SynchronousDataFlow.
wsv.

Open schematic in folder .Design2 2. Single Rate Scheduling

http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-ReadingDataFlowInformationTable
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-DataFlowModelsofComputation

Tutorials 488

2.

3.

4.

5.

6.

7.

8.

This is a simple single rate design, where model MATLAB_Script Const1
outputs one constant value 1 at each firing (execution), MATLAB_Script
model outputs one constant value 2 at each firing, and Const2

 model simply adds the two input samples. The MATLAB_Script Add
production and consumption rates are annotated on schematic.

SystemVue computes a before running a simulation. During static schedule
simulation, models are executed in the order based on the schedule. Static
scheduling results in very efficient simulation because of the minimal runtime
overhead. Refer to to learn general concept about Scheduling SDF Graphs
scheduling.

A data flow model can be executed (fired) only when it has enough data
samples on all of its input ports. For , can be executed only after Design2 Add

 and are executed to generate two input samples.Const1 Const2

A breakpoint is inserted for each model in .MATLAB_Script Design1

Now run Data Flow Analysis.DF2

When running the simulation, the execution will be stopped whenever it hits
a breakpoint. You can observe the firing (execution) sequence by clicking the

 button in the equation debugger. You can stop the simulation by clicking Go
the button in the equation debugger. Refer to Stop Debugging Equations
about how to use equation debugger.

http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/Debugging+Equations

489 Tutorials

8.

9.

1.

2.

3.

By observing the firing sequence, you can feel the static schedule. Const1
and will be executed before firing , and the firing sequence is Const2 Add
repeated throughout the simulation. Note that there is no data dependency
between and , so firing before or firing Const1 Const2 Const1 Const2 Const2
before are both valid schedules.Const1

Multi-Rate System Tutorial

This tutorial guides you to create a multi-rate system, where SDF production and
 are greater than 1. By exercising this example, you will learn consumption rates

how multi-rate properties change .sampling rates in timed synchronous data flow

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\SynchronousDataFlow.
wsv.

Open schematic under folder .Design3 3. Multi-Rate System

Between RandomBits and CxToRect , add a model B1 Complex_to_IQ Mapper
with set to , add a model with = 5 and ModType 16-QAM UpSample Factor

 = . Connect the two models with the rest of the system.Mode Hold sample

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Mapper
http://edadocs.software.keysight.com/display/sv201608/UpSample

Tutorials 490

3.

4.

5.

6.

7.

8.

9.

Schematic_Design3 now looks like:

Run Data Flow Analysis.DF3

You can see graph of 16-QAM and of Input Constellation Receiver Trajectory
the received signal after modulation, filtering, and demodulation.

In schematic , the bit rate and the sampling rate of the Design3 RandomBits
source are both set at 1 Mhz. In other words, there is one sample per bit
outputted from the source.

Mapper is a multi-rate model that converts number of bits into a symbol at N
each firing, where is determined based on modulation scheme . N ModType
For example, = 2 for QPSK modulation, = 4 for 16-QAM modulation, and N N

 = 6 for 64-QAM modulation. By setting to 16-QAM in , N ModType Design3
the model converts 4 bits into one symbol. Given that the sampling Mapper
rate (bit rate) at the input of the Mapper is 1 Mhz, the sampling rate (symbol
rate) at the output of the Mapper now becomes 0.25 Mhz because the
Mapper conducts 4-to-1 multi-rate conversion.

http://edadocs.software.keysight.com/display/sv201608/RandomBits
http://edadocs.software.keysight.com/display/sv201608/Mapper
http://edadocs.software.keysight.com/display/sv201608/Mapper

491 Tutorials

9.

10.

11.

1.

2.

3.

UpSample is also a multi-rate model. In , the model Design3 UpSample
consumes one input sample and produces 5 duplicated output samples at
each firing (upsample and hold). As a result, the sampling rate after

 model now becomes 1.25 Mhz, which 5 times of the input sample UpSample
rate 0.25 Mhz.

The table shows the multi-rate data flow behavior DF3_Data_DataFlowInfo
and sampling rate change as explained in the above bullet (The Display Data

 check box needs to be checked in Data Flow Analysis Flow Information DF3
in order to see the data flow information table). The consumption rate (

 of the port) of the Mapper model is 4 and the production DataFlowRate input
rate (of the port) of the Mapper model is 1. Similarly, DataFlowRate output
the consumption rate of the UpSample model is 1 and the production rate of
the UpSample model is 5. The sampling rate is changed from 1 Mhz to 0.25
Mhz to 1.25 Mhz due to the multi-rate behavior of the and Mapper UpSample
.

Can you annotate the production rates, consumption rates, and sampling
rates for the first three models on schematic? The annotation is Design3
shown in the screenshot below, which is very useful to understand how
sampling rate is changed with the multi-rate data flow behavior.

Multi-Rate Scheduling Tutorial

This example lets you the schedules of multi-rate systems and understands feel
 and in .data driven execution repetitions vector SDF scheduling

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\SynchronousDataFlow.
wsv.

Open schematic in folder .Design4 4. Multi-Rate Scheduling

In schematic, the upper system, as shown in the screenshot below, Design4
is enabled by default. The production and consumption rates are annotated
on schematic. The model as well as consumes MATLAB_Script Gain1 Gain2
one input sample and produces one output sample at each firing (execution).
The model with down sampling = 2 MATLAB_Script DownSample1 Factor

http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/Mapper
http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-DataFlowModelsofComputation
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script

Tutorials 492

3.

4.

5.

6.

7.

8.

9.

consumes two input samples and produces one output sample at each firing.
The model with upsampling = 3 MATLAB_Script UpSample1 Factor
consumes one input sample and produces three output sample at each
firing.

Using the same approach as , all Single Rate Scheduling Tutorial
 models are inserted with breakpoints.MATLAB_Script

Now run Data Flow Analysis.DF4

When running the simulation, the execution will be stopped whenever it hits
a breakpoint. You can observe the firing (execution) sequence by clicking the
Go button in the equation debugger. You can stop the simulation by clicking
the Stop button in the equation debugger. Refer to Debugging Equations
about how to use equation debugger.

By observing the firing sequence, you can figure out the static schedule:
, , , , , , . must Gain1 Gain1 DownSample1 UpSample1 Gain2 Gain2 Gain2 Gain1

be fired twice before because it needs two samples to fire. DownSample1
 can be fired three times after one fire of because it Gain2 UpSample1

generates three samples per firing. This schedule represents a *minimal
 of the system.periodic schedule

DF4_Data_DataFlowInfo table shows the of the system. repetitions vector
The repetition counts for , , , and are Gain1 DownSample1 UpSample1 Gain2
2, 1, 1, 3 as shown in the column. The repetition counts of these Repetition
models match the number of firings in the minimal periodic schedule.

http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/MATLAB_Script
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs

493 Tutorials

9.

1.

2.

3.

4.

The lower system in schematic represents a slightly complex Design4
system. Note that there is no data dependency between the path of

 and the path of and , so it is up DownSample2 DownSample3 DownSample4
to the scheduler to schedule these two paths. In addition, the scheduler
could loop the sub sequence , , twice before Gain3 Gain3 DownSample3
running and for efficient memory consideration.DownSample4 DownSample2

You can disable the upper system and enable the lower system to observe
the firing sequence.

Select a group of parts on the schematic (using the mouse to drag a
selection box) and then click one of the or Disable to short Disable to

 toolbar buttons.open

CD to DAT Sampling Rate Conversion Tutorial

This example illustrates a practical implementation of the CD (compact disk, 44.1
Khz) to DAT (digital audio tape, 48Khz) sampling rate conversion system. Directly
implementing a perfect reconstruct polyphase filter with resampling ratio 147 to
160 may require a large number of taps and resources. An alternative approach is
to split 160/147 resampling ratio into four stages: 2/1, 4/3, 5/7, and 4/7.

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\SynchronousDataFlow.
wsv.

Open schematic in folder . It contains four resampling Design5 5. CD to DAT
FIR filters , , , and with interpolation to decimation ratios 2/1, 4/3, F1 F2 F3 F4
5/7, and 4/7 respectively.

Run Data Flow Analysis.DF5

The _CompareWaveform_graphs compare the input and output waveforms.

Tutorials 494

4.

5.

6.

7.

The sampling rate of the source is set to 44.1Khz. Can you annotate SineGen
the production rates, consumption rates, and sampling rates on schematic?
You can compute the results or use table.DF5_Data_DataFlowInfo

The screenshot below shows the annotated data flow information.

From table, the repetition counts for , , , , DF5_Data_DataFlowInfo F1 F2 F3 F4
and are 147, 98, 56, 40, and 160 respectively. You can use that to verify G1
the . Use the connection between and as an balance equations F1 F2
example, the repetition count of (147) times the production rate of (2) F1 F1
must be equal to the repetition count of (98) times the consumption rate F2
of (3).F2

http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs

495 Tutorials

1.

2.

3.

4.

5.

Baseband and RF

This example will show you how to generate a modulated RF from Envelope Signal
baseband I/Q signal, use to inspect the modulated SpectrumAnalyzerEnv
spectrum, and use to verify the data flow information table characterization

 of the envelope signal.frequency (Fc)

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\EnvelopeSignal.
wsv.

Open under folder .Design1 1. BB – RF

Insert after and insert before as Modulator CxToRect Demodulator RectToCx
the following screenshot. Set parameter of and FCarrier Modulator

 to , which is defined in the equation tab of and set Demodulator Fc Design1
to 10Mhz. Set parameter of the and InputType Modulator OutputType
parameter of the to . Leave other parameters of Demodulator I/Q Modulator
and as default. The takes baseband complex I/Q Demodulator Modulator
signal and modulates it to carrier frequency . The modulated RF FCarrier
signal is collected in Sink and its spectrum is analyzed using RF
SpectrumAnalyzerEnv .Spectrum

Run data flow analysis.DF1

Inspect dataset. For envelope signal with characterization DF1_Data
frequency greater than 0, SystemVue records the of the complex envelope
envelope signal (i.e., and) as complex in-phase quadrature components
numbers in dataset and also records the in characterization frequency
dataset. In this example, the complex envelope and the characterization
frequency of the modulated RF signal is recorded as dataset variable and RF

.RF_Fc

http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal
http://edadocs.software.keysight.com/display/sv201608/SpectrumAnalyzerEnv
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-ReadingDataFlowInformationTable
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/CxToRect
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/RectToCx
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition

Tutorials 496

5.

6.

7.

You can verify that the characterization frequency of the modulated RF signal
() is indeed 10Mhz.RF_Fc

The graph compares the following three waveforms: 1) the input Waveforms
baseband complex I/Q signal (variable) before , 2) the Baseband Modulator

 of the RF signal (variable) after , and 3) the complex envelope RF Modulator
output baseband complex I/Q signal (variable) after . output Demodulator
They should be exactly the same because both and Modulator Demodulator
use type. Double click the graph to open the graph properties, you can I/Q
hide/unhide the signal for comparison.

http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Demodulator

497 Tutorials

8.

9.

In the graph, you can inspect the spectrum of the modulated Spectrum
signal. The spectrum of an RF envelope signal is centered at the

 with spectrum spanned over the characterization frequency ()Fc simulation
 of the signal, i.e., from to , where is the bandwidth Fc - Fs/2 Fc + Fs/2 Fs

sampling rate of the envelope signal at the input of the SpectrumAnalyzerEnv
. In this example, the graph is centered at 10Mhz and spanned Spectrum
from 8.75Mhz (10Mhz - 2.5Mhz/2) to 11.25Mhz (10Mhz + 2.5Mhz/2), where
2.5Mhz is the sampling rate of the modulated RF envelope signal.

The table shows the sampling rates (column DF1_Data_DataFlowInfo
) and characterization frequencies (column) of the envelope SampleRate Fc

signals at each connection. For example, the sampling rate at the output of
the , the input of the , and the input of the Modulator SpectrumAnalyzerEnv

 is at 2.5Mhz, and the characterization frequency is at 10Mhz.Demodulator

http://edadocs.software.keysight.com/display/sv201608/SpectrumAnalyzerEnv
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/SpectrumAnalyzerEnv
http://edadocs.software.keysight.com/display/sv201608/Demodulator

Tutorials 498

9.

10.

1.

2.

3.

The envelope signal simulation technology in SystemVue allows users to use
simulation sampling rate in the range of signal bandwidth, which is much
smaller than the carrier frequency.

Envelope Bandpass Filter

This example illustrates how to create a bandpass filter for filtering RF envelope
.signal

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\EnvelopeSignal.
wsv.

Open in folder . This example is Design2 2. Envelope Bandpass Filter
continued from the previous example .Baseband and RF

Design a to filter out the spectrum images (see bandpass raised cosine filter
the spectrum in) due to the model that up-Baseband and RF UpSample
samples (up-sample and hold) the incoming symbols by 10 times. To design
the filter, place down a part, double click the part to bring up the filter Filter

. Choose Response and select FIR filter. Designer Bandpass Raised Cosine
Set to 2.5 Mhz (2.5e6 Hz). In the parameter grid, set Sample Rate FCenter
(center frequency) to "Fc" (is defined in the equation tab as 10 Fc Design2
Mhz, which is the carrier frequency of the). Set Modulator SymbolRate
(passband bandwidth) to "SymbolRate" (is defined in the SymbolRate

 equation tab as 0.25 Mhz, which is the symbol rate after the Design2 Mapper
). Set to YES to equalize the symbol pulses due to up-PulseEqualization
sample and hold. Leave the other parameters as default. Select Envelope
Data Type. The filter designer will automatically design the filter and show
you the bandpass frequency response as in the screenshot below.

http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-BandpassandBandstopFilteringforAnalyticSignals
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-BandpassandBandstopFilteringforAnalyticSignals
http://edadocs.software.keysight.com/display/sv201608/BPF+RaisedCosine
http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/filter
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Mapper

499 Tutorials

3.

4.

5.

6.

Close the filter designer. The filter part will be configured automatically to
use the model based on the specification. Place the filter BPF RaisedCosine
in between and as shown in the following Modulator M3 Demodulator D2
screenshots.

Run data flow analysis.DF2

The graph compares the (red color) and CompareSpectrum InputSpectrum
 (blue color) before and after of the bandpass raised cosine OutputSpectrum

filter. As you can see, by setting the center frequency () of the FCenter
bandpass filter to the carrier frequency () of the RF envelope Fc = 10 Mhz
signal and by setting the passband bandwidth () of the bandpass SymbolRate
raised cosine filter to the symbol rate after the (= 0.25 Mapper SymbolRate
Mhz), we can filter out the images outside the symbol bandwidth (9.875 Mhz
to 10.125 Mhz).

http://edadocs.software.keysight.com/display/sv201608/BPF+RaisedCosine
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/Mapper

Tutorials 500

6.

7.

8.

9.

When filtering RF envelope signal (Fc > 0) with bandpass filters, SystemVue
actual designs a low-pass filter with lowpass passband frequency =

 to filter the bandpass passband bandwidth / 2 complex envelope
representation (in-phase and quadrature components) of the RF signal. This
approach allows users to use simulation sampling rate (2.5 Mhz in this
example) that is much smaller than the carrier frequency (10 Mhz in this
example). Filtering an RF signal with its real-value representation requires
simulation sampling rate at least twice of the carrier frequency, which is in
general order of magnitude larger than the signal bandwidth (see the next
tutorial example where RF carrier frequency is at 1 Ghz).Baseband IF and RF

Go back to the by double clicking the part Filter Designer BPF RaisedCosine
and then clicking the "Filter Designer" button in the part properties dialog.
Let's review the message in the Calculation Log:

The filter was designed for complex envelope signals. To design the
filter for real signals: Sample Rate(2.5e+06) / 2 should be larger than
FCenter + SymbolRate * (1 + RollOff) / 2.

What this message means is that the 2.5 Mhz sample rate is not enough to
capture the bandpass filter response for filtering the RF signal in its real-
value representation. Instead, the filter is designed with 2.5 Mhz sample rate
to filter the complex envelope of the RF signal.

For more details, refer to Bandpass and Bandstop Filtering for Analytic
.Signals

Baseband, IF and RF

This example illustrates how to use and to convert between Mixer Oscillator
intermediate frequency (IF) and radio frequency (RF) and also shows how to use

 to track the change of .data flow information table characterization frequencies (Fc)

http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-Definition
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/BPF+RaisedCosine
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-BandpassandBandstopFilteringforAnalyticSignals
http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal#EnvelopeSignal-BandpassandBandstopFilteringforAnalyticSignals
http://edadocs.software.keysight.com/display/sv201608/Mixer
http://edadocs.software.keysight.com/display/sv201608/Oscillator
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-ReadingDataFlowInformationTable

501 Tutorials

1.

2.

3.

4.

5.

6.

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\EnvelopeSignal.
wsv.

Open in folder . This example is continued from the Design3 3. BB – IF – RF
previous example .Envelope Bandpass Filter

Insert a after , name the mixer , and set Mixer BPF RaisedCosine F1 IF_to_RF
the parameter to . Add an and connect its output Sideband Upper Oscillator
to the input of the mixer and set its parameter to "RF-LO IF_to_RF Frequency
IF" (990 Mhz), where IF = 10 Mhz and RF = 1 GHz are defined in the equation
tab of . Insert a between and , name Design3 Mixer IF_to_RF Demodulator D2
the mixer , and set the parameter to . Add an RF_to_IF Sideband Lower

 and connect its output to the input of the mixer and Oscillator LO RF_to_IF
set its parameter to "RF-IF". See the following screenshot as Frequency
reference.

The carrier frequency of the is set to (10 Mhz) and the center Modulator IF
frequency of the is also set to (10 Mhz). The mixer BPF RaisedCosine IF

 will convert the envelope signal from characterization frequency 10 IF_to_RF
Mhz to characterization frequency 1 Ghz (upper sideband = 990 + 10 = 1000
Mhz), which is the RF carrier frequency. The mixer will convert the RF_to_IF
envelope signal from characterization frequency 1 Ghz to characterization
frequency 10 Mhz (lower sideband = 1000 - 990 = 10 Mhz), which is the IF
frequency.

Run data flow analysis.DF3

The graph shows the IF spectrum at the input of the mixer SpectrumIF
 (red color) and the IF spectrum at the output of the mixer IF_to_RF RF_to_IF

(blue color). Both of them are centered at 10 Mhz, i.e., the characterization
frequency of the IF envelope signal. The spectrum is spanned from 8.75Mhz
(10Mhz - 2.5Mhz/2) to 11.25Mhz (10Mhz + 2.5Mhz/2), where 2.5Mhz is the
sampling rate of the modulated IF envelope signal.

http://edadocs.software.keysight.com/display/sv201608/Mixer
http://edadocs.software.keysight.com/display/sv201608/BPF+RaisedCosine
http://edadocs.software.keysight.com/display/sv201608/Oscillator
http://edadocs.software.keysight.com/display/sv201608/Mixer
http://edadocs.software.keysight.com/display/sv201608/Demodulator
http://edadocs.software.keysight.com/display/sv201608/Oscillator
http://edadocs.software.keysight.com/display/sv201608/Modulator
http://edadocs.software.keysight.com/display/sv201608/BPF+RaisedCosine

Tutorials 502

6.

7.

8.

The graph shows the RF spectrum at the output of the mixer SpectrumRF
 (red color). The spectrum is now centered at 1 Ghz, i.e., the IF_to_RF

characterization frequency of the RF envelope signal. Note that the spectrum
is still spanned across 2.5Mhz bandwidth from (1Ghz - 2.5Mhz/2) to (1Ghz +
2.5Mhz/2) because simulation sampling rate remains the same at 2.5 Mhz.

From table, you can verify the characterization DF3_Data_FataFlowInfo
frequency (column) of the envelope signals at different places. For Fc
example, the output of Modulator is at Fc = 10 Mhz (IF). The LO input of M3
the mixer is at 990 Mhz, which is also the Fc at the output of the IF_to_RF
Oscillator O1. The output of the mixer is at Fc = 1 Ghz (RF), and the IF_to_RF
output of the mixer is back again at Fc = 10 Mhz (IF).RF_to_IF

503 Tutorials

8.

1.

2.

3.

Timed from Schematic

The following example introduces how SystemVue resolves the simulation sampling
 when parameter is set to in rate SampleRateOption Timed from Schematic source

. This example also explains the relation between the models Timed from Schematic
option and the parameter in .System Sample Rate data flow analysis

Open <SystemVue installation
directory>\Examples\Tutorials\DataFlow\TimedSystem.wsv.

Open under folder .Design1 1. Timed from Schematic

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution
http://edadocs.software.keysight.com/display/sv201608/Source+Models
http://edadocs.software.keysight.com/display/sv201608/Source+Models
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis

Tutorials 504

3.

4.

5.

6.

7.

There are three source models , , and on schematic. Their SineGen S1 S2 S3
 parameters are set to 75 Khz, 150 Khz, and 240 Khz respectively. Frequency

The parameters of these three models are all set to SampleRateOption Timed
. You can see the parameter by setting from Schematic SampleRateOption

the option to YES. By default, the ShowAdvancedParams SampleRateOption
parameter is set to .Timed from Schematic

Run data flow analysis.DF1

When there is no source model that explicitly sets the output sampling rate (i.
e., =) and there is no SampleRateOption Timed from SampleRate

 model on schematic, SystemVue will set the SetSampleRate System Sample
 (defined in the data flow analysis) to the Rate output connections of the

 based on the sources that require the lowest sampling rate TSDF sampling
. After that, SystemVue can resolve the sampling rates for all rate equations

other connections. See for the exact rules.sampling rate resolution

Since is currently a single rate system (the and Design1 UpSample
 are shorted), the sources , , and operate at the same DownSample S1 S2 S3

rate. As a result, SystemVue sets the output sampling rate of these three
models to the defined in data flow analysis, which System Sample Rate DF1
is 1 Mhz in this case.

The following screenshot annotates the data flow rates and sampling rates in
the system. You can verify them in table.DF1_Data_DataFlowInfo

http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/SetSampleRate
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution
http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/DownSample

505 Tutorials

7.

8.

9.

10.

11.

Now enable and run data flow analysis again.DownSample D2 DF1

In this case, because there is a 2-to-1 between and the DownSample D2 S2
rest of the system, operates at twice the rate of the other models. You can S2
verify it in table. In the table, the repetition count DF1_Data_DataFlowInfo
(column) of is 2, while the repetition counts for all other models repetition S2
are 1. This multirate behavior makes and the slowest sources in the S1 S3
system, so SystemVue sets the (which is defined as 1 System Sample Rate
Mhz in data flow analysis) to the output of and . Based on the DF1 S1 S2

, the sampling rate for is now 2 Mhz. This TSDF sampling rate equations S2
can be easily derived as follows: 1) The sampling rate for 's output is 1 S3
Mhz, which is the sampling rate at the bottom input of the model. 2) Add
Since is a single rate model, the sampling rate of the middle input of the Add

 model is also 1 Mhz. 3) Because there is a 2-to-1 down sampling across Add
, the input sampling rate of should be 2 Mhz, which makes the output D2 D2

sampling rate of 2 Mhz. Can you annotate the data flow rates and S2
sampling rates for the current system? The answer is provided in the
following screenshot.

Now enable and run data flow analysis again.UpSample U1 DF1

http://edadocs.software.keysight.com/display/sv201608/DownSample
http://edadocs.software.keysight.com/display/sv201608/DownSample
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/UpSample

Tutorials 506

11.

12.

1.

2.

In this case, because there is a 1-to-2 between and the UpSample U1 S1
rest of the system, now operates at the slowest rates. From S1

 table, you can verify that the repetition counts of , DF1_Data_DataFlowInfo S1
, and are 1, 4, and 2 respectively. SystemVue now sets the S2 S3 System

 (which is defined as 1 Mhz in Data Flow Analysis) to the Sample Rate DF1
output of . Can you annotate the data flow rates and sampling rates for S1
the current system? The answer is provided in the following screenshot. Note
that the output sampling rates for , , and are now 1 Mhz, 4 Mhz, and S1 S2 S3
2 Mhz respectively.

Now double click data flow analysis and set to 2 DF1 System Sample Rate
Mhz and run data flow analysis again. Since the is DF1 System Sample Rate
now set to 2 Mhz, the output sampling rates for , , and are now 2 S1 S2 S3
Mhz, 8 Mhz, and 4 Mhz respectively. Can you annotate the data flow rates
and sampling rates for the current system? The answer is provided in the
following screenshot.

Timed from SampleRate

The following example introduces how SystemVue resolves the simulation sampling
 when there exists a with parameter set to rate source model SampleRateOption

.Timed from Schematic

Open <SystemVue installation
directory>\Examples\Tutorials\DataFlow\TimedSystem.wsv.

http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution
http://edadocs.software.keysight.com/display/sv201608/Source+Models

507 Tutorials

2.

3.

4.

5.

Open schematic under folder . is Design2 2. Timed from SampleRate Design2
continued from the tutorial example .Timed from Schematic

The parameter of the model is set to SampleRateOption SineGen S3 Timed
. What it means is that now explicitly sets its output from SampleRate S3

sampling rate to the value specified in the parameter. By SampleRate
default, the parameter is set to the global equation variable SampleRate

, which is used to access the value in the Sample_Rate System Sample Rate
corresponding data flow analysis. In this case, equals to 1 Mhz, Sample_Rate
which is the defined in data flow analysis. See System Sample Rate DF2

 for details.Accessing Data Flow Analysis Settings from Equations

If at least one model sets the sampling rate on a particular connection,
SystemVue can compute the sampling rates for all other connections based
on the . See for the TSDF sampling rate equations sampling rate resolution
exact rules.

In , because explicitly sets the output sampling rate to 1 Mhz, Design2 S3
SystemVue will use that information to resolve the sampling rates for the rest
of the system. Can you annotate the data flow rates and sampling rates for

http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-AccessingDataFlowAnalysisSettingsfromEquations
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-TimedSynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SamplingRateResolution

Tutorials 508

5.

6.

7.

8.

the current system? The answer is provided in the following screenshot. The
sampling rates for the rest of the system can be easily derived as follows: 1)

's output sampling rate is explicitly set to 1 Mhz. 2) The model is a S3 Add
single rate model, so the output sampling rates for and DownSample D2

 must be 1 Mhz. 3) There is a 2-to-1 down sampling across , UpSample U1 D2
so the output sampling rate for is 2 Mhz. 4) There is a 1-to-2 up sampling S2
across , so the sampling rate for is 0.5 Mhz. You can verify it using the U1 S1

 table. The repetition count for , , and are 1, DF2_Data_DataFlowInfo S1 S2 S3
4, and 2 respectively.

Now double click on to bring up the part properties dialog, change S2
 to . By default, the SampleRateOption Timed from SampleRate SampleRate

parameter for is set to global variable, which is 1 Mhz S2 Sample_Rate
because it refers to the parameter in data flow System Sample Rate DF2
analysis. Click OK to enforce the settings.

Run data flow analysis.DF2

You should see an error message "Error: output of SineGeneratorTimedBurst
'Design2__S2': The port Design2__S2__output has a sample rate set to 1.0
e+006 but was resolved as needing to be set to 2.0e+006". The error
happens because both and want to set the output sampling rate to 1 S3 S2
Mhz but they actually operate at different rates due to , DownSample D2
SystemVue cannot resolve sampling rates for the system.

When there is an error during simulation setup, SystemVue is unable to
provide data flow information.

http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/DownSample
http://edadocs.software.keysight.com/display/sv201608/UpSample
http://edadocs.software.keysight.com/display/sv201608/DownSample

509 Tutorials

8.

9.

10.

1.

2.

3.

When there are multiple models that set the sampling rates in a system, it is
user's responsibility to make sure the TSDF sampling rate equations have a
solution. If not, SystemVue will issue error messages to help users identify
the problematic connections and the required sampling rate values. Can you
fix this sampling rate resolution issue?

You can fix the problem by setting the parameter of to 2 SampleRate S2
Mhz.

Frequency Response vs Sample Rate

This example will guide you to create an data type lowpass filter and the envelope
corresponding numeric filter. By changing the simulation sampling rate other than
the sampling rate specified in the filter designer, you will observe different behavior
from the two filters.

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\FilterAndSampleRate.
wsv.

Open schematic in folder .Design1 1. Frequency Response vs Sample Rate

http://edadocs.software.keysight.com/display/sv201608/Envelope+Signal

Tutorials 510

3.

4.

5.

Create and design a . First, place a part on lowpass Butterworth IIR filter filter
schematic, double click it to open a , select response filter designer Lowpass
and IIR shape. Set parameter in the Butterworth Sample Rate filter designer
to 1 MHz (1e6 Hz). By default, the parameter is set to the Sample Rate

 in the data flow analysis. Set to 150 KHz and System Sample Rate PassFreq
leave the rest parameters as default. Make sure the drop-down Data Type
menu is set to , which is the default. Close the filter designer. The Envelope
filter designer will automatically design the filter and show you the lowpass
frequency response as in the screenshot below.

The actual simulation sampling rate at the input of the filter can be
different than the parameter in the corresponding Sample Rate filter

.designer

Close the filter designer. The filter part will be configured automatically to
use the model based on the specification. Name the filter LPF Butterworth
part and insert in between the source and the F1 F1 Impulse I1 Sink

.TimedFilterOutput

Copy and paste the part to another part. Double click the LPF Butterworth
copied part and click "Filter Designer" in the part properties dialog. This will
bring up a filter designer containing the same lowpass Butterworth
specification. Make sure again the in the filter designer is 1 Mhz Sample Rate
and is 150 KHz. Choose in the drop-down PassFreq Floating Point Data Type
menu. See Data Type section in .Filter Specification Window

http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/filter
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer
http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/Impulse
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/About+the+DSP+Filter+Designer#AbouttheDSPFilterDesigner-FilterSpecificationWindow

511 Tutorials

5.

6.

7.

8.

9.

Close the filter designer. Because the filter specification is IIR with Floating
 data type, a model is instantiated when the IIR Point BiquadCascade

coefficients can fit into the cascade-biquad structure (otherwise, an IIR
model is instantiated). (Cascade-biquad structure has better resistance to
numeric errors). Name the resulting part and insert in between the F2 F2

 source and the .Impulse I1 Sink NumericFilterOutput

The resulting schematic should look as follows.

Run data flow analysis.DF1

Graph (blue color) shows the frequency response TimedFilterFreqResponse
of the model , i.e., the Fourier transform of the impulse LPF Butterworth F1
response . Graph (red color) TimedFilterOutput NumericFilterFreqResponse
shows the frequency response of the model , i.e., the BiquadCascade F2
Fourier transform of the impulse response . As you can NumericFilterOutput
see, the frequency responses from both filter models are the same. The -3db

http://edadocs.software.keysight.com/display/sv201608/BiquadCascade
http://edadocs.software.keysight.com/display/sv201608/IIR
http://edadocs.software.keysight.com/display/sv201608/Impulse
http://edadocs.software.keysight.com/display/sv201608/Sink
http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/BiquadCascade

Tutorials 512

9.

10.

11.

12.

passband edge is at 150 KHz. This is because the numeric filter is F2
designed to the same specification as the envelope filter and the F1 Sample

 used to design is the same as the simulation sampling rate at the Rate F2
input of .F1

Double click data flow analysis and set the DF1 System Sample Rate
parameter to 4 Mhz. As described in the tutorial example Timed from

, the output sampling rate of the model will be set to 4 Schematic Impulse I1
Mhz.

Run data flow analysis again.DF1

Now graph is different than graph TimedFilterFreqResponse
. Since () is an envelope data NumericFilterFreqResponse F1 LPF Butterworth

type filter model, it will re-design the filter based on the input sampling rate,
which is 4 Mhz in this case. As you can see in graph TimedFilterFreqResponse
, the -3db passband edge is still at 150 KHz and maximum frequency
response frequency is at 2 Mhz (1/2 of the sampling rate).

http://edadocs.software.keysight.com/display/sv201608/Impulse
http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth

513 Tutorials

12.

13.

1.

2.

The model is a numeric digital IIR filter with fixed BiquadCascade F2
coefficients. The filter coefficients of are designed based on 150 KHz F2

 and 1 MHz , which actually maps the passband edge PassFreq Sample Rate
to 3π/10 (= 150 Khz / 1 Mhz * 2π) in Z domain. Since 2π in Z domain always
maps to the sampling rate of the signal, when the sampling rate changes to
4 Mhz, the passband edge reflects back to 600 KHz (= 3π/10 / 2π * 4 Mhz).
This is why in graph (frequency response of), NumericFilterFreqResponse F2
the -3db passband edge is at 600 KHz and the shape of the frequency
response remains the same with respect to the simulation sampling rate (2π).

Filtering vs Sample Rate

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\FilterAndSampleRate.
wsv.

Open schematic in folder . This example Design2 2. Filtering vs Sample Rate
is continued from the previous one . The Frequency Response vs Sample Rate

 model has = 150 Khz and LPF Butterworth F1 PassFreq BiquadCascade
model is designed using lowpass Butterworth specification with F2 PassFreq
= 150 Khz and = 1 Mhz.Sample Rate

http://edadocs.software.keysight.com/display/sv201608/BiquadCascade
http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/BiquadCascade

Tutorials 514

2.

3.

4.

5.

The parameters of the three source models are 75 KHz, Frequency SineGen
150 KHz, and 240 KHz. The three sine waveforms are combined together and
passed to the filters.

Run data flow analysis with = 1 Mhz.DF2 System Sample Rate

Graph (green color) shows the spectrum of the input DF2_SpectrumIn_Power
signal, graph (blue color) shows the DF2_TimedFilterSpectrumOut_Power
output spectrum of the envelope filter , and graph LPF Butterworth F1

 (red color) shows the output DF2_NumericFilterSpectrumOut_Power
spectrum of the numeric filter . Since the -3db passband BiquadCascade F2
edge is at 150 KHz, the 240 KHz sinusoid is filtered out by and . Note F1 F2
that the 1 MHz simulation sampling rate matches the sampling rate used to
design the numeric filter .F2

http://edadocs.software.keysight.com/display/sv201608/SineGen
http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/BiquadCascade

515 Tutorials

5.

6.

7.

8.

Change to 4 MHz in and run again.System Sample Rate DF2 DF2

The 240 KHz sinusoid is filtered out by the envelope filter LPF Butterworth F1
because it is re-designed based on the new sampling rate 4 MHz and the -3
db passband edge remains at 150 KHz.

As explained in the tutorial example , Frequency Response vs Sample Rate
 is a numeric digital filter, so the passband edge 3π/10 in BiquadCascade F2

Z domain now maps to 600 KHz with respect to the new sampling rate 4
MHz. As a result, all three sinusoid waveforms are passed through.

http://edadocs.software.keysight.com/display/sv201608/LPF+Butterworth
http://edadocs.software.keysight.com/display/sv201608/BiquadCascade

Tutorials 516

8.

1.

2.

Deadlock

This example illustrates a common scenario that causes deadlocks and shows you
how to .resolve deadlocks

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\Debugging.wsv.

Open schematic in folder . This schematic is taken from Design1 1. Deadlock
the example workspace <SystemVue installation directory>\Examples\Model
Building\CIC_filter.wsv. It represents a design of cascaded integrator-comb
(CIC) filter.

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-DeadlockandDeadlockResolution

517 Tutorials

2.

3.

4.

5.

6.

7.

8.

Run data flow analysis.DF1

SystemVue reports "Error: 'Design1_ _G2': cause deadlock. A1', 'Design1
Please insert sufficient delays in the feedback loops." When there is a

 in a system, SystemVue will report a list of components that cause deadlock
the deadlock.

Can you solve it?

By inspecting schematic based on the error message, you can see Design1
that there is a feedback loop from the output of , which goes through Add A1

 , and loops back to the input of . Based on , Gain G2 A1 data driven execution
to execute (fire) , it needs one sample from each of its input ports. To get A1
the first sample from the lower input connection (from the loop), must fire G2
once. To fire , it needs one sample from its input. However, the first input G2
sample to cannot be generated unless is fired once. But cannot be G2 A1 A1
fired due to deadlock.

To resolve a deadlock, sufficient number of need to be inserted in the delays
loop to provide initial samples. The initial samples are buffered before a
system stars execution, and therefore, allow one of the deadlocked blocks to
start firing. See for details.Deadlock and Deadlock Resolution

Before resolving the deadlock manually, let's try the Deadlock Resolution
option in . Double click data the options tab of the data flow analysis DF1
flow analysis and select the tab. Check Options Deadlock Resolution
checkbox.

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-DeadlockandDeadlockResolution
http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/Gain
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-DataFlowModelsofComputation
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-DeadlockandDeadlockResolution
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-OptionstabfortheDataFlowAnalysis

Tutorials 518

8.

9.

10.

11.

Run data flow analysis again.DF1

This time, the simulation should run successfully with automatic deadlock
resolution. SystemVue shows the following messages to inform users where
the delays are inserted and ask users to verify the correctness of the system
after deadlock resolution. Based on the message, SystemVue inserts one
delay after the model . This initial delay allows the model to Add A1 Gain G2
run for the first time without firing , and therefore, breaks the deadlock.A1

The system may behave differently depending on where SystemVue
inserts to resolve deadlocks. It is user's responsibility to check delays
the correctness of the deadlock resolution.

Take a look of the variable in dataset. Notice that the Wave_comb DF1_Data
first sample is 0. This is because a one-sample is automatically Delay
inserted at the output of the model , which introduces one sample Add A1
delay at the .Wave_comb Sink

http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/Gain
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Add
http://edadocs.software.keysight.com/display/sv201608/Sink

519 Tutorials

11.

12.

13.

14.

Now, let's try to manually resolve the deadlock. Since the feedback loop
needs one initial sample () to make fireable, we can resolve the Delay A1
deadlock by inserting a model between the output of and the input Delay G2
of . Place down a part on schematic. Flip the part direction using the A1 Delay

 function in the . Set parameter = 1, which makes Mirror schematic toolbar N
the model a one-sample delay. Insert the at the suggested Delay Delay
location. See the following screenshot as reference.

Uncheck in data flow analysis options tab. Run Deadlock Resolution DF1 DF1
data flow analysis again.

http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Schematic+Toolbar
http://edadocs.software.keysight.com/display/sv201608/Delay
http://edadocs.software.keysight.com/display/sv201608/Delay

Tutorials 520

14.

1.

2.

3.

4.

5.

The simulation should run successfully with manual deadlock resolution.
Take a look of the variable in dataset. Notice that the Wave_comb DF1_Data
first sample is -754.6e-6 instead of 0. This is because we insert the delay at
the input of , which does not cause extra delay to the rest of the system A1
after . Again, the location of delay insertion affects system's behavior. It is A1
user's responsibility to make sure the system behaves as design.

Sample Rate Inconsistency

This example shows a common scenario that causes sample rate inconsistency and
shows you how to resolve it.

Open <SystemVue installation
directory>\Examples\Tutorials\Algorithm_Design\DataFlow\Debugging.wsv.

Open schematic in folder . This Design2 2. Sample Rate Inconsistency
schematic is taken from the example workspace <SystemVue installation
directory>\Examples\Comms\BER\BPSK_BER.wsv. It contains a design to
measure BPSK BER.

Run data flow analysis.DF2

SystemVue reports an error message "Error: 'Design2_B1', 'Design2
_Bool_to_Int_at_B4_output_output#1': The scheduler has detected a sample
rate inconsistency at the listed components. ...".

521 Tutorials

5.

6.

7.

8.

9.

10.

Before running a simulation, SystemVue will make sure the system is sample
. If not, SystemVue reports sample rate inconsistency error rate consistent

and identify a component or a list of components that are located in a graph
region that causes the sample rate inconsistency. In general, sample rate
inconsistency happens due to inconsistent multirate properties in an
undirected cycle. The following picture shows the undirected cycle that
involves as reported in the error message.B1

Identify the inconsistent multirate properties is a key step to solving the
problem. reports data flow rate information but Data flow information table
such information is unavailable if there is an error during simulation setup. A
very useful approach to get the data flow rate information is to break the
undirected cycle, or in general, break the whole system into a smaller,
analyzable subsystem, and then analyze the multirate properties.

Since the model is where the upper and lower paths combine, BER_FER B1
let's disable it for a moment and see if we can get the multirate information
without it. Disable , as shown in the following screenshot.B1

Run data flow analysis.DF2

Now the simulation should run successfully and that allows us to investigate
the data flow information table.

Inspect the table, especially focus on sink and DF2_Data_DataFlowInfo BitsIn
 sink since they provide data flow information at both input BitsOut

connections of the model . As you can see, the BER_FER B1 repetition counts
(column) for and are 2 and 4 respectively, and the repetition BitsIn BitsOut
sampling rate (column) for (lower path) and SampleRate BitsIn BitsOut
(upper path) are 50 Hz and 100 Hz respectively. However, because the

 model requires the same sampling rate at both of its inputs, the BER_FER
sampling rate conversions across the upper path and across the lower path
do not match.

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SchedulingSDFGraphs
http://edadocs.software.keysight.com/display/sv201608/Setting+up+the+Data+Flow+Analysis#SettinguptheDataFlowAnalysis-ReadingDataFlowInformationTable
http://edadocs.software.keysight.com/display/sv201608/BER_FER
http://edadocs.software.keysight.com/display/sv201608/BER_FER
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+Data+Flow+Simulation#IntroductiontoDataFlowSimulation-SynchronousDataFlow
http://edadocs.software.keysight.com/display/sv201608/BER_FER

Tutorials 522

10.

11.

12.

13.

14.

1.

2.

Next, it is useful to identify and annotate the multirate components on both
paths. From table, the is a 1-DF2_Data_DataFlowInfo LPF RaisedCosine B7
to-16 interpolation filter and the is an 8-to-1 BPF RaisedCosine B9
decimation filter. Now we know where is the problem. The sampling rate
remains the same in the lower path but the sampling rate becomes twice
effectively in the upper path.

Can you solve the sample rate inconsistency?

Changing the parameter of to 8 or changing the Interpolation B7 Decimation
parameter of to 16 can solve the problem. Change one of them as B9
suggested.

Enable and run data flow analysis again. It should work BER_FER B1 DF2
now.

C++ Model Development

In this tutorial, you will learn how to create and use custom C++ model libraries.
Before starting this tutorial, we recommend that you read Introduction to C++

.Model Development

The Visual Studio version in the screenshot and the tutorial may differ than the
version that is supported in your SystemVue release.

Example 1: Building Your First Custom C++ Model Library

In this example, you will use SystemVue Action > Create Model Builder Project...
command to quickly create and build your first custom C++ model library.

Create a Model Builder Project using CMake

Select > Action Create Model Builder Project

Set the Project parameters as shown in the figure below:

http://edadocs.software.keysight.com/display/sv201608/LPF+RaisedCosine
http://edadocs.software.keysight.com/display/sv201608/BPF+RaisedCosine
http://edadocs.software.keysight.com/display/sv201608/BER_FER
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+CPP+Model+Development
http://edadocs.software.keysight.com/display/sv201608/Introduction+to+CPP+Model+Development

523 Tutorials

2.

3. Click .Create
A new instance of Visual Studio will be invoked with the generated Model
Builder Solution. The generated Solution tree is shown in the figure below:

The folder structure of the generated Model Builder Project is also shown
below. Note that the bit and bit solutions are created inside Win32 Win64
the build folders and respectively build-win32-vs2012 build-win64-vs2012
while the source code and the associated CMakeLists.txt files are inside the

 folder.source

Tutorials 524

1.

Create the MyGain C++ Model

On the Solution Explorer Window, open CMakeLists.txt file in SystemVue-
 project (This file is located at C:\Users\<user-MyProject

name>\Documents\My Workspaces\MyProject\source\systemvue\). Update
this file by uncommenting the following lines and changing the name of the
model from to :MyCustomModel MyGain

#SVU_CREATE_MODEL (MyCustomModel)

and

MyCustomModel.h
MyCustomModel.cpp

This will allow the SVU_CREATE_MODEL macro to add a header and a
source file templates for a SystemVue Model. The updated CMakeLists.txt
becomes as follows:

cmake_minimum_required(VERSION 2.8.8)

SystemVueInstallDirectory defined in ..
/CMakeLists.txt
include (${SystemVueInstallDirectory}/ModelBuilder
/CMake/ModelBuilder.cmake)

SystemVue code generation maintains this
variable, do not add files to this variable
set (SVU_GENERATED_FILES
 LibraryProperties.cpp
)

Change content below as necessary. For example,
add more files, etc.

Add a new model easily from a template by using
the SVU_CREATE_MODEL macro as commented
out below. See the documentation for more
details.
You will need to add the generated source as
shown in the commented out files below inside
the SVU_ADD_MODELBUILDER_LIBRARY area.
SVU_CREATE_MODEL (MyGain)

Uncomment the lines below to customize the
version information for your DLL.

525 Tutorials

1.

On the PC the info will show either by mousing-
over your DLL or right
clicking on the DLL and inspecting Properties ->
Details.
#
The version numbers below, can be up to 4
integers separated by periods. For
example, "1.20.22.3". For more details, refer
to the SystemVue documentation.
SVU_CREATE_VERSION_FILE(
 VERSION_FILE
 # FILE_VERSION 1.0
 # COMPANY_NAME "My Company Name"
 # COPYRIGHT "(c) My Company Name, "
 # PRODUCT_NAME "My Product Name"
 # PRODUCT_VERSION 1.0
 TARGET_TYPE "Model Library"
)

SVU_ADD_MODELBUILDER_LIBRARY(
 SystemVue-MyProject
 ${SVU_GENERATED_FILES}
 ${VERSION_FILE}
 MyGain.h
 MyGain.cpp
)

SVU_INSTALL_MODELBUILDER_LIBRARY(SystemVue-
MyProject)

Do not add the newly created source files (and) MyGain.h MyGain.cpp
by inserting the files into the solution source tree. Since the generated
Solution is created by CMake, adding new source files should be done
by updating the appropriate CMakeLists.txt file in the source folder.

To add more than one model, add a new SVU_CREATE_MODEL call for
each model to be added if there is no existing source code for that
model. The macro will generate the header and source file templates for
the SystemVue model. In addition, add the corresponding header and
source files to the arguments of SVU_ADD_MODELBUILDER_LIBRARY
call. Below is an example of adding two SystemVue Models: MyModel1
and MyModel2:

SVU_CREATE_MODEL (MyModel1)
SVU_CREATE_MODEL (MyModel2)

SVU_ADD_MODELBUILDER_LIBRARY(
 SystemVue-MyProject
 ${SVU_GENERATED_FILES}

Tutorials 526

1.

2.

 MyModel1.h
 MyModel1.cpp
 MyModel2.h
 MyModel2.cpp
)

Save your changes, right-click the project in the to Install Solution Explorer
rebuild project. Visual Studio and CMake will generate SystemVue-MyProject
several warning messages to inform the user that the project content is
changed and is going to be reloaded. Click OK to all the warning messages
that appear. After successful reloading of project, new SystemVue-MyProject

 and files are added to the project as shown in the MyGain.h MyGain.cpp
figure below. These generated header and source files provide a quick
starting point to build a SystemVue Model, for purposes of this example
leave these unchanged. By default, this macro uses a gain model as the
starting template.

In this example, these files are created at C:\Users\<user-name>\Documents\My
 folder, where <user-name> is the user Workspaces\MyProject\source\systemvue\

name on the host machine.
The content of is as follows:MyGain.h

#pragma once
#include "SystemVue/ModelBuilder.h"

class MyGain : public SystemVueModelBuilder::DFModel
{
public:
 // This Macro is required for all classes derived
from DFModel
 DECLARE_MODEL_INTERFACE(MyGain);

 // Constructor to initialize parameters
 MyGain();

 //-------- Function Overloads --------
 virtual bool Run();

 // Ports
 SystemVueModelBuilder::CircularBuffer< double >
input, output;

 // Parameter
 double Gain;

};

The content of is as follows:MyGain.cpp

527 Tutorials

1.

2.

3.

4.

5.

6.

7.

#include "MyGain.h"

#ifndef SV_CODE_GEN
DEFINE_MODEL_INTERFACE (MyGain)
{
 ADD_MODEL_INPUT(input);
 ADD_MODEL_OUTPUT(output);
 ADD_MODEL_PARAMETER(Gain);
 return true;
}
#endif

MyGain::MyGain()
{
 Gain = 0;
}

//--

// Run
// Here we do the math
//--

bool MyGain::Run()
{
 output[0] = Gain * input[0];
 return true;
}

Using the MyGain Model

Start SystemVue using a Blank template.

Click .Tools > Library Manager...

In the dialog box, select .Library Manager Add From File

Browse to your Project location and then output-vs2012\Debug-SystemVue-
Win64 (or output-vs2012\Debug-SystemVue-Win32) sub directory, select

.MyProject.dll

Click . Scroll down to see that the library has been added and is shown Open
in the list.

Click .Close

Under , in choose , this will show Part Selector Current Library MyLibrary Parts
the MyGain that you have created.

Tutorials 528

7.

8.

1.

2.

a.

b.

3.

4.

5.

6.

7.

Place an instance of the and create a simple design using it.MyGain

SystemVue uses the DLL library name to name the Part, Model and
Enum libraries. The model builder DLLs that you load must have unique
names. Read to override this Defining the Model Library Properties
default behavior.

Debugging the MyGain Model

In Visual Studio, select the Debug > Attach to Process.

In the dialog:Attach to Process

Set the field to Attach to: Native Code

Any other settings will not allow you to debug your code. If you
are using and do not see Express Edition Attach to Process...
menu command, you must set Tools -> Settings -> Expert

.Settings

In the , select the SystemVue process that is running.Available Process

In Visual Studio, double-click on the MyGain.cpp file and set a breakpoint in
the method by clicking on the gray bar next the MyGain::Run() output

 line.[0] = Gain * input[0];

Run a simulation using the simple design that you created about - Visual
Studio will stop at the line that you set the breakpoint on.

Explore the debugger, including the and tabs.Autos Locals

When you are ready to continue, click on the breakpoint (red dot) to remove
the breakpoint. Press to continue runing SystemVue.F5

Detach the debugger by selecting the .Debug > Detach All

Do not select as it will exit the SystemVue Debug > Stop Debugging
process.

Example 2: Developing Your First Custom C++ Model

http://edadocs.software.keysight.com/display/sv201608/Advanced+Topics#AdvancedTopics-DefiningtheModelLibraryProperties

529 Tutorials

1.

2.

a.

b.

3.

4.

5.

Example 2: Developing Your First Custom C++ Model

In this section, you will add an Adder to the model builder library from . Example 1
The directions below assume that SystemVue is still running from the previous
example.

Create the MyAdder C+/+ Model

On the Solution Explorer Window, open CMakeLists.txt file in SystemVue-
 project.MyProject

In the CMakeLists.txt file:

Update the macro to create a new model SVU_CREATE_MODEL

named .MyAdder

Add and to the list of MyAdder.h MyAdder.cpp
.SVU_ADD_MODELBUILDER_LIBRARY

Right-click and build the project.Install

If all is set up properly, SystemVue will automatically reload . In MyProject.dll
the SystemVue , verify that the DLL has been reloaded and you Part Selector
now see both the and in the list.MyGain MyAdder

Modify the generated files as part of developing a SystemVue MyAdder.h
model for an Adder as shown in the code below:

#pragma once
#include "SystemVue/ModelBuilder.h"

class MyAdder : public SystemVueModelBuilder::
DFModel
{
public:
 // This Macro is required for all classes
derived from DFModel
 DECLARE_MODEL_INTERFACE(MyAdder);

 // Constructor to initialize parameters
 MyAdder();

 //-------- Function Overloads --------
 virtual bool Initialize();
 virtual bool Run();

 // Ports
 SystemVueModelBuilder::CircularBuffer< double >
In1, In2, Out;

 // Parameter
 double Gain;

};

Tutorials 530

5.

6.

Note the following:

You must include .ModelBuilder.h

You must add macro DECLARE_MODEL_INTERFACE
 with public access.(<ClassName>);

The data members for parameters and input/outputs must
have public access.

Modify the file as part of developing a SystemVue model for an MyAdder.cpp
Adder as shown in the code below:

#include "MyAdder.h"

#ifndef SV_CODE_GEN
DEFINE_MODEL_INTERFACE (MyAdder)
{
 ADD_MODEL_INPUT(In1);
 ADD_MODEL_INPUT(In2);
 ADD_MODEL_OUTPUT(Out);
 ADD_MODEL_PARAMETER(Gain);
 return true;
}
#endif

MyAdder::MyAdder()
{
 Gain = 0;
}

bool MyAdder::Initialize()
{
 if (Gain ==0)
 {
 POST_ERROR("The value of Gain cannot be ==
0");
 return false;
 }
 return true;
}

//--

// Run
// Here we do the math
//--

bool MyAdder::Run()
{

531 Tutorials

6.

7.

1.

2.

3.

 Out[0] = Gain * (In1[0] + In2[0]);
 return true;
}

Also, note the following:

Use the macro to ADD_MODEL_INPUT(<data member>);
add a data member as input.

Use the macro to ADD_MODEL_OUTPUT(<data member>);
add a data member as output.

Use the macro to ADD_MODEL_PARAM(<data member>);
add a data member as a parameter.

Inputs, outputs and parameters can only be added inside
 macro.DEFINE_MODEL_INTERFACE(<class name>)

Use macro to post an error.POST_ERROR

Save your updates and build the project again.Install

Using the MyAdder Model in SystemVue

Add a to the workspace, place an instance of the , and Design MyAdder
create the design:

Simulate the design. The design will give an expected error about the value
of Gain == 0. This is the error you have posted in our method in Initialize()

 file above.Adder.cpp

Change the value of Gain to a non-zero value and successfully simulate the
design.

Tutorials 532

Example 3: Developing a Gardner Timing Recovery C++ Model

Introduction

In this example, you will develop a C++ model that implements the Gardner Timing
 algorithm, for details on this algorithm see the IEEE paper referenced Recovery

below.

In Gardner's paper, the detector algorithm was described by the following
equation:

In the equation above, the detector output

is a function of the inphase (I) and quadrature (Q) components of the input signal

. The index of

is incremented in 1/2 sample steps. Instead of using 1/2 sample steps, you will run
the signal at twice the rate and decimate it by 2. Doing so, the detector algorithm
becomes:

You can further simplify this equation, by observing that the calculation for I and Q
above are the same:

To calculate

, the algorithm now becomes:Gardner Timing Recovery

533 Tutorials

1.

2.

3.

4.

5.

6.

Steps

This algorithm is used in the QPSK Transceiver Design tutorial example
located in:
"Tutorials\QPSK_Transceiver_Design\FloatingPoint\QPSK_FloatingPoint.
wsv", open this workspace.

Open the top-level transceiver design: QPSK_Fx_SIM

Open the subnetwork.demod

Open the subnetwork. Here you can see the Gardner algorithm qpsk_demod
implemented:

The subnetwork implements theGAD_timing

function:

Double click on one of the GAD_timing parts and switch the model to
. This is the MATLAB Script MATLAB_Script@Data Flow Models

implementation of the subnetwork:

% Define and initialize the tap delay line
persistent y;

Tutorials 534

6.

7.

8.

9.

10.

11.

12.

a.

b.

c.

d.

e.

f.

g.

13.

if (isempty(y))
 y=zeros(3,1)
end

% Add new input to the tap delay line
y = [input; y(1:end-1)]

% Detector algorithm
output = y(2) * (y(1) - y(3))

You will be porting this algorithm to C++. Open the Visual Studio MyProject
solution you created in .Example 1

Add a new model named using the CMake macro GAD_timing
.SVU_CREATE_MODEL

Reimplement the MATLAB Script implementation above in your new C++
Model, here are a couple of hints:

Define a new data member for the GAD_timing C++ class definition in
the GAD_timing.h file, the data member will be defined should look
like this:

double y[3];

Define a new method to initialize the tap delay line elements to zero,
this method should have the following signature:

bool Initialize();

Right-click and build the project.Install

The should autoreload. Verify that your model is in the part MyProject.dll
selector.

Add the new C++ version of this model to the GAD_timing part:

Double click on one of the GAD_timing parts,

In the dialog, click on the button.Part Properties Manage Models...

In the dialog, click on the button.Manage Models Add Model

From the drop-down, select From Library...

Set the to .Current Library MyProject Models

Select the model and click .GAD_timing OK

In the dialog, switch the GAD_timing@MyProject Part Properties
Models.

Run the simulation and verify that your model functions the same as the
other two implementations.

References

535 Tutorials

References

"A BPSK/QPSK timing-error detector for sampled receivers", FM Gardner,
IEEE Transactions on Communications, 1986.

Example 4: Writing Fixed Point Models

A model having at least one , andSystemVueModelBuilder::FixedPointCircularBuffer
/or input/output is SystemVueModelBuilder::FixedPointCircularBufferBus
considered as a fixed point model. A fixed point model class must be derived from

 as well as an class SystemVueModelBuilder::DFModel interface
 both with access. The SystemVueModelBuilder::DFFixedPointInterface public

model class must also override the virtual ERESULT
 method to set output FixedPointParameters SetOutputFixedPointParameters()

based on the model parameters or the FixedPointParameters of inputs. The
FixedPointParameters for inputs are set by the simulator before calling

 based on the output FixedPointParameters of the SetOutputFixedPointParameters
previous model in the design.

FixedPoint Inputs/Outputs

A model must use , and/or SystemVueModelBuilder::FixedPointCircularBuffer
 to add a FixedPoint input or SystemVueModelBuilder::FixedPointCircularBufferBus

output, please see , and SystemVue CircularBuffer Data Types SystemVue
 for further details. A data member of type FixedPoint Data Type

SystemVueModelBuilder::FixedPoint cannot be added as an input or an output.

Overriding SetOutputFixedPointParameters

The method of SystemVueModelBuilder::FixedPointCircularBuffer SetParameters
must be called for each single output and also for each output of a
SystemVueModelBuilder::FixedPointCircularBufferBus bus. You may also read the
parameters of inputs in this method which are already set by the simulator. The

 is called several times during simulation until SetOutputFixedPointParameters
convergence is achieved. In the case of models whose output precision depends
upon input precision, you may query that input has a valid FixedPointParameters or
not using method of the FixedPointCircularBuffer. An input AreParametersValid
may not have valid FixedPointParameters in first few iterations before convergence
only when it is connected to a feedback loop. Even, if any of the input does not
have valid FixedPointParameters you must set valid FixedPointParameters for all
the outputs.

An example fixed point adder is shown below

#pragma once
#include "SystemVue/ModelBuilder.h"
#include "DFFixedPointInterface.h"

class AddFxp :
 public SystemVueModelBuilder::DFModel, public
SystemVueModelBuilder::DFFixedPointInterface

http://edadocs.software.keysight.com/display/sv201608/Supported+Data+Types
http://edadocs.software.keysight.com/display/sv201608/Supported+Data+Types#SupportedDataTypes-SystemVueFixedPointDataType
http://edadocs.software.keysight.com/display/sv201608/Supported+Data+Types#SupportedDataTypes-SystemVueFixedPointDataType

Tutorials 536

{
public:
 /// Output Parameters
 int WordLength;
 int IntegerWordLength;
 SystemVueModelBuilder::FixedPointEnums::Sign
IsSigned;
 SystemVueModelBuilder::FixedPointEnums::
OverflowMode Overflow;
 SystemVueModelBuilder::FixedPointEnums::
QuantizationMode Quantization;
 int SaturationBits;

 /// input bus
 SystemVueModelBuilder::FixedPointCircularBufferBus
dataIn;

 ///output
 SystemVueModelBuilder::FixedPointCircularBuffer
dataOut;

private:
 /// Accumulator for the sum
 /// SystemVueModelBuilder::FixedPointValue is
arbitray precision type. An object of
 /// FixedPointValue type may store a fixed-point
value of arbitrary precision
 /// and binary point location without losing
precision or magnitude (no quantization
 /// or overflow handling). This is suitbale for
accumulating the sum. The
 /// overflow/quantization handling will be
performed on dataOut[0] when we
 /// assign this accumulated sum to the dataOut[0]
 SystemVueModelBuilder::FixedPointValue
m_fxpAccumulator ;

public:
 // This Macro is required for all classes derived
from CDFModel
 DECLARE_MODEL_INTERFACE(AddFxp)

 //-------- Function Overloads --------
 bool Run(); // Do the
math
 bool Initialize();

 ERESULT SetOutputFixedPointParameters();
};

#include "AddFxp.h"

537 Tutorials

DEFINE_MODEL_INTERFACE (AddFxp)
{
 SET_MODEL_NAME("AddFxp");
 SET_MODEL_CATEGORY("Math Scalar");
 SET_MODEL_SYMBOL("SYM_AddFxp");

 ADD_MODEL_INPUT(dataIn);
 ADD_MODEL_OUTPUT(dataOut);

 WordLength = 16; // default value
 SystemVueModelBuilder::DFParam cWL =
ADD_MODEL_PARAMETER(WordLength);

 IntegerWordLength = 2; // default value
 SystemVueModelBuilder::DFParam cIWL =
ADD_MODEL_PARAMETER(IntegerWordLength);

 // Adding built in enumerations
 ADD_MODEL_PARAMETER(IsSigned);
 ADD_MODEL_PARAMETER(Quantization);
 ADD_MODEL_PARAMETER(Overflow);

 SaturationBits = 0; // default value
 SystemVueModelBuilder::DFParam cSB =
ADD_MODEL_PARAMETER(SaturationBits);

 return true;
}

ERESULT AddFxp::SetOutputFixedPointParameters()
{
 dataOut.SetParameters(WordLength,IntegerWordLength,
IsSigned,Quantization,Overflow,SaturationBits);
 return NOERROR_;
}

bool AddFxp::Initialize()
{
 if(WordLength <=0)
 POST_ERROR("Word Length must be greater than 0."
);
 return true;
}

//--

// Go
// Here we do the math
//--

bool AddFxp::Run()

Tutorials 538

1.

2.

3.

a.

b.

{
 m_fxpAccumulator = 0;

 // accumulate the sum for all inputs on the bus
without quantization/overflow
 // handling
 for(size_t szPort=0; szPort < dataIn.GetSize();
szPort++)
 {
 m_fxpAccumulator += dataIn[szPort][0];
 }

 // assign the accumulated sum to output, this will
cause quantization/overflow handling
 dataOut[0] = m_fxpAccumulator;

 return true;
}

Example 5: Writing a Timed Data Flow Model

In this example, you will create a timed sine generator model that sets simulation
sample rate based on the SampleRate parameter and generates timed sine wave
based on Amplitude, Frequency, and Phase parameters.

Refer to the section in the User's Guide for detailed Writing Data Flow C++ Models
documentation on the TimedDFModel class.

Open the MyProject Visual Studio solution you created in .Example 1

Add a new model named using the CMake macro SineGenerator

.SVU_CREATE_MODEL

A timed model must use C++ classes that support time, by default
 macro creates a template for an untimed model. In SVU_CREATE_MODEL

Visual Studio, edit makes the following changes:SineGenerator.h

Add the necessary include statements for the timed C++ classes:

#include "SystemVue/TimedDFModel.h"
#include "SystemVue/TimedCircularBuffer.h"

A timed model is derived from the SystemVueModelBuilder::
 class, instead of TimedDFModel SystemVueModelBuilder::

. Replace:DFModel

class SineGenerator : public
SystemVueModelBuilder::DFModel

with

http://edadocs.software.keysight.com/display/sv201608/Writing+Data+Flow+C+Plus+Plus+Models#WritingDataFlowCPlusPlusModels-timed_cpp_model

539 Tutorials

3.

b.

c.

d.

e.

f.

4.

a.

class SineGenerator : public
SystemVueModelBuilder::TimedDFModel

.

A timed model must be derived from the
 class, instead of SystemVueModelBuilder::CircularBuffer

. Replace:SystemVueModelBuilder::TimedCircularBuffer

SystemVueModelBuilder::CircularBuffer< double >

with

SystemVueModelBuilder::TimedCircularBuffer< dou
ble >

.

Remove the Gain parameter and input port definitions from the
header.

Add the new parameters:

double Amplitude;
double Frequency;
double Phase;
double SampleRate;

Finally, you will need to add a new method declaration which Setup

must be used by the model to set the that will be used in sample rate
the data flow simulation:

virtual bool Setup();

Now, define the implementation in the :SineGenerator.cpp

Update the , delete the unneeded DEFINE_MODEL_INTERFACE

parameter and port and add the definitions for the SineGenerator
model:

ADD_MODEL_PARAM(Amplitude);

{

Tutorials 540

4.

a.

b.

c.

 SystemVueModelBuilder::DFParam param =
ADD_MODEL_PARAM(Frequency);
 param.SetUnit(SystemVueModelBuilder::
Units::FREQUENCY);
}

{
 SystemVueModelBuilder::DFParam param =
ADD_MODEL_PARAM(Phase);
 param.SetUnit(SystemVueModelBuilder::
Units::ANGLE);
}
{
 SystemVueModelBuilder::DFParam param =
ADD_MODEL_PARAM(SampleRate);
 param.SetUnit(SystemVueModelBuilder::
Units::FREQUENCY);
}

For these parameters, define the default values in the constructor (
method):SineGenerator::SineGenerator()

Amplitude = 1;
Frequency = 5e3;
Phase = 0;
SampleRate = 1e6;

Add the definition for the method to declare the sample rate (if Setup

set) to SystemVue. If not set, the model will use the sample rate
computed by SystemVue:

bool SineGenerator::Setup()
{
 bool bStatus = true;
 if (SampleRate > 0)
 {
 // Use TimedCircularBuffer::
SetSampleRate method to set the output sample
rate
 output.SetSampleRate(SampleRate);
 }
 else
 {
 POST_ERROR("SampleRate must be
greater than 0.");
 bStatus = false;
 }
 return bStatus;
}

541 Tutorials

4.

c.

d.

5.

6.

7.

Lastly, update the method, it will get the current timestamp from Run

the output port:

bool SineGenerator::Run()
{
 bool bStatus = true;

 //Use TimedCircularBuffer::GetTime method
to get the time stamp of the output sample
 //In output.GetTime(0, m_iFiringCount),
0 means the 0th output sample of each firing
(run), and TimedDFModel::GetCount returns the
current firing count.
 output[0] = Amplitude * sin(2* 3.1415 *
Frequency * output.GetTime(0, GetCount()) +
Phase);

 return bStatus;
}

Right-click and build the project.Install

The should autoreload. Verify that your model is in the part MyProject.dll
selector.

Build a few test designs to verify that your new timed model is performing as
expected.

Example 6: Writing a Timed Data Flow Model that Overrides the Latency
Calculation

The following TimedDownSampler shows an example that overrides.
The input samples are downsampled TimedDFModel::CalculateLatency()

by . For each firing (run), only the sample among input samples Factor Phase Factor
is sent to the output. As a result to make the behavior causal, the time stamp of the
first output sample should be delayed by * input time step for causality.Phase

//TimedDownSampler.h
#pragma once
#include "SystemVue/ModelBuilder.h"
#include "SystemVue/TimedDFModel.h"
#include "SystemVue/TImedCircularBuffer.h"

class TimedDownSampler : public SystemVueModelBuilder::
TimedDFModel
{
public:
 DECLARE_MODEL_INTERFACE(TimedDownSampler)
 virtual bool Run();

Tutorials 542

 virtual bool Setup();

 //Override default latency calculation
 ERESULT CalculateLatency();

 int Factor;
 int Phase;

 SystemVueModelBuilder::TimedCircularBuffer<double>
input;
 SystemVueModelBuilder::TimedCircularBuffer<double>
output;
};

//TimedDownSampler.cpp
#include "TimedDownSampler.h"

DEFINE_MODEL_INTERFACE(TimedDownSampler)
{
 SystemVueModelBuilder::DFParam paramFactor =
ADD_MODEL_PARAM(Factor);
 paramFactor.SetDefaultValue("2");
 SystemVueModelBuilder::DFParam paramPhase =
ADD_MODEL_PARAM(Phase);
 paramPhase.SetDefaultValue("0");
 ADD_MODEL_INPUT(input);
 ADD_MODEL_OUTPUT(output);
 return true;
}

bool TimedDownSampler::Setup()
{
 bool bStatus = true;
 if (Factor < 1)
 {
 POST_ERROR("Phase should be greater than 1.");
 bStatus = false;
 }
 //Set input data flow rate to Factor
 input.SetRate((size_t)Factor);

 if(Phase >= Factor || Phase < 0)
 {
 POST_ERROR("Phase should be greater than or
equal to 0 and less than Factor");
 bStatus = false;
 }

 return bStatus;
}

543 Tutorials

ERESULT TimedDownSampler::CalculateLatency()
{
 //For causality, set output start time to be
the input start time + Phase * input time step
 output.SetStartTime(input.GetStartTime ()+ input.
GetTimeStep() * Phase);
 return NOERROR_;
}

bool TimedDownSampler::Run()
{
 output[0] = input[(size_t)Phase];
 return true;
}

Example 7: Writing a Timed Data Flow Model uses Envelope Signals

SystemVue provides data type and corresponding EnvelopeSignal
 for writing models which require SystemVueModelBuilder::EnvelopeCircularBuffer

complex envelope signals.

The following EnvelopeToReal example shows how to convert an envelope signal
(which can represent either a real signal or a complex envelope signal) to real
signal.

//EnvelopeToReal.h
#pragma once
#include "SystemVue/ModelBuilder.h"
#include "SystemVue/TimedDFModel.h"
#include "SystemVue/EnvelopeSignal.h"

class EnvelopeToReal : public SystemVueModelBuilder::
TimedDFModel
{
 DECLARE_MODEL_INTERFACE(EnvelopeToReal)
 virtual bool Run();

 //Envelope signal
 SystemVueModelBuilder::EnvelopeCircularBuffer input;

 //Real signal
 SystemVueModelBuilder::CircularBuffer<double>
output;
};

//EnvelopeToReal.cpp
#include "EnvelopeToReal.h"

DEFINE_MODEL_INTERFACE(EnvelopeToReal)

http://edadocs.software.keysight.com/display/sv201608/Supported+Data+Types#SupportedDataTypes-SystemVueEnvelopeSignalDataType
http://edadocs.software.keysight.com/display/sv201608/Supported+Data+Types#SupportedDataTypes-SystemVueEnvelopeCircularBuffer

Tutorials 544

{
 ADD_MODEL_INPUT(input);
 ADD_MODEL_OUTPUT(output);

 return true;
}

bool EnvelopeToReal::Run()
{
 //If input represents a real signal (based on
whether the characterization frequency is equal to 0)
 if (input.GetCharacterizationFrequency() == 0)
 {
 //Use EnvelopeSignal::real() to get the value
of the real signal
 output[0] = input[0].real();
 }
 //Otherwise, input represents a complex envelope
with associated characterization frequency
 else
 {
 //Use EnvelopeSignal::ConvertToReal to convert
the complex envelope to real signal
 output[0] = input[0].ConvertToReal(input.
GetCharacterizationFrequency(), input.GetTime(0,
GetCount()));
 }
 return true;
}

Example 8: Writing a Timed Data Flow Model that Overrides the
Characterization Frequency Propagation

The following Modulator example up-converts baseband I-Q complex sample to
complex envelope signal at , and use CarrierFrequency TimedDFModel::

to set the output PropagateCharacterizationFrequency()

characterization frequency.

//Modulator.h
#pragma once
#include "SystemVue/ModelBuilder.h"
#include "SystemVue/TimedDFModel.h"
#include "SystemVue/EnvelopeSignal.h"

class Modulator : public SystemVueModelBuilder::
TimedDFModel
{
 DECLARE_MODEL_INTERFACE(Modulator)
 virtual bool Run();
 ERESULT PropagateCharacterizationFrequency();

545 Tutorials

 double CarrierFrequency;

 //Complex baseband I-Q signal
 SystemVueModelBuilder::DComplexCircularBuffer input;

 //Envelope signal
 SystemVueModelBuilder::EnvelopeCircularBuffer
output;
};

//Modulator.cpp
#include "Modulator.h"

DEFINE_MODEL_INTERFACE(Modulator)
{
 SystemVueModelBuilder::DFParam
paramCarrierFrequency = ADD_MODEL_PARAM(
CarrierFrequency);
 paramCarrierFrequency.SetDefaultValue("1e6");
 ADD_MODEL_INPUT(input);
 ADD_MODEL_OUTPUT(output);
 return true;
}

ERESULT Modulator::PropagateCharacterizationFrequency()
{
 //Set output envelope signal characterization
frequency to be carrier freqnecy
 output.SetCharacterizationFrequency(
CarrierFrequency);
 return NOERROR_;
}

bool Modulator::Run()
{
 //Assign input complex baseband I-Q value to output
envelope signal with associated carrier frequency
 output[0] = input[0];
 return true;
}

Example 9: Writing C++ Models that Control the Simulation

The following shows an example that uses FileWriter

to control the simulation.SystemVueModelBuilder::DFSinkControl

#pragma once

Tutorials 546

#include "SystemVue/ModelBuilder.h"
#include "SystemVue/SimulationControl.h"
#include <iostream>
#include <fstream>

class FileWriter : public SystemVueModelBuilder::DFModel
{
public:
 FileWriter();
 ~FileWriter();

 DECLARE_MODEL_INTERFACE(FileWriter);

 bool Initialize();
 bool Run();
 bool Finalize();

 SystemVueModelBuilder::DoubleCircularBuffer input;

 int NumToCollect;
 char* FileName;

private:
 size_t m_iBuffer;
 double* m_pdBuffer;
 SystemVueModelBuilder::SinkControl m_control;
 std::ofstream outputFile;
};

#include "FileWriter.h"

// Buffer size to speed up writing of data
#define FILEWRITER_BUFFER_SIZE 1000000

FileWriter::FileWriter()
{
 NumToCollect = 1;
 FileName = 0;
 m_pdBuffer = 0;
 m_iBuffer = 0;
}

FileWriter::~FileWriter()
{
 // delete the buffer
 delete [] m_pdBuffer;
}

#ifndef SV_CODE_GEN
DEFINE_MODEL_INTERFACE(FileWriter)

547 Tutorials

{
 ADD_MODEL_INPUT(input);
 ADD_MODEL_PARAM(NumToCollect);
 SystemVueModelBuilder::DFParam fName =
ADD_MODEL_PARAM(FileName);
 fName.SetParamAsFile();
 return true;
}
#endif

bool FileWriter::Initialize()
{
 bool bStatus = true;

 // Check to make sure parameters are correct
 if (FileName == 0)
 {
 POST_ERROR("FileName is not specified.");
 bStatus = false;
 }

 if (NumToCollect < 1)
 {
 POST_ERROR("NumToCollect must be greater than
0.");
 bStatus = false;
 }

 {
 // Windows limits files to be 2 gigabytes in
size 2^31 = 1 << 31
 unsigned long iMaxCollect = (unsigned(1) << 31)
/sizeof(double);
 if (NumToCollect > iMaxCollect)
 {
 char str[128];
 sprintf(str,"NumToCollect must less than or
equal to %d", iMaxCollect);
 POST_ERROR(str);
 bStatus = false;
 }
 }

 // If parameters are valid, open the file
 if (bStatus)
 {
 outputFile.open(FileName, std::ios::binary|std::
ios::out);
 if (outputFile == false)
 {
 POST_ERROR("Cannot open file.");
 bStatus = false;
 }

Tutorials 548

 if (bStatus)
 {
 // Initialize the data collection
controller - it will tract the data collected
 // and declare to SystemVue when the sink
is done collecting data.
 bStatus = m_control.Initialize(this, 0,
NumToCollect-1);
 }

 if (bStatus)
 {
 // If all OK - now we initialize the write
buffer
 m_pdBuffer = new double[FILEWRITER_BUFFER_SI
ZE];
 m_iBuffer = 0;
 }
 }

 return bStatus;
}

bool FileWriter::Run()
{
 if (m_control.CollectData()) // Check if we
should still collect data
 {
 // Write data into buffer
 m_pdBuffer[m_iBuffer++] = input[0];

 // If buffer is full, write it out to disk
 if (m_iBuffer == FILEWRITER_BUFFER_SIZE)
 {
 m_iBuffer = 0;
 outputFile.write(reinterpret_cast<char*>
(m_pdBuffer), sizeof(double)*FILEWRITER_BUFFER_SIZE);
 }

 }
 return true;
}

bool FileWriter::Finalize()
{
 // Flush the rest of the buffer to disk
 if (m_iBuffer > 0)
 outputFile.write(reinterpret_cast<char*>
(m_pdBuffer), sizeof(double)*m_iBuffer);

 // Delete the buffer
 delete [] m_pdBuffer;

549 Tutorials

 m_pdBuffer = 0;

 // Close the file
 outputFile.close();

 return true;
}

Example 10: Using MATLAB Generated C Libraries in C++ Models

This example introduces how to convert an MATLAB function into static link library
and use it in SystemVue C++ Model. For more information, refer to the
documentation for .using third party library in C++ models

This MATLAB code implements a feed-forward equalizer (FFE) function. Suppose it
is written in a file called "MyFFE.m".

% MyFFE.m

function [out] = MyFFE(Coefficients, SamplesPerBit,
Reset, in)

% Declare persistent in order to preserve internal state

persistent dSamples;
persistent numSamples;
persistent taps;

if (isempty(dSamples) || Reset)
 numSamples = length(Coefficients) * SamplesPerBit;
 dSamples = zeros(1, numSamples);
 taps = Coefficients';
end

dSamples = [in,dSamples(1:numSamples-1)];
out = dSamples(1:SamplesPerBit:numSamples) * taps;

end

Users can declare variables in MATLAB function to preserve internal persistent
state.

By using the following MATLAB command, MATLAB coder compiles "MyFFE.m" into
"MyFFE.h", "MyFFE.lib", as well as other relevant files. Please refer to MATLAB
document for more details.

http://edadocs.software.keysight.com/display/sv201608/Advanced+Topics#AdvancedTopics-UsingThirdPartyLibraryinC++Models

Tutorials 550

codegen -config:lib -args {coder.typeof(double(0), [1
Inf]), coder.typeof(uint32(16)), coder.typeof(uint32(0))
, coder.typeof(double(0)) } MyFFE.m

The following code segment is generated by MATLAB coder as part of "MyFFE.h",
which declares function in C. MyFFE function is the entry point that MyFFE
performs generated FFE operation in the library ("MyFFE.lib").

extern double MyFFE(const emxArray_real_T
*Coefficients, unsigned int SamplesPerBit, unsigned int
Reset, double in);

The following code segment is also generated by MATLAB compiler as part of
"libmyffe.h", which initializes and terminates the library respectively.

extern void MyFFE_free(void);
extern void MyFFE_init(void);

The following code shows how to write a SystemVue C++ model, , that BlindFFE
uses MATLAB -generated function to perform FFE operation.MyFFE

//BlindFFE.h

#pragma once
#include "SystemVue\ModelBuilder.h"

struct emxArray_real_T;

class BlindFFE : public SystemVueModelBuilder::DFModel
{
public:
 BlindFFE();
 ~BlindFFE();

 bool Initialize();
 bool Run();
 bool Finalize();

 // parameters
 double *m_dCoefs;
 int m_iCoefsSize;
 int m_iSamplesPerBit;

 // i/o
 double m_dInput, m_dOutput;

 DECLARE_MODEL_INTERFACE(BlindFFE);

551 Tutorials

private:
 emxArray_real_T *m_pMatlabCoefs;
 bool m_bReset;
};

//BlindFFE.cpp

#include "BlindFFE.h"

extern "C" {
#include "../M_Code_Model/codegen/lib/MyFFE/MyFFE.h"
}

#ifndef SV_CODE_GEN
DEFINE_MODEL_INTERFACE(BlindFFE)
{
 SET_MODEL_DESCRIPTION("Feed-Forward Equalizer");
 ADD_MODEL_HEADER_FILE("BlindFFE.h");
 SET_MODEL_CATEGORY("IBIS-AMI Transceivers");

 SystemVueModelBuilder::DFPort port = ADD_MODEL_INPUT
(m_dInput);
 port.SetName("input");

 port = ADD_MODEL_OUTPUT(m_dOutput);
 port.SetName("output");

 SystemVueModelBuilder::DFParam param =
ADD_MODEL_ARRAY_PARAM(m_dCoefs,m_iCoefsSize);
 param.SetName("Coefficients");
 param.SetDefaultValue("[1 0.1 0.2]");
 param.SetDescription("Bit level FFE taps");

 param = ADD_MODEL_PARAM(m_iSamplesPerBit);
 param.SetName("SamplesPerBit");

 return true;
}
#endif

BlindFFE::BlindFFE() : m_pMatlabCoefs(0)
{
 m_iSamplesPerBit = 16; // default value
}

BlindFFE::~BlindFFE()
{
}

bool BlindFFE::Initialize()
{

Tutorials 552

1.

 bool bStatus = true;

 //create coefficient array for MEX function
 m_pMatlabCoefs = new emxArray_real_T;
 m_pMatlabCoefs->allocatedSize = m_iCoefsSize;
 m_pMatlabCoefs->canFreeData = boolean_T(false);
 m_pMatlabCoefs->data = m_dCoefs;
 m_pMatlabCoefs->numDimensions = 2;
 m_pMatlabCoefs->size = new int[2];
 m_pMatlabCoefs->size[0] = 1;
 m_pMatlabCoefs->size[1] = m_iCoefsSize;

 MyFFE_init();

 if (m_iCoefsSize<1)
 bStatus = false;

 return bStatus;
}

bool BlindFFE::Run()
{
 bool bStatus = true;

 m_dOutput = MyFFE(m_pMatlabCoefs, m_iSamplesPerBit,
0, m_dInput);

 return bStatus;
}

bool BlindFFE::Finalize()
{
 bool bStatus = true;

 MyFFE_free();

 if (m_pMatlabCoefs) {
 delete [] m_pMatlabCoefs->size;
 delete m_pMatlabCoefs;
 }

 return bStatus;
}

Call MATLAB-generated initialize function, e.g., MyFFE_init(), in the Initialize()
method of the SystemVue model to properly initialize the library. Also, call
MATLAB-generated free function, e.g., MyFFE_free();, in the Finalize() method
of the SystemVue Model to properly close the library.

The following steps guide users to set up a Visual Studio project to build MyFFE
into SystemVue model library.

553 Tutorials

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

a.

b.

Follow these steps to . Suppose the project set up a Visual Studio project
name is "SystemVue_Matlab_Coder_Models".

Copy the folder containing "MyFFE.h", "MyFFE.lib" and the other header files
to the project directory and add it to include directory and link directory.

Add "MyFFE.h" into the project Header Files.

Add "MyFFE.lib" into the link libraries.

Create "BlindFFE.h" and "BlindFFE.cpp" as shown above into the project.

Build the solution. The resulting "Matlab_Coder.dll" is a custom SystemVue
library that contains BlindFFE model.

If there is a persistent variable in the MATLAB code, only one instance of such
SystemVue model can be placed on the schematic. If there are multiple
SystemVue model instances that invoke the same MATLAB function, such
persistent variable will be shared by multiple instances, and may cause
unexpected simulation results.

C++ Code Generation

Introduction

In this tutorial, you will learn how to use custom C++ models that you have written
and use them with C++ Code Generation with care, you can develop C++ models
that can be reused in .C++ code generation

Example: Using A Gardner Timing Recovery C++ Model in a Code Generated
System

In this example, we will be using the that was developed in GAD_timing C++ model
the .C++ Model Development Tutorial

Open the tutorial example located in:
"Tutorials\QPSK_Transceiver_Design\FloatingPoint\QPSK_FloatingPoint.
wsv".

Open the that C++ model Visual Studio Solution with the GAD_timing model
you developed in the C++ Model Development tutorial. In Visual Studio's

, right click on the project and select .Solution Explorer INSTALL Build

Load the into SystemVue and verify that the GAD_timing model MyProject.dll
is available.

Use the button for the part instance Manage Models GAD_timing subnetwork
and add the model to the manage models list.GAD_timing

Switch to new C++ model.GAD_timing

Open the C++ Code Generator that is part of the example workspace. In Cpp1
the C++ Code Generation Options dialog:

Set the to a new directory named .Output Directory MyProject2

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+CPP+Model+Development
http://edadocs.software.keysight.com/display/sv201608/Advanced+Topics#AdvancedTopics-CPP_Model_For_CG

Tutorials 554

6.

b.

c.

d.

7.

8.

9.

10.

Check the checkbox to Automatically add generated model to Part
.model list

Finally, click the button.Generate Now

This compile will fail as you are missing the include file GAD_timing.h
that was developed in the Visual Studio solution. You will MyProject
need to find the full the path to . The file will be in the GAD_timing.h
source/SystemVue subdirectory of the solution.MyProject

Edit the file in your project and add CMakeLists.txt SystemVue-MyProject2
the directory to the include path by using the include_directories()

CMake macro. You must make sure to use forward slashes instead of back-
slashes in the path and if your path has spaces, you surround the path must
with "". Additionally, the must be defined before include_directories

the CMake macro call.SVU_ADD_CG_MODELBUILDER_LIBRARY

You will next have to add the to your list of files that you are GAD_timing.cpp
compiling into your library. As it is not in the same directory, you will need to
have the full file path. When you are done, your edits must look like:

include_directories("C:/Users/myname/Documents/My
Workspaces/MyProject/source/SystemVue")

SVU_ADD_CG_MODELBUILDER_LIBRARY(
 SystemVue-MyProject2
 ${SVU_GENERATED_FILES}
 ${VERSION_FILE}
 "C:/Users/myname/Documents/My Workspaces
/MyProject/source/SystemVue/GAD_timing.cpp"
)

To compile and reload, you can execute one of the following two choices:

Through SystemVue: Open the C++ Code Generator and click Cpp1
.Generate Now

Through Visual Studio: Right-click on the project in your INSTALL
 and select . (Just click on all the popup Solution Explorer Build OK

message dialogs, they are triggered by the need to update Visual
Studio content due to changes in file).CMakeLists.txt

Load the and add the_qpsk_demod@MyProject2 Models_to MyProject2.dll
the part (using).qpsk_demod Manage Models

If you make a mistake, CMake might not be able to create a Visual Studio
project. If this happens, you will need to run the to Model Builder Batch
understand and fix the issues in your file.CMakeLists.txt

http://edadocs.software.keysight.com/display/sv201608/Introduction+to+CPP+Model+Development

555 Tutorials

Subnetwork Recursion: Automatically Constructing Repetitive
Data Flow Schematics

Introduction

There are many interesting signal processing systems that are constructed using
repetitive structures. In this tutorial, you will learn how to use Subnetwork

 to construct these systems. Examples of uses of these systems are:Recursion

FIR filters

Filter banks

Add and Multiplier trees (for hardware design)

Galois field multiplier (for hardware design, see the "Hardware
Design\HDLCodeGeneration\Reed_Solomon\RSEncoder.wsv" example)

In computer programming, is defined as a function calling itself. One of recursion
the easiest recursive algorithms to understand is factorial:

k! = k * (k-1) * (k - 2) * ... * 1

Below is the implementation of factorial in C++:

unsigned int factorial(unsigned int k)
{
 if (k <= 1)
 // Stopping condition to the recursion
 return 1;
 else
 // Call factorial recursively
 return k * factorial(k-1);
}

To implement a proper recursive function you must have a stopping condition
where the recursive function returns a value instead of calling itself. For factorial,
the stopping condition is .k == 1

In , you must also implement a stopping condition. In Subnetwork Recursion
, the function is implemented with a . To Subnetwork Recursion subnetwork

implement recursion, the is instantiated within itself. To implement the subnetwork
stopping condition, a part is disabled by making it either open or short subnetwork
by controlling the with an equation.part behavior

The is expanded during the initialization of a schematic for Subnetwork Recursion
simulation or code generation. Thus unlike the C++ factorial example above, the
schematic topology is fixed and cannot change during within run making it ideally
suited to describe repetitive topologies for use in either context.

http://en.wikipedia.org/wiki/Recursion
http://edadocs.software.keysight.com/display/sv201608/Parts#Parts-PartBehavior

Tutorials 556

1.

2.

3.

4.

5.

Example 1: Constructing the Fourier Series Approximation of a Square Wave
using Subnetwork Recursion

In this example, you will explore how the Fourier series of a square wave can be
implemented using Subnetwork recursion.

The Fourier series of a square wave is shown below:

Open the example: "Tutorials\Algorithm_Design\Subnetwork_Recursion.
wsv".

The design approximates a square wave with a Fourier series of SquareWave
length . Note that the top-level schematic has a that corresponds to k Gain
the

constant shown above.

Move the slider to control the number of elements in the Fourier series
approximation. As expected when you see a sine wave. As k = 1 k

increases, you have a much better approximation of a square wave and can
observe .Gibbs phenomenon

Open the subnetwork, observe that the last term (kth) of the FourierSeries
Fourier series is instantiated and added to the with terms. FourierSeries k-1

A good practice to follow when constructing a recursive subnetwork is to set
the default parameters of the subnetwork to the stop condition (in this case
when). Note with this default, the subnetwork is set to k == 1 FourierSeries

.Disabled: OPEN

Explore the stopping condition by double-clicking on the part FourierSeries
and then clicking on the (currently set to). part behavior Equation Controlled
Click on the symbol, and select .Part Behavior Control by Equation...

Example 2: Calculating Factorial using Subnetwork Recursion

The solution to this example is supplied in the
"Tutorials\Algorithm_Design\Subnetwork_Recursion.wsv" example workspace.
Before looking at the solution, implement a recursive subnetwork to calculate the
factorial. This subnetwork should:

http://en.wikipedia.org/wiki/Gibbs_phenomenon
http://edadocs.software.keysight.com/display/sv201608/Parts#Parts-PartBehavior

557 Tutorials

Define a parameter .k

Set the default value of to be the stopping condition of the recursion.k

Output the constant value .k!

Be implemented using .subnetwork recursion

Example 3: Synthesizable Adder Tree

The last example in the "Tutorials\Algorithm_Design\Subnetwork_Recursion.wsv"
workspace is an adder tree implemented with . Adder trees subnetwork recursion
are used in hardware design when you want to add more than two numbers
together. Explore this design, pay attention to how a variable-width bus is used to
construct a design that expands to add

numbers.

Cosimulation with SystemC

In this tutorial, you will learn how to use SystemC models inside SystemVue
through the demonstration of various use cases using the shipping examples. The
examples referenced in this tutorial can be found in the following directory:

Tutorials 558

1.

2.

3.

<SystemVue Installation Directory> \ Examples \ Model Building \

SystemC Modeling

The SystemC source files are located in the same path, inside the "source" folder.
To quickly open an example from SystemVue, p ress 'Ctrl + E ' or select Help >

. It is recommended to read Open Example SystemC Cosimulation documentation
before starting this tutorial .

If the directory on your computer is , you should copy the Examples Read Only
"SystemC Modeling" folder to a writable location and run the example
workspaces from there.

Example 1: Setting Up the SystemCCosim Model

To demonstrate how to set up the model, you will start with a SystemCCosim
simple SystemC Adder example. The design related to this example is the Adder

 schematic in the folder inside the workspace. design Adder SystemC_Cosim.wsv
The SystemC source files that implement the adder example are SC_Simple_Adder.

and SC_Simple_Adder.cpp under "source \ SC_Simple_Adder".h

Create a new blank workspace inside SystemVue. An empty design
schematic should open.

On the "Part Selector A" window, go to the "Algorithm Design" library, under
the category "Cosimulation", and select the part. Place this SystemCCosim
part on the schematic.

Double-click on the part on the schematic to open the SystemCCosim
custom graphical user interface for SystemCCosim inside the part properties
dialog. The first page (tab) shown in this dialog is the "SystemC Files" page.
Click the Add button and browse the "source" directory to locate the two files
mentioned above (under "source\SC_Simple_Adder"). Select both files and
click OK. Now, the "SystemC Files" page should look like the picture below.
As you can see, the first file is highlighted with green color, meaning that this
file contains the declaration of the SystemC model to be simulated. In this
case the is the correct one. However, say if the SC_Simple_Adder.h
declaration is in another file, you can select the right file in the list and click
the button on the right:Include

http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

559 Tutorials

3.

4.

5.

Next, go to the "Cosim Settings" page. Fill the and SystemC Module Build
 fields (source code of is provided on the right Directory SC_Simple_Adder.h

for reference):

Finally, go to the "I/O" page and define the port characteristics (Name,
Interface, Datatype, Port Rate) as these are defined in the source code file
(source code of is provided on the right for reference):SC_Simple_Adder.h

Tutorials 560

5.

6.

7.

8.

At this point, we can save the changes by clicking OK. There is no need to
visit the "Custom Parameters" page for this example, as there are no extra
parameters (apart from the default "sc_module_name" one) inside the
module's constructor.

Now we have already configured the model, and can use it SystemCCosim
inside a data-flow design. In this example, we use two instances of the same
SystemC model, as you can see in the figure below. The first one adds the
values of two sine generators and writes the result to its output port. The
second one adds this result to the value of a third sine generator.

Finally, we run the simulation and observe the results. A graph with the name
 can be found in the folder inside the workspace. Adder_graph Adder

Alternatively, you can check the results using the dataset (again Adder_Data
inside the "Adder" folder).

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

561 Tutorials

8.

1.

Example 2: Template SystemC Model and SystemC Datatypes

This example demonstrates how to configure the model for a SystemCCosim
Template SystemC model and how to specify the page for various SystemC I/O
datatypes.

The design (schematic) used by this example is the in the Adder design
 folder inside the workspace. The template Combinational IO_Customizations.wsv

SystemC adder model is shown below, where the datatypes of all the input and
output ports are defined by the template parameter .T

template<typename T>
class Template_Adder:
 public sc_module
{
public:

 Template_Adder(sc_module_name name);
 ~Template_Adder();

 sc_in<T> inputA;
 sc_in<T> inputB;
 sc_out<T> result;

private:

 void add();

};

For the model on schematic, the SystemCCosim Adder_Fxp_L Adder design
template datatype is set to SystemC fixed-point with word length 32 bit and T
integer word length 2 bits. The corresponding format in SystemC would look like
this: >sc_fixed<32,2

Comparing to the SC_Simple_Adder model in the previous example (Example 1),
here are the differences:

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

Tutorials 562

1.

2.

The field should specify the instantiated template model, i.SystemC Module
e. Template_Adder< sc_fixed<32,2 > >

For datatype (the same applies to), the and fields sc_fixed sc_ufixed WL IWL
must specify the right word length and integer word length:

The same SystemC model template is used by the other two SystemCCosim
models and , where the field is set to Adder_Int Adder_Dbl SystemC Module

respectively. The screenshot Template_Adder<int> and Template_Adder<double>
below shows the outputs of the three SystemC adder models using double, int, and
sc_fixed<32,2> datatypes. The quantization effects are clearly shown in the graph
when comparing the floating point double precision output (orange) with integer
(green) and fixed point (purple) representations.

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

563 Tutorials

Finally, in order to illustrate the use of various SystemC datatypes, we use the
sample code below:

template<typename T>
class SampleSystemCModel:
 public sc_module
{
public:
 SampleSystemCModel(sc_module_name name);
 ~SampleSystemCModel();

 sc_in< sc_int<16> > inputA;
 sc_fifo_in< sc_lv<100> > inputB;
 sc_out< sc_logic > outputA;
 sc_fifo_out< sc_bv<50> > outputB;
private:
 void add();
};

With the above sample code, the corresponding I/O configuration should look like
this:

Tutorials 564

Example 3: Custom Parameters

This example describes how to correctly use parameters of a SystemC model. In
the context of , "Custom Parameters" refer to the SystemCCosim constructor

 of a SystemC model. Detailed information on the acceptable datatypes parameters
of the constructor parameters can be found in the documentation of Custom

. In this example, two custom parameter cases are demonstrated:Parameters Tab

Array Parameter

Enumeration Parameter

Array Parameter

We use the design (schematic) in folder of FIR_cust_coef FIR_custom_coefficients
the workspace to illustrate array parameters.SystemC_Parameters_Passing.wsv

In this design, a SystemC FIR filter is being evaluated with the use of Additive White
Gaussian noise as input. To acquire the Power response of the filter, a Spectrum
Analyzer has been connected at its output. The type of the filter is configured by an
Array Parameter (), where the coefficients are defined. In the current design, iCoefs[]
the coefficients have been defined in such a way that the SystemC model
represents a low-pass FIR filter.

The corresponding SystemC source files can be found inside the folder "source\fir".
The constructor of this model is as follows:

fir(sc_module_name mName, int iCoefs[])

With the above constructor, the "Custom Parameters" of the block SystemCCosim
should define two parameters: and .mName iCoefs[]

The first parameter is a default parameter that every SystemC module mName
constructor must contain. For user's convenience, this parameter is created
automatically with the instantiation of a new block. The name of the SystemCCosim
parameter inside the parameter list is "ModuleName" and the default value is the

 of the block (part). In this case, will take the value "SC_FIR".Designator mName

The second parameter is an integer array. To define this parameter, the user
should:

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-CustomParametersTab
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-CustomParametersTab
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

565 Tutorials

1.

2.

3.

4.

5.

Click on the button of the Custom
 page. A new dialog will open (see the screenshot below).Parameters

Choose .Add Parameter

Define the name of the parameter (it is not necessary to be the same as the
name of the constructor parameter, what matters is that the order of the
parameters must match the constructor). The rest fields are optional except
the .Validation

Choose the correct Validation type. In this case, is the proper Integer Array
one.

Finally, verify the correct order of the parameters by looking at the
 field.Constructor Preview

As explained before, the coefficients have been defined in such a way that the FIR
filter functions as a low-pass filter. However, the user is encouraged to update
these values appropriately, to obtain different filter types.

Enumeration Parameter

For the case of enumeration parameters, we will use the schematic in FFT design
folder of the FFT_parameters_passing SystemC_Parameters_Passing.wsv
workspace as the example.

In this design, two FFT SystemC models are being evaluated. Two equivalent
numeric built-in FFT blocks are used to verify the correct functionality of the
SystemC ones, respectively. Each SystemC block contains two parameters: One to
define the FFT size and one to define the direction (forward or inverse). The point of
interest here is the second one, as this is implemented as an enumeration
parameter. In the current example, we use forward direction for both SystemC
models. The user is encouraged to test the inverse case, by using the enumeration
parameter provided.

The source code for "FFT_param" can be found in folder "source\fft\fft_ifft".

The steps to define such a parameter are described as follows:

http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-CustomParametersTab
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-CustomParametersTab

Tutorials 566

1.

2.

3.

4.

5.

6.

Follow the same procedure to add new parameters (Click Define Custom
 button and then in the popup window).Parameters... Add Parameter

In the field, choose .Validation Enumeration

Click the button at the bottom of the Define Custom
 window.Parameters

In the opened dialog, click the button.

In the field, put the name of the enumeration type in the Enum Name
SystemC code (yellow boxes in the picture below). In this case, put
"TranformType_t" as defined in the source code.

Then, define the states of the enumeration. The State Value field should have
the values defined (explicitly or implicitly) in the source code. Therefore, if the
declaration is (explicit definition) , the values for enum{ FFT = 3, IFFT = 2}
state should be and the value for state should be . If there is no FFT 3 IFFT 2
explicit definition, like in the present case () , the enum{ FFT , IFFT } State

 should take values starting from 0 and increase by 1, for every Value
subsequent state.

Follow the Note in the SystemC_Parameters_Passing workspace to load the
"SystemC Examples Enumeration library.xml" in order to see the predefined
enumerations for the FFT_param example.

Example 4: Multirate Ports

SystemCCosim supports two types of SystemC ports, the , and the . sc_signal sc_fifo
The intent of using multirate for and ports is different.sc_signal sc_fifo

The property for a port defines how many times this signal Port Rate sc_signal
should be during of the model, which sampled one firing SystemCCosim
corresponds to of the SystemC simulation. In SystemC side, one period one period
means the simulation duration that the SystemC simulation is running, for every
firing of the model inside SystemVue. During , the signal SystemCCosim one period
at the port is sampled for "Port Rate" number of times at evenly spaced sc_signal
time instances. The sampling rate of the signal in SystemC is the defined by the
sampling rate of the signal inside SystemVue.

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

567 Tutorials

For ports, the property specifies how many samples should be sc_fifo Port Rate
read from (or written to) the FIFO channel of the input (or output) port of the sc_fifo
SystemC model, in of the SystemC simulation. Here again one period one period
corresponds to of the model.one firing SystemCCosim

From data flow point of view, in each firing, the model consumes a SystemCCosim
constant number of samples from each input port, send the samples to the
SystemC process for simulation of one period, receive the resulting samples from
SystemC side, and produces a constant number of samples to each output port.
The number of samples consumed (produced) at the input (output) port is defined
by the corresponding property in the page.Port Rate I/O

A complete analysis of the way SystemC data are mapped to SystemVue samples,
with respect to the Port Rate property, can be found in SystemVue-SystemC

. In the rest of this example, we will present two multirate designs Synchronization
that are included in the workspace.IO_Customizations.wsv

Numeric Model with sc_fifo Ports

Inside the schematic, there is a block called FFT numeric design SystemCCosim FFT
. This block represents a SystemC FFT model (FFT.h and FFT.cpp in folder
"source\fft\fft_ifft") which has a constructor parameter that determines the size of
the FFT and two ports, one for input and one for output. The behavior of the sc_fifo
SystemC model is described as follows:

When the number of available samples in the input FIFO port is equal to the size of
the FFT (which is defined by the constructor parameter), the model computes the
FFT of the input samples and writes the resulting samples to the output FIFO port.
The number of output samples in one computation is equal to the FFT size.

Since the data flow semantics requires that in each firing, a SystemCCosim model
consumes and produces the numbers of samples as defined by the corresponding

 properties, therefore, the of the input and output FFT Port Rate Port Rate sc_fifo
ports should be set to the value of the "FFTLength" parameter that defines the size
of the FFT.

In the current design, we have chosen the FFT size to be 256 and consequently,
 values for both ports have been set to the same value, as shown in the Port Rate

screenshot below. The user can update this number to another value (power of 2)
for different computation of the FFT.

The behavior of the SystemC FFT model that was described above matches the one
of the numeric built-in FFT model. For this reason, in the same design, a built-in
FFT model is used in parallel to the SystemC one, so that user can verify the equal
behavior.

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-I/OTab
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation#SystemCCosimulation-SystemVue-SystemCSynchronization
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation#SystemCCosimulation-SystemVue-SystemCSynchronization
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

Tutorials 568

1.

2.

Sequential Logic Design

In the same workspace, the design named in folder contains a DFF Sequential DFF
 block representing a SystemC implementation of a D-Flip-Flop SystemCCosim

Register (DFF). The SystemC DFF model, which can be found in "source\dff\dff.h",
uses only for its inputs and outputs. The input ports are a sc_signal clock (clk)
signal, an signal and a The output is a enable (en) logic vector (in1). logic vector
(out1).

To generate digital signals for the DFF SystemCCosim model, we use WaveForm
generators.

For the signal:clock

We set the ExplicitValues to 1 and 0 (to represent one clock cycle).

We set the above sequence to be periodic.

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/WaveForm

569 Tutorials

2.

1.

2.

Similarly, for the signal:enable

We set the ExplicitValues to the sequence as shown in the following
screenshot.

We set the above sequence to be periodic.

Tutorials 570

Finally, for the input , we use another block Logic Vector in1 SystemCCosim
"Pseudorandom_LV_Gen" to generate the pseudo random logic sequence. This
block uses the parameter "Logic Value" to specify the initial logic value and then
generates pseudo-random sequences every time step, which is defined by the
parameter_Step_. In the example, we set the value of the parameter to 1us.Step

In this example, DFF is a digital synchronous component, thus, the state of
system's ports are important only on clock events (positive clock edge in this case).
In order to model correctly this functionality in a data-flow environment, it is
important to sample the values of the ports at the time instances of sc_signal
positive clock edges. To achieve this, the Port Rate of the enable (en), input (in1),

 and output (out1) signals of the DFF block should be a multiple of the Port Rate of
. Thus, if the clock rate is 2, the rate of the rest signals should be 2, the clock signal

4, 8, 10, 12, ... etc. This way it is ensured that the signals will be "sampled" at the
clock edges. In order to "sample" the signals only at the positive clock edges, the

 of the clock () port should be doubled (because two samples represent Port Rate clk
one clock period). Thus, if a Port Rate of the signals (, ,) is 1, the en in1 out1 Port

 of the port should be 2. The condition described above holds for the Rate clk
following port rate specification:

clk --> 2

en --> 1

in1 --> 1

out1 --> 1

However, the user is encouraged to use different port rate values that follow the
aforementioned condition (e.g. 12 for the , 6 for the and 6 for the and clk en in1 out1
ports) and notice that the resulting graph stays unmodified. The only difference to
the previous port rate specification is that, in the latter case, one firing of the "DFF"

 Block will process 6 input samples. The resulting graph for both SystemCCosim
cases is shown in the figure below:

http://edadocs.software.keysight.com/display/sv201608/SystemCCosim
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

571 Tutorials

1.

2.

3.

4.

As a variation of the above case, increased of and ports can be Port Rate in1 out1
chosen. This way an oversampling of the values of these ports can be achieved and
thus, a more accurate waveform of these signals can be rendered. Note that port
rate of and should still be an integer multiple of the signal. The figure in1 out1 en
below shows this variation when we apply port rate 12 for the port, 6 for the clk en
and 60 for the and :in1 out1

In both figures before, the curves of the (color) and (color) in1 red out1 blue
signals have the same response in time, however in the latter picture, the signals
are much more accurate due to the increased port rate values of the ports. This
increased accuracy reveals also the nature of the signals as a quantization Digital
of values can be noticed.

Example 5: Clock signals

SystemVue is capable of automatically generating one SystemC clock signal (
) inside the SystemC simulation and binding it to a user-defined clock sc_clock

input port. This option is only applicable to SystemC input ports of type:

sc_clk_in, or

sc_in<bool>

To connect an input port to a sc_clock, user has to follow these simple steps:

Go to the of the custom UI.Cosim Settings Tab SystemCCosim

Check the checkbox.Generate Clock Signal

Insert the name of the port in the SystemC model to be bound to the clock
signal in the text field.Clock Port

Set clock period using the text field combined with the time unit Clock Period
field.

If you check the checkbox, do declare this Generate Clock Signal not
port inside the tab.I/O

http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation#SystemCCosimulation-CosimSettingsTab
http://edadocs.software.keysight.com/display/sv201608/SystemCCosim

Tutorials 572

1.

2.

One of the examples that use this feature is the schematic in folder FFT design
 of t orkspace.FFT_parameters_passing he w SystemC_Parameters_Passing.wsv

The automatically generated sc_main function for cosimulation will look like this:

Here, a clock signal with a period of 10 , starting from value, having half period ns high

 and without any starting delay is generated.duty cycle

If the user wants to modify any of the aforementioned characteristics, he can do
this by using the feature. The definition of the clock signal is taking Debug Mode
place inside the function.sc_main

An alternative is to create a clock signal externally inside SystemVue. One way to
do that is to use the model (see example). To WaveForm Sequential Logic Design
create the same clock signal externally, for the design above, the users can follow
the steps below:

Declare the clock port as a normal input port (of type sc_in<bool>) in the I/O
.Tab

http://edadocs.software.keysight.com/display/sv201608/WaveForm
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-I/OTab
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-I/OTab

573 Tutorials

2.

3.

Add a model in the design and configure it to represent a clock WaveForm
signal. In order to have a clock period of 10 ns, the clock frequency should
be 100 MHz. To create one complete clock period, the model WaveForm
should execute twice to generate 1 and 0 states, thus, the SampleRate
parameter should be set to twice of the sampling rate of the other signal
sources.

Finally, to have both 1 and 0 states of the clock signal to be captured, the
Port Rate of the clock port in the can be set to twice of the other I/O Tab
ports, in general.

Users need to generate external clock signals manually if the following two cases
happen:

The SystemC clock input port is of type different than the ones mentioned at
the beginning of this subsection (e.g. case of type)sc_in<sc_logic>

The SystemC model contains more than one input clock ports. One can be
auto-generated but the rest should be created externally.

http://edadocs.software.keysight.com/display/sv201608/WaveForm
http://edadocs.software.keysight.com/display/sv201608/WaveForm
http://edadocs.software.keysight.com/display/sv201608/SystemC+Cosimulation+Models#SystemCCosimulationModels-I/OTab

Tutorials 574

Measurement Automation

Measurement Automation

Getting Started with Measurement Automation

Using Command Expert to Create Custom Instrument Links

Using Command Expert In MATLAB Script

Using Waveform Sequencer Composer

Getting Started with Measurement Automation

Prerequisites

Installation of .Keysight IO Library

Installation of Keysight Command Expert

(Optionally for IVI-COM Exploration) Installation of drivers through IVI-COM
 web (Go to Keysight Technical Support for Test & Measurement Drivers,

 and look into under)Updates & Examples IVI By Class

Introduction

There are two mechanisms to control and communicate with instruments:

The primary mechanism is through . In schematic, Keysight Command Expert
use part, while in MATLAB Script CommandExpertLink Equations
environment, use the function. agRunSequence

Refer to Using Command Expert to Create Custom Instrument Links
for details on using part.CommandExpertLink

Refer to for details on Using Command Expert In MATLAB Script
using in MATLAB Script Keysight Command Expert Equations
environment.

The secondary mechanism is only for instruments that are , in LXI compliant
which case the function in MATLAB Script can be used to tcpip
communicate with instruments.

Refer to Use Tcpip to Control Instrument in MATLAB Script Equations
for an example.

For applications that need to manage the sequence/order of instrument control
, e.g. to adjust a DC bias on a device before running and running the simulation

a simulation that requires data measured over that device, refer to Using
.MATLAB Script For Sequence Control

Before You Start - Instrument VISA Address

It is highly recommended to use for the instrument in complete VISA address
.Keysight Command Expert

Th easiest way to find an instrument's VISA address is through Keysight Connection

http://www.keysight.com/find/iosuite
http://www.keysight.com/find/commandexpert
http://www.keysight.com/main/facet.jspx?t=80029.k.0&cc=US&lc=eng&sm=g
http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/Equations
http://edadocs.software.keysight.com/display/sv201608/function_tcpip
http://www.keysight.com/find/commandexpert

575 Tutorials

 (which is automatically installed with).Expert Keysight IO Library
The screen capture below indicates where in to find an Keysight Connection Expert
instrument's VISA address after the instrument is registered/added into it.

The screen capture below demonstrates how to register/add an LXI instrument into
. Simply right-click on and select Keysight Connection Expert LAN (TCPIP0) Add

 and fill in the IP information on the popped up dialog.Instrument

A Brief Introduction to Keysight Command Expert Software

Keysight Command Expert is a that makes it easy FREE software suite to control
 either through commands or instruments and retrieve measurement data SCPI IVI-

 drivers.COM

Refer to the Help manual of software for more Keysight Command Expert
details

Install on your PC and and go over Keysight Command Expert start it directly
the following materials.

http://www.keysight.com/find/iosuite
http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/commandexpert

Tutorials 576

1.

a.

b.

2.

1.

2.

Connect to an instrument

As shown in the screen capture, click to bring up New
dialog to add a new instrument.Instrument

Make sure to fill in the instrument address

It is convenient to select the for the instrument too.command set

Click the button to connect to the instrument.

Use SCPI Commands

Make sure the correct SCPI command set is chosen.

Browse and select the SCPI command and click to send the
command to the instrument.

Alternatively, you can instead and then execute all

steps continuously by clicking the .Play Sequence

You can also use parameters with the SCPI commands and use break points
(as shown as the dot next to the line number).red

577 Tutorials

When downloading or uploading data, you may encounter /Big-Endian Small-
 issue (i.e. data byte order in the instrument is opposite to data byte Endian

order on your computer) and look for command to resolve it.FORMat.BORDer

When downloading or uploading a large amount of data, consider increasing
the communication timeout limit through the command.DefaultTimeout

Tutorials 578

1.

2.

3.

Use IVI-COM Driver

Some IVI-COM driver only supports 32-bit operating system. In such cases,
when running 64 bit SystemVue, you will see an error message Unable to

 in SystemVue error log, which indicates you have load command set: ...

to use 32 bit SystemVue with this specific IVI-COM driver.

Use the complete VISA address for the instrument.

Make sure you select the IVI-COM driver targeted for your specific
instrument.

Browse and select IVI-COM functions to control the instruments. Here is an
 that would search peak power frequency point between 1.975 GHz Example

and 2.025 GHz. Download it and use menu Command Expert File -> Open
 to open it and add the address of your MXA, then run it. Sequence VISA

(Ideally, you would have an RF synthesizer to provide a CW signal within this
frequency range, but that's not necessary for this exercise).

http://edadocs.software.keysight.com/download/attachments/388858276/MXA%20PeakFrequencyExample.iseq?api=v2

579 Tutorials

Use Tcpip to Control Instrument in MATLAB Script Equations

For instruments that are , you can use MATLAB Script function LXI compliant tcpip
in to directly send SCPI commands to instruments.Equations

A Simple Example

% Create tcpip communication with RF source at IP
address 111.222.333.444 using port 5025
rfSource = tcpip('111.222.333.444', 5025);
fopen(rfSource);

% Set the power level to -10 dBm
fprintf(rfSource, ':POW -10');
% make sure the power level is settled by checking *OPC
fprintf(rfSource, '*OPC?');
statusRes = fgets(rfSource);

% Close the communication channel once done
fclose(rfSource)

Keysight instruments typically use port for Tcpip communication. Refer 5025
the instrument manual on how to find or configure IP address.

Notes and Links

How do I get instrument SCPI Command Sets and IVI-COM drivers?

Once you select an instrument SCPI command set in Keysight
, it will be automatically downloaded and installed Command Expert

on your computer if it has not been installed.

http://edadocs.software.keysight.com/display/sv201608/function_tcpip
http://edadocs.software.keysight.com/display/sv201608/Equations

Tutorials 580

You can find IVI-COM drivers through Keysight Technical Support for
 web. Go to tab and Test & Measurement Drivers, Updates & Examples

select class drivers.IVI

Download softwareKeysight Command Expert

Download Keysight IO Suite.

Using Command Expert to Create Custom Instrument Links

Prerequisites

Installation of .Keysight IO Library

Installation of Keysight Command Expert

(Optionally for IVI-COM Exploration) Installation of drivers through IVI-COM
 web (Go to Keysight Technical Support for Test & Measurement Drivers,

 and look into under)Updates & Examples IVI By Class

Associated tutorial workspace

Examples\Instruments\CommandExpert\CommandExpertRFSources.wsv for
configuring modeSink

Examples\Instruments\CommandExpert\CommandExpert_LTE_FDD_UL_Throughput.
wsv for configuring mode. Source

We recommend you to copy the complete directory of
 to your local directory to Examples\Instruments\CommandExpert

avoid file writing permission issues on default installation
directory.

Introduction

CommandExpertLink part is the component used in to interface schematic
to Keysight Command Expert

CommandExpertLink part is designed to have two : type and Link Type Sink
type.Source

Sink linkage is to simulation data into instruments. The download
most common usage is to baseband I/Q waveform data download
into arbitrary waveform generators or RF signal sources.

Source linkage is to data from instruments for the simulation upload
to analyze or process (e.g. to perform digital demodulation). The
most common usage is to measurement data captured by upload
signal analyzers or oscilloscopes.

The following sections cover details on how to use
 part.CommandExpertLink

http://www.keysight.com/main/facet.jspx?t=80029.k.0&cc=US&lc=eng&sm=g
http://www.keysight.com/main/facet.jspx?t=80029.k.0&cc=US&lc=eng&sm=g
http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/commandexpert
http://www.keysight.com/main/facet.jspx?t=80029.k.0&cc=US&lc=eng&sm=g
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink

581 Tutorials

1.

2.

The challenge in using part is actually on CommandExpertLink
understanding the command set so as to find the correct SCPI command or
IVI-COM function for the desired result. Contact Keysight support team for

to help you understand the instrument's command your specific instrument
.set

Before You Start

It is always a good idea to explore your instrument with Keysight Command
 before you start working on using part in Expert CommandExpertLink

SystemVue to control the instrument.

Refer to for a A Brief Introduction to Keysight Command Expert Software
quick review on how to use .Keysight Command Expert

Once you can communicate with a specific instrument in Keysight Command
 and if the instrument is the same model as what is used in a Expert

SystemVue's example, you can just replace the instrument's VISA address in
the correspondent part's filed (as highlighted CommandExpertLink Address
in the screen capture) and be able to run the simulation.below

To summarize, these are the recommended steps to using
 part:CommandExpertLink

. Explore your instrument in using simple Step 1 Keysight Command Expert
commands such as identity query. If you want to use the instrument in an
existing example, make sure select the or SCPI Command Setsame IVI-

 as what is used in the example.COM driver
. Use instrument in part in SystemVue examples Step 2 CommandExpertLink

or configure a new part (which will be described in the CommandExpertLink
following sections).

It is highly recommended that you have the corresponding example open when
you go over the materials on how to configure part for CommandExpertLink
each Link Type's targeted application.

A Brief Introduction to CommandExpertLink Part's Dialog

For details, please refer to part.CommandExpertLink
Even though it supports instrument mode, we highly recommend you to Offline
explore with actual instrument online.
The general steps to set up a part are:CommandExpertLink

Select one or instrument(s) and appropriate command set for each more
instrument.

If you use an existing workspace, you can type (or copy
/paste) in the of the instrument.VISA address

To select an instrument, make sure that you have
registered it in .Keysight Connection Expert

http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/Waveform+Sequence+Composer#WaveformSequenceComposer-WaveformSequenceComposer-InstrumentTab
http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/iosuite

Tutorials 582

2.

3.

4.

Select appropriate for the instrument.Link Type

Create instrument control through that Sequence Keysight Command Expert
is invoked by the button in page.Sequence

Set up and Parameters I/O Ports

The parameters configured inside during Command Expert
 creation are directly reflected in the Sequence Parameters

page with one exception for linkage.Source

For linkage, array parameter(s) in Source Run
sequence block (as described later) will be
automatically treated as output port(s).

For linkage, you have to select one or more parameterSink
(s) in page and designate it/them as input portParameter
(s). More details on this later.

I/O Ports are created dynamically based on the and the Link Type
 code. That's why part does have any Sequence CommandExpertLink not

I/O pins when initially dropped onto a schematic.

Steps to Configure CommandExpertLink Part to Download Simulation
Data into Instrument(s)

Use the example in examples archive under CommandExpertRFSources.wsv

Instruments\CommandExpert* directory to help you with your exploration.

http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink

583 Tutorials

4.

 using This example is designed to *generate two modulated RF signals

Agilent RF synthesizers such as or . It can be easily extended for 2x2 MXG ESG

MIMO applications with additional SCPI commands for synchronization control

across the two RF sources.

I. Configure the Linkage Type

Typically, the instrument requires to normalize simulation generated waveform data
within 1.0 peak-to-peak. Refer to the instrument manual for the actual limit.Volt

II. Create Sequence Code

In block: of the goes here. Initialize All instrument initialization/configuration
In particular:

Consider providing an SCPI command (or IVI-COM function) that
configures or (also known as) sampling rate sampling period aperture
of the instrument and notify part by setting the CommandExpertLink

 for its parameter accordingly.Usage Target

for RF signal, providing an SCPI command (or IVI-COM consider
function) that configures of the instrument and carrier frequency
notify part by setting the to CommandExpertLink Usage Target

.Carrier Frequency

http://www.keysight.com/find/mxg
http://www.keysight.com/find/esg
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink

Tutorials 584

other typical initialization operations are:

Reset instrument, or turn off signal outputs

For baseband signal generation: Clean up waveform memory

For RF signal generation: RF power level

When downloading a large amount of waveform data (e.g. over 1 M I/Q sample
pairs), add instrument communication timeout control to DefaultTimeout
provide ample time for waveform downloading. Refer to Getting Started with

 for more details.Measurement Automation

Run block contain operation to download waveform data. Also, should only
 if available.use waveform operationappend

Finalize block is where to configure things such as Event Marker, multi-
source MIMO synchronization, base band filtering, turn ON baseband signal
or RF output, etc. to happen.

It is to have the very first operation in this block to check highly recommended
the operation completeness of waveform downloading. In the case of SCPI
programming, use * command.OPC?

III. Set up Parameters

585 Tutorials

III. Set up Parameters

All parameters defined in will be exposed in Keysight Command Expert Parameters
page.

You select the parameter(s) designated for waveform data must explicitly
and . If you make a mistake, go to convert it(them) to input port(s) I/O Ports

page and convert it back to parameter with button.

Pay close attention to for downloading operation waveform file name syntax
and for Event Marker configuration operation if applicable.

IV. Configure Output Port(s)

Make sure to select correct data type for each port (note for RF signal) Envelope
and associate it with appropriate sampling rate and (for RF) carrier frequency too.

Steps to Configure CommandExpertLink Part to Upload Data from
Instrument(s)

Use the example in examples CommandExpert_LTE_FDD_UL_Throughput.wsv
archive under Instruments\CommandExpert* directory to help you with your
exploration. This example is designed to *perform an LTE Throuput (BLER/BER)

 using part to get data captured by Keysight measurement {CommandExpertLink]
 Vector Signal Analyzer.MXA

http://www.keysight.com/find/commandexpert
http://www.keysight.com/find/mxa

Tutorials 586

I. Configure the Linkage Type

Typically you would choose for and User Defined Sampling Rate Option
provide the sampling rate specific to the digital demodulation protocol.
Since instrument may be configured at fixed choices of BW or sampling rate,

 part will provide appropriate re-sampling if necessary.CommandExpertLink

Use to control whether reuse, recapture or pad zeros if Repeat Data Option
data from one single capture is not enough for the simulation need.

II. Create Sequence Code

In block: of the goes here. Initialize All instrument initialization/configuration
In particular:

You get or (also known as must sampling rate sampling period
) from the instrument and notify part by aperture CommandExpertLink

setting the for its parameter accordingly.Usage Target

For RF signal, you get from the instrument must carrier frequency
and notify part by setting the to CommandExpertLink Usage Target

.Carrier Frequency

Other typical initialization operations are:

reset instrument

set up measurement trigger/synchronization, input
attenuation levels, and measurement/capture duration.

http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink

587 Tutorials

Run block contain SCPI command (or IVI-COM function) to should only
perform a capture followed by command (or IVI-COM function) to retrieve
captured data. Make sure captured data are collected into a parameter in

. Note this parameter will automatically become Keysight Command Expert
an output port in part. Also, note in the case of SCPI CommandExpertLink
command programming, use * command to guarantee measurement and WAI
data retrieving completion.

In the case of SCPI programming, when retrieving data, you may
encounter issue (i.e. data byte order in Big-Endian/Small-Endian
instrument is opposite to data byte order on your computer), look
for FORMat.BORDer command to resolve it.

III. Setup Parameters

Typically measurement configurations such as carrier frequency, bandwidth,
measurement duration, etc. should be exposed as parameters in Keysight

 and thus exposed in the page.Command Expert Parameters

IV. Configure Output Port(s)

Make sure to associate appropriate data type (type for RF capture), Envelope
sampling rate, and carrier frequency (for RF capture) to the dynamically generated
output port(s).

http://www.keysight.com/find/commandexpert
http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/CommandExpert
http://www.keysight.com/find/CommandExpert

Tutorials 588
1.

Notes

One single part allows controlling more than one instruments. CommandExpertLink
As shown in both examples mentioned earlier. In particular:

In example it configures two RF sources and CommandExpertRFSources.wsv
download waveform data into both of them.

In example it controls the CommandExpert_LTE_FDD_UL_Throughput.wsv
RF signal generator's power level in addition to uploading data captured by
MXA. Additionally, by making the RF power level tunable, the example
sweeps RF power level hence producing a throughput vs. RF power
measurement.

Using Command Expert in MATLAB Script

Prerequisites

Installation of .Keysight IO Library

Installation of Keysight Command Expert

(Optionally for IVI-COM Exploration) Installation of drivers through IVI-COM
 web (Go to Keysight Technical Support for Test & Measurement Drivers,

 and look into under)Updates & Examples IVI By Class

Associated tutorial workspace

Examples\Instruments\CommandExpert\MXA Source_AutoRange.wsv is an
 based example.SCPI

Examples\Instruments\CommandExpert\MXA PeakFrequency.wsv is an IVI-
based example.COM

We recommend you to copy the complete directory of
 to your local directory to Examples\Instruments\CommandExpert

avoid file writing permission issues on default installation
directory.

Introduction

Use access function in MATLAB Script environment for Command Expert Equations
flexible instrument control.

All you need to do is:

http://edadocs.software.keysight.com/display/sv201608/CommandExpertLink
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/commandexpert
http://www.keysight.com/main/facet.jspx?t=80029.k.0&cc=US&lc=eng&sm=g
http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/Equations

589 Tutorials

1.

2.

Develop instrument control sequence (either in SCPI commands or IVI-COM
functions) in application and save the sequence. (Refer to Command Expert

 for how to use Getting Started with Measurement Automation Command
 application).Expert

Use MATLAB Script function to exercise the sequence file.agRunSequence

Create Control Sequence in Command Expert

Develop instrument control sequence (either in SCPI commands or IVI-COM
functions) in application as described in Command Expert Getting Started
with Measurement Automation
Pay close attention to the parameters created in Command Expert
application.

Parameters for SCPI commands or IVI-COM functions will directly
correspond to parameters passed into function agRunSequence
according to their order. (Refer to the following Use Command Expert

 section for details).Sequence in Equations Environment

Parameters that hold return results from SCPI (query) commands or
IVI-COM functions will correspond to return results of

 function execution. (Refer to the following agRunSequence Use
 section for Command Expert Sequence in Equations Environment

details).
Note in the screen capture below for Keysight RF Synthesizer, ESG
we expose its carrier frequency and power level as input parameters, i.
e. and , and expose one return result, i.e. freq_HZ pwr_dBm
parameter , to return * query result.instIDN IDN?

Once the sequence development is complete, save them into a Command
 sequence file (.).Expert iseq

Use menu Command Expert File -> Save Sequence

http://www.keysight.com/find/CommandExpert
http://www.keysight.com/find/CommandExpert
http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://www.keysight.com/find/CommandExpert
http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://www.keysight.com/find/ESG
http://www.keysight.com/find/CommandExpert
http://www.keysight.com/find/CommandExpert
http://www.keysight.com/find/CommandExpert

Tutorials 590

We recommend removing the information (and don't forget address
to click the button to ensure it is removed from the actual
operation sequence) prior to saving. This way, the saved sequence
shows no specific instrument address.

For convenience, we recommend saving the sequence file into .iseq
the same directory of the workspace that will use the sequence file.

Use Command Expert Sequence in Equations Environment

Use the MATLAB Script function to exercise the sequence file. agRunSequence
Make sure:

The parameter of be the very first agRunSequence must Command Expert
sequence file..iseq

If the file is in the same directory as the workspace, you can just use
the file name and you can also omit the file extension..iseq

Regardless of where the file resides, you can always use the full file
path (including full directory information and complete file name with

 extension)..iseq

The of be the full VISA address of second parameter agRunSequence must
the instrument.

If you have installed, you can use Keysight IO Library Keysight
 to after you Connection Expert find the complete VISA address

add your instrument to it.

You provide the same number of input parameters as specified in the must
sequence of the file to the function following the .iseq agRunSequence
sequence file name and instrument VISA address.

http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/iosuite
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence

591 Tutorials

Parameters are associated based on the order in which they
appear in the panel of application Parameters Command Expert
when creating the sequence. (the order these parameters Not

)appear in the sequence.

You provide the same number of MATLAB Script variables as must
parameterized query results of the sequence in the file to receive return .iseq
results from function call.agRunSequence

Similar to passing input parameters, variables are associated
with the parameterized query results based on the order in which
these parameterized queries appear in the panel of Parameters

 application when creating the sequence.Command Expert

For our screen capture example, the MATLAB Script code would be:

myRFSrc = 'TCPIP0::111.222.333.444::inst0::INSTR'; %
VISA address for the RF synthesizer
rfPowerDBm = -20; % -20 dBm RF power
rfFreqHz = 1.9e9; % 1.9 GHz center frequency
myIDN = agRunSequence('RFSourceDemo', myRFSrc,
rfPowerDBm, rfFreqHz);

Once again, notice the power level is before carrier frequency in
 function call, while as shown in the screen capture earlier, agRunSequence

carrier frequency command is executed before the RF power command in the
commands sequence.

Examples

There are a couple examples under the example archive directory Instruments
 directory./CommandExpert/

The example is for Vector Signal MXA Source_AutoRange.wsv Keysight MXA
Analyzer. It uses two SCPI command based sequences, i.e. MXA

 and , in the Source_AutoRange_Init.iseq MXA Source_AutoRange.iseq
 for the schematic.Equations

The example is also for Vector MXA PeakFrequency.wsv Keysight MXA
Signal Analyzer. It uses IVI-COM based sequence .MXA PeakFrequency.iseq

Here is an excerpt from example just to highlight how to MXA PeakFrequency.wsv
handle multiple return results, in this case, three return results that will be stored in
variables , and :amplitude peakX peakY

address = 'TCPIP0::111.222.333.444::inst0::INSTR';
start = 1.975e9; % Start frequency
stop = 2.025e9; % Stop frequency

http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://www.keysight.com/find/CommandExpert
http://edadocs.software.keysight.com/display/sv201608/function_agRunSequence
http://www.keysight.com/find/MXA
http://www.keysight.com/find/MXA

Tutorials 592

1.

2.

3.

% Run command sequence.
[amplitude, peakX, peakY] = agRunSequence('MXA
PeakFrequency', address, start, stop);

Using Waveform Sequencer Composer

Using Waveform Sequencer Composer

The Waveform Sequencer Composer is a tool that can be used to create a custom
waveform from multiple waveform segments. This tutorial contains three examples
to demonstrate various capabilities of the Waveform Sequencer Composer:

Example 1: Waveform Sequence Composer Playback
This example demonstrates the basic functionality of the Waveform
Sequence Composer by combining three different signals and validate the
combined signal using the Waveform Sequence Composer source.

Example 2: Sweeping parameters in Waveform Sequence Composer
This example shows how to use variables and sweeps with Waveform
Sequence Composers.

Example 3: Frequency Hopping Waveforms Using Waveform Sequence
Composer
This example illustrates the use of Waveform Sequence Composer to
construct a frequency hopping waveform for radar applications. In this
examples, the details of using the M8190 instrument through the Waveform
Sequence Composer are illustrated.

Waveform Sequence Composer Playback

Open the tutorial example
"Examples\Tutorials\Measurement_Automation\WaveformSequencerPlayback.
wsv".

Initial Setup

Three designs (Design1, Design2, and Design3) exist in the workspace and the goal
is to sequence the three waveforms together in order.

Design1 uses a QPSK modulation type to create a signal at a carrier frequency of
1001.5 MHz which outputs envelope data.

593 Tutorials
1.

Design2 uses a QAM 16 modulation type to create a signal at a carrier frequency of
998.5 MHz which also outputs envelope data. Additionally, a time delay has been
added to the signal which is equal to the length of the QPSK waveform.

Design3 users a QAM 64 modulation type to create a signal at a carrier frequency
of 1000.5 MHz. The output for this signal has been converted to complex data. A
time delay has been added as well which is equal to the length of the QPSK and
QAM16 waveform.

The figure below illustrates a simplified representation of the spectrum of resulted
from combining all the three signals into a single waveform with the carrier
frequency at 1 GHz. Note that the minimum bandwidth is based on the distance
between the center carrier frequency and the furthest waveform from it. The
bandwidth of the signals is based on the worst case scenario when the roll-off
factor of the pulse shaping filter is equal to 1.

To setup a Waveform Sequence Composer, right-click on the workspace tree and
select > option. The Waveform Add Add Waveform Sequence Composer ...
Sequence Composer window is displayed to configure the Waveform Sequence
Composer parameters. Apply the following configurations:

Tutorials 594

1.

2.

3.

Set the , which is the carrier frequency of the RF Carrier Frequency
instrument, to 1e+9 (1 GHz), and then set the output sample rate to 4e+6.
The minimum sample rate can be inferred from the minimum bandwidth
shown in the figure of the simplified spectrum representation of the
combined signal.

Select to define a new segment. In the Click here to add new segment
 entry, select from the drop down box which dataset or equation that Context

defines the variable that holds the segment data samples. Once a valid
context is selected, then you can select a variable from that context in the
next column i.e., column. Selecting a variable will populate the rest Variable
of the columns. Perform this step for the variables and QPSK_Signal

 and as shown in the figure below:QAM16_Signal DF3_QAM64_Signal

Note that each segment bandwidth is set automatically to the segment
sample rate. This will make the minimum acceptable output sample rate
around 7 MHz. However, if the actual bandwidth of the segment is known,
then it can be applied to the segment bandwidth setting. In this example, set
the bandwidth of each segment i.e., , and BW_QPSK BW_QAM16 BW_QAM64
as shown in the figure above. These variables are calculated in
GlobalParameters equation page based on the following equation:
BW = (1 + Roll_Off) * SymbolRate

Verify the Combined Waveform

If the configurations of the Waveform Sequence Composer are valid, a validation
summary at the bottom of the pattern page will provide the memory requirements,
playback duration and minimum sample rate. Since the output sample rate is
different than the sample rate of some segments, these segments will be
resampled to the output sample rate. Detailed segments information after
resampling can be obtained from the page of the Waveform Errors & logs
Sequence Composer user interface.

To verify the spectral and time domain characteristics of the combined waveform, a
Waveform Sequence Composer source can be used by dragging the Waveform

595 Tutorials

Sequence Composer item in the workspace tree and dropping it into a schematic.
In this example, the Waveform Sequence Composer has been dropped onto the
Design4 schematic twice in order to show the two different models of the
Waveform Sequence Composer source i.e., the envelope model and the complex
model as shown in the figure below

Comparing the time domain waveform segments to the composed waveform in the
 graph we can see the data matches.SequencedWaveform

Below you can see the comparison of the individual and composed spectrum.

Tutorials 596

1.

2.

The difference between the combined spectrum level and the spectrum level of
each signal is due to the frequency resolution used in each of these spectrum
plots.

Sweeping parameters in Waveform Sequence Composer

Open the tutorial example
"Examples\Tutorials\Measurement_Automation\WaveformSequenceComposerSweepParameters.
wsv".

Initial Setup

In this example, two complex sinusoidal signals i.e., and ComplexData
 are combined into a single waveform using the Waveform ShortComplexData

Sequence Composer as shown in the figure below:

The combination is parameterized using two variables that are defined in "Equation
1" as tunable variables:

OffSet: is used to define the "Offset" parameter of the "ComplexData"
segment. The default value is set to 0.

N: is used to define the "Repeat" parameter of the "ShortComplexData"
segment. The default value is set to 1.

These variables are used in the Waveform Sequence Composer as shown in the
figure below:

597 Tutorials

Verify Combined Waveform

Use "Sweep1" to examine various values of the OffSet parameter. In the figure
below, the combined waveforms when the Freq Offset of the ComplexData segment
is set at various values from 1e4 - 1e5.

Similarly, use Sweep2 to examine various values of the N parameter. In the figure
below, the combined waveforms when N=1,2,...,5 are displayed.

Tutorials 598

1.

2.

3.

4.

Frequency Hopping Waveforms Using Waveform Sequence Composer

Open the tutorial example Examples\Instruments\Radar\Waveform
Sequencing\EW_Targets_Frequency_Hopping_M8190.wsv

Initial Setup

This example shows how to generate a sequence of radar signals with frequency
hopping and play them using the M8190A signal generator. The example
workspace generates three radar signals Radar1, Radar2 and Radar3 at different
center frequency of 2.5 GHz, 2.75 GHz and 2.25 GHz respectively.

In this example, the three radar signals are combined as follows:

Radar1: Repeated 3 times.

Radar3: Repeated 2 times.

Radar2: Repeated 2 times.

Radar3: Repeated 5 times.

To apply this combination configuration to the Waveform Sequence Composer,
follow the steps below:

Run the 3 Analyses that generate the three radar signals by clicking the "Go"
button in "Generate Signals" Equations page or run the Analyses, namely
"DF1", "DF2" and "DF3" one by one.

Open the Waveform Sequence Composer item on the workspace tree named
"Frequency Hopping Sequence". On the pattern page, apply the settings as
shown in the figure below:

Go to "Instrument" tab. Type the IP address of the M8190 instrument into the
"Address" cell of in the table under "Instrument Selection" area. As an
alternative, you can click the "Select Instrument..." button to pick the
instrument if it has been added into the "Keysight Connection Expert", or add
it in the "Select Instruments" dialog.

599 Tutorials

4.

5.

6.

Adjust the instrument parameters if needed. Note that "AutoScale"
parameter is set up to auto scale all waveforms.

Click the "Execute" button and the waveforms should be downloaded into
the M8190 and the sequence will be played out.

Go to the page and review the details of the execution Errors & Log
operation.

Verify Combined Waveform

The validation of the combined signal is done by placing a WaveformSequencer
source part in a schematic and examine its generated signal using a sink and
Keysight 89600 Vector Signal Analyzer. See the "Sequence" schematic (its Analysis
is "DF4") which is shown in the figure below:

You can simply drag the "Frequency Hopping Sequence" icon on the workspace
tree and drop it into the schematic and a "WaveformSequencer" part will be
automatically placed on the schematic and properly configured.

Upon running the analysis "DF4", the combined signal is generated. The time signal
and spectrum of that signal along with the three individual radar signals are plotted
in the graphs and respectively. These graphs are WaveformSequence Spectrum
shown also in the figures below:

http://edadocs.software.keysight.com/display/sv201608/WaveformSequencerEnv

Tutorials 600

601 Tutorials

Verification Test Bench Tutorial

In this tutorial, you will learn how to develop a SystemVue workspace to be used in
Verification Test Bench (VTB) application.

General VTB Development Flow

In VTB applications, a VTB producer develops the VTB workspace which defines the
testing environment, i.e., the test inputs and outputs measurements, for a
particular component or device under test (DUT). For example, the VTB workspace
may contain a wireless transmitter simulation model which can be used to verify
the performance of a particular component such as a filter, mixer, amplifier, etc.
This workspace can be used by VTB consumers to conduct the performance test of
that component under their own development environment, such as ADS or
GoldenGate. This tutorial focuses on the VTB workspace creation process.

A typical flow for VTB workspace creation is as follows:

Workspace Preparation: Create a data flow simulation workspace or modify
an existing one.

DUT Configuration: Insert the SVE_Link model to the simulation model of the
DUT.

Workspace Verification: Verify that the workspace is compatible with
SystemVue Engine.

SystemVueEngine Simulation: Simulate the workspace using SystemVue
Engine

Simulation Results Verification: Import the results of SystemVue Engine
simulation to SystemVue.

Workspace Publishing: Switch SVE_Link to be the active simulation model
instead of the DUT simulation model.

The details of each stage in the workspace creation flow are illustrated through an
example in section.VTB Example

VTB Example

In this VTB example, a verification test bench workspace is developed for an up-
conversion mixer in an 802.11ac transmitter using SystemVue. The following
sections describe the details of each step in the VTB workspace creation flow.

Workspace Preparation

The minimum requirement for a valid VTB workspace is one data flow analysis
component and one associated schematic that contains at most one VTB_link
model. While, it is possible to create a workspace from scratch, the flow described
in this example shows how to leverage an existing example.
Open example that is located at VTB_Tutorial

. This workspace "Examples\Tutorials\Verification_Test_Bench\VTB_Tutorial.wsv"
contains a simulation model of an 802.11ac transmitter and conducts EVM

Tutorials 602

measurements on its output signal. The workspace exposes several parameters of
different data types which can be used by VTB consumer to configure the
simulation models.

DUT Configuration

In this step, an is added to the DUT:SVE_Link

Double click on the Mixer component to open its Part Properties dialog "M3"
window.

Click on Manage Models...

Click on Add Model

Click on From Library

In the text box, type: Filter By SVE_Link

Select SVE_Link and click OK. A new model "SVE_Link@Data Flow Models"
is added to the manage models list. Click OK to close the mange models list.

http://edadocs.software.keysight.com/display/sv201608/SVE_Link

603 Tutorials

Go to the Model drop list in the Mixer property window and select the added
model SVE_Link@Data Flow Models

Click on , and then select .Inherit from Model Mixer@Data Flow Models

The input and output ports names of the SVE_Link model are configured
automatically to match the original model i.e., .Mixer@Data Flow Models

Set the of the output port to and click .Characterization Frequency 1e9 OK

Since the workspace is not at its final stage to be published and used by a
VTB consumer, switch the model back to the original one used by the DUT
part and click .(Mixer@Data Flow Models) OK

Workspace Verification

The compatibility of a SystemVue workspace for SystemVue Engine can be verified
by following the steps below:

On SystemVue menu, select ,Action

Click on .Validate Workspace for SystemVueEngine...

A new Note item titled is added to the workspace tree. "SVE Validation Report"
Note that the report lists the following incompatibilities in the current workspace:

Tutorials 604

Part "S2" (Sink@Data Flow Models) does not support output data to File in
SystemVueEngine.

To resolve these incompatibilities, follow the steps below:

Double click on the Sink part and change setting to "S2" Output Data To: 0:
.Dataset

Run the validation procedure again and make sure the "S2" issue is
resolved.

SystemVueEngine Simulation

Use SystemVue Engine executable to examine the simulation results of the
developed workspace. To do so, follow the steps below:

Open a command prompt and go to the <Systemvue installation
 directorydirectory>\bin

Run the following command:
SystemVueEngine.exe "<Directory path where you saved your copy of
VTB_Tutorial.wsv>\VTB_Tutorial.wsv" --output c:\tmp\VTB_Output.adx

The usage syntax of SystemvueEngine can be obtained by running
 with no argument at the command prompt. The usage syntax SystemvueEngine

is:
Usage: SystemVueEngine <Workspace.wsv> <Analysis Name> --output
<Output File> --libpaths <modelDLLlibpath> <modelXMLlibpath> ...
<modelEnumXMLlibpath>

Simulation Results Verification and Workspace Finalization

The output of SystemVue Engine simulation can be imported by VTB_Output.adx
SystemVue by following the steps below:

On SystemVue menu, select File

Select Import

Click on ADX File...

A new DataSet titled is created to the existing workspace. If Tx_1Ant_Data
you have the workspace opened then rename the imported SVE_Tutorial
dataset to another name to have it as a reference dataset and run the
simulation inside SystemVue and compare the results in both datasets.

A suffix "_1" could be added to the imported dataset name if a
similar dataset name is found in the workspace tree.

You can use graph to quickly compare the results of both
datasets.

Workspace Publishing

605 Tutorials

Workspace Publishing

To finalize the workspace, switch the model in DUT part i.e., Mixer to the "M3"
 and save the workspace."SVE_Link@Data Flow Models"

This information is subject to change
without notice.

www.keysight.com

http://www.keysight.com

	Tutorials
	Simulation Control and Scripting
	Simulation Control and Scripting
	Controlling SystemVue from External Programs
	Controlling SystemVue from External Programs
	Exploring the Workspace Using Visual Basic
	Exploring the Workspace Using Visual Basic
	VBBrowser
	SystemVue Browser
	Running the VBBrowser
	Contents of the VBBrowser
	General
	Lists
	Buttons

	Example 1: Set a variable using the VBBrowser
	Example 2: Run a simulation using the VBBrowser

	Running Scripts Using Visual Basic
	Running Scripts Using Visual Basic
	Running a Script from Microsoft Excel
	Example 1:
	Example 2:

	Running a Script from a Visual Basic Program
	Example 3:

	Running a BER Analysis Controlled From LabVIEW MATLAB or C Sharp
	Running a BER Analysis Controlled From LabVIEW, MATLAB, or C#
	Introduction: SystemVue Eb/N0 Sweep for BER
	Visual C#
	Simplifying the COM Interface using NET DLL component
	Performing the BER Analysis
	Example 1: Run the C# QPSK_BER program
	Example 2: Create a Custom C# Console Application

	LabVIEW
	Example 3: Run the compiled LabVIEW Run-Time QPSK_BER program

	MATLAB
	Example 4: Run the MATLAB QPSK_BER program

	Optimizing a Simulation
	Optimizing a Simulation
	Optimizing Spectrasys Designs
	Optimizing Data Flow Designs

	Intermod Optimization
	Creating a New Optimization
	Creating Goals
	Selecting Variable to Tune
	Selecting the Optimization Method
	Running the Optimization

	Peak to Average Power Ratio Optimization
	EVM Optimization

	Using MATLAB Script For Sequence Control
	Overview
	A Simple Sequence
	How to Run the Sequence
	Example of a more Advanced Sequence

	Performing a Monte Carlo Analysis on a Design
	Performing a Monte Carlo Evaluation on a Design
	Monte Carlo for Data Flow Designs
	Monte Carlo for Spectrasys Designs

	Monte Carlo Data Flow Example
	Monte Carlo Example (Receiver Monte Carlo.wsv)

	Running a Yield Analysis on a Design
	Running a Yield Evaluation on a Design
	Yield for Data Flow Designs
	Yield for Spectrasys Designs

	Data Flow Yield Example
	Spectrasys Yield Example

	Sweeping a Simulation
	Sweeping a Simulation
	Sweep for Spectrasys Designs
	Sweep for Data Flow Designs

	Sweep Spectrasys Example (Receiver Sweep.wsv)

	Libraries and Applications
	Libraries and Applications
	Getting Started With DPD
	Getting Started With DPD
	Contents

	Measurement Platforms
	1. Hardware Requirements
	2. Software Requirements
	3. Platform Calibration

	Hardware DPD Measurement - Manual
	1. Open DPD UI for Hardware DPD Measurement - Manual
	2. Step 1: Create DPD Stimulus
	3. Step 2: Capture DUT Response
	4. Step 3: DPD Model Extraction
	5. Step 4: Apply DPD
	6. Step 5: Verify DPD Response

	Hardware DPD Measurement - Auto
	1. Open DPD UI for Hardware DPD Measurement – Auto
	2. Platform Setup
	3. Linearize PA DUT

	DPD Cosimulation
	1. ADS Cosimulation
	2. GoldenGate Cosimulation
	3. X-Parameters Cosimulation

	RF Design
	RF Design
	Getting Started with Spectrasys
	Create a System Schematic
	Adding a System Analysis
	Run the Simulation
	Add a Graph or Table

	Embedding Spectrasys in Data Flow using RF_Link
	Embedding Spectrasys in Data Flow using RF_Link
	Simple TX RX

	Hardware Design
	Hardware Design
	Contents

	Getting Started with Hardware Design
	Introduction
	Fixed Point Representation
	HDL Code Generation (Hardware Design)
	C++ to HDL using Catapult design
	Fixed Point Optimization
	HDL Cosimulation (Hardware Design)
	FPGA Implementation
	Using Xilinx IP Cores

	Terminologies
	Brief Notes on Hardware Description Languages
	VHDL Code Example
	Verilog Code Example

	Before Starting
	Software Setup Verification For Training
	Compiling Xilinx IP core simulation libraries

	Fixed Point Representation
	Introduction
	Fixed Point Parameters
	Wordlength
	Integer wordlength
	Saturation mode
	Quantization mode

	Bit Manipulation
	Bit Extraction
	Bit Merging
	ParallelToSerial
	SerialToPrallel

	HDL Code Generation
	Introduction
	Example 1: Fixed point parts from Hardware Design library
	DFF_Design
	Design Description
	Tutorial Steps
	Design RTL schematic results

	FFT_Design
	Design Description
	Tutorial Steps
	Design RTL schematic results

	Gain_Design
	Design Description
	Tutorial Steps
	Design RTL schematic results

	MAC_Design
	Design Description
	Tutorial Steps
	Design RTL schematic results

	Example 2: Imported HDL code using the HDL part
	Combinational Logic Design
	Sequential Logic Design

	What Can Go wrong?

	C + + to HDL Using Catapult Design
	Introduction
	SystemVue Flow in Catapult C Example
	Setting SystemVue Flow in Catapult SL
	Creating Catapult C Project
	Setting Up the Design
	Running Catapult Design Flow
	Building SystemVue Model in Visual Studio
	Using Generated Library in SystemVue

	Fixed Point Optimization
	Introduction
	Fixed Point Analysis Table
	Example: Moving Average Filter

	Sweep Analysis
	Example: CORDIC Parameter Optimization

	HDL Co-simulation
	Introduction
	Co-simulating existing HDL code
	Simple Combinational logic design
	Co-simulation using ModelSim and Questa
	Co-simulation using Riviera Pro

	Simple Sequential Design (Counter)
	Co-simulation using ModelSim and Questa
	Co-simulation using Riviera Pro

	Co-simulating generated HDL code
	Co-simulating generated HDL code using ModelSim and Questa
	Debugging in ModelSim SE/Questa

	Co-simulating generated HDL code using Riviera Pro
	Debugging in Riviera Pro

	Co-simulating HDL code of a MultiRate Design
	Differences of Co-simulation using ModelSim/Questa and Riviera Pro

	FPGA Implementation
	Stage 1: Develop the digital design
	Stage 2: Determine the targeted FPGA
	Stage 3: Generate the HDL code
	Stage 4: Resume the conventional FPGA design development in the Synthesis tool

	Using Xilinx IP Cores
	Introduction
	Compiling Xilinx IP core simulation libraries
	Co-simulating Xilinx IP Core
	HDL Code Generation of sub-systems with Xilinx IP Cores

	SystemVue M9703A and M9703B FPGA Design Flow
	Required Hardware and Software
	Required Hardware
	Required Software

	Overview of SystemVue M9703 FDK Design Flow
	Overview of M9703 High-Speed Digitizer
	M9703 DPU FPGAs Clock
	ADC Parallel Input Streams of M9703 DPU FPGAs

	Overview of M9703 FPGA Design Flow

	Design Entry and Software Simulation
	M9703 Design Template
	M9703 Design Template Hierarchy
	Top-level subnet: M9703_TEMPLATE
	Users FPGA Design subnets: M9703_FPGA0 ~ M9703_FPGA3
	Users FPGA Design Interfaces in M9703 Design Template
	ADC Input
	OutPort
	Register
	BlockRegister
	
	Inter-FPGA I/O
	Trigger

	M9703 Design Template GUI

	Software Simulation Behavior Description

	M9703 FPGA Programming File Generation
	M9703 Instrument Co-simulation with SystemVue
	M9703 Co-Simulation Model GUI
	M9703 Co-Simulation Model Simulation Behavior Description

	Tutorial of SystemVue M9703 FPGA Design Flow
	Design the FIR Example for M9703 FPGA
	Software Simulation
	Generate FPGA Programming File
	M9703 Instrument Co-Simulation

	SystemVue U5303A FPGA Design Flow
	Required Hardware and Software
	Required Hardware
	Required Software

	Overview of SystemVue U5303A FDK Design Flow
	Overview of U5303A High-Speed Digitizer
	U5303A DPU FPGA Clock
	ADC Parallel Input Streams of U5303A DPU FPGA

	Overview of U5303A FPGA Design Flow

	Design Entry and Software Simulation
	U5303A Design Template
	U5303A Design Template Hierarchy
	Top-level subnet: U5303_TEMPLATE
	Users FPGA Design subnets: U5303_FPGA0
	Users FPGA Design Interfaces in U5303A Design Template
	ADC Input
	OutPort
	Register
	BlockRegister
	
	Trigger
	
	U5303A Design Template GUI

	Software Simulation Behavior Description

	U5303A FPGA Programming File Generation
	U5303A Instrument Co-simulation with SystemVue
	U5303A Co-Simulation Model GUI
	U5303A Co-Simulation Model Simulation Behavior Description

	Tutorial of SystemVue U5303A FPGA Design Flow
	Design the FIR Example for U5303A FPGA
	Software Simulation
	Generate FPGA Programming File
	U5303A Instrument Co-Simulation

	Algorithm Design
	Algorithm Design
	Contents

	Getting Started with Data Flow
	Phase 1- Start SystemVue with a Blank Template
	Phase 2- Create the System Design
	Phase 3- Run the Simulation
	Phase 4- Creating Additional Graphs

	Working with MATLAB Script
	Working with MATLAB Script
	Using MATLAB Script to Create Simulation Models
	Using MATLAB Script to Post Process Simulation Data
	Converting MATLAB Simulation Script to SystemVue Model-based Design

	Simple Unirate Model
	Model with State
	Multirate Model
	Multirate Model with Bus IO
	Model with Array IO
	Unirate Example
	Multirate Output Example
	Multirate Input Example
	Multirate Input and Output Example
	Array Averaging

	Time Domain Power Measurements
	Histogram
	Spectrum Averaging
	Spectrum Averaging

	Converting UFMC Simulation Script

	Understanding Data Flow Simulation
	Understanding Data Flow Simulation
	Introduction
	Single Rate and Multi-Rate Systems
	Envelope Signal
	Timed System
	Filter and Sample Rate
	Debugging

	Single Rate System Tutorial
	Single Rate Scheduling Tutorial
	Multi-Rate System Tutorial
	Multi-Rate Scheduling Tutorial
	CD to DAT Sampling Rate Conversion Tutorial
	Baseband and RF
	Envelope Bandpass Filter
	Baseband, IF and RF
	Timed from Schematic
	Timed from SampleRate
	Frequency Response vs Sample Rate
	Filtering vs Sample Rate
	Deadlock
	Sample Rate Inconsistency

	C++ Model Development
	Example 1: Building Your First Custom C++ Model Library
	Create a Model Builder Project using CMake
	Create the MyGain C++ Model
	Using the MyGain Model
	Debugging the MyGain Model

	Example 2: Developing Your First Custom C++ Model
	Create the MyAdder C+/+ Model
	Using the MyAdder Model in SystemVue

	Example 3: Developing a Gardner Timing Recovery C++ Model
	Introduction
	Steps
	References

	Example 4: Writing Fixed Point Models
	FixedPoint Inputs/Outputs
	Overriding SetOutputFixedPointParameters

	Example 5: Writing a Timed Data Flow Model
	Example 6: Writing a Timed Data Flow Model that Overrides the Latency Calculation
	Example 7: Writing a Timed Data Flow Model uses Envelope Signals
	Example 8: Writing a Timed Data Flow Model that Overrides the Characterization Frequency Propagation
	Example 9: Writing C++ Models that Control the Simulation
	Example 10: Using MATLAB Generated C Libraries in C++ Models

	C++ Code Generation
	Introduction
	Example: Using A Gardner Timing Recovery C++ Model in a Code Generated System

	Subnetwork Recursion: Automatically Constructing Repetitive Data Flow Schematics
	Introduction
	Example 1: Constructing the Fourier Series Approximation of a Square Wave using Subnetwork Recursion
	Example 2: Calculating Factorial using Subnetwork Recursion
	Example 3: Synthesizable Adder Tree

	Cosimulation with SystemC
	Example 1: Setting Up the SystemCCosim Model
	Example 2: Template SystemC Model and SystemC Datatypes
	Example 3: Custom Parameters
	Array Parameter
	Enumeration Parameter

	Example 4: Multirate Ports
	Numeric Model with sc_fifo Ports
	Sequential Logic Design

	Example 5: Clock signals

	Measurement Automation
	Measurement Automation
	Getting Started with Measurement Automation
	Introduction
	Before You Start - Instrument VISA Address

	A Brief Introduction to Keysight Command Expert Software
	Connect to an instrument
	Use SCPI Commands
	Use IVI-COM Driver

	Use Tcpip to Control Instrument in MATLAB Script Equations
	A Simple Example
	Notes and Links

	Using Command Expert to Create Custom Instrument Links
	Introduction
	Before You Start
	A Brief Introduction to CommandExpertLink Part's Dialog
	I. Configure the Linkage Type
	II. Create Sequence Code
	III. Set up Parameters
	IV. Configure Output Port(s)

	Steps to Configure CommandExpertLink Part to Upload Data from Instrument(s)
	I. Configure the Linkage Type
	II. Create Sequence Code
	III. Setup Parameters
	IV. Configure Output Port(s)

	Notes

	Using Command Expert in MATLAB Script
	Introduction
	Create Control Sequence in Command Expert
	Use Command Expert Sequence in Equations Environment
	Examples

	Using Waveform Sequencer Composer
	Using Waveform Sequencer Composer
	Waveform Sequence Composer Playback
	Initial Setup
	Verify the Combined Waveform

	Sweeping parameters in Waveform Sequence Composer
	Initial Setup
	Verify Combined Waveform

	Frequency Hopping Waveforms Using Waveform Sequence Composer
	Initial Setup
	Verify Combined Waveform

	Verification Test Bench Tutorial
	General VTB Development Flow
	VTB Example
	Workspace Preparation
	DUT Configuration
	Workspace Verification
	SystemVueEngine Simulation
	Simulation Results Verification and Workspace Finalization
	Workspace Publishing

