

PathWave
FPGA 2018

PathWave FPGA

Customer

Documentation

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Table of Contents – 2

Notice
© Keysight Technologies, Inc. 2018

1400 Fountaingrove Pkwy., Santa Rosa, CA 95403-1738, United States

All rights reserved.

No part of this documentation may be reproduced in any form or by any means (including

electronic storage and retrieval or translation into a foreign language) without prior agreement

and written consent from Keysight Technologies, Inc. as governed by United States and

international copyright laws.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract,

Software is delivered and licensed as "Commercial computer software" as defined in DFAR

252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as

"Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent

agency regulation or contract clause.

Use, duplication or disclosure of Software is subject to Keysight Technologies’ standard

commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will

receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S.

Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June

1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Table of Contents – 3

Table of Contents

PathWave FPGA Customer Documentation .. 6
Key Features .. 6
Overview .. 6
Getting Started .. 6
Working with PathWave FPGA .. 6

Getting Started .. 7
Release Notes .. 7
Release Highlights .. 7
Licensing ... 7
Known Issues .. 7
System Requirements ... 9

Recommended Hardware Configurations .. 9
Summary of Software Compatibility with PathWave FPGA ... 9
Summary of HDL Language Support ... 10

Installation .. 10
Obtain PathWave FPGA License File .. 11
Download PathWave FPGA Installer .. 11
Install PathWave FPGA .. 11
PathWave FPGA License Setup ... 11

Node-locked License ... 11
Floating License ... 12

Launch PathWave FPGA .. 12

User's Guide .. 13
Contents .. 13
Overview .. 13
GUI Overview ... 15
Keyboard and Mouse Shortcuts ... 16
Creating a New Project ... 16
Project Directory Structure ... 17
Configuring PathWave FPGA .. 18
IP Repositories .. 18
Designing Your FPGA Logic .. 19
Basic Controls ... 19

Zooming In And Out ... 19
Pan.. 19
Fit in Window.. 19
Multiple Selections ... 20
Copy Action .. 20
Move Items ... 20
Undo/Redo Action .. 20

Adding Blocks ... 20
Sandbox I/O .. 22

Adding a Register Bank .. 22
IP Repositories .. 25
Vivado XCI (Xilinx Core Instance) ... 25

Invoking Vivado IP tool ... 25
Importing a Vivado XCI File .. 28

Imported User IP .. 30
Importing an HDL file with Dependencies ... 32
Importing a HDL file without Dependencies .. 32

PathWave FPGA IP Repository ... 33
Basic IP blocks ... 35
Connectors ... 41
Math ... 42
Memory .. 49

Connecting Ports and Interfaces .. 52
Connecting an Output Port to an Input Port .. 53

Remove and Redraw operations .. 55

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Table of Contents – 4

Connecting Input Ports to a Literal Constant .. 57
Connection Rules ... 57

Ports ... 57
Port Size Mismatches ... 57
Interfaces .. 57

Naming Conventions .. 58
Reserved Words ... 58

Adding and Editing Comments ... 59
Naming Collisions ... 61

Workarounds .. 61
Generating the Bit File ... 61
Synthesizing and Implementing your Design inside of PathWave FPGA ... 62

Monitoring the Build ... 63
Exploring the Build Output ... 64

Building your Design using Vivado ... 64
Generating a Vivado Project ... 64
Building your Vivado Project .. 65

Implementating from PathWave FPGA .. 65
Building Entirely in Vivado ... 65

Verifying the Bit File .. 66
Glossary ... 66

IP Developers Guide .. 68
IP Repositories ... 68
IP directory structure ... 68
Definition of the IP-XACT file ... 69
Keysight Standard Interfaces ... 71
Managing Multiple Clocks and Resets ... 73
Parameterizing IP Designs .. 73

Component Parameters ... 74
Module Parameters .. 75
Example: Parameterized Port Sizing .. 76

IP Restrictions ... 77
IP Restrictions Format .. 77

IP Categorization .. 78
IP Naming Collisions .. 78
An Example IP-XACT File .. 79
Keysight Standard Interfaces .. 83
Introduction .. 84
Interface Descriptions ... 84

Signal Types ... 85
Data Types .. 85
Data Packing/Extending ... 86
Polarity ... 87
Signal Interfaces ... 87
Example Usage ... 88

Discussion of Example ... 88
Associated Files .. 89

Tutorials ... 90
Import HDL with collapsible interfaces using IP-XACT .. 90
Import HDL with parameterized bus widths using IP-XACT .. 116
Import Vivado High-Level Synthesis (HLS) generated HDL with parameterized bus widths using

IP-XACT ... 149

Legal .. 172
7-zip ... 172
bzip2 .. 172
Lua ... 173
Qt ... 173
Xerces-C++ .. 173
zlib .. 173

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Table of Contents – 5

Apache License v2.0 .. 174
Apache License ... 174
APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK ... 176
GNU GPLv3 .. 176
GNU GENERAL PUBLIC LICENSE .. 176
Preamble ... 176
TERMS AND CONDITIONS ... 177

0. Definitions. .. 177
1. Source Code. .. 178
2. Basic Permissions. .. 178
3. Protecting Users' Legal Rights From Anti-Circumvention Law. .. 179
4. Conveying Verbatim Copies. .. 179
5. Conveying Modified Source Versions. .. 179
6. Conveying Non-Source Forms. .. 179
7. Additional Terms. ... 181
8. Termination. ... 181
9. Acceptance Not Required for Having Copies. ... 182
10. Automatic Licensing of Downstream Recipients. .. 182
11. Patents. .. 182
12. No Surrender of Others' Freedom. ... 183
13. Use with the GNU Affero General Public License. ... 183
14. Revised Versions of this License. ... 183
15. Disclaimer of Warranty. .. 184
16. Limitation of Liability. ... 184
17. Interpretation of Sections 15 and 16. .. 184

How to Apply These Terms to Your New Programs ... 184
GNU LESSER GENERAL PUBLIC LICENSE ... 185
0. Additional Definitions. ... 185
1. Exception to Section 3 of the GNU GPL. .. 186
2. Conveying Modified Versions. .. 186
3. Object Code Incorporating Material from Library Header Files. .. 186
4. Combined Works. ... 186
5. Combined Libraries. .. 187
6. Revised Versions of the GNU Lesser General Public License. ... 187

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

PathWave FPGA Customer Documentation – 6

PathWave FPGA Customer Documentation

Keysight PathWave FPGA Documentation

Keysight PathWave FPGA is a system-level
FPGA development environment that allows
you to create and deploy your custom
hardware-acceleration directly into
instruments.

Key Features

 Overview

Getting Started

User's Guide
Release Notes

Working with PathWave FPGA

GUI Overview
Configuring PathWave FPGA
Creating a New Project

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Getting Started – 7

Getting Started

This manual contains the following sections:

• Release Notes

Release Notes

This section contains information about previous and current releases.

Release Highlights

This section provides a general overview of each release.

• PathWave FPGA is a graphical environment that provides a way to rapidly develop FPGA
designs on Keysight Open FPGA hardware.

• An IP library is provided which includes Logic/Math, Memory, and DSP blocks that can be
included in an FPGA design. Vivado IP blocks or custom HDL IP can also be imported and
the port interfaces described using IP-XACT 2014.

• PathWave FPGA provides a design flow from schematic to bitfile generation with the press
of a button.

For system requirement details, refer System Requirements. For
installation steps, refer Installation.

Licensing

• PathWave FPGA requires: a) version 2018.04 of the EEsof EDA licensing software, b)
version >=2018.04 codewords to run, and c) the licensing server software, lmgrd and
agileesofd, to be upgraded to at least the same versions as what are included in EEsof
EDA Licensing software 2018.04. PathWave FPGA will not start if any of these
requirements is not met.

• In the EEsof EDA License Tools version 2018.04, licensing vendor daemon (agileesofd) is
upgraded to sync up with FlexNet FNP 11.13.1.4 version of FLEX license manager (lmgrd).
PathWave FPGA installer for the Windows platform will automatically set up these two new
license server daemons by default for the local node-locked license users. For FAQs, refer
Licensing FAQs.

• For more details, refer Licensing For Administrators.

Known Issues

• Using multiple monitors with different resolutions can result in issues with the PathWave
FPGA UI. We recommend restricting to one resolution of monitor. Below are known issues,
but there are likely others:

o Window does not auto adjust when moving between monitors with different
resolutions (e.g. 4K to 2K).

o Title bar buttons do not respond to user interaction when moved from a 4K monitor
to a non-4K monitor if text scaling set at 150% or above.

http://edadocs.software.keysight.com/display/support/Licensing+FAQs?id=2831870
http://edadownload.software.keysight.com/eedl/PathWaveFPGA/2018/pdf/Licensing_For_Administrators.pdf

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Getting Started – 8

o Window cuts off sections of the program on 4K monitors with text scaling set at
250% or above.

o White border is present around maximized window on 4K monitors with text scaling
set at 250% or above.

o Changing display scaling while PathWave FPGA is running is not recommended
and may not work correctly.

• Importing VHDL IP into PathWave FPGA has a number of known limitations. It is
recommended to create IP-XACT for any VHDL IP that does not meet the following
conditions. A violation of the following conditions will produce a "Syntax Error" message
when importing VHDL IP:

o Port data types must be either std_logic or std_logic_vector.

o Port ranges can use generics.

o Port ranges can use standard math operations (+,-,*,/).

o Port ranges must start or end with 0 (eg. din : out std_logic_vector(7

downto 0) is allowed but din : out std_logic_vector (7 downto 5) is

not).

• Importing Verilog IP into PathWave FPGA has a number of known limitations. It is
recommended to create IP-XACT for any Verilog IP that does not meet the following
conditions. Note that only module declarations, port and parameter definitions and
'endmodule' are checked. A violation of the following conditions will produce a "Syntax
Error" message when importing Verilog IP:

o Input/output port sizes may only contain constant values. They may not use
parameters or expressions, such as "input [WIDTH-1:0] x".

o When input/output port declarations come after the port list (not ANSI-style/Verilog-
2001), all port declarations must appear before any other declarations, such as
parameter, reg, or signal.

o Definition of port attributes is not supported, such as "(* attribute

definition *) input portName,".

o When the module declaration contains a parameter list, there must be a space
between the module name and the '#' for the parameter list.

o Parameters used in a module declaration may not be defined using parenthesis,
unless such a parameter is the last item in the parameter list. (eg: parameter

myParam = (6),)

o Port definitions in a module declaration may not be conditionally included using
`ifdef / `endif statements

o A module name must include one or more port definitions.

o To import Verilog source files into PathWave FPGA for use within a design, a
module declaration format should be made to conform with of one of the following
examples:
module foo #(parameter myParam1 = 14, myParam2 = 32) (input

wire clk, output reg [31:0] d_out); endmodule

or:
module foo (clk, d_out); input wire clk; output reg [31:0]

d_out; endmodule

• When Kactus2 is used for creating IP-XACT for a VHDL file, the VHDL entity declaration
must end with "end <entity_name>" and not "end entity."

• When Kactus2 is used for creating IP-XACT for a Verilog file, avoid comments of the form
"// input name;" or "// output name;" in the Verilog source file as these will cause

the Verilog parser to not work properly.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Getting Started – 9

• When using PathWave FPGA remotely on a Windows 7 machine, the frames of the main
window and any other dialog of the application may lose their special PathWave FPGA
appearance to a more Windows-style one.

• No interconnect exists for PC_MEM interfaces. In the M3202A & M3102A projects this
shows up as disallowing multiple memory mapped instances of HVI ports. One Memory
mapped port or any number of registers may be placed, but not both at the same time.

o The program will allow you to place the blocks, but at build time an error will be
displayed saying that no PC_MEM interconnect exists.

• Literals are restricted to 64 bits in this release. A '1' in the uppermost bit of the 64 bits can
be represented with a hexadecimal or binary representation, or a negative decimal.

• UNC paths are not supported for building FPGA bits.

o A UNC path can be mapped to a windows drive for building, but this is discouraged
due to slow FPGA build times on remote file systems.

System Requirements

You must ensure that your system meets the following requirements before installing PathWave
FPGA.

• 2 GB free space on your hard disk drive

• 2 GB RAM (more RAM Recommended)

• Administrator privileges

• Operating system that has the most recent updates and Service Packs

• License File (or Authorization Codes, or token if evaluating) or internet access

Recommended Hardware Configurations
Category Practical Minimums Recommended

Operating System Windows 7 SP1, 64-bit Windows 10, 64-bit

CPU Single-core Quad-core and above

Hard disk 10 GB free space 100 GB free space

RAM 4 GB RAM 16 GB RAM and above

Display 1280 x 720 1920 x 1200

Software Security USB hardware key Wired LAN, or Wireless LAN

LAN Connection Not required Recommended

Test Instrument Interface Not required LAN

Touch User Interface N/A Not supported

Note, Windows 8 is not supported.

Summary of Software Compatibility with PathWave FPGA
The following table summarizes PathWave FPGA compatibility with various versions of other
software applications. However, for the latest vendor information, licensing, and downloads,
please contact each vendor directly.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Getting Started – 10

Vendor Software / Feature Release
Officially
Supported

May work, but not supported Release
Explicitly not-
supported

Xilinx Vivado, debugging,
compilation of bit
images.

Vivado 2017.3 prior to Vivado
2017.3

CMake CMake to support to
enable FPGA bit file
verification

3.9 or later prior to 3.9

Kactus2 To Import HDL with
collapsible interfaces
using IP-XACT

3.6 or later 3.5 (note, there is a
workaround documented
when using parameterized
HDL)

3.4

Microsoft Visual Studio C++ to
enable FPGA bit file
verification

2017 Other versions

Summary of HDL Language Support
Standard Release Officially

Supported
May work, but not
supported

Release Explicitly not-
supported

IP-XACT IEEE 1685-2014 IEEE 1685-2009

Verilog IEEE 1364-2005

VHDL IEEE 1076-2002 (VHDL
2002)

 IEEE 1076-2008 (VHDL
2008)

Newer versions of Xilinx Vivado might be required for Keysight
Instruments (BSPs). Consult the instrument product manual for specific
requirements.

Installation

PathWave FPGA can be installed on a computer running Windows by downloading the
PathWave FPGA install file from http://www.keysight.com/find/pathwave_fpga. For the system
requirement details, refer System Requirements.

http://www.xilinx.com/
https://cmake.org/
https://sourceforge.net/projects/kactus2/
https://www.microsoft.com/
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2009.html
http://ieeexplore.ieee.org/document/1620780/
http://ieeexplore.ieee.org/document/1003477/
http://ieeexplore.ieee.org/document/4772740/
http://www.keysight.com/find/pathwave_fpga

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Getting Started – 11

Obtain PathWave FPGA License File
PathWave FPGA requires a license to run. You can either apply for an Evaluation or a
Purchased license. Once the license request is approved, a license file (with .lic extension) is
sent as an email attachment. Save this file on your computer at C:\Users\Public.

Download PathWave FPGA Installer
Click http://www.keysight.com/find/pathwave_fpga to download the installer.

Install PathWave FPGA
To install PathWave FPGA, you must have system administrator privileges. Run the
downloaded installer and follow the guided tour to complete the installation. If you want to do a
silent install, run the installer executable from the command line as Administrator and use the
"--mode unattended" command line option.

PathWave FPGA License Setup
At the end of installation, the License Setup Wizard starts automatically after detecting that
you do not have a valid license to start PathWave FPGA. If you choose to skip the license
setup, you can complete the process later by clicking Start > Programs > Keysight PathWave
FPGA <release_number> > PathWave FPGA <release_number> License Manager.

Node-locked License
To setup a counted license, select the Add or replace a license file option and follow the
guided tour to complete the license setup process. In case of a USB dongle, attach the dongle
to the USB port and invoke the License Manager to complete the setup process.

 You must have system administrator privileges to setup node-locked licenses (Only)
on Windows 7 machines.

https://edaapps.software.keysight.com/cgi-bin/pxi-sw/evaluation/request.cgi?cmpid=99_ZZ_000001&product=kf9000a&cc=US&lc=en
http://www.keysight.com/find/softwaremanager
http://www.keysight.com/find/pathwave_fpga

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Getting Started – 12

Floating License
To setup a floating license, select the Add or replace a network license server option and
follow the guided tour to complete the license setup process. Consult your license administrator
for the network path of the license server.

Launch PathWave FPGA
To run PathWave FPGA, go to the Start menu and choose Programs > Keysight PathWave
FPGA <release_number> > Keysight PathWave FPGA <release_number>.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 13

User's Guide

PathWave FPGA is Keysight's "Open FPGA" development environment. PathWave FPGA
provides a complete FPGA design flow from design creation to gateware deployment to
HW/gateware verification.

Contents

• Overview

• GUI Overview

• Creating a New Project

• Configuring PathWave FPGA

• Designing Your FPGA Logic

• Generating the Bit File

• Verifying the Bit File

• Glossary

Overview

PathWave FPGA is a graphical environment that provides a way to rapidly develop FPGA
designs on Keysight Open FPGA hardware. An IP library is provided which includes Logic/Math,
Memory, and DSP blocks that can be included in an FPGA design. Vivado IP blocks or custom
HDL IP can also be imported and the port interfaces described using IP-XACT 2014. PathWave
FPGA provides a design flow from schematic to bitfile generation with the press of a button.

To get started, follow the PathWave FPGA design flow:

1. Start PathWave FPGA

2. Create a new project with the PathWave FPGA New Project Wizard

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 14

3. Modify the default FPGA template design by importing Vivado IP, HDL IP, or by
using the PathWave FPGA IP library.

4. Compile the design into a bit image

5. Deploy your design using the instrument driver or the BSP programming API

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 15

GUI Overview

Menu/Icon/Pane Description

File Includes options to create a new project, open an existing project, save a
project, close a project, add an external block, export to VHDL, create a
template, configure settings, and exit.

Edit Includes options to undo an operation, redo an operation, and select all.

Vivado IP Includes an option to launch the Vivado IP tool.

Module Includes and option to generate FPGA firmware.

Help Includes link to product documentation, license, and product related
information.

 Create a new HW project.

 Open an existing project.

 Save the project.

 Add an external IP block.

 Undo the last operation.

 Redo the last operation that was undone.

 Redraw the schematic connections.

 Fit schematic in window.

Launch the Vivado IP tool.

 Generate the firmware for the project.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 16

Menu/Icon/Pane Description

Sandbox I/O Sandbox I/O are responsible for communication between the internally
configurable FPGA part (the FPGA customizable space, which a user can
edit) and the rest of FPGA.

IP Repositories IP repositories that are built-in or custom.

Vivado XCI Vivado XCI (Xilinx Core Instance) created either by launching the Vivado IP
tool or importing Vivado XCI. Note, only visible if you have imported a Vivado
XCI file.

Imported IP Imported User IP from many different sources including: VHDL, Verilog, IP-
XACT, Vivado Projects (XPR). Note, only visible if you have imported IP.

Keyboard and Mouse Shortcuts

This topic lists the operations that can be performed using keyboard and mouse shortcuts.

• Ctrl + Left click: Zoom in on cursor

• Ctrl + Right click: Zoom out from cursor

• Ctrl + Middle click: Zoom fit to window

• Shift + Left click: Add/remove item from selection

• Shift + Left click and drag: Copy the selection

• Escape: Abort current action

• Delete: Remove selected items

• Ctrl + R: Redraw connections

• Ctrl + F: Zoom fit

• Ctrl + C: Copy selection

• Ctrl + A: Select all

• Ctrl + Z: Undo

• Ctrl + Y: Redo

• Ctrl + N: New project

• Ctrl + O: Open project

• Ctrl + S: Save project

• Ctrl + F4: Close project

• Alt + F4: Exit

Creating a New Project

A hardware project contains the customizable resources of the programmable FPGA of a
PathWave FPGA hardware module. When selecting a target module, the project is opened with
the factory settings of a standard module. The custom on-board solution is developed within this
hardware project and is saved, compiled and loaded into the hardware module (the binary can
be loaded into multiple identical modules).

This topic lists the steps to create a new hardware project.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 17

1. Select File > New HW Project.

2. Enter the project name.

3. Browse to select the project location.

 To place the project in a subdirectory by the
same name, select the Create project
subdirectory check box.

4. Click Next. If a project with the same name exists, a prompt to overwrite the project is
displayed. Click Yes to overwrite the project.

5. Choose the Board Support Package for the target hardware module and click Next.

6. Choose a Project Template and click Next. A summary of the project details is displayed.
Click Finish.

7. To save any changes you make to the project, click the Save icon or use the menu option.

 Using the shortcut menu (right-click a block), you can perform the following
operations:

• To duplicate a block, select Copy.

• To flip a block horizontally, so inputs are on the right and outputs on the left,
select Flip.

• To redraw the connections to the block, select Redraw connections.

• To remove the block, select Remove.

• To view the description/properties, select Properties.

Project Directory Structure

When a new project is created, a project folder with a corresponding project design file is
created. This project folder will contain build output and any Vivado XCI (Xilinx Core Instance)
IP that you have configured using PathWave FPGA. In the following example, the project
created is named myProject. The directory structure is shown below:

• myProject - Project folder

o myProject.kfdk - Project design file

o myProject.build - Folder containing intermediate build output

o myProject.data - Folder containing final build output and Vivado XCI IP

▪ bin - Folder with the final build output

• myProject_<timestamp> - Folder containing build output

o bitgen.log - Vivado build log file

o myProject.k7z - Program archive that can be downloaded
into your FPGA

o myProject.spb - Program FPGA bit file that is an older
format, to supported existing instrument software for
M3102A, M3202A, M3302A and associated instruments.
Newer Keysight hardware will not produce this file output.

▪ VivadoIP - Folder to contain output for Vivado XCI IP that was configured
using PathWave FPGA

• <imported Vivado XCI> - Folder for each Vivado XCI IP
configured using PathWave FPGA

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 18

Configuring PathWave FPGA

The Configuration dialog provides some options for configuring PathWave FPGA. You can
specify the Vivado path, IP repositories, and the appearance of the interface.

1. Select File > Settings.

• To specify the path to the Vivado installation, browse and select the location. The drop-
down box may be used to select between different Vivado versions.

• To add IP repositories, click the Add Directory icon. To remove the directories, select the
directory and click the Remove Selected Directories icon.

• To use the dark theme, select the Use dark theme check box.

IP Repositories

An IP (intellectual property) repository is defined as a library with HDL and the associated IP-
XACT describing the HDL. To learn more information on how to create an IP repository, you can
review the IP Developers Guide.

Note, if you change the IP repositories list, you will need to reload the
active project.

Limitations

• Currently, PathWave FPGA does not support having multiple IP with the same name. If
more that one IP with the same name is encountered during a project load, PathWave
FPGA will only load the first one and report an error for the others. To workaround this
limitation, you can create a wrapper for your IP with name that does not conflict with any
other in the project library.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 19

• IP-XACT 1685-2009 files are not supported. If IP-XACT 1685-2009 files are encountered
during the IP repository load process, you will see warning messages.

• When IP repositories loading is completed, you will see an informational message. In case
of errors or warnings, the errors will be logged into a temporary file. The temporary file will
exist until the closing of PathWave FPGA process. To regenerate the log file, repeat the
loading procedure.

Designing Your FPGA Logic

• Basic Controls

• Adding Blocks

• Connecting Ports and Interfaces

• Naming Conventions

• Adding and Editing Comments

• Naming Collisions

Basic Controls

• Zooming In And Out

• Pan

• Fit in Window

• Multiple Selections

• Copy Action

• Move Items

• Undo/Redo Action

Zooming In And Out
Using the mouse button

To make the blocks larger: Hold the Ctrl key and left-click the mouse on the design canvas as
many times as needed to zoom in.

To make the blocks smaller: Hold the Ctrl key and right-click the mouse on the design canvas
as many times as needed to zoom out.

Using the mouse wheel

To make the blocks larger or smaller: Hold the Ctrl key and move the mouse wheel one
direction or the other to zoom in or out.

Pan
Hold the Alt key and left-click on the mouse and drag to move the project view with the mouse
cursor.

Fit in Window
Use the highlighted icon to fit the project within the window if it spills outside the window.

This option is an auto-zoom-out feature to fit all project elements within the window.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 20

Alternatively press Ctrl + Middle Click.

Multiple Selections
• To make multiple selections, left-click the mouse and keep the button pressed. Drag a

rectangle around the multiple items to be selected.

• Alternatively, hold the Shift key and click on the items for multiple selections using the
mouse.

Copy Action
To copy a block or element, select the item with the mouse, and use the Ctrl + C key to copy it.
Once the item is copied, the copy can be dragged to the required location.

An alternative way to copy an element is by clicking the Shift key, then click on the desired item
and move the mouse. Then, the newly copied item can be seen below the mouse cursor, and
the item can be dragged and dropped to the required location.

Another way to copy items is to press the right-click mouse button on the item and select the
Copy option from the shortcut menu.

Move Items
To move an item, left-click the mouse on the item and drag the selected item to the required
location.

Undo/Redo Action
Using the keyboard:

To Undo an action, press the Ctrl + Z key.

To Redo an action, press the Ctrl + Y key.

Using the GUI toolbar:

Use the Undo or Redo icons.

Using the GUI menu:

Select Edit > Undo or Edit > Redo.

Adding Blocks

A hardware project is created by combining blocks from the panes displayed on the right side of
the user interface. These are grouped under:

• Sandbox I/O

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 21

• IP Repositories

• Vivado XCI (Xilinx Core Instance)

• Imported User IP

• PathWave FPGA IP Repository

When a hardware project is opened, sandbox I/O and IP repositories that are available for the
particular board support package. The blocks can be selected, dragged into the project,
configured, and connected to other blocks in the project.

For example:

The selected block can be configured and saved.
If you select a block and right-click on it, the following options are available:

• Copy lets you copy this block.

• Flip lets you flip the block.

• Remove deletes the block from the project.

• Properties... provides the configuration dialog box shown above.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 22

Sandbox I/O
To communicate between the sandbox and the static region, you need to instantiate a sandbox
I/O block from the Sandbox I/O pane. Each board support package provides a unique set of
sandbox I/O blocks that are specific for the instrument. The sandbox I/O blocks are grouped
based on the function of their connections to the "outside world". The interfaces of a sandbox
are collapsed, in order to show the different categories of sandbox I/O:

Apart from categorizing, some sandbox I/O blocks can instantiated with different types of
interfaces. For example, the interface "Hvi1" can be inserted to the schematic as a MemoryMap
or connected directly to a RegisterBank.

Finally, it is possible that an interface is comprised only by one port (e.g. a clock). In that case,
the interface instance will only show the slot, like in the picture below:

Adding a Register Bank
PathWave FPGA is dedicated to helping customers get their designs ready and tested fast; to
facilitate this, PathWave FPGA created Register Banks.

Register Banks are a type of block that can be placed inside the PathWave FPGA schematic.
When a register bank is placed in the schematic, PathWave FPGA will generate behind-the-
scenes logic to connect the signals that are displayed on the schematic to a memory mapped
bus that the customer can access from the Host. By moving this address logic creation inside
PathWave FPGA, the user does not have to worry about address overlaps, or decoding blocks.
This allows customers to focus their attention on the important parts of their design, and not
have to worry about boilerplate components.

How to Create and Update a Register Bank
Below are the steps for creating a Register Bank, and then updating a register bank.

Launching the Register Bank Dialog
1. Launch PathWave FPGA.

2. Open/Create a project you wish to edit.

3. With the project open, in the Sandbox I/O pane, expand Communications then expand the
interface to which the Register Bank will connect. For the M3102A and M3202A, this will be
called Host. Under this interface there will be a selection called RegisterBank.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 23

4. Either double click on RegisterBank or drag RegisterBank onto the design canvas to open
the Register Bank Dialog.

Creating a Register Bank Using the Register Bank Dialog
With the Register Bank Dialog open you are able to start designing a Register Bank. Register
Banks consist of a group of registers with a contiguous address space. Each register in a
Register Bank is editable by the user. Below are the major sections of the Register Bank Dialog.

Figure 1: Register Bank Dialog when opened into a new project.

There are 5 main areas to inspect on the Register Bank Dialog

1. Register Bank Name - This is the name that will be displayed on the block when it is placed
in the schematic.

a. The Register Bank Name must be unique, and valid HDL syntax (see Naming
Conventions). If the name is not valid, it will be converted to a valid and unique
name.

2. Memory Mapped Components - This is the main portion of the Register Bank Dialog. You
can edit registers that are contained within the Register Bank here.

a. Name - This column represents the name of a register. Double left click on the
register name to change from the default name. A register name must be unique
within the bank, and have valid HDL syntax (see Naming Conventions).

i. If the Register Dialog detects an issue with the name of a register, it will
turn the text red and display a tool tip stating the reason for the failure.

b. Address - This column represents the byte offset address of a register. The user is
not allowed to directly edit this field, it is for informational use only.

c. Reordering Registers - It is possible to reorder registers in the Register Bank by
selecting one, then clicking and dragging it to the location you wish it to go. This
changes the address field of the moved register and updates addresses of other
registers affected by the move.

3. Add/Remove/Reorder - This section of the dialog is used for manipulating the number and
order of registers present in the Register Bank.

a. The user can add registers to the design if no issues are detected inside the
Register Bank. The button will be disabled, when an issue is detected.

b. The user can remove registers at any point. Any currently selected registers will be
removed from the Register Bank.

i. Another way to remove registers is to use the "Delete" key.

c. A selected register may be reordered by clicking the up or down arrow.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 24

4. OK/Cancel - This section of the dialog is used to exit the dialog. Clicking OK will create a
Register Bank that can be placed on the schematic, while cancel closes the dialog with no
other actions taken.

a. If the dialog detects any issues with the Register Bank, it will disable the "OK"
button and display the text "Issue Detected". Please look for the red text to see why
the Register Bank is invalid.

Placing the Register Bank in the Schematic
Now that we are done editing the Register Bank, it is time to place the block onto the schematic.
To place the block onto the schematic, hit the "OK" button. The block will now be hovered below
your cursor. At the location you want to place the block, left click. Below is an example block
that was created with default values.

Figure 2: Register Bank block when placed onto the schematic.

Once in the schematic, Register Banks are treated the same as any other block. You are able to
move, copy, flip ports, and remove. To use them in your design, just connect the signals
displayed on the block to the logic you wish to interact with from the host. PathWave FPGA will
handle all of the routing logic for Simulation and Building. You are able to recognize the
individual registers in a Register Bank by looking at the names of the signals. The more
registers you add to the Register Bank, the more signals will be available. Below is an example
of a register block with two registers added to it.

Figure 3: Register Bank block that has two RW registers in it.

Updating Register Banks
A unique feature of Register Banks, is their ability to be modified after they are placed on the
schematic. To update the Register Bank we have in Figure 2 to the Register Bank we have in
figure 3 we will open the Register Bank Dialog up from the block. There are two ways of
opening this dialog.

1. Double click on the Register Bank that you wish to update.

2. Right click on the Register Bank you wish to update, and select "Properties...".

The Register Bank Dialog will open up and display the information that describes the Register
Bank you will update.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 25

To add in the second register to our Register Bank, click "Add", then click "OK". Your Register
Bank will now have the signals associated with the second register.

If you wish to return your register to the state it was in before the update, simply click the "Undo"
Icon in the Icon bar, or use "Ctrl + z".

IP Repositories
IP repositories are libraries of blocks that are loaded into PathWave FPGA. There are three
types of IP repositories supported inside PathWave FPGA:

• Default PathWave FPGA IP repository: a repository that is shipped inside the PathWave
FPGA Installation directory structure and is permanent. IPs defined in this repository will be
loaded for all projects, as long as they meet the hardware support criteria.

• BSP IP repository: a IP repository that is shipped inside a BSP installation.

• User defined IP repository: a user-defined list of directories that include IP definitions.
These directories can be defined in the Settings dialog (File → Settings). Important: A
project should be reloaded, in order for the added IP to be loaded. To load an IP repository,
use the Settings Dialog. To learn how to create an IP repository, refer to the IP Developers
Guide.

Vivado XCI (Xilinx Core Instance)

Invoking Vivado IP tool
The PathWave FPGA software allows the user to import Vivado IPs from the Xilinx Vivado IP
Catalog. The available Vivado IPs can be imported from the catalog and integrated into the
project.

To import a Vivado IP:

1. Open the PathWave FPGA software.

2. Create a new PathWave FPGA project or open an existing project.

3. Click on the Launch Vivado IP Tool icon .

4. Select a Vivado IP block from the IP Catalog.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 26

5. Configure the IP properties and then press ok to get to the Generate Output Products dialog
window.

6. Click the skip or generate button on the Generate Output Products dialog. Either option will
allow for integration into your project.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 27

7. When finished generating or editing Vivado IP close Vivado to add/update the IP in the
Vivado IP project.

8. After adding the IP to the project, Vivado IP appears at the bottom-right of the project
window:

9. Select the Vivado IP and it appears in the project as shown.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 28

Importing a Vivado XCI File
Another way to import an existing Vivado IP block is to use the Add External Block menu option.

1. Click on the Add External Block menu option

2. Once the Add External Block dialog window opens, navigate to the xci file for the Vivado IP

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 29

3. Click Open and the Vivado IP block shows up in the bottom right of the project window.

4. The Vivado IP block can now be used in a design.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 30

Imported User IP
In addition to IPs developed using the Library tools, the PathWave FPGA software allows for
importing and integration of user custom IPs into a project. These different user IPs have to be
developed by the user, using external FPGA tools. The PathWave FPGA software is not
designed for developing IPs from scratch. However, once the user has finished creating an IP
(synthesis and simulate it for example), the IP is ready for being imported to the PathWave
FPGA software.

The user can import IPs from different source files:

• VHDL source files (*.vhd).

• Verilog source files (*.v).

• Xilinx Vivado projects (*.xpr).

• System Generator Vivado Synthesized Checkpoints (*.dcp).

• IP-XACT files (*.xml).

• Vivado IP files (*.xci)

To import a user IP:

1. Click the icon, or select File > Add External Block. In the image below, notice the file
types that are available for importing.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 31

2. Select the User IP icon, navigate to select the file to be imported into the project. Click
Open to import the file.
The IP is inserted in the project, where it can be connected to other blocks.

The block name appears in the User IP External Block region for reuse as shown above. To
remove a block, right-click the block name and choose remove.

• If the User IP file is moved, an "X" appears at the top of the block
indicating the file cannot be found. Once the file is moved back, or the
path is changed, right-click the block to reload the IP and remove the "X"
on the block.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 32

• If the underlying code for the IP is changed, a "!" can appear to signify
an alert condition. Once the code is corrected, the block can be reloaded
to remove the "!" on the block.

Importing an HDL file with Dependencies
If you want to import an HDL file with dependencies, you will need to create an IP-XACT file for
the desired HDL entity following the instructions in the IP Developers Guide. Then, inside the
<ipxact:fileset> where the source files for “synthesis” are supposed to be defined, the

user has to add as many <ipxact:file> entries as are required to define the source VHDL

file along with all the files that it is depending on.

For example, let’s assume that the desired component is called “Filter” and is defined in
“C:\MyIPs\FilterIP\FilterTop.vhd”. Then, let's say the implementation of “Filter”

depends on another component, named “Tap”, which is defined in
“C:\MyIPs\FilterIP\Tap.vhd”. To successfully load the component “Filter” in PathWave

FPGA, we need to create an IP-XACT (e.g. in "C:\MyIPs\FilterIP\Filter.xml") file with

the following statements in the fileset entry:

Code Block 1 IP-XACT fileset snippet

<ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>FilterTop.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 <ipxact:file>

 <ipxact:name>Tap.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

</ipxact:fileSets>

When the IP-XACT file is created, you can use the process above to load the IP-XACT xml file.

Importing a HDL file without Dependencies
When an HDL file is imported without dependencies, only the module or entity declaration will
be examined in order to determine the ports that will be available for connections within a
PathWave FPGA graphical design. Any syntax issues or errors that may exist elsewhere in an
imported HDL file may not be detected or flagged.

For Verilog HDL files, module declarations should be limited to the features and format shown in
the following examples:

module foo (clk, d_out);

input wire clk;

output reg [31:0] d_out;

endmodule

or:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 33

module foo

#(

 parameter myParam1 = 14,

 parameter myParam2 = 32

)

(

 input wire clk,

 output reg [31:0] d_out

);

endmodule

or:

module mymodule(input clk,

 input [7:0] inBus, // Comments are okay

 output outWire,

 output [15:0] outBus);

endmodule

For VHDL source files, entity declarations should be limited to features shown in the following
example:

library ieee;

use ieee.std_logic_1164.all;

entity foo is

 generic (

 width : integer := 4

);

 port (

 clk : in std_logic;

 d_out: out std_logic_vector(width-1 downto 0)

);

end foo;

A list of known Verilog and VHDL limitations for IP import can be found in the Release Notes.

PathWave FPGA IP Repository
PathWave FPGA includes some IP blocks that a user can incorporate into their FPGA design.
The IP blocks are categorized into different libraries so that similar blocks are grouped together.
Below is a description of the IP blocks included in PathWave FPGA.

Some of the IP blocks are designed so that they can optionally process multiple samples in the
same clock. This is called supersampling. For blocks that support this, there is a parameter
called supersample that denotes the number of parallel samples. For example, a 32 bit adder
with supersample=1 would add two 32 bit numbers. A 32 bit adder with supersample=2 would
add two pairs of 16 bit numbers. This can be useful when processing data at a higher sample
rate than the clock rate of the FPGA.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 34

• Basic IP blocks

o Combiner

o Concat

o Concat_stream

o Decombiner

o Delay

o Delay_stream

o Latch

o Read_mux

o Reg_xN

o sign_extension

o sign_extension_stream

o slice

o slice_stream

• Connectors

o Axi4liteToMem

• Math

o Adder

o Adder_stream

o Comparison

o Integrator

o Integrator_stream

o Logic_NOT

o Logicgate

o Multiplier

o Multiplier_stream

o Saturator

o Saturator_stream

o Shift

o Shift_stream

• Memory

o DualPortRam

o DualPortRam_stream

o Mem_mux_2x

o Mem_mux_4x

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 35

Basic IP blocks

Combiner

Combines N single-bit inputs into a single N-bit output vector.

Parameters
Din width: Sets the number of single bit inputs. Variable from 1 to 128. Default is 8.

Concat

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout.

This module does not introduce extra delay.

Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 36

Concat_stream

Streaming version of the concat block.

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout

This module does not introduce extra delay.

Note that both streaming inputs must assert and deassert tvalid at the same time.

Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Decombiner

Converts a single N-bit input vector into N single-bit output signals.

Parameters
Din width: Sets the Din data width. Variable from 1 to 128. Default is 8.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 37

Delay

Delays input N cycles.

Parameters
bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.

latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Delay_stream

Streaming version of the delay block.

Delays input N cycles.

Parameters
bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.

latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Latch

32 bit latch with write enable.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 38

Parameters
Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.

Read_mux

Read data from multiple sources.

Address port is used to select one of N, 32 bit data sources. If the address index is larger than
the number of input data sources, this block will return zeros.

Parameters
Number of inputs: Sets the bus width of Din in 32 bit increments. Default is 2.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 39

Reg_xN

Captures N, 32 bit data inputs and drives to outputs. The internal data register may be updated
through a write access on the 'mem' port indexed by the address value. The internal data
register may also be updated to the Din value by asserting the corresponding Din_v signal[n].
When both updates are attempted at the same time, the mem write value will take precedence.
The values of the internal data registers are driven out the Dout[n] ports.

Mem read access will return the value of the indexed internal data register.

The Dout_v[n] signal is asserted high for one clock period when new data is written. This is any
time a mem write occurs or when Din_v[n] is asserted.

Parameters
Number of Registers: Variable from 1 to 256. Default is 2.

Address width: Variable from 1 to 1024. Default is 32.

sign_extension

Sign extends the input vector.

Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 40

sign_extension_stream

Sign extends the input vector.

Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

slice

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

slice_stream

Streaming version of the slice block.

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 41

Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Connectors

Axi4liteToMem

Converts Axi4Lite slave interface to PC Mem master interface.

Parameters
Address width: Sets the AXI interface and Mem interface address width. Default is 8.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 42

Math

Adder

Signed adder.

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

Parameters
input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.

latch input: When enabled the data on the A and B inputs is latched. Default is no latch.

subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Adder_stream

Signed adder.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 43

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

Parameters
input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.

subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Comparison

Comparisons between inputs A and B.

Output is set to one when the comparison set by the operation parameter is true.

Parameters
operation: Select between A==B, A!=B, A>B, A<B, A>=B, and A<=B. Default is A==B.

data size: Sets the bus width of the A and B inputs. Default is 16.

sign: Select when the data on the A and B inputs is signed. Default is unsigned.

Integrator

Data integrator.

When selecting signed input, sign extension is automatically applied.

The internal accumulator can be reset by the nRst or Clr inputs.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 44

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 1 cycle by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

Integrator_stream

Data integrator with streaming interface.

When selecting signed input, sign extension is automatically applied.

The input samples are accumulated oly when the tvalid signal is asserted.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 1 cycle by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 45

Logic_NOT

Logic NOT operation.

Parameters
data size: Sets the bus width of the A and Dout ports. Variable from 1 to 1024. Default is 16.

Logicgate

Output is the logical operation between inputs A and B.

The operation parameter determines which logical operation is performed from AND, OR, XOR,
NAND, NOR, and XNOR.

Parameters
data size: Sets the bus width of the A, B, and Dout ports. Variable from 1 to 1024. Default is 16.

operation: Selects one of the logic operations listed above. Default is AND.

Multiplier

Multiplier (DSP core).

Input lengths and signedness are configurable.

When both inputs are signed, output length is the sum of both inputs lengths minus 1.

This block adds a delay of 1 cycle.

Latch input increases the total delay by an additional clock cycle.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 46

When the Dout width is less than Input A width + Input B width, Dout will consist of the lower
bits of the product.

Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

Latch input: Input data is latched when selected. Default is no latch.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Multiplier_stream

Multiplier (DSP core).

Input lengths and signedness are configurable.

When both inputs are signed, output length is the sum of both inputs lengths minus 1.

This block adds a minimum delay of 1 cycle.

Pipeline increases the total delay by an additional clock cycle.

When the Dout tdata width is less than Input A tdata width + Input B tdata width, Dout will
consist of the lower bits of the product.

Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 47

Saturator

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Saturator_stream

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 48

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Shift

Signal shifter with configurable input size, direction and number of shifts.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Shift_stream

Signal shifter with configurable input size, direction and number of shifts.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 49

Memory

DualPortRam

Dual port Block Ram up to 1024 bits x 65536 positions using PC MEM interfaces.

Read latency is 1 cycle.

Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is
10.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 50

DualPortRam_stream

Dual port Block Ram up to 1024 bits x 65536 positions using AXI Streaming interfaces.

Note that the tvalid for Addr and Din inputs must be asserted high and low at the same time for
interfaces A or B.

Read latency is 1 cycle.

Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is
10.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 5.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 51

Mem_mux_2x

MEM interface 1 to 2 multiplexor.

Input address space size = 2^(Slave Address Width)

Output address space size = Input address space size / 2

MEM0 offset = 0.

MEM1 offset = Output address space size.

Parameters
Slave Address Width: Sets the address width on the Mem interfaces. Variable between 2 and
32. Default is 14.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 52

Mem_mux_4x

MEM interface 1 to 4 multiplexor.

Input address space size = 2^(Slave Address Width)

Output address space size = Input address space size / 4

MEM0 offset = 0.

MEM1 offset = 1*Output address space size.

MEM2 offset = 2*Output address space size.

MEM3 offset = 3*Output address space size.

Parameters
Slave Address Width: Sets the address width on the Mem interfaces. Variable between 2 and
32. Default is 14.

Connecting Ports and Interfaces

Blocks can be connected together by their ports and interfaces. An interface is defined to be a
set of ports.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 53

In the example above, this block has inputs to the left (input connectors point into the block),
and outputs to the right side of the block (output connectors point out of the block).

This block has two ports (small connectors), and the other connectors are interfaces (larger
connectors). The ports can represent one bit of data or a vector of bits. If the port represents a
vector of bits, the size can be identified next to its name.

When clicking on the "+" sign of an interface, such as “A” in the above image, the internal ports
of the interface appear shown below. Notice also that the “+” sign has changed to a “-“ sign.
Clicking on the “-“ sign hides the ports again.

When the "A" interface is connected to the output of a compatible interface, all individual signals
between the two interfaces are connected. If the design requires connecting an interface to an
incompatible interface or individual ports on another block, the ports within the interface may be
connected instead.

Connecting an Output Port to an Input Port
In the image below, connections are made by clicking on one port and then dragging the line
from it to another suitable port. This can be done by dragging a line from an output port to an
input port or by dragging a line from an input port to an output port. It may also be done by
dragging a line from an input port to an existing compatible connection.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 54

Connections can be created according to connection rules. For more information, refer
Connection Rules.

If a connection can be made from a connector, a new line appears from this connector to mouse
and the mouse cursor changes to the axis icon as shown below. Furthermore, the possible
target connectors are highlighted in blue for showing the different connection possibilities. See
the input ports on the lower block "Awg_0" shown below.

For finishing the connection, the end of the connection line is dragged by the mouse to a
compatible target connector. In this case, the mouse icon changes to the green connection icon.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 55

When the mouse button is released, the new connection is created.

Remove and Redraw operations
Right-click the line connecting the two ports to see two options: Remove and Redraw. Remove
will delete the connecting line.

For example, add a block between the two ports. Notice the line connecting the ports is no
longer straight.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 56

Delete the block that was just added and notice that the connecting line stays unchanged.
Right-click the line and select Redraw. The line will be straight again.

Disconnecting a Connection

Once a connection is created, the connection can be disconnected by right-clicking on the
connector, which displays the Disconnect option.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 57

Connecting Input Ports to a Literal Constant
If you want to connect a input port to a constant numeric value, you should connect the port to a
literal. Literals set 64-bit value constants at input ports. To insert a literal, right-click the port and
select the 'Connect to literal' command. You can set the value to an integer, hexadecimal, or
binary value:

• Integer: A integer number, negative numbers set a two's complement format. The range for
valid inputs is from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, or from
−(2^63) to 2^63 − 1

• Hexadecimal: A hexadecimal number using the characters 0 - F can be entered, followed
by an h; for example, Ah. The range for valid inputs is from 0h to FFFFFFFFFFFFFFFFh.

• Binary: Binary numbers can be added followed by a b, for example, 1010b.

Connection Rules

Ports
There are input ports and output ports. The input ports can have only one connection to an
output port. In this example, Din(15:0) has one connection.

The output ports can be connected to multiple input ports. In this example, Dout(15:0) output is
connected to three inputs.

Port Size Mismatches
If a wider output port is connected to a narrower input port, then the LSBs of the output port are
used to make the connection.

If a narrow output port is connected to a wider input port, the output port connects to the LSBs
of the input port. The remaining bits of the input port are set to zero.

In general, if the smaller of the two ports has N bits, then bits N-1...0 of the output port are
connected to bits N-1...0 of the input port. Any remaining output port bits are ignored, and any
remaining input port bits are set to zero.

In the second example shown above, both clk and rst will be connected to Dout(0).

Interfaces
Interfaces with the same type can be connected. Therefore, interfaces of similar protocols can
be put together with a single connection.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 58

Clicking on the "+" sign for either interface will expand the interface to show the underlying
ports. When an interface is expanded, clicking the "-" sign will collapse the port back to showing
just the interface name.

Interfaces with the same number and naming of the ports can be connected together. By
connecting one interface to another interface, as shown above, all the corresponding ports
shown are connected. This removes the chore of having to connect each interface port as
shown below.

Naming Conventions

Within PathWave FPGA, things like Instance names and Register names must be unique and
valid HDL identifiers. Specifically they must follow these rules:

1. A name must start with an alphabetic character (A-Z or a-z).

2. A name can only consist of of alphanumeric characters and underscores (A-Z, a-z, 0-9, _).

3. A name must end with an alphanumeric character (A-Z, a-z, 0-9).

4. A name can not be a reserved word (listed below).

5. Names are not case sensitive. Thus myreg, MYREG, MyReg are all considered the same.

Reserved Words
The following are reserved words and can not be used as names:

abs, access, after, alias, all, always, always_comb, always_ff,

always_latch, and, architecture, array, assert, assign, assume,

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 59

attribute, automatic, before, begin, bind, bins, binsof, bit, block,

body, break, buf, buffer, bufif0, bufif1, bus, byte, case, casex,

casez, cell, chandle, class, clocking, cmos, component, config,

configuration, const, constant, constraint, context, continue, cover,

covergroup, coverpoint, cross, deassign, default, defparam, design,

disable, disconnect, dist, do, downto, edge, else, elsif, end,

endcase, endclass, endclocking, endconfig, endfunction, endgenerate,

endgroup, endinterface, endmodule, endpackage, endprimitive,

endprogram, endproperty, endsequence, endspecify, endtable, endtask,

entity, enum, event, exit, expect, export, extends, extern, file,

final, first_match, for, force, forever, fork, forkjoin, function,

generate, generic, genvar, group, guarded, highz0, highz1, if, iff,

ifnone, ignore_bins, illegal_bins, import, impure, in, incdir,

include, inertial, initial, inout, inout, input, inside, instance,

int, integer, interface, intersect, is, join, join_any, join_none,

label, large, liblist, library, linkage, literal, local, localparam,

logic, longint, loop, macromodule, map, matches, medium, mod, modport,

module, nand, negedge, new, next, nmos, nor, nor, noshowcancelled,

not, notif0, notif1, null, of, on, open, or, others, out, output,

package, packed, parameter, pmos, port, posedge, postponed, primitive,

priority, procedure, process, program, property, protected, pull0,

pull1, pulldown, pullup, pulsestyle_ondetect, pulsestyle_onevent,

pure, rand, randc, randcase, randsequence, range, rcmos, real,

realtime, record, ref, reg, register, reject, release, rem, repeat,

report, return, rnmos, rol, ror, rpmos, rtran, rtranif0, rtranif1,

scalared, select, sequence, severity, shared, shortint, shortreal,

showcancelled, sig, signal, signed, sla, sll, small, solve, specify,

specparam, sra, srl, static, string, strong0, strong1, struct,

subtype, super, supply0, supply1, table, tagged, task, then, this,

throughout, time, timeprecision, timeunit, to, tran, tranif0, tranif1,

transport, tri, tri0, tri1, triand, trior, trireg, type, typedef,

unaffected, union, unique, units, unsigned, until, use, uwire, var,

variable, vectored, virtual, void, wait, wait_order, wand, weak0,

weak1, when, while, wildcard, wire, with, within, wor, xnor, xor

Adding and Editing Comments

To add a comment:

1. Position the cursor within the project where the comment is to be inserted.

2. Right-click on a blank part of the canvas and select Insert Comment... .

3. Add text to the comment text box.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 60

4. The comment can be moved by dragging it with the mouse. Notice the comment is in the
foreground and appears above the project elements.

5. On right-clicking the comment, the option to copy or remove is provided.

6. Choose Copy, to create a duplicate comment.

7. Choose Remove, to delete the comment.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 61

Naming Collisions

PathWave FPGA is using the concept of VLNV for identifying IP and reporting naming
collisions. VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-
XACT.

• Two IPs have the same name, but different VLNV. In this case, user will have to resolve
it using one of the workarounds.

• Two IPs have have the same VLNV, apart from the version field. In this case, PathWave
FPGA will give the user the option to upgrade/downgrade. Note that this option is not
available if the IPs are coming from an IP repository. In the latter case, user will have to
resolve it using one of the workarounds.

• Two IPs have the same VLNV, but different contents. In this case, PathWave FPGA will
give the user the option to update to the desired definition. Note that this option is not
available if the IPs are coming from an IP repository. In the latter case, user will have to
resolve it using one of the workarounds.

• Two IPs have the same VLNV and contents, but are stored in different location. In this
case, PathWave FPGA will use the last loaded location as the correct location of the IP.

• Two IPs have the same name, but they do not have a VLNV. In this case, user will have
to resolve it using one of the workarounds.

• Two IPs have the same name, but are coming from different import method. In this
case, user will have to resolve it using one of the workarounds.

• An IP is using a name of a reserved word. In this case, a possible workaround is to
create a wrapper for that IP which will have a non-colliding name

Workarounds
When a name collision is detected, the user will have to take action and resolve it.

• Rename the IP to a non-conflicting name. This is simplest and fastest solution. However,
if the user is not the owner of the IP, it might not be feasible. In this case, the user has to
follow the second workaround

• Load only the IPs that are necessary for the project. This is by definition possible only if
the conflicting IPs are not needed at the same time in the design. If they are, the previous
workaround in the only option. Note that in the case of unwanted IPs that are loaded
through an IP Repository location, user has to either remove the IP Repository location,
which will also remove any other IP loaded from the same place, or, if this is not possible,
move the conflicting IP definition file (IP-XACT file) outside of the IP repository location or
any sub-directory.

• Create a wrapper entity/module for the failing IP. This option will only work if the reason
of the name collision is a reserved word or the name of the IP matches the name of a
sandbox interface. The wrapper entity has to use a non-conflicting name.

Generating the Bit File

• Synthesizing and Implementing your Design inside of PathWave FPGA

o Monitoring the Build

o Exploring the Build Output

• Building your Design using Vivado

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 62

o Generating a Vivado Project

o Building your Vivado Project

▪ Implementating from PathWave FPGA

▪ Building Entirely in Vivado

Synthesizing and Implementing your Design inside of PathWave
FPGA

After creating your new hardware project and adding your FPGA logic, you are ready to
generate the bit file that implements your design.

To build the bitfile based on your design, complete the following steps:

1. Select Module> Generate Bit File... or click the toolbar icon with tooltip "Generate Bit
File...". The FPGA Hardware Build dialog will appear.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 63

2. Choose the sandbox that you want to target for this build.

3. Choose the Implementation build type. This will build the complete project, including the bit
file.

4. Click Run to start the build.

Monitoring the Build
The FPGA Hardware Build dialog contains several panes to monitor the progress of the build:

• The Compile Output pane displays all build output.

• The Issues pane shows filtered build output. You can set the filters by checking the boxes
(Errors, Critical Warnings. etc.) at the top of the Issues pane. The filters can be set at any
time while the build is running or after it is complete.

• The progress bar shows the approximate progress of the build.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 64

• The status bar at the bottom left shows what step of the build is being performed. When the
build is finished, the build status will be displayed.

Exploring the Build Output
The Build directory field in the Configuration pane specifies the parent directory of the build
artifacts, including the generated bit file. The Program Archive of the generated bit file may be
recognized by its k7z file extension.

If the build was successful, the build artifacts are copied to an artifact directory for future
reference. Each set of build artifacts has its own time and date stamped directory. In this
example, one artifact directory could be named myProject.data\bin\myProject_2018-04-
04T14_21_55.

To learn more about the build output structure, refer to the Project Directory Structure section.

Building your Design using Vivado

A native Vivado flow for users who want to use advanced features in Vivado (such as adding
placement constraints).

Generating a Vivado Project
To start the advanced build flow and leave PathWave FPGA build environment, follow the steps
listed below.

1. Open a new/existing PathWave FPGA project, and navigate to the FPGA Hardware Build
dialog.

2. Select the sandbox you wish to implement with the sandbox drop down, and select the
Project Generation build type.

3. Hit Run.

a. If any build errors are encountered, solve the errors before continuing.

4. Find the generated Vivado Project at {Project Folder}/{Project Name}.build/{Project
Name}_Generated_Project.

a. The project generation flow will not overwrite an existing generated project and will
instead insert a counter of the form '_{iter}' to the name of the generated project. i.e.
myProject_Generated_Project_1.

5. Open the generated project.

A Vivado project is now created and ready for development. The following sections will discuss
how to finish implementation after development.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 65

Building your Vivado Project
Once development is finished on the sandbox, the user takes an out of context synthesized
DCP and reintroduces it into the PathWave FPGA build. A separate flow that does not restart
PathWave FPGA is also available.

Implementating from PathWave FPGA
In this flow, the user takes their developed sandbox and creates an out of context synthesized
DCP and passes it into PathWave FPGA to create the project outputs. Below are the steps for
this flow.

1. Open the Vivado project that was created for the chosen sandbox, that has finished
development.

2. Run the following tcl command in Vivado: synth_design -mode out_of_context

3. Run the following tcl command in Vivado: write_checkpoint ${Location you wish to put
DCP}

4. Open the PathWave FPGA project that was used to create the Vivado Project.

5. Navigate to the FPGA Hardware Build dialog.

6. In the Build Type combo box select Implement from DCP.

7. Either manually enter the location of your sandbox DCP file, or click the browse button and
select the DCP file.

8. Click Run.

PathWave FPGA will take the out of context synthesized DCP and run its implementation script.
All build messages will be displayed like normal, and the output of the build will produced as is
above in the normal flow.

Building Entirely in Vivado
In this flow, the user takes their developed sandbox and manually runs the build scripts
provided by the BSP. Below are the steps for this flow.

1. Open Vivado, but do not open a project.

2. Locate the build script for the BSP that the sandbox is designed around. The recommended
storage location is in {BSP Location}/fsp/script.

a. Although not necessary for implementation, it is recommended to read through this
build script to understand what is going on.

3. Run the following tcl command in Vivado: source ${BSP Build Script}

a. This adds some tcl commands into Vivado.

4. Run the following tcl command in Vivado: ::Keysight::GT::ImplSandboxes ${args}

a. The arguments for this command are listed below (case sensitive):

i. -pn : project name

ii. -n : number of sandboxes

iii. -fpga : FPGA part number

iv. -k${sbx}n : name of the kernel to be loaded to sandbox ${sbx}

v. -k${sbx}p : path of the dcp checkpoint of the kernel to be loaded to sandbox
${sbx}

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 66

vi. -k${sbx}c : clock frequency of the kernel to be loaded to sandbox ${sbx}

vii. -sdcp : static dcp file

viii. -bit : bit filepath

ix. -P : project directory

x. -fsp : BSP configuration filepath (.fspinfo)

b. Reading through the .fspinfo file for the BSP you are building for may help you find
the values you need to use for these arguments.

After running the above tcl proc, a design has been created and can be edited as the user
requires. If the build completed successfully, the project outputs will be produced and ready to
be deployed.

Verifying the Bit File

After you generate your FPGA bit file, you are ready to deploy and verify it on the FPGA. The
Board Support Package for your FPGA supplies the run-time support package (RSP) C API that
provides programmatic control of the FPGA. Using the RSP you can create a C application to
verify your bit file. Note, you will need Visual Studio C++ and CMake, please see the System
Requirements for more details.

The RSP documentation and example program are provided in a separate Help area available
from the Help > Programmer's Guide menu.

After you have verified the bit file, you are ready to deploy it in a measurement application.
Please consult your instrument driver manual to learn how to integrate the bit file into your
custom measurement application.

Glossary

Term Definition

Bit file File built from the user design containing the bits to download to the FPGA
sandbox.

Block An HDL IP block that is placed on the PathWave FPGA design schematic.

Board support
package (BSP)

A package containing all of the necessary content to target a Keysight Open
FPGA. These are installed separately from PathWave FPGA. A BSP is made
up of two parts, the FPGA support package (FSP) and the run-time support
package (RSP) .

FPGA support
package (FSP)

The portion of the BSP that allows you to build a bit file for the target FPGA.

Interface A set of ports for a block that can be connected to another compatible
interface. Alternatively, an interface can be expanded and the individual
ports can be connected to another compatible port.

Module Either a top level module or submodule that is currently the top level module
for simulation purposes

Port An input or output signal to a block.

Program archive An archive file (.k7z) containing one or more bit files and associated
metadata.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

User's Guide – 67

Term Definition

Run-time support
package (RSP)

The portion of the BSP that allows you to control your target FPGA. It
provides a C API that you can use to download and verify your FPGA bit
image.

Sandbox The user-configurable region in the FPGA.

Submodule Hierarchical schematic design that can be instantiated in either a top level
module or another submodule

Top level module Top of the user design, defines the IO of the sandbox.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 68

IP Developers Guide

This IP developers guide describes how an IP block must be packaged to be included in
PathWave FPGA. This guide also describes IP restrictions and how the IP restrictions are
formatted in the IP-XACT XML file. IP restrictions determine which FPGA vendors (eg. Xilinx)
along with which FPGA families (eg. Virtex 7) and BSPs (eg. M3202A) are supported.

• IP Repositories

• IP directory structure

• Definition of the IP-XACT file

o Keysight Standard Interfaces

o Managing Multiple Clocks and Resets

o Parameterizing IP Designs

▪ Component Parameters

▪ Module Parameters

▪ Example: Parameterized Port Sizing

o IP Restrictions

▪ IP Restrictions Format

o IP Categorization

• IP Naming Collisions

•

• An Example IP-XACT File

IP Repositories

IP repositories are directories that contain all the artifacts required to describe an IP. For an IP
to be discovered by PathWave FPGA, an IP-XACT file (of the IEEE 1685-2014 standard) is
required. The role of the IP-XACT file is crucial to identify an IP, represent its interfaces, and
describe all its resources (source, constraint, documentation, simulation files). In other words,
an IP-XACT file will fully define an IP and describe its directory structure. To load an IP
repository, use the Settings Dialog.

IP directory structure

The directory structure for an IP is left up to the IP developer to define. However, a proposed
directory structure, which is similar to the one used from Xilinx Vivado, is the following:

• MyIPlibrary ← IP library top level directory

o doc ← IP documentation

o src ← IP HDL source directory. Source code may be encrypted.
This directory contains both the behavioral and synthesizable
code.

o tb ← A directory for the IP simulation testbench.

o MyIPlibrary.xml ← An IP-XACT file that describes the IP

https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 69

Definition of the IP-XACT file

As described above, PathWave FPGA will identify IPs that exist in an IP repository directory by
discovering the IP-XACT files that describe those IPs. For an IP-XACT file to correctly identify
an IP, the guidelines described below should be followed:

• the IP-XACT file should follow the IEEE 1685-2014 standard

• the root element should be an ipxact:component

• the vendor name (element ipxact:vendor, first child of ipxact:component) should be
equal to the internet domain of the vendor of the IP (for example, for Keysight
Technologies this will be keysight.com)

• the name of the library (element ipxact:library, first child of ipxact:component) will be
the name of the library the IP belongs to. This name is also used inside PathWave
FPGA for categorizing the IPs

• the name (element ipxact:name, first child of ipxact:component) should be the same
as the name of the IP (*module name* in Verilog, SystemVerilog and SystemC, or
entity name in VHDL)

• if the IP uses Keysight Standard Interfaces, these should be described using
ipxact:busInterface elements

• the mappings between logical ports of the 'busInterface's to the physical ports of the
IP should be '1 to 1'. This means that one physical port maps completely (same
width, direction) and only to one logical port

• the files that are necessary for an IP to be included in a build process (synthesis,
implementation, bit generation) should be defined inside an ipxact:fileset component,
named "synthesis".

A detailed description of all the elements that are required by PathWave FPGA in order to
identify correctly an IP is given in the following table. For more information on the various
elements that are supported by IP-XACT, please consult the manual IEEE 1685-2014 standard.

Element Parent Element Content

ipxact:component <root> This is the root element of the XML file

ipxact:vendor ipxact:component Vendor's name. Should be equal to the
internet domain of the vendor of the IP (e.g.
keysight.com)

ipxact:library ipxact:component The name of the library the IP belongs to

ipxact:name ipxact:component The name of the IP. Should be the same as
the name of the IP in the source file (i.e.
module name in Verilog, SystemVerilog and
SystemC, or *entity name* in VHDL)

ipxact:version ipxact:component The version number of the IP.

ipxact:busInterfaces ipxact:component Contains a list of ipxact:busInterface elements

ipxact:busInterface ipxact:busInterfaces Contains information about a used Keysight
Standard Interface

ipxact:name ipxact:busInterface The name of the Interface that is used in this
IP

ipxact:busType ipxact:busInterface The type of the Interface that is used in this
IP. This essentially is the VLNV of the

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 70

Element Parent Element Content

Keysight Standard Interface to be used. This
should match one of the bus definitions (IP-
XACT files with <ipxact:busDefinition> as the
root element) defined by PathWave FPGA.
See Keysight Standard Interfaces for more
information

ipxact:abstractionTypes ipxact:busInterface Contains a list of ipxact:abstractionType
elements. PathWave FPGA will only support
one, the first

ipxact:abstractionType ipxact:abstractionTypes Contains information about a used Keysight
Standard Interface and the mapping to the
physical ports

ipxact:abstractionRef ipxact:abstractionType The type of the Interface definition that is
used in this IP. This essentially is the VLNV of
the definition of the Keysight Standard
Interface to be used. This should match one
of the abstraction definitions (IP-XACT files
with <ipxact:abstractionDefinition> as the root
element) defined by PathWave FPGA. See
Keysight Standard Interfaces for more
information

ipxact:portMaps ipxact:abstractionType Contains a list of ipxact:portMap elements

ipxact:portMap ipxact:portMaps Contains information about a specific port
mapping

ipxact:logicalPort ipxact:portMap Contains information about the logical port
(port defined in the abstractionDefinition of the
enclosing abstractiontype) that participates in
the port mapping

ipxact:name ipxact:logicalPort The name of the logical port (As this is
defined in the abstractionDefinition for the
selected Interface Type)

ipxact:physicalPort ipxact:portMap Contains information about the physical port
(port of the IP) that participates in the port
mapping

ipxact:name ipxact:physicalPort The name of the physical port (As this is
defined in the ipxact:ports section in the same
file)

ipxact:model ipxact:component Contains information about the modeling of
the IP

ipxact:ports ipxact:model Contains a list of ipxact:port elements, which
represent the physical ports of the IP

ipxact:port ipxact:ports Contains information about a specific physical
port

ipxact:name ipxact:port The name of the physical port. This should
match the name defined in the source HDL
file

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 71

Element Parent Element Content

ipxact:wire ipxact:port Contains information about the physical
representation of a physical port

ipxact:direction ipxact:wire Specifies the direction of this port: in for input
ports, out for output ports

ipxact:vectors ipxact:wire Contains a list of ipxact:vector elements.
PathWave FPGA will only support one, the
first

ipxact:vector ipxact:vectors Specifies the dimensions for a non-scalar port

ipxact:left ipxact:vector Specifies the left range for the bit slice used to
map a port vector to the bus interface

ipxact:right ipxact:vector Specifies the right range for the bit slice used
to map a port vector to the bus interface

ipxact:fileSets ipxact:component Contains a list of ipxact:fileSet elements

ipxact:fileSet ipxact:fileSets Contains information about a specific set of
files. Can contain one or multiple ipxact:file
elements

ipxact:name ipxact:fileSet The name for this set of files.

ipxact:file ipxact:fileSet Contains information about a specific file

ipxact:name ipxact:file The path to the file. This should be relative to
the path of the current IP-XACT document

ipxact:fileType ipxact:file Describes the type of file. PathWave FPGA
understands one of the following names:

• vhdlSource: It is a VHDL source file

• verilogSource: It is a Verilog source file

• systemVerilogSource: It is a
SystemVerilog source file

• user: It is a user defined source,
described by the attribute "user"

user attribute of
ipxact:fileType

Can be:

• xci: Xilinx Core Instance

• dcp : It is a Vivado design checkpoint file

ipxact:description ipxact:component A short description of the IP

Keysight Standard Interfaces

The bus interfaces that are currently supported by PathWave FPGA to be used inside an IP
component definition are described as Keysight Standard Interfaces. Each of these interfaces
has IP-XACT definitions, which are defined by, and installed with, PathWave FPGA.

More specifically, for each interface, two IP-XACT files are defined:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 72

• the Bus Definition: IP-XACT file with ipxact:busDefinition as root element

• the Abstraction definition: IP-XACT file with abstractionDefinition as root element

The Bus Definition is used to define the high-level details of an interface, such as if is
addressable or not, if it supports direct connection between a master and a slave, etc.

Code Block 2 Example Bus Definition for AXI4-Stream interface

<ipxact:busDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014" xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014/http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>interfaces</ipxact:library>

 <ipxact:name>axis</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:directConnection>true</ipxact:directConnection>

 <ipxact:isAddressable>false</ipxact:isAddressable>

</ipxact:busDefinition>

The Abstraction Definition is used to define the low-level details of an interface, such as the
port and the parameter list.

Code Block 3 Example Abstraction Definition for AXI4-Stream interface

<ipxact:abstractionDefinition

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014/http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>interfaces</ipxact:library>

 <ipxact:name>axis.absDef</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busType vendor="keysight.com" library="interfaces" name="axis"

version="1.0"/>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:logicalName>tdata</ipxact:logicalName>

 <ipxact:wire>

 <ipxact:qualifier>

 <ipxact:isData>true</ipxact:isData>

 </ipxact:qualifier>

 <ipxact:onMaster>

 <ipxact:presence>optional</ipxact:presence>

 <ipxact:width>64</ipxact:width>

 <ipxact:direction>out</ipxact:direction>

 </ipxact:onMaster>

 <ipxact:onSlave>

 <ipxact:presence>optional</ipxact:presence>

 <ipxact:width>64</ipxact:width>

 <ipxact:direction>in</ipxact:direction>

 </ipxact:onSlave>

 <ipxact:defaultValue>0</ipxact:defaultValue>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:logicalName>tvalid</ipxact:logicalName>

 <ipxact:wire>

 <ipxact:onMaster>

 <ipxact:presence>required</ipxact:presence>

 <ipxact:width>1</ipxact:width>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 73

 <ipxact:direction>out</ipxact:direction>

 </ipxact:onMaster>

 <ipxact:onSlave>

 <ipxact:presence>required</ipxact:presence>

 <ipxact:width>1</ipxact:width>

 <ipxact:direction>in</ipxact:direction>

 </ipxact:onSlave>

 </ipxact:wire>

 </ipxact:port>

 :

 :

 :

 </ipxact:ports>

</ipxact:abstractionDefinition>

Managing Multiple Clocks and Resets

PathWave FPGA needs to know which clock synchronous interfaces use. If there is only one
clock in an IP block's definition, then there is no ambiguity. However, if there is more than one
clock interface, then the tools need to know which clock corresponds to which interfaces. To do
this, one adds the ASSOCIATED_BUSIF parameter to the bus interface definition of each clock
interface. The value of the ASSOCIATED_BUSIF parameter is a colon separated list of the
names of the interfaces that use that clock. This should include all the synchronous interfaces
(things such as AXI and PC_MEM interfaces) that use that clock. If every synchronous interface
uses the same clock, then the ASSOCIATED_BUSIF can be set to the value * as a wildcard to
denote all interfaces.

Additionally, reset signals are usually synchronous with a clock in order to generate clean reset
events. If there are more than one clock and more than one reset signal, then PathWave FPGA
also needs to know which reset signal is associated with a particular clock. To do this, one adds
the ASSOCIATED_RESET parameter to the bus interface definition of the pertinent clock
interface. The value of the ASSOCIATED_RESET parameter is the name of a single reset
interface that should be used with that clock. Note that while ASSOCIATED_BUSIF can accept
multiple colon separated names or the * wildcard, ASSOCIATED_RESET can only be a single
name.

Parameterizing IP Designs

For added generality, IP-XACT standard allows the usage of parameters to control various
aspects of the IP block's definition, so that the same block may be used with different
configurations. These parameters can be simple constants such as 16, or they can be
mathematical expressions involving multiple constants and/or other parameters. The format of
expressions in IP-XACT are detailed in Annex C of the IP-XACT 1685-2014 standards
document. The format is based on System Verilog's expression syntax.

IP-XACT provides different ways to define parameters, however, in the context of Pathwave
FPGA, two methods are currently supported:

• Component Parameters

• Module Parameters

The following table summarizes the elements/attributes that PathWave takes into account when
parsing an IP-XACT file, with respect to the parameters:

Element/Attribute Parent Element Content

ipxact:parameter ipxact:parameters The root element to define a parameter.
It requires the definition of attributes and

https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 74

Element/Attribute Parent Element Content

(or
ipxact:moduleParameter)

(or
ipxact:moduleParameters)

children element for the proper
description of a parameter

resolve attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Can take one of the values: "user",
"immediate" or "generated".

To specify that a parameter should be
configured by the user of the IP, the
value "user" should be used. This will
also display the parameter in the
properties dialog of an IP inside
PathWave FPGA

This attribute defaults to "immediate" if
not defined

type attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Defines the datatype of the value.
Possible values are: "int", "bit", "byte".
For a complete list, please refer to IP-
XACT 1685-2014

parameterId attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Defines a unique (in the context of the
IP-XACT file) ID for this parameter. This
ID should then be used in any
expression required within the file

ipxact::name ipxact:parameter

(or
ipxact:moduleParameter)

The name of the parameter

ipxact:value ipxact:parameter

(or
ipxact:moduleParameter)

The default value (or expression) of the
parameter

Component Parameters
Parameters defined as children of the elements path component->parameters. These can be
used throughout the IP-XACT document to configure any aspect of the file (can be used in any
field that accepts expressions as values, e.g. other parameter values, port ranges, port
presence etc.)

<ipxact:component>

 :

 :

 <ipxact:parameters>

 <ipxact:parameter resolve="user" type="int"

parameterId="gen_input_length" >

 <ipxact:name>gen_input_length</ipxact:name>

 <ipxact:value>3*uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter type="int"

parameterId="uuid_f4a7c3f8_a1b3_496a_9730_17d721278396" >

 <ipxact:name>output_length</ipxact:name>

 <ipxact:value>2*gen_input_length</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter resolve="user" type="int"

parameterId="uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15" >

 <ipxact:name>supersample</ipxact:name>

 <ipxact:value>1</ipxact:value>

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 75

 </ipxact:parameter>

 </ipxact:parameters>

 :

 :

</ipxact:component>

Notes:

• The tag resolve="user" indicates that these parameters are ones

that the user can change when instantiating the IP block. If the

parameter should always be calculated from other values or remain

fixed, the tag resolve="immediate" should be used. In that case the

user will not be given the option of modifying the value of the

parameter.

• The parameterId is the one used inside an expression (not the

ipxact:name), in which a parameter participates (see ipxact:value

of parameter gen_input_length). However, if the ipxact:name of the

parameter is unique throughout the document, it can also be used as

parameterId. This way it is easier to construct expressions using

parameters (see ipxact:value of parameter output_length)

• The value of output_length parameter shall not be modifiable

directly by user input (as it does not contain the attribute

resolve set to "user"), rather, indirectly, through the

input_length parameter, as its expression implies (i.e.

2*gen_input_length)

• The value of gen_input_length parameter is defined as user

modifiable. That means that the expression shall not play any role,

other than defining the default value. Therefore, if a user selects

a value of "10" for this parameter, and a value of "5" for the

parameter supersample, the final value of gen_input_length will be

"10" and not "15" (3*supersample)

Module Parameters
Parameters defined as children of the elements path component->model->instantiations-
>componentInstantiation->moduleParameters. These are more specific to a Module Definition.
Represent the generics of a VHDL entity, or the parameters of a Verilog module.

Code Block 4 Example Module Parameters Definition

<ipxact:component>

 :

 :

 <ipxact:model>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>flat_vhdl_component</ipxact:name>

 <ipxact:language>vhdl</ipxact:language>

 <ipxact:moduleName>parameterizedIp</ipxact:moduleName>

 <ipxact:moduleParameters>

 <ipxact:moduleParameter type="int"

parameterId="input_length" resolve="user">

 <ipxact:name>input_length</ipxact:name>

 <ipxact:value>3*supersample</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter type="int"

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 76

parameterId="output_length">

 <ipxact:name>output_length</ipxact:name>

 <ipxact:value>2*input_length</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter type="int"

parameterId="supersample" resolve="user">

 <ipxact:name>supersample</ipxact:name>

 <ipxact:value>uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15</ipxact:value>

 </ipxact:moduleParameter>

 </ipxact:moduleParameters>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 :

 :

 </ipxact:model>

 :

 :

</ipxact:component>

Notes:

• The guides for creating component parameters also apply to the

module parameters.

• The value of the supersample parameter depends on a parameter

defined elsewhere in the document

(uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15 is the parameterId

defined for the parameter supersample, defined in the previous

example and can exist in the same document)

Example: Parameterized Port Sizing
IP-XACT parameters can be used to define the bounds (sizes) of the IP module's ports. These
expressions may be solely the parameterId of an ipxact:moduleParameter or may be more
complicated expressions as shown in this example:

<ipxact:port>

 <ipxact:name>Din_vector</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>input_length*supersample-1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

</ipxact:port>

Note:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 77

• Only ipxact:moduleParameter parameters can be used in expressions defining port
ranges. This is because the actual expression will also be used during code generation and
only the ipxact:moduleParameters are defined at that time

• Tools such as Kactus2 can facilitate defining and evaluating expressions.

IP Restrictions

For IP to be used in PathWave FPGA, there will need to be a set of IP restrictions that specify
which BSPs and FPGA device families the IP can be used with. This information will be used to
determine which IP will show up in the IP catalog in the GUI for use in a design. Only the IP that
will work with a given BSP and FPGA will show up for a design so that the user cannot place
incompatible IP in a design.

An IP developer may specify in the IP-XACT which BSPs (eg. M3102A, M3202A), which FPGA
vendors (eg. Xilinx), and which FPGA families (eg. Virtex, Kintex) are supported. If the IP can
work for all families for a given FPGA vendor or all BSPs, then the family parameter or the bsp
parameter does not need to be set.

IP Restrictions Format
The IP restrictions will be added to the IP-XACT file inside the 'ipxact:vendorExtensions'
element of an 'ipxact:component'. The elements to be used are defined by Keysight and are as
follows:

Element Parent Element Content

keysight:ipMetadata ipxact:vendorExtensions (direct
child of ipxact:component)

This is the root element of the
Keysight Vendor Extensions for
IP metadata

keysight:supportedHardware keysight:ipMetadata Contains information about the
hardware to which this IP is
supported

keysight:supportedBoards keysight:supportedHardware Contains a list of Vendor-
Boards pairs of supported
boards. If this element is not
specified, all boards are
supported

keysight:vendorBoards keysight:supportedBoards A Vendor-Boards pair

keysight:vendor keysight:vendorBoards The name of the vendor.
Should be equal to the internet
domain of the vendor of the
boards (e.g. keysight.com)

keysight:boards keysight:vendorBoards Contains a list of board names
that are supported

keysight:board keysight:boards The name of the board where
this IP can be used

keysight:supportedParts keysight:supportedHardware Contains a list of Vendor-Parts
pairs of supported FPGA parts.
If this element is not
specified, all FPGA parts are
supported

keysight:vendorParts keysight:supportedParts A Vendor-Parts pair

keysight:vendor keysight:vendorParts Vendor's name. Should be
equal to the internet domain of

http://keysight.com/

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 78

Element Parent Element Content

the vendor of the parts (e.g.
keysight.com)

keysight:families keysight:vendorParts Contains a list of family names
that are supported

keysight:family keysight:families The name of the family as this
is defined by the part number
(e.g. 'xc7k' should be used if
the supported family is 'Kintex-
7')

To use any of the Keysight defined elements inside an IP-XACT file, you
need to specify the 'keysight' namespace:
"xmlns:keysight="http://www.keysight.com"" in the xml root element (i.e.
ipxact:component)

IP Categorization

In addition to defining the library in which the IP belongs, it is possible to define a subcategory
for an IP. To achieve that, PathWave FPGA has defined some extension elements for IP-XACT.

The IP restrictions will be added to the IP-XACT file inside the 'ipxact:vendorExtensions'
element of an 'ipxact:component'. The elements to be used are defined by Keysight and are as
follows:

Element Parent Element Content

keysight:ipMetadata ipxact:vendorExtensions (direct child
of ipxact:component)

This is the root element of the
Keysight Vendor Extensions for IP
metadata

keysight:categories keysight:ipMetadata A list of categories. Currently, only
one category can be specified

keysight:category keysight:categories The name of the category that this
IP belongs into

To use any of the Keysight defined elements inside an IP-XACT file, you
need to specify the 'keysight' namespace:
"xmlns:keysight="http://www.keysight.com"" in the xml root element (i.e.
ipxact:component)

IP Naming Collisions

PathWave FPGA does not accept IP with the same name to be loaded at the same time in a
project. PathWave FPGA uses the concept of VLNV for identifying IP and reporting naming
collisions. VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-
XACT. The VLNV of an IP is defined in the first four fields of an IP-XACT component (see IP-
XACT definition)

For more information on naming collisions and how to resolve them, please read here.

http://keysight.com/
http://www.keysight.com/

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 79

For the case of an IP developer, this might happen as multiple versions of the same IP might be
created in the development phase. Even though the case of multiple IPs with the same VLNV
but different contents is detected by PathWave FPGA, it is recommended to update the version
field of the IP-XACT file for every change applied to the file. This will provide better issue
reporting and easier resolution.

An Example IP-XACT File

Code Block 5 Sample IP-XACT file

<?xml version="1.0" encoding="UTF-8"?>

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:keysight="http://www.keysight.com"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>myCustomLibrary</ipxact:library>

 <ipxact:name>SampleIp</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>clkSignal</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 <ipxact:parameters>

 <ipxact:parameter

parameterId="uuid_4e5d34f4_ff5d_4244_92b4_c0d0ec78d043">

 <ipxact:name>ASSOCIATED_BUSIF</ipxact:name>

 <ipxact:value>myAxiStreamMaster:myAxiStreamSlave</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter

parameterId="uuid_c127b078_eb51_42f4_aaf8_58e93ad84b21">

 <ipxact:name>ASSOCIATED_RESET</ipxact:name>

 <ipxact:value>Reset</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Reset</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 80

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>rstn</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>myAxiStreamSlave</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_valid_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tuser</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_user_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_data_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>myAxiStreamMaster</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 81

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_valid_out</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_data_out</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>rstn</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_valid_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_data_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>79</ipxact:left>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 82

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_user_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_valid_out</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_data_out</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>79</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>sampleIp.vhd</ipxact:name>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 83

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>This is a Sample IP. It contains two Stream

Interfaces and two system ports</ipxact:description>

 <ipxact:vendorExtensions>

 <keysight:ipMetadata>

 <keysight:supportedHardware>

 <keysight:supportedBoards>

 <keysight:vendorBoards>

 <keysight:vendor>keysight.com</keysight:vendor>

 <keysight:boards>

 <keysight:board>M3202A</keysight:board>

 </keysight:boards>

 </keysight:vendorBoards>

 </keysight:supportedBoards>

 <keysight:supportedParts>

 <keysight:vendorParts>

 <keysight:vendor>xilinx.com</keysight:vendor>

 <keysight:families>

 <keysight:family>xc7k</keysight:family>

 </keysight:families>

 </keysight:vendorParts>

 </keysight:supportedParts>

 </keysight:supportedHardware>

 <keysight:categories>

 <keysight:category>General</keysight:category>

 </keysight:categories>

 </keysight:ipMetadata>

 </ipxact:vendorExtensions>

</ipxact:component>

Keysight Standard Interfaces

• Introduction

• Interface Descriptions

o Signal Types

o Data Types

o Data Packing/Extending

o Polarity

o Signal Interfaces

o Example Usage

▪ Discussion of Example

o Associated Files

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 84

Introduction

To facilitate connectivity between IP blocks and Sandbox interfaces, PathWave FPGA has
standardized on a number of interfaces. IP blocks using these interfaces will be easier to
interconnect and to connect to PathWave FPGA library blocks and sandbox interfaces.

Interface Descriptions

The following is a brief description of the standard interfaces PathWave FPGA supports. Note
that this is only a brief description of each interface and is not meant to be a complete
description. Some interfaces (e.g. the AXI family) include optional signals that can be included
or omitted in particular implementations depending on the design requirements. This allows the
user to tailor the complexity and size of the interface while maintaining compatibility.

1. clock: A free running clock. Data is both sampled and changed on the rising edge of a
clock.

2. nRst: An active low reset signal.

3. AXIMM: the industry standard, AXI4-Memory Mapped high performance bus architecture.

a. Includes address information.

b. Supports data widths: 8, 16, 32, 64, 128, 256, 512, 1024 bits.

c. Supports burst (high performance) transfers.

d. Supports bi-directional flow control.

4. AXILite: the AXI4-Lite bus, a lightweight version of AXIMM for simpler interfaces that don't
require the performance/features of full blown AXI4.

a. Limited data width: 32 (preferred) or 64 (if needed).

b. Only single transactions supported - no data bursting.

c. Supports bi-directional flow control.

5. AXIS: the AXI4-Streaming interface is for streaming arbitrarily long sequences of data.

a. Point-to-point streams - this interface does not include address data, though
optional TID, and TDEST signals allow some routing (addressing) information.

b. Data width is any multiple of 8 bits. Unlike AXIMM and AXILite, AXIS can support,
for example, 24 bit data. The standard allows 0 bit data (TDATA is optional). An
AXIS interface without data just has the control signals.

c. Supports optional TUSER data signals. These are extra signals that are logically
attached to data samples that could be used to include auxiliary data such as
triggers or data marks or timing information.

d. Supports merging/packing multiple data items into wider stream.

e. Supports bi-directional flow control.

6. PC-MEM: a very light weight Keysight proprietary interface.

a. Can be bi-directional.

b. Includes addressing.

c. Does not include back-pressure - all transactions take place in one clock cycle and
can not be held off.

d. Has deterministic timing.

e. Used for HVI register access. Please see the Keysight M3601 documentation for
more information on HVI.

7. vector: a multi-bit vector of signals without any signaling protocol. This might be used to
connect a control register to an IP block.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 85

8. wire: a single bit signal. This might be used for a trigger signal.

Signal Types
There are a number of different types of signals used in a typical design. These can roughly be
categorized into control signals (typically used to setup, control, and monitor a measurement),
data flow signals (the data being processed - this could be a continuous stream of data or one
or more blocks of data), and a miscellaneous category containing things like triggers,
timestamps, etc.

The following are the various types of signals that PathWave FPGA supports:

1. Control Bus Slaves. Typically these would be register control/status blocks where the driver
could read and write status and control data.

2. Control Bus Master. This is for the case where the user IP wants to communicate with
external devices via the PCIe (or other host control) bus, e.g. write to other modules to
control multi-module measurements.

3. Continuous Streaming Data. This is an arbitrarily long stream of continuous data, e.g. from
an ADC. Since the data may not be one sample per clock, flow control is required.
Alongside the data, there may optionally be some amount of sideband data. This is auxiliary
data that flows along with the main signal data. It could include triggers or marker info or be
used to timestamp data.

4. Block Mode Stream Data. This would be an arbitrarily long stream of discontinuous blocks
of data. Each block may represent the result of some measurement or calculation, e.g. the
output of an FFT. To properly interpret this data, the boundaries of each block would need
to be delineated.

5. Memory Read / Write Data. Typically the FPGA will have access to off chip memory. There
needs to be a way for the user IP to read and write to this memory. This interface will need
to include both address and data flow, and probably needs to support burst transfers for
efficiency.

6. Supersampled Data. This is a variation of #3 and #4 above where more than one sample
per clock needs to be transferred.

7. HVI. HVI needs an efficient, time deterministic mechanism to access control register.

8. Clock. One or more clocks. Signals change on and are sampled on the rising edge of clock.

9. Reset. One or more active low reset signals.

10. Trigger. One or more rising edge or active high trigger signals.

Data Types
Most of the data that PathWave FPGA will be processing is likely to be fixed point (scaled ints)
of varying bit widths. To facilitate interconnection of IP, limit the amount of data width
conversion, and allow the use of standard interfaces, PathWave FPGA standardizes on data
widths that are an integral number of bytes (i.e. multiples of 8 bits). Data that is natively a
different size should be padded up to the next multiple of 8 bits by padding MSBs. Unsigned
quantities are zero-extended, and signed quantities are sign extended. Thus a 12 bit unsigned
number would place those 12 bits as the 12 LSBs of the interface with the 4 MSBs being zero.
So if the data was X[11:0], the interface used would be TDATA[15:0] = {4'b0000,X[11:0]}.

The preferred format for floating point numbers in PathWave FPGA will be IEEE-754 compliant.
The two supported (preferred) sizes will be binary16 (16 bits with 11 bit fraction and 5 bit
exponent) and binary32 (32 bits with 24 bit fraction and 8 bit exponent). Note that the number of
fractional bits includes the implied leading "1" bit. The number of physical mantissa bits is one
less than the number of fractional bits, and there is also sign bit. Physically, the binary32 format
would have 1 sign bit, 8 exponent bits, and 23 mantissa bits.

It is not uncommon to process complex data (that is, data consisting of a real and an imaginary
component). If complex data is being sent over a single stream, the real and imaginary parts will
be sent in parallel over a wider stream with the real part will go in the least significant word. For
Serial data, the real part will come first (earlier in time).

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 86

Above are examples of parallel complex data (one sample per clock and two samples per
clock). Below is an example of serial complex data.

For performance reasons (and the limited clock rate available in FPGAs), it is sometimes
desired to transfer more than one sample per clock. This is called supersampled data. In this
case, each sample (or component of the sample for complex data) is first extended to an
integral number of bytes, and then these are packed together with the earlier in time samples
occupying the lesser significant position:

Data Packing/Extending
When connecting two blocks with different data widths, there are two different ways of
converting the signals. The AXI standard views data as a stream of bytes without explicit
meaning. Going from a narrow to a wider interface will cause the bytes to be packed. For
example, going from a 16 bit interface to a 32 bit interface will pack two 16 bit words into each
32 bit word. Likewise going from a wide to a narrow interface will retain all the data bytes with
the output running at a higher rate than the input. This is desired behavior when interfacing to a
memory, for example.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 87

The other situation is when the underlying bit widths of the data changes, for example when
interfacing a filter that uses 16 bit data to a filter using 24 bit data. When increasing the width
(e.g. 16 bit source feeding a 24 bit sink) the data should be sign extended per PathWave
FPGA's policy of right justifying fixed point data.

Polarity
The control signals for the AXI buses are generally active high. The exception is the nRST
signal which is active low. PathWave FPGA uses an active low nRST signal. The remaining
control signals should be active high. Further, PathWave FPGA should sample signals and
change signals on the rising edge of CLK.

Signal Interfaces
Signal Type Interface Discussion

Clock clock One or more free running clocks. Signals change on and are
sampled on the rising edge of clock.

Reset nRst One or more active low reset signals.

Control Bus
Slaves

AXIMM
AXILite

Most Control Bus Slaves can probably use the simpler
AXILite interface. A simple block of registers can easily
decode an AXILite interface with minimal logic.
If higher performance of burst access is desired, then the
higher capabilities of the full AXIMM bus could be used.

Control Bus
Masters

AXIMM
AXILite

These interfaces are full featured enough to meet the needs
of IP that needs to instigate access to addressable
memory/devices.

Continuous
Streaming Data

AXIS This interface supports the flow control and auxiliary data
needs of continuous data transfers.

Block Mode
Streaming Data

AXIS This interface includes the TLAST signal that can be used to
break the stream into arbitrary sized packets.

Memory
Read/Write
Data

AXIMM,AXILite,
AXI4-Streaming

Memory, particularly off-chip memory, is generally used for
storing larger amounts of data which often require high
throughput accesses. If the user IP needs random access to
the memory, then AXI4 is probably the better fit. If the
memory is going to be used as a source or sink of streaming
data, using a DMA engine in the static region, then an AXI4-
Streaming interface would be a better fit.

Supersampled
Streaming Data

AXI4-Streaming As discussed above, if supersampled or complex data needs
to be used, it will first be extended to an integral number of
bytes and then packed into a wider AXIS interface.

PC-MEM PC-MEM Some addressable interfaces, such as HVI,have distinct,
deterministic timing performance requirements. For very
simple designs, this provides an ultra-lightweight,
addressable interface.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 88

Example Usage

Discussion of Example
This simplified example shows how these interfaces might be utilized.

In the above example, ADCs generate three parallel 12 bit samples per clock. In the static
region these samples are converted to an AXIS bus as follows. Each sample is converted from
12 to 16 bits by sign extension. The resulting six bytes are concatenated together to form a 48
bit wide streaming data bus. One bit per byte of User data is added (six bits total) to contain
trigger information. Note that these are more bits than necessary, but for compliance with the
specification recommendations the extra (unneeded) bits are included.

The three real samples per clock are mixed with the output of a local oscillator to form three
complex samples (96 bits total). The user data (still one bit per byte) is now 12 bits wide. Note
that even though the interface into and out of the mixer is 16 bit data, since the user knows the
data is only 12 bits wide, the internal logic of the multipliers in the mixer need only operate on
12 bits of data (ignoring the 4 extension bits).

After decimating by four, the data rate has been reduced to one complex sample per clock
(actually 3/4 sample per clock - thus handshaking is needed) with the real and imaginary halves
each using 16 bits. For increased dynamic range, the Decimate by 2N block operates on 24 bit
data rather than 12 bit. An expander widens the bus to 24 bit data (time two because it is
complex). Note that the AXIS bus need not be a power of 2. It only has to be an integer number
of bytes.

The output of the Decimate by 2N block flows into a DMA Engine. This is designed to FIFO up
the data and burst data via an AXIMM bus to the memory controller in the static region that will
interface to the external DDR memory.

The Host controls the DMA Engine via the PCIe interface. The static region contains the PCIe
interface and passes an AXIMM bus into the Sandbox. Since the registers controlling the DMA
Engine are simple, there is no need for the DMA Engine to implement a full blown AXIMM
interface. Instead, the AXIMM bus from the PCIe interface is converted to the simpler AXILite
bus which feeds the registers in the DMA Engine.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

IP Developers Guide – 89

For allowing synchronous measurements with other modules, the Frequency Register is
controlled via time deterministic PC-Mem bus. The output of the Frequency Register is a plain
Vector without control signals or handshake. This output controls the frequency of the Local
Oscillator the output of which feeds the mixer.

Associated Files
AXI Reference Guide

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 90

Tutorials

• Import HDL with collapsible interfaces using IP-XACT

• Import HDL with parameterized bus widths using IP-XACT

• Import Vivado High-Level Synthesis (HLS) generated HDL with parameterized bus widths
using IP-XACT

Import HDL with collapsible interfaces using IP-XACT

IP-XACT or IEEE 1685-2014 is an XML specification for describing (among other things) the
interfaces used by an IP block in an FPGA. This tutorial describes the creation of an IP-XACT
file for a simple IP block written in VHDL.

While the IP-XACT file is text and can be manually created in any text editor, it is simpler and
easier to use an IP-XACT editor such as Kactus2 (available at http://funbase.cs.tut.fi/).
PathWave FPGA recommends using version 3.5 or later.

The HDL IP block has physical ports which are the input and output signals for the IP block.
One or more ports can be combined into logical interfaces which describe how the signals
interact and connect with other signals. An interface may consist of a single port or even a
signal wire. An example of this is a clock interface. Other interfaces, such as the AXI-MM
interface, may have dozens of potential ports. By describing which ports constitute a particular
interface and which role each port has, the IP-XACT description eases connecting interfaces
together. An AXI Master can connect to an AXI Slave with only one connection even though a
considerable number of individual ports will be connected in the hardware.

This tutorial will create the IP-XACT for the following simple block:

Code Block 6 incr1.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity incr1 is

 port (

 clk : in std_logic;

 nrst : in std_logic; -- Active low reset

 incr : in std_logic_vector(7 downto 0);

 count_tdata : out std_logic_vector(7 downto 0);

 count_tvalid : out std_logic

);

end incr1;

architecture Behavioral of incr1 is

 signal count : std_logic_vector(7 downto 0);

begin -- Behavioral

 count_tdata <= count;

 count_tvalid <= '1' when (incr /= 0) else '0';

 process(clk)

 begin

 if (nrst = '0') then

 count <= (others => '0');

 else

 count <= count + incr;

 end if;

 end process;

https://en.wikipedia.org/wiki/IEEE
http://funbase.cs.tut.fi/

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 91

end Behavioral;

This block will increment an internal counter based on its incr input and output the counter value
on an AXI-streaming count interface. It also has a clock input and an active low nrst input. This
HDL file is stored under c:/tmp/ipxactDemo/src/incr1.vhd.

To create IP-XACT for this module, first start Kactus2. Click the Configure Library button to set
up the libraries. Make sure that the PathWave FPGA interfaces folder as well as the folder for
your IP block are both in the library path:

To create the IP-XACT, click the New button and select HW Component.

In Kactus2, required fields are shown in light yellow while optional fields are shown in white.
Enter the Vendor, Library, Name, and Version for your IP block. Then click Browse... and
navigate to the directory with the IP block. In this case, it will be c:/tmp/ipxactDemo. This is
where the resulting IP-XACT file will be created:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 92

Click OK and the Component Wizard is started. Click Next to get to the General Information
screen, and enter the Author and Description (which are optional):

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 93

At this point, one could click Finish and proceed to enter the IP port information manually, but it
is much more convenient to have Kactus2 read the source file and fill in the information
automatically.
To do this, the source file folder needs to be set. Click Next to get to the File Sets &
Dependency Analysis screen and double click in the File set source directories box to bring
up the selection box.

Select the src directory and click Select Folder.

PathWave FPGA uses the synthesis fileset for containing the files needed for synthesis.
Double click on the File sets / Name entry and change it to "synthesis":

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 94

Click Next to advance to the Import source file page. This is where the top level source file is
specified. Using the pulldown menu for Top-level file to import:, select the incr1.vhd file:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 95

Note that the source file is shown in the middle pane with the detected ports in the lower pane.
Click Next to advance to the Views page:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 96

Click Finish to complete the Component Wizard.

By default, Kactus2 includes all the files in the source directory. In the upper-right pane, click on
File sets/synthesis to bring up the file set editor:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 97

If the list of files contains files that are not part of desired IP blocks source, delete them using
right-click/remove row or Shift+del.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 98

Now that the list of source files has been fixed, it is time to assign ports to logical Bus
Interfaces. This allows PathWave FPGA to more easily connect interfaces between IP blocks.
Click on Ports to bring up the Ports Editor. This should show all the ports that were read from
the source HDL file and shows things like the direction (in or out), the width, and the index
bounds for vectors:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 99

To assign a single port to an interface, select the port in the yellow box under the Name column,
right-click and select New bus interface/Use existing bus definition.

This will bring up the Bus Interface Wizard. This wizard will be used to assign all the ports to
interfaces:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 100

At the Introduction screen, click Next to bring up the Bus interface general options page.

Note that the boxes shaded in yellow are required fields that need to be filled out. White boxes
are optional fields. Select the Name: box and enter a name for the interface. This is typically the
name of the port, though it does not have to be. Next the Bus definition and Abstraction
definition fields need to be filled out. Data entry can be speeded up by using the tab key.

Click on Vendor: and keysight.com should show up as a suggested entry. Press the tab key to
select keysight.com and move on to the next field, Library. Here, interfaces should show up as
a suggested entry. Press the tab key to select interfaces and move on to the Name: field.
Alternately, click on the interfaces entry to select it and then click on the Name: entry to
advance to that field.

Under Name: select the type of interface that this port should be assigned to. In this case the
port is a clock signal, so clock should be picked:

http://keysight.com/
http://keysight.com/

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 101

Note that one can speed up the selection by starting to type the name cl... to skip down the list
more quickly.

After selecting clock, press the tab key to select the Version:. Press tab four more times to fill
out the default Abstraction definition fields. The last tab will place the cursor in the Interface
mode: field. This selects whether the interface is a master, meaning it generates the signal, or a
slave, meaning it consumes the signal. In this case, the clock port is an input port and hence
slave should be selected:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 102

Next the ports need to be assigned to their various roles within the interface. For interfaces with
only one port, this is trivial. Click Next twice to get to the Port Maps. Here the port mapping
would be set, but in this case there is only one port so it is automatically filled in:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 103

Click Next and Finish to complete the definition of this interface.

Repeat this process with the nrst port using the nRst interface:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 104

This process works for logic vectors too. Select the incr port and configure it as a vector
interface:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 105

The interface for the count ports is a little different. In this case there are more than one port
associated with the one interface. This is a case of an AXI-streaming interface consisting of
both the count_tdata and count_tvalid ports. Select both the count_tdata and count_tvalid ports,
right-click, and select the New bus interface/Use existing bus definition as before (note: it is
okay to select more than the ports associated with the interface as long as all the ports that are
associated with the interface are selected):

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 106

Fill in the Bus interface general options page using the axis interface name. In this case, the
ports are outputs and the interface is a master:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 107

Now at the Port Maps page, one sees that there are multiple logical ports listed. Note that only
the tvalid line has a yellow tinted box. That is the only port required by the AXI streaming spec.
All the other ports are optional. Of these, this IP block only uses the tdata logical port.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 108

To assign the count_tvalid physical port to the tvalid logical port, select count_valid and drag it
down to the tvalid row:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 109

Likewise, drag the count_tdata physical port down to the tdata line:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 110

Click Next and Finish to complete the interface. At this point one can see that under the Bus
interfaces section, all four of the IP block's interfaces are now listed.

The definition of the IP block's interfaces is complete. If any of the entries in the middle pane
are red (none are in this case), that would indicate that there is an error with that entry. Select it
and fix any errors until none of the entries are red.

Click the Save icon (or type Ctrl+S) to save the IP-XACT file.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 111

The description of this block's interfaces is now complete and PathWave FPGA can now use
this interface information to allow easier connections to other blocks.

In this screen capture from PathWave FPGA, the instance incr1_1 is shown with the Count
interface collapsed. The internal ports that make up that interface are not shown and the

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 112

interface can be connected to other compatible interfaces with one connection. The instance
incr1_2 is shown with the Count interface expanded to show the internal ports that make up that
interface. The entire interface can be connected with one connection by using the Count port or
the individual ports within the interface can be connected separately if desired.

The generated IP-XACT is

Code Block 7 incr1.xml

<?xml version="1.0" encoding="UTF-8"?>

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:kactus2="http://kactus2.cs.tut.fi"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>flat</ipxact:library>

 <ipxact:name>incr1</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>Clk</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 113

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Incr</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="vector" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="vector.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>Signal</ipxact:name>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>incr</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Count</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tdata</ipxact:name>

 </ipxact:physicalPort>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 114

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tvalid</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:views>

 <ipxact:view>

 <ipxact:name>flat_vhdl</ipxact:name>

 <ipxact:envIdentifier>VHDL:Kactus2:</ipxact:envIdentifier>

 <ipxact:componentInstantiationRef>vhdl_implementation</ipxact:componentI

nstantiationRef>

 </ipxact:view>

 </ipxact:views>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>vhdl_implementation</ipxact:name>

 <ipxact:language>VHDL</ipxact:language>

 <ipxact:moduleName>incr1</ipxact:moduleName>

 <ipxact:architectureName>Behavioral</ipxact:architectureName>

 <ipxact:fileSetRef>

 <ipxact:localName>src</ipxact:localName>

 </ipxact:fileSetRef>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>incr</ipxact:name>

 <ipxact:wire>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 115

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tdata</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tvalid</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>src</ipxact:name>

 <ipxact:file>

 <ipxact:name>src/incr1.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 <ipxact:vendorExtensions>

 <kactus2:hash>ef09beac89449e3689558b669252ef520e1a34d8</kactus2:hash>

 </ipxact:vendorExtensions>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>Count increments in multiples of

incr</ipxact:description>

 <ipxact:vendorExtensions>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 116

 <kactus2:author>Keysight</kactus2:author>

 <kactus2:version>3,5,0,0</kactus2:version>

 <kactus2:kts_attributes>

 <kactus2:kts_productHier>Flat</kactus2:kts_productHier>

 <kactus2:kts_implementation>HW</kactus2:kts_implementation>

 <kactus2:kts_firmness>Mutable</kactus2:kts_firmness>

 </kactus2:kts_attributes>

 </ipxact:vendorExtensions>

</ipxact:component>

Import HDL with parameterized bus widths using IP-XACT

IP-XACT or IEEE 1685-2014 is an XML specification for describing (among other things) the
interfaces used by an IP block in an FPGA. This tutorial describes the creation of an IP-XACT
file for a parameterized IP block written in VHDL. Parameters (called generics in VHDL) are
values that are specified when the IP block is instantiated and can be used to customize the
block. This allows one IP block to fill more needs than a non-parameterized block would. For
example, instead of requiring multiple IP blocks to support adders of different sizes, one adder
block can be parameterized so that the size of the adder can be specified when the block is
used.

This tutorial uses a block similar to that which was used in the IP-XACT Creation Tuturial with
the difference being that this block uses two parameters, width which specifies the bit width of
the block, and dir which specifies whether the block increments or decrements. The process for
creating the IP-XACT file is very similar to the case for non-parameterized IP blocks with a few
steps added towards the end.

While the IP-XACT file is text and can be manually created in any text editor, it is simpler and
easier to use an IP-XACT editor such as Kactus2 (available at http://funbase.cs.tut.fi/). For IP
that is parameterized, PathWave FPGA recommends using version 3.5.77 or later.

The HDL IP block has physical ports which are the input and output signals for the IP block.
One or more ports can be combined into logical interfaces which describe how the signals
interact and connect with other signals. An interface may consist of a single port or even a
signal wire. An example of this is a clock interface. Other interfaces, such as the AXI-MM
interface, may have dozens of potential ports. By describing which ports constitute a particular
interface and which role each port has, the IP-XACT description eases connecting interfaces
together. An AXI Master can connect to an AXI Slave with only one connection even though a
considerable number of individual ports will be connected in the hardware.

This tutorial will create the IP-XACT for the following parameterized block:

Code Block 8 incr2.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity incr2 is

 generic (

 width : integer := 8;

 dir : integer := 0); -- Direction : 0 = up, 1 = down

 port (

https://en.wikipedia.org/wiki/IEEE
http://funbase.cs.tut.fi/

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 117

 clk : in std_logic;

 nrst : in std_logic; -- Active low reset

 incr : in std_logic_vector(width-1 downto 0);

 count_tdata : out std_logic_vector(width-1 downto 0);

 count_tvalid : out std_logic

);

end incr2;

architecture Behavioral of incr2 is

 signal count : std_logic_vector(width-1 downto 0);

begin -- Behavioral

 count_tdata <= count;

 count_tvalid <= '1' when (incr /= 0) else '0';

 process(clk)

 begin

 if (nrst = '0') then

 count <= (others => '0');

 else

 if (incr = 1) then

 count <= count + incr;

 else

 count <= count - incr;

 end if;

 end if;

 end process;

end Behavioral;

This block will increment or decrement an internal counter based on dir and its incr input and
output the counter value on an AXI-streaming count interface. It also has a clock input and an
active low nrst input. This HDL file is stored under c:/tmp/ipxactDemo/src/incr2.vhd.

To create IP-XACT for this module, first start Kactus2. Click the Configure Library button to set
up the libraries. Make sure that the PathWave FPGA interfaces folder as well as the folder for
your IP block are both in the library path:

To create the IP-XACT, click the New button and select HW Component.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 118

In Kactus2, required fields are shown in light yellow while optional fields are shown in white.
Enter the Vendor, Library, Name, and Version for your IP block. Then click Browse... and
navigate to the directory with the IP block. In this case, it will be c:/tmp/ipxactDemo. This is
where the resulting IP-XACT file will be created:

Click OK and the Component Wizard is started. Click Next to get to the General Information
screen, and enter the Author and Description (which are optional):

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 119

At this point, one could click Finish and proceed to enter the IP port information manually, but it
is much more convenient to have Kactus2 read the source file and fill in the information
automatically.
To do this, the source file folder needs to be set. Click Next to get to the File Sets &
Dependency Analysis screen and double click in the File set source directories box to bring
up the selection box.

Select the src directory and click Select Folder.

PathWave FPGA uses the synthesis fileset for containing the files needed for synthesis.
Double click on the File sets / Name entry and change it to "synthesis":

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 120

Click Next to advance to the Import source file page. This is where the top level source file is
specified. Using the pulldown menu for Top-level file to import:, select the incr2.vhd file:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 121

Note that the source file is shown in the middle pane with the detected ports in the lower pane.
Click Next to advance to the Views page:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 122

Click Finish to complete the Component Wizard.

By default, Kactus2 includes all the files in the source directory. In the upper-right pane, click on
File sets/synthesis to bring up the file set editor:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 123

If the list of files contains files that are not part of desired IP blocks source, delete them using
right-click/remove row or Shift+del. Note that in this case, there is only one source file, but for
more elaborate designs there may be multiple files. If so, they should all be included. If
necessary, they can be manually added if they are in a different directory.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 124

Now that the list of source files has been fixed, it is time to assign ports to logical Bus
Interfaces. This allows PathWave FPGA to more easily connect interfaces between IP blocks.
Click on Ports to bring up the Ports Editor. This should show all the ports that were read from
the source HDL file and shows things like the direction (in or out), the width, and the index
bounds for vectors. Note that in contrast with the example with the unparameterized IP block, in
this case the higher bound of the incr and count_tdata ports show an expression involving the
width parameter. In particular the upper bound is the expression width-1. Parameters can be
used by themselves or in mathematical expressions as shown here. In this case, the default
value of width is 8, and since that hasn't been changed, the entries in the Width column for
these two ports shows the value 8. If the width parameter is changed, these fields will update
with the new value. Further, if you do a mouse-over by placing the cursor over the expression
width-1, you will see that the current value of the expression, 7, is shown.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 125

To assign a single port to an interface, select the port in the yellow box under the Name column,
right-click and select New bus interface/Use existing bus definition.

This will bring up the Bus Interface Wizard. This wizard will be used to assign all the ports to
interfaces:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 126

At the Introduction screen, click Next to bring up the Bus interface general options page.

Note that the boxes shaded in yellow are required fields that need to be filled out. White boxes
are optional fields. Select the Name: box and enter a name for the interface. This is typically the
name of the port, though it does not have to be. Next the Bus definition and Abstraction
definition fields need to be filled out. Data entry can be speeded up by using the tab key.

Click on Vendor: and keysight.com should show up as a suggested entry. Press the tab key to
select keysight.com and move on to the next field, Library. Here, interfaces should show up as
a suggested entry. Press the tab key to select interfaces and move on to the Name: field.
Alternately, click on the interfaces entry to select it and then click on the Name: entry to
advance to that field.

Under Name: select the type of interface that this port should be assigned to. In this case the
port is a clock signal, so clock should be picked:

http://keysight.com/
http://keysight.com/

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 127

Note that one can speed up the selection by starting to type the name cl... to skip down the list
more quickly.

After selecting clock, press the tab key to select the Version:. Press tab four more times to fill
out the default Abstraction definition fields. The last tab will place the cursor in the Interface
mode: field. This selects whether the interface is a master, meaning it generates the signal, or a
slave, meaning it consumes the signal. In this case, the clock port is an input port and hence
slave should be selected:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 128

Next the ports need to be assigned to their various roles within the interface. For interfaces with
only one port, this is trivial. Click Next twice to get to the Port Maps. Here the port mapping
would be set, but in this case there is only one port so it is automatically filled in:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 129

Click Next and Finish to complete the definition of this interface.

Repeat this process with the nrst port using the nRst interface:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 130

This process works for logic vectors too. Select the incr port and configure it as a vector
interface:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 131

The interface for the count ports is a little different. In this case there is more than one port
associated with the one interface. This is a case of an AXI-streaming interface consisting of
both the count_tdata and count_tvalid ports. Select both the count_tdata and count_tvalid ports,
right-click, and select the New bus interface/Use existing bus definition as before (note: it is
okay to select more than the ports associated with the interface as long as all the ports that are
associated with the interface are selected):

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 132

Fill in the Bus interface general options page using the axis interface name. In this case, the
ports are outputs and the interface is a master:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 133

Now at the Port Maps page, one sees that there are multiple logical ports listed. Note that only
the tvalid line has a yellow tinted box. That is the only port required by the AXI streaming spec.
All the other ports are optional. Of these, this IP block only uses the tdata logical port.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 134

To assign the count_tvalid physical port to the tvalid logical port, select count_valid and drag it
down to the tvalid row:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 135

Likewise, drag the count_tdata physical port down to the tdata line:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 136

Click Next and Finish to complete the interface. At this point one can see that under the Bus
interfaces section, all four of the IP block's interfaces are now listed.

So far, these steps have been the same as in the non-parameterized tutorial. Now it is time to
work on the parameters. The dir parameter indicates the direction of the counting, up or down.
Using the value 0 for up and 1 for down isn't very intuitive. Instead of using these integer values,
an enumeration can be used to restrict the choices to a set of values and these values have
names that can be more informative. In IP-XACT, enumerations are called choices. Click on the
Choices entry in the center pane to bring up that window:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 137

Double click in the Choices pane to create a new choice, click in the Name field to select it and
enter the name Direction:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 138

Notice that currently the Choices entry in the middle pane is red, indicating an error condition.
That is because there is a choice (named Direction) defined, but the possible values of
Direction have not yet been specified.

Double click in the Enumeration(s) entry to bring up the Enumeration Entry window. Enter two
values, 0 with the text label Up, and 1 with the text label Down:

Now that the Choice has been specified, it can be used to describe a parameter. Click on the
Parameters entry in the center pane to bring up that window. There are two parameters, dir and
width with the default values of 0 and 8 respectively:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 139

Change dir to use this Choice by clicking in the Choice column for dir and selecting the name of
the choice just created Direction.

Since "dir" isn't that friendly of a name for the end user, put "Direction" in for the Display name.
This is the text that will be presented to the end user when the IP block is used and customized.

Since both of these are parameters that the user should be given the choice of changing, the
Resolve field of both should be set to user. Other values of the Resolve field can indicate
parameters that are either calculated from other parameters or parameters that the user should
not change.

The Type of the parameter needs to be specified. In this case, they are both ints. Set these
using the pull down selections in the Type column.

Limits can be set to restrict the allowable values of a parameter. In this example, the width
parameter is restricted to a minimum of 1 and a maximum of 32.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 140

The parameters just defined are IP-XACT parameters and are used inside IP-XACT. The actual
HDL generics that are passed on to the IP HDL are known as moduleParameters. Normally
these will have the same names as the IP-XACT parameters and will just be copies. This is
automatically done by Kactus2. To see this, click on the Instantiations/Component
instantiations/vhdl_implementation in the center pane. In the Module parameters section of
the right pane the module parameters are shown. The "dir" in the Name column refers to the
module parameter by that name. The "dir" in the Value column refers to the IP-XACT parameter
by that name.
The Type of these parameters must be set just as the IP-XACT parameters were set. In the
same way as the previous screen, use the pull down selections in the Type column of the
Module parameters window to change the type to ints.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 141

The definition of the IP block's interfaces and parameters is complete. If any of the entries in the
middle pane are red (none are in this case), that would indicate that there is an error with that
entry. Select it and fix any errors until none of the entries are red.

Click the Save icon (or type Ctrl+S) to save the IP-XACT file.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 142

If you are using Kactus2 version 3.5.77 or later, the next step can be skipped. For earlier
versions of Kactus2, the following step is required.

When generating IP-XACT for parameterized IP blocks with Kactus2, there is one further step
required. Kactus2 adds a usageCount field to the parameter definition. This field is not in the
IP-XACT spec and is not valid IP-XACT XML. These fields need to be removed manually in a
regular text editor. Edit the file incr2.1.0.xml that Kactus2 just generated. Search for
usageCount:

and delete that field:

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 143

and save the file.

The description of this block's interfaces is now complete and PathWave FPGA can now use
this interface information to allow easier connections to other blocks. When that block is used
within PathWave FPGA, the following dialog box will show up. This shows the description of the
IP block along with the user modifiable parameters. In this case there are the two parameters
we defined above: width with a valid range of [1,32], and the enumeration for Direction with the
choices Up and Down.

In this example, the user changed the width parameter from the default value of 8 to the value
32. This causes the I/O ports to have a range of (31:0) rather than (7:0).

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 144

In this screen capture from PathWave FPGA, the instance incr2_1 is shown with the Count
interface collapsed. The internal ports that make up that interface are not shown and the
interface can be connected to other compatible interfaces with one connection. The instance
incr2_2 is shown with the Count interface expanded to show the internal ports that make up that
interface. The entire interface can be connected with one connection by using the Count port or
the individual ports within the interface can be connected separately if desired.

The generated IP-XACT is

Code Block 9 incr2.xml

<?xml version="1.0" encoding="UTF-8"?>

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:kactus2="http://kactus2.cs.tut.fi"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>flat</ipxact:library>

 <ipxact:name>incr2</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>Clk</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 145

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Incr</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="vector" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="vector.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>Signal</ipxact:name>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 146

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>incr</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Count</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tvalid</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tdata</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:views>

 <ipxact:view>

 <ipxact:name>flat_vhdl</ipxact:name>

 <ipxact:envIdentifier>VHDL:Kactus2:</ipxact:envIdentifier>

 <ipxact:componentInstantiationRef>vhdl_implementation</ipxact:componentI

nstantiationRef>

 </ipxact:view>

 </ipxact:views>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>vhdl_implementation</ipxact:name>

 <ipxact:language>VHDL</ipxact:language>

 <ipxact:moduleName>incr2</ipxact:moduleName>

 <ipxact:architectureName>Behavioral</ipxact:architectureName>

 <ipxact:moduleParameters>

 <ipxact:moduleParameter dataType="integer"

parameterId="uuid_9b050478_c9d3_4507_8dc8_7ea7c47f93ac" type="int"

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 147

usageType="nontyped">

 <ipxact:name>width</ipxact:name>

 <ipxact:value>uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter dataType="integer"

parameterId="uuid_c6f0c841_b30e_4869_9529_173232f1d921" type="int"

usageType="nontyped">

 <ipxact:name>dir</ipxact:name>

 <ipxact:value>uuid_74620f8f_d6ae_4da4_b710_5c6c86e460cf</ipxact:value>

 </ipxact:moduleParameter>

 </ipxact:moduleParameters>

 <ipxact:fileSetRef>

 <ipxact:localName>synthesis</ipxact:localName>

 </ipxact:fileSetRef>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>incr</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 148

 <ipxact:name>count_tdata</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tvalid</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:choices>

 <ipxact:choice>

 <ipxact:name>Direction</ipxact:name>

 <ipxact:enumeration text="Up">0</ipxact:enumeration>

 <ipxact:enumeration text="Down">1</ipxact:enumeration>

 </ipxact:choice>

 </ipxact:choices>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>src/incr2.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 <ipxact:vendorExtensions>

 <kactus2:hash>80784e10e1b2a7e3a70fb0592f377473649faa02</kactus2:hash>

 </ipxact:vendorExtensions>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>Increment or decrement in multiples of incr with

variable bit width</ipxact:description>

 <ipxact:parameters>

 <ipxact:parameter kactus2:usageCount="3" maximum="32" minimum="1"

parameterId="uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00" resolve="user"

type="int">

 <ipxact:name>width</ipxact:name>

 <ipxact:value>8</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter choiceRef="Direction" kactus2:usageCount="1"

parameterId="uuid_74620f8f_d6ae_4da4_b710_5c6c86e460cf" resolve="user"

type="int">

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 149

 <ipxact:name>dir</ipxact:name>

 <ipxact:displayName>Direction</ipxact:displayName>

 <ipxact:value>0</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 <ipxact:vendorExtensions>

 <kactus2:author>Keysight</kactus2:author>

 <kactus2:version>3,5,0,0</kactus2:version>

 <kactus2:kts_attributes>

 <kactus2:kts_productHier>Flat</kactus2:kts_productHier>

 <kactus2:kts_implementation>HW</kactus2:kts_implementation>

 <kactus2:kts_firmness>Mutable</kactus2:kts_firmness>

 </kactus2:kts_attributes>

 </ipxact:vendorExtensions>

</ipxact:component>

Import Vivado High-Level Synthesis (HLS) generated HDL with
parameterized bus widths using IP-XACT

Vivado High-Level Synthesis (HLS) accelerates IP creation by enabling C, C++ and System C
specifications to be directly targeted into Xilinx FPGAs without the need to manually create
HDL. This tutorial describes the creation of a VHDL design using HLS. The design is a scale
and offset circuit. The input and output data streams use an AXIS interface. The scale and
offset are programmable via an AXILite interface.

To create the HLS project, first start Vivado High-Level Synthesis (Start → All Programs →
Xilinx Design Tools → Vivado 2017.3 → Vivado HLS 2017.3).

Click on Create New Project, then set the project name to HLS_scale_and_offset as shown in
the figure below. Then click Next.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 150

In the next window click on New File, name the file HLS_scale_and_offset.cpp and save it in the
same location as the HLS project. Then set the top function to HLS_scale_and_offset as shown
in the figure below. Then click Next.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 151

In the
next window click Next.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 152

In the next window set the clock period to 5 (200 MHz clock) and set the part to xc7k410tffg676-
2 for the M3202A as shown in the figure below. Then click Finish.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 153

In the Explorer window double click on HLS_scale_and_offset.cpp.

Use the code shown in the figure below for HLS_scale_and_offset.cpp:

Code Block 10 HSL_scale_and_offset.cpp

#include <ap_fixed.h>

#include <hls_stream.h>

using namespace hls;

typedef ap_fixed<16, 1, AP_TRN, AP_SAT> SAMPLE_T;

typedef stream<SAMPLE_T> SAMPLE_FIFO_T;

void HLS_scale_and_offset(SAMPLE_FIFO_T data,

 SAMPLE_T scale,

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 154

 SAMPLE_T offset,

 SAMPLE_FIFO_T output)

{

#pragma HLS PIPELINE II=1 enable_flush

#pragma HLS INTERFACE axis register both port=output

#pragma HLS INTERFACE axis register both port=data

#pragma HLS INTERFACE s_axilite register port=scale

#pragma HLS INTERFACE s_axilite register port=offset

#pragma HLS INTERFACE s_axilite port=return

 SAMPLE_T product;

 data >> product;

 product = (product * scale + offset);

 output << product;

}

Next click the C Synthesis button. HLS generates three VHDL files in the solution1/syn/vhdl
folder:

1. HLS_scale_and_offbkb.vhd

2. HLS_scale_and_offset.vhd

3. HLS_scale_and_offset_AXILiteS_s_axi.vhd

HLS_scale_and_offset.vhd is the top level VHDL file. The top level VHDL file generated by HLS
is not compatible with Kactus2.

Change HLS_scale_and_offset.vhd line 43 from this:

end;

To this in order to make it compatible with Kactus2:

end HLS_scale_and_offset;

Also move HLS_scale_and_offset.vhd line 19 to line 23.

The HLS_scale_and_offset.vhd entity declaration should now match the figure below.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 155

The following ports are the input AXIS interface:

data_V_V_TDATA : IN STD_LOGIC_VECTOR (15 downto 0);
data_V_V_TVALID : IN STD_LOGIC;
data_V_V_TREADY : OUT STD_LOGIC;

The following ports are the output AXIS interface:

output_V_V_TDATA : OUT STD_LOGIC_VECTOR (15 downto 0);
output_V_V_TVALID : OUT STD_LOGIC;
output_V_V_TREADY : IN STD_LOGIC;

The following ports are the AXILite interface:

s_axi_AXILiteS_AWVALID : IN STD_LOGIC;
s_axi_AXILiteS_AWREADY : OUT STD_LOGIC;
s_axi_AXILiteS_AWADDR : IN STD_LOGIC_VECTOR (C_S_AXI_AXILITES_ADDR_WIDTH-1
downto 0);
s_axi_AXILiteS_WVALID : IN STD_LOGIC;
s_axi_AXILiteS_WREADY : OUT STD_LOGIC;
s_axi_AXILiteS_WDATA : IN STD_LOGIC_VECTOR (C_S_AXI_AXILITES_DATA_WIDTH-1
downto 0);
s_axi_AXILiteS_WSTRB : IN STD_LOGIC_VECTOR (C_S_AXI_AXILITES_DATA_WIDTH/8-1
downto 0);
s_axi_AXILiteS_ARVALID : IN STD_LOGIC;
s_axi_AXILiteS_ARREADY : OUT STD_LOGIC;
s_axi_AXILiteS_ARADDR : IN STD_LOGIC_VECTOR (C_S_AXI_AXILITES_ADDR_WIDTH-1
downto 0);
s_axi_AXILiteS_RVALID : OUT STD_LOGIC;
s_axi_AXILiteS_RREADY : IN STD_LOGIC;
s_axi_AXILiteS_RDATA : OUT STD_LOGIC_VECTOR (C_S_AXI_AXILITES_DATA_WIDTH-1
downto 0);
s_axi_AXILiteS_RRESP : OUT STD_LOGIC_VECTOR (1 downto 0);
s_axi_AXILiteS_BVALID : OUT STD_LOGIC;

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 156

s_axi_AXILiteS_BREADY : IN STD_LOGIC;
s_axi_AXILiteS_BRESP : OUT STD_LOGIC_VECTOR (1 downto 0);

Follow the instructions in the Import HDL with parameterized bus widths using IP-XACT tutorial
in order to use Kactus2 to generate an IP-XACT file compatible with PathWave FPGA.

The generated IP-XACT is

Code Block 11 HSL_scale_and_offset.1.0.xml

<?xml version="1.0" encoding="UTF-8"?>

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:kactus2="http://kactus2.cs.tut.fi"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>flat</ipxact:library>

 <ipxact:name>HLS_scale_and_offset</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>clock</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>ap_clk</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 157

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>ap_rst_n</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>data_in</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>data_V_V_TDATA</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>data_V_V_TVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>data_V_V_TREADY</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>data_out</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 158

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>output_V_V_TDATA</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>output_V_V_TVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>output_V_V_TREADY</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>interrupt</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="wire" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="wire.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>wire</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>interrupt</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>axilite</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axilite" version="1.0"/>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 159

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axilite.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>awready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_AWREADY</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>awaddr</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_AWADDR</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>wvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_WVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>awvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_AWVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>wready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_WREADY</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>wdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_WDATA</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>wstrb</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_WSTRB</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>arvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 160

 <ipxact:name>s_axi_AXILiteS_ARVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>arready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_ARREADY</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>araddr</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_ARADDR</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>rvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_RVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>rready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_RREADY</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>rdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_RDATA</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>rresp</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_RRESP</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>bvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_BVALID</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>bready</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_BREADY</ipxact:name>

 </ipxact:physicalPort>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 161

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>bresp</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>s_axi_AXILiteS_BRESP</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:views>

 <ipxact:view>

 <ipxact:name>flat_vhdl</ipxact:name>

 <ipxact:envIdentifier>VHDL:Kactus2:</ipxact:envIdentifier>

 <ipxact:componentInstantiationRef>vhdl_implementation</ipxact:componentI

nstantiationRef>

 </ipxact:view>

 </ipxact:views>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>vhdl_implementation</ipxact:name>

 <ipxact:language>VHDL</ipxact:language>

 <ipxact:moduleName>HLS_scale_and_offset</ipxact:moduleName>

 <ipxact:architectureName>behav</ipxact:architectureName>

 <ipxact:moduleParameters>

 <ipxact:moduleParameter dataType="INTEGER"

parameterId="uuid_1f076b4a_4ddc_4d5c_b810_1bfb6813560d"

usageType="nontyped">

 <ipxact:name>C_S_AXI_AXILITES_ADDR_WIDTH</ipxact:name>

 <ipxact:value>uuid_feaace4f_64fe_4b3e_b2fb_2c1c86f7118b</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter dataType="INTEGER"

parameterId="uuid_7068d89f_b6ef_4747_8c06_b97a052832c2"

usageType="nontyped">

 <ipxact:name>C_S_AXI_AXILITES_DATA_WIDTH</ipxact:name>

 <ipxact:value>uuid_6c5c1791_aa38_4f75_b60b_e734ab4bf622</ipxact:value>

 </ipxact:moduleParameter>

 </ipxact:moduleParameters>

 <ipxact:fileSetRef>

 <ipxact:localName>synthesis</ipxact:localName>

 </ipxact:fileSetRef>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>ap_clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 162

 <ipxact:port>

 <ipxact:name>ap_rst_n</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>data_V_V_TDATA</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>15</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>data_V_V_TVALID</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>data_V_V_TREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>output_V_V_TREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 163

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>output_V_V_TDATA</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>15</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>output_V_V_TVALID</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_AWVALID</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_AWREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_AWADDR</ipxact:name>

 <ipxact:wire>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 164

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_feaace4f_64fe_4b3e_b2fb_2c1c86f7118b-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_WVALID</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_WREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_WDATA</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_6c5c1791_aa38_4f75_b60b_e734ab4bf622-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_WSTRB</ipxact:name>

 <ipxact:wire>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 165

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_6c5c1791_aa38_4f75_b60b_e734ab4bf622/8-1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_ARVALID</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_ARREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_ARADDR</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_feaace4f_64fe_4b3e_b2fb_2c1c86f7118b-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_RVALID</ipxact:name>

 <ipxact:wire>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 166

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_RREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_RDATA</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_6c5c1791_aa38_4f75_b60b_e734ab4bf622-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_RRESP</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_BVALID</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 167

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_BREADY</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>s_axi_AXILiteS_BRESP</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC_VECTOR</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>interrupt</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>STD_LOGIC</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>../solution1/syn/vhdl/HLS_scale_and_offbkb.vhd</ipxact:name

>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 <ipxact:vendorExtensions>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 168

 <kactus2:hash>75b7304c4bd4a33acb315af86c07c2a406b2d857</kactus2:hash>

 </ipxact:vendorExtensions>

 </ipxact:file>

 <ipxact:file>

 <ipxact:name>../solution1/syn/vhdl/HLS_scale_and_offset_AXILiteS_s_axi.v

hd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 <ipxact:file>

 <ipxact:name>../solution1/syn/vhdl/HLS_scale_and_offset.vhd</ipxact:name

>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>Scale and offset circuit with streaming input and

output.</ipxact:description>

 <ipxact:parameters>

 <ipxact:parameter kactus2:usageCount="3"

parameterId="uuid_feaace4f_64fe_4b3e_b2fb_2c1c86f7118b" resolve="user"

type="int">

 <ipxact:name>C_S_AXI_AXILITES_ADDR_WIDTH</ipxact:name>

 <ipxact:value>5</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter kactus2:usageCount="4"

parameterId="uuid_6c5c1791_aa38_4f75_b60b_e734ab4bf622" resolve="user"

type="int">

 <ipxact:name>C_S_AXI_AXILITES_DATA_WIDTH</ipxact:name>

 <ipxact:value>32</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 <ipxact:vendorExtensions>

 <kactus2:author>Keysight</kactus2:author>

 <kactus2:sourceDirectories>

 <kactus2:sourceDirectory>../solution1/syn/vhdl</kactus2:sourceDirectory>

 </kactus2:sourceDirectories>

 <kactus2:fileDependencies>

 <kactus2:fileDependency manual="false" bidirectional="false"

locked="false">

 <kactus2:fileRef1>../solution1/syn/vhdl/HLS_scale_and_offbkb.vhd</kactus

2:fileRef1>

 <kactus2:fileRef2>$External$/INTEGER.vhd</kactus2:fileRef2>

 <ipxact:description>Component instantiation for entity

INTEGER</ipxact:description>

 </kactus2:fileDependency>

 <kactus2:fileDependency manual="false" bidirectional="false"

locked="false">

 <kactus2:fileRef1>../solution1/syn/vhdl/HLS_scale_and_offbkb.vhd</kactus

2:fileRef1>

 <kactus2:fileRef2>$External$/IN.vhd</kactus2:fileRef2>

 <ipxact:description>Component instantiation for entity

IN</ipxact:description>

 </kactus2:fileDependency>

 <kactus2:fileDependency manual="false" bidirectional="false"

locked="false">

 <kactus2:fileRef1>../solution1/syn/vhdl/HLS_scale_and_offbkb.vhd</kactus

2:fileRef1>

 <kactus2:fileRef2>$External$/OUT.vhd</kactus2:fileRef2>

 <ipxact:description>Component instantiation for entity

OUT</ipxact:description>

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 169

 </kactus2:fileDependency>

 <kactus2:fileDependency manual="false" bidirectional="false"

locked="false">

 <kactus2:fileRef1>../solution1/syn/vhdl/HLS_scale_and_offbkb.vhd</kactus

2:fileRef1>

 <kactus2:fileRef2>$External$/component.vhd</kactus2:fileRef2>

 <ipxact:description>Component instantiation for entity

component</ipxact:description>

 </kactus2:fileDependency>

 </kactus2:fileDependencies>

 <kactus2:version>3,5,77,0</kactus2:version>

 <kactus2:kts_attributes>

 <kactus2:kts_productHier>Flat</kactus2:kts_productHier>

 <kactus2:kts_implementation>HW</kactus2:kts_implementation>

 <kactus2:kts_firmness>Mutable</kactus2:kts_firmness>

 </kactus2:kts_attributes>

 </ipxact:vendorExtensions>

</ipxact:component>

When that block is used within PathWave FPGA, the following dialog box will show up. This
shows the description of the IP block along with the user modifiable parameters. In this case
there are two parameters, C_S_AXI_AXILITES_ADDR_WIDTH with a default value of 5 and
C_S_AXI_AXILITES_DATA_WIDTH with a default value of 32.

In this screen capture from PathWave FPGA, the instance HLS_scale_and_offset_1 is shown
with the data_out interface collapsed. The internal ports that make up that interface are not
shown and the interface can be connected to other compatible interfaces with one connection.
The instance HLS_scale_and_offset_2 is shown with the data_out interface expanded to show
the internal ports that make up that interface. The entire interface can be connected with one
connection by using the data_out port or the individual ports within the interface can be
connected separately if desired.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 170

The HLS_scale_and_offset axilite interface needs to be connected to a Host MemoryMap block
configured for Host_axilite and an address width of 5 as shown in the figure below.

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Tutorials – 171

PathWave FPGA 2018 – PathWave FPGA Customer Documentation

Legal – 172

Legal

Portions of this software are licensed by third parties including open source terms and
conditions.

7-zip

PathWave FPGA 2018 uses parts of 7-Zip, which is licensed under the GNU LGPL license. The
source code may be found at http://www.7-zip.org/

License for use and distribution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

7-Zip Copyright (C) 1999-2016 Igor Pavlov. 

Licenses for files are: 

1) 7z.dll: GNU LGPL + unRAR restriction 
2) All other files: GNU LGPL 

The GNU LGPL + unRAR restriction means that you must follow both GNU LGPL rules and 
unRAR restriction rules. 

Note: 
You can use 7-Zip on any computer, including a computer in a commercial organization. You 
don't need to register or pay for 7-Zip. 

GNU LGPL information 
-------------------- 

This library is free software; you can redistribute it and/or modify it under the terms of the GNU 
Lesser General Public License as published by the Free Software Foundation; either version 
2.1 of the License, or (at your option) any later version. 

This library is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
Lesser General Public License for more details. 

You can receive a copy of the GNU Lesser General Public License from 
http://www.gnu.org/ 

unRAR restriction 
----------------- 

The decompression engine for RAR archives was developed using source 
code of unRAR program. 
All copyrights to original unRAR code are owned by Alexander Roshal. 

The license for original unRAR code has the following restriction: 

The unRAR sources cannot be used to re-create the RAR compression algorithm, 
which is proprietary. Distribution of modified unRAR sources in separate form 
or as a part of other software is permitted, provided that it is clearly 
stated in the documentation and source comments that the code may 
not be used to develop a RAR (WinRAR) compatible archiver. 

-- 
Igor Pavlov 

bzip2 

PathWave FPGA 2018 uses bzip2 v1.0.6, used with permission. For more information, visit 
https://spdx.org/licenses/bzip2-1.0.6.html. 

http://www.7-zip.org/
http://www.gnu.org/
https://spdx.org/licenses/bzip2-1.0.6.html


PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 173 

Lua 

PathWave FPGA 2018 uses parts of Lua 5.3.4. 

Copyright © 1994–2017 Lua.org, PUC-Rio. 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to 
do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 

Qt 

PathWave FPGA 2018 uses Qt 5.7.0 and 5.6.2, licensed under the terms of GNU LGPLv3. For 
more information or to receive a copy of the source code for Qt, visit 
http://support.keysight.com. 

The Qt Toolkit is Copyright (C) 2015 The Qt Company Ltd. 
Contact: http://www.qt.io/licensing/ 

You may use, distribute and copy the Qt GUI Toolkit under the terms of GNU Lesser General 
Public License version 3, which is displayed below. This license makes reference to the version 
3 of the GNU General Public License, which you can find below. 

Xerces-C++ 

PathWave FPGA 2018 uses Xerces-C++ 3.2.0, licensed under the terms of Apache License 
v2.0, which is displayed below. For more information, visit https://xerces.apache.org/xerces-c/. 

========================================================================
= 
== NOTICE file corresponding to section 4(d) of the Apache License, == 
== Version 2.0, in this case for the Apache Xerces distribution. == 
========================================================================
= 

This product includes software developed by 
The Apache Software Foundation (http://www.apache.org/). 

Portions of this software were originally based on the following: 
- software copyright (c) 1999, IBM Corporation., http://www.ibm.com. 

zlib 

PathWave FPGA 2018 uses zlib 1.2.11, used by permission. For more information, visit 
https://www.zlib.net/zlib_license.html. 

http://lua.org/
http://support.keysight.com/
http://www.qt.io/licensing/
https://xerces.apache.org/xerces-c/
http://www.apache.org/
http://www.ibm.com/
https://www.zlib.net/zlib_license.html


PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 174 

Apache License v2.0 

Apache License 

Version 2.0, January 2004 
 
http://www.apache.org/licenses/ 

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 

1. Definitions. 

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined 
by Sections 1 through 9 of this document. 

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is 
granting the License. 

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are 
controlled by, or are under common control with that entity. For the purposes of this definition, 
"control" means (i) the power, direct or indirect, to cause the direction or management of such 
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the 
outstanding shares, or (iii) beneficial ownership of such entity. 

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this 
License. 

"Source" form shall mean the preferred form for making modifications, including but not limited 
to software source code, documentation source, and configuration files. 

"Object" form shall mean any form resulting from mechanical transformation or translation of a 
Source form, including but not limited to compiled object code, generated documentation, and 
conversions to other media types. 

"Work" shall mean the work of authorship, whether in Source or Object form, made available 
under the License, as indicated by a copyright notice that is included in or attached to the work 
(an example is provided in the Appendix below). 

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or 
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other 
modifications represent, as a whole, an original work of authorship. For the purposes of this 
License, Derivative Works shall not include works that remain separable from, or merely link (or 
bind by name) to the interfaces of, the Work and Derivative Works thereof. 

"Contribution" shall mean any work of authorship, including the original version of the Work and 
any modifications or additions to that Work or Derivative Works thereof, that is intentionally 
submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or 
Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this 
definition, "submitted" means any form of electronic, verbal, or written communication sent to 
the Licensor or its representatives, including but not limited to communication on electronic 
mailing lists, source code control systems, and issue tracking systems that are managed by, or 
on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding 
communication that is conspicuously marked or otherwise designated in writing by the copyright 
owner as "Not a Contribution." 

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a 
Contribution has been received by Licensor and subsequently incorporated within the Work. 

2. Grant of Copyright License. Subject to the terms and conditions of this License, each 
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, 
irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, 
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or 
Object form. 

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor 
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable 

http://www.apache.org/licenses/


PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 175 

(except as stated in this section) patent license to make, have made, use, offer to sell, sell, 
import, and otherwise transfer the Work, where such license applies only to those patent claims 
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by 
combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. 
If You institute patent litigation against any entity (including a cross-claim or counterclaim in a 
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct 
or contributory patent infringement, then any patent licenses granted to You under this License 
for that Work shall terminate as of the date such litigation is filed. 

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works 
thereof in any medium, with or without modifications, and in Source or Object form, provided 
that You meet the following conditions: 

1. You must give any other recipients of the Work or Derivative Works a copy of this License; 
and 

2. You must cause any modified files to carry prominent notices stating that You changed the 
files; and 

3. You must retain, in the Source form of any Derivative Works that You distribute, all 
copyright, patent, trademark, and attribution notices from the Source form of the Work, 
excluding those notices that do not pertain to any part of the Derivative Works; and 

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative 
Works that You distribute must include a readable copy of the attribution notices contained 
within such NOTICE file, excluding those notices that do not pertain to any part of the 
Derivative Works, in at least one of the following places: within a NOTICE text file 
distributed as part of the Derivative Works; within the Source form or documentation, if 
provided along with the Derivative Works; or, within a display generated by the Derivative 
Works, if and wherever such third-party notices normally appear. The contents of the 
NOTICE file are for informational purposes only and do not modify the License. You may 
add Your own attribution notices within Derivative Works that You distribute, alongside or as 
an addendum to the NOTICE text from the Work, provided that such additional attribution 
notices cannot be construed as modifying the License. 
 
You may add Your own copyright statement to Your modifications and may provide 
additional or different license terms and conditions for use, reproduction, or distribution of 
Your modifications, or for any such Derivative Works as a whole, provided Your use, 
reproduction, and distribution of the Work otherwise complies with the conditions stated in 
this License. 

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution 
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms 
and conditions of this License, without any additional terms or conditions. Notwithstanding the 
above, nothing herein shall supersede or modify the terms of any separate license agreement 
you may have executed with Licensor regarding such Contributions. 

6. Trademarks. This License does not grant permission to use the trade names, trademarks, 
service marks, or product names of the Licensor, except as required for reasonable and 
customary use in describing the origin of the Work and reproducing the content of the NOTICE 
file. 

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor 
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, 
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, 
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely 
responsible for determining the appropriateness of using or redistributing the Work and assume 
any risks associated with Your exercise of permissions under this License. 

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including 
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and 
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for 
damages, including any direct, indirect, special, incidental, or consequential damages of any 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 176 

character arising as a result of this License or out of the use or inability to use the Work 
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or 
malfunction, or any and all other commercial damages or losses), even if such Contributor has 
been advised of the possibility of such damages. 

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works 
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, 
indemnity, or other liability obligations and/or rights consistent with this License. However, in 
accepting such obligations, You may act only on Your own behalf and on Your sole 
responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, 
and hold each Contributor harmless for any liability incurred by, or claims asserted against, 
such Contributor by reason of your accepting any such warranty or additional liability. 

END OF TERMS AND CONDITIONS 

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR 
WORK 

To apply the Apache License to your work, attach the following boilerplate notice, with the fields 
enclosed by brackets "[]" replaced with your own identifying information. (Don't include the 
brackets!) The text should be enclosed in the appropriate comment syntax for the file format. 
We also recommend that a file or class name and description of purpose be included on the 
same "printed page" as the copyright notice for easier identification within third-party archives. 

Copyright [yyyy] [name of copyright owner] 

 

Licensed under the Apache License, Version 2.0 (the "License"); 

you may not use this file except in compliance with the License. 

You may obtain a copy of the License at 

 

    http://www.apache.org/licenses/LICENSE-2.0 

 

Unless required by applicable law or agreed to in writing, software 

distributed under the License is distributed on an "AS IS" BASIS, 

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

See the License for the specific language governing permissions and 

limitations under the License. 

GNU GPLv3 

GNU GENERAL PUBLIC LICENSE 

Version 3, 29 June 2007 

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/> 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 
changing it is not allowed. 

Preamble 

The GNU General Public License is a free, copyleft license for software and other kinds of 
works. 

The licenses for most software and other practical works are designed to take away your 
freedom to share and change the works. By contrast, the GNU General Public License is 
intended to guarantee your freedom to share and change all versions of a program--to make 
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU 

https://fsf.org/


PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 177 

General Public License for most of our software; it applies also to any other work released this 
way by its authors. You can apply it to your programs, too. 

When we speak of free software, we are referring to freedom, not price. Our General Public 
Licenses are designed to make sure that you have the freedom to distribute copies of free 
software (and charge for them if you wish), that you receive source code or can get it if you 
want it, that you can change the software or use pieces of it in new free programs, and that you 
know you can do these things. 

To protect your rights, we need to prevent others from denying you these rights or asking you to 
surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the 
software, or if you modify it: responsibilities to respect the freedom of others. 

For example, if you distribute copies of such a program, whether gratis or for a fee, you must 
pass on to the recipients the same freedoms that you received. You must make sure that they, 
too, receive or can get the source code. And you must show them these terms so they know 
their rights. 

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the 
software, and (2) offer you this License giving you legal permission to copy, distribute and/or 
modify it. 

For the developers' and authors' protection, the GPL clearly explains that there is no warranty 
for this free software. For both users' and authors' sake, the GPL requires that modified 
versions be marked as changed, so that their problems will not be attributed erroneously to 
authors of previous versions. 

Some devices are designed to deny users access to install or run modified versions of the 
software inside them, although the manufacturer can do so. This is fundamentally incompatible 
with the aim of protecting users' freedom to change the software. The systematic pattern of 
such abuse occurs in the area of products for individuals to use, which is precisely where it is 
most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice 
for those products. If such problems arise substantially in other domains, we stand ready to 
extend this provision to those domains in future versions of the GPL, as needed to protect the 
freedom of users. 

Finally, every program is threatened constantly by software patents. States should not allow 
patents to restrict development and use of software on general-purpose computers, but in those 
that do, we wish to avoid the special danger that patents applied to a free program could make 
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render 
the program non-free. 

The precise terms and conditions for copying, distribution and modification follow. 

TERMS AND CONDITIONS 

0. Definitions. 
“This License” refers to version 3 of the GNU General Public License. 

“Copyright” also means copyright-like laws that apply to other kinds of works, such as 
semiconductor masks. 

“The Program” refers to any copyrightable work licensed under this License. Each licensee is 
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations. 

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring 
copyright permission, other than the making of an exact copy. The resulting work is called a 
“modified version” of the earlier work or a work “based on” the earlier work. 

A “covered work” means either the unmodified Program or a work based on the Program. 

To “propagate” a work means to do anything with it that, without permission, would make you 
directly or secondarily liable for infringement under applicable copyright law, except executing it 
on a computer or modifying a private copy. Propagation includes copying, distribution (with or 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 178 

without modification), making available to the public, and in some countries other activities as 
well. 

To “convey” a work means any kind of propagation that enables other parties to make or 
receive copies. Mere interaction with a user through a computer network, with no transfer of a 
copy, is not conveying. 

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a 
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and 
(2) tells the user that there is no warranty for the work (except to the extent that warranties are 
provided), that licensees may convey the work under this License, and how to view a copy of 
this License. If the interface presents a list of user commands or options, such as a menu, a 
prominent item in the list meets this criterion. 

1. Source Code. 
The “source code” for a work means the preferred form of the work for making modifications to 
it. “Object code” means any non-source form of a work. 

A “Standard Interface” means an interface that either is an official standard defined by a 
recognized standards body, or, in the case of interfaces specified for a particular programming 
language, one that is widely used among developers working in that language. 

The “System Libraries” of an executable work include anything, other than the work as a whole, 
that (a) is included in the normal form of packaging a Major Component, but which is not part of 
that Major Component, and (b) serves only to enable use of the work with that Major 
Component, or to implement a Standard Interface for which an implementation is available to 
the public in source code form. A “Major Component”, in this context, means a major essential 
component (kernel, window system, and so on) of the specific operating system (if any) on 
which the executable work runs, or a compiler used to produce the work, or an object code 
interpreter used to run it. 

The “Corresponding Source” for a work in object code form means all the source code needed 
to generate, install, and (for an executable work) run the object code and to modify the work, 
including scripts to control those activities. However, it does not include the work's System 
Libraries, or general-purpose tools or generally available free programs which are used 
unmodified in performing those activities but which are not part of the work. For example, 
Corresponding Source includes interface definition files associated with source files for the 
work, and the source code for shared libraries and dynamically linked subprograms that the 
work is specifically designed to require, such as by intimate data communication or control flow 
between those subprograms and other parts of the work. 

The Corresponding Source need not include anything that users can regenerate automatically 
from other parts of the Corresponding Source. 

The Corresponding Source for a work in source code form is that same work. 

2. Basic Permissions. 
All rights granted under this License are granted for the term of copyright on the Program, and 
are irrevocable provided the stated conditions are met. This License explicitly affirms your 
unlimited permission to run the unmodified Program. The output from running a covered work is 
covered by this License only if the output, given its content, constitutes a covered work. This 
License acknowledges your rights of fair use or other equivalent, as provided by copyright law. 

You may make, run and propagate covered works that you do not convey, without conditions so 
long as your license otherwise remains in force. You may convey covered works to others for 
the sole purpose of having them make modifications exclusively for you, or provide you with 
facilities for running those works, provided that you comply with the terms of this License in 
conveying all material for which you do not control copyright. Those thus making or running the 
covered works for you must do so exclusively on your behalf, under your direction and control, 
on terms that prohibit them from making any copies of your copyrighted material outside their 
relationship with you. 

Conveying under any other circumstances is permitted solely under the conditions stated below. 
Sublicensing is not allowed; section 10 makes it unnecessary. 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 179 

3. Protecting Users' Legal Rights From Anti-Circumvention 
Law. 
No covered work shall be deemed part of an effective technological measure under any 
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 
December 1996, or similar laws prohibiting or restricting circumvention of such measures. 

When you convey a covered work, you waive any legal power to forbid circumvention of 
technological measures to the extent such circumvention is effected by exercising rights under 
this License with respect to the covered work, and you disclaim any intention to limit operation 
or modification of the work as a means of enforcing, against the work's users, your or third 
parties' legal rights to forbid circumvention of technological measures. 

4. Conveying Verbatim Copies. 
You may convey verbatim copies of the Program's source code as you receive it, in any 
medium, provided that you conspicuously and appropriately publish on each copy an 
appropriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices of the 
absence of any warranty; and give all recipients a copy of this License along with the Program. 

You may charge any price or no price for each copy that you convey, and you may offer support 
or warranty protection for a fee. 

5. Conveying Modified Source Versions. 
You may convey a work based on the Program, or the modifications to produce it from the 
Program, in the form of source code under the terms of section 4, provided that you also meet 
all of these conditions: 

• a) The work must carry prominent notices stating that you modified it, and giving a relevant 
date. 

• b) The work must carry prominent notices stating that it is released under this License and 
any conditions added under section 7. This requirement modifies the requirement in section 
4 to “keep intact all notices”. 

• c) You must license the entire work, as a whole, under this License to anyone who comes 
into possession of a copy. This License will therefore apply, along with any applicable 
section 7 additional terms, to the whole of the work, and all its parts, regardless of how they 
are packaged. This License gives no permission to license the work in any other way, but it 
does not invalidate such permission if you have separately received it. 

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; 
however, if the Program has interactive interfaces that do not display Appropriate Legal 
Notices, your work need not make them do so. 

A compilation of a covered work with other separate and independent works, which are not by 
their nature extensions of the covered work, and which are not combined with it such as to form 
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” 
if the compilation and its resulting copyright are not used to limit the access or legal rights of the 
compilation's users beyond what the individual works permit. Inclusion of a covered work in an 
aggregate does not cause this License to apply to the other parts of the aggregate. 

6. Conveying Non-Source Forms. 
You may convey a covered work in object code form under the terms of sections 4 and 5, 
provided that you also convey the machine-readable Corresponding Source under the terms of 
this License, in one of these ways: 

• a) Convey the object code in, or embodied in, a physical product (including a physical 
distribution medium), accompanied by the Corresponding Source fixed on a durable 
physical medium customarily used for software interchange. 

• b) Convey the object code in, or embodied in, a physical product (including a physical 
distribution medium), accompanied by a written offer, valid for at least three years and valid 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 180 

for as long as you offer spare parts or customer support for that product model, to give 
anyone who possesses the object code either (1) a copy of the Corresponding Source for 
all the software in the product that is covered by this License, on a durable physical medium 
customarily used for software interchange, for a price no more than your reasonable cost of 
physically performing this conveying of source, or (2) access to copy the Corresponding 
Source from a network server at no charge. 

• c) Convey individual copies of the object code with a copy of the written offer to provide the 
Corresponding Source. This alternative is allowed only occasionally and noncommercially, 
and only if you received the object code with such an offer, in accord with subsection 6b. 

• d) Convey the object code by offering access from a designated place (gratis or for a 
charge), and offer equivalent access to the Corresponding Source in the same way through 
the same place at no further charge. You need not require recipients to copy the 
Corresponding Source along with the object code. If the place to copy the object code is a 
network server, the Corresponding Source may be on a different server (operated by you or 
a third party) that supports equivalent copying facilities, provided you maintain clear 
directions next to the object code saying where to find the Corresponding Source. 
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure 
that it is available for as long as needed to satisfy these requirements. 

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers 
where the object code and Corresponding Source of the work are being offered to the 
general public at no charge under subsection 6d. 

A separable portion of the object code, whose source code is excluded from the Corresponding 
Source as a System Library, need not be included in conveying the object code work. 

A “User Product” is either (1) a “consumer product”, which means any tangible personal 
property which is normally used for personal, family, or household purposes, or (2) anything 
designed or sold for incorporation into a dwelling. In determining whether a product is a 
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular 
product received by a particular user, “normally used” refers to a typical or common use of that 
class of product, regardless of the status of the particular user or of the way in which the 
particular user actually uses, or expects or is expected to use, the product. A product is a 
consumer product regardless of whether the product has substantial commercial, industrial or 
non-consumer uses, unless such uses represent the only significant mode of use of the product. 

“Installation Information” for a User Product means any methods, procedures, authorization 
keys, or other information required to install and execute modified versions of a covered work in 
that User Product from a modified version of its Corresponding Source. The information must 
suffice to ensure that the continued functioning of the modified object code is in no case 
prevented or interfered with solely because modification has been made. 

If you convey an object code work under this section in, or with, or specifically for use in, a User 
Product, and the conveying occurs as part of a transaction in which the right of possession and 
use of the User Product is transferred to the recipient in perpetuity or for a fixed term 
(regardless of how the transaction is characterized), the Corresponding Source conveyed under 
this section must be accompanied by the Installation Information. But this requirement does not 
apply if neither you nor any third party retains the ability to install modified object code on the 
User Product (for example, the work has been installed in ROM). 

The requirement to provide Installation Information does not include a requirement to continue 
to provide support service, warranty, or updates for a work that has been modified or installed 
by the recipient, or for the User Product in which it has been modified or installed. Access to a 
network may be denied when the modification itself materially and adversely affects the 
operation of the network or violates the rules and protocols for communication across the 
network. 

Corresponding Source conveyed, and Installation Information provided, in accord with this 
section must be in a format that is publicly documented (and with an implementation available to 
the public in source code form), and must require no special password or key for unpacking, 
reading or copying. 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 181 

7. Additional Terms. 
“Additional permissions” are terms that supplement the terms of this License by making 
exceptions from one or more of its conditions. Additional permissions that are applicable to the 
entire Program shall be treated as though they were included in this License, to the extent that 
they are valid under applicable law. If additional permissions apply only to part of the Program, 
that part may be used separately under those permissions, but the entire Program remains 
governed by this License without regard to the additional permissions. 

When you convey a copy of a covered work, you may at your option remove any additional 
permissions from that copy, or from any part of it. (Additional permissions may be written to 
require their own removal in certain cases when you modify the work.) You may place additional 
permissions on material, added by you to a covered work, for which you have or can give 
appropriate copyright permission. 

Notwithstanding any other provision of this License, for material you add to a covered work, you 
may (if authorized by the copyright holders of that material) supplement the terms of this 
License with terms: 

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of 
this License; or 

• b) Requiring preservation of specified reasonable legal notices or author attributions in that 
material or in the Appropriate Legal Notices displayed by works containing it; or 

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified 
versions of such material be marked in reasonable ways as different from the original 
version; or 

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or 

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, 
or service marks; or 

• f) Requiring indemnification of licensors and authors of that material by anyone who 
conveys the material (or modified versions of it) with contractual assumptions of liability to 
the recipient, for any liability that these contractual assumptions directly impose on those 
licensors and authors. 

All other non-permissive additional terms are considered “further restrictions” within the 
meaning of section 10. If the Program as you received it, or any part of it, contains a notice 
stating that it is governed by this License along with a term that is a further restriction, you may 
remove that term. If a license document contains a further restriction but permits relicensing or 
conveying under this License, you may add to a covered work material governed by the terms 
of that license document, provided that the further restriction does not survive such relicensing 
or conveying. 

If you add terms to a covered work in accord with this section, you must place, in the relevant 
source files, a statement of the additional terms that apply to those files, or a notice indicating 
where to find the applicable terms. 

Additional terms, permissive or non-permissive, may be stated in the form of a separately 
written license, or stated as exceptions; the above requirements apply either way. 

8. Termination. 
You may not propagate or modify a covered work except as expressly provided under this 
License. Any attempt otherwise to propagate or modify it is void, and will automatically 
terminate your rights under this License (including any patent licenses granted under the third 
paragraph of section 11). 

However, if you cease all violation of this License, then your license from a particular copyright 
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally 
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the 
violation by some reasonable means prior to 60 days after the cessation. 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 182 

Moreover, your license from a particular copyright holder is reinstated permanently if the 
copyright holder notifies you of the violation by some reasonable means, this is the first time you 
have received notice of violation of this License (for any work) from that copyright holder, and 
you cure the violation prior to 30 days after your receipt of the notice. 

Termination of your rights under this section does not terminate the licenses of parties who 
have received copies or rights from you under this License. If your rights have been terminated 
and not permanently reinstated, you do not qualify to receive new licenses for the same material 
under section 10. 

9. Acceptance Not Required for Having Copies. 
You are not required to accept this License in order to receive or run a copy of the Program. 
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing 
other than this License grants you permission to propagate or modify any covered work. These 
actions infringe copyright if you do not accept this License. Therefore, by modifying or 
propagating a covered work, you indicate your acceptance of this License to do so. 

10. Automatic Licensing of Downstream Recipients. 
Each time you convey a covered work, the recipient automatically receives a license from the 
original licensors, to run, modify and propagate that work, subject to this License. You are not 
responsible for enforcing compliance by third parties with this License. 

An “entity transaction” is a transaction transferring control of an organization, or substantially all 
assets of one, or subdividing an organization, or merging organizations. If propagation of a 
covered work results from an entity transaction, each party to that transaction who receives a 
copy of the work also receives whatever licenses to the work the party's predecessor in interest 
had or could give under the previous paragraph, plus a right to possession of the Corresponding 
Source of the work from the predecessor in interest, if the predecessor has it or can get it with 
reasonable efforts. 

You may not impose any further restrictions on the exercise of the rights granted or affirmed 
under this License. For example, you may not impose a license fee, royalty, or other charge for 
exercise of rights granted under this License, and you may not initiate litigation (including a 
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, 
using, selling, offering for sale, or importing the Program or any portion of it. 

11. Patents. 
A “contributor” is a copyright holder who authorizes use under this License of the Program or a 
work on which the Program is based. The work thus licensed is called the contributor's 
“contributor version”. 

A contributor's “essential patent claims” are all patent claims owned or controlled by the 
contributor, whether already acquired or hereafter acquired, that would be infringed by some 
manner, permitted by this License, of making, using, or selling its contributor version, but do not 
include claims that would be infringed only as a consequence of further modification of the 
contributor version. For purposes of this definition, “control” includes the right to grant patent 
sublicenses in a manner consistent with the requirements of this License. 

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the 
contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, 
modify and propagate the contents of its contributor version. 

In the following three paragraphs, a “patent license” is any express agreement or commitment, 
however denominated, not to enforce a patent (such as an express permission to practice a 
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a 
party means to make such an agreement or commitment not to enforce a patent against the 
party. 

If you convey a covered work, knowingly relying on a patent license, and the Corresponding 
Source of the work is not available for anyone to copy, free of charge and under the terms of 
this License, through a publicly available network server or other readily accessible means, then 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 183 

you must either (1) cause the Corresponding Source to be so available, or (2) arrange to 
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a 
manner consistent with the requirements of this License, to extend the patent license to 
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the 
patent license, your conveying the covered work in a country, or your recipient's use of the 
covered work in a country, would infringe one or more identifiable patents in that country that 
you have reason to believe are valid. 

If, pursuant to or in connection with a single transaction or arrangement, you convey, or 
propagate by procuring conveyance of, a covered work, and grant a patent license to some of 
the parties receiving the covered work authorizing them to use, propagate, modify or convey a 
specific copy of the covered work, then the patent license you grant is automatically extended to 
all recipients of the covered work and works based on it. 

A patent license is “discriminatory” if it does not include within the scope of its coverage, 
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that 
are specifically granted under this License. You may not convey a covered work if you are a 
party to an arrangement with a third party that is in the business of distributing software, under 
which you make payment to the third party based on the extent of your activity of conveying the 
work, and under which the third party grants, to any of the parties who would receive the 
covered work from you, a discriminatory patent license (a) in connection with copies of the 
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in 
connection with specific products or compilations that contain the covered work, unless you 
entered into that arrangement, or that patent license was granted, prior to 28 March 2007. 

Nothing in this License shall be construed as excluding or limiting any implied license or other 
defenses to infringement that may otherwise be available to you under applicable patent law. 

12. No Surrender of Others' Freedom. 
If conditions are imposed on you (whether by court order, agreement or otherwise) that 
contradict the conditions of this License, they do not excuse you from the conditions of this 
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations 
under this License and any other pertinent obligations, then as a consequence you may not 
convey it at all. For example, if you agree to terms that obligate you to collect a royalty for 
further conveying from those to whom you convey the Program, the only way you could satisfy 
both those terms and this License would be to refrain entirely from conveying the Program. 

13. Use with the GNU Affero General Public License. 
Notwithstanding any other provision of this License, you have permission to link or combine any 
covered work with a work licensed under version 3 of the GNU Affero General Public License 
into a single combined work, and to convey the resulting work. The terms of this License will 
continue to apply to the part which is the covered work, but the special requirements of the GNU 
Affero General Public License, section 13, concerning interaction through a network will apply to 
the combination as such. 

14. Revised Versions of this License. 
The Free Software Foundation may publish revised and/or new versions of the GNU General 
Public License from time to time. Such new versions will be similar in spirit to the present 
version, but may differ in detail to address new problems or concerns. 

Each version is given a distinguishing version number. If the Program specifies that a certain 
numbered version of the GNU General Public License “or any later version” applies to it, you 
have the option of following the terms and conditions either of that numbered version or of any 
later version published by the Free Software Foundation. If the Program does not specify a 
version number of the GNU General Public License, you may choose any version ever 
published by the Free Software Foundation. 

If the Program specifies that a proxy can decide which future versions of the GNU General 
Public License can be used, that proxy's public statement of acceptance of a version 
permanently authorizes you to choose that version for the Program. 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 184 

Later license versions may give you additional or different permissions. However, no additional 
obligations are imposed on any author or copyright holder as a result of your choosing to follow 
a later version. 

15. Disclaimer of Warranty. 
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT 
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE 
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU 
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 

16. Limitation of Liability. 
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR 
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, 
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES 
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT 
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES 
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO 
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY 
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

17. Interpretation of Sections 15 and 16. 
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal 
effect according to their terms, reviewing courts shall apply local law that most closely 
approximates an absolute waiver of all civil liability in connection with the Program, unless a 
warranty or assumption of liability accompanies a copy of the Program in return for a fee. 

END OF TERMS AND CONDITIONS 

How to Apply These Terms to Your New Programs 

If you develop a new program, and you want it to be of the greatest possible use to the public, 
the best way to achieve this is to make it free software which everyone can redistribute and 
change under these terms. 

To do so, attach the following notices to the program. It is safest to attach them to the start of 
each source file to most effectively state the exclusion of warranty; and each file should have at 
least the “copyright” line and a pointer to where the full notice is found. 

    <one line to give the program's name and a brief idea of what it 

does.> 

    Copyright (C) <year>  <name of author> 

 

    This program is free software: you can redistribute it and/or 

modify 

    it under the terms of the GNU General Public License as published 

by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 

 

    This program is distributed in the hope that it will be useful, 

    but WITHOUT ANY WARRANTY; without even the implied warranty of 

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

    GNU General Public License for more details. 

 

    You should have received a copy of the GNU General Public License 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 185 

    along with this program.  If not, see 

<https://www.gnu.org/licenses/>. 

Also add information on how to contact you by electronic and paper 

mail. 

If the program does terminal interaction, make it output a short 

notice like this when it starts in an interactive mode: 

    <program>  Copyright (C) <year>  <name of author> 

    This program comes with ABSOLUTELY NO WARRANTY; for details type 

`show w'. 

    This is free software, and you are welcome to redistribute it 

    under certain conditions; type `show c' for details. 

The hypothetical commands `show w' and `show c' should show the 

appropriate parts of the General Public License. Of course, your 

program's commands might be different; for a GUI interface, you would 

use an “about box”. 

You should also get your employer (if you work as a programmer) or 

school, if any, to sign a “copyright disclaimer” for the program, if 

necessary. For more information on this, and how to apply and follow 

the GNU GPL, see <https://www.gnu.org/licenses/>. 

The GNU General Public License does not permit incorporating your 

program into proprietary programs. If your program is a subroutine 

library, you may consider it more useful to permit linking proprietary 

applications with the library. If this is what you want to do, use the 

GNU Lesser General Public License instead of this License. But first, 

please read <https://www.gnu.org/licenses/why-not-lgpl.html>. 

GNU LESSER GENERAL PUBLIC LICENSE 

Version 3, 29 June 2007 

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/> 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 
changing it is not allowed. 

This version of the GNU Lesser General Public License incorporates the terms and conditions 
of version 3 of the GNU General Public License, supplemented by the additional permissions 
listed below. 

0. Additional Definitions. 

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, 
and the “GNU GPL” refers to version 3 of the GNU General Public License. 

“The Library” refers to a covered work governed by this License, other than an Application or a 
Combined Work as defined below. 

An “Application” is any work that makes use of an interface provided by the Library, but which is 
not otherwise based on the Library. Defining a subclass of a class defined by the Library is 
deemed a mode of using an interface provided by the Library. 

A “Combined Work” is a work produced by combining or linking an Application with the Library. 
The particular version of the Library with which the Combined Work was made is also called the 
“Linked Version”. 

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source 
for the Combined Work, excluding any source code for portions of the Combined Work that, 
considered in isolation, are based on the Application, and not on the Linked Version. 

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html
https://fsf.org/


PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 186 

The “Corresponding Application Code” for a Combined Work means the object code and/or 
source code for the Application, including any data and utility programs needed for reproducing 
the Combined Work from the Application, but excluding the System Libraries of the Combined 
Work. 

1. Exception to Section 3 of the GNU GPL. 

You may convey a covered work under sections 3 and 4 of this License without being bound by 
section 3 of the GNU GPL. 

2. Conveying Modified Versions. 

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or 
data to be supplied by an Application that uses the facility (other than as an argument passed 
when the facility is invoked), then you may convey a copy of the modified version: 

• a) under this License, provided that you make a good faith effort to ensure that, in the event 
an Application does not supply the function or data, the facility still operates, and performs 
whatever part of its purpose remains meaningful, or 

• b) under the GNU GPL, with none of the additional permissions of this License applicable to 
that copy. 

3. Object Code Incorporating Material from Library Header Files. 

The object code form of an Application may incorporate material from a header file that is part of 
the Library. You may convey such object code under terms of your choice, provided that, if the 
incorporated material is not limited to numerical parameters, data structure layouts and 
accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do 
both of the following: 

• a) Give prominent notice with each copy of the object code that the Library is used in it and 
that the Library and its use are covered by this License. 

• b) Accompany the object code with a copy of the GNU GPL and this license document. 

4. Combined Works. 

You may convey a Combined Work under terms of your choice that, taken together, effectively 
do not restrict modification of the portions of the Library contained in the Combined Work and 
reverse engineering for debugging such modifications, if you also do each of the following: 

• a) Give prominent notice with each copy of the Combined Work that the Library is used in it 
and that the Library and its use are covered by this License. 

• b) Accompany the Combined Work with a copy of the GNU GPL and this license document. 

• c) For a Combined Work that displays copyright notices during execution, include the 
copyright notice for the Library among these notices, as well as a reference directing the 
user to the copies of the GNU GPL and this license document. 

• d) Do one of the following: 

o 0) Convey the Minimal Corresponding Source under the terms of this License, and 
the Corresponding Application Code in a form suitable for, and under terms that 
permit, the user to recombine or relink the Application with a modified version of the 
Linked Version to produce a modified Combined Work, in the manner specified by 
section 6 of the GNU GPL for conveying Corresponding Source. 

o 1) Use a suitable shared library mechanism for linking with the Library. A suitable 
mechanism is one that (a) uses at run time a copy of the Library already present on 
the user's computer system, and (b) will operate properly with a modified version of 
the Library that is interface-compatible with the Linked Version. 



PathWave FPGA 2018 – PathWave FPGA Customer Documentation 

Legal – 187 

• e) Provide Installation Information, but only if you would otherwise be required to provide 
such information under section 6 of the GNU GPL, and only to the extent that such 
information is necessary to install and execute a modified version of the Combined Work 
produced by recombining or relinking the Application with a modified version of the Linked 
Version. (If you use option 4d0, the Installation Information must accompany the Minimal 
Corresponding Source and Corresponding Application Code. If you use option 4d1, you 
must provide the Installation Information in the manner specified by section 6 of the GNU 
GPL for conveying Corresponding Source.) 

5. Combined Libraries. 

You may place library facilities that are a work based on the Library side by side in a single 
library together with other library facilities that are not Applications and are not covered by this 
License, and convey such a combined library under terms of your choice, if you do both of the 
following: 

• a) Accompany the combined library with a copy of the same work based on the Library, 
uncombined with any other library facilities, conveyed under the terms of this License. 

• b) Give prominent notice with the combined library that part of it is a work based on the 
Library, and explaining where to find the accompanying uncombined form of the same work. 

6. Revised Versions of the GNU Lesser General Public License. 

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser 
General Public License from time to time. Such new versions will be similar in spirit to the 
present version, but may differ in detail to address new problems or concerns. 

Each version is given a distinguishing version number. If the Library as you received it specifies 
that a certain numbered version of the GNU Lesser General Public License “or any later 
version” applies to it, you have the option of following the terms and conditions either of that 
published version or of any later version published by the Free Software Foundation. If the 
Library as you received it does not specify a version number of the GNU Lesser General Public 
License, you may choose any version of the GNU Lesser General Public License ever 
published by the Free Software Foundation. 

If the Library as you received it specifies that a proxy can decide whether future versions of the 
GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of 
any version is permanent authorization for you to choose that version for the Library. 

 

 


	PathWave FPGA Customer Documentation
	Key Features
	Overview
	Getting Started
	Working with PathWave FPGA

	Getting Started
	Release Notes
	Release Highlights
	Licensing
	Known Issues
	System Requirements
	Recommended Hardware Configurations
	Summary of Software Compatibility with PathWave FPGA
	Summary of HDL Language Support

	Installation
	Obtain PathWave FPGA License File
	Download PathWave FPGA Installer
	Install PathWave FPGA
	PathWave FPGA License Setup
	Node-locked License
	Floating License

	Launch PathWave FPGA



	User's Guide
	Contents
	Overview
	GUI Overview
	Keyboard and Mouse Shortcuts

	Creating a New Project
	Project Directory Structure

	Configuring PathWave FPGA
	IP Repositories

	Designing Your FPGA Logic
	Basic Controls
	Zooming In And Out
	Pan
	Fit in Window
	Multiple Selections
	Copy Action
	Move Items
	Undo/Redo Action

	Adding Blocks
	Sandbox I/O
	Adding a Register Bank
	How to Create and Update a Register Bank
	Launching the Register Bank Dialog
	Creating a Register Bank Using the Register Bank Dialog
	Placing the Register Bank in the Schematic
	Updating Register Banks



	IP Repositories
	Vivado XCI (Xilinx Core Instance)
	Invoking Vivado IP tool
	Importing a Vivado XCI File

	Imported User IP
	Importing an HDL file with Dependencies
	Importing a HDL file without Dependencies

	PathWave FPGA IP Repository
	Basic IP blocks
	Combiner
	Parameters

	Concat
	Parameters

	Concat_stream
	Parameters

	Decombiner
	Parameters

	Delay
	Parameters

	Delay_stream
	Parameters

	Latch
	Parameters

	Read_mux
	Parameters

	Reg_xN
	Parameters

	sign_extension
	Parameters

	sign_extension_stream
	Parameters

	slice
	Parameters

	slice_stream
	Parameters


	Connectors
	Axi4liteToMem
	Parameters


	Math
	Adder
	Parameters

	Adder_stream
	Parameters

	Comparison
	Parameters

	Integrator
	Parameters

	Integrator_stream
	Parameters

	Logic_NOT
	Parameters

	Logicgate
	Parameters

	Multiplier
	Parameters

	Multiplier_stream
	Parameters

	Saturator
	Parameters

	Saturator_stream
	Parameters

	Shift
	Parameters

	Shift_stream
	Parameters


	Memory
	DualPortRam
	Parameters

	DualPortRam_stream
	Parameters

	Mem_mux_2x
	Parameters

	Mem_mux_4x
	Parameters




	Connecting Ports and Interfaces
	Connecting an Output Port to an Input Port
	Remove and Redraw operations

	Connecting Input Ports to a Literal Constant
	Connection Rules
	Ports
	Port Size Mismatches
	Interfaces


	Naming Conventions
	Reserved Words

	Adding and Editing Comments
	Naming Collisions
	Workarounds


	Generating the Bit File
	Synthesizing and Implementing your Design inside of PathWave FPGA
	Monitoring the Build
	Exploring the Build Output

	Building your Design using Vivado
	Generating a Vivado Project
	Building your Vivado Project
	Implementating from PathWave FPGA
	Building Entirely in Vivado



	Verifying the Bit File
	Glossary

	IP Developers Guide
	IP Repositories
	IP directory structure
	Definition of the IP-XACT file
	Keysight Standard Interfaces
	Managing Multiple Clocks and Resets
	Parameterizing IP Designs
	Component Parameters
	Module Parameters
	Example: Parameterized Port Sizing

	IP Restrictions
	IP Restrictions Format

	IP Categorization

	IP Naming Collisions
	An Example IP-XACT File
	Keysight Standard Interfaces
	Introduction
	Interface Descriptions
	Signal Types
	Data Types
	Data Packing/Extending
	Polarity
	Signal Interfaces
	Example Usage
	Discussion of Example

	Associated Files



	Tutorials
	Import HDL with collapsible interfaces using IP-XACT
	Import HDL with parameterized bus widths using IP-XACT
	Import Vivado High-Level Synthesis (HLS) generated HDL with parameterized bus widths using IP-XACT

	Legal
	7-zip
	bzip2
	Lua
	Qt
	Xerces-C++
	zlib
	Apache License v2.0
	Apache License
	APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK

	GNU GPLv3
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS
	0. Definitions.
	1. Source Code.
	2. Basic Permissions.
	3. Protecting Users' Legal Rights From Anti-Circumvention Law.
	4. Conveying Verbatim Copies.
	5. Conveying Modified Source Versions.
	6. Conveying Non-Source Forms.
	7. Additional Terms.
	8. Termination.
	9. Acceptance Not Required for Having Copies.
	10. Automatic Licensing of Downstream Recipients.
	11. Patents.
	12. No Surrender of Others' Freedom.
	13. Use with the GNU Affero General Public License.
	14. Revised Versions of this License.
	15. Disclaimer of Warranty.
	16. Limitation of Liability.
	17. Interpretation of Sections 15 and 16.

	How to Apply These Terms to Your New Programs

	GNU LESSER GENERAL PUBLIC LICENSE
	0. Additional Definitions.
	1. Exception to Section 3 of the GNU GPL.
	2. Conveying Modified Versions.
	3. Object Code Incorporating Material from Library Header Files.
	4. Combined Works.
	5. Combined Libraries.
	6. Revised Versions of the GNU Lesser General Public License.



