

PathWave
FPGA 2019

User's Guide

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Table of Contents – 2

Notice
© Keysight Technologies, Inc. 2019

1400 Fountaingrove Pkwy., Santa Rosa, CA 95403-1738, United States

All rights reserved.

No part of this documentation may be reproduced in any form or by any means (including

electronic storage and retrieval or translation into a foreign language) without prior agreement

and written consent from Keysight Technologies, Inc. as governed by United States and

international copyright laws.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract,

Software is delivered and licensed as "Commercial computer software" as defined in DFAR

252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as

"Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent

agency regulation or contract clause.

Use, duplication or disclosure of Software is subject to Keysight Technologies’ standard

commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will

receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S.

Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June

1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Table of Contents – 3

Table of Contents

Contents .. 8

Overview .. 9

GUI Overview ... 13
Keyboard and Mouse Shortcuts .. 14

Creating a New Sandbox Project ... 16
Sandbox Project Directory Structure .. 16

Creating a New Submodule Project .. 18

Changing a Submodule Project Target Hardware ... 19

Configuring PathWave FPGA ... 20
Vivado Installation Path ... 20
Vivado Installation Browse Button .. 20
IP Repositories Path List .. 20
IP Repositories Control Buttons .. 21
Theme Checkbox ... 21
Infer Interfaces Checkbox .. 21

Designing Your FPGA Logic ... 22
Basic Controls .. 22
Adjusting the View .. 22
Manipulating Items ... 22
Undo and Redo ... 22
Adding Blocks .. 23
Sandbox I/O .. 24

Adding a Register Bank .. 25
How to Create and Update a Register Bank .. 25

IP Repositories .. 27
Vivado XCI (Xilinx Core Instance) ... 28

Invoking Vivado IP tool ... 28
Importing a Vivado XCI File .. 30

Imported User IP ... 31
Importing an HDL file with Dependencies ... 33
Importing an HDL file without Dependencies .. 33

PathWave FPGA IP Repository ... 34
Basic IP blocks .. 36

Combiner .. 36
Concat .. 37
Concat_stream ... 37
Cross_clk_domains ... 38
Decombiner .. 39
Delay .. 39
Delay_stream.. 40
Latch ... 40
LatchClr .. 40
Mux2, Mux4, Mux8 ... 41
Read_mux ... 41
Reg_xN ... 42
sign_extension .. 42
sign_extension_stream ... 43
slice .. 43
slice_stream ... 44

Connectors ... 45
Axi4liteToMem .. 45
Axi4Tomem ... 46
AXIStream_Broadcaster ... 48

Math ... 48
Adder .. 48

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Table of Contents – 4

Adder_stream ... 49
Comparison .. 49
Integrator ... 50
Integrator_stream... 50
Logic_NOT .. 51
Logicgate .. 51
Multiplier .. 52
Multiplier_stream ... 53
Saturator .. 54
Saturator_stream ... 54
Shift .. 55
Shift_stream ... 55

DSP ... 56
Combine1toN ... 56
Complex2Real / Real2Complex ... 57
DecimateBy5 .. 58
DecimateBy5 Complex ... 58
InterpolateBy5 .. 59
InterpolateBy5 Complex ... 60
Lo .. 61
Lo5_dc .. 62
Lo5_uc .. 63
Power2Decimator ... 64
Power2Interpolator .. 64

Memory... 65
DualPortRam .. 65
DualPortRam_stream ... 66
Mem_mux_2x ... 67
Mem_mux_4x ... 68
Streamer blocks (2 channels at 32 bits/channel) – Streamer32x2/Streamer32x2b 69

PathWave FPGA Submodule .. 73
Connecting Ports and Interfaces ... 74
Connecting an Output Port to an Input Port .. 74

Remove and Redraw operations .. 76
Connecting Input Ports to a Literal Constant ... 78
Connection Rules .. 78

Ports ... 78
Port Size Mismatches ... 78
Interfaces .. 78

Connecting Keysight interfaces to Xilinx interfaces ... 79
Unconnected interface input ports .. 79

Naming Conventions ... 80
Reserved Words .. 80
Adding and Editing Comments ... 81
Naming Collisions .. 82
Workarounds .. 83
Configuring Submodule Interfaces ... 83
Interface List ... 83
Component Preview.. 84
Interface Control Buttons ... 84
Name and Description .. 84
Interface Role .. 84
Category ... 84
Parameters.. 84
Optional Ports ... 84
Synchronous Properties.. 84
OK and Cancel Buttons .. 85
Changes to the Sandbox .. 85

Removing an Interface ... 85
Changing an Interface .. 85
Replacing an Interface ... 85
Adding an Interface .. 85

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Table of Contents – 5

DSP Library IP .. 85
Scope .. 86
Data Formats .. 86
Detail IP Block Descriptions ... 87

Local Oscillator ... 87
DecimateBy5/InterpolateBy5 ... 88
Power2Decimator/Power2Interpolator .. 91
Combine1toN ... 93
Complex2Real / Real2Complex ... 95
Serializer ... 96

Design Examples... 97
Digital Down Converter (DDC) ... 97
Digital Up Converter (DUC) .. 98

VHDL Support .. 100
Generics .. 100
Ports .. 100
Known Issues .. 101
Verilog Support .. 101
Known Issues .. 101

Generating the Bit File ... 103
Synthesizing and Implementing your Design inside of PathWave FPGA 103
Different FPGA Build options .. 105
Monitoring the Build ... 105
Exploring the Build Output ... 106
Building your Design using Vivado .. 106
Generating a Vivado Project ... 107
Troubleshooting ... 107
Drive mapping remaining after build completion ... 107
Generated project synthesis fails because paths are too long .. 107

Verifying the Bit File .. 109

Advanced Features .. 110
Command Line Arguments .. 110
Migrating a design to a new BSP .. 112

IP Developers Guide .. 113
Generation of IP-XACT file .. 113
IP Repositories ... 113
IP-XACT file composition ... 113
Definition of the IP-XACT file .. 113

Keysight Standard Interfaces ... 116
Managing Multiple Clocks and Resets ... 117
Parameterizing IP Designs ... 118

Component Parameters ... 119
Module Parameters .. 120
Example: Parameterized Port Sizing .. 120

IP Restrictions... 121
IP Restrictions Format .. 121

IP Categorization .. 122
IP Naming Collisions ... 123
An Example IP-XACT File .. 123
IP Packager .. 127
Start IP Packager .. 128

Import to project .. 128
Welcome Page .. 128

New Button .. 128
Open Button ... 129
Recent Files List ... 129

Main Page ... 129
Menu button ... 129
File Buttons .. 129

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Table of Contents – 6

Close button ... 130
Tabs Section ... 130

General Tab .. 130
Interfaces Tab ... 131
Port Mapping Tab ... 131
Physical Ports Tab .. 133
Parameters Tab .. 133
Enumerations Tab .. 135
Files Tab ... 136

Keysight Standard Interfaces .. 137
Introduction .. 138
Interface Descriptions ... 138

Signal Types ... 139
Data Types .. 139
Data Packing/Extending ... 140
Polarity ... 141
Signal Interfaces ... 141
Example Usage ... 142

Discussion of Example ... 142
Associated Files .. 143

Glossary ... 144

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Contents – 7

PathWave FPGA is Keysight's "Open FPGA" development environment. PathWave FPGA
provides a complete FPGA design flow from design creation to gateware deployment to
HW/gateware verification.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Contents – 8

Contents

• Overview

• GUI Overview

• Creating a New Sandbox Project

• Creating a New Submodule Project

• Changing a Submodule Project Target Hardware

• Configuring PathWave FPGA

• Designing Your FPGA Logic

• Generating the Bit File

• Verifying the Bit File

• Advanced Features

• IP Developers Guide

• Glossary

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Overview – 9

Overview

PathWave FPGA is a graphical environment that provides a way to rapidly develop FPGA
designs on Keysight Open FPGA hardware. An IP library is provided which includes Logic/Math,
Memory, and DSP blocks that can be included in an FPGA design. Vivado IP blocks or custom
HDL IP can also be imported and the port interfaces described using IP-XACT 2014. PathWave
FPGA provides a design flow from schematic to bitfile generation with the press of a button.

To get started, follow the PathWave FPGA design flow:

1. Start PathWave FPGA

2. Create a new project with the PathWave FPGA New Project Wizard

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Overview – 10

3. Modify the default FPGA template design by importing Vivado IP, HDL IP, or by
using the PathWave FPGA IP library.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Overview – 11

4. Compile the design into a bit image

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Overview – 12

5. Deploy your design using the instrument driver or the BSP programming API

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

GUI Overview – 13

GUI Overview

Menu/Icon/Pane Description

File Includes options to create a new project, open an existing project, save a
project, close a project, add an external block, export to VHDL, create a
template, configure settings, and exit.

Edit Includes options to undo an operation, redo an operation, and select all.

Vivado IP Includes an option to launch the Vivado IP tool.

Project Includes and option to generate FPGA firmware.

Tools Includes the IP Packager.

Help Includes link to product documentation, license, and product related
information.

Create a new sandbox project.

Create a new submodule project.

Open an existing project.

Save the project.

Undo the last operation.

Redo the last operation that was undone.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

GUI Overview – 14

Menu/Icon/Pane Description

Fit schematic in window.

Zoom in.

Zoom out.

Copy.

Flip.

Redraw connections.

Remove.

Launch the Vivado IP tool.

Add external block.

Generate the firmware for the project.

Sandbox I/O Sandbox I/O are responsible for communication between the internally
configurable FPGA part (the FPGA customizable space, which a user can
edit) and the rest of FPGA.

IP Repositories IP repositories that are built-in or custom.

Vivado XCI Vivado XCI (Xilinx Core Instance) created either by launching the Vivado IP
tool or importing Vivado XCI. Note, only visible if you have imported a Vivado
XCI file.

Imported IP Imported User IP from many different sources including: VHDL, Verilog, IP-
XACT, Vivado Projects (XPR). Note, only visible if you have imported IP.

Submodules Submodules created by PathWave FPGA. Note, only visible if you have
created or added a submodule.

Keyboard and Mouse Shortcuts

This topic lists the operations that can be performed using keyboard and mouse shortcuts.

Function Key Code

Add/remove item from selection Ctrl + Left click

Abort current action Esc

Remove selected items Delete

Redraw connections Ctrl + R

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

GUI Overview – 15

Function Key Code

Zoom fit Ctrl + F

Copy selection Ctrl + C

Select all Ctrl + A

Undo Ctrl + Z

Redo Ctrl + Y

New project Ctrl + N

Open project Ctrl + O

Save project Ctrl + S

Close project Ctrl + F4

Exit Alt + F4

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Creating a New Sandbox Project – 16

Creating a New Sandbox Project

A sandbox project contains the customizable resources of the programmable FPGA of a
PathWave FPGA hardware module. When selecting a target module, the project is opened with
the factory settings of a standard module. The custom on-board solution is developed within this
hardware project and is saved, compiled and loaded into the hardware module (the binary can
be loaded into multiple identical modules).

Below are the steps to create a new sandbox project.

1. Select File > New... > New Sandbox Project.

2. Enter the project name.

3. Browse to select the project location.

 To place the project in a subdirectory by the
same name, select the Create project
subdirectory check box.

4. Click Next. If a project with the same name exists, a prompt to overwrite the project is
displayed. Click Yes to overwrite the project.

5. Choose the Board Support Package for the target hardware module and click Next.

6. Choose a Project Template and click Next. A summary of the project details is displayed.
Click Finish.

7. To save any changes you made to the project, click the Save icon or use the menu option.

 Using the shortcut menu (right-click a block), you can perform the following
operations:

• To duplicate a block, select Copy.

• To flip a block horizontally, so inputs are on the right and outputs on the left,
select Flip.

• To redraw the connections to the block, select Redraw connections.

• To remove the block, select Remove.

• To view the description/properties, select Properties.

Sandbox Project Directory Structure

When a new project is created, a project folder with a corresponding project design file is
created. This project folder will contain build output and any Vivado XCI (Xilinx Core Instance)
IP that you have configured using PathWave FPGA. In the following example, the project
created is named myProject. The directory structure is shown below:

• myProject - Project folder

o myProject.kfdk - Project design file

o myProject.build - Folder containing intermediate build output

o myProject.data - Folder containing final build output and Vivado XCI IP

▪ bin - Folder with the final build output

• myProject_<timestamp> - Folder containing build output

o bitgen.log - Vivado build log file

o myProject.k7z - Program archive that can be downloaded
into your FPGA

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Creating a New Sandbox Project – 17

o myProject.spb - Program FPGA bit file that is an older
format, to supported existing instrument software for
M3102A, M3202A, M3302A and associated instruments.
Newer Keysight hardware will not produce this file output.

▪ VivadoIP - Folder to contain output for Vivado XCI IP that was configured
using PathWave FPGA

• <imported Vivado XCI> - Folder for each Vivado XCI IP
configured using PathWave FPGA

▪ submodules - Folder to contain submodule projects. The directory
structure that is created is an IP Repository of the submodules defined in
the project

• mySubmodule - Submodule with default name

o mySubmodule.data - Folder containing Vivado XCI IP

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Creating a New Submodule Project – 18

Creating a New Submodule Project

A submodule project allows you to organize your design hierarchically and reuse these designs
in multiple projects.

Below are the steps to create a new submodule project.

1. Select File > New... > New Submodule Project, from the menu of an open sandbox
project.

2. In the New Submodule Project dialog, enter the submodule project name and click Next.

3. Define the vendor, library, name and version (VLNV) and other properties of the
submodule. This information can be modified later by selecting Project > Properties...

4. Click Next. A summary of the project details is displayed. Click Prev to make changes or
Finish to save the new submodule project. See Sandbox Project Directory Structure for
information about how submodule projects are saved.

5. A new instance of PatheWave FPGA will be started where you can edit your new
submodule.

6. In the Change Submodule Interfaces dialog, define the interfaces into and out of the
submodule. See Configuring Submodule Interfaces for more information.The interfaces can
be modified later by selecting Project > Change Submodule Interfaces...

7. Click OK to close the Change Submodule Interfaces dialog.

8. To save any changes you made to the project, click the Save icon or use the menu option.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Changing a Submodule Project Target Hardware – 19

Changing a Submodule Project Target Hardware

When a submodule is created, the target hardware for that submodule is inherited from the
parent sandbox or submodule.

You may want to retarget a submodule to work with different hardware, or remove the targeted
hardware altogether to make a generic submodule. A generic submodule can be shared with
projects targeting different BSPs, but will not have access to the BSP IP.

Perform the following steps to change the submodule target hardware:

1. With the submodule project open in PathWave FPGA, select Project > Properties...

2. To change the Target Hardware to a new BSP, click Change and use the Select BSP
Configuration wizard to choose a new BSP.

3. To remove the BSP and create a generic submodule, click Clear.

4. Click Apply to accept the changes.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Configuring PathWave FPGA – 20

Configuring PathWave FPGA

The Configuration dialog provides some options for configuring PathWave FPGA. You can
specify the Vivado path, IP repositories, and the appearance of the interface. Select File >
Settings to open the following dialog:

Vivado Installation Path

This drop-down list displays the installation path of the Xilinx Vivado version to be used by
PathWave FPGA for the bit file generation flow as well as the Xilinx IP Import. At start-up,
PathWave FPGA populates the drop-down list with the Xilinx Vivado installations found on the
local system. By default, the latest one is selected. The drop-down list may be used to select a
different Vivado version. If the desired version is not located, the Browse Button can be used to
locate a specific installation.

Vivado Installation Browse Button

Opens a browse dialog for the user to locate a Xilinx Vivado installation that was not found
automatically.

IP Repositories Path List

Displays a list of directory paths, where PathWave FPGA will look for IP. To learn more
information on how to create an IP repository, you can review the IP Developers Guide.

The actual IP discovery process takes place either when the user clicks the button explicitly,
or when the list is updated and the settings dialog is accepted. If a project is open at the time of
loading, the discovered IP will be loaded to the open project.

Currently, PathWave FPGA does not support having multiple IP with the same name. If more
that one IP with the same name is encountered during a project load, PathWave FPGA will only
load the first one and report an error for the others. To workaround this limitation, you can
create a wrapper for your IP with name that does not conflict with any other in the project library.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Configuring PathWave FPGA – 21

IP Repositories Control Buttons

The button opens a browse dialog for selecting an IP Repository location. If a location is
selected, it is added to the IP Repositories Path List.

The button removes the selected directories from the list.

The button searches for IP inside the directories defined in the list. When IP repositories
loading is completed, an informational message is displayed. In case of errors or warnings, the
errors will be logged into a temporary file. The temporary file will exist until the closing of
PathWave FPGA process. To regenerate the log file, repeat the loading procedure.

Theme Checkbox

To use the dark theme, check the Use dark theme check box.

Infer Interfaces Checkbox

When importing VHDL or Verilog User IP, interfaces can be deduced from the naming
convention of the ports. Each time a new IP file is added, the user has the option to infer
interfaces from the ports. The default choice is controlled by this checkbox.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 22

Designing Your FPGA Logic

• Basic Controls

• Adding Blocks

• Connecting Ports and Interfaces

• Naming Conventions

• Adding and Editing Comments

• Naming Collisions

• Configuring Submodule Interfaces

• DSP Library IP

• VHDL Support

• Verilog Support

Basic Controls

Adjusting the View

Operation Keyboard Mouse

Zoom In Ctrl++ Ctrl + Mouse wheel up

Zoom Out Ctrl+- Ctrl + Mouse wheel down

Zoom Fit Ctrl+F

Pan Alt + Mouse click and drag

Manipulating Items

To move an item, left-click on the item and drag it to a different location. Connections are routed
automatically and can't be moved manually.

To select an item, left-click on the item. To select multiple items, left-click on an empty space
and drag to select all items in a rectangle. To add or remove individual items from the selection,
hold the Ctrl key and left-click an item. To select all items, press Ctrl+A or choose Select All
from the Edit menu.

To copy a block or a selection, right-click the block or an item in the selection and choose Copy,
then left-click to place the copy in the design. You can also press Ctrl+C, choose Copy from

the Edit menu, or click the Copy button on the toolbar.

Undo and Redo

To Undo an action, press Ctrl+Z, or choose Undo from the Edit menu, or click the Undo
button on the toolbar.

To Redo an action, press Ctrl+Y, or choose Redo from the Edit menu, or click the Redo
button on the toolbar.

Undo is disabled after certain actions:

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 23

• Adding or removing external blocks from the IP panes. Adding or removing instances does
not disable Undo.

• Adding or removing Vivado IP from the IP panes. Adding or removing instances does not
disable Undo.

• Creating or removing a submodule project from the Submodules pane. Adding or removing
instances does not disable Undo.

• Reloading a block

• Changing a blocks file

Adding Blocks

A hardware project is created by combining blocks from the panes displayed on the right side of
the user interface. These are grouped under:

• Sandbox I/O

• IP Repositories

• Vivado XCI (Xilinx Core Instance)

• Imported User IP

• PathWave FPGA IP Repository

• PathWave FPGA Submodule

When a hardware project is opened, sandbox I/O and IP repositories that are available for the
particular board support package are shown in the panes on the right. The blocks can be
selected, dragged into the project, configured, and connected to other blocks in the project.

For example:

The selected block can be configured and saved.
If you select a block and right-click on it, the following options are available:

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 24

• Copy creates a duplicate of the selected block.

• Flip swaps the ports, so that inputs are on the right and outputs are on the left.

• Remove deletes the block from the project.

• Properties... opens the configuration dialog box shown above.

Sandbox I/O

To communicate between the sandbox and the static region, you need to instantiate a sandbox
I/O block from the Sandbox I/O pane. Each board support package provides a unique set of
sandbox I/O blocks that are specific for the instrument. The sandbox I/O blocks are grouped
based on the function of their connections to the "outside world". The interfaces of a sandbox
are collapsed, in order to show the different categories of sandbox I/O:

Apart from categorizing, some sandbox I/O blocks can instantiated with different types of
interfaces. For example, the interface "Hvi1" can be inserted to the schematic as a MemoryMap
or connected directly to a RegisterBank.

Finally, it is possible that an interface is comprised only by one port (e.g. a clock). In that case,
the interface instance will only show the slot, like in the picture below:

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 25

Adding a Register Bank
PathWave FPGA is dedicated to helping customers get their designs ready and tested fast; to
facilitate this, PathWave FPGA created Register Banks.

Register Banks are a type of block that can be placed inside the PathWave FPGA schematic.
When a register bank is placed in the schematic, PathWave FPGA will generate behind-the-
scenes logic to connect the signals that are displayed on the schematic to a memory mapped
bus that the customer can access from the Host. By moving this address logic creation inside
PathWave FPGA, the user does not have to worry about address overlaps, or decoding blocks.
This allows customers to focus their attention on the important parts of their design, and not
have to worry about boilerplate components.

How to Create and Update a Register Bank
Below are the steps for creating a Register Bank, and then updating a register bank.

Launching the Register Bank Dialog
1. Launch PathWave FPGA.

2. Open/Create a project you wish to edit.

3. With the project open, in the Sandbox I/O pane, expand Communications then expand the
interface to which the Register Bank will connect. For the M3102A and M3202A, this will be
called Host. Under this interface there will be a selection called RegisterBank.

4. Either double click on RegisterBank or drag RegisterBank onto the design canvas to open
the Register Bank Dialog.

Creating a Register Bank Using the Register Bank Dialog
With the Register Bank Dialog open you are able to start designing a Register Bank. Register
Banks consist of a group of registers with a contiguous address space. Each register in a
Register Bank is editable by the user. Below are the major sections of the Register Bank Dialog.

Figure 1: Register Bank Dialog when opened into a new project.

There are 5 main areas to inspect on the Register Bank Dialog

1. Register Bank Name - This is the name that will be displayed on the block when it is placed
in the schematic.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 26

a. The Register Bank Name must be unique, and valid HDL syntax (see Naming
Conventions). If the name is not valid, it will be converted to a valid and unique
name.

2. Memory Mapped Components - This is the main portion of the Register Bank Dialog. You
can edit registers that are contained within the Register Bank here.

a. Name - This column represents the name of a register. Double left click on the
register name to change from the default name. A register name must be unique
within the bank, and have valid HDL syntax (see Naming Conventions).

i. If the Register Dialog detects an issue with the name of a register, it will
turn the text red and display a tool tip stating the reason for the failure.

b. Address - This column represents the byte offset address of a register. The user is
not allowed to directly edit this field, it is for informational use only.

c. Reordering Registers - It is possible to reorder registers in the Register Bank by
selecting one, then clicking and dragging it to the location you wish it to go. This
changes the address field of the moved register and updates addresses of other
registers affected by the move.

3. Add/Remove/Reorder - This section of the dialog is used for manipulating the number and
order of registers present in the Register Bank.

a. The user can add registers to the design if no issues are detected inside the
Register Bank. The button will be disabled, when an issue is detected.

b. The user can remove registers at any point. Any currently selected registers will be
removed from the Register Bank.

i. Another way to remove registers is to use the "Delete" key.

c. A selected register may be reordered by clicking the up or down arrow.

4. OK/Cancel - This section of the dialog is used to exit the dialog. Clicking OK will create a
Register Bank that can be placed on the schematic, while cancel closes the dialog with no
other actions taken.

a. If the dialog detects any issues with the Register Bank, it will disable the "OK"
button and display the text "Issue Detected". Please look for the red text to see why
the Register Bank is invalid.

Placing the Register Bank in the Schematic
Now that we are done editing the Register Bank, it is time to place the block onto the schematic.
To place the block onto the schematic, hit the "OK" button. The block will now be hovered below
your cursor. At the location you want to place the block, left click. Below is an example block
that was created with default values.

Figure 2: Register Bank block when placed onto the schematic.

Once in the schematic, Register Banks are treated the same as any other block. You are able to
move, copy, flip ports, and remove. To use them in your design, just connect the signals
displayed on the block to the logic you wish to interact with from the host. PathWave FPGA will
handle all of the routing logic for Simulation and Building. You are able to recognize the
individual registers in a Register Bank by looking at the names of the signals. The more

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 27

registers you add to the Register Bank, the more signals will be available. Below is an example
of a register block with two registers added to it.

Figure 3: Register Bank block that has two RW registers in it.

Updating Register Banks
A unique feature of Register Banks, is their ability to be modified after they are placed on the
schematic. To update the Register Bank we have in Figure 2 to the Register Bank we have in
figure 3 we will open the Register Bank Dialog up from the block. There are two ways of
opening this dialog.

1. Double click on the Register Bank that you wish to update.

2. Right click on the Register Bank you wish to update, and select "Properties...".

The Register Bank Dialog will open up and display the information that describes the Register
Bank you will update.

To add in the second register to our Register Bank, click "Add", then click "OK". Your Register
Bank will now have the signals associated with the second register.

If you wish to return your register to the state it was in before the update, simply click the "Undo"
Icon in the Icon bar, or use "Ctrl + z".

IP Repositories

IP repositories are libraries of blocks that are loaded into PathWave FPGA. There are three
types of IP repositories supported inside PathWave FPGA:

• Default PathWave FPGA IP repository: a repository that is shipped inside the PathWave
FPGA Installation directory structure and is permanent. IPs defined in this repository will be
loaded for all projects, as long as they meet the hardware support criteria.

• BSP IP repository: a IP repository that is shipped inside a BSP installation.

• User defined IP repository: a user-defined list of directories that include IP definitions.
These directories can be defined in the Settings dialog (File → Settings). Important: A
project should be reloaded, in order for the added IP to be loaded. To load an IP repository,
use the Settings Dialog. To learn how to create an IP repository, refer to the IP Developers
Guide.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 28

IP will be found recursively in each repository location. All valid IP will be added into the library
blocks. If any problems are encountered with loading, a dialog will popup to display the errors.
Xilinx Vivado IP is excluded from this search.

Vivado XCI (Xilinx Core Instance)

Invoking Vivado IP tool
PathWave FPGA allows you to import Vivado IPs from the Xilinx Vivado IP Catalog and
integrate them into your project.

1. Click on the Launch Vivado IP Tool button on the main toolbar.

2. Select a Vivado IP block from the IP Catalog and double-click it.

3. Configure the IP properties and then press OK.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 29

4. Click the Skip button. PathWave FPGA always regenerates Vivado IP during bitfile
generation, so the output products created by clicking Generate are not needed.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 30

5. If you need any other Vivado IP, repeat steps 2-4 to generate them. When you are done,
close Vivado.

6. PathWave FPGA will show the configured IP in the Vivado XCI section of the library. Add
an instance to your design in the same way as any other IP.

Importing a Vivado XCI File
Vivado IP may also be imported from another location by browsing for the .xci file with Add
External Block. See Imported User IP for more details.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 31

Imported User IP

In addition to IP developed using the Library tools, the PathWave FPGA software allows
importing and integration of custom IP into a project. User IP is developed using external FPGA
tools; the PathWave FPGA software is not intended for developing IP from scratch. However,
once the user has created an IP, the IP may be imported by the PathWave FPGA software.

The user can import IP from different source files, including the following:

• VHDL source files (*.vhd, *.vhdl)

• Verilog source files (*.v).

• Xilinx Vivado projects (*.xpr).

• System Generator Vivado Synthesized Checkpoints (*.dcp).

• IP-XACT files (*.xml).

• Vivado IP files (*.xci)

• PathWave FPGA Submodules

To import a user IP:

1. Click the Add External Block button on the main toolbar, or select Project > Add
External Block... from the menu. In the image below, notice the file types that are available
for importing.

2. Navigate to select the file to be imported into the project. Click Open to import the file.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 32

3. Some imported IP may have parameters that can be configured, such as bus widths.
Change the initial parameter value as appropriate for your design.

4. Some imported IP may not have the ports already grouped into easy to use interfaces. The
import dialog will have a check box to infer interfaces from these ports. If the interface
inference gives undesired results, remove the IP and import it again with the box
unchecked. If interface inference is usually not desired, clear the Infer Interfaces checkbox
in the Settings Dialog.

The IP is inserted in the project, where it can be connected to other blocks.

The block name appears in the User IP External Block region for reuse as shown above. To
remove a block, right-click the block name and choose Remove.

• If the User IP file is moved, the icon appears at the top of the block
indicating the file cannot be found. Once the file is moved back, or the

path is changed, right-click the block to reload the IP and remove the
icon on the block.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 33

• If the underlying code for the IP is changed, the icon can appear to
signify an alert condition. Once the code is corrected, the block can be

reloaded to remove the icon on the block.

• If there is an error in the IP, the icon appears. Hover the mouse cursor
over the icon to see what the error is.

Importing an HDL file with Dependencies
If you want to import an HDL file with dependencies, you will need to create an IP-XACT file for
the desired HDL entity following the instructions in the IP Developers Guide . Then, inside the
<ipxact:fileSet> where the source files for “synthesis” are defined, add as many

<ipxact:file> entries as required to define the source VHDL file along with all the files that it

depends on.

For example, assume that the desired component is called “Filter” and is defined in
“C:\MyIPs\FilterIP\FilterTop.vhd”. Then, assume that the implementation of “Filter”

depends on another component, named “Tap”, which is defined in
“C:\MyIPs\FilterIP\Tap.vhd”. To successfully load the component “Filter” in PathWave

FPGA, you need to create an IP-XACT (e.g. in "C:\MyIPs\FilterIP\Filter.xml") file with

the following statements in the fileset entry:

Code Block 1 IP-XACT fileset snippet

<ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>FilterTop.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 <ipxact:file>

 <ipxact:name>Tap.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

</ipxact:fileSets>

When the IP-XACT file is created, you can use the process above to load the IP-XACT xml file.

Importing an HDL file without Dependencies
When an HDL file is imported without dependencies, only the module or entity declaration will
be examined in order to determine the ports that will be available for connections within a
PathWave FPGA graphical design. Any syntax issues or errors that may exist elsewhere in an
imported HDL file may not be detected or flagged.

For Verilog HDL files, module declarations should be limited to the features and format shown in
the following examples:

module foo (clk, d_out);

input wire clk;

output reg [31:0] d_out;

endmodule

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 34

or:

module foo

#(

 parameter myParam1 = 14,

 parameter myParam2 = 32

)

(

 input wire clk,

 output reg [31:0] d_out

);

endmodule

or:

module mymodule(input clk,

 input [7:0] inBus, // Comments are okay

 output outWire,

 output [15:0] outBus);

endmodule

For VHDL source files, entity declarations should be limited to features shown in the following
example:

library ieee;

use ieee.std_logic_1164.all;

entity foo is

 generic (

 width : integer := 4

);

 port (

 clk : in std_logic;

 d_out: out std_logic_vector(width-1 downto 0)

);

end foo;

A list of known limitations for IP import can be found in VHDL Support and Verilog Support
sections.

PathWave FPGA IP Repository

PathWave FPGA includes some IP blocks that a user can incorporate into their FPGA design.
The IP blocks are categorized into different libraries so that similar blocks are grouped together.
Below is a description of the IP blocks included in PathWave FPGA.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 35

Some of the IP blocks are designed so that they can optionally process multiple samples in the
same clock. This is called supersampling. For blocks that support this, there is a parameter
called supersample that denotes the number of parallel samples. For example, a 32 bit adder
with supersample=1 would add two 32 bit numbers. A 32 bit adder with supersample=2 would
add two pairs of 16 bit numbers. This can be useful when processing data at a higher sample
rate than the clock rate of the FPGA.

• Basic IP blocks

o Combiner

o Concat

o Concat_stream

o Cross_clk_domains

o Decombiner

o Delay

o Delay_stream

o Latch

o LatchClr

o Mux2, Mux4, Mux8

o Read_mux

o Reg_xN

o sign_extension

o sign_extension_stream

o slice

o slice_stream

• Connectors

o Axi4liteToMem

o Axi4Tomem

o AXIStream_Broadcaster

• Math

o Adder

o Adder_stream

o Comparison

o Integrator

o Integrator_stream

o Logic_NOT

o Logicgate

o Multiplier

o Multiplier_stream

o Saturator

o Saturator_stream

o Shift

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 36

o Shift_stream

• DSP

o Combine1toN

o Complex2Real / Real2Complex

o DecimateBy5

o DecimateBy5 Complex

o InterpolateBy5

o InterpolateBy5 Complex

o Lo

o Lo5_dc

o Lo5_uc

o Power2Decimator

o Power2Interpolator

• Memory

o DualPortRam

o DualPortRam_stream

o Mem_mux_2x

o Mem_mux_4x

o Streamer blocks (2 channels at 32 bits/channel) – Streamer32x2/Streamer32x2b

Basic IP blocks

Combiner

Combines N single-bit inputs into a single N-bit output vector.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 37

Parameters
Din width: Sets the number of single bit inputs. Variable from 1 to 64. Default is 8.

Concat

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout.

This module does not introduce extra delay.

Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Concat_stream

Streaming version of the concat block.

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout

This module does not introduce extra delay.

Note that both streaming inputs must assert and deassert tvalid at the same time.

Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 38

Cross_clk_domains

Logic to handle the crossing of signal levels and pulses to and from arbitrarily related clock
domains.

Logic high pulses on the input clock domain are synchronously transferred to logic high pulses
on the output clock domain. An output logic pulse will always have a pulse width of one
'clk_data_out' cycle, regardless of the pulse width of the input logic pulse.

Logic levels on the input clock domain are synchronously transferred to logic levels on the
output clock domain.

The transfer delay of signals from the input clock domain to the output clock domain depends
upon the frequency and phase relationship between the two clock domains. Input signal levels
are assumed to be relatively static compared with the clock frequencies. Input signal pulses
cannot be repeated until each pulse has fully propagated through the block. The 'rdy' output
signal should be used to determine when the block is ready to transfer an input pulse to the
output, especially if input signal pulses may otherwise occur in rapid succession. When a bit in
the 'pulses_in' input port is asserted high, the corresponding 'rdy' bit will be asserted low. When
the 'rdy' bit is again asserted high, the 'pulses_in' input may again be asserted high. The 'rdy'
output signal is synchronous with the 'clk_data_in' clock.

Regardless of the input and output clock frequencies, if a level input and pulse input are
asserted simultaneously, the corresponding level output will be asserted either simultaneous
with or before the pulse output is asserted.

Note that positive transitions are detected in the 'pulses_in' input to determine that a pulse input
has occurred. Consequently, if a 'pulses_in' input is asserted high and remains high, only one
pulse will be output.

'resetn_data_in' is an active low reset signal, synchronized to the 'clk_data_in' clock.

'resetn_data_out' is an active low reset signal, synchronized to the 'clk_data_out' clock.

Note that this block is available only for sandboxes which include more than one clock.

Parameters
pulses_width: Sets the data width of pulses_in, pulses_out and rdy

levels_width: Sets the data width of levels_in and levels_out

levels_reset_value: Sets the reset value of levels_out

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 39

Decombiner

Converts a single N-bit input vector into N single-bit output signals.

Parameters
Din width: Sets the Din data width. Variable from 1 to 64. Default is 8.

Delay

Delays input N cycles.

Parameters
bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.

latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 40

Delay_stream

Streaming version of the delay block.

Delays input N cycles.

Parameters
bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.

latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Latch

32 bit latch with write enable.

Parameters
Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.

LatchClr

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 41

Latch with clock enable and synchronous clear.

If nRst = 0, then Dout is set to the initialization value (typically 0).
If nRst = 1 and CE = 0, Dout remains unchanged.
If nRst = 1, CE = 1, and Clr = 1, Dout is set to the initialization value on the rising edge of clk.
If nRst = 1, CE = 1, and Clr = 0, Dout is set to Din on the rising edge of clk.

Parameters
Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.
Init: Sets the value that the latch resets/clears to. Default is 0.

Mux2, Mux4, Mux8

These are 2 to 1, 4 to 1, and 8 to 1 multiplexers. The value of the Sel input determines which of
the various In ports connect to Result.

These are combinatorial.

Parameter
width: Sets the bus width of the In ports and Result.

Read_mux

Read data from multiple sources.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 42

Address port is used to select one of N, 32 bit data sources. If the address index is larger than
the number of input data sources, this block will return zeros.

Parameters
Number of inputs: Sets the number of 32 bit data sources. Default is 2.

Reg_xN

Captures N, 32 bit data inputs and drives to outputs. The internal data register may be updated
through a write access on the 'mem' port indexed by the address value. The internal data
register may also be updated to the Din value by asserting the corresponding Din_v signal[n].
When both updates are attempted at the same time, the mem write value will take precedence.
The values of the internal data registers are driven out the Dout[n] ports.

Mem read access will return the value of the indexed internal data register.

The Dout_v[n] signal is asserted high for one clock period when new data is written. This is any
time a mem write occurs or when Din_v[n] is asserted.

Parameters
Number of Registers: Variable from 1 to 64. Default is 2.

Address width: Variable from 1 to 32. Default is 32.

sign_extension

Sign extends the input vector.

Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 43

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

sign_extension_stream

Sign extends the input vector.

Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

slice

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 44

slice_stream

Streaming version of the slice block.

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 45

Connectors

Axi4liteToMem

Converts Axi4Lite slave interface to PC_Mem master interface.

Parameters
Address width: Sets the AXI interface and Mem interface address width. Default is 8.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 46

Axi4Tomem

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 47

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 48

Converts Axi4MM slave interface to PC_Mem master interface.

Parameters
Address width: Sets the AXI interface and Mem interface address width. Default is 8.

AXIStream_Broadcaster

Broadcasts AXI4 streaming data from one master to multiple slaves.

Parameters
Tdata bitwidth, default is 32. Tuser bitwidth, default is 1.

Math

Adder

Signed adder.

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

Parameters
input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.

latch input: When enabled the data on the A and B inputs is latched. Default is no latch.

subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 49

Adder_stream

Signed adder.

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

Parameters
input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.

subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Comparison

Comparisons between inputs A and B.

Output is set to one when the comparison set by the operation parameter is true.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 50

Parameters
operation: Select between A==B, A!=B, A>B, A<B, A>=B, and A<=B. Default is A==B.

data size: Sets the bus width of the A and B inputs. Default is 16.

sign: Select when the data on the A and B inputs is signed. Default is unsigned.

Integrator

Data integrator.

When selecting signed input, sign extension is automatically applied.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 1 cycle by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

Integrator_stream

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 51

Data integrator with streaming interface.

When selecting signed input, sign extension is automatically applied.

The input samples are accumulated oly when the tvalid signal is asserted.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 1 cycle by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

Logic_NOT

Logic NOT operation.

Parameters
data size: Sets the bus width of the A and Dout ports. Variable from 1 to 1024. Default is 16.

Logicgate

Output is the logical operation between inputs A and B.

The operation parameter determines which logical operation is performed from AND, OR, XOR,
NAND, NOR, and XNOR.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 52

Parameters
data size: Sets the bus width of the A, B, and Dout ports. Variable from 1 to 1024. Default is 16.

operation: Selects one of the logic operations listed above. Default is AND.

Multiplier

Multiplier (DSP core).

Input lengths and signedness are configurable.

When both inputs are signed, output length is the sum of both inputs lengths minus 1.

This block adds a delay of 1 cycle.

Latch input increases the total delay by an additional clock cycle.

When the Dout width is less than Input A width + Input B width, Dout will consist of the lower
bits of the product.

Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

Latch input: Input data is latched when selected. Default is no latch.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 53

Multiplier_stream

Multiplier (DSP core).

Input lengths and signedness are configurable.

When both inputs are signed, output length is the sum of both inputs lengths minus 1.

This block adds a minimum delay of 1 cycle.

Pipeline increases the total delay by an additional clock cycle.

When the Dout tdata width is less than Input A tdata width + Input B tdata width, Dout will
consist of the lower bits of the product.

Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 54

Saturator

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Saturator_stream

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 55

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Shift

Signal shifter with configurable input size, direction and number of shifts.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Shift_stream

Signal shifter with configurable input size, direction and number of shifts.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 56

DSP

Combine1toN

Combines N AXI-streaming samples into one AXI-streaming sample that is N times wider. The
input is not supersampled while the output is supersampled by N.

Parameters
Tdata size: This sets the data width of Din_tdata. Dout_tdata will be N or N+1/2 times this value
in width.

Tuser size: This sets the data width of Din_tuser. Dout_tuser will be N or N+2 times this value in
width.

N: This sets how many input samples are combined into one output sample.

Add 1/2 to N: When selected, combine N+1/2 samples into the output rather than N samples.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 57

Complex2Real / Real2Complex

Converts between one complex stream of data using interleaved real and imaginary parts and
two separate streams, one for real and one for imaginary parts. These can be used to split off
the real and imaginary streams into different destinations or to combine two real streams into
one complex stream.

Parameters
Tdata size: This sets the data width of the real and imaginary parts of each sample.

Tuser size: This sets the tuser bits per sample.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 58

supersample: This sets the number of samples per clock in the input and output streams.

DecimateBy5

Decimate 5x, supersampled streaming input by a factor of 5. Decimation is achieved using a
polyphase, FIR filter.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream. There are User Data
Width bits for each of the five input samples.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream. If
User Data Width is greater than one, then the tuser input will have 5 * User Data Width bits and
the tuser output will have User Data Width bits.

Parameters
Data Width: This sets the input and output sample widths. Note the input tdata width is 5 x Data
Width bits

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

DecimateBy5 Complex

Decimate a complex, 5x, supersampled streaming input by a factor of 5. Decimation is achieved
using a polyphase, FIR filter. The real and imaginary parts of each sample are interleaved with

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 59

the real part occupying the less significant (lower bit number) word. The lower order 16 bits of
the output are real output data and the upper 16 bits of the output are imaginary output data.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream. There are User Data
Width bits for each of the five input samples.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream. If
User Data Width is greater than one, then the tuser input will have 5 * User Data Width bits and
the tuser output will have User Data Width bits.

Parameters
Data Width: This sets the input and output sample widths. Note the filter_in_tdata width is 10 x
Data Width bits, and the filter_out_tdata width is twice Data Width bits.

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

InterpolateBy5

Interpolate an input stream by a factor of 5. Interpolation is achieved using an oversampled, FIR
filter.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream.
There are User Data Width bits for each of the five input samples.

If User Data Width is greater than one, then the tuser input will have User Data Width bits and
the tuser output will have 5 * User Data Width bits.

Parameters
Data Width: Sets the bus width of filter_in_tdata. Default is 16.

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 60

InterpolateBy5 Complex

Interpolate a complex input stream by a factor of 5. Interpolation is achieved using an
oversampled, FIR filter.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream.
There are User Data Width bits for each of the five input samples.

If User Data Width is greater than one, then the tuser input will have User Data Width bits and
the tuser output will have 5 * User Data Width bits.

Parameters
Data Width: Sets the data width for each of the real and imaginary samples. Default is 16 (32
total bits for I and Q data). The filter_in_tdata will be twice this size and the filter_out_tdata will
be ten times this size.

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 61

Lo

Parameterized Local Oscillator. It handles supersampled or non-supersampled data, and either
the input and/or the output can be real or complex.

A and B control the local oscillator's frequency. Let S be the amount of supersampling, and let T
be the smallest power of 2 greater than or equal to S (so that S<=T<2S).
The LO frequency is given by f = fs * (A+B/510)/((S/T)*225). For a sample rate, fs, of 1 Gs/s, this
results in an even decimal frequency resolution of 0.1 Hz. Frequencies can be positive or
negative. Valid input ranges for A and B are such that -1/2 <= f/fs <= 1/2. Values of A and B that
are outside this range will give incorrect results.

Parameters
Tdata size: Sets the data width for each sample (real data) or for each of the real and imaginary
parts of each sample (complex data).

Tuser size: Sets the number of tuser bits per sample.

Complex Input: If set, then the input data is complex. If cleared, then the input data is real only.

Complex Output: If set, then the output data is complex. If cleared, then only the real part of the
output data is generated.

Supersample: This sets the supersample value and determines how many parallel samples are
processed at the same time.

Shift Direction: If Shift Direction = 0, the input is multiplied by ejωt (shift frequencies up).
If Shift Direction = 1, the input is multiplied by e-jωt (shift frequencies down).

Dither: Enables phase dithering to help convert spurious signals into more noise like signals
(default is Dither=1 or enabled).

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 62

Lo5_dc

Down converting Local Oscillator for use in digitizers with 5X supersampled ADCs. Input is 5X
supersampled real data while the output is a 5X supersampled data stream representing
complex output data.

A and B control the local oscillator's frequency.

The LO frequency is given by f = fs * (A+B/510)/(5*222). For a sample rate, fs, of 1 Gs/s, this
results in an even decimal frequency resolution of 0.01 Hz.

Parameters
Tdata size: This sets the data width of the samples. Since the data is 5X supersampled, the
input tdata width is five times this value and the output tdata width is ten times this value.

Tuser size: This sets the tuser bits per sample.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 63

Lo5_uc

Up converting Local Oscillator for use in sources with 5X supersampled DACs. Input is a 5X
supersampled data stream representing complex input data. Output is one 5X supersampled
real data stream.

A and B control the local oscillator's frequency.

The LO frequency is given by f = fs * (A+B/510)/(5*222). For a sample rate, fs, of 1 Gs/s, this
results in an even decimal frequency resolution of 0.01 Hz.

Parameters
Tdata size: This sets the data width of the samples. Since the data is 5X supersampled, the
input tdata width is five times this value and the output tdata width is ten times this value.

Tuser size: This sets the tuser bits per sample.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 64

Power2Decimator

This is a power of two decimation filter that operates on complex data. It accepts complex data
at up to one sample per clock. It filters and decimates the data by 2

N
 , where N=0...16.

Parameters
Tdata size: This sets the data width of the samples. Since both the input and output are
complex, the width of the tdata busses are twice this value.

Tuser size: This sets the tuser bits per sample.

Power2Interpolator

This is a power of two interpolation filter that operates on complex data. It accepts complex data
and interpolates and filters the data by 2

N
 , where N=0...16, generating up to one complex

output sample per clock.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 65

Parameters
Tdata size: This sets the data width of the samples. Since both the input and output are
complex, the width of the tdata busses are twice this value.

Tuser size: This sets the tuser bits per sample.

Memory

DualPortRam

Dual port Block Ram up to 1024 bits x 65536 positions using PC MEM interfaces.

Read latency is 1 cycle.

Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is
10.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 66

DualPortRam_stream

Dual port Block Ram up to 1024 bits x 65536 positions using AXI Streaming interfaces.

Note that the tvalid for Addr and Din inputs must be asserted high and low at the same time for
interfaces A or B.

Read latency is 1 cycle.

Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is
10.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 5.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 67

Mem_mux_2x

MEM interface 1 to 2 multiplexor.

Input address space size = 2^(Slave Address Width)

Output address space size = Input address space size / 2

MEM0 offset = 0.

MEM1 offset = Output address space size.

Parameters
Slave Address Width: Sets the address width on the Mem interfaces. Variable between 2 and
32. Default is 14.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 68

Mem_mux_4x

MEM interface 1 to 4 multiplexor.

Input address space size = 2^(Slave Address Width)

Output address space size = Input address space size / 4

MEM0 offset = 0.

MEM1 offset = 1*Output address space size.

MEM2 offset = 2*Output address space size.

MEM3 offset = 3*Output address space size.

Parameters
Slave Address Width: Sets the address width on the Mem interfaces. Variable between 2 and
32. Default is 14.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 69

Streamer blocks (2 channels at 32 bits/channel) –
Streamer32x2/Streamer32x2b

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 70

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 71

NOTE: The Streamer32x2 IP block uses the Vivado 2017.3 AXI DMA IP block. This IP block
has a 23 bit transfer length register. This means the largest DMA transfer size allowed is 8
Mbyte. If a larger transfer size is needed, use the Streamer32x2b IP block. The Streamer32x2b
IP block uses the Vivado 2018.1 AXI DMA IP block that has a 26 bit transfer length register.
This allows DMA transfers up to 64 Mbyte.

Signals
Signal
name

Width
(bits)

Description

clock 1 Clock input

nRst 1 Reset input (active low)

host Multiple Host AXI-MM slave interface with 17 address bits and 32 data bits for
random access to DDR memory.
This should be connected to a Host_aximm interface.

ctrl Multiple Control AXI-Lite slave interface with 12 address bits and 32 data bits
for accessing the control registers in the streamer and DMA blocks.
This should be connected to a Host_axilite interface.

DDR Multiple DDR AXI-MM master interface with 32 address bits and 128 data bits
for accessing DDR memory.
This should be connected to the DDR interface.

DDRtoStr0 Multiple The channel 0 AXI-streaming master interface. Data from the DDR will
stream out this interface using flow control.

DDRtoStr1 Multiple The channel 1 AXI-streaming master interface. Data from the DDR will
stream out this interface using flow control.

StrToDDR0 Multiple The channel 0 AXI-streaming slave interface. Data will stream from this
interface into DDR using flow control.

StrToDDR1 Multiple The channel 1 AXI-streaming slave interface. Data will stream from this
interface into DDR using flow control.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 72

Block Diagram

Ctrl Interface Address Map
It is anticipated that the RSP API will be used for controlling the Stream32x2 block. Hence low
level register access to this block should not be needed.

The Stream32x2 block consists of two copies of the Xilinx AXI DMA v7.1 block used in the
Direct Register Mode, a page register, and AXI interconnects. More information on the Xilinx
AXI DMA IP block can be found in the Vivado pg021 AXI DMA v7.1 LogiCORE IP Product
Guide.

The address space size of the DDR interface is considerably larger than the address space size
available from the Host interface. In order to access the full memory space of the DDR memory,
a page register is used to provide the MSBs of the DDR address (the LSBs of the address are
provided by the address provided by the Host interface). Since the host interface uses 17
address bits, only 217 bytes or 128 kB can be accessed without changing the page register. Bits
14:0 of the page register provides bits 31:17 of the DDR address.

Block Start Address
(Byte
Addressing)

Size
(Bytes)

Description

DMA0 0 1024 Control Registers for DMA channel 0

DMA1 1024 1024 Control Registers for DMA channel 1

Page 2048 4 Page Register that provides the MSBs of the address when
using the Host interface to access DDR (Write only)

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 73

Version 2052 4 Version register (Read only)

Version register
The version register is used to identify the version and configuration of the
Streamer32x2/Streamer32x2b IP block.

Bits Description

7:0 Version of the Streamer32x2/Streamer32x2b IP block

15:8 Number of streaming channels

23:16 Streaming channel data width (bits)

30:24 Transfer length register size

31 0=Simple DMA, 1=Scatter/gather DMA

PathWave FPGA Submodule

PathWave FPGA submodules allow you to define your design hierarchically. In addition, you
can share submodules in IP repositories.

The submodules that can be added to your design are displayed in the Submodule pane.

When a submodule is created from a sandbox project (see Creating a New Submodule Project),
it is added to the Submodule pane for that project.

Submodules may also be added to a project by selecting Project > Add External Block... and
navigating to the desired submodule project file with the .ksub filename extension.

Submodules can be visually distinguished from other blocks in the canvas with a small green
triangle in the bottom left corner of the block.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 74

Connecting Ports and Interfaces

Blocks can be connected together by their ports and interfaces. An interface is defined to be a
set of ports.

In the example above, this block has inputs to the left (input connectors point into the block),
and outputs to the right side of the block (output connectors point out of the block).

This block has two ports (small connectors), and the other connectors are interfaces (larger
connectors). The ports can represent one bit of data or a vector of bits. If the port represents a
vector of bits, the size can be identified next to its name.

When clicking on the "+" sign of an interface, such as “A” in the above image, the internal ports
of the interface appear shown below. Notice also that the “+” sign has changed to a “-“ sign.
Clicking on the “-“ sign hides the ports again.

When the "A" interface is connected to the output of a compatible interface, all individual signals
between the two interfaces are connected. If the design requires connecting an interface to an
incompatible interface or individual ports on another block, the ports within the interface may be
connected instead.

Connecting an Output Port to an Input Port

In the image below, connections are made by clicking on one port and then dragging the line
from it to another suitable port. This can be done by dragging a line from an output port to an
input port or by dragging a line from an input port to an output port. It may also be done by
dragging a line from an input port to an existing compatible connection.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 75

Connections can be created according to connection rules. For more information, refer
Connection Rules.

If a connection can be made from a connector, a new line appears from this connector to mouse
and the mouse cursor changes to the axis icon as shown below. Furthermore, the possible
target connectors are highlighted in blue for showing the different connection possibilities. See
the input ports on the lower block "Awg_0" shown below.

For finishing the connection, the end of the connection line is dragged by the mouse to a
compatible target connector. In this case, the mouse icon changes to the green connection icon.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 76

When the mouse button is released, the new connection is created.

Remove and Redraw operations
Right-click the line connecting the two ports to see two options: Remove and Redraw. Remove
will delete the connecting line.

For example, add a block between the two ports. Notice the line connecting the ports is no
longer straight.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 77

Delete the block that was just added and notice that the connecting line stays unchanged.
Right-click the line and select Redraw. The line will be straight again.

Disconnecting a Connection

Once a connection is created, the connection can be disconnected by right-clicking on the
connector, which displays the Disconnect option.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 78

Connecting Input Ports to a Literal Constant

If you want to connect a input port to a constant numeric value, you should connect the port to a
literal. Literals set 64-bit value constants at input ports. To insert a literal, right-click the port and
select the 'Connect to literal' command. You can set the value to an integer, hexadecimal, or
binary value:

• Integer: A integer number, negative numbers set a two's complement format. The range for
valid inputs is from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, or from
−(2^63) to 2^63 − 1

• Hexadecimal: A hexadecimal number using the characters 0 - F can be entered, followed
by an h; for example, Ah. The range for valid inputs is from 0h to FFFFFFFFFFFFFFFFh.

• Binary: Binary numbers can be added followed by a b, for example, 1010b.

Connection Rules

Ports
There are input ports and output ports. The input ports can have only one connection to an
output port. In this example, Din(15:0) has one connection.

The output ports can be connected to multiple input ports. In this example, Dout(15:0) output is
connected to three inputs.

Port Size Mismatches
If a wider output port is connected to a narrower input port, then the LSBs of the output port are
used to make the connection.

If a narrow output port is connected to a wider input port, the output port connects to the LSBs
of the input port. The remaining bits of the input port are set to zero.

In general, if the smaller of the two ports has N bits, then bits N-1...0 of the output port are
connected to bits N-1...0 of the input port. Any remaining output port bits are ignored, and any
remaining input port bits are set to zero.

In the second example shown above, both clk and rst will be connected to Dout(0).

Interfaces
Interfaces with the same type can be connected together as long as their data ports have the
same width. Therefore, interfaces of similar protocols can be put together with a single
connection. By connecting one interface to another interface, as shown below, all the
corresponding ports shown are connected. This removes the chore of having to connect each
interface port as shown below.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 79

Clicking on the "+" sign for either interface will expand the interface to show the underlying
ports. When an interface is expanded, clicking the "-" sign will collapse the port back to showing
just the interface name.

Connection between interface ports that have mismatched width, apart from data ports, is
handled the same way as it is described in section Port Size Mismatches.

Connecting Keysight interfaces to Xilinx interfaces
Keysight standard interfaces can be connected to Xilinx standard interfaces when appropriate
mappings exist. i.e. a Keysight AXI4 can connect to a Xilinx AXI4. If no appropriate mapping is
available, you cannot connect the interfaces.

Unconnected interface input ports
Input ports of an interface that are left without connection, either explicitly (by no connecting
anything to those) or implicitly (in the case of an interface connection, where the respecting
output port from the other interface is optional and not defined), will be initialized with the default
value specified in the interface's specification. If a value other than the standard default value
should be used for any of these ports, a literal with the desired value should be connected to
that port.

Special Cases
In some cases it is not possible to define the default value as per spec definition inside
PathWave FPGA. For example, the AXI4MM interface has some default values to depend on
the width of the data bus.

In the following table you can find the default values that PathWave FPGA is using:

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 80

Interface
Name

Port Default value from spec. Default value in
PathWave

AXI4MM awsize width of data bus in bytes as a power of 2, default
assumes a bus width of 32-bits

2

AXI4MM arsize width of data bus in bytes as a power of 2, default
assumes a bus width of 32-bits

2

Another Special case for AXI4MM is the ID ports. If the ID port is present on a slave AXI4MM,
the matching master port must have a width less than or equal to the size of the slave ID port.

This rule is enforced so that no subtle bugs are introduced into your schematic logic.

If this does not match your expectations and the interface master does not include this
port, you have to explicitly connect the unconnected input port to a literal with the
desired default value.

Naming Conventions

Within PathWave FPGA, things like Instance names and Register names must be unique and
valid HDL identifiers. Specifically they must follow these rules:

1. A name must start with an alphabetic character (A-Z or a-z).

2. A name can only consist of of alphanumeric characters and underscores (A-Z, a-z, 0-9, _).

3. A name must end with an alphanumeric character (A-Z, a-z, 0-9).

4. A name can not be a reserved word (listed below).

5. Names are not case sensitive. Thus myreg, MYREG, MyReg are all considered the same.

Reserved Words

The following are reserved words and can not be used as names:

abs, access, after, alias, all, always, always_comb, always_ff,

always_latch, and, architecture, array, assert, assign, assume,

attribute, automatic, before, begin, bind, bins, binsof, bit, block,

body, break, buf, buffer, bufif0, bufif1, bus, byte, case, casex,

casez, cell, chandle, class, clocking, cmos, component, config,

configuration, const, constant, constraint, context, continue, cover,

covergroup, coverpoint, cross, deassign, default, defparam, design,

disable, disconnect, dist, do, downto, edge, else, elsif, end,

endcase, endclass, endclocking, endconfig, endfunction, endgenerate,

endgroup, endinterface, endmodule, endpackage, endprimitive,

endprogram, endproperty, endsequence, endspecify, endtable, endtask,

entity, enum, event, exit, expect, export, extends, extern, file,

final, first_match, for, force, forever, fork, forkjoin, function,

generate, generic, genvar, group, guarded, highz0, highz1, if, iff,

ifnone, ignore_bins, illegal_bins, import, impure, in, incdir,

include, inertial, initial, inout, inout, input, inside, instance,

int, integer, interface, intersect, is, join, join_any, join_none,

label, large, liblist, library, linkage, literal, local, localparam,

logic, longint, loop, macromodule, map, matches, medium, mod, modport,

module, nand, negedge, new, next, nmos, nor, nor, noshowcancelled,

not, notif0, notif1, null, of, on, open, or, others, out, output,

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 81

package, packed, parameter, pmos, port, posedge, postponed, primitive,

priority, procedure, process, program, property, protected, pull0,

pull1, pulldown, pullup, pulsestyle_ondetect, pulsestyle_onevent,

pure, rand, randc, randcase, randsequence, range, rcmos, real,

realtime, record, ref, reg, register, reject, release, rem, repeat,

report, return, rnmos, rol, ror, rpmos, rtran, rtranif0, rtranif1,

scalared, select, sequence, severity, shared, shortint, shortreal,

showcancelled, sig, signal, signed, sla, sll, small, solve, specify,

specparam, sra, srl, static, string, strong0, strong1, struct,

subtype, super, supply0, supply1, table, tagged, task, then, this,

throughout, time, timeprecision, timeunit, to, tran, tranif0, tranif1,

transport, tri, tri0, tri1, triand, trior, trireg, type, typedef,

unaffected, union, unique, units, unsigned, until, use, uwire, var,

variable, vectored, virtual, void, wait, wait_order, wand, weak0,

weak1, when, while, wildcard, wire, with, within, wor, xnor, xor

Adding and Editing Comments

To add a comment:

1. Position the cursor within the project where the comment is to be inserted.

2. Right-click on a blank part of the canvas and select Insert Comment... .

3. Add text to the comment text box.

4. The comment can be moved by dragging it with the mouse. Notice the comment is in the
foreground and appears above the project elements.

5. On right-clicking the comment, the option to copy or remove is provided.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 82

6. Choose Copy, to create a duplicate comment.

7. Choose Remove, to delete the comment.

Naming Collisions

PathWave FPGA is using the concept of VLNV for identifying IP and reporting naming
collisions. VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-
XACT.

• Two IPs have the same name, but different VLNV. In this case, user will have to resolve
it using one of the workarounds.

• Two IPs have have the same VLNV, apart from the version field. In this case, PathWave
FPGA will give the user the option to upgrade/downgrade. Note that this option is not
available if the IPs are coming from an IP repository. In the latter case, user will have to
resolve it using one of the workarounds.

• Two IPs have the same VLNV, but different contents. In this case, PathWave FPGA will
give the user the option to update to the desired definition. Note that this option is not
available if the IPs are coming from an IP repository. In the latter case, user will have to
resolve it using one of the workarounds.

• Two IPs have the same VLNV and contents, but are stored in different location. In this
case, PathWave FPGA will use the last loaded location as the correct location of the IP.

• Two IPs have the same name, but they do not have a VLNV. In this case, user will have
to resolve it using one of the workarounds.

• Two IPs have the same name, but are coming from different import method. In this
case, user will have to resolve it using one of the workarounds.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 83

• An IP is using a name of a reserved word. In this case, a possible workaround is to
create a wrapper for that IP which will have a non-colliding name

Workarounds

When a name collision is detected, the user will have to take action and resolve it.

• Rename the IP to a non-conflicting name. This is simplest and fastest solution. However,
if the user is not the owner of the IP, it might not be feasible. In this case, the user has to
follow the second workaround

• Load only the IPs that are necessary for the project. This is by definition possible only if
the conflicting IPs are not needed at the same time in the design. Note that in the case of
unwanted IPs that are loaded through an IP Repository location, user has to either remove
the IP Repository location, which will also remove any other IP loaded from the same place,
or, if this is not possible, move the conflicting IP definition file (IP-XACT file) outside of the
IP repository location or any sub-directory.

• Create a wrapper entity/module for the failing IP. This option will only work if the reason
of the name collision is a reserved word or the name of the IP matches the name of a
sandbox interface. The wrapper entity has to use a non-conflicting name.

Configuring Submodule Interfaces

PathWave FPGA submodules contain interfaces to connect to blocks in the parent design.
When a submodule project is created, the Change Submodule Interfaces dialog will open
automatically. To open it again, select Project > Change Submodule Interfaces... or click the
Change Submodule Interfaces button in the Submodule I/O section of the main window. This
menu option and button will only appear when editing a submodule project.

Interface List

This table lists the interfaces in the submodule, with their name, interface type, and interface
role. When you select an interface in this table, it will be the target of any changes made with
the other controls in the dialog. Interfaces can also be reordered by dragging them to their
desired position within this table.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 84

Component Preview

This shows the submodule as it will appear when added to another design. Slave interfaces are
placed on the left, and Master interfaces are placed on the right. The interface that is selected in
the table above is colored blue.

Interface Control Buttons

When you click the Add button, you can select an interface from a list. This will add a new
interface of that type.

The Remove button will delete the selected interface.

The Up and Down buttons will move the selected interface in the table and the
Component Preview.

Name and Description

The Name field changes the name of the interface.

The text entered in the Description field is shown when adding instances of this interface to the
submodule. It is also shown in the Properties dialog for the interface when the submodule is
used in another design.

Interface Role

The Interface Role controls whether the interface will be a Master/output or Slave/input.
Master and Slave are defined in terms of using the submodule in another design, from the
outside looking in.

Category

The Category controls where the interface will appear in the Submodule I/O section of the
main window.

Parameters

Some interfaces have one or more parameters, which control the width of some of the ports in
the interface. In the example diagram, the AXI Lite interface has two parameters. Address Width
must be between 1 and 64 bits. Data Width has two options, 32 and 64 bits. The parameter
values are verified to be within the limits when you click the OK button. If they are not within the
limits, they must be corrected. If a parameter controls the width of an optional port and that port
is disabled, the parameter field will be disabled (grayed-out).

Optional Ports

Some interfaces have one or more optional ports. The check-box for each port determines
whether that port will be present in the interface. The Select All and Deselect All buttons will
enable or disable all optional ports.

Synchronous Properties

Some interfaces must be associated with a clock and reset. If there are any synchronous
interfaces in the submodule, there must be at least one clock and one reset. If there is more
than one clock or reset, then the Associated Clock or Associated Reset menu allows you to
choose the associated clock or reset for each interface.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 85

OK and Cancel Buttons

The OK button will apply the changes to the submodule interfaces. If there are any parameter
errors or missing associated clock/resets, you will need to correct them before the changes can
be applied.

The Cancel button will discard the changes to the submodule interfaces.

Changes to the Sandbox

After pressing Ok on the dialog, if there were no errors, the sandbox is automatically updated
with the new changes.

Removing an Interface
If an interface is removed, then all Submodule I/O blocks with that interface are removed.

Changing an Interface
If any modifications are made (except changing Interface Role), then those changes are made
reflected in all Submodule I/O blocks with that interface. This may result in connections being
lost if they were connected to an optional port which was removed.

Changing the interface role results in the Submodule I/O blocks with the interface being
removed.

Replacing an Interface
If you remove an interface and replace it with a compatible interface with an identical name,
then all Submodule I/O blocks that had the old interface are replaced with blocks that have the
new interface.

If you remove an interface and replace it with an incompatible interface with an identical
name, then all Submodule I/O blocks that had the old interface are removed as if the interface
was removed.

Currently the only interface types compatible with each other are axilite and aximm. They are
also considered compatible if the original interface type is the same as the new one (e.g. axilite
to axilite).

For example, you could replace an aximm named 'host' with an axilite called 'host' and it will
substitute the appropriate Submodule I/O blocks. But you could not replace an aximm named
'host' with a PC_MEM named 'host'.

Adding an Interface
The interface was just added, so no blocks with the interface will be in the Submodule.

DSP Library IP

Included in the PathWave FPGA IP Repository (PathWave FPGA IP Repository) is a library of
signal processing blocks that can be used to create things such is Digital Down Converters
(DDCs) or Digital Up Converters (DUCs). These blocks do functions such as frequency
translation (mixing with an internally generated local oscillator) and sample rate changes (both
decimation and interpolation). While all of these IP blocks are general purpose, some of them
are optimized for use in the M3xxx series of boards.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 86

Scope

The purpose of this document is to explain the operation of the signal processing blocks, the
purpose of their ports and interfaces, and how to modify the blocks via parameters. It is not
intended to explain the underlying signal processing theory of sample rate changes. It is
assumed the user has an understanding of basic signal processing such as the concept of
aliasing as well as an understanding of sample rate changes (decimation and interpolation).

Data Formats

These IP blocks operate on streaming data using the AXI-streaming bus interface as described
in Keysight Standard Interfaces. This data could be either arbitrarily long streams of data (e.g.
from an ADC) or a finite block of data (e.g. data read from DDR memory). These blocks support
variable data bit widths (controlled via parameters) with the default width being 16 bit data as
used in the M3xxx series of modules.

Sometimes the data is "supersampled". This means that multiple samples are processed for
every clock. This allows processing of data sample rates faster than the allowed clock rate of
the FPGA. In the M3xxx series of modules, the streaming sandbox interfaces (e.g. the ADC
data or the AWG data) is supersampled by 5. Thus on every clock, five 16 bit samples are
transferred using a 5*16 = 80 bit wide data bus. Note that this wider bus does not appear as 5
separate ports. The data for all five samples are combined into one wider bus. This shows up as
one TDATA bus that is 80 bits wide rather than five busses each being 16 bits wide. With
supersampled data, the least significant samples (e.g. bits 15:0) represent samples earlier in
time while the most significant samples represent samples later in time.

Many of these IP blocks operate on complex data. This means that each sample consists of a
real part and an imaginary part. Thus for complex data using 16 bit samples, the entire complex
sample uses 32 bits of data width. Both the real and imaginary parts of each complex sample
are sent on the same AXI-streaming bus in an interleaved fashion. The details of how
supersampled and/or complex data is encoded in the data stream can be found in Keysight
Standard Interfaces. For each complex sample, the real part occupies the less significant word
(e.g. bits 15:0) while the imaginary part represents the more significant word (e.g. bits 31:16).

For supersampled complex data the real and imaginary parts of a sample are kept adjacent in
the bus. Thus for 5X supersampled complex data, if (R0, R1, R2, R3, R4, R5, R6, R7, ...)
represents the real samples with R0 being earlier in time, and (I0,I1,I2,I3,I4,I5,I6,I7, ...)
represents the imaginary samples, as shown (time increasing from left to right):

R0 R1 R2 R3 R4 R5 R6 R7 ...

I0 I1 I2 I3 I4 I5 I6 I7 ...

then TDATA for one bus transaction would look like {I4,R4,I3,R3,I2,R2,I1,R1,I0,R0} where R0 is
the LSBs of TDATA and I4 is the MSBs of TDATA as shown:

TDATA(159:144) I4(15:0) I9(15:0) ...

TDATA(143:128) R4(15:0) R9(15:0) ...

TDATA(127:112) I3(15:0) I8(15:0) ...

TDATA(111:96) R3(15:0) R8(15:0) ...

TDATA(95:80) I2(15:0) I7(15:0) ...

TDATA(79:64) R2(15:0) R7(15:0) ...

TDATA(63:48) I1(15:0) I6(15:0) ...

TDATA(47:32) R1(15:0) R6(15:0) ...

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 87

TDATA(31:16) I0(15:0) I5(15:0) ...

TDATA(15:0) R0(15:0) R5(15:0) ...

These blocks support full AXI streaming flow control (forward flow control and backward flow
control). TVALID is the forward flow control signal, sent from Master to Slave, indicating that the
Master has valid data on TDATA. TREADY is the reverse flow control signal, optionally sent
from the Slave to the Master, indicating that the Slave is ready to accept data (if TREADY is not
used, then it is assumed that the slave can always accept data at any time). Data is transferred
when both TREADY and TVALID are asserted. Please see the the AXI4Lite specification for
more details.

These IP blocks support the optional AXI-streaming signals TUSER and TLAST in addition to
the main data bus TDATA. The connection or use of TUSER or TLAST is not required. These
signals may be ignored if they are not being used. The TLAST signal indicates the last sample
in a data block. It is passed through the IP block unchanged along with the data. TUSER bits
can be used to associate some data with some particular sample. The number of TUSER bits
per data sample can be changed from the default one via a parameter. Typically TUSER[0] is
used to mark or tag a sample with trigger or timestamp information.

In addition to the streaming interfaces, some IP blocks use the Vector interface for control
information. This might be the frequency value for a local oscillator or the bandwidth information
for an adjustable filter. This signals can be tied to constants or connected to a user controllable
register.

Detail IP Block Descriptions

Local Oscillator
The DSP library contains two local oscillator blocks, Lo5_dc which is designed for down
converter applications, and Lo5_uc which is designed for up converter applications. The
difference between these is that Lo5_dc has real input data and complex output data while
Lo5_uc has complex input data and real output data.

These blocks operate on 5X supersampled data, thus they process five samples in parallel. The
bit width of each data sample can be changed via the "Tdata size" parameter. Note that this
parameter denotes the width of each individual sample, not the 5X supersampled data width.
The width of the Lo5_dc X_tdata port will be 5 times the Tdata size parameter while the width of
the Y_tdata port will be 10 times the Tdata size parameter (since the output is complex while
the input is real, the output is twice as wide due to having both real and imaginary components
for each sample).

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 88

By default, there are 5 TUSER bits, one bit per sample. The number of TUSER bits per sample
can be changed via the "Tuser size" parameter. The TUSER and TLAST signals are not used
inside these blocks - they are just passed from input to output with the data.

The two input vectors A and B determine the frequency of the local oscillator. If the sample rate
is fs, then the LO frequency is fs * (A+B/510)/(5*222). Note that fs is the sample rate of the data,
not the clock rate of the FPGA which is 1/5 of the sample rate. The LO is designed so that with
a sample rate fs of 1 Gs/s, the LO can produce LO frequencies with a decimal frequency
resolution of 0.01 Hz. That is to say, any frequency that is a multiple of 0.01 Hz can be
produced without frequency error. The internal frequency value of the LO block is updated when
SetFreq is asserted. This allows A and B to be changed at different times and still have the LO
cleanly change frequencies. It can also be used to change the frequency of multiple LOs
synchronously if all the SetFreq signals are asserted at the same time. If this feature isn't
required, SetFreq can be tied high and the LO will change frequency whenever A or B changes.

Lo5_dc will multiply the real input stream X with the complex local oscillator and generate the
complex output stream Y. This block multiplies the real input by exp(j2π f t).

Lo5_uc will multiply the complex input stream X with the complex local oscillator and output the
real part of the result as the real output stream Y. This block multiplies the complex input by
exp(-j2π f t) and takes the real part for output. Since the input is complex, sufficiently large
values of the real and imaginary parts of X can result in a magnitude of the complex X being
larger than the full scale input value (for example if both the real and imaginary parts of X are
+full_scale, then the magnitude of X would be √2 times full_scale). In this case, the calculated
output may not fit within the full scale output range. If this happens, the output will be clamped
to ±full scale. Note: this will cause distortion so it is recommended that the magnitude of the
complex input be kept less than full scale.

DecimateBy5/InterpolateBy5
There are both real and complex versions of the DecimateBy5 and InterpolateBy5 blocks.
These blocks are used to convert between 5X supersampled data (5 samples per clock) and 1X
supersampled data (1 sample per clock).

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 89

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 90

The DecimateBy5 block first low pass filters the input to protect against aliasing and then
decimates by 5 (discarding 4 of every 5 output samples). The InterpolateBy5 block first
interpolates by 5 by inserting 4 zero samples between each input sample and then low pass
filtering to protect against aliasing. Both IP blocks use the same filter which has the frequency
response:

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 91

Note that the x-axis is in terms of the normalized frequency where 1 means fs/2. The passband
extends up to 0.125 with the stopband starting at 0.2. For example, the M3102 digitizer has a
sample rate of 500 Ms/s. Thus fs/2 is 250 MHz and the passband is +/- 31.25 MHz with the
stopband above 50 MHz. Note that these numbers are only for a sample rate of 500 Ms/s. For
other sample rates, the passband and stopband frequencies would scale accordingly.

Power2Decimator/Power2Interpolator
These blocks operate on non-supersampled (a maximum of 1 sample per clock) complex data,
and can decrease or increase the sample rate by 2N where N=0 to 16. (N=0 is a bypass mode
where the data is passed through the filter unchanged).

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 92

Conceptually, the Power2Decimator can be thought of as a set of 16 cascaded decimate by 2
stages (the internal design uses a more efficient architecture). Each stage first low pass filters
its input and then decimates by two. A MUX controlled by nDecim selects the output of one of
these filters.

The Power2Interpolator does the reverse. It can be thought of as 16 cascaded interpolate by 2
stages. Each stage first interpolates by 2 by inserting a zero between each input sample and
then low pass filters to eliminate aliased signals. In this case, nInterp selects which stage
receives the input data stream. All stages after that use the output of the previous stage.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 93

Both the Power2Decimator and Power2Interpolator use the same filter for each stage. This filter
has the frequency response shown:

Note that the x-axis is in terms of the normalized frequency where 1 means fs/2 where fs is the
higher sample rate for that stage. For decimators, this is the input sample rate while for
interpolators, this is the output sample rate. The passband is +/- 0.15 fs which is 60% of the
output Nyquist rate, while the stopband starts at fs/4. As an example, if the input sample rate to
the Power2Decimator is 100 Ms/s, the bandwidth of the first stage of decimation would be +/-
15 MHz sampled at 50 Ms/s. The bandwidth of the second stage of decimation would be +/- 7.5
MHz sampled at 25 Ms/s. The bandwidth of the third stage of decimation would be +/- 3.75 MHz
sampled at 12.5 Ms/s.

The bit width of each data sample as well as the width of the TUSER signal can be modified, if
needed, via parameters. Note that the Tdata size parameter denotes the bit width of each
component (real and imaginary) of each sample. Thus the width of the TDATA bus will be twice
the value of this parameter. The Tuser size parameter denotes how many TUSER bits are
associated with each (complex) sample.

The TUSER and TLAST bits are passed through the decimation stages along with the data.
Due to the filter response, there is no one output sample that corresponds to each input sample.
A input consisting of an impulse will result in a broad output consisting of the impulse response
of the filter. Thus tagging a particular input sample will result in an output sample being tagged
that corresponds to the group delay of the filter which is close to the midpoint of the impulse
response.

Since the output sample rate is less than the input sample rate (by a factor of 2N), any of 2N
different input triggers would result in the same output trigger. The output port DelayOut can be
used to determine which of these 2N input samples caused the particular output trigger. As the
trigger (TUSER[0]) signal propagates down the decimation stages, each decimate-by-two stage
records the state of the decimation when the trigger passes. To interpret DelayOut, after a
trigger has passed through the decimator, take the nDecim number of LSBs of DelayOut (i.e.
AND DelayOut with 2nDecim-1), and this represents the number of input sample periods that
needs to be added to the time of the marked input sample to get the time of the marked output
sample.

Combine1toN
Sometimes there is a need to combine multiple input samples into a wider output stream. One
example of this would be to convert non-supersampled data (i.e. data at a rate of at most one
sample per clock) into a supersampled output. The Combine1toN block will every N input
samples into one output where N can be an integer or a half-integer (e.g. 2-1/2). This can be

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 94

used to connect the non-supersampled output of the Power2Decimator to the supersampled
Daq1 port. The IP block's "N" parameter is the integer part of this multiplier. To combine N+1/2
inputs into each output, select the "Add 1/2 to N" parameter.

To convert a real, non-supersampled 16 bit data sample to a 5X supersampled 80 bit data
stream is straight forward. For every five 16 bit input samples, one 80 bit output is generated.
Things are more complicated when dealing with complex data. In that case, the input is 32 bits
wide (16 bits of real data, and 16 bits of imaginary data). To convert this to 80 bits wide, 2-1/2
input samples are collected for each output. So for an input of:

Din_tdata[31:16] I0 I1 I2 I3 I4 ...

Din_tdata[15:0] R0 R1 R2 R3 R4 ...

Then the output stream would look like:

Dout_tdata[79:64] R2 I4 R7 ...

Dout_tdata[63:48] I1 R4 I6 ...

Dout_tdata[47:32] R1 I3 R6 ...

Dout_tdata[31:16] I0 R3 I5 ...

Dout_tdata[15:0] R0 I2 R5 ...

To set up the Combine1toN block for this case, the parameter "N" should be "2", and the
parameter "Add 1/2 to N" should be selected.

When the combination factor, N, is an integer, then the Dout_tdata is N times the size of
Din_tdata, Dout_tuser is N times the size of Din_tuser. However, if the combination factor is
N+1/2 the port sizing is more complicated (since ports can't be a half bit wide). Furthermore an
extra bit is added to the Dout_tuser to indicate whether the half sample is at the LSBs or MSBs
of the output For combining N+1/2 samples, Dout_tdata is N+1/2 times the size of Din_tdata,
Dout_tuser is N+1 times the size of Din_tuser + 1.

Logically in this case, R0 and I0 are parts of the same (complex) sample. Hence they share the
same Din_tuser bit(s). However, some samples, such as R2/I2 are output in different bus
cycles. The tuser bits for the R2/I2 input are output for both output bus cycles where R2 or I2
are output. So in this case the output would be (where Tn represents Din_tuser for sample n):

Dout_tuser[3] 0 1 0 ...

Dout_tuser[2] T2 T4 T7 ...

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 95

Dout_tuser[1] T1 T3 T6 ...

Dout_tuser[0] T0 T2 T5 ...

Dout_tdata[79:64] R2 I4 R7 ...

Dout_tdata[63:48] I1 R4 I6 ...

Dout_tdata[47:32] R1 I3 R6 ...

Dout_tdata[31:16] I0 R3 I5 ...

Dout_tdata[15:0] R0 I2 R5 ...

Complex2Real / Real2Complex
These blocks convert between one complex stream of data and two independent streams (one
for the real part, and one for the imaginary part) of data.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 96

In order to know how to correctly interleave the complex data, these blocks need to know the
size of the real data sample and any supersample value. The above pictures show a "Tdata
size" of 16 and a "Supersample" of 1 (no supersampling). This means that the Real and
Imaginary tdata busses are 16 bits wide, and the Cmplx tdata bus is twice this or 32 bits wide.

Serializer
The Serializer can be used to downsize an AXI4-Stream. The modulus parameter is the AXI4-
Stream downsizing factor. That is, the slave interface TDATA and TUSER signals are modulus
times larger than the master interface TDATA and TUSER signals. For each input transfer there

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 97

are modulus output transfers during which the slave TREADY signal is de-asserted for at least
(modulus - 1) clock cycles. AXI4-Stream Master interface TDATA and TUSER elements are
packed together on the AXI4-Stream Slave interface such that earlier in time elements occupy
the lesser significant position and those elements are then serialized onto the AXI4-Stream
Master interface. Any TLAST assertion transferred on the Slave interface occurs only on the last
corresponding transfer on the Master interface.

The design can be parameterized for custom modulus, number of Master Interface TDATA
bytes, and TUSER bits per byte. The example block above is parameterized for Master
Interface TDATA width of 8 bytes, 1 TUSER bit per byte, and a modulus (downsizing factor) of
2. Thus TDATA and TUSER are 2x larger for the AXI4-Stream Slave interface than for the
AXI4-Stream Master Interface.

Design Examples

To see how these IP blocks can be used to build up and down converters, consider two
example designs, one for a digital down converter, and one for a digital up converter. These
examples are built in a M3302, 500 Msps Combination AWG and Digitizer.

Digital Down Converter (DDC)
For a digitizer to analyzer signals with narrower bandwidth than the full digitizer bandwith, it is
common to employ a digital down converter. This allows the instrument to only look at a smaller
portion of the total spectrum. It can also filter out extraneous signals that may be located in
other frequency bands. It filters out noise and thus decreases the noise floor and increases the
signal to noise ratio.

The basic steps for down conversion are to first mix the input with a complex LO to frequency
translate the desired signal to baseband (DC). This is then low pass filtered to remove
extraneous signals and prevent aliasing in the decimation step. Then it is decimated by
discarding samples to lower the sample rate. Often the filter/decimate process is carried out in
multiple steps for implementation efficiency.

In this real time data flow, the ADCs (Analog_Channel_1) are always running. There is no way
to hold off or delay the ADC data. In this case, the data is "pushed" from the left to the right in
this diagram using forward flow control only. The reverse flow control, though present, isn't
really utilized.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 98

In this example, the input ADCs of the M3302 are running at 500 Msps. The FPGA only runs at
100 MHz, so the input (Analog_Channel_1) presents 5 ADC samples every FPGA clock. This is
called supersampling by 5. The five 16-bit input samples are combined into one 80 bit wide AXI-
streaming bus.

The Lo5_dc (Local Oscillator Down Converter) block does the frequency translation by
multiplying the real input by a complex quadrature LO signal. The output is a complex (real and
imaginary) stream with the same sample rate as the input. The Lo5_dc block is designed to
operate on data that is 5X supersampled. Since the output of the LO is complex, there is now
160 total data bits.

The DecimateBy5Complex block is really just a pair of real decimate by five blocks, one
operating on the real data, the other operating on the imaginary data. This block reduces the
data rate down to one sample per clock by first low pass filtering the input and then reducing the
sample rate by a factor of 5. The output is a complex stream with a sample rate of 100 Msps
and a bandwidth of +/- 31.25 MHz. Note that since the data is complex, negative frequencies
aren't necessarily the complex conjugate of the positive frequencies. Thus the signal has a total
bandwidth of 62.5 MHz.

This data is fed to a complex decimate by 2N block. This can reduce the sample rate and
bandwidth further (or be bypassed if N=0). The output of this is a complex stream of data at a
sample rate potentially less than the FPGA clock rate.

In this example, the output of the entire DDC is sent to the Daq1 port of the M3302. This sends
the data into DDR memory where the user can read it out and use it. Note that the output of the
Power2Decimator is at most one sample per clock (2 16-bit parts due to the data being
complex). The Daq1 port is expecting five 16 bit samples of data at a time. To convert between
these rates, the Combine1toN block is used to combine 2-1/2 input samples (each one 2*16 or
32 bits wide) into one 80 bit output that is sent to the Daq1 port.

This results in a data record in memory consisting of complex pairs, each consisting of the real
part of a sample and the imaginary part of the sample.

Digital Up Converter (DUC)
When a source or AWG is generating a narrow band signal, it is often easier to generate it at a
lower sample rate and then upsample it and move it to the correct frequency later. This is called
digital up conversion. Consider generating an AM radio signal. Rather then trying to generate
the RF signal directly, it is easier to generate the signal at baseband and then move it up to
whatever center frequency it needs.

The basic steps for up conversion are the reverse of the steps for down conversion. First the
input signal is interpolated to a higher sample rate by adding zeroes between each input sample
to increase the sample rate. This process introduces alias signals in the frequency domain. So
following the interpolation step, a low pass filter is used to remove these aliasing artifacts.
Finally this signal is mixed with a complex LO to translate it from baseband to the desired center
frequency. At this point, only the real part of the data is used, and this is sent to the ADCs. Just
as in the case of a down converter, often this interpolate/filter process is carried out in multiple
steps for implementation efficiency.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 99

In this real time data flow, the DACs (Dout1) are always running. There is no way to hold off or
delay the DAC data. New data needs to be provided every clock cycle. In this case, the data is
"pulled" from the right to the left in this diagram using reverse flow control only. The forward flow
control, though present, isn't really utilized. Since the AWG ports in the M3302 do not support
reverse flow control, they can't be use as data sources for the DUC. Instead, the Streamer32x2
block is used to pull data out of DDR memory as a data source.

Following the signal flow from the output back towards the input, the output DACs of the M3302
are running at 500 Msps. The FPGA only runs at 100 MHz, so the output (Dout1) presents 5
DAC samples every FPGA clock. This is called supersampling by 5. The five 16-bit output
samples are combined into one 80 bit wide AXI-streaming bus.

The Lo5_uc (Local Oscillator Up Converter) block does the frequency translation by multiplying
the complex input by a complex quadrature LO signal and taking the real part. The output is a
real stream with the same sample rate as the input. The Lo5_uc block is designed to operate on
data that is 5X supersampled. Since the input of the LO is complex, it is 160 total data bits.

The InterpolateBy5Complex block is really just a pair of real interpolate by five blocks, one
operating on the real data, the other operating on the imaginary data. This block increasees the
data rate up to five samples per clock by first inserting four zero samples between input points
and then low pass filtering to remove images. The input is a complex stream with a sample rate
of 100 Msps and a bandwidth of +/- 31.25 MHz. Note that since the data is complex, negative
frequencies aren't necessarily the complex conjugate of the positive frequencies. Thus the
signal has a total bandwidth of 62.5 MHz.

The input to the InterpolateBy5Complex block is generated by the complex interpolate by 2N
(Power2Interpolator) block. This can increase the sample rate and bandwidth from a lower
sample rate (or be bypassed if N=0). The input to this block is a complex stream of data at a
sample rate potentially less than the FPGA clock rate.

Since the input to the Power2Interpolator can be less than the FPGA clock rate, its data must
be sourced from something that supports reverse flow control (so that the Power2Interpolator
indicates when and how fast it needs new data). The AWG blocks of the M3302 do not support
reverse flow control and can not be used in this application. Instead, the data for the
Power2Interpolator is sourced from the Streamer32x2 block which reads data from DDR
memory.

The data record in DDR memory consisting of complex pairs, each consisting of the real part of
a sample and the imaginary part of the sample.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 100

VHDL Support

This page describes the supported VHDL types and constructs when importing a VHDL file into
PathWave FPGA. These limitations apply to the following flows:

• IP Packager, when using the "Autofill from File" or "Load from File" action.

• Imported User IP

It is recommended that you create IP-XACT for any VHDL IP that does not meet the conditions
described in this section.

Generics

All generics are treated as user-configurable parameters by PathWave FPGA.

The supported datatypes for generics are:

• bit

• boolean

• natural - treated as integer, but with minimum boundary set to 0

• positive - treated as integer, but with minimum boundary set to 1

• integer

• string

The supported operators for the default values of integer type generics are:

• + : addition

• - : subtraction

• * : multiplication

• / : division

Ports

All ports are treated as std_logic or std_logic_vector type by PathWave FPGA. The supported
datatypes are:

• std_logic

• std_logic_vector

• bit - treated as std_logic

• bit_vector - treated as std_logic_vector, with the same range

• boolean - treated as std_logic

• natural - treated as std_logic_vector(30 downto 0)

• positive - treated as std_logic_vector(30 downto 0)

• integer - treated as std_logic_vector(31 downto 0)

• character - treated as std_logic_vector(7 downto 0)

Port ranges can use generics and the supported operators described above. See Known Issues
below for limitations on port boundaries.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 101

Known Issues

• The value range of an Integer datatype of a port is ignored. Directly importing such a file in
PathWave FPGA will be completed successfully, however, the synthesis of any design that
contains that IP will fail. A workaround is to create an IP-XACT file for the VHDL file using
the IP Packager. Then, in the Physical Ports tab, modify the width to match the actual width
required.

• Some VHDL errors are ignored by PathWave FPGA when importing VHDL, but will fail
during synthesis. Vivado is the authority on whether a VHDL file is valid, not PathWave
FPGA.

• For vector ports, if the width range is defined as a 'to' range, the right boundary cannot be
larger than 64. There is no such limitation for 'downto' ranges.

• For vector ports with a 'downto' range, the right boundary must be literal '0'. For a 'to' range,
the left boundary must be literal '0'.

• Constants or datatypes imported from another package cannot be used in the entity
declaration.

• When Kactus2 is used for creating IP-XACT for a VHDL file, the VHDL entity declaration
must end with "end <entity_name>" and not "end entity."

Verilog Support

This page describes known issues when importing a Verilog file into PathWave FPGA. These
limitations apply to the following flows:

• IP Packager, when using the "Autofill from File" or "Load from File" action.

• Imported User IP

Known Issues

Importing Verilog IP into PathWave FPGA has a number of known limitations. It is
recommended that you create IP-XACT for any Verilog IP that does not meet the following
conditions. Note that only module declarations, port and parameter definitions and 'endmodule'
are checked. A violation of the following conditions will produce a "Syntax Error" message when
importing Verilog IP:

• Input/output port sizes may only contain constant values. They may not use parameters or
expressions, such as "input [WIDTH-1:0] x".

• When input/output port declarations come after the port list (not ANSI-style/Verilog-2001),
all port declarations must appear before any other declarations, such as parameter, reg,

or signal.

• Definition of port attributes is not supported, such as "(* attribute definition *)

input portName,".

• When the module declaration contains a parameter list, there must be a space between the
module name and the '#' for the parameter list.

• Parameters used in a module declaration may not be defined using parenthesis, unless
such a parameter is the last item in the parameter list. (for example, parameter myParam

= (6),)

• Port definitions in a module declaration may not be conditionally included using `ifdef /

`endif statements

• A module name must include one or more port definitions.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Designing Your FPGA Logic – 102

• To import Verilog source files into PathWave FPGA for use within a design, a module
declaration format should conform with of one of the following examples:

module foo #(parameter myParam1 = 14, myParam2 = 32) (input wire

clk, output reg [31:0] d_out); endmodule

or:

module foo (clk, d_out); input wire clk; output reg [31:0] d_out;

endmodule

• When Kactus2 is used for creating IP-XACT for a Verilog file, avoid comments of the form
"// input name;" or "// output name;" in the Verilog source file as these will cause

the Verilog parser to not work properly.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Generating the Bit File – 103

Generating the Bit File

• Synthesizing and Implementing your Design inside of PathWave FPGA

o Different FPGA Build options

o Monitoring the Build

o Exploring the Build Output

• Building your Design using Vivado

o Generating a Vivado Project

• Troubleshooting

o Drive mapping remaining after build completion

o Generated project synthesis fails because paths are too long

Synthesizing and Implementing your Design inside of
PathWave FPGA

After creating your new hardware project and adding your FPGA logic, you are ready to
generate the bit file that implements your design.

To build the bitfile based on your design, complete the following steps:

1. Select Module> Generate Bit File... or click the toolbar icon with tooltip "Generate Bit
File...". The FPGA Hardware Build dialog will appear.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Generating the Bit File – 104

2. Choose the sandbox that you want to target for this build.

3. Choose the Implementation build type. This will build the complete project, including the bit
file.

4. Click Run to start the build.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Generating the Bit File – 105

Different FPGA Build options

The FPGA Hardware Build has two different build options that affect what options are displayed
by the build dialog. The version of the BSP affects what options are available. The same basic
build types are available between each, but the newer BSPs add additional usability features.

Basic Build Types (common between all BSPs)

• Synthesis: Builds what is present in the sandbox only.

• Implementation: Builds what is present in the sandbox and places it into the static region of
the selected BSP and runs to bit generation.

• Implementation from DCP: Takes a provided DCP and places it into the static region of the
selected BSP and runs to bit generation.

Usability features (newer BSPs)

• Two new options are available, launch the Vivado GUI to monitor the build, and only run
project generation on a design.

• When project generation is selected, the Vivado GUI will always be launched.

• The GUI can be selected to launch regardless of project generation

Monitoring the Build

The FPGA Hardware Build dialog contains several panes to monitor the progress of the build:

• The Compile Output pane displays all build output.

• The Issues pane shows filtered build output. You can set the filters by checking the boxes
(Errors, Critical Warnings. etc.) at the top of the Issues pane. The filters can be set at any
time while the build is running or after it is complete.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Generating the Bit File – 106

• The progress bar shows the approximate progress of the build.

• The status bar at the bottom left shows what step of the build is being performed. When the
build is finished, the build status will be displayed.

• At the beginning of the build, a mapping will be created in the windows file system from the
build directory to an open drive letter.

o This mapping is used to ensure no windows path length limits are exceeded.

o The mapping will be removed at the completion of the build.

Exploring the Build Output

The Build directory field in the Configuration pane specifies the parent directory of the build
artifacts, including the generated bit file. The Program Archive of the generated bit file may be
recognized by its k7z file extension.

If the build was successful, the build artifacts are copied to an artifact directory for future
reference. Each set of build artifacts has its own time and date stamped directory. In this
example, one artifact directory could be named myProject.data\bin\myProject_2018-04-
04T14_21_55.

To learn more about the build output structure, refer to the Project Directory Structure section.

Building your Design using Vivado

PathWave FPGA provides a path to a Vivado flow for users who want to use advanced features
in Vivado, such as adding placement constraints.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Generating the Bit File – 107

Generating a Vivado Project

To start the advanced build flow and leave PathWave FPGA build environment, follow the steps
listed below.

1. Open a new or existing PathWave FPGA project, and navigate to the FPGA Hardware Build
dialog.

2. Select the sandbox you wish to implement with the sandbox drop down, and select the
Implementation build type.

3. Check the Project Generation Only checkbox.

4. Click Run.

a. If any build errors are encountered, solve the errors before continuing.

5. After synthesis of the sandbox completes, Vivado will launch and link the sandbox into the
static region.

a. The project folder for the design can be located in the .build folder of your project
with a timestamped folder.

6. A Vivado project is now created and ready for development.

a. When finished with any additional Vivado steps, proceed to the next point.

7. In the Tcl command line, type FinishBuild and press enter.

a. FinishBuild is a custom command that PathWave FGPA generates and puts into
the Vivado environment when the project is created.

b. If any problems are encountered, solve them and repeat this step

8. If no errors are found, the build will finish and the build outputs will have been generated in
the project folder that this project resides in.

9. Close Vivado and return to PathWave FPGA.

At this point, PathWave FPGA will detect that Vivado has closed and will end the build process.
The build outputs will be captured and stored in a timestamped .data folder.

Troubleshooting

In this section, we will discuss potential issues that can arise during the build process and
possible solutions to those problems.

Drive mapping remaining after build completion

If the drive mapping that is established at the end of a build is not cleaned up successfully at the
end of the build, either of the following can be done to remove the mapping.

• Open CMD

• Run "subst /D {drive letter}:"

or

• Restart your machine

Either of the above methods will remove the drive mapping from your machine.

Generated project synthesis fails because paths are too long

PathWave FPGA maps the build directory at the start of every build, but generated projects do
not have this same feature. If your generated project fails synthesis because of windows paths
exceeding 260 characters in length, do the following steps.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Generating the Bit File – 108

• Close Vivado project

• Open CMD

• Run "subst {Unmapped Drive Letter}: {Working Directory}"

• Navigate to new mapped drive and open Vivado project.

Your Vivado project will now have a shorter path and should get around the windows path
length limit.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Verifying the Bit File – 109

Verifying the Bit File

After you generate your FPGA bit file, you are ready to deploy and verify it on the FPGA. The
Board Support Package for your FPGA supplies the run-time support package (RSP) C API that
provides programmatic control of the FPGA. Using the RSP you can create a C application to
verify your bit file. Note, you will need Visual Studio C++ and CMake, please see the System
Requirements for more details.

The RSP documentation and example program are provided in a separate Help area available
from the Help > Programmer's Guide menu.

After you have verified the bit file, you are ready to deploy it in a measurement application.
Please consult your instrument driver manual to learn how to integrate the bit file into your
custom measurement application.

https://confluence.it.keysight.com/display/pf/System+Requirements
https://confluence.it.keysight.com/display/pf/System+Requirements

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Advanced Features – 110

Advanced Features

• Command Line Arguments

• Migrating a design to a new BSP

Command Line Arguments

When PathWave FPGA is launched from a command line or script, there are a number of
arguments to create or load projects, and control how the application operates.

Usage: PathWave_FPGA [--project/-p/<no_switch> <ProjectFile (*.kfdk)>]

[--bsp/-b <BspName>] [--version/-v <BspVersion>] [--template/-t

<TemplateName>] [-c <OptionName> <OptionValue>] [--retarget/-r

<ExistingProjectFile>] [--generate/-g <generationType>]

<no_switch>

or

-p [--project]

Path to project file to open or create (*.kfdk)

-b [--bsp] Name of the BSP

-v [--version] Version of the BSP

-t [--template] Name of the BSP template to use

-r [--retarget] Path to existing project (*.kfdk) to retarget to different BSP configuration

-c Name/Value configuration option pairs for the specified BSP, separated by
space

-g [--
generate]

Type of generation: synthesis, implementation

-h [--help] Print usage message

• For creating a new project, the <ProjectFile> and <BspName>
arguments are required. The rest of the BSP options are needed only to
distinguish different configurations of the same BSP.

• If there is no BSP matching the provided <BspName>, a list of available
BSP names is displayed.

• If there are more than one configurations that match the provided
arguments, or no configuration that matches them, a list of available
configurations is displayed.

• If the '--generate' option is used, the application will close automatically
after the completion of the generation build.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Advanced Features – 111

• The project path can be specified without any switch. However, in that
case, it should not be specified after the '-c' switch arguments, as it will
be translated, erroneously, as a configuration option

• The '--retarget' and '--template' switches cannot be used together

Examples

• Start GUI:

PathWave_FPGA

• Open project:

PathWave_FPGA path/to/myExistingProject.kfdk

• Open project and implement it (application will close automatically after the completion of
the build):

PathWave_FPGA path/to/myExistingProject.kfdk -g implementation

• Create a new project from template and open it:

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -v 03.67.00 -c

channels 2 -c fpga 7k325 -c clock Variable --template Default

• Create a new project from template and synthesize it (application will close automatically
after the completion of the build):

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -c channels 2 -c fpga

7k325 -c clock Variable --template Default -g synthesis

• Retarget an existing project to different BSP configuration:

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Advanced Features – 112

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -c channels 4 -c fpga

7k410 -c clock Variable --retarget path/to/existingPrj.kfdk

Migrating a design to a new BSP

This topic lists the steps to retarget an existing hardware project to a different BSP.

1. Select File > Retarget Project.

2. Select an existing PathWave FPGA Project File. Click Next.

a. If you begin retargeting while a project is open, the existing project will be selected.

3. Choose the Board Support Package for the target hardware module and click Next.

a. If multiple board options are available, select the configuration of the BSP you want
to use.

4. A summary of the project details is displayed. Click Finish.

5. A dialog will appear informing you of a project version change.

a. A backup of your original file is created at this time.

6. The retargeted project will open, and any IP blocks that are now invalid with the retargeted
project will have a red 'x'.

Command Line

You can also retarget your project using the command line, for more
details see Command Line Arguments.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 113

IP Developers Guide

PathWave FPGA allows a range of file formats (e.g. VHDL, Verilog, IP-XACT, etc.) for importing
IP for usage within a project. Among those formats, the recommended one, that optimizes the
support of IP within the software, is IP-XACT. By the usage of this format, PathWave FPGA
allows a set of features and conveniences to be applied which include, among others, packing
ports to interfaces, simplifying components connectivity, documenting IP usage, allowing
specification of dependencies (e.g. libraries, constraints, documentation, simulation files),
increasing validation on aspects like hardware compatibility. In this guide, instructions on how
an IP-XACT file should be created for an IP, in order to be successfully imported in PathWave
FPGA, are provided.

• Generation of IP-XACT file

• IP Repositories

Generation of IP-XACT file

IP-XACT is an IEEE 1685-2014 standard which defines a set of xml schemas which allow the
description of IP. For more information on IP-XACT, please consult the manual IEEE 1685-2014
standard. As explained earlier, PathWave FPGA is using this file format to improve the usability
of IP within the software. PathWave FPGA is supporting a subset of the elements defined in the
IP-XACT standard along with custom defined elements. A detailed description of which
elements are supported and how they should be used is provided in section IP-XACT file
composition.

Since the process of creating an IP-XACT file can be tedious and error-prone, PathWave FPGA
is coming along with a software tool, IP Packager, that allow IP developers to quickly and
effectively create IP-XACT files for their IP. A detailed description of the usage of this tool is
explained in section IP Packager.

IP Repositories

IP repositories are directories that contain all the artifacts required to describe an IP. For an IP
to be discovered by PathWave FPGA, an IP-XACT file (of the IEEE 1685-2014 standard) is
required. To load an IP repository, use the Settings Dialog.

IP-XACT file composition

Definition of the IP-XACT file

For an IP-XACT file to correctly describe an IP, the guidelines described below should be
followed:

• the IP-XACT file should follow the IEEE 1685-2014 standard

• the root element should be an ipxact:component

• the vendor name (element ipxact:vendor, first child of ipxact:component) should be

equal to the internet domain of the vendor of the IP (for example, for Keysight Technologies
this will be keysight.com)

• the name of the library (element ipxact:library, first child of ipxact:component) will

be the name of the library the IP belongs to. This name is also used inside PathWave
FPGA for categorizing the IPs

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 114

• the name (element ipxact:name, first child of ipxact:component) should be the same

as the name of the IP ("module name" in Verilog, SystemVerilog and SystemC, or "entity
name" in VHDL)

• if the IP uses Keysight Standard Interfaces, these should be described using
ipxact:busInterface elements

• the mappings between logical ports of the busInterfaces to the physical ports of the IP

should be one-to-one. This means that one physical port maps completely (same width,
direction) and only to one logical port

• the files that are necessary for an IP to be included in a build process (synthesis,
implementation, bit generation) should be defined inside an ipxact:fileset component,

named "synthesis".

A detailed description of all the elements that are required by PathWave FPGA in order to
identify correctly an IP is given in the following table. For more information on the various
elements that are supported by IP-XACT, please consult the manual IEEE 1685-2014 standard.

Element Parent Element Content

ipxact:component <root> This is the root element of the XML file

ipxact:vendor ipxact:component Vendor's name. Should be equal to the
internet domain of the vendor of the IP (e.g.
keysight.com)

ipxact:library ipxact:component The name of the library the IP belongs to

ipxact:name ipxact:component The name of the IP. Should be the same as
the name of the IP in the source file (i.e.
module name in Verilog, SystemVerilog and
SystemC, or *entity name* in VHDL)

ipxact:version ipxact:component The version number of the IP.

ipxact:busInterfaces ipxact:component Contains a list of ipxact:busInterface elements

ipxact:busInterface ipxact:busInterfaces Contains information about a used Keysight
Standard Interface

ipxact:name ipxact:busInterface The name of the Interface that is used in this
IP

ipxact:busType ipxact:busInterface The type of the Interface that is used in this
IP. This essentially is the VLNV of the
Keysight Standard Interface to be used. This
should match one of the bus definitions (IP-
XACT files with <ipxact:busDefinition> as the
root element) defined by PathWave FPGA.
See Keysight Standard Interfaces for more
information

ipxact:abstractionTypes ipxact:busInterface Contains a list of ipxact:abstractionType
elements. PathWave FPGA will only support
one, the first

ipxact:abstractionType ipxact:abstractionTypes Contains information about a used Keysight
Standard Interface and the mapping to the
physical ports

ipxact:abstractionRef ipxact:abstractionType The type of the Interface definition that is
used in this IP. This essentially is t he VLNV

https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 115

Element Parent Element Content

of the definition of the Keysight Standard
Interface to be used. This should match one
of the abstraction definitions (IP-XACT files
with <ipxact:abstractionDefinition> as the root
element) defined by PathWave FPGA. See
Keysight Standard Interfaces for more
information

ipxact:portMaps ipxact:abstractionType Contains a list of ipxact:portMap elements

ipxact:portMap ipxact:portMaps Contains information about a specific port
mapping

ipxact:logicalPort ipxact:portMap Contains information about the logical port
(port defined in the abstractionDefinition of the
enclosing abstractiontype) that participates in
the port mapping

ipxact:name ipxact:logicalPort The name of the logical port (As this is
defined in the abstractionDefinition for the
selected Interface Type)

ipxact:physicalPort ipxact:portMap Contains information about the physical port
(port of the IP) that participates in the port
mapping

ipxact:name ipxact:physicalPort The name of the physical port (As this is
defined in the ipxact:ports section in the same
file)

ipxact:model ipxact:component Contains information about the modeling of
the IP

ipxact:ports ipxact:model Contains a list of ipxact:port elements, which
represent the physical ports of the IP

ipxact:port ipxact:ports Contains information about a specific physical
port

ipxact:name ipxact:port The name of the physical port. This should
match the name defined in the source HDL
file

ipxact:wire ipxact:port Contains information about the physical
representation of a physical port

ipxact:direction ipxact:wire Specifies the direction of this port: in for input
ports, out for output ports

ipxact:vectors ipxact:wire Contains a list of ipxact:vector elements.
PathWave FPGA will only support one, the
first

ipxact:vector ipxact:vectors Specifies the dimensions for a non-scalar port

ipxact:left ipxact:vector Specifies the left range for the bit slice used to
map a port vector to the bus interface

ipxact:right ipxact:vector Specifies the right range for the bit slice used
to map a port vector to the bus interface

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 116

Element Parent Element Content

ipxact:fileSets ipxact:component Contains a list of ipxact:fileSet elements

ipxact:fileSet ipxact:fileSets Contains information about a specific set of
files. Can contain one or multiple ipxact:file
elements

ipxact:name ipxact:fileSet The name for this set of files.

ipxact:file ipxact:fileSet Contains information about a specific file

ipxact:name ipxact:file The path to the file. This should be relative to
the path of the current IP-XACT document

ipxact:fileType ipxact:file Describes the type of file. PathWave FPGA
understands one of the following names:

• vhdlSource: It is a VHDL source file

• verilogSource: It is a Verilog source file

• systemVerilogSource: It is a
SystemVerilog source file

• user: It is a user defined source,
described by the attribute "user"

user attribute of
ipxact:fileType

Can be:

• xci: Xilinx Core Instance

• dcp : It is a Vivado design checkpoint file

ipxact:description ipxact:component A short description of the IP

Keysight Standard Interfaces
The bus interfaces that are currently supported by PathWave FPGA to be used inside an IP
component definition are described as Keysight Standard Interfaces. Each of these interfaces
has IP-XACT definitions, which are defined by, and installed with, PathWave FPGA.

More specifically, for each interface, two IP-XACT files are defined:

• the Bus Definition: IP-XACT file with ipxact:busDefinition as root element

• the Abstraction definition: IP-XACT file with abstractionDefinition as root element

The Bus Definition is used to define the high-level details of an interface, such as if is
addressable or not, if it supports direct connection between a master and a slave, etc.

Code Block 2 Example Bus Definition for AXI4-Stream interface

<ipxact:busDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014" xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014/http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>interfaces</ipxact:library>

 <ipxact:name>axis</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:directConnection>true</ipxact:directConnection>

 <ipxact:isAddressable>false</ipxact:isAddressable>

</ipxact:busDefinition>

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 117

The Abstraction Definition is used to define the low-level details of an interface, such as the
port and the parameter list.

Code Block 3 Example Abstraction Definition for AXI4-Stream interface

<ipxact:abstractionDefinition

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014/http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>interfaces</ipxact:library>

 <ipxact:name>axis.absDef</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busType vendor="keysight.com" library="interfaces" name="axis"

version="1.0"/>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:logicalName>tdata</ipxact:logicalName>

 <ipxact:wire>

 <ipxact:qualifier>

 <ipxact:isData>true</ipxact:isData>

 </ipxact:qualifier>

 <ipxact:onMaster>

 <ipxact:presence>optional</ipxact:presence>

 <ipxact:width>64</ipxact:width>

 <ipxact:direction>out</ipxact:direction>

 </ipxact:onMaster>

 <ipxact:onSlave>

 <ipxact:presence>optional</ipxact:presence>

 <ipxact:width>64</ipxact:width>

 <ipxact:direction>in</ipxact:direction>

 </ipxact:onSlave>

 <ipxact:defaultValue>0</ipxact:defaultValue>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:logicalName>tvalid</ipxact:logicalName>

 <ipxact:wire>

 <ipxact:onMaster>

 <ipxact:presence>required</ipxact:presence>

 <ipxact:width>1</ipxact:width>

 <ipxact:direction>out</ipxact:direction>

 </ipxact:onMaster>

 <ipxact:onSlave>

 <ipxact:presence>required</ipxact:presence>

 <ipxact:width>1</ipxact:width>

 <ipxact:direction>in</ipxact:direction>

 </ipxact:onSlave>

 </ipxact:wire>

 </ipxact:port>

 :

 :

 :

 </ipxact:ports>

</ipxact:abstractionDefinition>

Managing Multiple Clocks and Resets
PathWave FPGA needs to know which clock synchronous interfaces use. If there is only one
clock in an IP block's definition, then there is no ambiguity. However, if there is more than one
clock interface, then the tools need to know which clock corresponds to which interfaces. To do
this, one adds the ASSOCIATED_BUSIF parameter to the bus interface definition of each clock
interface. The value of the ASSOCIATED_BUSIF parameter is a colon separated list of the
names of the interfaces that use that clock. This should include all the synchronous interfaces

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 118

(things such as AXI and PC_MEM interfaces) that use that clock. If every synchronous interface
uses the same clock, then the ASSOCIATED_BUSIF can be set to the value * as a wildcard to
denote all interfaces.

Additionally, reset signals are usually synchronous with a clock in order to generate clean reset
events. If there are more than one clock and more than one reset signal, then PathWave FPGA
also needs to know which reset signal is associated with a particular clock. To do this, one adds
the ASSOCIATED_RESET parameter to the bus interface definition of the pertinent clock
interface. The value of the ASSOCIATED_RESET parameter is the name of a single reset
interface that should be used with that clock. Note that while ASSOCIATED_BUSIF can accept
multiple colon separated names or the * wildcard, ASSOCIATED_RESET can only be a single
name.

Parameterizing IP Designs
For added generality, IP-XACT standard allows the usage of parameters to control various
aspects of the IP block's definition, so that the same block may be used with different
configurations. These parameters can be simple constants such as 16, or they can be
mathematical expressions involving multiple constants and/or other parameters. The format of
expressions in IP-XACT are detailed in Annex C of the IP-XACT 1685-2014 standards
document. The format is based on System Verilog's expression syntax.

IP-XACT provides different ways to define parameters, however, in the context of PathWave
FPGA, two methods are currently supported:

• Component Parameters

• Module Parameters

The following table summarizes the elements/attributes that PathWave takes into account when
parsing an IP-XACT file, with respect to the parameters:

Element/Attribute Parent Element Content

ipxact:parameter

(or
ipxact:moduleParameter)

ipxact:parameters

(or
ipxact:moduleParameters)

The root element to define a parameter.
It requires the definition of attributes and
children element for the proper
description of a parameter

resolve attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Can take one of the values: "user",
"immediate" or "generated".

To specify that a parameter should be
configured by the user of the IP, the
value "user" should be used. This will
also display the parameter in the
properties dialog of an IP inside
PathWave FPGA

This attribute defaults to "immediate" if
not defined

type attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Defines the datatype of the value.
Possible values are: "int", "bit", "byte".
For a complete list, please refer to IP-
XACT 1685-2014

parameterId attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Defines a unique (in the context of the
IP-XACT file) ID for this parameter. This
ID should then be used in any
expression required within the file

ipxact::name ipxact:parameter The name of the parameter

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 119

Element/Attribute Parent Element Content

(or
ipxact:moduleParameter)

ipxact:value ipxact:parameter

(or
ipxact:moduleParameter)

The default value (or expression) of the
parameter

Component Parameters
Parameters defined as children of the elements path component->parameters. These can be
used throughout the IP-XACT document to configure any aspect of the file (can be used in any
field that accepts expressions as values, e.g. other parameter values, port ranges, port
presence etc.)

<ipxact:component>

 :

 :

 <ipxact:parameters>

 <ipxact:parameter resolve="user" type="int"

parameterId="gen_input_length" >

 <ipxact:name>gen_input_length</ipxact:name>

 <ipxact:value>3*uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter type="int"

parameterId="uuid_f4a7c3f8_a1b3_496a_9730_17d721278396" >

 <ipxact:name>output_length</ipxact:name>

 <ipxact:value>2*gen_input_length</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter resolve="user" type="int"

parameterId="uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15" >

 <ipxact:name>supersample</ipxact:name>

 <ipxact:value>1</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 :

 :

</ipxact:component>

Notes:

• The attribute resolve="user" indicates that these parameters are ones that the user can
change when instantiating the IP block. If the parameter should always be calculated from
other values or remain fixed, the attribute resolve="immediate" should be used. In that case
the user will not be given the option of modifying the value of the parameter.

• The parameterId is the one used inside an expression (not the ipxact:name), in which a
parameter participates (see ipxact:value of parameter gen_input_length). However, if the
ipxact:name of the parameter is unique throughout the document, it can also be used as
parameterId. This way it is easier to construct expressions using parameters (see
ipxact:value of parameter output_length)

• The value of output_length parameter shall not be modifiable directly by user input (as it
does not contain the attribute resolve set to "user"), rather, indirectly, through the
input_length parameter, as its expression implies (i.e. 2*gen_input_length)

• The value of gen_input_length parameter is defined as user modifiable. That means that
the expression shall not play any role, other than defining the default value. Therefore, if a
user selects a value of "10" for this parameter, and a value of "5" for the parameter
supersample, the final value of gen_input_length will be "10" and not "15" (3*supersample)

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 120

Module Parameters
Parameters defined as children of the elements path component->model->instantiations-
>componentInstantiation->moduleParameters. These are more specific to a Module Definition.
Represent the generics of a VHDL entity, or the parameters of a Verilog module.

Code Block 4 Example Module Parameters Definition

<ipxact:component>

 :

 :

 <ipxact:model>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>flat_vhdl_component</ipxact:name>

 <ipxact:language>vhdl</ipxact:language>

 <ipxact:moduleName>parameterizedIp</ipxact:moduleName>

 <ipxact:moduleParameters>

 <ipxact:moduleParameter type="int"

parameterId="input_length" resolve="user">

 <ipxact:name>input_length</ipxact:name>

 <ipxact:value>3*supersample</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter type="int"

parameterId="output_length">

 <ipxact:name>output_length</ipxact:name>

 <ipxact:value>2*input_length</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter type="int"

parameterId="supersample" resolve="user">

 <ipxact:name>supersample</ipxact:name>

 <ipxact:value>uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15</ipxact:value>

 </ipxact:moduleParameter>

 </ipxact:moduleParameters>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 :

 :

 </ipxact:model>

 :

 :

</ipxact:component>

Notes:

• The guides for creating component parameters also apply to the module parameters.

• The value of the supersample parameter depends on a parameter defined elsewhere in the
document (uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15 is the parameterId defined for
the parameter supersample, defined in the previous example and can exist in the same
document)

Example: Parameterized Port Sizing
IP-XACT parameters can be used to define the bounds (sizes) of the IP module's ports. These
expressions may be solely the parameterId of an ipxact:moduleParameter or may be more
complicated expressions as shown in this example:

<ipxact:port>

 <ipxact:name>Din_vector</ipxact:name>

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 121

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>input_length*supersample-1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

</ipxact:port>

Note:

• Only ipxact:moduleParameter parameters can be used in expressions defining port
ranges. This is because the actual expression will also be used during code generation and
only the ipxact:moduleParameters are defined at that time

• Tools such as Kactus2 can facilitate defining and evaluating expressions.

IP Restrictions
For IP to be used in PathWave FPGA, there will need to be a set of IP restrictions that specify
which BSPs and FPGA device families the IP can be used with. This information will be used to
determine which IP will show up in the IP catalog in the GUI for use in a design. Only the IP that
will work with a given BSP and FPGA will show up for a design so that the user cannot place
incompatible IP in a design.

An IP developer may specify in the IP-XACT which BSPs (eg. M3102A, M3202A), which FPGA
vendors (eg. Xilinx), and which FPGA families (eg. Virtex, Kintex) are supported. If the IP can
work for all families for a given FPGA vendor or all BSPs, then the family parameter or the bsp
parameter does not need to be set.

IP Restrictions Format
The IP restrictions will be added to the IP-XACT file inside the 'ipxact:vendorExtensions'
element of an 'ipxact:component'. The elements to be used are defined by Keysight and are as
follows:

Element Parent Element Content

keysight:ipMetadata ipxact:vendorExtensions (direct
child of ipxact:component)

This is the root element of the
Keysight Vendor Extensions for
IP metadata

keysight:supportedHardware keysight:ipMetadata Contains information about the
hardware to which this IP is
supported

keysight:supportedBoards keysight:supportedHardware Contains a list of Vendor-
Boards pairs of supported
boards. If this element is not
specified, all boards are
supported

keysight:vendorBoards keysight:supportedBoards A Vendor-Boards pair

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 122

Element Parent Element Content

keysight:vendor keysight:vendorBoards The name of the vendor.
Should be equal to the internet
domain of the vendor of the
boards (e.g. keysight.com)

keysight:boards keysight:vendorBoards Contains a list of board names
that are supported

keysight:board keysight:boards The name of the board where
this IP can be used

keysight:supportedParts keysight:supportedHardware Contains a list of Vendor-Parts
pairs of supported FPGA parts.
If this element is not
specified, all FPGA parts are
supported

keysight:vendorParts keysight:supportedParts A Vendor-Parts pair

keysight:vendor keysight:vendorParts Vendor's name. Should be
equal to the internet domain of
the vendor of the parts (e.g.
keysight.com)

keysight:families keysight:vendorParts Contains a list of family names
that are supported

keysight:family keysight:families The name of the family as this
is defined by the part number
(e.g. 'xc7k' should be used if
the supported family is 'Kintex-
7')

To use any of the Keysight defined elements inside an IP-XACT file, you
need to specify the 'keysight' namespace:
"xmlns:keysight="http://www.keysight.com"" in the xml root element (i.e.
ipxact:component)

IP Categorization
In addition to defining the library in which the IP belongs, it is possible to define a subcategory
for an IP. To achieve that, PathWave FPGA has defined some extension elements for IP-XACT.

The IP restrictions will be added to the IP-XACT file inside the 'ipxact:vendorExtensions'
element of an 'ipxact:component'. The elements to be used are defined by Keysight and are as
follows:

Element Parent Element Content

keysight:ipMetadata ipxact:vendorExtensions (direct child
of ipxact:component)

This is the root element of the
Keysight Vendor Extensions for IP
metadata

keysight:categories keysight:ipMetadata A list of categories. Currently, only
one category can be specified

keysight:category keysight: categories The name of the category that this
IP belongs into

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 123

To use any of the Keysight defined elements inside an IP-XACT file, you
need to specify the 'keysight' namespace:
"xmlns:keysight="http://www.keysight.com"" in the xml root element (i.e.
ipxact:component)

IP Naming Collisions

PathWave FPGA does not accept IP with the same name to be loaded at the same time in a
project. PathWave FPGA uses the concept of VLNV for identifying IP and reporting naming
collisions. VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-
XACT. The VLNV of an IP is defined in the first four fields of an IP-XACT component (see IP-
XACT definition)

For more information on naming collisions and how to resolve them, please read here.

For the case of an IP developer, this might happen as multiple versions of the same IP might be
created in the development phase. Even though the case of multiple IPs with the same VLNV
but different contents is detected by PathWave FPGA, it is recommended to update the version
field of the IP-XACT file for every change applied to the file. This will provide better issue
reporting and easier resolution.

An Example IP-XACT File

Code Block 5 Sample IP-XACT file

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:keysight="http://www.keysight.com"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>myCustomLibrary</ipxact:library>

 <ipxact:name>SampleIp</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>clkSignal</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 124

 <ipxact:parameters>

 <ipxact:parameter

parameterId="uuid_4e5d34f4_ff5d_4244_92b4_c0d0ec78d043">

 <ipxact:name>ASSOCIATED_BUSIF</ipxact:name>

 <ipxact:value>myAxiStreamMaster:myAxiStreamSlave</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter

parameterId="uuid_c127b078_eb51_42f4_aaf8_58e93ad84b21">

 <ipxact:name>ASSOCIATED_RESET</ipxact:name>

 <ipxact:value>Reset</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Reset</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>rstn</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>myAxiStreamSlave</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_valid_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tuser</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_user_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_data_in</ipxact:name>

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 125

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>myAxiStreamMaster</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_valid_out</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_data_out</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>rstn</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_valid_in</ipxact:name>

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 126

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_data_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>79</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_user_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_valid_out</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_data_out</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>79</ipxact:left>

 <ipxact:right>0</ipxact:right>

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 127

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>sampleIp.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>This is a Sample IP. It contains two Stream

Interfaces and two system ports</ipxact:description>

 <ipxact:vendorExtensions>

 <keysight:ipMetadata>

 <keysight:supportedHardware>

 <keysight:supportedBoards>

 <keysight:vendorBoards>

 <keysight:vendor>keysight.com</keysight:vendor>

 <keysight:boards>

 <keysight:board>M3202A</keysight:board>

 </keysight:boards>

 </keysight:vendorBoards>

 </keysight:supportedBoards>

 <keysight:supportedParts>

 <keysight:vendorParts>

 <keysight:vendor>xilinx.com</keysight:vendor>

 <keysight:families>

 <keysight:family>xc7k</keysight:family>

 </keysight:families>

 </keysight:vendorParts>

 </keysight:supportedParts>

 </keysight:supportedHardware>

 <keysight:categories>

 <keysight:category>General</keysight:category>

 </keysight:categories>

 </keysight:ipMetadata>

 </ipxact:vendorExtensions>

</ipxact:component>

IP Packager

The recommended format for IP import in PathWave FPGA is IP-XACT. PathWave FPGA offers
a set of features and conveniences enabled by using IP-XACT which include packing ports to
interfaces, simplifying component connectivity, documenting IP usage, and allowing
specification of dependencies (e.g. libraries, constraints, documentation, simulation files). Since
the process of manually creating an IP-XACT file can be tedious and error-prone, PathWave
FPGA includes IP Packager, a tool that allows IP developers to quickly and effectively create
IP-XACT files for their IP.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 128

• Start IP Packager

• Welcome Page

• Main Page

o Tabs Section

▪ General Tab

▪ Interfaces Tab

▪ Port Mapping Tab

▪ Physical Ports Tab

▪ Parameters Tab

▪ Enumerations Tab

▪ Files Tab

Start IP Packager

To open up IP Packager GUI, start PathWave FPGA, go to the Tools menu and click IP
Packager. This will bring up the IP Packager GUI.

Import to project
IP-XACT files created by IP Packager can be imported into PathWave FPGA using one of the
methods for importing IP-XACT files described in Adding Blocks.

If a project is loaded in PathWave FPGA, and IP Packager is used to create new IP, the user
will be asked after closing IP Packager if any valid IP-XACT files that were created should be
imported into the open project.

Welcome Page

New Button
The New button will create a new IP-XACT file. Browse to the directory where the new file
should be saved, and enter a file name.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 129

Open Button
The Open button lets you load an existing IP-XACT file for editing.

Recent Files List
This will display a list of up to 10 files that were previously processed by the tool, with the most
recent first in the list. Select a file and click Open Recent, or double-click a file to open it
immediately.

Main Page

Menu button
This button is a toggle switch used to shrink all the menu buttons down to their icon. Click it
again to expand them to their normal size.

File Buttons
The New button will create a new IP-XACT file. Browse to the directory where the new file
should be saved, and enter a file name. The shortcut is Ctrl-N.

The Open button lets you load an existing IP-XACT file for editing. The shortcut is Ctrl-O.

The Autofill from file button is used to load information from a design file (such as VHDL,
Verilog, XCI, or IP-XACT). For example, loading a VHDL or Verilog file will fill the name,
physical ports, interfaces, parameters, and will add the file to the Files tab. Interfaces may be
inferred from the physical ports by their port names. The default for the checkbox controlling
interface inference is set in the PathWave FPGA Configuration dialog. See the Infer Interfaces
button in the Port Mapping Tab for a discussion of the port naming inference rules. The
shortcut is Ctrl-Shift-O.

The Validate button checks whether the current information is valid and sufficient to describe
the IP. The shortcut is Ctrl-W.

The Save button saves the current state of the IP to the path selected during the creation of
a New file or the path of the file opened. Before saving, it validates the IP and reports any
issues. The shortcut is Ctrl-S.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 130

The Save As button allows you to save a new copy of the IP in a different directory or file
name. The shortcut is Ctrl-Shift-S.

Close button
This will close the IP Packager window. The user will be prompted if unsaved changes should
be saved. If a project is loaded in PathWave FPGA while starting IP Packager GUI, the user will
be asked if any valid IP-XACT files that were generated during the IP Packager session should
be imported into that open project.

Tabs Section

General Tab
This tab contains identification and other relevant information about the IP

VLNV
VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-XACT. The
VLNV of an IP is defined in the first four fields of an IP-XACT component (see IP-XACT
definition).

PathWave FPGA uses the VLNV value to resolve name conflicts. The library field is used to
categorize IP in the IP Library.

Module Name
This field must match the module name (for Verilog and SystemVerilog) or entity name (for
VHDL) of the top-level module represented by this IP. By default, this will be the same as the
Name field.

Category
This is an optional field. It is used by PathWave FPGA to further categorize the IP inside the IP
Library. The library field will label the first level of the tree path, any entries in the Category field
will label intermediate levels in the tree path, and the component Name will label the leaf.

For example, if an IP has the VLNV keysight.com::Algorithms::StreamAdder::1.0 and the
category Math, it will be available in PathWave FPGA library under the tree path:

• ALGORITHMS

o MATH

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 131

▪ StreamAdder

Categories can be nested with the slash character (forward or backward). For the example
above, but with the category Math/Adders, tree path would be:

• ALGORITHMS

o MATH

▪ ADDERS

• StreamAdder

Description
This is an optional field. It provides a text section for entering a description about the IP being
created. PathWave FPGA displays the IP description when a component is added into the
design canvas, and also in the component's Properties dialog.

Interfaces Tab
Use this tab to configure the standard interfaces in the IP definition. The usage of this tab is
similar to the one defined in Configuring Submodule Interfaces. Please consult that page for
usage instructions.

Port Mapping Tab
Each interface added in the Interfaces tab has one or more logical ports. These need to be
mapped to the physical ports of the IP design.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 132

Interface List
This list shows the interfaces that are defined in the Interfaces tab. Select an interface to show
the logical ports for that interface.

Component Preview
This preview shows how the IP component will be displayed in a PathWave FPGA canvas.
When an interface is selected in the Interface List, that interface will be highlighted in the
preview.

Mapping Filters
All Interfaces radio button: When selected, the Mapping List will show the logical ports for all
interfaces. A new column will appear to show which interface the logical port is from.

Selected Interface radio button: When selected, the Mapping List will show only the logical
ports for the interface selected in the Interface List.

Hide Mapped: The Mapping List will only show logical ports that have not been mapped. Use
this to focus on mapping the unmapped ports.

Hide Optional: The Mapping List will only show logical ports that are required by the interface.
Any unmapped optional ports will be disabled when the IP is saved.

Mapping List
A table that displays the mappings between logical ports of interfaces to physical ports of the IP.
It contains three columns:

• Interface: (Only visible when the All Interfaces radio button of the Mapping Filters is
selected) This shows the name of the interface to which the logical port belongs.

• Logical Port: This shows the name of the logical port. For a specific row, it shows the name
of the logical port that takes part in the mapping. An icon with the direction of the logical port
is displayed on the left side.

• Physical Port: This shows the name of the physical port that the logical port is mapped to.
If the logical port is not mapped to a physical port, this will show the red open mapping icon

 if the logical port is required, or the yellow open mapping icon if it is optional. The

green connected mapping icon indicates that the port is mapped.

Mapping buttons

Map button: This will map the logical port selected in the Mapping List to the physical port
selected in the Physical Ports List. You can also double-click the physical port to map it to the
selected logical port.

 Unmap button: This will remove the mapping of the selected logical port.

 Map to new button: This will create a new physical port and map it to the selected logical
port. The name of the physical port is <interface name>_<logical port name>.

 Map all to new button: This will create new physical ports for all unmapped logical ports in
the Mapping List. It behaves the same as the Map to new button.

 Infer interfaces button: This will infer interfaces from physical ports by their port names. The
physical ports may be named with an arbitrary common prefix, followed by an underscore ("_"),
followed by the standard port names for that interface. The physical ports may also be named
as the standard port names for that interface, with no prefix. The inferred interface name will
usually be the common prefix of the included physical ports. The inference rules follow the
conventions in the Xilinx document ug1118, for packaging custom ip in Vivado. Clock, reset,
AXI4, and PathWave FPGA PC_MEM interfaces may be inferred. Any newly inferred interfaces
will appear in the Interfaces List and the logical ports of those interfaces will be mapped to
their physical ports. The interface names and graphical order may be changed, and interface
descriptions may be entered, in the Interfaces Tab.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 133

Physical Port Filters
Hide Mapped check box: When checked, the Physical Ports List will not show any physical
ports that are mapped to a logical port other than the one selected in the Mapping List.

Hide Incompatible check box: When checked, the Physical Ports List will not show any
physical ports that are incompatible with the logical port selected in the Mapping List.

Filter: The Physical Ports List will only show physical ports that contain the text in their name.
The filtering is case-insensitive.

Physical Port List
A list of the physical ports for the IP. Use the Physical Port Filters to show only a subset of the
physical ports. If a logical port is selected in the Mapping List, you can double-click a physical
port to create a mapping between the two.

 icon and red text color is used for incompatible physical ports

 icon is used for unmapped compatible physical ports

 icon is used for mapped compatible physical ports

 icon is used for the physical port that is actually mapped to the selected logical port

Physical Ports Tab
The physical ports are the ports presented by the IP top-level implementation file. Usually they
are loaded from a file, but you may create or modify them manually if needed.

Vector Bounds
Configure the left and right bounds of a vector to set the width. Either the left or right bound
must be 0.

Component Preview
This preview shows how the IP component will be displayed in a PathWave FPGA canvas.
When an unmapped physical port is selected in the Physical Port Table, that port will be
highlighted in the preview.

Parameters Tab
A model might use parameters for controlling the port widths or any other configurable feature
of the model. The Parameters Tab allows the user to add/modify/remove parameters.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 134

Parameters List
Contains the list of parameters of the IP. Each entry is split in three columns:

• Name: displays the name of the parameter. In case this is a module parameter, it should
match the name in the actual design file.

• Datatype: displays the acceptable datatype of the value.

• Value: displays the default value of the parameter.

Parameters Control Buttons
Add button: Creates a new parameter with a unique name.

Remove button: Removes the selected parameter.

Up button: Moves the selected parameter up.

Down button: Moves the selected parameter down.

Naming Group
The fields of this group describe the parameter:

• Name: the name of the parameter. In case this is a module parameter, it should match the
name in the actual design file.

• Display Name: a user friendly name for this parameter. This name will be shown to the
user in PathWave FPGA.

• Description: a description for this parameter. The description will be available to the user in
PathWave FPGA.

Datatype
A list of supported datatypes for the parameter:.

• Bit: represents 1-bit value

• Byte: represents an integer value of 8-bits

• Short Integer: represents an integer value of 16-bits

• Integer: represents an integer value of 32-bits

• String: represents a string

Value
The value or expression to be used by default for this parameter. The possible value is
restricted by the selected datatype and the specified Range.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 135

Range
Allows three different range validations for the value of the parameter:

• No Range: If this is selected, the value of the parameter is only limited by the available
range of the selected datatype.

• Min/Max: If this is selected, two extra fields are displayed to define the continuous value
range for the parameter. This selection has no effect if the selected datatype is string or bit.

o Minimum: The minimum value the parameter can take. The value should have the
same datatype as the one selected for the parameter and should be no larger than
Maximum. If left empty, minimum is the -∞.

o Maximum: The maximum value the parameter can take. The value should have the
same datatype as the one selected for the parameter and should be no smaller
than Minimum. If left empty, maximum is the +∞.

• Enumeration: If this is selected, a combobox with the available valid enumerations is
displayed. If nothing is displayed, go to the Enumerations tab to add a new enumeration or
fix an invalid one. The value of the parameter is restricted by the allowed values of the
selected enumeration.

Attributes
Is User Configurable checkbox: If this is checked, it allows the user to give a different value than
the default to this parameter. User Configurable parameters will be displayed to the PathWave
FPGA users in the component dialog of this IP.

Enumerations Tab
Some parameters of the model may be restricted to specific discrete values. The Enumerations
Tab allows the user to specify enumerations that can be used as range validators inside
parameter definitions.

Enumerations List
This is the list of enumerations that are defined in the context of the IP and can be referenced
by parameters.

The names of the enumerations should be unique and should start with a letter, colon (:) or
underscore (_) character and can be followed by any number of letter, numeric, colon (:),
underscore (_), dot (.) or hyphen (-) characters.

If an enumeration is invalid (in case of invalid name structure or because of insufficient number
of defined elements), it is displayed with red text color and a tooltip is available that describes
the issue.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 136

Enumerations Control Buttons
 Add Enumeration button: Creates a new enumeration and adds it to the list, giving it a

unique name.

 Remove Enumeration button: Removes the currently selected enumeration from the
enumerations list. If the enumeration selected is being used by any parameter of the model, the
user will be given the option to abort the remove action.

Enumeration Name
Name of the currently selected enumeration. Can be edited to change the name. If an invalid
name is entered, the name will turn red and the enumeration list will not be updated until the
name is changed to a valid value.

Enumeration Values List
This is the list of values that a selected enumeration can take.

The definition of values can take two formats:

• list of name/value pairs: in this case, the names of the list should be unique

• list of values: in this case, the values should be unique

Enumeration Values mode
Value Mode combo box: Changes between the two element value types: Name Value Pair or
Value Only.

Enumeration Values Control Buttons
 Add Enumeration Value button: Creates a new enumeration name/value pair (or just value,

if Enumeration Values mode is Value Only).

 Remove Enumeration Value button: Removes the selected enumeration value from the list.

Files Tab
An IP-XACT file describes IP defined in one or more other files, such as VHDL or Verilog files.
This tab defines the files used for the IP during the build process.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 137

File List
Displays the list of files that will be used during the synthesis and implementation of the IP.
There must be at least one file defined for each IP-XACT file.

Files are represented either by their absolute path or by the relative path from the parent
directory of the IP-XACT file. By default, all the files are represented by their relative path.
Right-click a file to change the path to absolute or back to relative. Double-click a file to
manually modify the path.

A file will be highlighted in red if any errors are detected with that file. Hovering over the bad file
will show a tooltip describing the error.

File Control Buttons

 Add Files button: Browse to the implementation files for this IP and add them to the File
List. You may select multiple files at once.

 Add Folder button: Add all the implementation files in a directory to the File List. This will
not include files in subdirectories.

 Add Folder (Recursive) button: Add all the implementation files in a directory to the File
List. This will search all subdirectories recursively.

Load from File button: This button will load the physical ports and parameters from the
selected file. Any existing physical ports and parameters are replaced with the ports and
parameters loaded from the file. The port mappings will be restored to compatible physical ports
with the same name. If an existing parameter is also in the file, the value and data type will be
updated while all other properties remain unchanged. If an existing parameter is not in the file, it
will be removed. Interface names and descriptions are restored if possible. Interfaces may be
inferred from the physical ports by their port names. The default for the checkbox controlling
interface inference is set in the PathWave FPGA Configuration dialog. See the Infer Interfaces
button in the Port Mapping Tab for a discussion of the port naming inference rules.

 Remove Selected Files button: Remove the selected files from the File List.

File Context Menu
 Remove: Removes the selected files from the File List.

Use Absolute Path: Converts the selected file path from relative to absolute. This will only
appear if one or more selected files are in relative form.

Use Relative Path: Converts the selected file path from absolute to relative. This will only
appear if one or more selected files are in absolute form.

Keysight Standard Interfaces

• Introduction

• Interface Descriptions

o Signal Types

o Data Types

o Data Packing/Extending

o Polarity

o Signal Interfaces

o Example Usage

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 138

▪ Discussion of Example

o Associated Files

Introduction

To facilitate connectivity between IP blocks and Sandbox interfaces, PathWave FPGA has
standardized on a number of interfaces. IP blocks using these interfaces will be easier to
interconnect and to connect to PathWave FPGA library blocks and sandbox interfaces.

Interface Descriptions

The following is a brief description of the standard interfaces PathWave FPGA supports. Note
that this is only a brief description of each interface and is not meant to be a complete
description. Some interfaces (e.g. the AXI family) include optional signals that can be included
or omitted in particular implementations depending on the design requirements. This allows the
user to tailor the complexity and size of the interface while maintaining compatibility.

1. clock: A free running clock. Data is both sampled and changed on the rising edge of a
clock.

2. nRst: An active low reset signal.

3. AXIMM: the industry standard, AXI4-Memory Mapped high performance bus architecture.

a. Includes address information.

b. Supports data widths: 32, 64, 128, 256, 512, 1024 bits.

c. Supports burst (high performance) transfers.

d. Supports bi-directional flow control.

4. AXILite: the AXI4-Lite bus, a lightweight version of AXIMM for simpler interfaces that don't
require the performance/features of full blown AXI4.

a. Limited data width: 32 (preferred) or 64 (if needed).

b. Only single transactions supported - no data bursting.

c. Supports bi-directional flow control.

5. AXIS: the AXI4-Streaming interface is for streaming arbitrarily long sequences of data.

a. Point-to-point streams - this interface does not include address data, though
optional TID, and TDEST signals allow some routing (addressing) information.

b. Data width is any multiple of 8 bits. Unlike AXIMM and AXILite, AXIS can support,
for example, 24 bit data. The standard allows 0 bit data (TDATA is optional). An
AXIS interface without data just has the control signals.

c. Supports optional TUSER data signals. These are extra signals that are logically
attached to data samples that could be used to include auxiliary data such as
triggers or data marks or timing information.

d. Supports merging/packing multiple data items into wider stream.

e. Supports bi-directional flow control.

6. PC-MEM: a very light weight Keysight proprietary interface.

a. Can be bi-directional.

b. Includes addressing.

c. Does not include back-pressure - all transactions take place in one clock cycle and
can not be held off.

d. Has deterministic timing.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 139

e. Used for HVI register access. Please see the Keysight M3601 documentation for
more information on HVI.

7. vector: a multi-bit vector of signals without any signaling protocol. This might be used to
connect a control register to an IP block.

8. wire: a single bit signal. This might be used for a trigger signal.

Signal Types
There are a number of different types of signals used in a typical design. These can roughly be
categorized into control signals (typically used to setup, control, and monitor a measurement),
and data flow signals (the data being processed - this could be a continuous stream of data or
one or more blocks of data).

The following are the various types of signals that PathWave FPGA supports:

1. Control Bus Slaves. Typically these would be register control/status blocks where the driver
could read and write status and control data.

2. Control Bus Master. This is for the case where the user IP wants to communicate with
external devices via the PCIe (or other host control) bus, e.g. write to other modules to
control multi-module measurements.

3. Continuous Streaming Data. This is an arbitrarily long stream of continuous data, e.g. from
an ADC. Since the data may not be one sample per clock, flow control is required.
Alongside the data, there may optionally be some amount of sideband data. This is auxiliary
data that flows along with the main signal data. It could include triggers or marker info or be
used to timestamp data.

4. Block Mode Stream Data. This would be an arbitrarily long stream of discontinuous blocks
of data. Each block may represent the result of some measurement or calculation, e.g. the
output of an FFT. To properly interpret this data, the boundaries of each block would need
to be delineated.

5. Memory Read / Write Data. Typically the FPGA will have access to off chip memory. There
needs to be a way for the user IP to read and write to this memory. This interface will need
to include both address and data flow, and probably needs to support burst transfers for
efficiency.

6. Supersampled Data. This is a variation of #3 and #4 above where more than one sample
per clock needs to be transferred.

7. HVI. HVI needs an efficient, time deterministic mechanism to access control register.

8. Clock. One or more clocks. Signals change on and are sampled on the rising edge of clock.

9. Reset. One or more active low reset signals.

Data Types
Most of the data that PathWave FPGA will be processing is likely to be fixed point (scaled ints)
of varying bit widths. To facilitate interconnection of IP, limit the amount of data width
conversion, and allow the use of standard interfaces, PathWave FPGA standardizes on data
widths that are an integral number of bytes (i.e. multiples of 8 bits). Data that is natively a
different size should be padded up to the next multiple of 8 bits by padding MSBs. Unsigned
quantities are zero-extended, and signed quantities are sign extended. Thus a 12 bit unsigned
number would place those 12 bits as the 12 LSBs of the interface with the 4 MSBs being zero.
So if the data was X[11:0], the interface used would be TDATA[15:0] = {4'b0000,X[11:0]}.

The preferred format for floating point numbers in PathWave FPGA will be IEEE-754 compliant.
The two supported (preferred) sizes will be binary16 (16 bits with 11 bit fraction and 5 bit
exponent) and binary32 (32 bits with 24 bit fraction and 8 bit exponent). Note that the number of
fractional bits includes the implied leading "1" bit. The number of physical mantissa bits is one
less than the number of fractional bits, and there is also sign bit. Physically, the binary32 format
would have 1 sign bit, 8 exponent bits, and 23 mantissa bits.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 140

It is not uncommon to process complex data (that is, data consisting of a real and an imaginary
component). If complex data is being sent over a single stream, the real and imaginary parts will
be sent in parallel over a wider stream with the real part will go in the least significant word. For
Serial data, the real part will come first (earlier in time).

Above are examples of parallel complex data (one sample per clock and two samples per
clock). Below is an example of serial complex data.

For performance reasons (and the limited clock rate available in FPGAs), it is sometimes
desired to transfer more than one sample per clock. This is called supersampled data. In this
case, each sample (or component of the sample for complex data) is first extended to an
integral number of bytes, and then these are packed together with the earlier in time samples
occupying the lesser significant position:

Data Packing/Extending
When connecting two blocks with different data widths, there are two different ways of
converting the signals. The AXI standard views data as a stream of bytes without explicit
meaning. Going from a narrow to a wider interface will cause the bytes to be packed. For

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 141

example, going from a 16 bit interface to a 32 bit interface will pack two 16 bit words into each
32 bit word. Likewise going from a wide to a narrow interface will retain all the data bytes with
the output running at a higher rate than the input. This is desired behavior when interfacing to a
memory, for example.

The other situation is when the underlying bit widths of the data changes, for example when
interfacing a filter that uses 16 bit data to a filter using 24 bit data. When increasing the width
(e.g. 16 bit source feeding a 24 bit sink) the data should be sign extended per PathWave
FPGA's policy of right justifying fixed point data.

Polarity
The control signals for the AXI buses are generally active high. The exception is the nRST
signal which is active low. PathWave FPGA uses an active low nRST signal. The remaining
control signals should be active high. Further, PathWave FPGA should sample signals and
change signals on the rising edge of CLK.

Signal Interfaces
Signal Type Interface Discussion

Clock clock One or more free running clocks. Signals change on and are
sampled on the rising edge of clock.

Reset nRst One or more active low reset signals.

Control Bus
Slaves

AXIMM
AXILite

Most Control Bus Slaves can probably use the simpler
AXILite interface. A simple block of registers can easily
decode an AXILite interface with minimal logic.
If higher performance of burst access is desired, then the
higher capabilities of the full AXIMM bus could be used.

Control Bus
Masters

AXIMM
AXILite

These interfaces are full featured enough to meet the needs
of IP that needs to instigate access to addressable
memory/devices.

Continuous
Streaming Data

AXIS This interface supports the flow control and auxiliary data
needs of continuous data transfers.

Block Mode
Streaming Data

AXIS This interface includes the TLAST signal that can be used to
break the stream into arbitrary sized packets.

Memory
Read/Write
Data

AXIMM,AXILite,
AXI4-Streaming

Memory, particularly off-chip memory, is generally used for
storing larger amounts of data which often require high
throughput accesses. If the user IP needs random access to
the memory, then AXI4 is probably the better fit. If the
memory is going to be used as a source or sink of streaming
data, using a DMA engine in the static region, then an AXI4-
Streaming interface would be a better fit.

Supersampled
Streaming Data

AXI4-Streaming As discussed above, if supersampled or complex data needs
to be used, it will first be extended to an integral number of
bytes and then packed into a wider AXIS interface.

PC-MEM PC-MEM Some addressable interfaces, such as HVI,have distinct,
deterministic timing performance requirements. For very
simple designs, this provides an ultra-lightweight,
addressable interface.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 142

Example Usage

Discussion of Example
This simplified example shows how these interfaces might be utilized.

In the above example, ADCs generate three parallel 12 bit samples per clock. In the static
region these samples are converted to an AXIS bus as follows. Each sample is converted from
12 to 16 bits by sign extension. The resulting six bytes are concatenated together to form a 48
bit wide streaming data bus. One bit per byte of User data is added (six bits total) to contain
trigger information. Note that these are more bits than necessary, but for compliance with the
specification recommendations the extra (unneeded) bits are included.

The three real samples per clock are mixed with the output of a local oscillator to form three
complex samples (96 bits total). The user data (still one bit per byte) is now 12 bits wide. Note
that even though the interface into and out of the mixer is 16 bit data, since the user knows the
data is only 12 bits wide, the internal logic of the multipliers in the mixer need only operate on
12 bits of data (ignoring the 4 extension bits).

After decimating by four, the data rate has been reduced to one complex sample per clock
(actually 3/4 sample per clock - thus handshaking is needed) with the real and imaginary halves
each using 16 bits. For increased dynamic range, the Decimate by 2N block operates on 24 bit
data rather than 12 bit. An expander widens the bus to 24 bit data (time two because it is
complex). Note that the AXIS bus need not be a power of 2. It only has to be an integer number
of bytes.

The output of the Decimate by 2N block flows into a DMA Engine. This is designed to FIFO up
the data and burst data via an AXIMM bus to the memory controller in the static region that will
interface to the external DDR memory.

The Host controls the DMA Engine via the PCIe interface. The static region contains the PCIe
interface and passes an AXIMM bus into the Sandbox. Since the registers controlling the DMA
Engine are simple, there is no need for the DMA Engine to implement a full blown AXIMM
interface. Instead, the AXIMM bus from the PCIe interface is converted to the simpler AXILite
bus which feeds the registers in the DMA Engine.

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

IP Developers Guide – 143

For allowing synchronous measurements with other modules, the Frequency Register is
controlled via time deterministic PC-Mem bus. The output of the Frequency Register is a plain
Vector without control signals or handshake. This output controls the frequency of the Local
Oscillator the output of which feeds the mixer.

Associated Files
AXI Reference Guide

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

PathWave FPGA 2019 – PathWave FPGA Customer Documentation

Glossary – 144

Glossary

Term Definition

Bit file File built from the user design containing the bits to download to the FPGA
sandbox.

Block An HDL IP block that is placed on the PathWave FPGA design schematic.

Board support
package (BSP)

A package containing all of the necessary content to target a Keysight Open
FPGA. These are installed separately from PathWave FPGA. A BSP is made
up of two parts, the FPGA support package (FSP) and the run-time support
package (RSP) .

FPGA support
package (FSP)

The portion of the BSP that allows you to build a bit file for the target FPGA.

Interface A set of ports for a block that can be connected to another compatible
interface. Alternatively, an interface can be expanded and the individual
ports can be connected to another compatible port.

Module Either a top level module or submodule that is currently the top level module
for simulation purposes

Port An input or output signal to a block.

Program archive An archive file (.k7z) containing one or more bit files and associated
metadata.

Run-time support
package (RSP)

The portion of the BSP that allows you to control your target FPGA. It
provides a C API that you can use to download and verify your FPGA bit
image.

Sandbox The user-configurable region in the FPGA.

Submodule Hierarchical schematic design that can be instantiated in either a top level
module or another submodule

Top level module Top of the user design, defines the IO of the sandbox.

