

PathWave
FPGA 2020

PathWave FPGA

Customer

Documentation

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Table of Contents – 2

Notice
© Keysight Technologies, Inc. 2019

1400 Fountaingrove Pkwy., Santa Rosa, CA 95403-1738, United States

All rights reserved.

No part of this documentation may be reproduced in any form or by any means (including

electronic storage and retrieval or translation into a foreign language) without prior agreement

and written consent from Keysight Technologies, Inc. as governed by United States and

international copyright laws.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract,

Software is delivered and licensed as "Commercial computer software" as defined in DFAR

252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as

"Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent

agency regulation or contract clause.

Use, duplication or disclosure of Software is subject to Keysight Technologies’ standard

commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will

receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S.

Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June

1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Portions of this software are licensed by third parties including open source terms and

conditions. For detail information on third party licenses, see Notice.

http://edadocs.software.keysight.com/display/engdoc/Notice
http://edadocs.software.keysight.com/display/engdoc/Notice

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Table of Contents – 3

Table of Contents

PathWave FPGA Customer Documentation ... 5
Key Features ... 5
Getting Started .. 5
Working with PathWave FPGA ... 5

Getting Started... 6
Release Notes ... 6
2020 Highlights ... 6
2019 Highlights ... 6
2018 Highlights ... 6
Licensing ... 6
BSP Compatibility ... 7
Known Issues.. 8
System Requirements ... 10
Installation ... 11

User's Guide .. 14
Contents .. 14
Overview .. 14
GUI Overview .. 17
Keyboard and Mouse Shortcuts .. 19
Basic Controls ... 20
Adding Blocks ... 21
Connecting Ports and Interfaces ... 22
Adding and Editing Comments.. 28
Configuring PathWave FPGA .. 29
Vivado Installation Path .. 30
Vivado Installation Browse Button ... 30
IP Repositories Path List ... 30
IP Repositories Control Buttons .. 30
Theme Checkbox .. 30
Infer Interfaces Checkbox ... 30
Designing your FPGA Logic .. 30
Creating a New Sandbox Project .. 31
Creating a New Submodule Project .. 32
Design Interfaces .. 32
IP Library .. 51
Naming Conventions ... 121
Naming Collisions ... 122
Building your FPGA Logic ... 123
Generating the Bit File .. 123
Verifying the Bit File .. 128
Advanced Features ... 128
Command Line Arguments ... 128
Migrating a design to a new BSP .. 130
Changing a Submodule Project Target Hardware ... 130
Debugging in Hardware .. 131
Glossary .. 137

IP Developers Guide ... 139
Generation of IP-XACT file .. 139
IP Repositories .. 139
IP-XACT file composition .. 139
Definition of the IP-XACT file .. 139
Keysight Extensions to IP-XACT... 148
IP Naming Collisions ... 150
An Example IP-XACT File ... 151
IP Packager ... 156
Start IP Packager .. 156
Welcome Page.. 156
Main Page ... 157

Tutorials ... 167
HVI Tutorial .. 167

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Table of Contents – 4

Import HDL with collapsible interfaces using IP-XACT ... 172
Import HDL with parameterized bus widths using IP-XACT ... 198
Import Vivado High-Level Synthesis (HLS) generated IP ... 232
Create the Vivado HLS IP ... 232
Using the Vivado HLS IP in PathWave FPGA... 238
Power of Two Decimation Tutorial .. 240
Purpose of Tutorial .. 240
Requirements.. 240
Description of Decimator Design ... 240
Description of Test Software ... 241
Test Signal Description ... 242
Building the Bitfile ... 248
Running the C++ RSP Example.. 248
Xilinx System Generator for DSP™ Tutorial ... 249

Appendix .. 261
Infer Interface Reference ... 261
CLOCK ... 261
NRST .. 262
AXIMM .. 262
AXILite .. 263
AXIS .. 264
MEM ... 264
Importing IP with Invalid IP-XACT ... 264
VHDL Support ... 265
Generics ... 265
Ports ... 265
Known Issues.. 266
Verilog Support .. 266
Parameters ... 266
Expressions .. 267
Known Issues.. 267

Legal ... 268
7-zip ... 268
bzip2 .. 269
Doxygen .. 269
Inja ... 269
Lua ... 270
Qt ... 270
Xerces-C++ ... 271
zlib ... 271
Apache License v2.0 ... 271
Apache License .. 271
APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK ... 273
GNU GPLv3 ... 274
GNU GENERAL PUBLIC LICENSE .. 274
Preamble .. 274
TERMS AND CONDITIONS ... 275
How to Apply These Terms to Your New Programs .. 281
GNU LESSER GENERAL PUBLIC LICENSE .. 282
0. Additional Definitions. ... 282
1. Exception to Section 3 of the GNU GPL. .. 283
2. Conveying Modified Versions. ... 283
3. Object Code Incorporating Material from Library Header Files. .. 283
4. Combined Works. ... 283
5. Combined Libraries. .. 284
6. Revised Versions of the GNU Lesser General Public License. ... 284

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

PathWave FPGA Customer Documentation – 5

PathWave FPGA Customer Documentation

 Keysight PathWave FPGA Documentation

Keysight PathWave FPGA is a system-level FPGA development environment that
allows you to create and deploy your custom hardware-acceleration directly into
instruments.

Key Features

Overview

Getting Started

User's Guide
Release Notes

Working with PathWave FPGA

GUI Overview
Configuring PathWave FPGA
Creating a New Sandbox Project

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 6

Getting Started

Release Notes

This section contains information about previous and current releases.

2020 Highlights

This section provides a general overview of the new features present in release 2020:

• Verilog parameter support. See Verilog Support.

• Enabling register stages at the sandbox boundary. See Registering Sandbox Interfaces.

2019 Highlights

This section provides a general overview of the new features present in release 2019:

• Enabled re-targeting a project from one BSP to another. See Migrating a design to a new
BSP.

• Added hierarchical design support through Sub-modules. See Creating a New Submodule
Project.

• Added new IP to the included base IP. See PathWave FPGA IP Repository.

• Parsing of IP-XACT 2009 enabled. Xilinx Vivado blocks will now use the interfaces present
in the block.

• Created a tool for packaging HDL code into IP-XACT 2014. See IP Packager.

2018 Highlights

This section provides a general overview of the new features present in release 2018, the first
release of PathWave FPGA:

• PathWave FPGA is a graphical environment that provides a way to rapidly develop FPGA
designs on Keysight Open FPGA hardware.

• An IP library is provided which includes Logic/Math, Memory, and DSP blocks that can be
included in an FPGA design. Vivado IP blocks or custom HDL IP can also be imported and
the port interfaces described using IP-XACT 2014.

• PathWave FPGA provides a design flow from schematic to bitfile generation with the press
of a button.

Licensing

• PathWave FPGA requires: a) version 2018.04 of the EEsof EDA licensing software, b)
version >=2018.04 codewords, and c) the licensing server software, lmgrd and agileesofd,
must be at least the same versions as those included in EEsof EDA Licensing
software 2018.04. PathWave FPGA will not start if any of these requirements is not met.

• In the EEsof EDA License Tools version 2018.04, the licensing vendor daemon
(agileesofd) is upgraded to sync up with FlexNet FNP 11.13.1.4 version of FLEX license
manager (lmgrd). The PathWave FPGA installer for the Windows platform will automatically
set up these two new license server daemons by default for local node-locked license
users. For more information, refer to Licensing FAQs.

http://edadocs.software.keysight.com/display/support/Licensing+FAQs?id=2831870

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 7

• For more details, refer Licensing For Administrators.

BSP Compatibility

PathWave FPGA is compatible with all BSPs, but there are several minor issues.

The M3202 3.73 release and the M3302 3.64 release both contain a block called
"Streamer32x2." Every time you load or create a project with one of these BSPs you will get an
error dialog because PathWave FPGA also contains the same block. We recommend that you
do one of the following to fix the issue.

• If you do not want to use the streamer block while using PathWave FPGA then follow these
steps:

o For the M3202 delete the folder: C:\Program Files\Keysight\M3202A
BSP\R037300\bsp\ip\7k325\streamer32x2 and delete C:\Program
Files\Keysight\M3202A BSP\R037300\bsp\ip\7k410\streamer32x2

o For the M3302 delete the folder: C:\Program Files\Keysight\M3302A
BSP\R036400\bsp\ip\7k325\streamer32x2 and delete C:\Program
Files\Keysight\M3302A BSP\R036400\bsp\ip\7k410\streamer32x2

• If you do want to use the streamer block while using PathWave FPGA then follow these
steps:

o For the M3202 delete the folder: C:\Program Files\Keysight\M3202A
BSP\R037300\bsp\ip\7k325\streamer32x2 and move C:\Program
Files\Keysight\M3202A BSP\R037300\bsp\ip\7k410\streamer32x2 to an IP
repository. This IP repository must be used in PathWave FPGA 2018, but must not
be used in PathWave FPGA 2020.

o For the M3302 delete the folder: C:\Program Files\Keysight\M3302A
BSP\R036400\bsp\ip\7k325\streamer32x2 and move C:\Program
Files\Keysight\M3302A BSP\R036400\bsp\ip\7k410\streamer32x2 to an IP
repository. This IP repository must be used in PathWave FPGA 2018, but must not
be used in PathWave FPGA 2020.

The M3102A 1.35 release and the M3202A 3.67 release build scripts contain hard-coded paths
to the PathWave FPGA 2018 k7z_generator.exe program. This will cause a failure if PathWave
FPGA 2018 is not installed. To fix this for this and future PathWave FPGA releases, do the
following:

• Navigate to the BSP script folder; this is typically C:\Program Files\Keysight\M3102A
BSP\R013500\bsp\script for the M3102A or C:\Program Files\Keysight\M3102A
BSP\R036700\bsp\script for the M3202A.

• Open the sd_common_build.tcl file in a text editor; this may require administrator privileges.

• Change the line at or around line 437 from:
 set k7zGenerator {C:/Program Files/Keysight/PathWave FPGA 2018/k7z_generator.exe}
to:
 set k7zGenerator [file join $script_dir k7z_generator.exe]

• Copy the following files from the PathWave FPGA 2020 install directory
(typically C:\Program Files\Keysight\PathWave FPGA 2020) to the BSP script directory:

o 7za.exe

o k7z_generator.exe

o KsfCore-0.dll

http://edadownload.software.keysight.com/eedl/PathWaveFPGA/2019/pdf/Licensing_For_Administrators.pdf

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 8

Known Issues

• IP block 'Streamer32x2b' requires Vivado 2018.1 minimum. Use the 'Streamer32x2' IP
block with earlier versions of Vivado.

• Backward Compatibility

o In PathWave FPGA 2019 release or earlier, MEM interface was treated as having a
byte-addressing scheme. From this release forward, MEM interfaces are using a
word-addressing scheme. This change has the following impact to a project created
with an earlier release and used with the current one:

▪ if the project contained interface instances that were using the MEM
interface but originating from a byte-addressing design interface (like
AXIMM), the maximum acceptable value for the address width of the each
instance has been lowered by 2 bits. This might cause the selected
address width value to fall out of range. The user needs to manually adjust
the value.

▪ if the project contained a register bank originating from a MEM interface,
the address offset difference between each register is reduced from 4 to 1.

o In PathWave FPGA 2019 release or earlier, "TO range" ports were broken out into
individual wires on the schematic. This behavior has been removed. This change
has the following impact to a project created with an earlier release and used with
the current one:

▪ any connections on a "TO range" port will be lost.

• Submodule designs may contain design interfaces with extraneous ports which do not get
connected during a build even if they are connected on the schematic. This happens when
a interface has disabled optional ports which are mandatory for the same interface, but with
a different interface role.

o For example, if you created a slave aximm with "arprot" and "awprot" disabled in
the submodule interfaces dialog, then the design interface inside the submodule will
be a master and will contain "arprot" and "awprot" because they are mandatory for
masters, but they will not be connected to anything no matter what at built time. If
you need them then enable them in the submodule interfaces dialog.

o This will give a critical warning that looks like "Driverless net found. Design will not
pass DRC check. Router will skip net ..."

• Using multiple monitors with different display scaling can result in issues with the PathWave
FPGA UI. We recommend using the same scale factor for all monitors. Below are known
issues, but there are likely others:

o Window does not auto adjust when moving between monitors with different
resolutions (e.g. 4K to 2K).

o Title bar buttons do not respond to user interaction when moved from a 4K monitor
to a non-4K monitor if text scaling set at 150% or above.

o Window cuts off sections of the program on 4K monitors with text scaling set at
250% or above.

o White border is present around maximized window on 4K monitors with text scaling
set at 250% or above.

o Changing display scaling while PathWave FPGA is running is not recommended
and may not work correctly.

• VHDL support

o The value range of an Integer datatype of a port is ignored. Directly importing such
a file in PathWave FPGA will be completed successfully, however, the synthesis of
any design that contains that IP will fail. A workaround is to create an IP-XACT file

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 9

for the VHDL file using the IP Packager. Then, in the Physical Ports tab, modify the
width to match the actual width required.

o Some VHDL errors are ignored by PathWave FPGA when importing VHDL, but will
fail during synthesis. Vivado is the authority on whether a VHDL file is valid, not
PathWave FPGA.

o For vector ports with a 'downto' range, the right boundary must be literal '0'. For a
'to' range, the left boundary must be literal '0'.

o Constants or datatypes imported from another package cannot be used in the entity
declaration.

o When Kactus2 is used for creating IP-XACT for a VHDL file, the VHDL entity
declaration must end with "end <entity_name>" and not "end entity."

o Arrays are not supported. They may or may not load into the schematic properly,
but they will not build properly.

• Verilog support

o Importing Verilog IP into PathWave FPGA has a number of known limitations. It is
recommended that you create IP-XACT for any Verilog IP that does not meet the
following conditions. Note that only module declarations, port and parameter
definitions and 'endmodule' are checked. A violation of the following conditions will
produce a "Syntax Error" message when importing Verilog IP:

▪ Module declarations must include at least one port definition.

▪ Ports and parameters cannot have the same name differing only by
case (e.g. "myPort" and "myport").

▪ Tasks and functions are not supported because their ports are
misinterpreted as part of the module's interface.

▪ Output registers cannot be assigned an initial value in the same statement
where it is defined, such as "output reg myReg = 0;"

▪ Definition of port attributes is not supported, such as "(* attribute

definition *) input portName,".

▪ Port ranges only support expressions with addition, multiplication, division,
subtraction and parenthesis. As a workaround, the expression can be
moved to a parameter and the port range defined using that parameter.

▪ Parameters and port definitions in a module declaration may not be
conditionally included using `ifdef / `endif statements and they cannot

use any preprocessor variables.

▪ Expressions are limited to 32-bit signed integers. For example,
"'hFFFF_FFFF" is treated as -1 instead of 4294967295.

▪ Size constants in expressions are ignored. For example, "4'd65" is treated

as 65 instead of being truncated to 1.

▪ Arrays will fail to parse and will not load.

• When using the Vivado IP tool, Vivado's Tools > Settings > IP > Default IP Location setting
must be set to <Local to Project>. Otherwise, PathWave FPGA will not be able to find and
import the IP.

• When using PathWave FPGA remotely on a Windows 7 machine, the frames of the main
window and any other dialog of the application may lose their special PathWave FPGA
appearance to a more Windows-style one.

• Arrays are not supported in ipxact, but may load without giving any errors.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 10

• No interconnect exists for MEM interfaces. In the M3202A & M3102A projects this shows up
as disallowing multiple memory mapped instances of HVI ports. One Memory mapped port
or any number of registers may be placed, but not both at the same time.

o The program will allow you to place the blocks, but at build time an error will be
displayed saying that no MEM interconnect exists.

• Literals are restricted to 64 bits in this release. A '1' in the uppermost bit of the 64 bits can
be represented with a hexadecimal or binary representation, or a negative decimal.

• UNC paths are not supported for building FPGA bits.

o A UNC path can be mapped to a windows drive for building, but this is discouraged
due to slow FPGA build times on remote file systems.

• If you run into intermittent licensing errors using a network license server, it could be
because of a short timeout. Increasing the environment variable FLEXLM_TIMEOUT to
20000000 will set the timeout to be 20 seconds.

o If licensing errors do not stop, a local node locked license will solve the issue.

• Saving and loading from a path with unicode characters is not supported.

• IP-XACT with callouts to unused HDL files can cause FPGA builds to fail.

• Using enumeration names longer than 150 characters can cause the IP Packager to crash

• For the LO5_DC and LO5_UC library IP blocks, the tunable range for the LO frequency is
limited to f/fs = ± 0.4.

System Requirements

You must ensure that your system meets the following requirements before installing PathWave
FPGA.

• Administrator privileges

• Operating system that has the most recent updates and Service Packs

• License File (or Authorization Codes, or token if evaluating) or internet access

Recommended Hardware Configurations

Category Practical Minimums Recommended

Operating System Windows 7 SP1, 64-bit (Windows 8 is not
supported)

Windows 10, 64-bit

Hard disk 10 GB free space 100 GB free space

RAM 4 GB RAM 16 GB RAM and above

Display 1280 x 720 1920 x 1200

Software Security USB hardware key Wired LAN, or Wireless
LAN

Test Instrument
Interface

Not required LAN

Touch User Interface N/A Not supported

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 11

Software Compatibility with PathWave FPGA
The following table summarizes PathWave FPGA compatibility with various versions of other
software applications. However, for the latest vendor information, licensing, and downloads,
please contact each vendor directly.

Vendor Software / Feature Release
Officially
Supported

May work, but not supported Release
Explicitly not-
supported

Xilinx Vivado, debugging,
compilation of bit
images.

Vivado 2017.3 prior to Vivado
2017.3

CMake CMake to support to
enable FPGA bit file
verification

3.9 or later prior to 3.9

Kactus2 To Import HDL with
collapsible interfaces
using IP-XACT

3.6 or later 3.5 (note, there is a
workaround documented
when using parameterized
HDL)

3.4

Microsoft Visual Studio C++ to
enableFPGA bit file
verification

2017 Other versions

Summary of HDL Language Support

Standard Release Officially Supported May work, but not
supported

Release Explicitly not-
supported

IP-XACT IEEE 1685-2014, IEEE 1685-
2009

Verilog IEEE 1364-2005

VHDL IEEE 1076-2002 (VHDL
2002)

 IEEE 1076-2008 (VHDL
2008)

Newer versions of Xilinx Vivado might be required for Keysight
Instruments (BSPs). Consult the instrument product manual for specific
requirements.

Installation

PathWave FPGA can be installed on a computer running Windows by downloading the
PathWave FPGA install file from http://www.keysight.com/find/pathwave-fpga. For the system
requirement details, refer to System Requirements.

http://www.xilinx.com/
https://cmake.org/
https://sourceforge.net/projects/kactus2/
https://www.microsoft.com/
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html
http://ieeexplore.ieee.org/document/1620780/
http://ieeexplore.ieee.org/document/1003477/
http://ieeexplore.ieee.org/document/4772740/
http://www.keysight.com/find/pathwave-fpga

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 12

Obtain PathWave FPGA License File
PathWave FPGA requires a license to run. You can either apply for an Evaluation or a
Purchased license. Once the license request is approved, a license file (with .lic extension) is
sent as an email attachment. Save this file on your computer at C:\Users\Public.

Download PathWave FPGA Installer
Click https://www.keysight.com/find/pathwave-fpga to download the installer.

Install PathWave FPGA
To install PathWave FPGA, you must have system administrator privileges. Run the
downloaded installer and follow the guided tour to complete the installation. If you want to do a
silent install, run the installer executable from the command line as Administrator and use the
"--mode unattended" command line option.

PathWave FPGA License Setup
At the end of installation, the License Setup Wizard starts automatically after detecting that
you do not have a valid license to start PathWave FPGA. If you choose to skip the license
setup, you can complete the process later by clicking Start > Programs > Keysight PathWave
FPGA <release_number> > PathWave FPGA <release_number> License Manager.

Node-locked License
To setup a counted license, select the Add or replace a license file option and follow the
guided tour to complete the license setup process. In case of a USB dongle, attach the dongle
to the USB port and invoke the License Manager to complete the setup process.

 You must have system administrator privileges to setup node-locked licenses (Only)
on Windows 7 machines.

Floating License
To setup a floating license, select the Add or replace a network license server option and
follow the guided tour to complete the license setup process. Consult your license administrator
for the network path of the license server.

https://edaapps.software.keysight.com/cgi-bin/pxi-sw/evaluation/request.cgi?cmpid=99_ZZ_000001&product=kf9000a&cc=US&lc=en
http://www.keysight.com/find/softwaremanager
https://www.keysight.com/find/pathwave-fpga

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Getting Started – 13

Launch PathWave FPGA
To run PathWave FPGA, go to the Start menu and choose Programs > Keysight PathWave
FPGA <release_number> > Keysight PathWave FPGA <release_number>.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 14

User's Guide

PathWave FPGA is Keysight's "Open FPGA" development environment. PathWave FPGA
provides a complete FPGA design flow from design creation to gateware deployment to
HW/gateware verification.

Contents

• Overview

• GUI Overview

• Configuring PathWave FPGA

• Designing your FPGA Logic

• Building your FPGA Logic

• Advanced Features

• Glossary

Overview

PathWave FPGA is a graphical environment that provides a way to rapidly develop FPGA
designs on Keysight Open FPGA hardware. An IP library is provided which includes Logic/Math,
Memory, and DSP blocks that can be included in an FPGA design. Vivado IP blocks or custom
HDL IP can also be imported and the port interfaces described using IP-XACT 2014. PathWave
FPGA provides a design flow from schematic to bitfile generation with the press of a button.

To get started, follow the PathWave FPGA design flow:

1. Start PathWave FPGA

2. Create a new project with the PathWave FPGA New Project Wizard

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 15

3. Modify the default FPGA template design by importing Vivado IP, HDL IP, or by
using the PathWave FPGA IP library.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 16

4. Compile the design into a bit image

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 17

5. Deploy your design using the instrument driver or the BSP programming API

GUI Overview

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 18

Menu/Icon/Pane Description

File Includes options to create a new project, open an existing project, save a
project, close a project, add an external block, export to VHDL, create a
template, configure settings, and exit.

Edit Includes options to undo an operation, redo an operation, and select all.

Vivado IP Includes an option to launch the Vivado IP tool.

Project Includes an option to generate FPGA firmware.

Tools Includes the IP Packager.

Help Includes link to product documentation, license, and product related
information.

Create a new sandbox project.

Create a new submodule project.

Open an existing project.

Save the project.

Undo the last operation.

Redo the last operation that was undone.

Fit schematic in window.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 19

Menu/Icon/Pane Description

Zoom in.

Zoom out.

Copy.

Flip.

Redraw connections.

Remove.

Launch the Vivado IP tool.

Add external block.

Generate the firmware for the project.

Design
Interfaces

Design Interfaces are responsible for communication between the internally
configurable FPGA part (the FPGA customizable space, which a user can
edit) and the rest of FPGA.

IP Repositories IP repositories that are built-in or custom.

Vivado XCI Vivado XCI (Xilinx Core Instance) created either by launching the Vivado IP
tool or importing Vivado XCI. This is visible if you have imported a Vivado XCI
file.

Imported IP Imported User IP from many different sources including: VHDL, Verilog, IP-
XACT, Vivado Projects (XPR). This is visible if you have imported IP.

Submodules Submodules created by PathWave FPGA. This is visible if you have created
or added a submodule.

Keyboard and Mouse Shortcuts

This topic lists the operations that can be performed using keyboard and mouse shortcuts.

Function Key Code

Add/remove item from selection Ctrl + Left click

Abort current action Esc

Remove selected items Delete

Redraw connections Ctrl + R

 Zoom fit Ctrl + F

 Copy selection Ctrl + C

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 20

Function Key Code

 Select all Ctrl + A

 Undo Ctrl + Z

 Redo Ctrl + Y

 New project Ctrl + N

 Open project Ctrl + O

 Save project Ctrl + S

 Close project Ctrl + F4

 Exit Alt + F4

Basic Controls

Adjusting the View

Operation Keyboard Mouse

Zoom In Ctrl++ Ctrl + Mouse wheel up

Zoom Out Ctrl+- Ctrl + Mouse wheel down

Zoom Fit Ctrl+F

Pan Alt + Mouse click and drag

Manipulating Items
To move an item, left-click on the item and drag it to a different location. Connections are routed
automatically and can't be moved manually.

To select an item, left-click on the item. To select multiple items, left-click on an empty space
and drag to select all items in a rectangle. To add or remove individual items from the selection,
hold the Ctrl key and left-click an item. To select all items, press Ctrl+A or choose Select All
from the Edit menu.

To copy a block or a selection, right-click the block or an item in the selection and choose Copy,
then left-click to place the copy in the design. You can also press Ctrl+C, choose Copy from

the Edit menu, or click the Copy button on the toolbar.

Undo and Redo

To Undo an action, press Ctrl+Z, or choose Undo from the Edit menu, or click the Undo
button on the toolbar.

To Redo an action, press Ctrl+Y, or choose Redo from the Edit menu, or click the Redo
button on the toolbar.

Undo is disabled after certain actions:

• Adding or removing external blocks from the IP panes. Adding or removing instances does
not disable Undo.

• Adding or removing Vivado IP from the IP panes. Adding or removing instances does not
disable Undo.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 21

• Creating or removing a submodule project from the Submodules pane. Adding or removing
instances does not disable Undo.

• Reloading a block

• Changing a blocks file

Adding Blocks

A hardware project is created by combining blocks from the panes displayed on the right side of
the user interface.

When a hardware project is opened, Design Interfaces and IP repositories that are available for
the particular board support package are shown in the panes on the right. The blocks can be
selected, dragged into the project, configured, and connected to other blocks in the project.

For example:

The selected block can be configured and saved.
If you select a block and right-click on it, the following options are available:

• Copy creates a duplicate of the selected block.

• Flip swaps the ports, so that inputs are on the right and outputs are on the left.

• Remove deletes the block from the project.

• Properties... opens the configuration dialog box shown above.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 22

Connecting Ports and Interfaces

Blocks can be connected together by their ports and interfaces. An interface is defined to be a
set of ports.

In the example above, this block has inputs to the left (input connectors point into the block),
and outputs to the right side of the block (output connectors point out of the block).

This block has two ports (small connectors), and the other connectors are interfaces (larger
connectors). The ports can represent one bit of data or a vector of bits. If the port represents a
vector of bits, the size can be identified next to its name.

When clicking on the "+" sign of an interface, such as “A” in the above image, the internal ports
of the interface appear shown below. Notice also that the “+” sign has changed to a “-“ sign.
Clicking on the “-“ sign hides the ports again.

When the "A" interface is connected to the output of a compatible interface, all individual signals
between the two interfaces are connected. If the design requires connecting an interface to an
incompatible interface or individual ports on another block, the ports within the interface may be
connected instead.

Connecting an Output Port to an Input Port
In the image below, connections are made by clicking on one port and then dragging the line
from it to another suitable port. This can be done by dragging a line from an output port to an
input port or by dragging a line from an input port to an output port. It may also be done by

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 23

dragging a line from an input port to an existing compatible connection.

Connections can be created according to connection rules. For more information, refer
Connection Rules.

If a connection can be made from a connector, a new line appears from this connector to mouse
and the mouse cursor changes to the axis icon as shown below. Furthermore, the possible
target connectors are highlighted in blue for showing the different connection possibilities. See
the input ports on the lower block "Awg_0" shown below.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 24

For finishing the connection, the end of the connection line is dragged by the mouse to a
compatible target connector. In this case, the mouse icon changes to the green connection icon.

When the mouse button is released, the new connection is created.

Remove and Redraw operations
Right-click the line connecting the two ports to see two options: Remove and Redraw. Remove
will delete the connecting line.

For example, add a block between the two ports. Notice the line connecting the ports is no
longer straight.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 25

Delete the block that was just added and notice that the connecting line stays unchanged.
Right-click the line and select Redraw. The line will be straight again.

Disconnecting a Connection

Once a connection is created, the connection can be disconnected by right-clicking on the
connector, which displays the Disconnect option.

Connecting Input Ports to a Literal Constant
If you want to connect a input port to a constant numeric value, you should connect the port to a
literal. Literals set 64-bit value constants at input ports. To insert a literal, right-click the port

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 26

and select the 'Connect to literal' command. You can set the value to an integer, hexadecimal,
or binary value:

• Integer: A integer number, negative numbers set a two's complement format. The range
for valid inputs is from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, or from
−(2^63) to 2^63 − 1

• Hexadecimal: A hexadecimal number using the characters 0 - F can be entered, followed
by an h; for example, Ah. The range for valid inputs is from 0h to FFFFFFFFFFFFFFFFh.

• Binary: Binary numbers can be added followed by a b, for example, 1010b.

Connection Rules

Ports
There are input ports and output ports. The input ports can have only one connection to an
output port. In this example, Din(15:0) has one connection.

The output ports can be connected to multiple input ports. In this example, Dout(15:0) output is
connected to three inputs.

Port Size Mismatches
If a wider output port is connected to a narrower input port, then the LSBs of the output port are
used to make the connection.

If a narrow output port is connected to a wider input port, the output port connects to the LSBs
of the input port. The remaining bits of the input port are set to zero.

In general, if the smaller of the two ports has N bits, then bits N-1...0 of the output port are
connected to bits N-1...0 of the input port. Any remaining output port bits are ignored, and any
remaining input port bits are set to zero.

In the second example shown above, both clk and rst will be connected to Dout(0).

Interfaces
Interfaces with the same type can be connected together as long as their data ports have the
same width. Therefore, interfaces of similar protocols can be put together with a single
connection. By connecting one interface to another interface, as shown below, all the
corresponding ports shown are connected. This removes the chore of having to connect each
interface port as shown below.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 27

Clicking on the "+" sign for either interface will expand the interface to show the underlying
ports. When an interface is expanded, clicking the "-" sign will collapse the port back to
showing just the interface name.

Connection between interface ports that have mismatched width, apart from data ports, is
handled the same way as it is described in section Port Size Mismatches.

1.1.1.1.1.1 Connecting Keysight interfaces to Xilinx interfaces
Keysight standard interfaces can be connected to Xilinx standard interfaces when appropriate
mappings exist. i.e. a Keysight AXI4 can connect to a Xilinx AXI4. If no appropriate mapping is
available, you cannot connect the interfaces.

1.1.1.1.1.2 Unconnected interface input ports
Input ports of an interface that are left without connection, either explicitly (by no connecting
anything to those) or implicitly (in the case of an interface connection, where the respecting
output port from the other interface is optional and not defined), will be initialized with the default
value specified in the interface's specification. If a value other than the standard default value
should be used for any of these ports, a literal with the desired value should be connected to
that port.

1.1.1.1.1.2.1 Special Cases
In some cases it is not possible to define the default value as per spec definition inside
PathWave FPGA. For example, the AXI4MM interface has some default values to depend on
the width of the data bus.

In the following table you can find the default values that PathWave FPGA is using:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 28

Interface
Name

Port Default value from spec. Default value in
PathWave

AXI4MM awsize width of data bus in bytes as a power of 2, default
assumes a bus width of 32-bits

2

AXI4MM arsize width of data bus in bytes as a power of 2, default
assumes a bus width of 32-bits

2

Another Special case for AXI4MM is the ID ports. If the ID port is present on a slave AXI4MM,
the matching master port must have a width less than or equal to the size of the slave ID port.

This rule is enforced so that no subtle bugs are introduced into your schematic logic.

If this does not match your expectations and the interface master does not include this
port, you have to explicitly connect the unconnected input port to a literal with the
desired default value.

Adding and Editing Comments

To add a comment:

1. Position the cursor within the project where the comment is to be inserted.

2. Right-click on a blank part of the canvas and select Insert Comment... .

3. Add text to the comment text box.

4. The comment can be moved by dragging it with the mouse. Notice the comment is in the
foreground and appears above the project elements.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 29

5. On right-clicking the comment, the option to copy or remove is provided.

6. Choose Copy, to create a duplicate comment.

7. Choose Remove, to delete the comment.

Configuring PathWave FPGA

The Configuration dialog provides some options for configuring PathWave FPGA. You can
specify the Vivado path, IP repositories, and the appearance of the interface. Select File >
Settings to open the following dialog:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 30

Vivado Installation Path

This drop-down list displays the installation path of the Xilinx Vivado version to be used by
PathWave FPGA for the bit file generation flow as well as the Xilinx IP Import. At start-up,
PathWave FPGA populates the drop-down list with the Xilinx Vivado installations found on the
local system. By default, the latest one is selected. The drop-down list may be used to select a
different Vivado version. If the desired version is not located, the Browse Button can be used to
locate a specific installation.

Vivado Installation Browse Button

Opens a browse dialog for the user to locate a Xilinx Vivado installation that was not found
automatically.

IP Repositories Path List

Displays a list of directory paths, where PathWave FPGA will look for IP. To learn more
information on how to create an IP repository, you can review the IP Developers Guide.

The actual IP discovery process takes place either when the user clicks the button explicitly,
or when the list is updated and the settings dialog is accepted. If a project is open at the time of
loading, the discovered IP will be loaded to the open project.

Currently, PathWave FPGA does not support having multiple IP with the same name. If more
that one IP with the same name is encountered during a project load, PathWave FPGA will only
load the first one and report an error for the others. To workaround this limitation, you can
create a wrapper for your IP with name that does not conflict with any other in the project library.

IP Repositories Control Buttons

The button opens a browse dialog for selecting an IP Repository location. If a location is
selected, it is added to the IP Repositories Path List.

The button removes the selected directories from the list.

The button searches for IP inside the directories defined in the list. When IP repositories
loading is completed, an informational message is displayed. In case of errors or warnings, the
errors will be logged into a temporary file. The temporary file will exist until the closing of
PathWave FPGA process. To regenerate the log file, repeat the loading procedure.

Theme Checkbox

To use the dark theme, check the Use dark theme check box.

Infer Interfaces Checkbox

When importing VHDL or Verilog User IP, interfaces can be deduced from the naming
convention of the ports. Each time a new IP file is added, the user has the option to infer
interfaces from the ports. The default choice is controlled by this checkbox.

Designing your FPGA Logic

• Creating a New Sandbox Project

• Creating a New Submodule Project

• Design Interfaces

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 31

• IP Library

• Naming Conventions

• Naming Collisions

Creating a New Sandbox Project

A sandbox project contains the customizable resources of the programmable FPGA of a
PathWave FPGA hardware module. When selecting a target module, the project is opened with
the factory settings of a standard module. The custom on-board solution is developed within this
hardware project and is saved, compiled and loaded into the hardware module (the binary can
be loaded into multiple identical modules).

Below are the steps to create a new sandbox project.

1. Select File > New... > New Sandbox Project.

2. Enter the project name.

3. Browse to select the project location.

 To place the project in a
subdirectory by the
same name, select the
Create project
subdirectory check
box.

4. Click Next. If a project with the same name exists, a prompt to overwrite the project is
displayed. Click Yes to overwrite the project.

5. Choose the Board Support Package for the target hardware module and click Next.

6. Choose a Project Template and click Next. A summary of the project details is displayed.
Click Finish.

7. To save any changes you made to the project, click the Save icon or use the menu option.

 Using the shortcut menu (right-click a block), you can perform the following
operations:

• To duplicate a block, select Copy.

• To flip a block horizontally, so inputs are on the right and outputs on the left,
select Flip.

• To redraw the connections to the block, select Redraw connections.

• To remove the block, select Remove.

• To view the description/properties, select Properties.

Sandbox Project Directory Structure
When a new project is created, a project folder with a corresponding project design file is
created. This project folder will contain build output and any Vivado XCI (Xilinx Core
Instance) IP that you have configured using PathWave FPGA. In the following example, the
project created is named myProject. The directory structure is shown below:

• myProject - Project folder

o myProject.kfdk - Project design file

o myProject.build - Folder containing intermediate build output

o myProject.data - Folder containing final build output and Vivado XCI IP

▪ bin - Folder with the final build output

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 32

• myProject_<timestamp> - Folder containing build output

o bitgen.log - Vivado build log file

o myProject.k7z - Program archive that can be downloaded
into your FPGA

o myProject.spb - Program FPGA bit file that is an older
format, to supported existing instrument software for
M3102A, M3202A, M3302A and associated
instruments. Newer Keysight hardware will not produce
this file output.

▪ VivadoIP - Folder to contain output for Vivado XCI IP that was configured
using PathWave FPGA

• <imported Vivado XCI> - Folder for each Vivado XCI IP
configured using PathWave FPGA

▪ submodules - Folder to contain submodule projects. The directory
structure that is created is an IP Repository of the submodules defined in
the project

• mySubmodule - Submodule with default name

o mySubmodule.data - Folder containing Vivado XCI IP

Creating a New Submodule Project

A submodule project allows you to organize your design hierarchically and reuse these designs
in multiple projects.

Below are the steps to create a new submodule project.

1. Select File > New... > New Submodule Project, from the menu of an open sandbox
project.

2. In the New Submodule Project dialog, enter the submodule project name and click Next.

3. Define the vendor, library, name and version (VLNV) and other properties of the
submodule. This information can be modified later by selecting Project > Properties...

4. Click Next. A summary of the project details is displayed. Click Prev to make changes
or Finish to save the new submodule project. See Sandbox Project Directory Structure for
information about how submodule projects are saved.

5. A new instance of PathWave FPGA will be started where you can edit your new submodule.

6. In the Change Submodule Interfaces dialog, define the interfaces into and out of the
submodule. See Configuring Submodule Interfaces for more information.The interfaces can
be modified later by selecting Project > Change Submodule Interfaces...

7. Click OK to close the Change Submodule Interfaces dialog.

8. To save any changes you made to the project, click the Save icon or use the menu option.

Design Interfaces

To communicate between the design and what lies outside the design, i.e. the static region for
sandbox designs, or some other design for submodules, you need to instantiate a design
interface block from the design interfaces pane. Each board support package provides a
unique set of design interface blocks that are specific for the instrument. The design interface
blocks are grouped based on the function of their connections to the "outside world". The
interfaces of a design are collapsed, in order to show the different categories of design
interfaces:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 33

Apart from categorizing, some design interface blocks can be instantiated with different types of
interfaces. For example, the interface "Hvi1" can be inserted to the schematic as a MemoryMap
or connected directly to a RegisterBank.

Finally, it is possible that an interface is comprised only by one port (e.g. a clock). In that case,
the interface instance will only show the slot, like in the picture below:

Keysight Standard Interfaces

Introduction
To facilitate connectivity between IP blocks and Design Interfaces, PathWave FPGA has
standardized on a number of interfaces. IP blocks using these interfaces will be easier to
interconnect and to connect to PathWave FPGA library blocks and Design Interfaces.

Interface Descriptions
The following is a brief description of the standard interfaces PathWave FPGA supports. Note
that this is only a brief description of each interface and is not meant to be a complete
description. Some interfaces (e.g. the AXI family) include optional signals that can be included
or omitted in particular implementations depending on the design requirements. This allows the
user to tailor the complexity and size of the interface while maintaining compatibility.

1. clock: A free running clock. Data is both sampled and changed on the rising edge of a
clock.

2. nRst: An active low reset signal.

3. AXIMM: the industry standard, AXI4-Memory Mapped high performance bus architecture.

a. Includes address information. This is a byte-addressable interface, meaning that
each address unit addresses 8-bits of data.

b. Supports data widths: 32, 64, 128, 256, 512, 1024 bits.

c. Supports burst (high performance) transfers.

d. Supports bi-directional flow control.

4. AXILite: the AXI4-Lite bus, a lightweight version of AXIMM for simpler interfaces that don't
require the performance/features of full blown AXI4.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 34

a. Limited data width: 32 (preferred) or 64 (if needed).

b. Only single transactions supported - no data bursting.

c. Supports bi-directional flow control.

5. AXIS: the AXI4-Streaming interface is for streaming arbitrarily long sequences of data.

a. Point-to-point streams - this interface does not include address data, though
optional TID, and TDEST signals allow some routing (addressing) information.

b. Data width is any multiple of 8 bits. Unlike AXIMM and AXILite, AXIS can support,
for example, 24 bit data. The standard allows 0 bit data (TDATA is optional). An
AXIS interface without data just has the control signals.

c. Supports optional TUSER data signals. These are extra signals that are logically
attached to data samples that could be used to include auxiliary data such as
triggers or data marks or timing information.

d. Supports merging/packing multiple data items into wider stream.

e. Supports bi-directional flow control.

6. mem: a very light weight Keysight proprietary interface.

a. Can be bi-directional.

b. Includes addressing. This is a word-addressable interface, meaning that each
address unit addresses 32-bits of data.

c. Does not include back-pressure - all transactions take place in one clock cycle and
can not be held off.

d. Has deterministic timing.

e. Used for HVI register access. Please see the Keysight M3601 documentation for
more information on HVI.

7. vector: a multi-bit vector of signals without any signaling protocol. This might be used to
connect a control register to an IP block.

8. wire: a single bit signal. This might be used for a trigger signal.

1.1.1.1.1.3 Addressing scheme
By addressing scheme, we refer to the number of data bits each address unit is addressing.

For example, in a byte-addressing scheme, each address unit addresses 8-bits of data. That
means that if we store a 32-bit data value `0xabcd0123`, in a little-endian memory structure, at
address b'11110000, then the memory will look like this :

address data (8-bit)

b'11101111 <other_data>

b'11110000 0x23

b'11110001 0x01

b'11110010 0xcd

b'11110011 0xab

b'11110100 <other_data>

On the other hand, for a word-addressing scheme, each address unit addresses 32-bits of data.
That means that for the same example as before, the memory will look like this :

address data (32-bit)

b'11101111 <other_data>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 35

address data (32-bit)

b'11110000 0xabcd0123

b'11110001 <other_data>

In the context of PathWave FPGA, there are currently three interfaces that are using
addressing: AXI4MM, AXI4Lite and MEM. The first two (AXI4MM, AXI4Lite) use a byte-
addressing scheme while the MEM interface uses a word-addressing scheme.

1.1.1.1.1.4 Signal Types
There are a number of different types of signals used in a typical design. These can roughly be
categorized into control signals (typically used to setup, control, and monitor a measurement),
and data flow signals (the data being processed - this could be a continuous stream of data or
one or more blocks of data).

The following are the various types of signals that PathWave FPGA supports:

1. Control Bus Slaves. Typically these would be register control/status blocks where the driver
could read and write status and control data.

2. Control Bus Master. This is for the case where the user IP wants to communicate with
external devices via the PCIe (or other host control) bus, e.g. write to other modules to
control multi-module measurements.

3. Continuous Streaming Data. This is an arbitrarily long stream of continuous data, e.g. from
an ADC. Since the data may not be one sample per clock, flow control is
required. Alongside the data, there may optionally be some amount of sideband data. This
is auxiliary data that flows along with the main signal data. It could include triggers or
marker info or be used to timestamp data.

4. Block Mode Stream Data. This would be an arbitrarily long stream of discontinuous blocks
of data. Each block may represent the result of some measurement or calculation, e.g. the
output of an FFT. To properly interpret this data, the boundaries of each block would need
to be delineated.

5. Memory Read / Write Data. Typically the FPGA will have access to off chip memory. There
needs to be a way for the user IP to read and write to this memory. This interface will need
to include both address and data flow, and probably needs to support burst transfers for
efficiency.

6. Supersampled Data. This is a variation of #3 and #4 above where more than one sample
per clock needs to be transferred.

7. HVI. HVI needs an efficient, time deterministic mechanism to access control register.

8. Clock. One or more clocks. Signals change on and are sampled on the rising edge of
clock.

9. Reset. One or more active low reset signals.

1.1.1.1.1.5 Data Types
Most of the data that PathWave FPGA will be processing is likely to be fixed point (scaled ints)
of varying bit widths. To facilitate interconnection of IP, limit the amount of data width
conversion, and allow the use of standard interfaces, PathWave FPGA standardizes on data
widths that are an integral number of bytes (i.e. multiples of 8 bits). Data that is natively a
different size should be padded up to the next multiple of 8 bits by padding MSBs. Unsigned
quantities are zero-extended, and signed quantities are sign extended. Thus a 12 bit unsigned
number would place those 12 bits as the 12 LSBs of the interface with the 4 MSBs being
zero. So if the data was X[11:0], the interface used would be TDATA[15:0] = {4'b0000,X[11:0]}.

The preferred format for floating point numbers in PathWave FPGA will be IEEE-754
compliant. The two supported (preferred) sizes will be binary16 (16 bits with 11 bit fraction and
5 bit exponent) and binary32 (32 bits with 24 bit fraction and 8 bit exponent). Note that the
number of fractional bits includes the implied leading "1" bit. The number of physical mantissa

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 36

bits is one less than the number of fractional bits, and there is also sign bit. Physically, the
binary32 format would have 1 sign bit, 8 exponent bits, and 23 mantissa bits.

It is not uncommon to process complex data (that is, data consisting of a real and an imaginary
component). If complex data is being sent over a single stream, the real and imaginary parts
will be sent in parallel over a wider stream with the real part will go in the least significant
word. For Serial data, the real part will come first (earlier in time).

Above are examples of parallel complex data (one sample per clock and two samples per
clock). Below is an example of serial complex data.

For performance reasons (and the limited clock rate available in FPGAs), it is sometimes
desired to transfer more than one sample per clock. This is called supersampled data. In this
case, each sample (or component of the sample for complex data) is first extended to an
integral number of bytes, and then these are packed together with the earlier in time samples
occupying the lesser significant position:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 37

1.1.1.1.1.6 Data Packing/Extending
When connecting two blocks with different data widths, there are two different ways of
converting the signals. The AXI standard views data as a stream of bytes without explicit
meaning. Going from a narrow to a wider interface will cause the bytes to be packed. For
example, going from a 16 bit interface to a 32 bit interface will pack two 16 bit words into each
32 bit word. Likewise going from a wide to a narrow interface will retain all the data bytes with
the output running at a higher rate than the input. This is desired behavior when interfacing to a
memory, for example.

The other situation is when the underlying bit widths of the data changes, for example when
interfacing a filter that uses 16 bit data to a filter using 24 bit data. When increasing the width
(e.g. 16 bit source feeding a 24 bit sink) the data should be sign extended per PathWave
FPGA's policy of right justifying fixed point data.

1.1.1.1.1.7 Polarity
The control signals for the AXI buses are generally active high. The exception is the nRST
signal which is active low. PathWave FPGA uses an active low nRST signal. The remaining
control signals should be active high. Further, PathWave FPGA should sample signals and
change signals on the rising edge of CLK.

1.1.1.1.1.8 Signal Interfaces

Signal Type Interface Discussion

Clock clock One or more free running clocks. Signals change on and
are sampled on the rising edge of clock.

Reset nRst One or more active low reset signals.

Control Bus
Slaves

AXIMM
AXILite

Most Control Bus Slaves can probably use the simpler
AXILite interface. A simple block of registers can easily
decode an AXILite interface with minimal logic.
If higher performance of burst access is desired, then the
higher capabilities of the full AXIMM bus could be used.

Control Bus
Masters

AXIMM
AXILite

These interfaces are full featured enough to meet the needs
of IP that needs to instigate access to addressable
memory/devices.

Continuous
Streaming Data

AXIS This interface supports the flow control and auxiliary data
needs of continuous data transfers.

Block Mode
Streaming Data

AXIS This interface includes the TLAST signal that can be used to
break the stream into arbitrary sized packets.

Memory
Read/Write
Data

AXIMM,AXILite,
AXIS

Memory, particularly off-chip memory, is generally used for
storing larger amounts of data which often require high
throughput accesses. If the user IP needs random access
to the memory, then AXI4 is probably the better fit. If the
memory is going to be used as a source or sink of streaming
data, using a DMA engine in the static region, then an AXI4-
Streaming interface would be a better fit.

Supersampled
Streaming Data

AXIS As discussed above, if supersampled or complex data
needs to be used, it will first be extended to an integral
number of bytes and then packed into a wider AXIS
interface.

Mem mem Some addressable interfaces, such as HVI,have distinct,
deterministic timing performance requirements. For very
simple designs, this provides an ultra-lightweight,
addressable interface.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 38

1.1.1.1.1.9 Example Usage

1.1.1.1.1.9.1 Discussion of Example
This simplified example shows how these interfaces might be utilized.

In the above example, ADCs generate three parallel 12 bit samples per clock. In the static
region these samples are converted to an AXIS bus as follows. Each sample is converted from
12 to 16 bits by sign extension. The resulting six bytes are concatenated together to form a 48
bit wide streaming data bus. One bit per byte of User data is added (six bits total) to contain
trigger information. Note that these are more bits than necessary, but for compliance with the
specification recommendations the extra (unneeded) bits are included.

The three real samples per clock are mixed with the output of a local oscillator to form three
complex samples (96 bits total). The user data (still one bit per byte) is now 12 bits wide. Note
that even though the interface into and out of the mixer is 16 bit data, since the user knows the
data is only 12 bits wide, the internal logic of the multipliers in the mixer need only operate on
12 bits of data (ignoring the 4 extension bits).

After decimating by four, the data rate has been reduced to one complex sample per clock
(actually 3/4 sample per clock - thus handshaking is needed) with the real and imaginary halves
each using 16 bits. For increased dynamic range, the Decimate by 2N block operates on 24 bit
data rather than 12 bit. An expander widens the bus to 24 bit data (time two because it is
complex). Note that the AXIS bus need not be a power of 2. It only has to be an integer
number of bytes.

The output of the Decimate by 2N block flows into a DMA Engine. This is designed to FIFO up
the data and burst data via an AXIMM bus to the memory controller in the static region that will
interface to the external DDR memory.

The Host controls the DMA Engine via the PCIe interface. The static region contains the PCIe
interface and passes an AXIMM bus into the Sandbox. Since the registers controlling the DMA
Engine are simple, there is no need for the DMA Engine to implement a full blown AXIMM
interface. Instead, the AXIMM bus from the PCIe interface is converted to the simpler AXILite
bus which feeds the registers in the DMA Engine.

For allowing synchronous measurements with other modules, the Frequency Register is
controlled via time deterministic PC-Mem bus. The output of the Frequency Register is a plain

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 39

Vector without control signals or handshake. This output controls the frequency of the Local
Oscillator the output of which feeds the mixer.

1.1.1.1.1.10 Associated Files
AXI Reference Guide

Adding a Memory Map
Some addressable design interfaces can be instantiated into the design using a different
interface type from the one of the interface of origin. This is to simplify user's design by
eliminating the use of an explicit converter, when such conversion is required. At build time,
PathWave FPGA recognizes this type of interface instances and automatically generates the
conversion logic between the design interface and the interface instance.

The design interfaces that support this function can be identified by the existence of the option
MemoryMap underneath the interface name, as can be seen in the following image for interface
Hvi1:

When double-clicking on the MemoryMap option, the new interface instance block dialog will
appear. In the dialog, the Entity Selection section provides a list of available conversions for
this interface. The first item in the list is always the type of the design interface. If there is only
one available option (i.e. only the design's interface type), then this one is automatically picked
and the Entity Selection section is not shown.

In the following image, the available options for the Host interface of M3XXX modules are
shown:

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 40

Adding a Register Bank
PathWave FPGA is dedicated to helping customers get their designs ready and tested fast; to
facilitate this, PathWave FPGA created Register Banks.

Register Banks are a type of block that can be placed inside the PathWave FPGA schematic.
When a register bank is placed in the schematic, PathWave FPGA will generate behind-the-
scenes logic to connect the signals that are displayed on the schematic to a memory mapped
bus that the customer can access from the Host. By moving this address logic creation inside
PathWave FPGA, the user does not have to worry about address overlaps, or decoding blocks.
This allows customers to focus their attention on the important parts of their design, and not
have to worry about boilerplate components.

How to Create and Update a Register Bank
Below are the steps for creating a Register Bank, and then updating a register bank.

1.1.1.1.1.11 Launching the Register Bank Dialog
1. With a project open, in the Design Interfaces pane, expand Communications then expand

the interface to which the Register Bank will connect. For the M3102A and M3202A, this
will be called Host. Under this interface there will be a selection called RegisterBank.

2. Either double click on RegisterBank or drag RegisterBank onto the design canvas to open
the Register Bank Dialog.

1.1.1.1.1.12 Creating a Register Bank Using the Register Bank Dialog
With the Register Bank Dialog open you are able to start designing a Register Bank. Register
Banks consist of a configurable group of registers with a contiguous address space.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 41

Figure 1: Register Bank Dialog when opened into a new project.

Below are main features of the Register Bank Dialog

1. Register Bank Name - This is the name that will be displayed on the block when it is placed
in the schematic.

a. The Register Bank Name must be unique, and valid HDL syntax (see Naming
Conventions).

2. Register Bank Information - The top right of the dialog displays what Clock and Reset are
connected to and which Interface is being used.

a. Addressing - This is the unit used by the Address Offset column.

3. Registers - You can view and edit registers that are contained within the Register Bank
here.

a. Name column - Double left click on an entry to edit a register name. A register
name must be unique within the register bank, and have valid HDL syntax (see
Naming Conventions).

i. If an issue is detected, the text will turn red and display a tool tip stating the
reason for the failure.

b. Address Offset column - This column displays the address offset of a register.
These are displayed for informational use only and cannot by directly edited.

c. Adding Registers - Click the "+" button on the dialog to add a register to the bottom
of the list.

d. Removing Registers - Select a register (or multiple registers by selecting one, then
holding shift and clicking another) and click the "x" button on the dialog or press the
delete key.

e. Reordering Registers - A register or multiple registers can be moved by selecting
them and either dragging them or using the up and down arrow buttons on the
dialog. This changes the address offset field of the moved register and updates
offsets of other registers affected by the move.

4. OK/Cancel - Click OK to create a Register Bank that can be placed on the schematic, or
Cancel to close the dialog with no other actions taken.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 42

a. If the dialog detects any issues with the Register Bank, it will disable the "OK"
button and display the text "Issue Detected". Please look for the red text to see why
the Register Bank is invalid.

1.1.1.1.1.13 Placing the Register Bank in the Schematic
Now that we are done editing the Register Bank, it is time to place the block onto the schematic.
To place the block onto the schematic, hit the "OK" button. The block will now be hovered below
your cursor. At the location you want to place the block, left click. Below is an example block
that was created with default values.

Figure 2: Register Bank block when placed onto the schematic.

Once in the schematic, Register Banks are treated the same as any other block. You are able to
move, copy, flip ports, and remove. To use them in your design, just connect the signals
displayed on the block to the logic you wish to interact with from the host. PathWave FPGA will
handle all of the routing logic for Simulation and Building. You are able to recognize the
individual registers in a Register Bank by looking at the names of the signals. The more
registers you add to the Register Bank, the more signals will be available. Below is an example
of a register block with two registers added to it.

Figure 3: Register Bank block that has two RW registers in it.

1.1.1.1.1.14 Updating Register Banks
A unique feature of Register Banks, is their ability to be modified after they are placed on the
schematic. To update the Register Bank we have in Figure 2 to the Register Bank we have in
figure 3 we will open the Register Bank Dialog up from the block. There are two ways of
opening this dialog.

1. Double click on the Register Bank that you wish to update.

2. Right click on the Register Bank you wish to update, and select "Properties...".

The Register Bank Dialog will open up and display the information that describes the Register
Bank you will update.

To add in the second register to our Register Bank, click "Add", then click "OK". Your Register
Bank will now have the signals associated with the second register.

If you wish to return your register to the state it was in before the update, simply click the "Undo"
Icon in the Icon bar, or use "Ctrl + z".

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 43

Configuring Submodule Interfaces
PathWave FPGA submodules contain interfaces to connect to blocks in the parent
design. When a submodule project is created, the Change Submodule Interfaces dialog will
open automatically. To open it again, select Project > Change Submodule Interfaces... or
click the Change Submodule Interfaces button in the Design Interfaces section of the main
window. This menu option and button will only appear when editing a submodule project.

Interface List
This table lists the interfaces in the submodule, with their name, interface type, and interface
role. When you select an interface in this table, it will be the target of any changes made with
the other controls in the dialog. Interfaces can also be reordered by dragging them to their
desired position within this table.

Component Preview
This shows the submodule as it will appear when added to another design. Slave interfaces are
placed on the left, and Master interfaces are placed on the right. The interface that is selected in
the table above is colored blue.

Interface Control Buttons

When you click the Add button, you can select an interface from a list. This will add a new
interface of that type.

The Remove button will delete the selected interface.

The Up and Down buttons will move the selected interface in the table and the
Component Preview.

Name and Description
The Name field changes the name of the interface.

The text entered in the Description field is shown when adding instances of this interface to the
submodule. It is also shown in the Properties dialog for the interface when the submodule is
used in another design.

Interface Role
The Interface Role controls whether the interface will be a Master/output
or Slave/input. Master and Slave are defined in terms of using the submodule in another
design, from the outside looking in.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 44

Category
The Category controls where the interface will appear in the Design Interfaces section of the
main window.

Parameters
Some interfaces have one or more parameters, which control the width of some of the ports in
the interface. In the example diagram, the AXI Lite interface has two parameters. Address Width
must be between 1 and 64 bits. Data Width has two options, 32 and 64 bits. The parameter
values are verified to be within the limits when you click the OK button. If they are not within the
limits, they must be corrected. If a parameter controls the width of an optional port and that port
is disabled, the parameter field will be disabled (grayed-out).

Optional Ports
Some interfaces have one or more optional ports. The check-box for each port determines
whether that port will be present in the interface. The Select All and Deselect All buttons will
enable or disable all optional ports.

Synchronous Properties
Some interfaces must be associated with a clock and reset. If there are any synchronous
interfaces in the submodule, there must be at least one clock and one reset. If there is more
than one clock or reset, then the Associated Clock or Associated Reset menu allows you to
choose the associated clock or reset for each interface.

OK and Cancel Buttons
The OK button will apply the changes to the submodule interfaces. If there are any parameter
errors or missing associated clock/resets, you will need to correct them before the changes can
be applied.

The Cancel button will discard the changes to the submodule interfaces.

Changes to the Sandbox
After pressing Ok on the dialog, if there were no errors, the sandbox is automatically updated
with the new changes.

1.1.1.1.1.15 Removing an Interface
If an interface is removed, then all Design Interfaces blocks with that interface are removed.

1.1.1.1.1.16 Changing an Interface
If any modifications are made (except changing Interface Role), then those changes are made
reflected in all Design Interfaces blocks with that interface. This may result in connections being
lost if they were connected to an optional port which was removed.

Changing the interface role results in the Design Interfaces blocks with the interface being
removed.

1.1.1.1.1.17 Replacing an Interface
If you remove an interface and replace it with a compatible interface with an identical name,
then all Design Interface blocks that had the old interface are replaced with blocks that have the
new interface.

If you remove an interface and replace it with an incompatible interface with an identical
name, then all Design Interface blocks that had the old interface are removed as if the interface
was removed.

Currently the only interface types compatible with each other are axilite and aximm. They are
also considered compatible if the original interface type is the same as the new one (e.g. axilite
to axilite).

For example, you could replace an aximm named 'host' with an axilite called 'host' and it will
substitute the appropriate Design Interface blocks. But you could not replace an aximm
interface named 'host' with a mem interface named 'host'.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 45

1.1.1.1.1.18 Adding an Interface
The interface was just added, so no blocks with the interface will be in the Submodule.

Deciding the Address Width of an Interface
If an addressable slave interface is available for a design, the user is allowed to configure the
address width for the instances of this interface.

Selecting the address width value is straightforward when only one instance of an interface is
instantiated. Deciding the correct value when there are multiple instances of an interface, and
Register Banks, can become a complicated job. If we include to the above scenario the usage
of interface instances with different addressing schemes, the probability of exceeding the
available address space is high.

PathWave FPGA assists by calculating, on-the-fly, the address space mapping of the instances
of an interface and provides this information to the user in the instance's block dialog, as shown
below.

Addressing Information Section

• Addressing Unit: Displays the data bits addressed by each addressable unit which
depends on the addressing scheme of the selected interface instance. For the case of 8-
bits and 32-bits addressable data bits, Byte Addressed and Word Addressed are used
respectively.

• Mapped Address Space: Displays the address space, in Addressing Unit, that is mapped
by the current interface instance.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 46

o If there is an error in the calculation, the value turns to red and an error symbol, ,

is displayed at the left side of the value. Hovering over the symbol provides
more information about the error in a tool-tip.

o For important information regarding the calculation, an information symbol, , is

displayed at the left side of the value. Hovering over the symbol provides more
important information in a tool-tip.

• Mapped Address Space (others): Displays the address space, in Addressing Unit, that is
mapped by other interface instances, and register banks, in the design.

o If other instances exist, an information symbol, , is displayed at the left side of

the value. Hovering over the symbol provides a list of all the other instances and
registers along with their mapped address space as a tool-tip.

• Total Address Space: Displays the address space, in Addressing Unit, that is available by
the interface.

• Unmapped Address Space: Displays the address space, in Addressing Unit, that is left
unmapped for the interface.

Expand/Collapse Button
This button is used to show/hide some of the addressing information. When collapsed, the only
information visible to the user is the Addressing Unit and the Mapped Address Space.

Exceeding the available address space
In case of multiple interface instances (and/or registers) for a design interface, it is possible that
more than the available address space is required by the user's design. In that case, the
calculator of the address space will identify the issue and display error to the user through the
block dialogs of the interface instances or register banks.

For example, let's take the case of a byte-addressed axilite interface with 20-bits of address
width. This will give a total of `0x100000` bytes available address space to be mapped.

If we create one instance of this interface using an address width of 19-bits, the mapped, and
unmapped, address space will become `0x80000`.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 47

If we now create a second instance of this interface selecting to use 20-bits, the calculator will
detect the overflow and report error, as shown in the following picture:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 48

By adjusting the address width value of the new instance, the user can find the value that
satisfies the space limits:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 49

1.1.1.1.1.19 Showing address space calculation errors in Register Banks
Register Banks are related to a design's interface and are taken into account for the calculation
of the address space of an interface. If creating a Register Bank, or increasing the number of
registers in an existing one, leads to required space overflow, an error message is displayed at

the lower left corner of the Register Bank dialog. By hovering over the symbol, the exact
issue is described.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 50

Registering Sandbox Interfaces
Registering a sandbox interface is the process of adding a register stage for the interface, just
after it has crossed the sandbox boundary (and therefore, has entered the sandbox design).

The purpose of this procedure is to control the timing closure of the design. By placing a
register stage at the boundary crossing from the static region to the sandbox, the path from the
origin of the interface signals to their destination is made shorter. This makes meeting the timing
requirements of the design easier. On the downside, this extra registration stage increases the
latency in the path.

PathWave FPGA allows the user to control the registration of the sandbox interfaces when
register stages are supported by the BSP. When register stages are supported by the BSP, a
check box will appear in the properties dialog of a Design Interface block.This checkbox allows
the user to choose whether or not to place the register stage in the design. When register
stages are not supported by the BSP, this checkbox will not be shown.

Modifying the default value of the 'Generate Register Stage' checkbox is
an advanced feature. If not done properly, it can lead to timing violations or
invalid operation of the design. Always read the BSP documentation
before applying any modifications to the default values.

An example of the properties dialog of a Design Interface block that supports register stages is
shown below:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 51

For more information about closing timing for sandbox designs, consult the Xilinx Vivado Design
Suite User Guide - Partial Reconfiguration document, particularly the "Reconfigurable Partition
Interfaces" section.

IP Library

PathWave FPGA is shipped with a library of IP components that can be used inside a design.
PathWave FPGA also provides several methods for users to add their own IP or IP libraries.

More information about the existing IP and the import methods can be found in the following
sections:

• PathWave FPGA IP Repository

• IP Repositories

• Imported User IP

• Vivado XCI (Xilinx Core Instance)

• PathWave FPGA Submodule

PathWave FPGA IP Repository
PathWave FPGA includes some IP blocks that a user can incorporate into their FPGA design.
The IP blocks are categorized into different libraries so that similar blocks are grouped together.
Below is a description of the IP blocks included in PathWave FPGA.

Some of the IP blocks are designed so that they can optionally process multiple samples in the
same clock. This is called supersampling. For blocks that support this, there is a parameter
called supersample that denotes the number of parallel samples. For example, a 32 bit adder
with supersample=1 would add two 32 bit numbers. A 32 bit adder with supersample=2 would
add two pairs of 16 bit numbers. This can be useful when processing data at a higher sample
rate than the clock rate of the FPGA.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug909-vivado-partial-reconfiguration.pdf

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 52

Basic IP blocks

1.1.1.1.1.20 Combiner

Combines N single-bit inputs into a single N-bit output vector.

1.1.1.1.1.20.1 Parameters
Din width: Sets the number of single bit inputs. Variable from 1 to 1024. Default is 8.

1.1.1.1.1.21 Concat

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout.

This module does not introduce extra delay.

1.1.1.1.1.21.1 Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 53

1.1.1.1.1.22 Concat_stream

Streaming version of the concat block.

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout

This module does not introduce extra delay.

Note that both streaming inputs must assert and deassert tvalid at the same time.

1.1.1.1.1.22.1 Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 54

1.1.1.1.1.23 Concat_streamFC

Streaming flow controlled version of the concat block.

Concatenates two input signals into one single signal. DinH is the most significant half of Dout,
and DinL is the least significant half of Dout

This module introduces minimum 2 clock delay.

1.1.1.1.1.23.1 Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

tuser width: Sets the data width of tuser. Variable from 1 to 8. Default is 1.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 55

1.1.1.1.1.24 Cross_clk_domains

Logic to handle the crossing of signal levels and pulses to and from arbitrarily related clock
domains.

Logic high pulses on the input clock domain are synchronously transferred to logic high pulses
on the output clock domain. An output logic pulse will always have a pulse width of one
'clk_data_out' cycle, regardless of the pulse width of the input logic pulse.

Logic levels on the input clock domain are synchronously transferred to logic levels on the
output clock domain.

The transfer delay of signals from the input clock domain to the output clock domain depends
upon the frequency and phase relationship between the two clock domains. Input signal levels
are assumed to be relatively static compared with the clock frequencies. Input signal pulses
cannot be repeated until each pulse has fully propagated through the block. The 'rdy' output
signal should be used to determine when the block is ready to transfer an input pulse to the
output, especially if input signal pulses may otherwise occur in rapid succession. When a bit in
the 'pulses_in' input port is asserted high, the corresponding 'rdy' bit will be asserted low. When
the 'rdy' bit is again asserted high, the 'pulses_in' input may again be asserted high. The 'rdy'
output signal is synchronous with the 'clk_data_in' clock.

Regardless of the input and output clock frequencies, if a level input and pulse input are
asserted simultaneously, the corresponding level output will be asserted either simultaneous
with or before the pulse output is asserted.

Note that positive transitions are detected in the 'pulses_in' input to determine that a pulse input
has occurred. Consequently, if a 'pulses_in' input is asserted high and remains high, only one
pulse will be output.

'resetn_data_in' is an active low reset signal, synchronized to the 'clk_data_in' clock.

'resetn_data_out' is an active low reset signal, synchronized to the 'clk_data_out' clock.

Note that this block is available only for sandboxes which include more than one clock.

1.1.1.1.1.24.1 Parameters
pulses_width: Sets the data width of pulses_in, pulses_out and rdy

levels_width: Sets the data width of levels_in and levels_out

levels_reset_value: Sets the reset value of levels_out

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 56

1.1.1.1.1.25 Decombiner

Converts a single N-bit input vector into N single-bit output signals.

1.1.1.1.1.25.1 Parameters
Din width: Sets the Din data width. Variable from 1 to 1024. Default is 8.

1.1.1.1.1.26 Delay

Delays input N cycles.

1.1.1.1.1.26.1 Parameters
bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.

latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Reset Value: Sets the value of the delay registers when nRst is asserted low. It should be the
same size is Din. Default is 0.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 57

1.1.1.1.1.27 Delay_stream

Streaming version of the delay block.

Delays input N cycles.

1.1.1.1.1.27.1 Parameters
bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.

latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Reset Value: Sets the value of the delay registers when nRst is asserted low. It should be the
same size as tdata. Default is 0.

1.1.1.1.1.28 Latch

32 bit latch with write enable.

1.1.1.1.1.28.1 Parameters
Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 58

1.1.1.1.1.29 LatchClr

Latch with clock enable and synchronous clear.

If nRst = 0, then Dout is set to the initialization value (typically 0).
If nRst = 1 and CE = 0, Dout remains unchanged.
If nRst = 1, CE = 1, and Clr = 1, Dout is set to the initialization value on the rising edge of clk.
If nRst = 1, CE = 1, and Clr = 0, Dout is set to Din on the rising edge of clk.

1.1.1.1.1.29.1 Parameters
Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.
Init: Sets the value that the latch resets/clears to. Default is 0.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 59

1.1.1.1.1.30 Mux2, Mux4, Mux8

These are 2 to 1, 4 to 1, and 8 to 1 multiplexers. The value of the Sel input determines which of
the various In ports connect to Result.

These are combinatorial.

1.1.1.1.1.30.1 Parameter
width: Sets the bus width of the In ports and Result.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 60

1.1.1.1.1.31 Read_mux

Read data from multiple sources.

Address port is used to select one of N, 32 bit data sources. If the address index is larger than
the number of input data sources, this block will return zeros.

1.1.1.1.1.31.1 Parameters
Number of inputs: Sets the number of 32 bit data sources. Default is 2.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 61

1.1.1.1.1.32 Reg_xN

Captures N, 32 bit data inputs and drives to outputs. The internal data register may be updated
through a write access on the 'mem' port indexed by the address value. The internal data
register may also be updated to the Din value by asserting the corresponding Din_v
signal[n]. When both updates are attempted at the same time, the mem write value will take
precedence. The values of the internal data registers are driven out the Dout[n] ports.

Note that the Reg_xN block uses the Mem interface which uses word addressing, not byte
addressing.

Mem read access will return the value of the indexed internal data register.

The Dout_v[n] signal is asserted high for one clock period when new data is written. This is any
time a mem write occurs or when Din_v[n] is asserted.

1.1.1.1.1.32.1 Parameters
Number of Registers: Variable from 1 to 1024. Default is 2.

Address width: Variable from 1 to 32. Default is 32.

1.1.1.1.1.33 sign_extension

Sign extends the input vector.

1.1.1.1.1.33.1 Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 62

1.1.1.1.1.34 sign_extension_stream

Sign extends the input data stream.

1.1.1.1.1.34.1 Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

1.1.1.1.1.35 sign_extension_streamFC

Sign extends the input data stream using full flow control.

This block adds a minimum delay of 2 cycles.

1.1.1.1.1.35.1 Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.

Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

Tuser width: Sets the tuser bus width. Variable from 1 to 8. Default is 1.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 63

1.1.1.1.1.36 slice

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

1.1.1.1.1.36.1 Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

1.1.1.1.1.37 slice_stream

Streaming version of the slice block.

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

1.1.1.1.1.37.1 Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 64

1.1.1.1.1.38 slice_streamFC

Streaming version of the slice block supporting full flow control.

Selects certain number of bits from a vector signal input.

This block adds a minimum delay of 2 cycles.

1.1.1.1.1.38.1 Parameters
Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

Offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) =
Din(bus_in_width:offset_lower_bit)]. Default is 0.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

Tuser width: Sets the bus width of tuser. Variable from 1 to 8. Default is 1.

Supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 65

Connectors

1.1.1.1.1.39 Axi4liteToMem

 Converts Axi4Lite slave interface to PC_Mem master interface.

1.1.1.1.1.39.1 Parameters
Axi address width: Sets the AXI interface address width. Default is 8.
Since the Mem interface uses word addressing while the Axi4Lite interface uses byte
addressing, the size of the Mem interface address bus is two bits smaller.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 66

1.1.1.1.1.40 Axi4Tomem

Converts Axi4MM slave interface to PC_Mem master interface.

1.1.1.1.1.40.1 Parameters

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 67

Axi address width: Sets the AXI interface address width. Default is 8.
Since the Mem interface uses word addressing while the Axi4 interface uses byte addressing,
the size of the Mem interface address bus is two bits smaller.

1.1.1.1.1.41 AXIStream_Broadcaster

Broadcasts AXI4 streaming data from one master to multiple slaves.

1.1.1.1.1.41.1 Parameters
Tdata bitwidth, default is 32. Tuser bitwidth, default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 68

Math

1.1.1.1.1.42 Adder

Signed adder.

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

1.1.1.1.1.42.1 Parameters
input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.

latch input: When enabled the data on the A and B inputs is latched. Default is no latch.

subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 69

1.1.1.1.1.43 Adder_stream

Signed adder with streaming interface.

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

1.1.1.1.1.43.1 Parameters
input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.

subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 70

1.1.1.1.1.44 Adder_streamFC

Signed adder with streaming interface with full flow control support.

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 4 cycles.

1.1.1.1.1.44.1 Parameters
Input Width: Sets the bus width of the A and B inputs. Default is 16.

User Width: Sets the bus width of the tuser input. Variable between 1 and 8. Default is 1.

Adder Implementation: Selects saturate or full precision adder modes. Default is Saturate.

Subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

Supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 71

1.1.1.1.1.45 Comparison

Comparisons between inputs A and B.

Output is set to one when the comparison set by the operation parameter is true.

1.1.1.1.1.45.1 Parameters
operation: Select between A==B, A!=B, A>B, A<B, A>=B, and A<=B. Default is A==B.

data size: Sets the bus width of the A and B inputs. Default is 16.

sign: Select when the data on the A and B inputs is signed. Default is unsigned.

1.1.1.1.1.46 Integrator

Data integrator.

When selecting signed input, sign extension is automatically applied.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 1 cycle by default.

When latch input is enabled, an extra cycle of delay is added.

1.1.1.1.1.46.1 Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32. The output_width must be greater than or equal to input_width.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 72

1.1.1.1.1.47 Integrator_stream

Data integrator with streaming interface.

When selecting signed input, sign extension is automatically applied.

The input samples are accumulated only when the Din tvalid signal is asserted.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 1 cycle by default.

When latch input is enabled, an extra cycle of delay is added.

1.1.1.1.1.47.1 Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32. The output_width must be greater than or equal to input_width.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 73

1.1.1.1.1.48 Integrator_streamFC

Data integrator with streaming interface with full flow control support.

When selecting signed input, sign extension is automatically applied.

The internal accumulator can be reset by the nRst or Clr inputs.

The Clr input will only clear the internal accumulator but allow input samples to pass through
while asserted.

When supersample > 1, all the input samples are summed into the same internal accumulator.

This module adds a delay of 3 cycles by default.

When latch input is enabled, an extra cycle of delay is added.

1.1.1.1.1.48.1 Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Default is 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Default is 32. The output_width must be greater than or equal to input_width.

tuser_width: Sets the bus width of the tuser input. Variable between 1 and 8. Default is 1.

input_signed: When enabled, the input samples represent signed values and will be sign
extended prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of
delay. Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 74

1.1.1.1.1.49 Logic_NOT

Logic NOT operation.

1.1.1.1.1.49.1 Parameters
data size: Sets the bus width of the A and Dout ports. Variable from 1 to 1024. Default is 16.

1.1.1.1.1.50 Logicgate

Output is the logical operation between inputs A and B.

The operation parameter determines which logical operation is performed from AND, OR, XOR,
NAND, NOR, and XNOR.

1.1.1.1.1.50.1 Parameters
data size: Sets the bus width of the A, B, and Dout ports. Variable from 1 to 1024. Default is 16.

operation: Selects one of the logic operations listed above. Default is AND.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 75

1.1.1.1.1.51 Multiplier

Multiplier (DSP core).

Input lengths and signedness are configurable.

When both inputs are signed, the multiplication product length is the sum of both input lengths
minus 1. Otherwise, the product length is the sum of both input lengths.

When the Dout length is less than the product length, Dout will consist of the upper (most
significant) bits of the product. The maximum Dout length is the product length.

When both inputs are signed, the product -FullScale times -FullScale can not be represented in
the output. Instead, +FullScale is output, which is one less than the real product.

This block adds a delay of 1 cycle.

Latch input increases the total delay by an additional clock cycle.

Pipeline increases the total delay by an additional clock cycle.

1.1.1.1.1.51.1 Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

Latch input: Input data is latched when selected. Default is no latch.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 76

1.1.1.1.1.52 Multiplier_stream

Multiplier (DSP core) with streaming interface.

Input lengths and signedness are configurable.

When both inputs are signed, the multiplication product length is the sum of both input lengths
minus 1. Otherwise, the product length is the sum of both input lengths.

When the Dout length is less than the product length, Dout will consist of the upper (most
significant) bits of the product. The maximum Dout length is the product length.

When both inputs are signed, the product -FullScale times -FullScale can not be represented in
the output. Instead, +FullScale is output, which is one less than the real product.

This block adds a minimum delay of 1 cycle.

Pipeline increases the total delay by an additional clock cycle.

1.1.1.1.1.52.1 Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 77

1.1.1.1.1.53 Multiplier_streamFC

Multiplier (DSP core) with streaming interface and full flow control support.

Input lengths and signedness are configurable.

When both inputs are signed, the multiplication product length is the sum of both input lengths
minus 1. Otherwise, the product length is the sum of both input lengths.

When the Dout length is less than the product length, Dout will consist of the upper (most
significant) bits of the product. The maximum Dout length is the product length.

When both inputs are signed, the product -FullScale times -FullScale can not be represented in
the output. Instead, +FullScale is output, which is one less than the real product.

This block adds a minimum delay of 4 cycles.

Pipeline increases the total delay by an additional clock cycle.

1.1.1.1.1.53.1 Parameters
A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Tuser width: Sets the bus width of the tuser input. Variable between 1 and 8. Default is 1.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.

pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 78

1.1.1.1.1.54 Saturator

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

1.1.1.1.1.54.1 Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8. The Dout
width must be less than or equal to Din width.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 79

1.1.1.1.1.55 Saturator_stream

Data saturator with streaming interface.

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

1.1.1.1.1.55.1 Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8. The Dout
width must be less than or equal to Din width.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 80

1.1.1.1.1.56 Saturator_streamFC

Data saturator with streaming interface with full flow control support.

Output data is set to a saturation value (set by Thld port) whenever input data is equal or
greater than that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than
that value.

Saturation value can not be greater than the maximum possible value of the output vector.

This block adds a minimum delay of 3 cycles.

1.1.1.1.1.56.1 Parameters
Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Tuser width: Sets the tuser bus width. Variable between 1 and 8. Default is 1.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8. The Dout
width must be less than or equal to Din width.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 81

1.1.1.1.1.57 Shift

Signal shifter with configurable input size, direction and number of shifts.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

1.1.1.1.1.57.1 Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

1.1.1.1.1.58 Shift_stream

Signal shifter with configurable input size, direction and number of shifts using streaming
interfaces.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

1.1.1.1.1.58.1 Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 82

1.1.1.1.1.59 Shift_streamFC

Signal shifter with configurable input size, direction and number of shifts using streaming
interfaces with full flow control.

This block adds a minimum delay of 2 cycles.

Zeros are introduced on the shifted side.

1.1.1.1.1.59.1 Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default
is 16.

tuser width: Sets the tuser bus width. Variable between 1 and 8. Default is 1.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right
shift. Default is Left shift.

shift amount: Sets the number of bits to shift. Default is 0.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 83

DSP

1.1.1.1.1.60 Combine1toN

Combines N AXI-streaming samples into one AXI-streaming sample that is N times wider. The
input is not supersampled while the output is supersampled by N.

1.1.1.1.1.60.1 Parameters
Tdata size: This sets the data width of Din_tdata. Dout_tdata will be N or N+1/2 times this value
in width.

Tuser size: This sets the data width of Din_tuser. Dout_tuser will be N or N+2 times this value
in width.

N: This sets how many input samples are combined into one output sample.

Add 1/2 to N: When selected, combine N+1/2 samples into the output rather than N samples.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 84

1.1.1.1.1.61 Complex2Real / Real2Complex

Converts between one complex stream of data using interleaved real and imaginary parts and
two separate streams, one for real and one for imaginary parts. These can be used to split off
the real and imaginary streams into different destinations or to combine two real streams into
one complex stream.

1.1.1.1.1.61.1 Parameters
Tdata size: This sets the data width of the real and imaginary parts of each sample.

Tuser size: This sets the tuser bits per sample.

supersample: This sets the number of samples per clock in the input and output streams.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 85

1.1.1.1.1.62 DecimateBy5

Decimate 5x, supersampled streaming input by a factor of 5. Decimation is achieved using a
polyphase, FIR filter.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream. There are User Data
Width bits for each of the five input samples.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream.
If User Data Width is greater than one, then the tuser input will have 5 * User Data Width bits
and the tuser output will have User Data Width bits.

1.1.1.1.1.62.1 Parameters
Data Width: This sets the input and output sample widths. Note the input tdata width is 5 x Data
Width bits

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 86

1.1.1.1.1.63 DecimateBy5 Complex

Decimate a complex, 5x, supersampled streaming input by a factor of 5. Decimation is achieved
using a polyphase, FIR filter. The real and imaginary parts of each sample are interleaved with
the real part occupying the less significant (lower bit number) word. The lower order 16 bits of
the output are real output data and the upper 16 bits of the output are imaginary output data.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream. There are User Data
Width bits for each of the five input samples.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream.
If User Data Width is greater than one, then the tuser input will have 5 * User Data Width bits
and the tuser output will have User Data Width bits.

1.1.1.1.1.63.1 Parameters
Data Width: This sets the input and output sample widths. Note the filter_in_tdata width is 10
x Data Width bits, and the filter_out_tdata width is twice Data Width bits.

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 87

1.1.1.1.1.64 InterpolateBy5

Interpolate an input stream by a factor of 5. Interpolation is achieved using an oversampled, FIR
filter.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream.
There are User Data Width bits for each of the five input samples.

If User Data Width is greater than one, then the tuser input will have User Data Width bits and
the tuser output will have 5 * User Data Width bits.

1.1.1.1.1.64.1 Parameters
Data Width: Sets the bus width of filter_in_tdata. Default is 16.

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 88

1.1.1.1.1.65 InterpolateBy5 Complex

Interpolate a complex input stream by a factor of 5. Interpolation is achieved using an
oversampled, FIR filter.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream.
There are User Data Width bits for each of the five input samples.

If User Data Width is greater than one, then the tuser input will have User Data Width bits and
the tuser output will have 5 * User Data Width bits.

1.1.1.1.1.65.1 Parameters
Data Width: Sets the data width for each of the real and imaginary samples. Default is 16 (32
total bits for I and Q data). The filter_in_tdata will be twice this size and the filter_out_tdata will
be ten times this size.

User Data Width: This sets the number of TUSER data bits per sample. The use of these
TUSER bits are used defined.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 89

1.1.1.1.1.66 Lo

Parameterized Local Oscillator. It handles supersampled or non-supersampled data, and either
the input and/or the output can be real or complex.

A and B control the local oscillator's frequency. Let S be the amount of supersampling, and let
T be the smallest power of 2 greater than or equal to S (so that S<=T<2S).
The LO frequency is given by f = fs * (A+B/510)/((S/T)*225). For a sample rate, fs, of 1 Gs/s, this
results in an even decimal frequency resolution of 0.1 Hz. Frequencies can be positive or
negative. Valid input ranges for A and B are such that -1/2 <= f/fs <= 1/2. Values of A and B
that are outside this range will give incorrect results.

When asserted, phRst will reset the phase of the phase accumulator to zero and flush data in
the LO's pipelines without resetting the programmed frequency. For phase continuous
frequency changes, leave phRst negated. Note that in this case due to pipeline stages, the
results of the frequency change will not be visible at the output for several samples. To
eliminate this delay in seeing the effects of frequency changes, assert phRst on or after the new
frequency is set. This may easily be done by driving phRst with the same signal as
setFreq. Note that phRst should not be tied high as that will prevent operation of the LO.

1.1.1.1.1.66.1 Parameters
Tdata size: Sets the data width for each sample (real data) or for each of the real and imaginary
parts of each sample (complex data).

Tuser size: Sets the number of tuser bits per sample.

Complex Input: If set, then the input data is complex. If cleared, then the input data is real only.

Complex Output: If set, then the output data is complex. If cleared, then only the real part of the
output data is generated.

Supersample: This sets the supersample value and determines how many parallel samples are
processed at the same time.

Shift Direction: If Shift Direction = 0, the input is multiplied by ejωt (shift frequencies up).
 If Shift Direction = 1, the input is multiplied by e-jωt (shift frequencies down).

Dither: Enables phase dithering to help convert spurious signals into more noise like signals
(default is Dither=1 or enabled).

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 90

1.1.1.1.1.67 Lo5_dc

 Note: This block is deprecated and not recommended for new designs. New designs
should use the Lo block instead.

Down converting Local Oscillator for use in digitizers with 5X supersampled ADCs. Input is 5X
supersampled real data while the output is a 5X supersampled data stream representing
complex output data.

A and B control the local oscillator's frequency.

The LO frequency is given by f = fs * (A+B/510)/(5*222). For a sample rate, fs, of 1 Gs/s, this
results in an even decimal frequency resolution of 0.01 Hz.

1.1.1.1.1.67.1 Parameters
Tdata size: This sets the data width of the samples. Since the data is 5X supersampled, the
input tdata width is five times this value and the output tdata width is ten times this value.

Tuser size: This sets the tuser bits per sample.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 91

1.1.1.1.1.68 Lo5_uc

Note: This block is deprecated and not recommended for new designs. New designs
should use the Lo block instead.
Up converting Local Oscillator for use in sources with 5X supersampled DACs. Input is a 5X
supersampled data stream representing complex input data. Output is one 5X supersampled
real data stream.

A and B control the local oscillator's frequency.

The LO frequency is given by f = fs * (A+B/510)/(5*222). For a sample rate, fs, of 1 Gs/s, this
results in an even decimal frequency resolution of 0.01 Hz.

1.1.1.1.1.68.1 Parameters
Tdata size: This sets the data width of the samples. Since the data is 5X supersampled, the
input tdata width is five times this value and the output tdata width is ten times this value.

Tuser size: This sets the tuser bits per sample.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 92

1.1.1.1.1.69 Power2Decimator

This is a power of two decimation filter that operates on complex data. It accepts complex data
at up to one sample per clock. It filters and decimates the data by 2

N
 , where N=0...16.

1.1.1.1.1.69.1 Parameters
Tdata size: This sets the data width of the samples. Since both the input and output are
complex, the width of the tdata busses are twice this value.

Tuser size: This sets the tuser bits per sample.

1.1.1.1.1.70 Power2Interpolator

This is a power of two interpolation filter that operates on complex data. It accepts complex
data and interpolates and filters the data by 2

N
 , where N=0...16, generating up to one complex

output sample per clock.

1.1.1.1.1.70.1 Parameters
Tdata size: This sets the data width of the samples. Since both the input and output are
complex, the width of the tdata busses are twice this value.

Tuser size: This sets the tuser bits per sample.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 93

Memory

1.1.1.1.1.71 DualPortRam

Dual port Block Ram up to 1024 bits x 65536 positions using PC MEM interfaces.

Read latency is 1 cycle.

1.1.1.1.1.71.1 Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is
10.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 94

1.1.1.1.1.72 DualPortRam_stream

Dual port Block Ram up to 1024 bits x 65536 positions using AXI Streaming interfaces.

Note that the tvalid for Addr and Din inputs must be asserted high and low at the same time for
interfaces A or B.

Read latency is 1 cycle.

1.1.1.1.1.72.1 Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is
10.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 5.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 95

1.1.1.1.1.73 Mem_mux_2x

MEM interface 1 to 2 multiplexor.

Input address space size = 2^(Slave Address Width)

Output address space size = Input address space size / 2

MEM0 offset = 0.

MEM1 offset = Output address space size.

1.1.1.1.1.73.1 Parameters
Slave Address Width: Sets the address width on the Mem interfaces. Variable between 2 and
32. Default is 14.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 96

1.1.1.1.1.74 Mem_mux_4x

MEM interface 1 to 4 multiplexor.

Input address space size = 2^(Slave Address Width)

Output address space size = Input address space size / 4

MEM0 offset = 0.

MEM1 offset = 1*Output address space size.

MEM2 offset = 2*Output address space size.

MEM3 offset = 3*Output address space size.

1.1.1.1.1.74.1 Parameters
Slave Address Width: Sets the address width on the Mem interfaces. Variable between 2 and
32. Default is 14.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 97

1.1.1.1.1.75 Streamer32x2 and Streamer32x2b

NOTE: The Streamer32x2 IP block uses the Vivado 2017.3 AXI DMA IP block. This IP block
has a 23 bit transfer length register. This means the largest DMA transfer size allowed is 8
Mbyte. If a larger transfer size is needed, use the Streamer32x2b IP block. The Streamer32x2b
IP block uses the Vivado 2018.1 AXI DMA IP block that has a 26 bit transfer length register.
This allows DMA transfers up to 64 Mbyte.

The AXI DMA IP block requires that for the StrToDDR interfaces, the TLAST signal for final
sample of a DMA transfer must be asserted. For example, if the Streamer block is programmed
to transfer 1024 samples from the stream interface into DDR, then the 1024th sample of the
stream data must have its TLAST signal asserted.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 98

As a convenience, the Streamer block can be configured to automatically generate this TLAST
signal (in which case the external TLAST port signal is ignored). In order for this to correctly
work, the stream must be inactive (that is, the TVALID signal is negated) until after the DMA
transfer is started. As an example, if data is being read from DDR, sent to the stream (via the
DDRtoStr interface), processed, and the results sent back to DDR (via the StrToDDR interface),
then the StrToDDR DMA operation should be started before the DDRtoStr is started. When
autoTlast is asserted, an internal counter will count the samples after the DMA is started and
internally assert TLAST on the appropriate sample.

On the streaming interface side of the IP block the number of clock cycles per data word and
the number of data words per packet burst vary depending on the hardware module used and
the number of IP blocks accessing the DDR interface. The streamer efficiency is calculated as
the total number of data words transfered divided by the total number of clock cycles for a
streaming transaction. An efficiency of 100% would mean each data word only required one
clock cycle to transfer. The streamer was benchmarked and will run with about 97% efficiency
on the M3302A module. This performance was measured with all 4 streaming interfaces
running using the M3302A 100 MHz clock and when no other IP was accessing the DDR. The
efficiency of the streamer IP block may be less on other modules or when other IP blocks are
accessing the DDR interface.

1.1.1.1.1.75.1 Parameters
autoTlast: if this box is checked, then the Streamer block will automatically generate the TLAST
signal for the StrToDDR0/1 ports. In this case the TLAST signal supplied to the StrToDDR0/1
interface is ignored.

1.1.1.1.1.75.2 Signals

Signal
name

Width
(bits)

Description

clock 1 Clock input

nRst 1 Reset input (active low)

host Multiple Host AXI-MM slave interface with 17 address bits and 32 data bits for
random access to DDR memory.
This should be connected to a Host_aximm interface.

ctrl Multiple Control AXI-Lite slave interface with 12 address bits and 32 data bits
for accessing the control registers in the streamer and DMA blocks.
This should be connected to a Host_axilite interface.

DDR Multiple DDR AXI-MM master interface with 32 address bits and 128 data bits
for accessing DDR memory.
This should be connected to the DDR interface.

DDRtoStr0 Multiple The channel 0 AXI-streaming master interface. Data from the DDR will
stream out this interface using flow control.

DDRtoStr1 Multiple The channel 1 AXI-streaming master interface. Data from the DDR will
stream out this interface using flow control.

StrToDDR0 Multiple The channel 0 AXI-streaming slave interface. Data will stream from
this interface into DDR using flow control.

StrToDDR1 Multiple The channel 1 AXI-streaming slave interface. Data will stream from
this interface into DDR using flow control.

1.1.1.1.1.75.3 Block Diagram

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 99

1.1.1.1.1.75.4 Ctrl Interface Address Map
It is anticipated that the RSP API will be used for controlling the Stream32x2 block. Hence low
level register access to this block should not be needed.

The Stream32x2 block consists of two copies of the Xilinx AXI DMA v7.1 block used in the
Direct Register Mode, a page register, and AXI interconnects. More information on the Xilinx
AXI DMA IP block can be found in the Vivado pg021 AXI DMA v7.1 LogiCORE IP Product
Guide.

The address space size of the DDR interface is considerably larger than the address space size
available from the Host interface. In order to access the full memory space of the DDR
memory, a page register is used to provide the MSBs of the DDR address (the LSBs of the
address are provided by the address provided by the Host interface). Since the host interface
uses 17 address bits, only 217 bytes or 128 kB can be accessed without changing the page
register. Bits 14:0 of the page register provides bits 31:17 of the DDR address.

Block Start Address
(Byte
Addressing)

Size
(Bytes)

Description

DMA0 0 1024 Control Registers for DMA channel 0

DMA1 1024 1024 Control Registers for DMA channel 1

Page 2048 4 Page Register that provides the MSBs of the address when
using the Host interface to access DDR (Write only)

Version 2052 4 Version register (Read only)

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 100

1.1.1.1.1.75.5 Version register
The version register is used to identify the version and configuration of the
Streamer32x2/Streamer32x2b IP block.

Bits Description

7:0 Version of the Streamer32x2/Streamer32x2b IP block

15:8 Number of streaming channels

23:16 Streaming channel data width (bits)

30:24 Transfer length register size

31 0=Simple DMA, 1=Scatter/gather DMA

DSP Library IP

Included in the PathWave FPGA IP Repository (PathWave FPGA IP Repository) is a library of
signal processing blocks that can be used to create things such is Digital Down Converters
(DDCs) or Digital Up Converters (DUCs). These blocks do functions such as frequency
translation (mixing with an internally generated local oscillator) and sample rate changes (both
decimation and interpolation). While all of these IP blocks are general purpose, some of them
are optimized for use in the M3xxx series of boards.

1.1.1.1.1.76 Scope
The purpose of this document is to explain the operation of the signal processing blocks, the
purpose of their ports and interfaces, and how to modify the blocks via parameters. It is not
intended to explain the underlying signal processing theory of sample rate changes. It is
assumed the user has an understanding of basic signal processing such as the concept of
aliasing as well as an understanding of sample rate changes (decimation and interpolation).

1.1.1.1.1.77 Data Formats
These IP blocks operate on streaming data using the AXI-streaming bus interface as described
in Keysight Standard Interfaces. This data could be either arbitrarily long streams of data (e.g.
from an ADC) or a finite block of data (e.g. data read from DDR memory). These blocks
support variable data bit widths (controlled via parameters) with the default width being 16 bit
data as used in the M3xxx series of modules.

Sometimes the data is "supersampled". This means that multiple samples are processed for
every clock. This allows processing of data sample rates faster than the allowed clock rate of
the FPGA. In the M3xxx series of modules, the streaming sandbox interfaces (e.g. the ADC
data or the AWG data) is supersampled by 5. Thus on every clock, five 16 bit samples are
transferred using a 5*16 = 80 bit wide data bus. Note that this wider bus does not appear as 5
separate ports. The data for all five samples are combined into one wider bus. This shows up
as one TDATA bus that is 80 bits wide rather than five busses each being 16 bits wide. With
supersampled data, the least significant samples (e.g. bits 15:0) represent samples earlier in
time while the most significant samples represent samples later in time.

Many of these IP blocks operate on complex data. This means that each sample consists of a
real part and an imaginary part. Thus for complex data using 16 bit samples, the entire complex
sample uses 32 bits of data width. Both the real and imaginary parts of each complex sample
are sent on the same AXI-streaming bus in an interleaved fashion. The details of how
supersampled and/or complex data is encoded in the data stream can be found in Keysight
Standard Interfaces. For each complex sample, the real part occupies the less significant word
(e.g. bits 15:0) while the imaginary part represents the more significant word (e.g. bits 31:16).

For supersampled complex data the real and imaginary parts of a sample are kept adjacent in
the bus. Thus for 5X supersampled complex data, if (R0, R1, R2, R3, R4, R5, R6, R7, ...)
represents the real samples with R0 being earlier in time, and (I0,I1,I2,I3,I4,I5,I6,I7, ...)
represents the imaginary samples, as shown (time increasing from left to right):

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 101

R0 R1 R2 R3 R4 R5 R6 R7 ...

I0 I1 I2 I3 I4 I5 I6 I7 ...

then TDATA for one bus transaction would look like {I4,R4,I3,R3,I2,R2,I1,R1,I0,R0} where R0 is
the LSBs of TDATA and I4 is the MSBs of TDATA as shown:

TDATA(159:144) I4(15:0) I9(15:0) ...

TDATA(143:128) R4(15:0) R9(15:0) ...

TDATA(127:112) I3(15:0) I8(15:0) ...

TDATA(111:96) R3(15:0) R8(15:0) ...

TDATA(95:80) I2(15:0) I7(15:0) ...

TDATA(79:64) R2(15:0) R7(15:0) ...

TDATA(63:48) I1(15:0) I6(15:0) ...

TDATA(47:32) R1(15:0) R6(15:0) ...

TDATA(31:16) I0(15:0) I5(15:0) ...

TDATA(15:0) R0(15:0) R5(15:0) ...

These blocks support full AXI streaming flow control (forward flow control and backward flow
control). TVALID is the forward flow control signal, sent from Master to Slave, indicating that
the Master has valid data on TDATA. TREADY is the reverse flow control signal, optionally sent
from the Slave to the Master, indicating that the Slave is ready to accept data (if TREADY is not
used, then it is assumed that the slave can always accept data at any time). Data is transferred
when both TREADY and TVALID are asserted. Please see the the AXI4Lite specification for
more details.

In addition to the streaming interfaces, some IP blocks use the Vector interface for control
information. This might be the frequency value for a local oscillator or the bandwidth
information for an adjustable filter. This signals can be tied to constants or connected to a user
controllable register.

1.1.1.1.1.78 Handling of TUSER and TLAST
These IP blocks support the optional AXI-streaming signals TUSER and TLAST in addition to
the main data bus TDATA. The connection or use of TUSER or TLAST is not required. These
signals may be ignored if they are not being used. The TLAST signal indicates the last sample
in a data block. It is passed through the IP block unchanged along with the data. For
decimators where multiple input samples correspond to each output sample, the TLAST of all
those samples are OR'ed together to form the TLAST of the corresponding output sample.

TUSER bits can be used to associate some data with some particular sample. Some example
uses include triggers and overload/overflow information. The TUSER bits follow the data
through the IP block accounting for things like pipeline delays and filter group delay. This is the
best mechanism for associating an output sample with a particular input sample.

The number of TUSER bits per data sample can be changed from the default one via a
parameter. Typically TUSER[0] is used to mark or tag a sample with trigger or timestamp
information. For the decimation blocks, TUSER[0] is used internally, as well being passed
through, to latch the state of the decimation counter when TUSER[0]=1. This latched
information can be used to determine for which input sample TUSER[0] was asserted.

For blocks that include filtering, such as the decimators and interpolators, the TUSER bits are
delayed to correspond to the group delay of the filter. For example, if the input stream was a
single impulse, and if the TUSER input was asserted for this sample, then the TUSER output
will be asserted at the midpoint (peak) of the output impulse response. TUSER[0] is the only

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 102

TUSER bit used internally. Any other TUSER bits are merely passed to the output. Note that
the TLAST bit is not delayed to account for group delay. Thus if TUSER and TLAST are
asserted for the same input sample, they will occur at different output samples. For decimators
where multiple input samples correspond to each output sample, the TUSER vector of all those
samples are bitwise OR'ed together to form the TUSER of the corresponding output sample.

Note that some blocks may require the use of these optional signals. For example, the
Streamer32x2 and Streamer32x2b IP blocks require the TLAST signal be asserted on the last
sample of a DMA transfer (unless they are configured to internally generate the required TLAST
signal). Please see Streamer32x2 IP documentation for more details.

1.1.1.1.1.79 Decimation Trigger Corrections
The TUSER[0] signal can be used as a trigger signal to associate an output sample with a
particular input sample as noted in the previous section. However, in the case of decimation
filters, where the input sample rate is N times the output sample rate, there is some inherent
ambiguity in the timing of this TUSER signal. Since the output sample rate is lower than the
input sample rate, asserting the input TUSER for any of N different input samples would result
in the output TUSER being asserted on the same output sample. The input to the decimation
filter has a time resolution of the input sample rate whereas the output only has a time
resolution of the output sample rate which is N times worse. If the output sample rate trigger
resolution is sufficient for one's application, nothing further needs to be done. However, it is
possible to increase the trigger resolution to the input sample rate by means of the DelayOut
value. As the TUSER signal propagates through the decimation filter, the state of each
decimation is recorded. After the output TUSER signal has been asserted, the DelayOut value
reflects the state of each decimation.

For example, if the filter is decimating by a factor of four there is only one output sample for
every four input samples. A trigger for any of the four red input samples would result in the
same red output sample being marked. The DelayOut out value indicates which of these four
actually caused the trigger event. A DelayOut value of 0 means the first red sample caused the
trigger event. A value of 1 means the next red sample caused the trigger event, etc.

There is another, equivalent way to consider trigger corrections. When corrected for the filter's
group delay, the time of an input trigger event corresponds to a particular output time. Due to
the decimations in the filter, this output time may fall upon one of the output samples, or it may
fall upon one of the samples that has been decimated away. The output TUSER signal
indicates the latest sample on or before the ideal output trigger time. The DelayOut value
reflects the time from the marked output sample to when the ideal trigger time would have been,
as a fraction of the output sample period.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 103

In this example, if the input sample labeled "0" had TUSER asserted, then the ideal output
trigger time would be the time marked "0". The red sample would have TUSER asserted, and
DelayOut would be zero. If the sample labeled "1" had TUSER asserted, then the ideal output
trigger time would be the time marked "1". Note that this does not correspond to any output
samples. Instead, the red sample would have TUSER asserted, and DelayOut would be one.
Likewise for times two and three. The delay from the marked output sample to the ideal trigger
time is DelayOut/N where N is the decimation ratio.

1.1.1.1.1.79.1 Decimation Trigger Corrections for DecimateBy5 Blocks
The DelayOut for the DecimateBy5 blocks operates in the same way though with a slight
modification. The DecimateBy5 blocks take as input five supersampled samples per
clock. After a trigger event, the DelayOut indicates which of the 5 supersampled values caused
the trigger. DelayOut = 0 means that filter_in_tuser[0] caused the trigger. DelayOut = 1 means
that filter_in_tuser[User Data Width] caused the trigger. In general, the trigger was caused by
filter_in_tuser[(DelayOut)*(User Data Width).

To find the ideal output trigger time, an offset needs to be subtracted from the DelayOut
value. The ideal trigger time is (DelayOut-1.5)/5 output samples after the output trigger. Note
that this value may be negative, in which case the ideal trigger time is just before the marked
output sample.

1.1.1.1.1.80 Detail IP Block Descriptions

1.1.1.1.1.80.1 Local Oscillator
This is a general purpose local oscillator block configured through the use of parameters. It
supports both supersampled and non-supersampled data. Both the input and output data can
be independently selected as real or complex data. The Lo can be chosen to mix up (multiply
by ejωt) or mix down (multiply by e-jωt).

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 104

This block supports supersampled data. In this description let S be the supersample factor. For
non-supersampled data, set S to 1. The bit width of each data sample can be changed via the
"Tdata size" parameter. Note that this parameter denotes the width of each individual sample,
not the supersampled data width. The width of a real tdata port will be S times the Tdata size
parameter while the width of complex tdata port will be 2S times the Tdata size parameter.

When the input port is set to real data, the imaginary part is assumed to be zero. When the
output port is set to real data, only the real part is calculated - the imaginary part is discarded.

By default, there are S TUSER bits, one bit per sample. The number of TUSER bits per sample
can be changed via the "Tuser size" parameter. The TUSER and TLAST signals are not used
inside these blocks - they are just passed from input to output with the data.

A and B control the local oscillator's frequency. Let T be the smallest power of 2 greater than or
equal to S (so that S<=T<2S). The LO frequency is given by f = fs *
(A+B/510)/((S/T)*225). Frequencies can be positive or negative. Valid input ranges for A and B
are such that -1/2 <= f/fs <= 1/2. Values of A and B that are outside this range will give incorrect
results. Note that fs is the sample rate of the data, not the clock rate of the FPGA which is 1/S
of the sample rate. The LO is designed so that with a sample rate fs of 1 Gs/s, the LO can
produce LO frequencies with a decimal frequency resolution of 0.1 Hz or better. That is to say,
any frequency that is a multiple of 0.1 Hz can be produced without frequency error. The internal
frequency value of the LO block is updated when SetFreq is asserted. This allows A and B to
be changed at different times and still have the LO cleanly change frequencies. It can also be
used to change the frequency of multiple LOs synchronously if all the SetFreq signals are
asserted at the same time. If this feature isn't required, SetFreq can be tied high and the LO will
change frequency whenever A or B changes.

When asserted, phRst will reset the phase of the phase accumulator to zero and flush data in
the LO's pipelines without resetting the programmed frequency. For phase continuous
frequency changes, leave phRst negated. Note that in this case due to pipeline stages, the
results of the frequency change will not be visible at the output for several samples. To
eliminate this delay in seeing the effects of frequency changes, assert phRst on or after the new
frequency is set. This may easily be done by driving phRst with the same signal as
setFreq. Note that phRst should not be tied high as that will prevent operation of the LO.

If the input is complex, sufficiently large values of the real and imaginary parts of X can result in
a magnitude of the complex X being larger than the full scale input value (for example if both the
real and imaginary parts of X are +full_scale, then the magnitude of X would be √2 times
full_scale). In this case, the calculated output may not fit within the full scale output range. If
this happens, the output will be clamped to ±full scale. Note: this will cause distortion so it is
recommended that the magnitude of the complex input be kept less than full scale.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 105

When calculating the phase values (used to calculate the local oscillator value for each sample)
typically dithering is used. Dithering adds a pseudorandom value smaller than 1 LSB to each
phase value prior to the phase-to-amplitude lookup. This can convert potential spurious errors
into more noise like errors. Note that this means that even when the LO's period is an integral
number of samples, the waveform may not exactly repeat period to period. If this is not desired
(e.g. for repeatable simulation results), it can be disable by setting the Dither parameter to 0.

1.1.1.1.1.80.1.1 Parameters
Tdata size: Sets the data width for each sample (real data) or for each of the real and imaginary
parts of each sample (complex data).

Tuser size: Sets the number of tuser bits per sample.

Complex Input: If set, then the input data is complex. If cleared, then the input data is real only.

Complex Output: If set, then the output data is complex. If cleared, then only the real part of the
output data is generated.

Supersample: This sets the supersample value and determines how many parallel samples are
processed at the same time.

Shift Direction: If Shift Direction = 0, the input is multiplied by ejωt (shift frequencies up).
 If Shift Direction = 1, the input is multiplied by e-jωt (shift frequencies down).

Dither: Enables phase dithering to help convert spurious signals into more noise like signals
(default is Dither=1 or enabled).

1.1.1.1.1.80.1.2 Behavior of phRst
The calculation of local oscillator signal (phase accumulator and phase-to-amplitude converter)
includes several stages of pipelining. This pipeline is normally kept full. One effect of this is
that if the LO's frequency is changed, the results of that change is not seen by the data stream
until several data samples have been processed. In this case, it is possible to update or change
the LO frequency in a phase continuous manner. This means that the frequency changes
without discontinuities in the LO waveform.

Sometimes the delay between setting the frequency and having the frequency change seen in
the data stream is not desired. One example is block mode processing where a block of data is
read from memory, and run through the LO. In this case, it is desired to have the programmed
LO frequency available immediately. Otherwise the first few output points would be
indeterminate based on the contents of the LO pipeline. To prevent the initial output values
using old pipeline data, the LO pipeline can be flushed by asserting phRst. This will clear out
old pipeline data so that the first output sample would reflect new frequency values. To do this,
assert phRst on or after the new frequency is set (using SetFreq) and before data is streamed
through the LO. One way to do this is to connect the phRst to the same signal as SetFreq
(note: if so, then these signals can't be tied high permanently else the LO would be held in
reset). If phRst is used to flush the LO pipeline, that will result in non-phase continuous
behavior. That is, frequency changes (and the flushing of the LO pipeline) will result in the LO
waveform being discontinuous at the frequency change.

In continuous real time processing, such as when used with ADCs or DACs, phase continuous
frequency changing is probably desirable.
In block mode processing, non-continuous frequency changing (without the pipeline delay
before the new frequency is seen) is probably desirable.

1.1.1.1.1.80.1.3 Porting Legacy Designs
To port designs using the legacy Lo5_dc and Lo5_uc block to use the new Lo block, use the
following parameter values:

For Lo5_dc:

• Supersample = 5

• Complex Input = 0

• Complex Output = 1

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 106

• Shift Direction = 1

For Lo5_uc:

• Supersample = 5

• Complex Input = 1

• Complex Output = 0

• Shift Direction = 0

1.1.1.1.1.80.2 Local Oscillator (Legacy - not recommended for new designs)
Note: due to pipeline latency in the calculation of local oscillator waveform, these blocks have
uncertain behavior for several samples following a reset. It is recommended that new designs
use the Lo block described above which is more flexible and does not have these start up
issues.

The DSP library contains two local oscillator blocks, Lo5_dc which is designed for down
converter applications, and Lo5_uc which is designed for up converter applications. The
difference between these is that Lo5_dc has real input data and complex output data while
Lo5_uc has complex input data and real output data.

These blocks operate on 5X supersampled data, thus they process five samples in parallel. The
bit width of each data sample can be changed via the "Tdata size" parameter. Note that this
parameter denotes the width of each individual sample, not the 5X supersampled data
width. The width of the Lo5_dc X_tdata port will be 5 times the Tdata size parameter while the
width of the Y_tdata port will be 10 times the Tdata size parameter (since the output is complex
while the input is real, the output is twice as wide due to having both real and imaginary
components for each sample).

By default, there are 5 TUSER bits, one bit per sample. The number of TUSER bits per sample
can be changed via the "Tuser size" parameter. The TUSER and TLAST signals are not used
inside these blocks - they are just passed from input to output with the data.

The two input vectors A and B determine the frequency of the local oscillator. If the sample rate
is fs, then the LO frequency is fs * (A+B/510)/(5*222). Note that fs is the sample rate of the data,
not the clock rate of the FPGA which is 1/5 of the sample rate. The LO is designed so that with
a sample rate fs of 1 Gs/s, the LO can produce LO frequencies with a decimal frequency
resolution of 0.01 Hz. That is to say, any frequency that is a multiple of 0.01 Hz can be
produced without frequency error. The internal frequency value of the LO block is updated
when SetFreq is asserted. This allows A and B to be changed at different times and still have
the LO cleanly change frequencies. It can also be used to change the frequency of multiple

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 107

LOs synchronously if all the SetFreq signals are asserted at the same time. If this feature isn't
required, SetFreq can be tied high and the LO will change frequency whenever A or B changes.

Lo5_dc will multiply the real input stream X with the complex local oscillator and generate the
complex output stream Y. This block multiplies the real input by e-jωt.

Lo5_uc will multiply the complex input stream X with the complex local oscillator and output the
real part of the result as the real output stream Y. This block multiplies the complex input by ejωt
and takes the real part for output. Since the input is complex, sufficiently large values of the real
and imaginary parts of X can result in a magnitude of the complex X being larger than the full
scale input value (for example if both the real and imaginary parts of X are +full_scale, then the
magnitude of X would be √2 times full_scale). In this case, the calculated output may not fit
within the full scale output range. If this happens, the output will be clamped to ±full
scale. Note: this will cause distortion so it is recommended that the magnitude of the complex
input be kept less than full scale.

1.1.1.1.1.80.3 DecimateBy5/InterpolateBy5
There are both real and complex versions of the DecimateBy5 and InterpolateBy5
blocks. These blocks are used to convert between 5X supersampled data (5 samples per
clock) and 1X supersampled data (1 sample per clock).

The DecimateBy5 block first low pass filters the input to protect against aliasing and then
decimates by 5 (discarding 4 of every 5 output samples). The InterpolateBy5 block first
interpolates by 5 by inserting 4 zero samples between each input sample and then low pass
filtering to protect against aliasing. Both IP blocks use the same filter which has the frequency
response:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 108

Note that the x-axis is in terms of the normalized frequency where 1 means fs/2. The passband
extends up to 0.125 with the stopband starting at 0.2. For example, the M3102 digitizer has a
sample rate of 500 Ms/s. Thus fs/2 is 250 MHz and the passband is +/- 31.25 MHz with the
stopband above 50 MHz. Note that these numbers are only for a sample rate of 500 Ms/s. For
other sample rates, the passband and stopband frequencies would scale accordingly.

1.1.1.1.1.80.4 Power2Decimator/Power2Interpolator
These blocks operate on non-supersampled (a maximum of 1 sample per clock) complex data,
and can decrease or increase the sample rate by 2N where N=0 to 16. (N=0 is a bypass mode
where the data is passed through the filter unchanged).

Conceptually, the Power2Decimator can be thought of as a set of 16 cascaded decimate by 2
stages (the internal design uses a more efficient architecture). Each stage first low pass filters
its input and then decimates by two. A MUX controlled by nDecim selects the output of one of
these filters.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 109

The Power2Interpolator does the reverse. It can be thought of as 16 cascaded interpolate by 2
stages. Each stage first interpolates by 2 by inserting a zero between each input sample and
then low pass filters to eliminate aliased signals. In this case, nInterp selects which stage
receives the input data stream. All stages after that use the output of the previous stage.

Both the Power2Decimator and Power2Interpolator use the same filter for each stage. This
filter has the frequency response shown:

Note that the x-axis is in terms of the normalized frequency where 1 means fs/2 where fs is the
higher sample rate for that stage. For decimators, this is the input sample rate while for
interpolators, this is the output sample rate. The passband is +/- 0.15 fs which is 60% of the
output Nyquist rate, while the stopband starts at fs/4. As an example, if the input sample rate to
the Power2Decimator is 100 Ms/s, the bandwidth of the first stage of decimation would be +/-
15 MHz sampled at 50 Ms/s. The bandwidth of the second stage of decimation would be +/- 7.5
MHz sampled at 25 Ms/s. The bandwidth of the third stage of decimation would be +/- 3.75
MHz sampled at 12.5 Ms/s.

The bit width of each data sample as well as the width of the TUSER signal can be modified, if
needed, via parameters. Note that the Tdata size parameter denotes the bit width of each
component (real and imaginary) of each sample. Thus the width of the TDATA bus will be twice
the value of this parameter. The Tuser size parameter denotes how many TUSER bits are
associated with each (complex) sample.

The TUSER and TLAST bits are passed through the decimation stages along with the
data. Due to the filter response, there is no one output sample that corresponds to each input
sample. A input consisting of an impulse will result in a broad output consisting of the impulse
response of the filter. Thus tagging a particular input sample will result in an output sample

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 110

being tagged that corresponds to the group delay of the filter which is close to the midpoint of
the impulse response.

Since the output sample rate is less than the input sample rate (by a factor of 2N), any of 2N
different input triggers would result in the same output trigger. The output port DelayOut can be
used to determine which of these 2N input samples caused the particular output trigger. As the
trigger (TUSER[0]) signal propagates down the decimation stages, each decimate-by-two stage
records the state of the decimation when the trigger passes. To interpret DelayOut, after a
trigger has passed through the decimator, take the nDecim number of LSBs of DelayOut (i.e.
AND DelayOut with 2nDecim-1), and this represents the number of input sample periods that
needs to be added to the time of the marked input sample to get the time of the marked output
sample.

1.1.1.1.1.80.5 Combine1toN
Sometimes there is a need to combine multiple input samples into a wider output stream. One
example of this would be to convert non-supersampled data (i.e. data at a rate of at most one
sample per clock) into a supersampled output. The Combine1toN block will every N input
samples into one output where N can be an integer or a half-integer (e.g. 2-1/2). This can be
used to connect the non-supersampled output of the Power2Decimator to the supersampled
Daq1 port. The IP block's "N" parameter is the integer part of this multiplier. To combine N+1/2
inputs into each output, select the "Add 1/2 to N" parameter.

To convert a real, non-supersampled 16 bit data sample to a 5X supersampled 80 bit data
stream is straight forward. For every five 16 bit input samples, one 80 bit output is
generated. Things are more complicated when dealing with complex data. In that case, the
input is 32 bits wide (16 bits of real data, and 16 bits of imaginary data). To convert this to 80
bits wide, 2-1/2 input samples are collected for each output. So for an input of:

Din_tdata[31:16] I0 I1 I2 I3 I4 ...

Din_tdata[15:0] R0 R1 R2 R3 R4 ...

Then the output stream would look like:

Dout_tdata[79:64] R2 I4 R7 ...

Dout_tdata[63:48] I1 R4 I6 ...

Dout_tdata[47:32] R1 I3 R6 ...

Dout_tdata[31:16] I0 R3 I5 ...

Dout_tdata[15:0] R0 I2 R5 ...

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 111

To set up the Combine1toN block for this case, the parameter "N" should be "2", and the
parameter "Add 1/2 to N" should be selected.

When the combination factor, N, is an integer, then the Dout_tdata is N times the size of
Din_tdata, Dout_tuser is N times the size of Din_tuser. However, if the combination factor is
N+1/2 the port sizing is more complicated (since ports can't be a half bit wide). Furthermore an
extra bit is added to the Dout_tuser to indicate whether the half sample is at the LSBs or MSBs
of the output For combining N+1/2 samples, Dout_tdata is N+1/2 times the size of Din_tdata,
Dout_tuser is N+1 times the size of Din_tuser + 1.

Logically in this case, R0 and I0 are parts of the same (complex) sample. Hence they share the
same Din_tuser bit(s). However, some samples, such as R2/I2 are output in different bus
cycles. The tuser bits for the R2/I2 input are output for both output bus cycles where R2 or I2
are output. So in this case the output would be (where Tn represents Din_tuser for sample n):

Dout_tuser[3] 0 1 0 ...

Dout_tuser[2] T2 T4 T7 ...

Dout_tuser[1] T1 T3 T6 ...

Dout_tuser[0] T0 T2 T5 ...

Dout_tdata[79:64] R2 I4 R7 ...

Dout_tdata[63:48] I1 R4 I6 ...

Dout_tdata[47:32] R1 I3 R6 ...

Dout_tdata[31:16] I0 R3 I5 ...

Dout_tdata[15:0] R0 I2 R5 ...

1.1.1.1.1.80.6 Complex2Real / Real2Complex
These blocks convert between one complex stream of data and two independent streams (one
for the real part, and one for the imaginary part) of data.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 112

In order to know how to correctly interleave the complex data, these blocks need to know the
size of the real data sample and any supersample value. The above pictures show a "Tdata
size" of 16 and a "Supersample" of 1 (no supersampling). This means that the Real and
Imaginary tdata busses are 16 bits wide, and the Cmplx tdata bus is twice this or 32 bits wide.

1.1.1.1.1.81 Design Examples
To see how these IP blocks can be used to build up and down converters, consider two
example designs, one for a digital down converter, and one for a digital up converter. These
examples are built in a M3302, 500 Msps Combination AWG and Digitizer.

1.1.1.1.1.81.1 Digital Down Converter (DDC)
For a digitizer to analyzer signals with narrower bandwidth than the full digitizer bandwith, it is
common to employ a digital down converter. This allows the instrument to only look at a smaller
portion of the total spectrum. It can also filter out extraneous signals that may be located in
other frequency bands. It filters out noise and thus decreases the noise floor and increases the
signal to noise ratio.

The basic steps for down conversion are to first mix the input with a complex LO to frequency
translate the desired signal to baseband (DC). This is then low pass filtered to remove
extraneous signals and prevent aliasing in the decimation step. Then it is decimated by
discarding samples to lower the sample rate. Often the filter/decimate process is carried out in
multiple steps for implementation efficiency.

In this real time data flow, the ADCs (Analog_Channel_1) are always running. There is no way
to hold off or delay the ADC data. In this case, the data is "pushed" from the left to the right in
this diagram using forward flow control only. The reverse flow control, though present, isn't
really utilized.

In this example, the input ADCs of the M3302 are running at 500 Msps. The FPGA only runs at
100 MHz, so the input (Analog_Channel_1) presents 5 ADC samples every FPGA clock. This
is called supersampling by 5. The five 16-bit input samples are combined into one 80 bit wide
AXI-streaming bus.

The Lo (Local Oscillator Down Converter) block does the frequency translation by multiplying
the real input by a complex quadrature LO signal. The output is a complex (real and imaginary)
stream with the same sample rate as the input. The Lo block is configured to operate on data
that is 5X supersampled. Since the output of the LO is complex, there is now 160 total data
bits.

The DecimateBy5Complex block is really just a pair of real decimate by five blocks, one
operating on the real data, the other operating on the imaginary data. This block reduces the
data rate down to one sample per clock by first low pass filtering the input and then reducing the
sample rate by a factor of 5. The output is a complex stream with a sample rate of 100 Msps
and a bandwidth of +/- 31.25 MHz. Note that since the data is complex, negative frequencies

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 113

aren't necessarily the complex conjugate of the positive frequencies. Thus the signal has a total
bandwidth of 62.5 MHz.

This data is fed to a complex decimate by 2N block. This can reduce the sample rate and
bandwidth further (or be bypassed if N=0). The output of this is a complex stream of data at a
sample rate potentially less than the FPGA clock rate.

In this example, the output of the entire DDC is sent to the Daq1 port of the M3302. This sends
the data into DDR memory where the user can read it out and use it. Note that the output of the
Power2Decimator is at most one sample per clock (2 16-bit parts due to the data being
complex). The Daq1 port is expecting five 16 bit samples of data at a time. To convert between
these rates, the Combine1toN block is used to combine 2-1/2 input samples (each one 2*16 or
32 bits wide) into one 80 bit output that is sent to the Daq1 port.

This results in a data record in memory consisting of complex pairs, each consisting of the real
part of a sample and the imaginary part of the sample.

1.1.1.1.1.81.2 Digital Up Converter (DUC)
When a source or AWG is generating a narrow band signal, it is often easier to generate it at a
lower sample rate and then upsample it and move it to the correct frequency later. This is
called digital up conversion. Consider generating an AM radio signal. Rather then trying to
generate the RF signal directly, it is easier to generate the signal at baseband and then move it
up to whatever center frequency it needs.

The basic steps for up conversion are the reverse of the steps for down conversion. First the
input signal is interpolated to a higher sample rate by adding zeroes between each input sample
to increase the sample rate. This process introduces alias signals in the frequency domain. So
following the interpolation step, a low pass filter is used to remove these aliasing
artifacts. Finally this signal is mixed with a complex LO to translate it from baseband to the
desired center frequency. At this point, only the real part of the data is used, and this is sent to
the ADCs. Just as in the case of a down converter, often this interpolate/filter process is carried
out in multiple steps for implementation efficiency.

In this real time data flow, the DACs (Dout1) are always running. There is no way to hold off or
delay the DAC data. New data needs to be provided every clock cycle. In this case, the data is
"pulled" from the right to the left in this diagram using reverse flow control only. The forward
flow control, though present, isn't really utilized. Since the AWG ports in the M3302 do not
support reverse flow control, they can't be use as data sources for the DUC. Instead, the
Streamer32x2 block is used to pull data out of DDR memory as a data source.

Following the signal flow from the output back towards the input, the output DACs of the M3302
are running at 500 Msps. The FPGA only runs at 100 MHz, so the output (Dout1) presents 5
DAC samples every FPGA clock. This is called supersampling by 5. The five 16-bit output
samples are combined into one 80 bit wide AXI-streaming bus.

The Lo (Local Oscillator) block does the frequency translation by multiplying the complex input
by a complex quadrature LO signal and taking the real part. The output is a real stream with the

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 114

same sample rate as the input. The Lo block is configured to operate on data that is 5X
supersampled. Since the input of the LO is complex, it is 160 total data bits.

The InterpolateBy5Complex block is really just a pair of real interpolate by five blocks, one
operating on the real data, the other operating on the imaginary data. This block increasees the
data rate up to five samples per clock by first inserting four zero samples between input points
and then low pass filtering to remove images. The input is a complex stream with a sample rate
of 100 Msps and a bandwidth of +/- 31.25 MHz. Note that since the data is complex, negative
frequencies aren't necessarily the complex conjugate of the positive frequencies. Thus the
signal has a total bandwidth of 62.5 MHz.

The input to the InterpolateBy5Complex block is generated by the complex interpolate by 2N
(Power2Interpolator) block. This can increase the sample rate and bandwidth from a lower
sample rate (or be bypassed if N=0). The input to this block is a complex stream of data at a
sample rate potentially less than the FPGA clock rate.

Since the input to the Power2Interpolator can be less than the FPGA clock rate, its data must
be sourced from something that supports reverse flow control (so that the Power2Interpolator
indicates when and how fast it needs new data). The AWG blocks of the M3302 do not support
reverse flow control and can not be used in this application. Instead, the data for the
Power2Interpolator is sourced from the Streamer32x2 block which reads data from DDR
memory.

The data record in DDR memory consisting of complex pairs, each consisting of the real part of
a sample and the imaginary part of the sample.

IP Repositories
IP repositories are libraries of blocks that are loaded into PathWave FPGA. There are three
types of IP repositories supported inside PathWave FPGA:

• Default PathWave FPGA IP repository: a repository that is shipped inside the PathWave
FPGA Installation directory structure and is permanent. IPs defined in this repository will be
loaded for all projects, as long as they meet the hardware support criteria.

• BSP IP repository: a IP repository that is shipped inside a BSP installation.

• User defined IP repository: a user-defined list of directories that include IP definitions.
These directories can be defined in the Settings dialog (File → Settings). Important: A
project should be reloaded, in order for the added IP to be loaded. To load an IP repository,
use the Settings Dialog. To learn how to create an IP repository, refer to the IP Developers
Guide.

IP will be found recursively in each repository location. All valid IP will be added into the library
blocks. If any problems are encountered with loading, a dialog will popup to display the errors.
Xilinx Vivado IP is excluded from this search.

Imported User IP
In addition to IP developed using the Library tools, the PathWave FPGA software allows
importing and integration of custom IP into a project. User IP is developed using external FPGA
tools; the PathWave FPGA software is not intended for developing IP from scratch. However,
once the user has created an IP, the IP may be imported by the PathWave FPGA software.

The user can import IP from different source files, including the following:

• VHDL source files (*.vhd, *.vhdl)

• Verilog source files (*.v).

• Xilinx Vivado projects (*.xpr).

• System Generator Vivado Synthesized Checkpoints (*.dcp).

• IP-XACT files (*.xml).

• Vivado IP files (*.xci)

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 115

• PathWave FPGA Submodules

To import a user IP:

1. Click the Add External Block button on the main toolbar, or select Project > Add
External Block... from the menu. In the image below, notice the file types that are available
for importing.

2. Navigate to select the file to be imported into the project. Click Open to import the file.

3. Some imported IP may have parameters that can be configured, such as bus
widths. Change the initial parameter value as appropriate for your design.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 116

4. Some imported IP may not have the ports already grouped into easy to use interfaces. The
import dialog will have a check box to infer interfaces from these ports. If the interface
inference gives undesired results, remove the IP and import it again with the box
unchecked. If interface inference is usually not desired, clear the Infer Interfaces checkbox
in the Settings Dialog.

The IP is inserted in the project, where it can be connected to other blocks.

The block name appears in the User IP External Block region for reuse as shown above. To
remove a block, right-click the block name and choose Remove.

• If the User IP file is moved, the icon appears at the top of the block
indicating the file cannot be found. Once the file is moved back, or the

path is changed, right-click the block to reload the IP and remove the
icon on the block.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 117

• If the underlying code for the IP is changed, the icon can appear to
signify an alert condition. Once the code is corrected, the block can be

reloaded to remove the icon on the block.

• If there is an error in the IP, the icon appears. Hover the mouse cursor
over the icon to see what the error is.

Importing an HDL file with Dependencies
If you want to import an HDL file with dependencies, you will need to create an IP-XACT file for
the desired HDL entity following the instructions in the IP Developers Guide . Then, inside the
<ipxact:fileSet> where the source files for “synthesis” are defined, add as many

<ipxact:file> entries as required to define the source VHDL file along with all the files that it

depends on.

For example, assume that the desired component is called “Filter” and is defined in
“C:\MyIPs\FilterIP\FilterTop.vhd”. Then, assume that the implementation of “Filter”

depends on another component, named “Tap”, which is defined in
“C:\MyIPs\FilterIP\Tap.vhd”. To successfully load the component “Filter” in PathWave

FPGA, you need to create an IP-XACT (e.g. in "C:\MyIPs\FilterIP\Filter.xml") file with

the following statements in the fileset entry:

Code Block 1 IP-XACT fileset snippet

<ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>FilterTop.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 <ipxact:file>

 <ipxact:name>Tap.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

</ipxact:fileSets>

When the IP-XACT file is created, you can use the process above to load the IP-XACT xml file.

Importing an HDL file without Dependencies
When an HDL file is imported without dependencies, only the module or entity declaration will
be examined in order to determine the ports that will be available for connections within a
PathWave FPGA graphical design. Any syntax issues or errors that may exist elsewhere in an
imported HDL file may not be detected or flagged.

For Verilog HDL files, module declarations should be limited to the features and format shown in
the following examples:

module foo (clk, d_out);

input wire clk;

output reg [31:0] d_out;

endmodule

or:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 118

module foo

#(

 parameter myParam1 = 14,

 parameter myParam2 = 32

)

(

 input wire clk,

 output reg [31:0] d_out

);

endmodule

or:

module mymodule(input clk,

 input [7:0] inBus, // Comments are okay

 output outWire,

 output [15:0] outBus);

endmodule

For VHDL source files, entity declarations should be limited to features shown in the following
example:

library ieee;

use ieee.std_logic_1164.all;

entity foo is

 generic (

 width : integer := 4

);

 port (

 clk : in std_logic;

 d_out: out std_logic_vector(width-1 downto 0)

);

end foo;

A list of known limitations for IP import can be found in VHDL Support and Verilog Support
sections.

Vivado XCI (Xilinx Core Instance)

Invoking Vivado IP tool
PathWave FPGA allows you to import Vivado IPs from the Xilinx Vivado IP Catalog and
integrate them into your project.

1. Click on the Launch Vivado IP Tool button on the main toolbar.

2. Select a Vivado IP block from the IP Catalog and double-click it.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 119

3. Configure the IP properties and then press OK.

4. Click the Skip button. PathWave FPGA always regenerates Vivado IP during bitfile
generation, so the output products created by clicking Generate are not needed.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 120

5. If you need any other Vivado IP, repeat steps 2-4 to generate them. When you are done,
close Vivado.

6. PathWave FPGA will show the configured IP in the Vivado XCI section of the library. Add
an instance to your design in the same way as any other IP.

Importing a Vivado XCI File

Vivado IP may also be imported from another location by browsing for the .xci file with Add
External Block. See Imported User IP for more details.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 121

Note that for some IP blocks, Vivado will generate an IP-XACT file that does not conform to the
IP-XACT specification. Pathwave FPGA will report errors when trying to import such an IP
block. Please see Importing IP with Invalid IP-XACT in the appendix for more information.

PathWave FPGA Submodule
PathWave FPGA submodules allow you to define your design hierarchically. In addition, you
can share submodules in IP repositories.

The submodules that can be added to your design are displayed in the Submodule pane.

When a submodule is created from a sandbox project (see Creating a New Submodule Project),
it is added to the Submodule pane for that project.

Submodules may also be added to a project by selecting Project > Add External Block... and
navigating to the desired submodule project file with the .ksub filename extension.

Submodules can be visually distinguished from other blocks in the canvas with a small green
triangle in the bottom left corner of the block.

Naming Conventions

Within PathWave FPGA, things like Instance names and Register names must be unique and
valid HDL identifiers. Specifically they must follow these rules:

1. A name must start with an alphabetic character (A-Z or a-z).

2. A name can only consist of of alphanumeric characters and underscores (A-Z, a-z, 0-9, _).

3. A name must end with an alphanumeric character (A-Z, a-z, 0-9).

4. A name can not be a reserved word (listed below).

5. Names are not case sensitive. Thus myreg, MYREG, MyReg are all considered to be the
same name.

6. Register names must be unique inside their Register Block.

The rules for display names on blocks are relaxed for user convenience. All displayable
Unicode characters are allowed within a display name, and the name does not need to be valid
HDL. The one restriction on display names is that all display names must be unique in their

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 122

sandbox or submodule schematic. For instance, you cannot have two blocks named "my block"
in the same schematic.

Reserved Words
The following are reserved words and can not be used as names:

abs, access, after, alias, all, always, always_comb, always_ff,

always_latch, and, architecture, array, assert, assign, assume,

attribute, automatic, before, begin, bind, bins, binsof, bit, block,

body, break, buf, buffer, bufif0, bufif1, bus, byte, case, casex,

casez, cell, chandle, class, clocking, cmos, component, config,

configuration, const, constant, constraint, context, continue, cover,

covergroup, coverpoint, cross, deassign, default, defparam, design,

disable, disconnect, dist, do, downto, edge, else, elsif, end,

endcase, endclass, endclocking, endconfig, endfunction, endgenerate,

endgroup, endinterface, endmodule, endpackage, endprimitive,

endprogram, endproperty, endsequence, endspecify, endtable, endtask,

entity, enum, event, exit, expect, export, extends, extern, file,

final, first_match, for, force, forever, fork, forkjoin, function,

generate, generic, genvar, group, guarded, highz0, highz1, if, iff,

ifnone, ignore_bins, illegal_bins, import, impure, in, incdir,

include, inertial, initial, inout, inout, input, inside, instance,

int, integer, interface, intersect, is, join, join_any, join_none,

label, large, liblist, library, linkage, literal, local, localparam,

logic, longint, loop, macromodule, map, matches, medium, mod, modport,

module, nand, negedge, new, next, nmos, nor, nor, noshowcancelled,

not, notif0, notif1, null, of, on, open, or, others, out, output,

package, packed, parameter, pmos, port, posedge, postponed, primitive,

priority, procedure, process, program, property, protected, pull0,

pull1, pulldown, pullup, pulsestyle_ondetect, pulsestyle_onevent,

pure, rand, randc, randcase, randsequence, range, rcmos, real,

realtime, record, ref, reg, register, reject, release, rem, repeat,

report, return, rnmos, rol, ror, rpmos, rtran, rtranif0, rtranif1,

scalared, select, sequence, severity, shared, shortint, shortreal,

showcancelled, sig, signal, signed, sla, sll, small, solve, specify,

specparam, sra, srl, static, string, strong0, strong1, struct,

subtype, super, supply0, supply1, table, tagged, task, then, this,

throughout, time, timeprecision, timeunit, to, tran, tranif0, tranif1,

transport, tri, tri0, tri1, triand, trior, trireg, type, typedef,

unaffected, union, unique, units, unsigned, until, use, uwire, var,

variable, vectored, virtual, void, wait, wait_order, wand, weak0,

weak1, when, while, wildcard, wire, with, within, wor, xnor, xor

Naming Collisions

PathWave FPGA is using the concept of VLNV for identifying IP and reporting naming
collisions. VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-
XACT.

• Two IPs have the same name, but different VLNV. In this case, user will have to resolve
it using one of the workarounds.

• Two IPs have have the same VLNV, apart from the version field. In this case, PathWave
FPGA will give the user the option to upgrade/downgrade. Note that this option is not
available if the IPs are coming from an IP repository. In the latter case, user will have to
resolve it using one of the workarounds.

• Two IPs have the same VLNV, but different contents. In this case, PathWave FPGA will
give the user the option to update to the desired definition. Note that this option is not
available if the IPs are coming from an IP repository. In the latter case, user will have to
resolve it using one of the workarounds.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 123

• Two IPs have the same VLNV and contents, but are stored in different location. In this
case, PathWave FPGA will use the last loaded location as the correct location of the IP.

• Two IPs have the same name, but they do not have a VLNV. In this case, user will have
to resolve it using one of the workarounds.

• Two IPs have the same name, but are coming from different import method. In this
case, user will have to resolve it using one of the workarounds.

• An IP is using a name of a reserved word. In this case, a possible workaround is to
create a wrapper for that IP which will have a non-colliding name

Workarounds
When a name collision is detected, the user will have to take action and resolve it.

• Rename the IP to a non-conflicting name. This is simplest and fastest solution. However,
if the user is not the owner of the IP, it might not be feasible. In this case, the user has to
follow the second workaround

• Load only the IPs that are necessary for the project. This is by definition possible only if
the conflicting IPs are not needed at the same time in the design. Note that in the case of
unwanted IPs that are loaded through an IP Repository location, user has to either remove
the IP Repository location, which will also remove any other IP loaded from the same place,
or, if this is not possible, move the conflicting IP definition file (IP-XACT file) outside of the
IP repository location or any sub-directory.

• Create a wrapper entity/module for the failing IP. This option will only work if the reason
of the name collision is a reserved word or the name of the IP matches the name of a
sandbox interface. The wrapper entity has to use a non-conflicting name.

Building your FPGA Logic

• Generating the Bit File

• Verifying the Bit File

Generating the Bit File

Synthesizing and Implementing your Design inside of PathWave FPGA
After creating your new hardware project and adding your FPGA logic, you are ready to
generate the bit file that implements your design.

To build the bitfile based on your design, complete the following steps:

1. Select Module> Generate Bit File... or click the toolbar icon with tooltip "Generate Bit
File...". The FPGA Hardware Build dialog will appear.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 124

2. Choose the sandbox that you want to target for this build.

3. Choose the Implementation build type. This will build the complete project, including the bit
file.

4. Click Run to start the build.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 125

Different FPGA Build options
The FPGA Hardware Build has two different build options that affect what options are displayed
by the build dialog. The version of the BSP affects what options are available. The same basic
build types are available between each, but the newer BSPs add additional usability features.

Basic Build Types (common between all BSPs)

• Synthesis: Builds what is present in the sandbox only.

• Implementation: Builds what is present in the sandbox and places it into the static region of
the selected BSP and runs to bit generation.

• Implementation from DCP: Takes a provided DCP and places it into the static region of the
selected BSP and runs to bit generation.

Usability features (newer BSPs)

• Two new options are available, launch the Vivado GUI to monitor the build, and only run
project generation on a design.

• When project generation is selected, the Vivado GUI will always be launched.

• The GUI can be selected to launch regardless of project generation

Monitoring the Build
The FPGA Hardware Build dialog contains several panes to monitor the progress of the build:

• The Compile Output pane displays all build output.

• The Issues pane shows filtered build output. You can set the filters by checking the boxes
(Errors, Critical Warnings. etc.) at the top of the Issues pane. The filters can be set at any
time while the build is running or after it is complete.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 126

• The progress bar shows the approximate progress of the build.

• The status bar at the bottom left shows what step of the build is being performed. When the
build is finished, the build status will be displayed.

• At the beginning of the build, a mapping will be created in the windows file system from the
build directory to an open drive letter.

o This mapping is used to ensure no windows path length limits are exceeded.

o The mapping will be removed at the completion of the build.

Exploring the Build Output
The Build directory field in the Configuration pane specifies the parent directory of the build
artifacts, including the generated bit file. The Program Archive of the generated bit file may be
recognized by its k7z file extension.

If the build was successful, the build artifacts are copied to an artifact directory for future
reference. Each set of build artifacts has its own time and date stamped directory. In this
example, one artifact directory could be named myProject.data\bin\myProject_2018-04-
04T14_21_55.

To learn more about the build output structure, refer to the Project Directory Structure section.

Building your Design using Vivado
PathWave FPGA provides a path to a Vivado flow for users who want to use advanced features
in Vivado, such as adding placement constraints.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 127

Generating a Vivado Project
To start the advanced build flow and leave PathWave FPGA build environment, follow the steps
listed below.

1. Open a new or existing PathWave FPGA project, and navigate to the FPGA Hardware Build
dialog.

2. Select the sandbox you wish to implement with the sandbox drop down, and select the
Implementation build type.

3. Check the Project Generation Only checkbox.

4. Click Run.

a. If any build errors are encountered, solve the errors before continuing.

5. After synthesis of the sandbox completes, Vivado will launch and link the sandbox into the
static region.

a. The project folder for the design can be located in the .build folder of your project
with a timestamped folder.

6. A Vivado project is now created and ready for development.

a. When finished with any additional Vivado steps, proceed to the next point.

7. In the Tcl command line, type FinishBuild and press enter.

a. FinishBuild is a custom command that PathWave FGPA generates and puts into
the Vivado environment when the project is created.

b. If any problems are encountered, solve them and repeat this step

8. If no errors are found, the build will finish and the build outputs will have been generated in
the project folder that this project resides in.

9. Close Vivado and return to PathWave FPGA.

At this point, PathWave FPGA will detect that Vivado has closed and will end the build process.
The build outputs will be captured and stored in a timestamped .data folder.

Troubleshooting
In this section, we will discuss potential issues that can arise during the build process and
possible solutions to those problems.

Drive mapping remaining after build completion
If the drive mapping that is established at the end of a build is not cleaned up successfully at the
end of the build, either of the following can be done to remove the mapping.

• Open CMD

• Run "subst /D {drive letter}:"

or

• Restart your machine

Either of the above methods will remove the drive mapping from your machine.

Generated project synthesis fails because paths are too long
PathWave FPGA maps the build directory at the start of every build, but generated projects do
not have this same feature. If your generated project fails synthesis because of windows paths
exceeding 260 characters in length, do the following steps.

• Close Vivado project

• Open CMD

• Run "subst {Unmapped Drive Letter}: {Working Directory}"

• Navigate to new mapped drive and open Vivado project.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 128

Your Vivado project will now have a shorter path and should get around the windows path
length limit.

Verifying the Bit File

After you generate your FPGA bit file, you are ready to deploy and verify it on the FPGA. The
Board Support Package for your FPGA supplies the run-time support package (RSP) C API that
provides programmatic control of the FPGA. Using the RSP you can create a C application to
verify your bit file. Note, you will need Visual Studio C++ and CMake, please see the System
Requirements for more details.

The RSP documentation and example program are provided in a separate Help area available
from the Help > Programmer's Guide menu.

After you have verified the bit file, you are ready to deploy it in a measurement
application. Please consult your instrument driver manual to learn how to integrate the bit file
into your custom measurement application.

Advanced Features

• Command Line Arguments

• Migrating a design to a new BSP

• Changing a Submodule Project Target Hardware

• Debugging in Hardware

Command Line Arguments

When PathWave FPGA is launched from a command line or script, there are a number of
arguments to create or load projects, and control how the application operates.

Usage: PathWave_FPGA [--project/-p/<no_switch> <ProjectFile (*.kfdk)>]

[--bsp/-b <BspName>] [--version/-v <BspVersion>] [--template/-t

<TemplateName>] [-c <OptionName> <OptionValue>] [--retarget/-r

<ExistingProjectFile>] [--generate/-g <generationType>]

<no_switch>

or

-p [--project]

Path to project file to open or create (*.kfdk)

-b [--bsp] Name of the BSP

-v [--version] Version of the BSP

-t [--template] Name of the BSP template to use

-r [--retarget] Path to existing project (*.kfdk) to retarget to different BSP configuration

-c Name/Value configuration option pairs for the specified BSP, separated by
space

-g [--
generate]

Type of generation: synthesis, implementation

-h [--help] Print usage message

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 129

• For creating a new project, the <ProjectFile> and <BspName>
arguments are required. The rest of the BSP options are needed only to
distinguish different configurations of the same BSP.

• If there is no BSP matching the provided <BspName>, a list of available
BSP names is displayed.

• If there are more than one configurations that match the provided
arguments, or no configuration that matches them, a list of available
configurations is displayed.

• If the '--generate' option is used, the application will close
automatically after the completion of the generation build.

• The project path can be specified without any switch. However, in that
case, it should not be specified after the '-c' switch arguments, as it will
be translated, erroneously, as a configuration option

• The '--retarget' and '--template' switches cannot be used together

Examples

• Start GUI:

PathWave_FPGA

• Open project:

PathWave_FPGA path/to/myExistingProject.kfdk

• Open project and implement it (application will close automatically after the completion of
the build):

PathWave_FPGA path/to/myExistingProject.kfdk -g implementation

• Create a new project from template and open it:

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -v 03.67.00 -c channels

2 -c fpga 7k325 -c clock Variable --template Default

• Create a new project from template and synthesize it (application will close
automatically after the completion of the build):

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 130

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -c channels 2 -c fpga

7k325 -c clock Variable --template Default -g synthesis

• Retarget an existing project to different BSP configuration:

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -c channels 4 -c fpga

7k410 -c clock Variable --retarget path/to/existingPrj.kfdk

Migrating a design to a new BSP

This topic lists the steps to retarget an existing hardware project to a different BSP.

1. Select File > Retarget Project.

2. Select an existing PathWave FPGA Project File. Click Next.

a. If you begin retargeting while a project is open, the existing project will be selected.

3. Choose the Board Support Package for the target hardware module and click Next.

a. If multiple board options are available, select the configuration of the BSP you want
to use.

4. A summary of the project details is displayed. Click Finish.

5. A dialog will appear informing you of a project version change.

a. A backup of your original file is created at this time.

6. The retargeted project will open, and any IP blocks that are now invalid with the retargeted
project will have a red 'x'.

Command Line

You can also retarget your project using the command line, for more
details see Command Line Arguments.

Changing a Submodule Project Target Hardware

When a submodule is created, the target hardware for that submodule is inherited from the
parent sandbox or submodule.

You may want to retarget a submodule to work with different hardware, or remove the targeted
hardware altogether to make a generic submodule. A generic submodule can be shared with
projects targeting different BSPs, but will not have access to the BSP IP.

Perform the following steps to change the submodule target hardware:

1. With the submodule project open in PathWave FPGA, select Project > Properties...

2. To change the Target Hardware to a new BSP, click Change and use the Select BSP
Configuration wizard to choose a new BSP.

3. To remove the BSP and create a generic submodule, click Clear.

4. Click Apply to accept the changes.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 131

Debugging in Hardware

PathWave FPGA supports the embedding of Vivado debug cores for use with the Vivado Logic
Analyzer for debugging Sandbox designs in hardware, provided the following prerequisites are
met:

• The targeted BSP must support hardware debugging.

• Must have a supported debug interface cable (JTAG download cable), or the BSP must
support one of the "Virtual Cable" methods (PCIe, Ethernet).

Check the targeted BSP's documentation to confirm whether hardware debugging is supported
and which connection methods may be used.

To debug a PathWave FPGA Sandbox design in hardware, simply use the PathWave FPGA
Launch Vivado IP Tool feature to customize a Vivado IP debug core, instantiate the debug core
in the Sandbox, make the necessary probe/trigger connections, and build the bit file. PathWave
FPGA and the Vivado implementation tools take care of the rest. After the bit file is generated
and loaded, the Vivado Logic Analyzer can be used for debugging Sandbox designs in
hardware.

To provide an example of how to use the Vivado Logic Analyzer for a PathWave FPGA
Sandbox design, consider a simple Sandbox design with an 8-bit counter.

The counter was customized from the Vivado IP Catalog, imported into PathWave FPGA,
instantiated in the design, and then connected to the Design Interface clock.

Next, click on the Launch Vivado IP Tool to customize an ILA debug core.

Vivado opens in “Manage IP” mode allowing management of the customized Vivado IP cores
for the PathWave FPGA project. The counter which was customized earlier should already be
visible. In the IP Catalog, enter “ILA (Integrated Logic Analyzer)” in the IP Catalog Search field
to quickly find the ILA IP core.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 132

Double click to open the ILA IP customization dialog.

There is already 1 probe by default. Click on the Probe/Ports tab and set the probe width to 8
corresponding to the 8-bit counter in the design. Then, click OK. Next Vivado IP Manager will
ask whether to generate the output products for the customized IP.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 133

Click the Skip button to skip generation of the customized ILA IP core output products for now.
The XCI file is all that is needed to import the component into PathWave FPGA and the output
products for any customized IP cores are automatically generated later when building the
PathWave FPGA Sandbox design. Then close/exit the Vivado IP Manager to return to the
PathWave FPGA window.

In the Vivado XCI panel, double click on the customized ILA IP core to instantiate the ILA in the
Sandbox design. Then make the necessary signal connections of the ILA core to the clock and
counter output, as shown below

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 134

Next click on Generate Bit File and then click the Run button to run synthesis for the Pathwave
FPGA project and to generate the bit file.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 135

After the build has completed successfully, the generated bit file can be found in the PathWave
FPGA project build results directory. Follow the BSP instructions on how to load the FPGA. The
BSP documentation will specify the type of connection required for hardware debugging. With
the debug cable connected, open the Vivado Hardware Manager and click on 'Open Target' to
connect to the FPGA. After having connected successfully, any detected ILA cores will be
displayed in the hardware panel. Click on the ILA to select it and to use the Vivado Logic
Analyzer.

The waveform below shows the 8-bit counter over a few repetitions.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 136

Without any trigger setup, the trigger position is random. However, the Xilinx ILA debug core
supports advanced trigger setups. As an example, adding a trigger can stabilize the trigger
position within the repetitious waveform.

With the trigger setup above, the trigger position is stable on counter value equals zero
condition.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 137

Multiple acquisitions now produce exactly the same acquisition data, with the trigger position
stable on counter value equals zero condition.

The other Xilinx debug cores such as Virtual Input/Output (VIO), Integrated Bit Error Ratio Test
(IBERT), JTAG-to-AXI, Memory IP, and System ILA may be used similarly to the ILA debug
core. Note that the System ILA is an IP Integrator block and thus is only applicable to IP
Integrator designs. Thus the System ILA probe connections would not be visible from the
PathWave FPGA design as they would be hidden within the IP Integrator block.

Additional information on debugging using Vivado and using and customizing the ILA may be
found in the following Xilinx documents:

• UG908 Vivado Design Suite Programming and Debugging User Guide

• PG172 ILA (Integrated Logic Analyzer) LogiCORE IP Product Guide

Glossary

Term Definition

Bit file File built from the user design containing the bits to download to the FPGA
sandbox.

Block An HDL IP block that is placed on the PathWave FPGA design schematic.

Board support
package (BSP)

A package containing all of the necessary content to target a Keysight Open
FPGA. These are installed separately from PathWave FPGA. A BSP is made
up of two parts, the FPGA support package (FSP) and the run-time support
package (RSP) .

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

User's Guide – 138

Term Definition

Design Canvas The main part of the PathWave FPGA window where the user develops a
schematic.

Design
Interfaces

Blocks which communicate between the user design and the outside.

FPGA support
package (FSP)

The portion of the BSP that allows you to build a bit file for the target FPGA.

Interface A set of ports for a block that can be connected to another compatible
interface. Alternatively, an interface can be expanded and the individual ports
can be connected to other compatible ports.

IP Repository IP repositories are libraries of blocks that are loaded into PathWave
FPGA. PathWave FPGA has a builtin IP repository, each BSP may come with
its own IP repository, and the user may define custom IP repositories. Blocks
in these IP Repositories are available in the panes on the right side of the
PathWave FPGA window.

Module Either a top level module or submodule that is currently the top level module
for simulation purposes

Port An input or output signal of a block.

Program
archive

An archive file (.k7z) containing one or more bit files and associated metadata.

Run-time
support
package
(RSP)

The portion of the BSP that allows you to control your target FPGA. It provides
a C API that you can use to download and verify your FPGA bit image.

Sandbox The user-configurable region in the FPGA.

Static region The region of the FPGA that is not user-configurable. This region is
implemented by the BSP.

Submodule Hierarchical schematic design that can be instantiated in either a top level
module or another submodule

Top level
module

Top of the user design, defines the IO of the sandbox.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 139

IP Developers Guide

PathWave FPGA allows a range of file formats (e.g. VHDL, Verilog, IP-XACT, etc.) for importing
IP for usage within a project. Among those formats, the recommended one, that optimizes the
support of IP within the software, is IP-XACT. By the usage of this format, PathWave FPGA
allows a set of features and conveniences to be applied which include, among others, packing
ports to interfaces, simplifying components connectivity, documenting IP usage, allowing
specification of dependencies (e.g. libraries, constraints, documentation, simulation files),
increasing validation on aspects like hardware compatibility. In this guide, instructions on how
an IP-XACT file should be created for an IP, in order to be successfully imported in PathWave
FPGA, are provided.

Generation of IP-XACT file

IP-XACT is an IEEE 1685-2014 standard which defines a set of xml schemas which allow the
description of IP. For more information on IP-XACT, please consult the manual IEEE 1685-
2014 standard. As explained earlier, PathWave FPGA is using this file format to improve the
usability of IP within the software. PathWave FPGA is supporting a subset of the elements
defined in the IP-XACT standard along with custom defined elements. A detailed description of
which elements are supported and how they should be used is provided in section IP-XACT file
composition.

Since the process of creating an IP-XACT file can be tedious and error-prone, PathWave FPGA
is coming along with a software tool, IP Packager, that allow IP developers to quickly and
effectively create IP-XACT files for their IP. A detailed description of the usage of this tool is
explained in section IP Packager.

IP Repositories

IP repositories are directories that contain all the artifacts required to describe an IP. For an IP
to be discovered by PathWave FPGA, an IP-XACT file (of the IEEE 1685-2014 standard) is
required. To load an IP repository, use the Settings Dialog.

IP-XACT file composition

Definition of the IP-XACT file

For an IP-XACT file to correctly describe an IP, the guidelines below should be followed:

• the IP-XACT file should follow the IEEE 1685-2014 standard

• the root element should be an ipxact:component

• the vendor name (element ipxact:vendor, first child of ipxact:component) should be

equal to the internet domain of the vendor of the IP (for example, for Keysight Technologies
this will be keysight.com)

• the name of the library (element ipxact:library, first child of ipxact:component) will

be the name of the library the IP belongs to. This name is also used inside PathWave
FPGA for categorizing the IPs

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 140

• the name (element ipxact:name, first child of ipxact:component) should be the same

as the name of the IP ("module name" in Verilog, SystemVerilog and SystemC, or "entity
name" in VHDL)

• if the IP uses Keysight Standard Interfaces, these should be described using
ipxact:busInterface elements

• the mappings between logical ports of the busInterfaces to the physical ports of the IP

should be one-to-one. This means that one physical port maps completely (same width,
direction) and to only one logical port

• the files that are necessary for an IP to be included in a build process (synthesis,
implementation, bit generation) should be defined inside an ipxact:fileset component,

named "synthesis".

A detailed description of all the elements that are required by PathWave FPGA in order to
correctly identify an IP is given in the following table. For more information on the various
elements that are supported by IP-XACT, please consult the IEEE 1685-2014 standard.

Element Parent Element Content

ipxact:component <root> This is the root element of the XML file

ipxact:vendor ipxact:component Vendor's name. Should be equal to the
internet domain of the vendor of the IP (e.g.
keysight.com)

ipxact:library ipxact:component The name of the library the IP belongs to

ipxact:name ipxact:component The name of the IP. Should be the same as
the name of the IP in the source file (i.e.
module name in Verilog, SystemVerilog and
SystemC, or *entity name* in VHDL)

ipxact:version ipxact:component The version number of the IP.

ipxact:busInterfaces ipxact:component Contains a list of ipxact:busInterface elements

ipxact:busInterface ipxact:busInterfaces Contains information about a used Keysight
Standard Interface

ipxact:name ipxact:busInterface The name of the Interface that is used in this
IP

ipxact:busType ipxact:busInterface The type of the Interface that is used in this
IP. This essentially is the VLNV of the
Keysight Standard Interface to be used. This
should match one of the bus definitions (IP-
XACT files with <ipxact:busDefinition> as the
root element) defined by PathWave FPGA.
See Keysight Standard Interfaces for more
information

ipxact:abstractionTypes ipxact:busInterface Contains a list of ipxact:abstractionType
elements. PathWave FPGA will only support
one, the first

ipxact:abstractionType ipxact:abstractionTypes Contains information about a used Keysight
Standard Interface and the mapping to the
physical ports

ipxact:abstractionRef ipxact:abstractionType The type of the Interface definition that is
used in this IP. This essentially is t he VLNV

https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 141

Element Parent Element Content

of the definition of the Keysight Standard
Interface to be used. This should match one
of the abstraction definitions (IP-XACT files
with <ipxact:abstractionDefinition> as the root
element) defined by PathWave FPGA. See
Keysight Standard Interfaces for more
information

ipxact:portMaps ipxact:abstractionType Contains a list of ipxact:portMap elements

ipxact:portMap ipxact:portMaps Contains information about a specific port
mapping

ipxact:logicalPort ipxact:portMap Contains information about the logical port
(port defined in the abstractionDefinition of the
enclosing abstractiontype) that participates in
the port mapping

ipxact:name ipxact:logicalPort The name of the logical port (As this is
defined in the abstractionDefinition for the
selected Interface Type)

ipxact:physicalPort ipxact:portMap Contains information about the physical port
(port of the IP) that participates in the port
mapping

ipxact:name ipxact:physicalPort The name of the physical port (As this is
defined in the ipxact:ports section in the same
file)

ipxact:model ipxact:component Contains information about the modeling of
the IP

ipxact:ports ipxact:model Contains a list of ipxact:port elements, which
represent the physical ports of the IP

ipxact:port ipxact:ports Contains information about a specific physical
port

ipxact:name ipxact:port The name of the physical port. This should
match the name defined in the source HDL
file

ipxact:wire ipxact:port Contains information about the physical
representation of a physical port

ipxact:direction ipxact:wire Specifies the direction of this port: in for input
ports, out for output ports

ipxact:vectors ipxact:wire Contains a list of ipxact:vector elements.
PathWave FPGA will only support one, the
first

ipxact:vector ipxact:vectors Specifies the dimensions for a non-scalar port

ipxact:left ipxact:vector Specifies the left range for the bit slice used to
map a port vector to the bus interface

ipxact:right ipxact:vector Specifies the right range for the bit slice used
to map a port vector to the bus interface

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 142

Element Parent Element Content

ipxact:fileSets ipxact:component Contains a list of ipxact:fileSet elements

ipxact:fileSet ipxact:fileSets Contains information about a specific set of
files. Can contain one or multiple ipxact:file
elements

ipxact:name ipxact:fileSet The name for this set of files.

ipxact:file ipxact:fileSet Contains information about a specific file

ipxact:name ipxact:file The path to the file. This should be relative to
the path of the current IP-XACT document

ipxact:fileType ipxact:file Describes the type of file. PathWave FPGA
understands one of the following names:

• vhdlSource: It is a VHDL source file

• verilogSource: It is a Verilog source file

• systemVerilogSource: It is a
SystemVerilog source file

• user: It is a user defined source,
described by the attribute "user"

user attribute of
ipxact:fileType

Can be:

• xci: Xilinx Core Instance

• dcp : It is a Vivado design checkpoint file

ipxact:description ipxact:component A short description of the IP

Keysight Standard Interfaces
The bus interfaces that are currently supported by PathWave FPGA to be used inside an IP
component definition are described as Keysight Standard Interfaces. Each of these interfaces
has IP-XACT definitions, which are defined by, and installed with, PathWave FPGA.

More specifically, for each interface, two IP-XACT files are defined:

• the Bus Definition: IP-XACT file with ipxact:busDefinition as root element

• the Abstraction definition: IP-XACT file with abstractionDefinition as root element

The Bus Definition is used to define the high-level details of an interface, such as if is
addressable or not, if it supports direct connection between a master and a slave, etc.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 143

Code Block 2 Example Bus Definition for AXI4-Stream interface

<ipxact:busDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

 xmlns:keysight="http://www.keysight.com"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>interfaces</ipxact:library>

 <ipxact:name>axis</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:directConnection>true</ipxact:directConnection>

 <ipxact:isAddressable>false</ipxact:isAddressable>

 <ipxact:vendorExtensions>

 <keysight:synchronous time-deterministic="false"/>

 </ipxact:vendorExtensions>

</ipxact:busDefinition>

The Abstraction Definition is used to define the low-level details of an interface, such as the
port and the parameter list.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 144

Code Block 3 Example Abstraction Definition for AXI4-Stream interface

<ipxact:abstractionDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014" xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-

2014/http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>interfaces</ipxact:library>

 <ipxact:name>axis.absDef</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busType vendor="keysight.com" library="interfaces" name="axis"

version="1.0"/>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:logicalName>tdata</ipxact:logicalName>

 <ipxact:wire>

 <ipxact:qualifier>

 <ipxact:isData>true</ipxact:isData>

 </ipxact:qualifier>

 <ipxact:onMaster>

 <ipxact:presence>optional</ipxact:presence>

 <ipxact:width>64</ipxact:width>

 <ipxact:direction>out</ipxact:direction>

 </ipxact:onMaster>

 <ipxact:onSlave>

 <ipxact:presence>optional</ipxact:presence>

 <ipxact:width>64</ipxact:width>

 <ipxact:direction>in</ipxact:direction>

 </ipxact:onSlave>

 <ipxact:defaultValue>0</ipxact:defaultValue>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:logicalName>tvalid</ipxact:logicalName>

 <ipxact:wire>

 <ipxact:onMaster>

 <ipxact:presence>required</ipxact:presence>

 <ipxact:width>1</ipxact:width>

 <ipxact:direction>out</ipxact:direction>

 </ipxact:onMaster>

 <ipxact:onSlave>

 <ipxact:presence>required</ipxact:presence>

 <ipxact:width>1</ipxact:width>

 <ipxact:direction>in</ipxact:direction>

 </ipxact:onSlave>

 </ipxact:wire>

 </ipxact:port>

 :

 :

 :

 </ipxact:ports>

</ipxact:abstractionDefinition>

Managing Multiple Clocks and Resets
PathWave FPGA needs to know which clock and reset are used by each synchronous interface.
If there is only one clock and one reset in an IP block's definition, then there is no ambiguity.
However, if there is more than one clock or one reset interface, then the tools need to know
which clock or reset correspond to which interface. To achieve this, PathWave FPGA expects
the specification of the parameters ASSOCIATED_BUSIF and ASSOCIATED_RESET in the
bus interface definition of synchronizing clock interfaces. The values of these parameters
should be specified as follows:

ASSOCIATED_BUSIF : a colon (:) separated list of interface names (excluding reset
interfaces) that are associated with this clock.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 145

• Special case: A star (*) means all interfaces in the design (excluding reset interfaces) that
require a clock will be associated with this clock.

ASSOCIATED_RESET: a colon (:) separated list of reset interface names that are associated
with this clock and with the interfaces provided in ASSOCIATED_BUSIF.

• if there is only one reset, then this rest is associated with all the interfaces
in ASSOCIATED_BUSIF

• if there are multiple resets, each reset is associated with the respective interface in the
ASSOCIATED_BUSIF list. Duplicates are possible. The size of the list should be equal or
greater than the size of the ASSOCIATED_BUSIF list. Greater applies when a reset is
associated with a clock, but not with any interfaces.

Parameterizing IP Designs
For added generality, IP-XACT standard allows the usage of parameters to control various
aspects of the IP block's definition, so that the same block may be used with different
configurations. These parameters can be simple constants such as 16, or they can be
mathematical expressions involving multiple constants and/or other parameters. The format of
expressions in IP-XACT are detailed in Annex C of the IP-XACT 1685-2014 standards
document. The format is based on System Verilog's expression syntax.

IP-XACT provides different ways to define parameters, however, in the context of PathWave
FPGA, two methods are currently supported:

• Component Parameters

• Module Parameters

The following table summarizes the elements/attributes that PathWave takes into account when
parsing an IP-XACT file, with respect to the parameters:

Element/Attribute Parent Element Content

ipxact:parameter

(or
ipxact:moduleParameter)

ipxact:parameters

(or
ipxact:moduleParameters)

The root element to define a parameter.
It requires the definition of attributes and
children element for the proper
description of a parameter

resolve attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Can take one of the values: "user",
"immediate" or "generated".

To specify that a parameter should be
configured by the user of the IP, the
value "user" should be used. This will
also display the parameter in the
properties dialog of an IP inside
PathWave FPGA

This attribute defaults to "immediate" if
not defined

type attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Defines the datatype of the value.
Possible values are: "int", "bit", "byte".
For a complete list, please refer to IP-
XACT 1685-2014

parameterId attribute of
ipxact:parameter (or

ipxact:moduleParameter)

Defines a unique (in the context of the
IP-XACT file) ID for this parameter. This
ID should then be used in any
expression required within the file

ipxact::name ipxact:parameter The name of the parameter

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 146

Element/Attribute Parent Element Content

(or
ipxact:moduleParameter)

ipxact:value ipxact:parameter

(or
ipxact:moduleParameter)

The default value (or expression) of the
parameter

Component Parameters
Parameters defined as children of the elements path component->parameters. These can be
used throughout the IP-XACT document to configure any aspect of the file (can be used in any
field that accepts expressions as values, e.g. other parameter values, port ranges, port
presence etc.)

<ipxact:component>

 :

 :

 <ipxact:parameters>

 <ipxact:parameter resolve="user" type="int"

parameterId="gen_input_length" >

 <ipxact:name>gen_input_length</ipxact:name>

 <ipxact:value>3*uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter type="int"

parameterId="uuid_f4a7c3f8_a1b3_496a_9730_17d721278396" >

 <ipxact:name>output_length</ipxact:name>

 <ipxact:value>2*gen_input_length</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter resolve="user" type="int"

parameterId="uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15" >

 <ipxact:name>supersample</ipxact:name>

 <ipxact:value>1</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 :

 :

</ipxact:component>

Notes:

• The attribute resolve="user" indicates that these parameters are ones that the user can
change when instantiating the IP block. If the parameter should always be calculated from
other values or remain fixed, the attribute resolve="immediate" should be used. In that case
the user will not be given the option of modifying the value of the parameter.

• The parameterId is the one used inside an expression (not the ipxact:name), in which a
parameter participates (see ipxact:value of parameter gen_input_length). However, if the
ipxact:name of the parameter is unique throughout the document, it can also be used as
parameterId. This way it is easier to construct expressions using parameters (see
ipxact:value of parameter output_length)

• The value of output_length parameter shall not be modifiable directly by user input (as it
does not contain the attribute resolve set to "user"), rather, indirectly, through
the input_length parameter, as its expression implies (i.e. 2*gen_input_length)

• The value of gen_input_length parameter is defined as user modifiable. That means that
the expression shall not play any role, other than defining the default value. Therefore, if a
user selects a value of "10" for this parameter, and a value of "5" for the
parameter supersample, the final value of gen_input_length will be "10" and not "15"
(3*supersample)

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 147

Module Parameters
Parameters defined as children of the elements path component->model->instantiations-
>componentInstantiation->moduleParameters. These are more specific to a Module Definition.
Represent the generics of a VHDL entity, or the parameters of a Verilog module.

Code Block 4 Example Module Parameters Definition

<ipxact:component>

 :

 :

 <ipxact:model>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>flat_vhdl_component</ipxact:name>

 <ipxact:language>vhdl</ipxact:language>

 <ipxact:moduleName>parameterizedIp</ipxact:moduleName>

 <ipxact:moduleParameters>

 <ipxact:moduleParameter type="int" parameterId="input_length"

resolve="user">

 <ipxact:name>input_length</ipxact:name>

 <ipxact:value>3*supersample</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter type="int"

parameterId="output_length">

 <ipxact:name>output_length</ipxact:name>

 <ipxact:value>2*input_length</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter type="int" parameterId="supersample"

resolve="user">

 <ipxact:name>supersample</ipxact:name>

 <ipxact:value>uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15</ipxact:value>

 </ipxact:moduleParameter>

 </ipxact:moduleParameters>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 :

 :

 </ipxact:model>

 :

 :

</ipxact:component>

Notes:

• The guides for creating component parameters also apply to the module parameters.

• The value of the supersample parameter depends on a parameter defined elsewhere in the
document (uuid_5e192450_89f2_48a9_8906_ee47dbbe0b15 is the parameterId defined
for the parameter supersample, defined in the previous example and can exist in the same
document)

Example: Parameterized Port Sizing
IP-XACT parameters can be used to define the bounds (sizes) of the IP module's ports. These
expressions may be solely the parameterId of an ipxact:moduleParameter or may be more
complicated expressions as shown in this example:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 148

<ipxact:port>

 <ipxact:name>Din_vector</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>input_length*supersample-1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

</ipxact:port>

Note:

• Only ipxact:moduleParameter parameters can be used in expressions defining port
ranges. This is because the actual expression will also be used during code generation and
only the ipxact:moduleParameters are defined at that time

• Tools such as Kactus2 can facilitate defining and evaluating expressions.

Keysight Extensions to IP-XACT

To enhance the usage of IP-XACT files within PathWave FPGA, a set of extensions to the fields
provided by IP-XACT standard have been defined. Extensions can be used inside an
<ipxact:vendorExtensions> element. Their usage will be explained in the following sections,
based on the location where they can be placed inside an IP-XACT file.

To use any of the Keysight defined elements inside an IP-XACT file, you
need to specify the 'keysight' namespace:
"xmlns:keysight="http://www.keysight.com"" in the xml root element (i.e.
ipxact:component)

Bus Definition Extensions
This section will explain extensions that can be defined inside an 'ipxact:vendorExtension'
element of an 'ipxact:busDefinition' element.

Element | Attribute Parent Element Content

keysight:synchronous ipxact:vendorExtensions (direct
child of ipxact:busDefinition)

This is the root element for defining
the synchronous characteristics of a
bus

time-deterministic attribute of keysight:synchronous Can be "true" or "false". The value
"true" specifies a synchronous, time-
deterministic bus.

The description of Bus Definition Extensions is provided for informational
purposes only. User-created custom bus definitions are not supported.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 149

Port Extensions
This section will explain extensions that can be defined inside an 'ipxact:vendorExtension'
element of an 'ipxact:port' element.

Element Parent Element Content

keysight:breakout ipxact:vendorExtensions
(direct child of ipxact:port)

This element will cause PathWave FPGA to
display a vector as individual wires. It only has
an effect on the "vector" interface; otherwise it
is ignored. This extension is intended for
internal use only.

Component Extensions

IP Restrictions
For IP to be used in PathWave FPGA, there will need to be a set of IP restrictions that specify
which BSPs and FPGA device families the IP can be used with. This information will be used to
determine which IP will show up in the IP catalog in the GUI for use in a design. Only the IP that
will work with a given BSP and FPGA will show up for a design so that the user cannot place
incompatible IP in a design.

An IP developer may specify in the IP-XACT which BSPs (eg. M3102A, M3202A), which FPGA
vendors (eg. Xilinx), and which FPGA families (eg. Virtex, Kintex) are supported. If the IP can
work for all families for a given FPGA vendor or all BSPs, then the family parameter or the bsp
parameter does not need to be set.

1.1.1.1.1.82 IP Restrictions Format
The IP restrictions will be added to the IP-XACT file inside the 'ipxact:vendorExtensions'
element of an 'ipxact:component'. The elements to be used are defined by Keysight and are as
follows:

Element Parent Element Content

keysight:ipMetadata ipxact:vendorExtensions (direct
child of ipxact:component)

This is the root element of the
Keysight Vendor Extensions for
IP metadata

keysight:supportedHardware keysight:ipMetadata Contains information about the
hardware to which this IP is
supported

keysight:supportedBoards keysight:supportedHardware Contains a list of Vendor-
Boards pairs of supported
boards. If this element is not
specified, all boards are
supported

keysight:vendorBoards keysight:supportedBoards A Vendor-Boards pair

keysight:vendor keysight:vendorBoards The name of the vendor.
Should be equal to the internet
domain of the vendor of the
boards (e.g. keysight.com)

keysight:boards keysight:vendorBoards Contains a list of board names
that are supported

keysight:board keysight:boards The name of the board where
this IP can be used

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 150

Element Parent Element Content

keysight:supportedParts keysight:supportedHardware Contains a list of Vendor-Parts
pairs of supported FPGA parts.
If this element is not
specified, all FPGA parts are
supported

keysight:vendorParts keysight:supportedParts A Vendor-Parts pair

keysight:vendor keysight:vendorParts Vendor's name. Should be
equal to the internet domain of
the vendor of the parts (e.g.
keysight.com)

keysight:families keysight:vendorParts Contains a list of family names
that are supported

keysight:family keysight:families The name of the family as this
is defined by the part number
(e.g. 'xc7k' should be used if
the supported family is 'Kintex-
7')

IP Categorization
In addition to defining the library in which the IP belongs, it is possible to define a subcategory
for an IP. To achieve that, PathWave FPGA has defined some extension elements for IP-
XACT.

The IP restrictions will be added to the IP-XACT file inside the 'ipxact:vendorExtensions'
element of an 'ipxact:component'. The elements to be used are defined by Keysight and are as
follows:

Element Parent Element Content

keysight:ipMetadata ipxact:vendorExtensions (direct child
of ipxact:component)

This is the root element of the
Keysight Vendor Extensions for IP
metadata

keysight:categories keysight:ipMetadata A list of categories. Currently, only
one category can be specified

keysight:category keysight:categories The name of the category that this
IP belongs into

IP Naming Collisions

PathWave FPGA does not accept IP with the same name to be loaded at the same time in a
project. PathWave FPGA uses the concept of VLNV for identifying IP and reporting naming
collisions. VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-
XACT. The VLNV of an IP is defined in the first four fields of an IP-XACT component (see IP-
XACT definition)

For more information on naming collisions and how to resolve them, please read here.

For the case of an IP developer, this might happen as multiple versions of the same IP might be
created in the development phase. Even though the case of multiple IPs with the same VLNV
but different contents is detected by PathWave FPGA, it is recommended to update the version
field of the IP-XACT file for every change applied to the file. This will provide better issue
reporting and easier resolution.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 151

An Example IP-XACT File

Code Block 5 Sample IP-XACT file

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 152

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:keysight="http://www.keysight.com"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>myCustomLibrary</ipxact:library>

 <ipxact:name>SampleIp</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>clkSignal</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 <ipxact:parameters>

 <ipxact:parameter

parameterId="uuid_4e5d34f4_ff5d_4244_92b4_c0d0ec78d043">

 <ipxact:name>ASSOCIATED_BUSIF</ipxact:name>

 <ipxact:value>myAxiStreamMaster:myAxiStreamSlave</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter

parameterId="uuid_c127b078_eb51_42f4_aaf8_58e93ad84b21">

 <ipxact:name>ASSOCIATED_RESET</ipxact:name>

 <ipxact:value>Reset</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Reset</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>rstn</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 153

 <ipxact:busInterface>

 <ipxact:name>myAxiStreamSlave</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_valid_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tuser</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_user_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_data_in</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>myAxiStreamMaster</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_valid_out</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>my_stream_data_out</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 154

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>rstn</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_valid_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_data_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>79</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_user_in</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>0</ipxact:left>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 155

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_valid_out</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>my_stream_data_out</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>79</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition></ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>sampleIp.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>This is a Sample IP. It contains two Stream

Interfaces and two system ports</ipxact:description>

 <ipxact:vendorExtensions>

 <keysight:ipMetadata>

 <keysight:supportedHardware>

 <keysight:supportedBoards>

 <keysight:vendorBoards>

 <keysight:vendor>keysight.com</keysight:vendor>

 <keysight:boards>

 <keysight:board>M3202A</keysight:board>

 </keysight:boards>

 </keysight:vendorBoards>

 </keysight:supportedBoards>

 <keysight:supportedParts>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 156

 <keysight:vendorParts>

 <keysight:vendor>xilinx.com</keysight:vendor>

 <keysight:families>

 <keysight:family>xc7k</keysight:family>

 </keysight:families>

 </keysight:vendorParts>

 </keysight:supportedParts>

 </keysight:supportedHardware>

 <keysight:categories>

 <keysight:category>General</keysight:category>

 </keysight:categories>

 </keysight:ipMetadata>

 </ipxact:vendorExtensions>

</ipxact:component>

IP Packager

The recommended format for IP import in PathWave FPGA is IP-XACT. PathWave FPGA offers
a set of features and conveniences enabled by using IP-XACT which include packing ports to
interfaces, simplifying component connectivity, documenting IP usage, and allowing
specification of dependencies (e.g. libraries, constraints, documentation, simulation files). Since
the process of manually creating an IP-XACT file can be tedious and error-prone, PathWave
FPGA includes IP Packager, a tool that allows IP developers to quickly and effectively create
IP-XACT files for their IP.

Start IP Packager

To open up IP Packager GUI, start PathWave FPGA, go to the Tools menu and click IP
Packager. This will bring up the IP Packager GUI.

Import to project
IP-XACT files created by IP Packager can be imported into PathWave FPGA using one of the
methods for importing IP-XACT files described in Adding Blocks.

If a project is loaded in PathWave FPGA, and IP Packager is used to create new IP, the user
will be asked after closing IP Packager if any valid IP-XACT files that were created should be
imported into the open project.

Welcome Page

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 157

New Button

The New button will create a new IP-XACT file. Browse to the directory where the new file
should be saved, and enter a file name.

Open Button

The Open button lets you load an existing IP-XACT file for editing.

Recent Files List
This will display a list of up to 10 files that were previously processed by the tool, with the most
recent first in the list. Select a file and click Open Recent, or double-click a file to open it
immediately.

Main Page

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 158

Menu button
This button is a toggle switch used to shrink all the menu buttons down to their icon. Click it
again to expand them to their normal size.

File Buttons

The New button will create a new IP-XACT file. Browse to the directory where the new file
should be saved, and enter a file name. The shortcut is Ctrl-N.

The Open button lets you load an existing IP-XACT file for editing. The shortcut is Ctrl-O.

The Autofill from file button is used to load information from a design file (such as VHDL,
Verilog, XCI, or IP-XACT). For example, loading a VHDL or Verilog file will fill the name,
physical ports, interfaces, parameters, and will add the file to the Files tab. Interfaces may be
inferred from the physical ports by their port names, see Infer Interface Reference. The default
for the checkbox controlling interface inference is set in the PathWave FPGA Configuration
dialog. The shortcut is Ctrl-Shift-O.

The Validate button checks whether the current information is valid and sufficient to describe
the IP. The shortcut is Ctrl-W.

The Save button saves the current state of the IP to the path selected during the creation of
a New file or the path of the file opened. Before saving, it validates the IP and reports any
issues. The shortcut is Ctrl-S.

The Save As button allows you to save a new copy of the IP in a different directory or file
name. The shortcut is Ctrl-Shift-S.

Close button
This will close the IP Packager window. The user will be prompted if unsaved changes should
be saved. If a project is loaded in PathWave FPGA while starting IP Packager GUI, the user
will be asked if any valid IP-XACT files that were generated during the IP Packager session
should be imported into that open project.

Tabs Section

General Tab
This tab contains identification and other relevant information about the IP

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 159

1.1.1.1.1.83 VLNV
VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-XACT. The
VLNV of an IP is defined in the first four fields of an IP-XACT component (see IP-XACT
definition).

PathWave FPGA uses the VLNV value to resolve name conflicts. The library field is used to
categorize IP in the IP Library.

1.1.1.1.1.84 Module Name
This field must match the module name (for Verilog and SystemVerilog) or entity name (for
VHDL) of the top-level module represented by this IP. By default, this will be the same as the
Name field.

1.1.1.1.1.85 Category
This is an optional field. It is used by PathWave FPGA to further categorize the IP inside the IP
Library. The library field will label the first level of the tree path, any entries in the Category field
will label intermediate levels in the tree path, and the component Name will label the leaf.

For example, if an IP has the VLNV keysight.com::Algorithms::StreamAdder::1.0 and the
category Math, it will be available in PathWave FPGA library under the tree path:

• ALGORITHMS

o MATH

▪ StreamAdder

Categories can be nested with the slash character (forward or backward). For the example
above, but with the category Math/Adders, tree path would be:

• ALGORITHMS

o MATH

▪ ADDERS

• StreamAdder

1.1.1.1.1.86 Description
This is an optional field. It provides a text section for entering a description about the IP being
created. PathWave FPGA displays the IP description when a component is added into the
design canvas, and also in the component's Properties dialog.

Interfaces Tab
Use this tab to configure the standard interfaces in the IP definition. The usage of this tab is
similar to the one defined in Configuring Submodule Interfaces. Please consult that page for
usage instructions.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 160

Port Mapping Tab
Each interface added in the Interfaces tab has one or more logical ports. These need to be
mapped to the physical ports of the IP design.

1.1.1.1.1.87 Interface List
This list shows the interfaces that are defined in the Interfaces tab. Select an interface to show
the logical ports for that interface.

1.1.1.1.1.88 Component Preview
This preview shows how the IP component will be displayed in a PathWave FPGA canvas.
When an interface is selected in the Interface List, that interface will be highlighted in the
preview.

1.1.1.1.1.89 Mapping Filters
All Interfaces radio button: When selected, the Mapping List will show the logical ports for all
interfaces. A new column will appear to show which interface the logical port is from.

Selected Interface radio button: When selected, the Mapping List will show only the logical
ports for the interface selected in the Interface List.

Hide Mapped: The Mapping List will only show logical ports that have not been mapped. Use
this to focus on mapping the unmapped ports.

Hide Optional: The Mapping List will only show logical ports that are required by the interface.
Any unmapped optional ports will be disabled when the IP is saved.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 161

1.1.1.1.1.90 Mapping List
A table that displays the mappings between logical ports of interfaces to physical ports of the IP.
It contains three columns:

• Interface: (Only visible when the All Interfaces radio button of the Mapping Filters is
selected) This shows the name of the interface to which the logical port belongs.

• Logical Port: This shows the name of the logical port. For a specific row, it shows the
name of the logical port that takes part in the mapping. An icon with the direction of the
logical port is displayed on the left side.

• Physical Port: This shows the name of the physical port that the logical port is mapped to.
If the logical port is not mapped to a physical port, this will show the red open mapping

icon if the logical port is required, or the yellow open mapping icon if it is optional.

The green connected mapping icon indicates that the port is mapped.

1.1.1.1.1.91 Mapping buttons

Map button: This will map the logical port selected in the Mapping List to the physical port
selected in the Physical Ports List. You can also double-click the physical port to map it to the
selected logical port.

 Unmap button: This will remove the mapping of the selected logical port.

 Map to new button: This will create a new physical port and map it to the selected logical
port. The name of the physical port is <interface name>_<logical port name>.

 Map all to new button: This will create new physical ports for all unmapped logical ports in
the Mapping List. It behaves the same as the Map to new button.

 Infer interfaces button: This will infer interfaces from physical ports by their port names. For
full inference rules, see the Infer Interface Reference. Any newly inferred interfaces will appear
in the Interfaces List and the logical ports of those interfaces will be mapped to their physical
ports. The interface names and graphical order may be changed, and interface descriptions
may be entered, in the Interfaces Tab.

1.1.1.1.1.92 Physical Port Filters
Hide Mapped check box: When checked, the Physical Ports List will not show any physical
ports that are mapped to a logical port other than the one selected in the Mapping List.

Hide Incompatible check box: When checked, the Physical Ports List will not show any
physical ports that are incompatible with the logical port selected in the Mapping List.

Filter: The Physical Ports List will only show physical ports that contain the text in their name.
The filtering is case-insensitive.

1.1.1.1.1.93 Physical Port List
A list of the physical ports for the IP. Use the Physical Port Filters to show only a subset of the
physical ports. If a logical port is selected in the Mapping List, you can double-click a physical
port to create a mapping between the two.

 icon and red text color is used for incompatible physical ports

 icon is used for unmapped compatible physical ports

 icon is used for mapped compatible physical ports

 icon is used for the physical port that is actually mapped to the selected logical port

Physical Ports Tab
The physical ports are the ports presented by the IP top-level implementation file. Usually they
are loaded from a file, but you may create or modify them manually if needed.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 162

1.1.1.1.1.94 Vector Bounds
Configure the left and right bounds of a vector to set the width. Either the left or right bound
must be 0.

1.1.1.1.1.95 Component Preview
This preview shows how the IP component will be displayed in a PathWave FPGA canvas.
When an unmapped physical port is selected in the Physical Port Table, that port will be
highlighted in the preview.

Parameters Tab
A model might use parameters for controlling the port widths or any other configurable feature
of the model. The Parameters Tab allows the user to add/modify/remove parameters.

1.1.1.1.1.96 Parameters List
Contains the list of parameters of the IP. Each entry is split in three columns:

• Name: displays the name of the parameter. In case this is a module parameter, it should
match the name in the actual design file.

• Datatype: displays the acceptable datatype of the value.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 163

• Value: displays the default value of the parameter.

1.1.1.1.1.97 Parameters Control Buttons
Add button: Creates a new parameter with a unique name.

Remove button: Removes the selected parameter.

Up button: Moves the selected parameter up.

Down button: Moves the selected parameter down.

1.1.1.1.1.98 Naming Group
The fields of this group describe the parameter:

• Name: the name of the parameter. In case this is a module parameter, it should match the
name in the actual design file.

• Display Name: a user friendly name for this parameter. This name will be shown to the
user in PathWave FPGA.

• Description: a description for this parameter. The description will be available to the user in
PathWave FPGA.

1.1.1.1.1.99 Datatype
A list of supported datatypes for the parameter:.

• Bit: represents 1-bit value

• Byte: represents an integer value of 8-bits

• ShortInteger: represents an integer value of 16-bits

• Integer: represents an integer value of 32-bits

• String: represents a string

1.1.1.1.1.100 Value
The value or expression to be used by default for this parameter. The possible value is
restricted by the selected datatype and the specified Range.

1.1.1.1.1.101 Range
Allows three different range validations for the value of the parameter:

• No Range: If this is selected, the value of the parameter is only limited by the available
range of the selected datatype.

• Min/Max: If this is selected, two extra fields are displayed to define the continuous value
range for the parameter. This selection has no effect if the selected datatype is string or bit.

o Minimum: The minimum value the parameter can take. The value should have the
same datatype as the one selected for the parameter and should be no larger than
Maximum. If left empty, minimum is the -∞.

o Maximum: The maximum value the parameter can take. The value should have the
same datatype as the one selected for the parameter and should be no smaller
than Minimum. If left empty, maximum is the +∞.

• Enumeration: If this is selected, a combobox with the available valid enumerations is
displayed. If nothing is displayed, go to the Enumerations tab to add a new enumeration or
fix an invalid one. The value of the parameter is restricted by the allowed values of the
selected enumeration.

1.1.1.1.1.102 Attributes
Is User Configurable checkbox: If this is checked, it allows the user to give a different value than
the default to this parameter. User Configurable parameters will be displayed to the
PathWave FPGA users in the component dialog of this IP.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 164

Enumerations Tab
Some parameters of the model may be restricted to specific discrete values. The Enumerations
Tab allows the user to specify enumerations that can be used as range validators inside
parameter definitions.

1.1.1.1.1.103 Enumerations List
This is the list of enumerations that are defined in the context of the IP and can be referenced
by parameters.

The names of the enumerations should be unique and should start with a letter, colon (:) or
underscore (_) character and can be followed by any number of letter, numeric, colon (:),
underscore (_), dot (.) or hyphen (-) characters.

If an enumeration is invalid (in case of invalid name structure or because of insufficient number
of defined elements), it is displayed with red text color and a tooltip is available that describes
the issue.

1.1.1.1.1.104 Enumerations Control Buttons
 Add Enumeration button: Creates a new enumeration and adds it to the list, giving it a

unique name.

 Remove Enumeration button: Removes the currently selected enumeration from the
enumerations list. If the enumeration selected is being used by any parameter of the model, the
user will be given the option to abort the remove action.

1.1.1.1.1.105 Enumeration Name
Name of the currently selected enumeration. Can be edited to change the name. If an invalid
name is entered, the name will turn red and the enumeration list will not be updated until the
name is changed to a valid value.

1.1.1.1.1.106 Enumeration Values List
This is the list of values that a selected enumeration can take.

The definition of values can take two formats:

• list of name/value pairs: in this case, the names of the list should be unique

• list of values: in this case, the values should be unique

1.1.1.1.1.107 Enumeration Values mode
Value Mode combo box: Changes between the two element value types: Name Value Pair or
Value Only.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 165

1.1.1.1.1.108 Enumeration Values Control Buttons
 Add Enumeration Value button: Creates a new enumeration name/value pair (or just value,

if Enumeration Values mode is Value Only).

 Remove Enumeration Value button: Removes the selected enumeration value from the list.

Files Tab
An IP-XACT file describes IP defined in one or more other files, such as VHDL or Verilog files.
This tab defines the files used for the IP during the build process.

1.1.1.1.1.109 File List
Displays the list of files that will be used during the synthesis and implementation of the
IP. There must be at least one file defined for each IP-XACT file.

Files are represented either by their absolute path or by the relative path from the parent
directory of the IP-XACT file. By default, all the files are represented by their relative path.
Right-click a file to change the path to absolute or back to relative. Double-click a file to
manually modify the path.

A file will be highlighted in red if any errors are detected with that file. Hovering over the bad file
will show a tooltip describing the error.

1.1.1.1.1.110 File Control Buttons

 Add Files button: Browse to the implementation files for this IP and add them to the File
List. You may select multiple files at once.

 Add Folder button: Add all the implementation files in a directory to the File List. This will
not include files in subdirectories.

 Add Folder (Recursive) button: Add all the implementation files in a directory to the File
List. This will search all subdirectories recursively.

Load from File button: This button will load the physical ports and parameters from the
selected file. Any existing physical ports and parameters are replaced with the ports and
parameters loaded from the file. The port mappings will be restored to compatible physical ports
with the same name. If an existing parameter is also in the file, the value and data type will be
updated while all other properties remain unchanged. If an existing parameter is not in the file, it
will be removed. Interface names and descriptions are restored if possible. Interfaces may be

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

IP Developers Guide – 166

inferred from the physical ports by their port names. For full infer rules see, Infer Interface
Reference. The default for the checkbox controlling interface inference is set in the PathWave
FPGA Configuration dialog.

 Remove Selected Files button: Remove the selected files from the File List.

1.1.1.1.1.111 File Context Menu
 Remove: Removes the selected files from the File List.

Use Absolute Path: Converts the selected file path from relative to absolute. This will only
appear if one or more selected files are in relative form.

Use Relative Path: Converts the selected file path from absolute to relative. This will only
appear if one or more selected files are in absolute form.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 167

Tutorials

• HVI Tutorial

• Import HDL with collapsible interfaces using IP-XACT

• Import HDL with parameterized bus widths using IP-XACT

• Import Vivado High-Level Synthesis (HLS) generated IP

• Power of Two Decimation Tutorial

• Xilinx System Generator for DSP™ Tutorial

HVI Tutorial

HVI, or Hard Virtual Instrument, is a way of creating deterministic time execution sequences for
one or more hardware modules using a graphical flowchart programming environment.

PathWave FPGA comes with an HVI example located in C:\Program Files\Keysight\PathWave
FPGA 2020\examples. To run the HVI example you will need to install PathWave FPGA and the
Keysight M3601A HVI software.

Navigate to the example directory at listed above, copy the HVIexample directory to a location
with write permissions, and open the directory and open the HVIexample.kfdk project file in
PathWave FPGA.

The PathWave FPGA project instantiates two register blocks each with three registers. The first
register block (Reg_xN_1) connects to an HVI port called Hvi0. The second register block
(Reg_xN_2) connects to an HVI port called Hvi1. The register output from Reg_xN_1 is
connected to the register input of Reg_xN_2. This allows the HVI code to write values to Hvi0
and read back the values at Hvi1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 168

Copy the HVI project file HVIexample.HVIprj in HVIexample and the FPGA bitfile
HVIexample_pr_aio500_500_top_partial.sbp in HVIexample\bitfile to a computer connected to
an M3302A module. Start the M3601A software and open HVIexample.HVIprj.

The HVI project comes setup to use the M3302A demo module. To use the real hardware
module select Module→Assign Hardware... and select your hardware module.

Load the FPGA bitfile onto the M3302A by selecting Module→FPGA→Load firmware...

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 169

Navigate to the location of the sbp file on the computer connected to the remote hardware.
Select the file and click the Load button.

Click on Module→Register Settings... and make sure that registers 0 through 2 are enabled.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 170

To see the register output click on Debug→Show debug window

Run the HVI example by clicking on Build→Compile and Run HVI

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 171

Once the HVI example has finished running you should see the values written to the Hvi0 port
be read back on the Hvi1 port and displayed in the register debug window in the M3601A
software.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 172

Import HDL with collapsible interfaces using IP-XACT

IP-XACT or IEEE 1685-2014 is an XML specification for describing (among other things) the
interfaces used by an IP block in an FPGA. This tutorial describes the creation of an IP-XACT
file for a simple IP block written in VHDL.

While the IP-XACT file is text and can be manually created in any text editor, it is simpler and
easier to use an IP-XACT editor such as Kactus2 (available at http://funbase.cs.tut.fi/).
PathWave FPGA recommends using version 3.5 or later.

The HDL IP block has physical ports which are the input and output signals for the IP block.
One or more ports can be combined into logical interfaces which describe how the signals
interact and connect with other signals. An interface may consist of a single port or even a
signal wire. An example of this is a clock interface. Other interfaces, such as the AXI-MM
interface, may have dozens of potential ports. By describing which ports constitute a particular
interface and which role each port has, the IP-XACT description eases connecting interfaces
together. An AXI Master can connect to an AXI Slave with only one connection even though a
considerable number of individual ports will be connected in the hardware.

This tutorial will create the IP-XACT for the following simple block:

Code Block 6 incr1.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity incr1 is

 port (

 clk : in std_logic;

 nrst : in std_logic; -- Active low reset

 incr : in std_logic_vector(7 downto 0);

 count_tdata : out std_logic_vector(7 downto 0);

 count_tvalid : out std_logic

);

end incr1;

architecture Behavioral of incr1 is

 signal count : std_logic_vector(7 downto 0);

begin -- Behavioral

 count_tdata <= count;

 count_tvalid <= '1' when (incr /= 0) else '0';

 process(clk)

 begin

 if (nrst = '0') then

 count <= (others => '0');

 else

 count <= count + incr;

 end if;

 end process;

end Behavioral;

This block will increment an internal counter based on its incr input and output the counter value
on an AXI-streaming count interface. It also has a clock input and an active low nrst input. This
HDL file is stored under c:/tmp/ipxactDemo/src/incr1.vhd.

To create IP-XACT for this module, first start Kactus2. Click the Configure Library button to set
up the libraries. Make sure that the PathWave FPGA interfaces folder as well as the folder for
your IP block are both in the library path:

https://standards.ieee.org/findstds/standard/1685-2014.html
http://funbase.cs.tut.fi/

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 173

To create the IP-XACT, click the New button and select HW Component.

In Kactus2, required fields are shown in light yellow while optional fields are shown in white.
Enter the Vendor, Library, Name, and Version for your IP block. Then click Browse... and
navigate to the directory with the IP block. In this case, it will be c:/tmp/ipxactDemo. This is
where the resulting IP-XACT file will be created:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 174

Click OK and the Component Wizard is started. Click Next to get to the General Information
screen, and enter the Author and Description (which are optional):

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 175

At this point, one could click Finish and proceed to enter the IP port information manually, but it
is much more convenient to have Kactus2 read the source file and fill in the information
automatically.
To do this, the source file folder needs to be set. Click Next to get to the File Sets &
Dependency Analysis screen and double click in the File set source directories box to bring
up the selection box.

Select the src directory and click Select Folder.

PathWave FPGA uses the synthesis fileset for containing the files needed for synthesis.
Double click on the File sets / Name entry and change it to "synthesis":

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 176

Click Next to advance to the Import source file page. This is where the top level source file is
specified. Using the pulldown menu for Top-level file to import:, select the incr1.vhd file:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 177

Note that the source file is shown in the middle pane with the detected ports in the lower pane.
Click Next to advance to the Views page:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 178

Click Finish to complete the Component Wizard.

By default, Kactus2 includes all the files in the source directory. In the upper-right pane, click on
File sets/synthesis to bring up the file set editor:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 179

If the list of files contains files that are not part of desired IP blocks source, delete them using
right-click/remove row or Shift+del.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 180

Now that the list of source files has been fixed, it is time to assign ports to logical Bus
Interfaces. This allows PathWave FPGA to more easily connect interfaces between IP blocks.
Click on Ports to bring up the Ports Editor. This should show all the ports that were read from
the source HDL file and shows things like the direction (in or out), the width, and the index
bounds for vectors:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 181

To assign a single port to an interface, select the port in the yellow box under the Name column,
right-click and select New bus interface/Use existing bus definition.

This will bring up the Bus Interface Wizard. This wizard will be used to assign all the ports to
interfaces:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 182

At the Introduction screen, click Next to bring up the Bus interface general options page.

Note that the boxes shaded in yellow are required fields that need to be filled out. White boxes
are optional fields. Select the Name: box and enter a name for the interface. This is typically the
name of the port, though it does not have to be. Next the Bus definition and Abstraction
definition fields need to be filled out. Data entry can be speeded up by using the tab key.

Click on Vendor: and keysight.com should show up as a suggested entry. Press the tab key to
select keysight.com and move on to the next field, Library. Here, interfaces should show up as
a suggested entry. Press the tab key to select interfaces and move on to the Name: field.
Alternately, click on the interfaces entry to select it and then click on the Name: entry to
advance to that field.

Under Name: select the type of interface that this port should be assigned to. In this case the
port is a clock signal, so clock should be picked:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 183

Note that one can speed up the selection by starting to type the name cl... to skip down the list
more quickly.

After selecting clock, press the tab key to select the Version:. Press tab four more times to fill
out the default Abstraction definition fields. The last tab will place the cursor in the Interface
mode: field. This selects whether the interface is a master, meaning it generates the signal, or a
slave, meaning it consumes the signal. In this case, the clock port is an input port and hence
slave should be selected:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 184

Next the ports need to be assigned to their various roles within the interface. For interfaces with
only one port, this is trivial. Click Next twice to get to the Port Maps. Here the port mapping
would be set, but in this case there is only one port so it is automatically filled in:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 185

Click Next and Finish to complete the definition of this interface.

Repeat this process with the nrst port using the nRst interface:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 186

This process works for logic vectors too. Select the incr port and configure it as a vector
interface:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 187

The interface for the count ports is a little different. In this case there are more than one port
associated with the one interface. This is a case of an AXI-streaming interface consisting of
both the count_tdata and count_tvalid ports. Select both the count_tdata and count_tvalid ports,
right-click, and select the New bus interface/Use existing bus definition as before (note: it is
okay to select more than the ports associated with the interface as long as all the ports that are
associated with the interface are selected):

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 188

Fill in the Bus interface general options page using the axis interface name. In this case, the
ports are outputs and the interface is a master:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 189

Now at the Port Maps page, one sees that there are multiple logical ports listed. Note that only
the tvalid line has a yellow tinted box. That is the only port required by the AXI streaming spec.
All the other ports are optional. Of these, this IP block only uses the tdata logical port.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 190

To assign the count_tvalid physical port to the tvalid logical port, select count_valid and drag it
down to the tvalid row:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 191

Likewise, drag the count_tdata physical port down to the tdata line:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 192

Click Next and Finish to complete the interface. At this point one can see that under the Bus
interfaces section, all four of the IP block's interfaces are now listed.

The definition of the IP block's interfaces is complete. If any of the entries in the middle pane
are red (none are in this case), that would indicate that there is an error with that entry. Select it
and fix any errors until none of the entries are red.

Click the Save icon (or type Ctrl+S) to save the IP-XACT file.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 193

The description of this block's interfaces is now complete and PathWave FPGA can now use
this interface information to allow easier connections to other blocks.

In this screen capture from PathWave FPGA, the instance incr1_1 is shown with the Count
interface collapsed. The internal ports that make up that interface are not shown and the
interface can be connected to other compatible interfaces with one connection. The instance
incr1_2 is shown with the Count interface expanded to show the internal ports that make up that
interface. The entire interface can be connected with one connection by using the Count port or
the individual ports within the interface can be connected separately if desired.

The generated IP-XACT is shown below:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 194

<?xml version="1.0" encoding="UTF-8"?>

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:kactus2="http://kactus2.cs.tut.fi"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>flat</ipxact:library>

 <ipxact:name>incr1</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>Clk</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 195

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Incr</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="vector" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="vector.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>Signal</ipxact:name>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>incr</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Count</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tdata</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tvalid</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 196

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:views>

 <ipxact:view>

 <ipxact:name>flat_vhdl</ipxact:name>

 <ipxact:envIdentifier>VHDL:Kactus2:</ipxact:envIdentifier>

 <ipxact:componentInstantiationRef>vhdl_implementation</ipxact:componentIns

tantiationRef>

 </ipxact:view>

 </ipxact:views>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>vhdl_implementation</ipxact:name>

 <ipxact:language>VHDL</ipxact:language>

 <ipxact:moduleName>incr1</ipxact:moduleName>

 <ipxact:architectureName>Behavioral</ipxact:architectureName>

 <ipxact:fileSetRef>

 <ipxact:localName>src</ipxact:localName>

 </ipxact:fileSetRef>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>incr</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 197

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tdata</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tvalid</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>src</ipxact:name>

 <ipxact:file>

 <ipxact:name>src/incr1.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 <ipxact:vendorExtensions>

 <kactus2:hash>ef09beac89449e3689558b669252ef520e1a34d8</kactus2:hash>

 </ipxact:vendorExtensions>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>Count increments in multiples of

incr</ipxact:description>

 <ipxact:vendorExtensions>

 <kactus2:author>Keysight</kactus2:author>

 <kactus2:version>3,5,0,0</kactus2:version>

 <kactus2:kts_attributes>

 <kactus2:kts_productHier>Flat</kactus2:kts_productHier>

 <kactus2:kts_implementation>HW</kactus2:kts_implementation>

 <kactus2:kts_firmness>Mutable</kactus2:kts_firmness>

 </kactus2:kts_attributes>

 </ipxact:vendorExtensions>

</ipxact:component>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 198

Import HDL with parameterized bus widths using IP-XACT

IP-XACT or IEEE 1685-2014 is an XML specification for describing (among other things) the
interfaces used by an IP block in an FPGA. This tutorial describes the creation of an IP-XACT
file for a parameterized IP block written in VHDL. Parameters (called generics in VHDL) are
values that are specified when the IP block is instantiated and can be used to customize the
block. This allows one IP block to fill more needs than a non-parameterized block would. For
example, instead of requiring multiple IP blocks to support adders of different sizes, one adder
block can be parameterized so that the size of the adder can be specified when the block is
used.

This tutorial uses a block similar to that which was used in the IP-XACT Creation Tuturial with
the difference being that this block uses two parameters, width which specifies the bit width of
the block, and dir which specifies whether the block increments or decrements. The process for
creating the IP-XACT file is very similar to the case for non-parameterized IP blocks with a few
steps added towards the end.

While the IP-XACT file is text and can be manually created in any text editor, it is simpler and
easier to use an IP-XACT editor such as Kactus2 (available at http://funbase.cs.tut.fi/). For IP
that is parameterized, PathWave FPGA recommends using version 3.5.77 or later.

The HDL IP block has physical ports which are the input and output signals for the IP block.
One or more ports can be combined into logical interfaces which describe how the signals
interact and connect with other signals. An interface may consist of a single port or even a
signal wire. An example of this is a clock interface. Other interfaces, such as the AXI-MM
interface, may have dozens of potential ports. By describing which ports constitute a particular
interface and which role each port has, the IP-XACT description eases connecting interfaces
together. An AXI Master can connect to an AXI Slave with only one connection even though a
considerable number of individual ports will be connected in the hardware.

This tutorial will create the IP-XACT for the following parameterized block:

https://standards.ieee.org/findstds/standard/1685-2014.html
http://funbase.cs.tut.fi/

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 199

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity incr2 is

 generic (

 width : integer := 8;

 dir : integer := 0); -- Direction : 0 = up, 1 = down

 port (

 clk : in std_logic;

 nrst : in std_logic; -- Active low reset

 incr : in std_logic_vector(width-1 downto 0);

 count_tdata : out std_logic_vector(width-1 downto 0);

 count_tvalid : out std_logic

);

end incr2;

architecture Behavioral of incr2 is

 signal count : std_logic_vector(width-1 downto 0);

begin -- Behavioral

 count_tdata <= count;

 count_tvalid <= '1' when (incr /= 0) else '0';

 process(clk)

 begin

 if (nrst = '0') then

 count <= (others => '0');

 else

 if (incr = 1) then

 count <= count + incr;

 else

 count <= count - incr;

 end if;

 end if;

 end process;

end Behavioral;

This block will increment or decrement an internal counter based on dir and its incr input and
output the counter value on an AXI-streaming count interface. It also has a clock input and an
active low nrst input. This HDL file is stored under c:/tmp/ipxactDemo/src/incr2.vhd.

To create IP-XACT for this module, first start Kactus2. Click the Configure Library button to set
up the libraries. Make sure that the PathWave FPGA interfaces folder as well as the folder for
your IP block are both in the library path:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 200

To create the IP-XACT, click the New button and select HW Component.

In Kactus2, required fields are shown in light yellow while optional fields are shown in white.
Enter the Vendor, Library, Name, and Version for your IP block. Then click Browse... and
navigate to the directory with the IP block. In this case, it will be c:/tmp/ipxactDemo. This is
where the resulting IP-XACT file will be created:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 201

Click OK and the Component Wizard is started. Click Next to get to the General Information
screen, and enter the Author and Description (which are optional):

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 202

At this point, one could click Finish and proceed to enter the IP port information manually, but it
is much more convenient to have Kactus2 read the source file and fill in the information
automatically.
To do this, the source file folder needs to be set. Click Next to get to the File Sets &
Dependency Analysis screen and double click in the File set source directories box to bring
up the selection box.

Select the src directory and click Select Folder.

PathWave FPGA uses the synthesis fileset for containing the files needed for synthesis.
Double click on the File sets / Name entry and change it to "synthesis":

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 203

Click Next to advance to the Import source file page. This is where the top level source file is
specified. Using the pulldown menu for Top-level file to import:, select the incr2.vhd file:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 204

Note that the source file is shown in the middle pane with the detected ports in the lower pane.
Click Next to advance to the Views page:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 205

Click Finish to complete the Component Wizard.

By default, Kactus2 includes all the files in the source directory. In the upper-right pane, click on
File sets/synthesis to bring up the file set editor:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 206

If the list of files contains files that are not part of desired IP blocks source, delete them using
right-click/remove row or Shift+del. Note that in this case, there is only one source file, but for
more elaborate designs there may be multiple files. If so, they should all be included. If
necessary, they can be manually added if they are in a different directory.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 207

Now that the list of source files has been fixed, it is time to assign ports to logical Bus
Interfaces. This allows PathWave FPGA to more easily connect interfaces between IP blocks.
Click on Ports to bring up the Ports Editor. This should show all the ports that were read from
the source HDL file and shows things like the direction (in or out), the width, and the index
bounds for vectors. Note that in contrast with the example with the unparameterized IP block, in
this case the higher bound of the incr and count_tdata ports show an expression involving the
width parameter. In particular the upper bound is the expression width-1. Parameters can be
used by themselves or in mathematical expressions as shown here. In this case, the default
value of width is 8, and since that hasn't been changed, the entries in the Width column for
these two ports shows the value 8. If the width parameter is changed, these fields will update
with the new value. Further, if you do a mouse-over by placing the cursor over the expression
width-1, you will see that the current value of the expression, 7, is shown.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 208

To assign a single port to an interface, select the port in the yellow box under the Name column,
right-click and select New bus interface/Use existing bus definition.

This will bring up the Bus Interface Wizard. This wizard will be used to assign all the ports to
interfaces:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 209

At the Introduction screen, click Next to bring up the Bus interface general options page.

Note that the boxes shaded in yellow are required fields that need to be filled out. White boxes
are optional fields. Select the Name: box and enter a name for the interface. This is typically the
name of the port, though it does not have to be. Next the Bus definition and Abstraction
definition fields need to be filled out. Data entry can be speeded up by using the tab key.

Click on Vendor: and keysight.com should show up as a suggested entry. Press the tab key to
select keysight.com and move on to the next field, Library. Here, interfaces should show up as
a suggested entry. Press the tab key to select interfaces and move on to the Name: field.
Alternately, click on the interfaces entry to select it and then click on the Name: entry to
advance to that field.

Under Name: select the type of interface that this port should be assigned to. In this case the
port is a clock signal, so clock should be picked:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 210

Note that one can speed up the selection by starting to type the name cl... to skip down the list
more quickly.

After selecting clock, press the tab key to select the Version:. Press tab four more times to fill
out the default Abstraction definition fields. The last tab will place the cursor in the Interface
mode: field. This selects whether the interface is a master, meaning it generates the signal, or a
slave, meaning it consumes the signal. In this case, the clock port is an input port and hence
slave should be selected:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 211

Next the ports need to be assigned to their various roles within the interface. For interfaces with
only one port, this is trivial. Click Next twice to get to the Port Maps. Here the port mapping
would be set, but in this case there is only one port so it is automatically filled in:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 212

Click Next and Finish to complete the definition of this interface.

Repeat this process with the nrst port using the nRst interface:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 213

This process works for logic vectors too. Select the incr port and configure it as a vector
interface:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 214

The interface for the count ports is a little different. In this case there is more than one port
associated with the one interface. This is a case of an AXI-streaming interface consisting of
both the count_tdata and count_tvalid ports. Select both the count_tdata and count_tvalid ports,
right-click, and select the New bus interface/Use existing bus definition as before (note: it is
okay to select more than the ports associated with the interface as long as all the ports that are
associated with the interface are selected):

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 215

Fill in the Bus interface general options page using the axis interface name. In this case, the
ports are outputs and the interface is a master:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 216

Now at the Port Maps page, one sees that there are multiple logical ports listed. Note that only
the tvalid line has a yellow tinted box. That is the only port required by the AXI streaming spec.
All the other ports are optional. Of these, this IP block only uses the tdata logical port.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 217

To assign the count_tvalid physical port to the tvalid logical port, select count_valid and drag it
down to the tvalid row:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 218

Likewise, drag the count_tdata physical port down to the tdata line:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 219

Click Next and Finish to complete the interface. At this point one can see that under the Bus
interfaces section, all four of the IP block's interfaces are now listed.

So far, these steps have been the same as in the non-parameterized tutorial. Now it is time to
work on the parameters. The dir parameter indicates the direction of the counting, up or down.
Using the value 0 for up and 1 for down isn't very intuitive. Instead of using these integer values,
an enumeration can be used to restrict the choices to a set of values and these values have
names that can be more informative. In IP-XACT, enumerations are called choices. Click on the
Choices entry in the center pane to bring up that window:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 220

Double click in the Choices pane to create a new choice, click in the Name field to select it and
enter the name Direction:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 221

Notice that currently the Choices entry in the middle pane is red, indicating an error condition.
That is because there is a choice (named Direction) defined, but the possible values of
Direction have not yet been specified.

Double click in the Enumeration(s) entry to bring up the Enumeration Entry window. Enter two
values, 0 with the text label Up, and 1 with the text label Down:

Now that the Choice has been specified, it can be used to describe a parameter. Click on the
Parameters entry in the center pane to bring up that window. There are two parameters, dir and
width with the default values of 0 and 8 respectively:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 222

Change dir to use this Choice by clicking in the Choice column for dir and selecting the name of
the choice just created Direction.

Since "dir" isn't that friendly of a name for the end user, put "Direction" in for the Display name.
This is the text that will be presented to the end user when the IP block is used and customized.

Since both of these are parameters that the user should be given the choice of changing, the
Resolve field of both should be set to user. Other values of the Resolve field can indicate
parameters that are either calculated from other parameters or parameters that the user should
not change.

The Type of the parameter needs to be specified. In this case, they are both ints. Set these
using the pull down selections in the Type column.

Limits can be set to restrict the allowable values of a parameter. In this example, the width
parameter is restricted to a minimum of 1 and a maximum of 32.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 223

The parameters just defined are IP-XACT parameters and are used inside IP-XACT. The actual
HDL generics that are passed on to the IP HDL are known as moduleParameters. Normally
these will have the same names as the IP-XACT parameters and will just be copies. This is
automatically done by Kactus2. To see this, click on the Instantiations/Component
instantiations/vhdl_implementation in the center pane. In the Module parameters section of
the right pane the module parameters are shown. The "dir" in the Name column refers to the
module parameter by that name. The "dir" in the Value column refers to the IP-XACT
parameter by that name.
The Type of these parameters must be set just as the IP-XACT parameters were set. In the
same way as the previous screen, use the pull down selections in the Type column of the
Module parameters window to change the type to ints.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 224

The definition of the IP block's interfaces and parameters is complete. If any of the entries in the
middle pane are red (none are in this case), that would indicate that there is an error with that
entry. Select it and fix any errors until none of the entries are red.

Click the Save icon (or type Ctrl+S) to save the IP-XACT file.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 225

If you are using Kactus2 version 3.5.77 or later, the next step can be skipped. For earlier
versions of Kactus2, the following step is required.

When generating IP-XACT for parameterized IP blocks with Kactus2, there is one further
step required. Kactus2 adds a usageCount field to the parameter definition. This field is not
in the IP-XACT spec and is not valid IP-XACT XML. These fields need to be removed
manually in a regular text editor. Edit the file incr2.1.0.xml that Kactus2 just generated.
Search for usageCount:

and delete that field:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 226

and save the file.

The description of this block's interfaces is now complete and PathWave FPGA can now use
this interface information to allow easier connections to other blocks. When that block is used
within PathWave FPGA, the following dialog box will show up. This shows the description of the
IP block along with the user modifiable parameters. In this case there are the two parameters
we defined above: width with a valid range of [1,32], and the enumeration for Direction with the
choices Up and Down.

In this example, the user changed the width parameter from the default value of 8 to the value
32. This causes the I/O ports to have a range of (31:0) rather than (7:0).

In this screen capture from PathWave FPGA, the instance incr2_1 is shown with the Count
interface collapsed. The internal ports that make up that interface are not shown and the
interface can be connected to other compatible interfaces with one connection. The instance
incr2_2 is shown with the Count interface expanded to show the internal ports that make up that
interface. The entire interface can be connected with one connection by using the Count port or
the individual ports within the interface can be connected separately if desired.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 227

The generated IP-XACT is shown below:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 228

<?xml version="1.0" encoding="UTF-8"?>

<ipxact:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"

xmlns:kactus2="http://kactus2.cs.tut.fi"

xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">

 <ipxact:vendor>keysight.com</ipxact:vendor>

 <ipxact:library>flat</ipxact:library>

 <ipxact:name>incr2</ipxact:name>

 <ipxact:version>1.0</ipxact:version>

 <ipxact:busInterfaces>

 <ipxact:busInterface>

 <ipxact:name>Clk</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="clock" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="clock.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>clk</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="nRst" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="nRst.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>nRst</ipxact:name>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>0</ipxact:left>

 <ipxact:right>0</ipxact:right>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 229

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Incr</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="vector" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="vector.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>Signal</ipxact:name>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>incr</ipxact:name>

 <ipxact:partSelect>

 <ipxact:range>

 <ipxact:left>7</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:range>

 </ipxact:partSelect>

 </ipxact:physicalPort>

 </ipxact:portMap>

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:slave/>

 </ipxact:busInterface>

 <ipxact:busInterface>

 <ipxact:name>Count</ipxact:name>

 <ipxact:busType vendor="keysight.com" library="interfaces"

name="axis" version="1.0"/>

 <ipxact:abstractionTypes>

 <ipxact:abstractionType>

 <ipxact:abstractionRef vendor="keysight.com"

library="interfaces" name="axis.absDef" version="1.0"/>

 <ipxact:portMaps>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tvalid</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tvalid</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

 <ipxact:portMap>

 <ipxact:logicalPort>

 <ipxact:name>tdata</ipxact:name>

 </ipxact:logicalPort>

 <ipxact:physicalPort>

 <ipxact:name>count_tdata</ipxact:name>

 </ipxact:physicalPort>

 </ipxact:portMap>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 230

 </ipxact:portMaps>

 </ipxact:abstractionType>

 </ipxact:abstractionTypes>

 <ipxact:master/>

 </ipxact:busInterface>

 </ipxact:busInterfaces>

 <ipxact:model>

 <ipxact:views>

 <ipxact:view>

 <ipxact:name>flat_vhdl</ipxact:name>

 <ipxact:envIdentifier>VHDL:Kactus2:</ipxact:envIdentifier>

 <ipxact:componentInstantiationRef>vhdl_implementation</ipxact:componentIns

tantiationRef>

 </ipxact:view>

 </ipxact:views>

 <ipxact:instantiations>

 <ipxact:componentInstantiation>

 <ipxact:name>vhdl_implementation</ipxact:name>

 <ipxact:language>VHDL</ipxact:language>

 <ipxact:moduleName>incr2</ipxact:moduleName>

 <ipxact:architectureName>Behavioral</ipxact:architectureName>

 <ipxact:moduleParameters>

 <ipxact:moduleParameter dataType="integer"

parameterId="uuid_9b050478_c9d3_4507_8dc8_7ea7c47f93ac" type="int"

usageType="nontyped">

 <ipxact:name>width</ipxact:name>

 <ipxact:value>uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00</ipxact:value>

 </ipxact:moduleParameter>

 <ipxact:moduleParameter dataType="integer"

parameterId="uuid_c6f0c841_b30e_4869_9529_173232f1d921" type="int"

usageType="nontyped">

 <ipxact:name>dir</ipxact:name>

 <ipxact:value>uuid_74620f8f_d6ae_4da4_b710_5c6c86e460cf</ipxact:value>

 </ipxact:moduleParameter>

 </ipxact:moduleParameters>

 <ipxact:fileSetRef>

 <ipxact:localName>synthesis</ipxact:localName>

 </ipxact:fileSetRef>

 </ipxact:componentInstantiation>

 </ipxact:instantiations>

 <ipxact:ports>

 <ipxact:port>

 <ipxact:name>clk</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>nrst</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 231

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>incr</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>in</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tdata</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:vectors>

 <ipxact:vector>

 <ipxact:left>uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00-

1</ipxact:left>

 <ipxact:right>0</ipxact:right>

 </ipxact:vector>

 </ipxact:vectors>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic_vector</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 <ipxact:port>

 <ipxact:name>count_tvalid</ipxact:name>

 <ipxact:wire>

 <ipxact:direction>out</ipxact:direction>

 <ipxact:wireTypeDefs>

 <ipxact:wireTypeDef>

 <ipxact:typeName>std_logic</ipxact:typeName>

 <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

 </ipxact:wireTypeDef>

 </ipxact:wireTypeDefs>

 </ipxact:wire>

 </ipxact:port>

 </ipxact:ports>

 </ipxact:model>

 <ipxact:choices>

 <ipxact:choice>

 <ipxact:name>Direction</ipxact:name>

 <ipxact:enumeration text="Up">0</ipxact:enumeration>

 <ipxact:enumeration text="Down">1</ipxact:enumeration>

 </ipxact:choice>

 </ipxact:choices>

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 232

 <ipxact:fileSets>

 <ipxact:fileSet>

 <ipxact:name>synthesis</ipxact:name>

 <ipxact:file>

 <ipxact:name>src/incr2.vhd</ipxact:name>

 <ipxact:fileType>vhdlSource</ipxact:fileType>

 <ipxact:vendorExtensions>

 <kactus2:hash>80784e10e1b2a7e3a70fb0592f377473649faa02</kactus2:hash>

 </ipxact:vendorExtensions>

 </ipxact:file>

 </ipxact:fileSet>

 </ipxact:fileSets>

 <ipxact:description>Increment or decrement in multiples of incr with

variable bit width</ipxact:description>

 <ipxact:parameters>

 <ipxact:parameter kactus2:usageCount="3" maximum="32" minimum="1"

parameterId="uuid_69fca058_a0fb_4e1d_9db2_a713c9781c00" resolve="user"

type="int">

 <ipxact:name>width</ipxact:name>

 <ipxact:value>8</ipxact:value>

 </ipxact:parameter>

 <ipxact:parameter choiceRef="Direction" kactus2:usageCount="1"

parameterId="uuid_74620f8f_d6ae_4da4_b710_5c6c86e460cf" resolve="user"

type="int">

 <ipxact:name>dir</ipxact:name>

 <ipxact:displayName>Direction</ipxact:displayName>

 <ipxact:value>0</ipxact:value>

 </ipxact:parameter>

 </ipxact:parameters>

 <ipxact:vendorExtensions>

 <kactus2:author>Keysight</kactus2:author>

 <kactus2:version>3,5,0,0</kactus2:version>

 <kactus2:kts_attributes>

 <kactus2:kts_productHier>Flat</kactus2:kts_productHier>

 <kactus2:kts_implementation>HW</kactus2:kts_implementation>

 <kactus2:kts_firmness>Mutable</kactus2:kts_firmness>

 </kactus2:kts_attributes>

 </ipxact:vendorExtensions>

</ipxact:component>

Import Vivado High-Level Synthesis (HLS) generated IP

Vivado High-Level Synthesis (HLS) accelerates IP creation by enabling C, C++ and System C
specifications to be directly targeted into Xilinx FPGAs without the need to manually create
HDL. This tutorial describes the creation of an IP using HLS. The design is a scale and offset
circuit. The input and output data streams use an AXIS interface. The scale and offset are
programmable via an AXILite interface.

Create the Vivado HLS IP

Creating a Vivado HLS project

• Start Vivado HLS application

• Click on Create New Project, then set the project name to HLS_scale_and_offset as shown
in the figure below. Then click Next.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 233

• In the next window click on New File, name the file HLS_scale_and_offset.cpp and save it
in the same location as the HLS project. Then set the top function to
HLS_scale_and_offset as shown in the figure below. Then click Next.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 234

• In the next window click Next.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 235

• In the next window set the clock period to 5 (200 MHz clock) and set the part to
xc7k410tffg676-2 for the M3202A as shown in the figure below. Then click Finish.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 236

• In the Explorer window double click on HLS_scale_and_offset.cpp.

Implementing the IP function in C

• To create the IP function in C, open the file HLS_scale_and_offset.cpp and paste the
following code block:

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 237

Code Block 7 HLS_scale_and_offset.cpp

#include <ap_fixed.h>

#include <hls_stream.h>

using namespace hls;

typedef ap_fixed<16, 1, AP_TRN, AP_SAT> SAMPLE_T;

typedef stream<SAMPLE_T> SAMPLE_FIFO_T;

void HLS_scale_and_offset(SAMPLE_FIFO_T data,

 SAMPLE_T scale,

 SAMPLE_T offset,

 SAMPLE_FIFO_T output)

{

#pragma HLS PIPELINE II=1 enable_flush

#pragma HLS INTERFACE axis register both port=output name=DataOut

#pragma HLS INTERFACE axis register both port=data name=DataIn

#pragma HLS INTERFACE s_axilite register port=scale bundle=Control

#pragma HLS INTERFACE s_axilite register port=offset bundle=Control

#pragma HLS INTERFACE s_axilite port=return bundle=Control

 SAMPLE_T product;

 data >> product;

 product = (product * scale + offset);

 output << product;

}

Generating the synthesizable HLS IP

• Next, click the C Synthesis button .

• Next, click on the Export RTL button . Make sure 'IP Catalog' is selected and click OK.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 238

Using the Vivado HLS IP in PathWave FPGA

Importing the HLS IP into a project

• Start PathWave FPGA

• Create any project using the M3202A BSP. Even though the HLS IP was created for FPGA
part xc7k410tffg676-2, it can be used with any Kintex7 family board, as long as the clock is
200 MHz.

• Click on Add External Block and browse to the location of the HLS project. Inside the HLS
project directory, go to sub-directory solution1/impl/ip and select file component.xml.

• Click Open. This will bring the newly created HLS IP into the PathWave FPGA project.

• At this point, you are ready to use the IP in your design.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 239

 Create a design using the HLS IP
A sample design is the following:

This design is using the HLS_scale_and_offset IP that was created earlier. It has its clock and
reset ports connected to the sandbox'es clock and reset signals. It is supplied with a DC signal
of value 15 at its slave interface DataIn_V_V and produces the result to the master interface
DataOut_V_V, which is connected to the output channel 1 of the module. To control the value of
scale and offset, the sandbox's Host interface is connected to the s_axi_Control slave interface
of the IP.

At this point, we can run the Implementation process to generate the bitstream file to be loaded
into the FPGA.

Running design on FPGA
Before we can be able to see valid data from the output channel, we need to set the scale and
offset values and start the HLS IP. This can be done using the Host interface and write to the
following addresses (this information is provided in the file <HLS Project
Directory>/solution1/impl/ip/drivers/HLS_scale_and_offset_v1_0/src/xhls_scale_and_offset_hw.
h) :

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 240

// 0x00 : Control signals

// bit 0 - ap_start (Read/Write/COH)

// bit 1 - ap_done (Read/COR)

// bit 2 - ap_idle (Read)

// bit 3 - ap_ready (Read)

// bit 7 - auto_restart (Read/Write)

// others - reserved

// 0x10 : Data signal of scale_V

// bit 15~0 - scale_V[15:0] (Read/Write)

// 0x18 : Data signal of offset_V

// bit 15~0 - offset_V[15:0] (Read/Write)

Every time you set a value to scale or offset, you need to write 0x01 to the
control signals (address 0x00) in order to apply the new values to the
internal registers of the IP

Power of Two Decimation Tutorial

Purpose of Tutorial

This tutorial will show how to create a design that uses a power-of-two decimator that streams
data into and out of the DDR memory.

Requirements

1. PathWave FPGA

2. M3XXXA BSP

3. Vivado 2017.3 or newer

4. Microsoft Visual Studio

5. CMake 3.11.3 or newer

Description of Decimator Design

This design uses a power-of-two decimator block written in Verilog HDL. This block implements
a two channel (which could be used for complex (real/imaginary) data, or could be used for two
independent data streams) decimation filter that accepts input samples at up to one sample per
clock, and outputs at a relative rate of 1/2n, where n can be 1 to 16. Since the data comes from
DDR memory and the results go back into DDR memory, there is no real sample rate - the data
is just samples. The data could represent data that was sampled at any arbitrary rate. For
convenience in this tutorial, we'll assume the input samples represent data sampled at 100
Ms/s. In that case, the output of the decimator would represent data rates of 100/2n Ms/s or 50
Ms/s, 25 Ms/s, 12.5 Ms/s, ... , 1.526 ks/s.

The decimation process has two parts. First the data is low pass filtered to protect against
aliasing, and second the sample rate is reduced by throwing away samples. This particular filter
is implemented as 16 cascaded stages with each stage low pass filtering to half the bandwidth
and then discarding every other sample to half the data rate. Then the output of one of these
stages is selected as the output of the decimator block. This is selected via the nDecim(4:0)
port. The nDecim=0 value represents no decimations (the data just passes through) while
nDecim=1..16 selects one of the 16 stages for output. Values larger than 16 should not be
used.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 241

The inputs and output ports of the power2decim block uses AXI-streaming interfaces. These
interfaces use a data bus width of 32 bits, with the 16 low order bits being one input channel
and the 16 high order bits being the other input channel. Since these data streams go into and
out of DDR, the power2decim's AXI-streaming interfaces must include both forward and reverse
flow control using the TVALID and TREADY signals.

Access to DDR memory is via an addressable random access AXI bus. The power2decim
block uses non-addressable streaming AXI-streaming interfaces. To facilitate the use of
streaming data, Keysight provides a Streamer32x2 IP block. This block contains 2 independent
channels each of which has a read stream and a write stream. In this design, only one of the
two channels are used. Inside the Streamer32x2 block are DMA engines that can be
programmed to read or write DDR data and convert this to 32 bit wide streaming data.

In addition, there is a Register_Bank consisting of one register that is used to select which of
the 16 available output bandwidths is selected.

Description of Test Software

The test software is in a Microsoft Visual Studio solution and consists of the main c++ code in
main.cpp as well as some helper functions in helper.h.

This program treats the two channels of the power2decim as independent channels. Here is
the basic flow of the program:

1. Find and load the bit file for this test design.

2. Create the kernel instance so that the RSP can communicate with the test hardware.

3. Initialize the driver code for controlling the streamer32x2 block.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 242

4. Program the desired number of decimations into the nDecim register in the register
bank. In this tutorial, 3 passes of decimation are selected, so the output sample rate is 1/23
or 1/8 the input sample rate.

5. Create the two test waveforms in memory (described below). One channel is the odd
samples, the other channel is the even samples.

6. Write this waveform data into the hardware DDR memory using rspStreamerWriteHost.

7. For diagnostic purposes, we pre-fill the destination area of DDR with a known pattern. In
normal usage you would not do this.

8. The two DMA channels (inside the streamer32x2 block) are programmed. Once both
channels are configured, data flows from the DDR through the power2decim and back into
DDR.

9. The code waits for the Streamer Write DMA operation to finish.

10. For diagnostic purposes, pre-fill the host memory buffer with a known pattern. In normal
usage you would not do this.

11. Read the waveform data from DDR into a host buffer.

12. Write the results data into standard output.

13. Release resources to clean up and end.

Test Signal Description

As noted above, this design just uses sampled data which could represent any sample rate, but
for the purposes of discussion, we will assume an input sample rate of 100 Ms/s.

This tutorial uses the two channels of the power2decim as independent channels rather than as
one complex channel. The two channels are interleaved in memory, with one channel
occupying the even samples and the other channel occupying the odd samples in the buffer.

This tutorial uses 3 passes of decimation, so the output sample rate is 1/23 or 1/8 the input
sample rate or 100/8 Ms/s = 12.5 Ms/s. The passband is approx. 60% of Nyquist or 3.75
MHz. The stopband starts at 6.25 MHz. Between 3.75 and 6.25 MHz is the transition band of
the filter.

One input signal is a tone at 0.5 MHz with a second tone, 3 dB smaller, at 4.5 MHz. The other
input signal has the same 0.5 MHz tone, this time with a second 6.5 MHz tone 3 dB
lower. Below is shown the time domain waveforms as well as the spectrum of the two signals
(note: even though the input bandwidth extends up to 50 MHz, only the lower 10 MHz are
shown for clarity).

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 243

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 244

Both of these channels are low pass filtered and then decimated by 8. The 0.5 MHz component
of both signals is well within the passband of the decimator and passes through
unchanged. The first signal has a tone component at 4.5 MHz. This falls in the transition band

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 245

of the decimation filter. Thus the 4.5 MHz signal is attenuated (by about 5.4 dB) but partially
passes through. The second signal's component at 6.5 MHz is completely in the stopband of
the decimation filter and is completely removed.

Below are shown the time domain and spectrum of the output signals as read back from the
hardware. Note that the x-axis scaling of the output waveforms is different that the input
waveforms. This is due to the sample rate of the output being 1/8 of the sample rate of the
input.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 246

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 247

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 248

Building the Bitfile

Navigate to C:\Program Files\Keysight\PathWave FPGA 2020\examples and copy the
Power2Decim directory to a location with write permissions. Open the Power2Decim.kfdk file in
PathWave FPGA. The Power2Decim PathWave FPGA project is currently built for the 4
channel variable clock M3202A module. If you have a different module or BSP, then you will
need to retarget the PathWave FPGA project for your module. To retarget the project select
File→Retarget Project... in the PathWave FPGA GUI.

To build the Power2Decim project select the Project→Generate Bit FIle... menu pick or click on
the Generate Bit File... icon in the toolbar. Make sure the Build Type is set to Implementation
and that the Project Generation Only and the Launch Vivado Gui boxes are unchecked. Then
click the Run button to start the FPGA build process.

When the build is completed, there will be a directory in the project directory called
<projectName>.build. Inside this will be one (or more) directories for each build process. They
will have the project name as well as the date stamp. Inside the directory for the last build,
there will be a directory called bitfiles. Inside that directory will be the <projectName>.k7z
file. This file contains the necessary information for loading the routed design into the hardware
module.

Running the C++ RSP Example

Follow the steps below to run the C++ example and load the Power2Decim.k7z bitfile example
onto the hardware module:

1. Navigate to C:\Program Files\Keysight\PathWave FPGA 2020\examples

2. Copy the Power2Decim project from Program Files to a location with write permissions.

3. Run the create_project.bat file to create the C++ Visual Studio solution.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 249

4. Navigate to the build directory and open the Visual Studio solution (the default solution
name is Power2Decim.sln).

5. Build the C++ example program and copy the Debug or Release folder to a PC connected
to the M3XXXA module.

6. Run the C++ example.

Xilinx System Generator for DSP™ Tutorial

The Xilinx System Generator for DSP™ is a Simulink library blockset that can be used for
creating FPGA designs from Simulink. The System Generator library blocks instantiate Xilinx IP
like filters, adders, multipliers, CORDIC, etc. The output of System Generator can be easily
imported into PathWave FPGA.

Before importing your Xilinx System Generator design into PathWave FPGA, make sure there
are no build errors when generating the HDL code from System Generator. For help getting
started with System Generator, see the Xilinx document Model-Based DSP Design Using
System Generator in DocNav (UG948). You can also find System Generator documentation by
clicking on the help button in the System Generator Simulink library block.

• Run System Generator from the start menu.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 250

• Start Simulink by clicking on the Simulink icon on the Matlab toolbar.

• Select Blank Model on the Simulink startup page.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 251

• Simulink will create a blank model where users can create their designs.

• Save the design by selecting File→Save. Make sure you save the Simulink project to a
location that does not have any spaces in the filepath. Vivado will return errors when
generating HDL code from the System Generator design if there are spaces in the filepath.

• Click on the Library Browser button and navigate to Xilinx Blockset→ Basic elements

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 252

• Drag the System Generator icon on to the design canvas.

• Click on the System Generator icon in the Simulink design:

• The System Generator properties dialog will open.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 253

• If you are using an M3XXXA module with the k410 fpga option, set the Part to xc7k410t-
2ffg676. If you are using an M3XXXA module with the k325 option, set the Part dialog box
to xc7k325t-2ffg676. Set the Compilation dialog box to IP Catalog. The Hardware
description language dialog box can be set to either VHDL or Verilog. This example will use
VHDL. Click Ok to close the dialog window.

• In the Library browser go to Xilinx Blockset→Math and drag the AddSub block onto the
design canvas. The AddSub block defaults to a latency of 1. Leave the default value set at
1.

• Then in the Library Browser navigate to Xilinx Blockset→Basic Elements and drag two In
ports and one Out port onto the design canvas. Connect the In ports to the a and b inputs of
the AddSub block and connect the Out port to the a+b output of the AddSub block. Both the
In and Out blocks default to a port width of 16. Leave the default value set at 16.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 254

• Change the name on the upper input port to A and the name on the lower input port to B by
double clicking on the text below the port. Change the name on the output port to C.

• The final design should look something like this.

• Click on the System Generator icon and then click Generate in the System Generator dialog
window. System Generator will generate the HDL code for the design.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 255

When System Generator finishes generating the HDL code, open PathWave FPGA and create
a new project with the correct FPGA option (either k410 or k325).

• Launch PathWave FPGA .

• Click on File→New...→Sandbox Project in the PathWave FPGA GUI.

• Choose a Project name and Project location in the New Sandbox Project dialog and click
Next.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 256

• Select a Board Support Package and click the Next button. This example uses the M3202A.

• Select a k325 or k410 configuration depending on your hardware module and click Next.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 257

• Choose either the Default or Blank template and click Next. The Default template comes
with AWG IP and the Blank template does not instantiate any IP blocks.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 258

• The final page is the Project Summary page. Click Finish and PathWave FPGA will create
the project.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 259

• Then click on the Add External Block button on the toolbar.

• Navigate to the SystemGenerator ouptut directory. Go to netlist/ip and select the
component.xml file. Click Ok on the dialog box that shows the block description.

• The System Generator IP block will be imported into PathWave FPGA and will show up
under the Imported IP window.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Tutorials – 260

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 261

Appendix

• VHDL Support

• Verilog Support

• Infer Interface Reference

• Importing IP with Invalid IP-XACT

Infer Interface Reference

This section details the standard naming conventions used to infer interfaces from physical
ports in an HDL file. Physical ports may be named with an arbitrary common prefix, followed by
an underscore ("_"), followed by the standard port names for that interface. The physical ports
may also be named as the standard port names for that interface, with no prefix. PathWave
FPGA ignores the capitalization of the standard port names and prefix. The inferred interface
name will usually be the common prefix of the included physical ports. The inference rules
generally follow the conventions in the Xilinx document ug1118, for packaging custom IP in
Vivado. Clock, reset, AXIMM, AXILite, AXIS, and PathWave FPGA mem interfaces may be
inferred.

When inferring interfaces, physical ports with a fixed width of 1 are valid mappings to logical
ports of width 1. The following, for example is valid:

-- valid when inferring interfaces

port (

 rdata: in STD_LOGIC_VECTOR (0 downto 0);

);

Parameterized physical ports with width 1 are not valid mappings to logical ports of width 1; this
is because the width is not guaranteed to be 1. The following, for example, is not valid when
inferring interfaces:

-- not valid when inferring interfaces

generic (

 size : integer := 0

);

port (

 rdata: in STD_LOGIC_VECTOR (size downto 0);

);

The tables below contain the name of the interface port, whether it is required on master, and
whether it is required on a slave. To infer an interface, all of the required ports on either the
master or slave must be present.

CLOCK

Port Name Required on Master Required on Slave

clk required required

Clock interfaces may be inferred from port names of several patterns. In Xilinx UG1118
nomenclature, clocks may be matched with: [*_]clk, [*_]clkin, [*_]aclk, [*_]aclkin, or [*_]clock[_*]

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 262

NRST

PortName Required on Master Required on Slave

nrst required required

Reset interfaces may be inferred from port names of several patterns. In Xilinx UG1118
nomenclature, resets may be matched with: [*_]resetn, [*_]aresetn, [*_]rstn,
or [*_]nrst Patterns for positive active resets are not recognized.

AXIMM

Port Name Required on Master Required on Slave

araddr required required

arburst optional required

arcache optional optional

arid optional optional

arlen optional required

arlock optional optional

arprot required optional

arqos optional optional

arready required required

arregion optional optional

arsize optional required

aruser optional optional

arvalid required required

awaddr required required

awburst optional required

awcache optional optional

awid optional optional

awlen optional required

awlock optional optional

awprot required optional

awqos optional optional

awready required required

awregion optional optional

awsize optional required

awuser optional optional

awvalid required required

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 263

Port Name Required on Master Required on Slave

bid optional optional

bready required required

bresp optional optional

buser optional optional

bvalid required required

rdata required required

rid optional optional

rlast optional required

rready required required

rresp optional optional

ruser optional optional

rvalid required required

wdata required required

wlast optional optional

wready required required

wstrb optional required

wuser optional optional

wvalid required required

AXILite

Port Name Required on Master Required on Slave

araddr required required

arprot optional optional

arready required required

arvalid required required

awaddr required required

awprot optional optional

awready required required

awvalid required required

bready required required

bresp optional optional

bvalid required required

rdata required required

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 264

Port Name Required on Master Required on Slave

rready required required

rresp optional optional

rvalid required required

wdata required required

wready required required

wstrb optional required

wvalid required required

AXIS

Port Name Required on Master Required on Slave

tdata optional optional

tdest optional optional

tid optional optional

tkeep optional optional

tlast optional optional

tready optional optional

tstrb optional optional

tuser optional optional

tvalid required required

MEM

Port Name Required on Master Required on Slave

address required required

rddata required required

rden required required

wrdata required required

wren required required

Importing IP with Invalid IP-XACT

When importing IP, Pathwave FPGA can use IP-XACT files to determine the modules ports and
interfaces. However, some third party tools can generate invalid IP-XACT files. These are IP-
XACT files that violate the IP-XACT specification. An example of this is if the IP-XACT file uses
names that include invalid characters such as embedded spaces. Pathwave FPGA will
generate errors when trying to parse these IP-XACT files.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 265

To use one of these IP blocks, the best solution would be to obtain valid IP-XACT files. If this is
not possible, the alternative is to create valid IP-XACT using Pathwave FPGA's IP Packager
and replacing the invalid IP-XACT with the valid IP-XACT. Creating this IP-XACT will require
knowledge of the IP block's ports and interface structure. If the IP block is from Vivado's IP
Catalog, then the "Files" section of the IP-XACT should point to the *.xci file generated by
Vivado. If the IP block is HDL, then the "Files" section of the IP-XACT should include the HDL
as well as any submodules necessary to build it.

Note that Vivado generates the older, incompatible version of IP-XACT, and hence Vivado's IP-
XACT can not be edited in the Pathwave FPGA's IP Packager.

VHDL Support

This page describes the supported VHDL types and constructs when importing a VHDL file into
PathWave FPGA. These limitations apply to the following flows:

• IP Packager, when using the "Autofill from File" or "Load from File" action.

• Imported User IP

It is recommended that you create IP-XACT for any VHDL IP that does not meet the conditions
described in this section.

Generics

All generics are treated as user-configurable parameters by PathWave FPGA.

The supported datatypes for generics are:

• bit

• boolean

• natural - treated as integer, but with minimum boundary set to 0

• positive - treated as integer, but with minimum boundary set to 1

• integer

• string

The supported operators for the default values of integer type generics are:

• + : addition

• - : subtraction

• * : multiplication

• / : division

Ports

All ports are treated as std_logic or std_logic_vector type by PathWave FPGA. The supported
datatypes are:

• std_logic

• std_logic_vector

• bit - treated as std_logic

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 266

• bit_vector - treated as std_logic_vector, with the same range

• boolean - treated as std_logic

• natural - treated as std_logic_vector(30 downto 0)

• positive - treated as std_logic_vector(30 downto 0)

• integer - treated as std_logic_vector(31 downto 0)

• character - treated as std_logic_vector(7 downto 0)

Port ranges can use generics and the supported operators described above. See Known Issues
below for limitations on port boundaries.

Known Issues

• The value range of an Integer datatype of a port is ignored. Directly importing such a file in
PathWave FPGA will be completed successfully, however, the synthesis of any design that
contains that IP will fail. A workaround is to create an IP-XACT file for the VHDL file using
the IP Packager. Then, in the Physical Ports tab, modify the width to match the actual width
required.

• Some VHDL errors are ignored by PathWave FPGA when importing VHDL, but will fail
during synthesis. Vivado is the authority on whether a VHDL file is valid, not PathWave
FPGA.

• For vector ports with a 'downto' range, the right boundary must be literal '0'. For a 'to' range,
the left boundary must be literal '0'.

• Constants or datatypes imported from another package cannot be used in the entity
declaration.

• When Kactus2 is used for creating IP-XACT for a VHDL file, the VHDL entity declaration
must end with "end <entity_name>" and not "end entity."

• Arrays are not supported. They may or may not load into the schematic properly, but they
will not build properly.

Verilog Support

This page describes known issues when importing a Verilog file into PathWave FPGA. These
limitations apply to the following flows:

• IP Packager, when using the "Autofill from File" or "Load from File" action.

• Imported User IP

It is recommended that you create IP-XACT for any Verilog IP that does not meet the conditions
described in this section.

Parameters

All parameters are treated as user-configurable parameters by PathWave FPGA.

The parameter keyword is supported, but the localparam keyword is not. Local parameters are
permitted, but they cannot be used in a port definition.

Parameters are always treated as 32 bit integers. It is valid to declare an integer type, or give a
range declaration, but it will still be treated as a 32 bit signed integer. For example, in
"parameter [1:0] myParam = 5", the parameter has the value 5 instead of being

truncated to 1.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Appendix – 267

Expressions

Most Verilog expressions and functions are supported.

All Verilog math functions are supported except ln.

The following are operators which are not supported: bit select ([]), concatenation({ }), and
replication({{ }})

Reduction operators are supported, but they are always evaluated from a 64 bit signed integer.
For example, "&1'f1" returns 0 because "&'f0000000000000001" is 0.

Known Issues

Importing Verilog IP into PathWave FPGA has a number of known limitations. It is
recommended that you create IP-XACT for any Verilog IP that does not meet the following
conditions. Note that only module declarations, port and parameter definitions and 'endmodule'
are checked. A violation of the following conditions will produce a "Syntax Error" message
when importing Verilog IP:

• Module declarations must include at least one port definition.

• Ports and parameters cannot have the same name differing only by case (e.g. "myPort"

and "myport").

• Tasks and functions are not supported because their ports are misinterpreted as part of the
module's interface.

• Output registers cannot be assigned an initial value in the same statement where it is
defined, such as "output reg myReg = 0;"

• Definition of port attributes is not supported, such as "(* attribute definition *)

input portName,".

• Port ranges only support expressions with addition, multiplication, division, subtraction and
parenthesis. As a workaround, the expression can be moved to a parameter and the port
range defined using that parameter.

• Parameters and port definitions in a module declaration may not be conditionally included
using `ifdef / `endif statements and they cannot use any preprocessor variables.

• Expressions are limited to 32-bit signed integers. For example, "'hFFFF_FFFF" is treated

as -1 instead of 4294967295.

• Size constants in expressions are ignored. For example, "4'd65" is treated as 65 instead of

being truncated to 1.

• Arrays will fail to parse and will not load.

PathWave FPGA 2020 – PathWave FPGA Customer Documentation

Legal – 268

Legal

Portions of this software are licensed by third parties including open source terms and
conditions.

7-zip

PathWave FPGA 2020 uses parts of 7-Zip, which is licensed under the GNU LGPL license. For
more information or to receive a copy of the source code for 7-Zip, visit
http://support.keysight.com.

License for use and distribution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

7-Zip Copyright (C) 1999-2016 Igor Pavlov. 

Licenses for files are: 

1) 7z.dll: GNU LGPL + unRAR restriction 
2) All other files: GNU LGPL 

The GNU LGPL + unRAR restriction means that you must follow both GNU LGPL rules and 
unRAR restriction rules. 

Note:  
You can use 7-Zip on any computer, including a computer in a commercial organization. You 
don't need to register or pay for 7-Zip. 

GNU LGPL information 
-------------------- 

This library is free software; you can redistribute it and/or modify it under the terms of the GNU 
Lesser General Public License as published by the Free Software Foundation; either version 
2.1 of the License, or (at your option) any later version. 

This library is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
Lesser General Public License for more details. 

You can receive a copy of the GNU Lesser General Public License from  
http://www.gnu.org/ 

unRAR restriction 
----------------- 

The decompression engine for RAR archives was developed using source  
code of unRAR program. 
All copyrights to original unRAR code are owned by Alexander Roshal. 

The license for original unRAR code has the following restriction: 

The unRAR sources cannot be used to re-create the RAR compression algorithm,  
which is proprietary. Distribution of modified unRAR sources in separate form  
or as a part of other software is permitted, provided that it is clearly 
stated in the documentation and source comments that the code may 
not be used to develop a RAR (WinRAR) compatible archiver. 

-- 
Igor Pavlov 

http://support.keysight.com/
http://www.gnu.org/


PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 269 

bzip2 

PathWave FPGA 2020 uses bzip2 v1.0.6, used with permission. For more information, 
visit https://spdx.org/licenses/bzip2-1.0.6.html. 

Doxygen 

PathWave FPGA 2020 uses Doxygen 1.8.13. For more information or to receive a copy of the 
source code for Doxygen, visit http://support.keysight.com 

Doxygen license 

Copyright © 1997-2018 by Dimitri van Heesch. 

Permission to use, copy, modify, and distribute this software and its documentation under the 
terms of the GNU General Public License is hereby granted. No representations are made 
about the suitability of this software for any purpose. It is provided "as is" without express or 
implied warranty. See the GNU General Public License for more details. 

Documents produced by doxygen are derivative works derived from the input used in their 
production; they are not affected by this license. 

Inja 

PathWave FPGA 2020 uses Inja. For more information, visit https://github.com/pantor/inja 

MIT License 

Copyright (c) 2018 lbersch 

Permission is hereby granted, free of charge, to any person obtaining a copy 
of this software and associated documentation files (the "Software"), to deal 
in the Software without restriction, including without limitation the rights 
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
copies of the Software, and to permit persons to whom the Software is 
furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all 
copies or substantial portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT 
SHALL THE 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS IN THE 
SOFTWARE. 

--- 

Copyright (c) 2009-2018 FIRST 
All rights reserved. 

Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are met: 
* Redistributions of source code must retain the above copyright 

https://spdx.org/licenses/bzip2-1.0.6.html
http://support.keysight.com/
https://github.com/pantor/inja


PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 270 

notice, this list of conditions and the following disclaimer. 
* Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution. 
* Neither the name of the FIRST nor the 
names of its contributors may be used to endorse or promote products 
derived from this software without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY FIRST AND CONTRIBUTORS``AS IS'' AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY NONINFRINGEMENT AND FITNESS FOR A 
PARTICULAR 
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL FIRST OR CONTRIBUTORS BE 
LIABLE FOR 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; 
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 
AND 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 
THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

Lua 

PathWave FPGA 2020 uses parts of Lua 5.3.4. 

Copyright © 1994–2017 Lua.org, PUC-Rio. 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, 
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is 
furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 

Qt 

PathWave FPGA 2020 uses Qt 5.7.0 and 5.6.2, licensed under the terms of GNU LGPLv3. For 
more information or to receive a copy of the source code for Qt, 
visit http://support.keysight.com. 

The Qt Toolkit is Copyright (C) 2015 The Qt Company Ltd. 
Contact: http://www.qt.io/licensing/ 

http://lua.org/
http://support.keysight.com/
http://www.qt.io/licensing/


PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 271 

You may use, distribute and copy the Qt GUI Toolkit under the terms of GNU Lesser General 
Public License version 3, which is displayed below. This license makes reference to the version 
3 of the GNU General Public License, which you can find below. 

Xerces-C++ 

PathWave FPGA 2020 uses Xerces-C++ 3.2.0, licensed under the terms of Apache License 
v2.0, which is displayed below. For more information, visit https://xerces.apache.org/xerces-c/. 

========================================================================
= 
== NOTICE file corresponding to section 4(d) of the Apache License, == 
== Version 2.0, in this case for the Apache Xerces distribution. == 
========================================================================
= 

This product includes software developed by 
The Apache Software Foundation (http://www.apache.org/). 

Portions of this software were originally based on the following: 
- software copyright (c) 1999, IBM Corporation., http://www.ibm.com. 

zlib 

PathWave FPGA 2020 uses zlib 1.2.11, used by permission. For more information, 
visit https://www.zlib.net/zlib_license.html. 

Apache License v2.0 

Apache License 

Version 2.0, January 2004 
 
http://www.apache.org/licenses/ 

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 

1. Definitions. 

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined 
by Sections 1 through 9 of this document. 

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is 
granting the License. 

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are 
controlled by, or are under common control with that entity. For the purposes of this definition, 
"control" means (i) the power, direct or indirect, to cause the direction or management of such 
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the 
outstanding shares, or (iii) beneficial ownership of such entity. 

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this 
License. 

"Source" form shall mean the preferred form for making modifications, including but not limited 
to software source code, documentation source, and configuration files. 

"Object" form shall mean any form resulting from mechanical transformation or translation of a 
Source form, including but not limited to compiled object code, generated documentation, and 
conversions to other media types. 

https://xerces.apache.org/xerces-c/
http://www.apache.org/
http://www.ibm.com/
https://www.zlib.net/zlib_license.html
http://www.apache.org/licenses/


PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 272 

"Work" shall mean the work of authorship, whether in Source or Object form, made available 
under the License, as indicated by a copyright notice that is included in or attached to the work 
(an example is provided in the Appendix below). 

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or 
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other 
modifications represent, as a whole, an original work of authorship. For the purposes of this 
License, Derivative Works shall not include works that remain separable from, or merely link (or 
bind by name) to the interfaces of, the Work and Derivative Works thereof. 

"Contribution" shall mean any work of authorship, including the original version of the Work and 
any modifications or additions to that Work or Derivative Works thereof, that is intentionally 
submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or 
Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this 
definition, "submitted" means any form of electronic, verbal, or written communication sent to 
the Licensor or its representatives, including but not limited to communication on electronic 
mailing lists, source code control systems, and issue tracking systems that are managed by, or 
on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding 
communication that is conspicuously marked or otherwise designated in writing by the copyright 
owner as "Not a Contribution." 

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a 
Contribution has been received by Licensor and subsequently incorporated within the Work. 

2. Grant of Copyright License. Subject to the terms and conditions of this License, each 
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, 
irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, 
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or 
Object form. 

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor 
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable 
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, 
import, and otherwise transfer the Work, where such license applies only to those patent claims 
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by 
combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. 
If You institute patent litigation against any entity (including a cross-claim or counterclaim in a 
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct 
or contributory patent infringement, then any patent licenses granted to You under this License 
for that Work shall terminate as of the date such litigation is filed. 

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works 
thereof in any medium, with or without modifications, and in Source or Object form, provided 
that You meet the following conditions: 

1. You must give any other recipients of the Work or Derivative Works a copy of this License; 
and 

2. You must cause any modified files to carry prominent notices stating that You changed the 
files; and 

3. You must retain, in the Source form of any Derivative Works that You distribute, all 
copyright, patent, trademark, and attribution notices from the Source form of the Work, 
excluding those notices that do not pertain to any part of the Derivative Works; and 

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative 
Works that You distribute must include a readable copy of the attribution notices contained 
within such NOTICE file, excluding those notices that do not pertain to any part of the 
Derivative Works, in at least one of the following places: within a NOTICE text file 
distributed as part of the Derivative Works; within the Source form or documentation, if 
provided along with the Derivative Works; or, within a display generated by the Derivative 
Works, if and wherever such third-party notices normally appear. The contents of the 
NOTICE file are for informational purposes only and do not modify the License. You may 
add Your own attribution notices within Derivative Works that You distribute, alongside or as 
an addendum to the NOTICE text from the Work, provided that such additional attribution 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 273 

notices cannot be construed as modifying the License.  
 
You may add Your own copyright statement to Your modifications and may provide 
additional or different license terms and conditions for use, reproduction, or distribution of 
Your modifications, or for any such Derivative Works as a whole, provided Your use, 
reproduction, and distribution of the Work otherwise complies with the conditions stated in 
this License. 

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution 
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms 
and conditions of this License, without any additional terms or conditions. Notwithstanding the 
above, nothing herein shall supersede or modify the terms of any separate license agreement 
you may have executed with Licensor regarding such Contributions. 

6. Trademarks. This License does not grant permission to use the trade names, trademarks, 
service marks, or product names of the Licensor, except as required for reasonable and 
customary use in describing the origin of the Work and reproducing the content of the NOTICE 
file. 

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor 
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, 
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, 
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely 
responsible for determining the appropriateness of using or redistributing the Work and assume 
any risks associated with Your exercise of permissions under this License. 

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including 
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and 
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for 
damages, including any direct, indirect, special, incidental, or consequential damages of any 
character arising as a result of this License or out of the use or inability to use the Work 
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or 
malfunction, or any and all other commercial damages or losses), even if such Contributor has 
been advised of the possibility of such damages. 

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works 
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, 
indemnity, or other liability obligations and/or rights consistent with this License. However, in 
accepting such obligations, You may act only on Your own behalf and on Your sole 
responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, 
and hold each Contributor harmless for any liability incurred by, or claims asserted against, 
such Contributor by reason of your accepting any such warranty or additional liability. 

END OF TERMS AND CONDITIONS 

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR 
WORK 

To apply the Apache License to your work, attach the following boilerplate notice, with the fields 
enclosed by brackets "[]" replaced with your own identifying information. (Don't include the 
brackets!) The text should be enclosed in the appropriate comment syntax for the file format. 
We also recommend that a file or class name and description of purpose be included on the 
same "printed page" as the copyright notice for easier identification within third-party archives. 

Copyright [yyyy] [name of copyright owner] 

 

Licensed under the Apache License, Version 2.0 (the "License"); 

you may not use this file except in compliance with the License. 

You may obtain a copy of the License at 

 

    http://www.apache.org/licenses/LICENSE-2.0 

 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 274 

Unless required by applicable law or agreed to in writing, software 

distributed under the License is distributed on an "AS IS" BASIS, 

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

See the License for the specific language governing permissions and 

limitations under the License. 

GNU GPLv3 

GNU GENERAL PUBLIC LICENSE 

Version 3, 29 June 2007 

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/> 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 
changing it is not allowed. 

Preamble 

The GNU General Public License is a free, copyleft license for software and other kinds of 
works. 

The licenses for most software and other practical works are designed to take away your 
freedom to share and change the works. By contrast, the GNU General Public License is 
intended to guarantee your freedom to share and change all versions of a program--to make 
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU 
General Public License for most of our software; it applies also to any other work released this 
way by its authors. You can apply it to your programs, too. 

When we speak of free software, we are referring to freedom, not price. Our General Public 
Licenses are designed to make sure that you have the freedom to distribute copies of free 
software (and charge for them if you wish), that you receive source code or can get it if you 
want it, that you can change the software or use pieces of it in new free programs, and that you 
know you can do these things. 

To protect your rights, we need to prevent others from denying you these rights or asking you to 
surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the 
software, or if you modify it: responsibilities to respect the freedom of others. 

For example, if you distribute copies of such a program, whether gratis or for a fee, you must 
pass on to the recipients the same freedoms that you received. You must make sure that they, 
too, receive or can get the source code. And you must show them these terms so they know 
their rights. 

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the 
software, and (2) offer you this License giving you legal permission to copy, distribute and/or 
modify it. 

For the developers' and authors' protection, the GPL clearly explains that there is no warranty 
for this free software. For both users' and authors' sake, the GPL requires that modified 
versions be marked as changed, so that their problems will not be attributed erroneously to 
authors of previous versions. 

Some devices are designed to deny users access to install or run modified versions of the 
software inside them, although the manufacturer can do so. This is fundamentally incompatible 
with the aim of protecting users' freedom to change the software. The systematic pattern of 
such abuse occurs in the area of products for individuals to use, which is precisely where it is 
most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice 
for those products. If such problems arise substantially in other domains, we stand ready to 
extend this provision to those domains in future versions of the GPL, as needed to protect the 
freedom of users. 

https://fsf.org/


PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 275 

Finally, every program is threatened constantly by software patents. States should not allow 
patents to restrict development and use of software on general-purpose computers, but in those 
that do, we wish to avoid the special danger that patents applied to a free program could make 
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render 
the program non-free. 

The precise terms and conditions for copying, distribution and modification follow. 

TERMS AND CONDITIONS 

0. Definitions. 
“This License” refers to version 3 of the GNU General Public License. 

“Copyright” also means copyright-like laws that apply to other kinds of works, such as 
semiconductor masks. 

“The Program” refers to any copyrightable work licensed under this License. Each licensee is 
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations. 

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring 
copyright permission, other than the making of an exact copy. The resulting work is called a 
“modified version” of the earlier work or a work “based on” the earlier work. 

A “covered work” means either the unmodified Program or a work based on the Program. 

To “propagate” a work means to do anything with it that, without permission, would make you 
directly or secondarily liable for infringement under applicable copyright law, except executing it 
on a computer or modifying a private copy. Propagation includes copying, distribution (with or 
without modification), making available to the public, and in some countries other activities as 
well. 

To “convey” a work means any kind of propagation that enables other parties to make or 
receive copies. Mere interaction with a user through a computer network, with no transfer of a 
copy, is not conveying. 

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a 
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and 
(2) tells the user that there is no warranty for the work (except to the extent that warranties are 
provided), that licensees may convey the work under this License, and how to view a copy of 
this License. If the interface presents a list of user commands or options, such as a menu, a 
prominent item in the list meets this criterion. 

1. Source Code. 
The “source code” for a work means the preferred form of the work for making modifications to 
it. “Object code” means any non-source form of a work. 

A “Standard Interface” means an interface that either is an official standard defined by a 
recognized standards body, or, in the case of interfaces specified for a particular programming 
language, one that is widely used among developers working in that language. 

The “System Libraries” of an executable work include anything, other than the work as a whole, 
that (a) is included in the normal form of packaging a Major Component, but which is not part of 
that Major Component, and (b) serves only to enable use of the work with that Major 
Component, or to implement a Standard Interface for which an implementation is available to 
the public in source code form. A “Major Component”, in this context, means a major essential 
component (kernel, window system, and so on) of the specific operating system (if any) on 
which the executable work runs, or a compiler used to produce the work, or an object code 
interpreter used to run it. 

The “Corresponding Source” for a work in object code form means all the source code needed 
to generate, install, and (for an executable work) run the object code and to modify the work, 
including scripts to control those activities. However, it does not include the work's System 
Libraries, or general-purpose tools or generally available free programs which are used 
unmodified in performing those activities but which are not part of the work. For example, 
Corresponding Source includes interface definition files associated with source files for the 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 276 

work, and the source code for shared libraries and dynamically linked subprograms that the 
work is specifically designed to require, such as by intimate data communication or control flow 
between those subprograms and other parts of the work. 

The Corresponding Source need not include anything that users can regenerate automatically 
from other parts of the Corresponding Source. 

The Corresponding Source for a work in source code form is that same work. 

2. Basic Permissions. 
All rights granted under this License are granted for the term of copyright on the Program, and 
are irrevocable provided the stated conditions are met. This License explicitly affirms your 
unlimited permission to run the unmodified Program. The output from running a covered work is 
covered by this License only if the output, given its content, constitutes a covered work. This 
License acknowledges your rights of fair use or other equivalent, as provided by copyright law. 

You may make, run and propagate covered works that you do not convey, without conditions so 
long as your license otherwise remains in force. You may convey covered works to others for 
the sole purpose of having them make modifications exclusively for you, or provide you with 
facilities for running those works, provided that you comply with the terms of this License in 
conveying all material for which you do not control copyright. Those thus making or running the 
covered works for you must do so exclusively on your behalf, under your direction and control, 
on terms that prohibit them from making any copies of your copyrighted material outside their 
relationship with you. 

Conveying under any other circumstances is permitted solely under the conditions stated below. 
Sublicensing is not allowed; section 10 makes it unnecessary. 

3. Protecting Users' Legal Rights From Anti-Circumvention Law. 
No covered work shall be deemed part of an effective technological measure under any 
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 
December 1996, or similar laws prohibiting or restricting circumvention of such measures. 

When you convey a covered work, you waive any legal power to forbid circumvention of 
technological measures to the extent such circumvention is effected by exercising rights under 
this License with respect to the covered work, and you disclaim any intention to limit operation 
or modification of the work as a means of enforcing, against the work's users, your or third 
parties' legal rights to forbid circumvention of technological measures. 

4. Conveying Verbatim Copies. 
You may convey verbatim copies of the Program's source code as you receive it, in any 
medium, provided that you conspicuously and appropriately publish on each copy an 
appropriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices of the 
absence of any warranty; and give all recipients a copy of this License along with the Program. 

You may charge any price or no price for each copy that you convey, and you may offer support 
or warranty protection for a fee. 

5. Conveying Modified Source Versions. 
You may convey a work based on the Program, or the modifications to produce it from the 
Program, in the form of source code under the terms of section 4, provided that you also meet 
all of these conditions: 

• a) The work must carry prominent notices stating that you modified it, and giving a relevant 
date. 

• b) The work must carry prominent notices stating that it is released under this License and 
any conditions added under section 7. This requirement modifies the requirement in section 
4 to “keep intact all notices”. 

• c) You must license the entire work, as a whole, under this License to anyone who comes 
into possession of a copy. This License will therefore apply, along with any applicable 
section 7 additional terms, to the whole of the work, and all its parts, regardless of how they 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 277 

are packaged. This License gives no permission to license the work in any other way, but it 
does not invalidate such permission if you have separately received it. 

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; 
however, if the Program has interactive interfaces that do not display Appropriate Legal 
Notices, your work need not make them do so. 

A compilation of a covered work with other separate and independent works, which are not by 
their nature extensions of the covered work, and which are not combined with it such as to form 
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” 
if the compilation and its resulting copyright are not used to limit the access or legal rights of the 
compilation's users beyond what the individual works permit. Inclusion of a covered work in an 
aggregate does not cause this License to apply to the other parts of the aggregate. 

6. Conveying Non-Source Forms. 
You may convey a covered work in object code form under the terms of sections 4 and 5, 
provided that you also convey the machine-readable Corresponding Source under the terms of 
this License, in one of these ways: 

• a) Convey the object code in, or embodied in, a physical product (including a physical 
distribution medium), accompanied by the Corresponding Source fixed on a durable 
physical medium customarily used for software interchange. 

• b) Convey the object code in, or embodied in, a physical product (including a physical 
distribution medium), accompanied by a written offer, valid for at least three years and valid 
for as long as you offer spare parts or customer support for that product model, to give 
anyone who possesses the object code either (1) a copy of the Corresponding Source for 
all the software in the product that is covered by this License, on a durable physical medium 
customarily used for software interchange, for a price no more than your reasonable cost of 
physically performing this conveying of source, or (2) access to copy the Corresponding 
Source from a network server at no charge. 

• c) Convey individual copies of the object code with a copy of the written offer to provide the 
Corresponding Source. This alternative is allowed only occasionally and noncommercially, 
and only if you received the object code with such an offer, in accord with subsection 6b. 

• d) Convey the object code by offering access from a designated place (gratis or for a 
charge), and offer equivalent access to the Corresponding Source in the same way through 
the same place at no further charge. You need not require recipients to copy the 
Corresponding Source along with the object code. If the place to copy the object code is a 
network server, the Corresponding Source may be on a different server (operated by you or 
a third party) that supports equivalent copying facilities, provided you maintain clear 
directions next to the object code saying where to find the Corresponding Source. 
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure 
that it is available for as long as needed to satisfy these requirements. 

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers 
where the object code and Corresponding Source of the work are being offered to the 
general public at no charge under subsection 6d. 

A separable portion of the object code, whose source code is excluded from the Corresponding 
Source as a System Library, need not be included in conveying the object code work. 

A “User Product” is either (1) a “consumer product”, which means any tangible personal 
property which is normally used for personal, family, or household purposes, or (2) anything 
designed or sold for incorporation into a dwelling. In determining whether a product is a 
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular 
product received by a particular user, “normally used” refers to a typical or common use of that 
class of product, regardless of the status of the particular user or of the way in which the 
particular user actually uses, or expects or is expected to use, the product. A product is a 
consumer product regardless of whether the product has substantial commercial, industrial or 
non-consumer uses, unless such uses represent the only significant mode of use of the product. 

“Installation Information” for a User Product means any methods, procedures, authorization 
keys, or other information required to install and execute modified versions of a covered work in 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 278 

that User Product from a modified version of its Corresponding Source. The information must 
suffice to ensure that the continued functioning of the modified object code is in no case 
prevented or interfered with solely because modification has been made. 

If you convey an object code work under this section in, or with, or specifically for use in, a User 
Product, and the conveying occurs as part of a transaction in which the right of possession and 
use of the User Product is transferred to the recipient in perpetuity or for a fixed term 
(regardless of how the transaction is characterized), the Corresponding Source conveyed under 
this section must be accompanied by the Installation Information. But this requirement does not 
apply if neither you nor any third party retains the ability to install modified object code on the 
User Product (for example, the work has been installed in ROM). 

The requirement to provide Installation Information does not include a requirement to continue 
to provide support service, warranty, or updates for a work that has been modified or installed 
by the recipient, or for the User Product in which it has been modified or installed. Access to a 
network may be denied when the modification itself materially and adversely affects the 
operation of the network or violates the rules and protocols for communication across the 
network. 

Corresponding Source conveyed, and Installation Information provided, in accord with this 
section must be in a format that is publicly documented (and with an implementation available to 
the public in source code form), and must require no special password or key for unpacking, 
reading or copying. 

7. Additional Terms. 
“Additional permissions” are terms that supplement the terms of this License by making 
exceptions from one or more of its conditions. Additional permissions that are applicable to the 
entire Program shall be treated as though they were included in this License, to the extent that 
they are valid under applicable law. If additional permissions apply only to part of the Program, 
that part may be used separately under those permissions, but the entire Program remains 
governed by this License without regard to the additional permissions. 

When you convey a copy of a covered work, you may at your option remove any additional 
permissions from that copy, or from any part of it. (Additional permissions may be written to 
require their own removal in certain cases when you modify the work.) You may place additional 
permissions on material, added by you to a covered work, for which you have or can give 
appropriate copyright permission. 

Notwithstanding any other provision of this License, for material you add to a covered work, you 
may (if authorized by the copyright holders of that material) supplement the terms of this 
License with terms: 

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of 
this License; or 

• b) Requiring preservation of specified reasonable legal notices or author attributions in that 
material or in the Appropriate Legal Notices displayed by works containing it; or 

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified 
versions of such material be marked in reasonable ways as different from the original 
version; or 

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or 

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, 
or service marks; or 

• f) Requiring indemnification of licensors and authors of that material by anyone who 
conveys the material (or modified versions of it) with contractual assumptions of liability to 
the recipient, for any liability that these contractual assumptions directly impose on those 
licensors and authors. 

All other non-permissive additional terms are considered “further restrictions” within the 
meaning of section 10. If the Program as you received it, or any part of it, contains a notice 
stating that it is governed by this License along with a term that is a further restriction, you may 
remove that term. If a license document contains a further restriction but permits relicensing or 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 279 

conveying under this License, you may add to a covered work material governed by the terms 
of that license document, provided that the further restriction does not survive such relicensing 
or conveying. 

If you add terms to a covered work in accord with this section, you must place, in the relevant 
source files, a statement of the additional terms that apply to those files, or a notice indicating 
where to find the applicable terms. 

Additional terms, permissive or non-permissive, may be stated in the form of a separately 
written license, or stated as exceptions; the above requirements apply either way. 

8. Termination. 
You may not propagate or modify a covered work except as expressly provided under this 
License. Any attempt otherwise to propagate or modify it is void, and will automatically 
terminate your rights under this License (including any patent licenses granted under the third 
paragraph of section 11). 

However, if you cease all violation of this License, then your license from a particular copyright 
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally 
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the 
violation by some reasonable means prior to 60 days after the cessation. 

Moreover, your license from a particular copyright holder is reinstated permanently if the 
copyright holder notifies you of the violation by some reasonable means, this is the first time you 
have received notice of violation of this License (for any work) from that copyright holder, and 
you cure the violation prior to 30 days after your receipt of the notice. 

Termination of your rights under this section does not terminate the licenses of parties who 
have received copies or rights from you under this License. If your rights have been terminated 
and not permanently reinstated, you do not qualify to receive new licenses for the same material 
under section 10. 

9. Acceptance Not Required for Having Copies. 
You are not required to accept this License in order to receive or run a copy of the Program. 
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing 
other than this License grants you permission to propagate or modify any covered work. These 
actions infringe copyright if you do not accept this License. Therefore, by modifying or 
propagating a covered work, you indicate your acceptance of this License to do so. 

10. Automatic Licensing of Downstream Recipients. 
Each time you convey a covered work, the recipient automatically receives a license from the 
original licensors, to run, modify and propagate that work, subject to this License. You are not 
responsible for enforcing compliance by third parties with this License. 

An “entity transaction” is a transaction transferring control of an organization, or substantially all 
assets of one, or subdividing an organization, or merging organizations. If propagation of a 
covered work results from an entity transaction, each party to that transaction who receives a 
copy of the work also receives whatever licenses to the work the party's predecessor in interest 
had or could give under the previous paragraph, plus a right to possession of the Corresponding 
Source of the work from the predecessor in interest, if the predecessor has it or can get it with 
reasonable efforts. 

You may not impose any further restrictions on the exercise of the rights granted or affirmed 
under this License. For example, you may not impose a license fee, royalty, or other charge for 
exercise of rights granted under this License, and you may not initiate litigation (including a 
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, 
using, selling, offering for sale, or importing the Program or any portion of it. 

11. Patents. 
A “contributor” is a copyright holder who authorizes use under this License of the Program or a 
work on which the Program is based. The work thus licensed is called the contributor's 
“contributor version”. 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 280 

A contributor's “essential patent claims” are all patent claims owned or controlled by the 
contributor, whether already acquired or hereafter acquired, that would be infringed by some 
manner, permitted by this License, of making, using, or selling its contributor version, but do not 
include claims that would be infringed only as a consequence of further modification of the 
contributor version. For purposes of this definition, “control” includes the right to grant patent 
sublicenses in a manner consistent with the requirements of this License. 

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the 
contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, 
modify and propagate the contents of its contributor version. 

In the following three paragraphs, a “patent license” is any express agreement or commitment, 
however denominated, not to enforce a patent (such as an express permission to practice a 
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a 
party means to make such an agreement or commitment not to enforce a patent against the 
party. 

If you convey a covered work, knowingly relying on a patent license, and the Corresponding 
Source of the work is not available for anyone to copy, free of charge and under the terms of 
this License, through a publicly available network server or other readily accessible means, then 
you must either (1) cause the Corresponding Source to be so available, or (2) arrange to 
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a 
manner consistent with the requirements of this License, to extend the patent license to 
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the 
patent license, your conveying the covered work in a country, or your recipient's use of the 
covered work in a country, would infringe one or more identifiable patents in that country that 
you have reason to believe are valid. 

If, pursuant to or in connection with a single transaction or arrangement, you convey, or 
propagate by procuring conveyance of, a covered work, and grant a patent license to some of 
the parties receiving the covered work authorizing them to use, propagate, modify or convey a 
specific copy of the covered work, then the patent license you grant is automatically extended to 
all recipients of the covered work and works based on it. 

A patent license is “discriminatory” if it does not include within the scope of its coverage, 
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that 
are specifically granted under this License. You may not convey a covered work if you are a 
party to an arrangement with a third party that is in the business of distributing software, under 
which you make payment to the third party based on the extent of your activity of conveying the 
work, and under which the third party grants, to any of the parties who would receive the 
covered work from you, a discriminatory patent license (a) in connection with copies of the 
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in 
connection with specific products or compilations that contain the covered work, unless you 
entered into that arrangement, or that patent license was granted, prior to 28 March 2007. 

Nothing in this License shall be construed as excluding or limiting any implied license or other 
defenses to infringement that may otherwise be available to you under applicable patent law. 

12. No Surrender of Others' Freedom. 
If conditions are imposed on you (whether by court order, agreement or otherwise) that 
contradict the conditions of this License, they do not excuse you from the conditions of this 
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations 
under this License and any other pertinent obligations, then as a consequence you may not 
convey it at all. For example, if you agree to terms that obligate you to collect a royalty for 
further conveying from those to whom you convey the Program, the only way you could satisfy 
both those terms and this License would be to refrain entirely from conveying the Program. 

13. Use with the GNU Affero General Public License. 
Notwithstanding any other provision of this License, you have permission to link or combine any 
covered work with a work licensed under version 3 of the GNU Affero General Public License 
into a single combined work, and to convey the resulting work. The terms of this License will 
continue to apply to the part which is the covered work, but the special requirements of the GNU 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 281 

Affero General Public License, section 13, concerning interaction through a network will apply to 
the combination as such. 

14. Revised Versions of this License. 
The Free Software Foundation may publish revised and/or new versions of the GNU General 
Public License from time to time. Such new versions will be similar in spirit to the present 
version, but may differ in detail to address new problems or concerns. 

Each version is given a distinguishing version number. If the Program specifies that a certain 
numbered version of the GNU General Public License “or any later version” applies to it, you 
have the option of following the terms and conditions either of that numbered version or of any 
later version published by the Free Software Foundation. If the Program does not specify a 
version number of the GNU General Public License, you may choose any version ever 
published by the Free Software Foundation. 

If the Program specifies that a proxy can decide which future versions of the GNU General 
Public License can be used, that proxy's public statement of acceptance of a version 
permanently authorizes you to choose that version for the Program. 

Later license versions may give you additional or different permissions. However, no additional 
obligations are imposed on any author or copyright holder as a result of your choosing to follow 
a later version. 

15. Disclaimer of Warranty. 
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT 
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE 
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU 
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 

16. Limitation of Liability. 
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR 
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, 
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES 
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT 
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES 
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO 
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY 
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

17. Interpretation of Sections 15 and 16. 
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal 
effect according to their terms, reviewing courts shall apply local law that most closely 
approximates an absolute waiver of all civil liability in connection with the Program, unless a 
warranty or assumption of liability accompanies a copy of the Program in return for a fee. 

END OF TERMS AND CONDITIONS 

How to Apply These Terms to Your New Programs 

If you develop a new program, and you want it to be of the greatest possible use to the public, 
the best way to achieve this is to make it free software which everyone can redistribute and 
change under these terms. 

To do so, attach the following notices to the program. It is safest to attach them to the start of 
each source file to most effectively state the exclusion of warranty; and each file should have at 
least the “copyright” line and a pointer to where the full notice is found. 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 282 

    <one line to give the program's name and a brief idea of what it 

does.> 

    Copyright (C) <year>  <name of author> 

 

    This program is free software: you can redistribute it and/or 

modify 

    it under the terms of the GNU General Public License as published 

by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 

 

    This program is distributed in the hope that it will be useful, 

    but WITHOUT ANY WARRANTY; without even the implied warranty of 

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

    GNU General Public License for more details. 

 

    You should have received a copy of the GNU General Public License 

    along with this program.  If not, see 

<https://www.gnu.org/licenses/>. 

Also add information on how to contact you by electronic and paper mail. 

If the program does terminal interaction, make it output a short notice like this when it starts in 
an interactive mode: 

    <program>  Copyright (C) <year>  <name of author> 

    This program comes with ABSOLUTELY NO WARRANTY; for details type 

`show w'. 

    This is free software, and you are welcome to redistribute it 

    under certain conditions; type `show c' for details. 

The hypothetical commands `show w' and `show c' should show the appropriate parts of the 
General Public License. Of course, your program's commands might be different; for a GUI 
interface, you would use an “about box”. 

You should also get your employer (if you work as a programmer) or school, if any, to sign a 
“copyright disclaimer” for the program, if necessary. For more information on this, and how to 
apply and follow the GNU GPL, see <https://www.gnu.org/licenses/>. 

The GNU General Public License does not permit incorporating your program into proprietary 
programs. If your program is a subroutine library, you may consider it more useful to permit 
linking proprietary applications with the library. If this is what you want to do, use the GNU 
Lesser General Public License instead of this License. But first, please read 
<https://www.gnu.org/licenses/why-not-lgpl.html>. 

GNU LESSER GENERAL PUBLIC LICENSE 

Version 3, 29 June 2007 

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/> 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 
changing it is not allowed. 

This version of the GNU Lesser General Public License incorporates the terms and conditions 
of version 3 of the GNU General Public License, supplemented by the additional permissions 
listed below. 

0. Additional Definitions. 

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, 
and the “GNU GPL” refers to version 3 of the GNU General Public License. 

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html
https://fsf.org/


PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 283 

“The Library” refers to a covered work governed by this License, other than an Application or a 
Combined Work as defined below. 

An “Application” is any work that makes use of an interface provided by the Library, but which is 
not otherwise based on the Library. Defining a subclass of a class defined by the Library is 
deemed a mode of using an interface provided by the Library. 

A “Combined Work” is a work produced by combining or linking an Application with the Library. 
The particular version of the Library with which the Combined Work was made is also called the 
“Linked Version”. 

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source 
for the Combined Work, excluding any source code for portions of the Combined Work that, 
considered in isolation, are based on the Application, and not on the Linked Version. 

The “Corresponding Application Code” for a Combined Work means the object code and/or 
source code for the Application, including any data and utility programs needed for reproducing 
the Combined Work from the Application, but excluding the System Libraries of the Combined 
Work. 

1. Exception to Section 3 of the GNU GPL. 

You may convey a covered work under sections 3 and 4 of this License without being bound by 
section 3 of the GNU GPL. 

2. Conveying Modified Versions. 

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or 
data to be supplied by an Application that uses the facility (other than as an argument passed 
when the facility is invoked), then you may convey a copy of the modified version: 

• a) under this License, provided that you make a good faith effort to ensure that, in the event 
an Application does not supply the function or data, the facility still operates, and performs 
whatever part of its purpose remains meaningful, or 

• b) under the GNU GPL, with none of the additional permissions of this License applicable to 
that copy. 

3. Object Code Incorporating Material from Library Header Files. 

The object code form of an Application may incorporate material from a header file that is part of 
the Library. You may convey such object code under terms of your choice, provided that, if the 
incorporated material is not limited to numerical parameters, data structure layouts and 
accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do 
both of the following: 

• a) Give prominent notice with each copy of the object code that the Library is used in it and 
that the Library and its use are covered by this License. 

• b) Accompany the object code with a copy of the GNU GPL and this license document. 

4. Combined Works. 

You may convey a Combined Work under terms of your choice that, taken together, effectively 
do not restrict modification of the portions of the Library contained in the Combined Work and 
reverse engineering for debugging such modifications, if you also do each of the following: 

• a) Give prominent notice with each copy of the Combined Work that the Library is used in it 
and that the Library and its use are covered by this License. 

• b) Accompany the Combined Work with a copy of the GNU GPL and this license document. 



PathWave FPGA 2020 – PathWave FPGA Customer Documentation 

Legal – 284 

• c) For a Combined Work that displays copyright notices during execution, include the 
copyright notice for the Library among these notices, as well as a reference directing the 
user to the copies of the GNU GPL and this license document. 

• d) Do one of the following: 

o 0) Convey the Minimal Corresponding Source under the terms of this License, and 
the Corresponding Application Code in a form suitable for, and under terms that 
permit, the user to recombine or relink the Application with a modified version of the 
Linked Version to produce a modified Combined Work, in the manner specified by 
section 6 of the GNU GPL for conveying Corresponding Source. 

o 1) Use a suitable shared library mechanism for linking with the Library. A suitable 
mechanism is one that (a) uses at run time a copy of the Library already present on 
the user's computer system, and (b) will operate properly with a modified version of 
the Library that is interface-compatible with the Linked Version. 

• e) Provide Installation Information, but only if you would otherwise be required to provide 
such information under section 6 of the GNU GPL, and only to the extent that such 
information is necessary to install and execute a modified version of the Combined Work 
produced by recombining or relinking the Application with a modified version of the Linked 
Version. (If you use option 4d0, the Installation Information must accompany the Minimal 
Corresponding Source and Corresponding Application Code. If you use option 4d1, you 
must provide the Installation Information in the manner specified by section 6 of the GNU 
GPL for conveying Corresponding Source.) 

5. Combined Libraries. 

You may place library facilities that are a work based on the Library side by side in a single 
library together with other library facilities that are not Applications and are not covered by this 
License, and convey such a combined library under terms of your choice, if you do both of the 
following: 

• a) Accompany the combined library with a copy of the same work based on the Library, 
uncombined with any other library facilities, conveyed under the terms of this License. 

• b) Give prominent notice with the combined library that part of it is a work based on the 
Library, and explaining where to find the accompanying uncombined form of the same work. 

6. Revised Versions of the GNU Lesser General Public License. 

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser 
General Public License from time to time. Such new versions will be similar in spirit to the 
present version, but may differ in detail to address new problems or concerns. 

Each version is given a distinguishing version number. If the Library as you received it specifies 
that a certain numbered version of the GNU Lesser General Public License “or any later 
version” applies to it, you have the option of following the terms and conditions either of that 
published version or of any later version published by the Free Software Foundation. If the 
Library as you received it does not specify a version number of the GNU Lesser General Public 
License, you may choose any version of the GNU Lesser General Public License ever 
published by the Free Software Foundation. 

If the Library as you received it specifies that a proxy can decide whether future versions of the 
GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of 
any version is permanent authorization for you to choose that version for the Library. 

 

 


