

Measurement Expressions

1

Advanced Design System 2011

September 2011
Measurement Expressions

Measurement Expressions

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Measurement Expressions

3

POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Measurement Expressions

4

program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Measurement Expressions

5

with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Measurement Expressions

6

 Introduction to Measurement Expressions . 7
 Using Measurement Expressions in Advanced Design System . 16

 Circuit Budget Functions . 19
 Circuit Envelope Functions . 39
 Data Access Functions for Measurement Expressions . 89
 FrontPanel Eye Diagram Functions . 116
 FrontPanel S-Parameter TDR Functions . 141
 Harmonic Balance Functions For Measurement Expressions . 151
 Jitter Analysis Functions . 174
 Math Functions For Measurement Expressions . 191
 Signal Processing Functions . 251
 S-Parameter Analysis Functions for Measurement Expressions . 261
 Statistical Analysis Functions . 316
 Transient Analysis Functions . 336
 Utility Functions for Measurement Expressions . 349

 Duplicated Expression Names . 350

Measurement Expressions

7

 Introduction to Measurement
Expressions
This document describes the measurement expressions that are available for use with
several Agilent EEsof EDA products. For a complete list of available measurement
functions, refer to the Measurement Expression Functions (by category) (expmeas).

Measurement expressions are equations that are evaluated during simulation post
processing. They can be entered into the program using various methods, depending on
which product you are using. Unlike the expressions described in Simulator Expressions
(expsim), these expressions are evaluated after a simulation has completed, not before
the simulation is run. Measurement expressions can also be easily used in a Data Display.
For more information on entering equations in a data display, refer to Data Display (data).

Although there is some overlap among many of the more commonly used functions,
measurement expressions and simulator expressions are derived from separate sources,
evaluated at different times, and can have subtle differences in their usages. Thus, these
two types of expressions need to be considered separately. For an overview of how
measurement expressions are evaluated, refer to How Measurement Expressions are
Evaluated.

 How Measurement Expressions are Evaluated

Within this document you will find information on:

Measurement Expressions Syntax

Measurement Expressions

8

Manipulating Simulation Data with Expressions

Information on working with different types of data.
Information specific to entering simulator expressions in your particular product.

You will also find a complete list of functions that can be used as measurement
expressions individually, or combined together as a nested expression. These functions
have been separated into libraries and are listed in alphabetical order within each library.
The functions available include:

Circuit Budget Functions (expmeas)

Circuit Envelope Functions (expmeas)

Data Access Functions (expmeas)

Harmonic Balance Functions (expmeas)

Math Functions (expmeas)

Signal Processing Functions (expmeas)

S-Parameter Analysis Functions (expmeas)

Statistical Analysis Functions (expmeas)

Transient Analysis Functions (expmeas)

For a complete list of all functions provided in this document, refer to the Table of
Contents (expmeas).

 Measurement Expressions Syntax

Use the following guidelines when creating measurement expressions:

Measurement expressions are based on the mathematical syntax in Application
Extension Language (AEL).
Function names, variable names, and constant names are all case sensitive in
measurement expressions.
Use commas to separate arguments.
White space between arguments is acceptable.

 Case Sensitivity

All variable names, functions names, and equation names are case sensitive in
measurement expressions.

Measurement Expressions

9

 Variable Names

Variables produced by the simulator can be referenced in equations with various degrees
of rigidity. In general a variable is defined as:
DatasetName.AnalysisName.AnalysisType.CircuitPath.VariableName
By default, in the Data Display window, a variable is commonly referenced as:
DatasetName..VariableName where the double dot ".." indicates that the variable is
unique in this dataset. If a variable is referenced without a dataset name, then it is
assumed to be in the current default dataset.

When the results of several analyses are in a dataset, it becomes necessary to specify the
analysis name with the variable name. The double dot can always be used to pad a
variable name instead of specifying the complete name.

In most cases a dataset contains results from a single analysis only, and so the variable
name alone is sufficient. The most common use of the double dot is when it is desired to
tie a variable to a dataset other than the default dataset.

 Built-in Constants

Constant Description Value

PI (also
pi)

 3.1415926535898

e Euler's constant 2.718281822

ln10 natural log of 10 2.302585093

boltzmann Boltzmann's constant 1.380658e-23 J/K

qelectron electron charge 1.60217733e-19 C

planck Planck's constant 6.6260755e-34 J*s

c0 Speed of light in free
space

2.99792e+08 m/s

e0 Permittivity of free space 8.85419e-12 F/m

u0 Permeability of free space 12.5664e-07 H/m

i, j sqrt(-1) 1i

 Operator Precedence

Measurement expressions are evaluated from left to right, unless there are parentheses.
Operators are listed from higher to lower precedence. Operators on the same line have
the same precedence. For example, a+b*c means a+(b*c), because * has a higher
precedence than +. Similarly, a+b-c means (a+b)-c, because + and - have the same
precedence (and because + is left-associative).
The operators !, &&, and || work with the logical values. The operands are tested for the
values TRUE and FALSE, and the result of the operation is either TRUE or FALSE. In AEL a
logical test of a value is TRUE for non-zero numbers or strings with non-zero length, and
FALSE for 0.0 (real), 0 (integer), NULL or empty strings. Note that the right hand operand
of && is only evaluated if the left hand operand tests TRUE, and the right hand operand of
|| is only evaluated if the left hand operand tests FALSE.

Measurement Expressions

10

 Operator Precedence

Operator Name Example

() function call, matrix indexer foo(expr_list)

[] sweep indexer, sweep
generator

X[expr_list]

{ } matrix generator {expr_list}

** exponentiation expr**expr

! not !expr

* multiply expr * expr

+ add expr + expr

:: sequence operator exp::expr::expr

< less than expr < expr

==,EQUALS equal expr == expr

&& AND logical and expr && expr

|| OR logical or expr || expr

 Conditional Expressions

The if-then-else construct provides an easy way to apply a condition on a per-element
basis over a complete multidimensional variable. It has the following syntax:

A = if (condition) then true_expression else false_expression

Condition, true_expression, and false_expression are any valid expressions. The
dimensionality and number of points in these expressions follow the same matching
conditions required for the basic operators.
Multiple nested if-then-else constructs can also be used:

A = if (condition) then true_expression elseif (condition2) then true_expression else
false_expression

The type of the result depends on the type of the true and false expressions. The size of
the result depends on the size of the condition, the true expression, and the false
expression.

 Examples

The following information shows several examples of conditional expressions using various
operators.
boolV1=1
boolV2=1
eqOp=if (boolV1 == 1) then 1 else 0 eqOp returns 1
eqOp1=if (boolV1 EQUALS 1) then 1 else 0 eqOp1 returns 1
notEqOp=if (boolV1 != 1) then 1 else 0 notEqOp returns 1
notEqOp1=if (boolV1 NOTEQUALS 1) then 1 else 0 notEqOp1 returns 1
andOp=if (boolV1 == 1 AND boolV2 == 1) then 1 else 0 andOp returns 1
andOp1=if (boolV1 == 1 && boolV2 == 1) then 1 else 0 andOp returns 1

Measurement Expressions

11

orOp=if (boolV1 == 1 OR boolV2 == 1) then 1 else 0 orOp returns 1
orOp1=if (boolV1 == 1 || boolV2 == 1) then 1 else 0 orOp returns 1

 Manipulating Simulation Data with Expressions

Expressions defined in this documentation are designed to manipulate data produced by
the simulator. Expressions may reference any simulation output, and may be placed in a
Data Display window. For details on using and applying simulation data with measurement
expressions, refer to Applying Measurements in Preparing a Circuit for Simulation in ADS
(cktsim) of the Using Circuit Simulators (cktsim).

 Simulation Data

The expressions package has inherent support for two main simulation data features.
First, simulation data are normally multidimensional. Each sweep introduces a dimension.
All operators and relevant functions are designed to apply themselves automatically over a
multidimensional simulation output. Second, the independent (swept) variable is
associated with the data (for example, S-parameter data). This independent is propagated
through expressions, so that the results of equations are automatically plotted or listed
against the relevant swept variable.

 Measurements and Expressions

Measurements are evaluated after a simulation is run and the results are stored in the
dataset. The tag meqn_xxx (where xxx is a number) is placed at the beginning of all
measurement results, to distinguish those results from data produced directly by the
simulator.
Complex measurement equations are available for both circuit and signal processing
simulations. Underlying a measurement is the same generic equations handler that is
available in the Data Display window. Consequently, simulation results can be referenced
directly, and the expression syntax is identical. All operators and almost all functions are
available.

The expression used in an optimization goal or a yield specification is a measurement
expression. It may reference any other measurement on the schematic.

 Generating Data

The simulator produces scalars and matrices. When a sweep is being performed, the
sweep can produce scalars and matrices as a function of a set of swept variables. It is also
possible to generate data by using expressions. Two operators can be used to do this. The
first is the sweep generator "[]", and the second is the matrix generator "{ }". These
operators can be combined in various ways to produce swept scalars and matrices. The
data can then be used in the normal way in other expressions. The operators can also be
used to concatenate existing data, which can be very useful when combined with the

Measurement Expressions

12

indexing operators.

 Sweep Generator Examples

Several sweep generator examples are given below:

arr1=[0,1,2,3,4,5] creates an array of six values
arr2=[0::1::5] generates the above data using the sequence operator
arrCat=[arr1,arr2] concatenates the two arrays
sunArr1=[arr1[3::5],arr1[0::2]] re-arranges the existing data in a different order
z=0*[1::50]
vpadded=[arr1,z] creates a zero-padded array

 Matrix Generator Examples

Some examples of the matrix builds operator are given below:

v1={1,2,3,4,5} five-element vector
v2={1::5} five-element vector using the sequence operator
v3=1,0}, {0,1 2X2 identity matrix

 Simple Sweeps and Using "[]"

 Parameter sweeps are commonly used in simulations to generate, for example, a
frequency response or a set of DC IV characteristics. The simulator always attaches the
swept variable to the actual data (the data often being called the attached independent in
equations).
Often after performing a swept analysis we want to look at a single sweep point or a
group of points. The sweep indexer "[]" can be used to do this. The sweep indexer is zero
offset, meaning that the first sweep point is accessed as index 0. A sweep of n points can
be accessed by means of an index that runs from 0 to n-1. Also, the what() function can
be useful in indexing sweeps. Use what() to find out how many sweep points there are,
and then use an appropriate index. Indexing out of range yields an invalid result.

The sequence operator can also be used to index into a subsection of a sweep. Given a
parameter X, a subsection of X may be indexed as

a=X[start::increment::stop]

Because increment defaults to one,

a=X[start::stop]

is equivalent to

a=X[start::1::stop]

Measurement Expressions

13

The "::" operator alone is the wildcard operator, so that X and X[::] are equivalent.
Indexing can similarly be applied to multidimensional data. As will be shown later, an
index may be applied in each dimension.

 S-Parameters and Matrices

As described above, the sweep indexer "[]" is used to index into a sweep. However, the
simulator can produce a swept matrix, as when an S-parameter analysis is performed
over some frequency range. Matrix entries can be referenced as S11 through Snm. While
this is sufficient for most simple applications, it is also possible to index matrices by using
the matrix indexer "()". For example, S(1,1) is equivalent to S11. The matrix indexer is
offset by one meaning the first matrix entry is X(1,1). When it is used with swept data its
operation is transparent with respect to the sweep. Both indexers can be combined. For
example, it is possible to access S(1,1) at the first sweep point as S(1,1)[0]. As with the
sweep indexer "[]", the matrix indexer can be used with wild cards and sequences to
extract a submatrix from an original matrix.

 Matrices

S-parameters above are an example of a matrix produced by the simulator. Matrices are
more frequently found in signal processing applications. Mathematical operators
implement matrix operations. Element-by-element operations can be performed by using
the dot modified operators (.* and ./).

The matrix indexer conveniently operates over the complete sweep, just as the sweep
indexer operates on all matrices in a sweep. As with scalars, the mathematical operators
allow swept and non-swept quantities to be combined. For example, the first matrix in a
sweep may be subtracted from all matrices in that sweep as

Y = X-X[0]

 and Indexing

 Multidimensional Sweeps and Indexing

In the previous examples we looked at single-dimensional sweeps. Multidimensional
sweeps can be generated by the simulator by using multiple parameter sweeps.
Expressions are designed to operate on the multidimensional data. Functions and
operators behave in a meaningful way when a parameter sweep is added or taken away. A
common example is DC IV characteristics.

The sweep indexer accepts a list of indices. Up to N indices are used to index N-
dimensional data. If fewer than N lookup indices are used with the sweep indexer, then
wild cards are inserted automatically to the left. This is best explained by referring to the
above example files.

 User-Defined Functions

Measurement Expressions

14

By writing some Application Extension Language (AEL) code, you can define your own
custom functions. The following file is provided specifically for this purpose:

$HPEESOF_DIR/expressions/ael/user_defined_fun.ael

By reviewing the other _fun.ael files in this directory, you can see how to write your own
code. You can have as many functions as you like in this one file, and they will all be
compiled upon program start-up. If you have a large number of functions to define, you
may want to organize them into more than one file. In this case, include a line such as:

load("more_user_defined_fun.ael");

These load statements are added to the user_defined_fun.ael in the same directory in
order to have your functions all compile. To create your own custom user defined
functions:

Copy the $HPEESOF_DIR/expressions/ael/user_defined_fun.ael file to one of the1.
following directories.
$HOME/hpeesof/expressions/ael (User Config)
$HPEESOF_DIR/custom/expressions/ael (Site Config)
Create the appropriate subdirectories if they do not already exist. The User Config is
setup for a single user. The Site Config can be set up by a CAD Manager or librarian
to control a site configuration for a group of users.
Edit the new file and add any custom defined functions. If your custom functions2.
reside in another file, you can add a load statement to your new user_defined_fun.ael
file to include your functions in another file. For example:

load("my_custom_functions_file.ael");
Save your changes to the new file and restart so your changes take effect. The3.
search path looks in the following locations for user defined functions.
$HOME/hpeesof/expressions/ael (User Config)
$HPEESOF_DIR/custom/expressions/ael (Site Config)
$HPEESOF_DIR/expressions/ael (Default Config)

Note
If for some reason your functions are not recognized by the simulator, check to ensure that the
user_defined_fun.atf (compiled version of user_defined_fun.ael file) was generated after restarting
the software.

 Functions Reference Format

The information below illustrates how each measurement expression in the functions
reference is described.
<function name>
Presents a brief description of what the function does.
Syntax
Presents the general syntax of the function.
Arguments
Presents a table that includes each argument name, description, range, type, default
value, and whether or not the argument is optional.
Examples

Measurement Expressions

15

Presents one or more simple examples that use the function.
Defined in
Indicates whether the measurement function is defined in a script or is built in. All AEL
functions are built in.
See also
Presents links to related functions, if there are any.
Notes/Equations
Describes any additional notes and/or equations that may help with understanding the
function.

Measurement Expressions

16

 Using Measurement Expressions in
Advanced Design System
Measurement Expressions are equations that are used during simulation post processing.
These expressions are entered into the program using the MeasEqn (Measurement
Equation) component, available on the Simulation palettes in an Analog/RF Schematic
window (such as Simulation-AC or Simulation-Envelope), or from the Controllers palette in
a Signal Processing Schematic window.

Many of the more commonly used measurement items are built in, and are found in the
palettes of the appropriate simulator components. Common expressions are included as
measurements, which makes it easy for beginning users to utilize the system. To make
simulation and analyses convenient, all the measurement items, including the built-in
items, can be edited to meet specific requirements. Underlying each measurement is a
function; the functions themselves are available for modification. Moreover, it is also
possible for you to write entirely new measurements and functions.

The measurement items and their underlying expressions are based on Advanced Design
System's Application Extension Language (AEL). Consequently, they can serve a dual
purpose:

They can be used on the schematic page, in conjunction with simulations, to process
the results of a simulation (this is useful, for example, in defining and reaching
optimization goals). Unlike Simulator Expressions, the MeasEqn items are processed
after the simulation engine has finishing its task and just before the dataset is
written.
They can be used in the Data Display window to process the results of a dataset that
can be displayed graphically. Here the MeasEqn items are used to post-process the
data written after simulation is complete.
In either of the above cases, the same syntax is used. However, some measurements
can be used on the schematic page and not the Data Display window, and vice versa.
These distinctions will be noted where they occur.

Note
Not all Measurement Expression Functions have an explicit measurement component. These
functions can be used by means of the MeasEqn component.

 MeasEqn(Measurement Equations Component)

For a complete list of Measurement Functions, refer to the Measurement Expressions
(expmeas) in the Advanced Design System.

 Symbol

Measurement Expressions

17

 Parameters

 Instance Name

Displays name of the MeasEqn component in ADS. You can edit the instance name and
place more than one MeasEqn component on the schematic.

 Select Parameter

Add Add an equation to the Select Parameter field.

Cut Delete an equation from the Select Parameter field.

Paste Copy an equation that has been cut and place it in the Select Parameter field.

 Meas

Enter your equation in this field.

 Display parameter on schematic

Displays or hides a selected equation on the ADS schematic.

 Component Options

For information on this dialog box, refer to " Editing Component Parameters " in the ADS "
Schematic Capture and Layout (usrguide) " documentation.

 Notes/Equations

If you are using Advanced Design System, you can place a MeasEqn (Measurement
Equation) component in a schematic window. By placing a MeasEqn component on an ADS
schematic, you can write an equation that can be evaluated, following a simulation, and
displayed in a Data Display window.

Measurement Expressions

18

Note
The if-then-else construct can be used in a MeasEqn component on a schematic. It has the following
syntax: A = if (condition) then true_expression else false_expression

Measurement Expressions

19

 Circuit Budget Functions
This section describes the circuit budget functions in detail. The functions are listed in
alphabetical order.

bud freq() (expmeas)
bud gain() (expmeas)
bud gain comp() (expmeas)
bud gamma() (expmeas)
bud ip3 deg() (expmeas)
bud nf() (expmeas)
bud nf deg() (expmeas)
bud noise pwr() (expmeas)
bud pwr() (expmeas)
bud pwr inc() (expmeas)
bud pwr refl() (expmeas)
bud snr() (expmeas)
bud tn() (expmeas)
bud vswr() (expmeas)

 Budget Measurement Analysis

Budget analysis determines the signal and noise performance for elements in the top-level
design. Therefore, it is a key element of system analysis. Budget measurements show
performance at the input and output pins of the top-level system elements. This enables
the designer to adjust, for example, the gains at various components, to reduce non-
linearities. These measurements can also indicate the degree to which a given component
can degrade overall system performance.

Budget measurements are performed upon data generated during a special mode of
circuit simulation. AC and HB simulations are used in budget mode depending upon if
linear or nonlinear analysis is needed for a system design. The controllers for these
simulations have a flag called, OutputBudgetIV which must be set to " yes " for the
generation of budget data. Alternatively, the flag can be set by editing the AC or HB
simulation component and selecting the Perform Budget simulation button on the
Parameters tab.

Budget data contains signal voltages and currents, and noise voltages at every node in the
top level design. Budget measurements are functions that operate upon this data to
characterize system performance parameters including gain, power, and noise figure.
These functions use a constant reference impedance for all nodes for calculations. By
default this impedance is 50 Ohms. The available source power at the input network port
is assumed to equal the incident power at that port.

Budget measurements are available in the schematic and the data display windows. The
budget functions can be evaluated by placing the budget components from Simulation-AC
or Simulation-HB palettes on the schematic. The results of the budget measurements at
the terminal(s) are sorted in ascending order of the component names. The component
names are attached to the budget data as additional dependent variables. To use one of
these measurements in the data display window, first reference the appropriate data in
the default dataset, and then use the equation component to write the budget function.

Measurement Expressions

20

For more detailed information about Budget Measurement Analysis, see Budget Analysis
(cktsim) in Using Circuit Simulators (cktsim).

Note
The budget function can refer only to the default dataset, that is, the dataset selected in the data display
window.

 Frequency Plan

A frequency plan of the network is determined for budget mode AC and HB simulations.
This plan tracks the reference carrier frequency at each node in a network. When
performing HB budget, there may be more than one frequency plan in a given network.
This is the case when double side band mixers are used. Using this plan information,
budget measurements are performed upon selected reference frequencies, which can
differ at each node. When mixers are used in an AC simulation, be sure to set the Enable
AC frequency conversion option on the controller, to generate the correct plan.

The budget measurements can be performed on arbitrary networks with multiple signal
paths between the input and output ports. As a result, the measurements can be affected
by reflection and noise generated by components placed between the terminal of interest
and the output port on the same signal path or by components on different signal paths.

 Reflection and Backward-Traveling Wave Effects

The effects of reflections and backward-traveling signal and noise waves generated by
components along the signal path can be avoided by inserting a forward-traveling wave
sampler between the components. A forward-traveling wave sampler is an ideal,
frequency-independent directional coupler that allows sampling of forward-traveling
voltage and current waves
This sampler can be constructed using the equation-based linear three-port S-parameter
component. To do this, set the elements of the scattering matrix as follows: S12 = S21 =
S31 = 1 , and all other Sij = 0 . The temperature parameter is set to -273.16 deg C to
make the component noiseless. A noiseless shunt resistor is attached to port 3 to sample
the forward-traveling waves.
 bud_freq()

Returns the frequency plan of a network

 Syntax

y = bud_freq(freqIn, pinNumber, "simName") for AC analysis or y =
bud_freq(planNumber, pinNumber) for HB analysis

 Arguments

Measurement Expressions

21

Name Description Default Range Type Required

freqIn input source frequency None (0:∞) Real No

planNumber represents the chosen frequency plan and is required when
using the bud_freq() function with HB data.

None [1:∞) Integer Yes

pinNumber used to choose which pins of each network element are
referenced †

None [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the frequency plan displayed references pin 1 of each
element; otherwise, the frequency plan is displayed for all pins of each element. (Note
that this means it is not possible to select only pin 2 of each element, for example.) By
default, the frequency plan is displayed for pin 1 of each element.

 Examples

x = bud_freq()

Returns frequency plan for AC analysis.

x = bud_freq(1MHz)

Returns frequency plan for frequency swept AC analysis. By passing the value of

1MHz the plan is returned for the subset of the sweep, when the source value is

1MHz

x = bud_freq(2)

For HB, returns a selected frequency plan, 2, with respect to pin 1 of every

network element.

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 Notes/Equations

Used in AC and harmonic balance (HB) simulations.
This function is used in AC and HB simulations with the budget parameter turned on. For
AC, the options are to pass no parameters, or the input source frequency (freqIn), for the
first parameter if a frequency sweep is performed. freqIn can still be passed if no sweep is
performed, table data is just formatted differently. The first argument must be a real
number for AC data and the second argument is an integer, used optionally to choose pin
references.
When a frequency sweep is performed in conjunction with AC, the frequency plan of a
particular sweep point can be chosen.

For HB, this function determines the fundamental frequencies at the terminal(s) of each
component, thereby given the entire frequency plan for a network. Sometimes more than
one frequency plan exists in a network. For example when double sideband mixers are
used. This function gives the user the option of choosing the frequency plan of interest.
Note that a negative frequency at a terminal means that a spectral inversion has occurred
at the terminal. For example, in frequency-converting AC analysis, where vIn and vOut
are the voltages at the input and output ports, respectively, the relation may be either
vOut=alpha*vIn if no spectral inversion has occurred, or vOut=alpha*conj(vIn) if there
was an inversion. Inversions may or may not occur depending on which mixer sidebands

Measurement Expressions

22

one is looking at.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_gain()

Returns budget transducer-power gain

 Syntax

y = bud_gain(vIn, iIn, Zs, Plan, pinNumber, "simName") or y = bud_gain("SourceName",
SrcIndx, Zs, Plan, budgetPath)

 Arguments

Name Description Default Range Type Required

vIn voltage flowing into the input port None (-
∞:∞)

Complex Yes

iIn current flowing into the input port None (-
∞:∞)

Complex Yes

SourceName component name at the input port None None String Yes

SrcIndx † frequency index that corresponds to the source frequency
to determine which frequency to use from a multitone
source as the reference signal

1 [1:∞) Integer No

Zs input source port impedance 50.0 [0:∞) Real No

Plan † number of the selected frequency plan(needed only for
HB)

None None String No

pinNumber Used to choose which pins of each network element are
referenced ††

1 [1:∞) Integer No

budgetPath Selects the budget path, specified as an array eg.
["PORT1.t1","Tee1.t3","Term3.t1"]

None None String
Array

No

simName simulation instance name, such as "AC1" or "HB1", used
to qualify the data when multiple simulations are
performed.

None None String No

† Note that for AC simulation, both the SrcIndx and Plan arguments must not be
specified; these are for HB only.
†† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_gain(PORT1.t1.v, PORT1.t1.i)

or

Measurement Expressions

23

x = bud_gain("PORT1")

y= bud_gain(PORT1.t1.v, PORT1.t1.i, 75)

or

y= bud_gain("PORT1", , 75., 1)

z = bud_gain(PORT1.t1.v[3], PORT1.t1.i[3], , 1)

or

z= bud_gain("PORT1", 3, , 1)

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_gain_comp() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations
This is the power gain (in dB) from the input port to the terminal(s) of each component,
looking into that component. Power gain is defined as power delivered to the resistive load
minus the power available from the source. Note that the fundamental frequency at
different pins can be different. If vIn and iIn are passed directly, one may want to use the
index of the frequency sweep explicitly to reference the input source frequency.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements, the name of the budget path variable (as
defined in the Schematic window), must be entered as the budgetPath argument. Use the
alternate syntax for budget path measurements as shown below.
bud_gain("SourceName", SrcIndx, Zs, Plan, budgetPath)

 bud_gain_comp()

Returns budget gain compression at fundamental frequencies as a function of power.

 Syntax

y = bud_gain_comp(vIn, iIn, Zs, Plan, freqIndex, pinNumber, "simName") or y =
bud_gain_comp("SourceName", SrcIndx, Zs, Plan, freqIndex, pinNumber, "simName")

 Arguments

Measurement Expressions

24

Name Description Default Range Type Required

vIn voltage flowing into the input port None (-
∞:∞)

Complex Yes

iIn current flowing into the input port None (-
∞:∞)

Complex Yes

SourceName component name at the input port None None String Yes

SrcIndx † frequency index that corresponds to the source frequency
to determine which frequency to use from a multitone
source as the reference signal

1 [1:∞) Integer No

Zs input source port impedance 50.0 [0:∞) Real No

freqIndex † index of harmonic frequency None (-
∞:∞)

Integer No

Plan †† number of the selected frequency plan(needed only for
HB)

None None String No

pinNumber Used to choose which pins of each network element are
referenced † ††

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† Used if Plan is not selected.
†† Note that for AC simulation, both the SrcIndx and Plan arguments must not be
specified; these are for HB only.
† †† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_gain_comp(PORT1.t1.v[3], PORT1.t1.i[3], , 1)

x = bud_gain_comp("PORT1", 3, , 1)

returns the gain compression at the fundamental frequencies as a function of

power.

y= bud_gain_comp(PORT1.t1.v[3], PORT1.t1.i[3], , , 1)

y= bud_gain_comp("PORT1", 3, , , 1)

returns the gain compression at the second harmonic frequency as a function of

power.

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_gain() (expmeas)

 Notes/Equations

Used in Harmonic balance simulation with sweep
This is the gain compression (in dB) at the given input frequency from the input port to

Measurement Expressions

25

the terminal(s) of each component, looking into that component. Gain compression is
defined as the small signal linear gain minus the large signal gain. Note that the
fundamental frequency at each element pin can be different by referencing the frequency
plan. A power sweep of the input source must be used in conjunction with HB. The first
power sweep point is assumed to be in the linear region of operation.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

This function does not support the budget path feature.
 bud_gamma()

Returns the budget reflection coefficient.

 Syntax

y = bud_gamma(Zref, Plan, pinNumber, "simName")

 Arguments

Name Description Default Range Type Required

Zref input source port impedance 50.0 [0:∞) Real No

Plan † number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced ††

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† Note that for AC simulation, both the SrcIndx and Plan arguments must not be
specified; these are for HB only.
†† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_gamma()

returns reflection coefficient at all frequencies.

y = bud_gamma(75, 1)

returns reflection coefficient at reference frequencies in plan 1

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

Measurement Expressions

26

bud_vswr() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations
This is the complex reflection coefficient looking into the terminal(s) of each component.
Note that the fundamental frequency at different pins can in general be different, and
therefore values are given for all frequencies unless a Plan is referenced.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_ip3_deg()

Returns the budget third-order intercept point degradation

 Syntax

y = bud_ip3_deg(vOut, LinearizedElement, fundFreq, imFreq, zRef)

 Arguments

Name Description Default Range Type Required

vOut signal voltage at the output None (-
∞:∞)

Real,
Complex

Yes

LinearizedElement variable containing the names of the linearized
components

None None String Yes

fundFreq harmonic frequency indices for the fundamental
frequency

None (-
∞:∞)

Integer Yes

imFreq harmonic frequency indices for the
intermodulation frequency

None (-
∞:∞)

Integer Yes

Zref input source port impedance 50.0 [0:∞) Real No

 Examples

y = bud_ip3_deg(vOut, LinearizedElement, {1, 0}, {2, -1})

returns the budget third-order intercept point degradation

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

Measurement Expressions

27

 See Also

ip3_out() (expmeas), ipn() (expmeas)

 Notes/Equations

Used in Harmonic balance simulation with the BudLinearization Controller.
This measurement returns the budget third-order intercept point degradation from the
input port to any given output port. It does this by setting to linear each component in the
top-level design, one at a time.

For the components that are linear to begin with, this measurement will not yield any
useful information. For the nonlinear components, however, this measurement will
indicate how the nonlinearity of a certain component degrades the overall system IP3. To
perform this measurement, the BudLinearization Controller needs to be placed in the
schematic window. If no component is specified in this controller, all components on the
top level of the design are linearized one at a time, and the budget IP3 degradation is
computed.

 Budget Path Measurements

This function does not support the budget path feature.
 bud_nf()

Returns the budget noise figure

 Syntax

y = bud_nf(vIn, iIn, noisevIn) or y=bud_nf("SourceName",Zs,BW,pinNumber,"simName")

 Arguments

Name Description Default Range Type Required

vIn voltage flowing into the input port None (-
∞:∞)

Complex Yes

iIn current flowing into the input port None (-
∞:∞)

Complex Yes

noisevIn noise input at the input port None (-
∞:∞)

Complex Yes

SourceName component name at the input port None None String Yes

Zs input source port impedance 50.0 [0:∞) Real No

BW † bandwidth 1 [1:∞) Real No

pinNumber Used to choose which pins of each network element are
referenced ††

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† BW must be set as the value of Bandwidth used on the noise page of the AC controller
†† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber

Measurement Expressions

28

is set to 1.

 Examples

x = bud_nf(PORT1.t1.v, PORT1.t1.i, PORT1.t1.v.noise)

x = bud_nf("PORT1")

In an AC analysis, bud_nf() can be used as below:

BudNF1=bud_nf("PORT1")

BudNF2=bud_nf("PORT1",50.0,1 Hz,2,"AC1")

BudNF3=bud_nf("PORT1",,,,,budget_path)

BudNF4=bud_nf(,,,,,budget_path)

where budget_path could be defined as:

budget_path =

["PORT1.t1","b2_AMP1.t2","b3_MIX1.t2","b4_AMP2.t2","b5_BPF2.t2","b6.t1"]

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_nf_deg() (expmeas), bud_tn() (expmeas)

 Notes/Equations

Used in AC simulation
This is the noise figure (in dB) from the input port to the terminal(s) of each component,
looking into that component. The noise analysis control parameters in the AC Simulation
component must be selected: "Calculate Noise" and "Include port noise". For the source,
the parameter "Noise" should be set to yes. The noise figure is always calculated per IEEE
standard definition with the input termination at 290 K.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_nf_deg()

Returns budget noise figure degradation

 Syntax

Measurement Expressions

29

y = bud_nf_deg(vIn, iIn, vOut, iOut, vOut.NC.vnc, vOut.NC.name, Zs, BW)
y = bud_nf_deg("PORT1", "Term1", "vOut")

 Arguments

Name Description Default Range Type Required

vIn voltage flowing into the input port None (-
∞:∞)

Complex Yes

iIn current flowing into the input port None (-
∞:∞)

Complex Yes

vOut voltage flowing into the output port None (-
∞:∞)

Complex Yes

iOut current flowing into the output port None (-
∞:∞)

Complex Yes

vOut.NC.vnc noise contributions at the output port None None String Yes

vOut.NC.name noise contributions component names at the output port None None String Yes

Zs input source port impedance 50.0 [0:∞) Real No

BW † bandwidth 1 [1:∞) Real No

† BW must be set as the value of Bandwidth used on the noise page of the AC controller

 Examples

x = bud_nf_deg(PORT1.t1.v, PORT1.t1.i, Term1.t1.v, Term1.t1.i, vOut.NC.vnc,

vOut.NC.name)

x = bud_nf_deg("PORT1", "Term1", "vOut")

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_nf() (expmeas), bud_tn() (expmeas)

 Notes/Equations

Used in AC simulation
The improvement of system noise figure is given when each element is made noiseless.
This is the noise figure (in dB) from the source port to a specified output port, obtained
while setting each component noiseless, one at a time. The noise analysis and noise
contribution control parameters in the AC Simulation component must be selected. For
noise contribution, the output network node must be labeled and referenced on the noise
page in the AC Controller. Noise contributors mode should be set to "Sort by Name." The
option "Include port noise "on the AC Controller should be selected. For the source, the
parameter "Noise" should be set to yes. For this particular budget measurement the AC
controller parameter "OutputBudgetIV" can be set to no. The noise figure is always
calculated per IEEE standard definition with the input termination at 290 K.

Measurement Expressions

30

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

This function does not support the budget path feature.
 bud_noise_pwr()

Returns the budget noise power

 Syntax

y = bud_noise_pwr(Zref, Plan, pinNumber, "simName")

 Arguments

Name Description Default Range Type Required

Zref input source port impedance 50.0 [0:∞) Real No

Plan number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced †

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_noise_pwr() returns the noise power at all frequencies

y = bud_noise_pwr(75, 1) returns the noise power at reference frequencies in

plan 1

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_pwr() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations
This is the noise power (in dBm) at the terminal(s) of each component, looking into the
component. If Zref is not specified, the impedance that relates the signal voltage and

Measurement Expressions

31

current is used to calculate the noise power. Note that the fundamental frequency at
different pins can be different, and therefore values are given for all frequencies unless a
Plan is referenced.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

This function does not have the bandwidth parameter, so the results rely entirely on the
setting of the bandwidth in the Noise tab of the simulation controller.
For AC noise and budget calculations, the bandwidth parameter flatly scales the noise
voltages, and consequently noise powers, SNR, etc., regardless of the frequency response.
If you make a frequency sweep then the narrow band noise voltages properly follow the
frequency characteristic of the circuit and are presented as a function of the swept
frequency values. However, changing the bandwidth in the simulator controller would
again just flatly rescale all the values, regardless of whether the frequency response
remains flat or changes drastically over the (local) bandwidth, or whether the adjacent
bands overlap or not.
The only true integration over a bandwidth is done for the phase noise (as one of the
options in the NoiseCon controller).

A work-around solution is to do an appropriately wide frequency sweep setting the
bandwidth value in the AC controller to that of the frequency step. Then adding all the
powers (need to be first converted from dBm to watts) would do the integration.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_pwr()

Returns the budget signal power in dBm

 Syntax

y = bud_pwr(Plan, pinNumber, "simName")

 Arguments

Name Description Default Range Type Required

Plan number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced †

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

Measurement Expressions

32

x = bud_pwr() returns the signal power at all frequencies when used in AC or HB

simulations

y = bud_pwr(50, 1) returns the signal power at reference frequencies in plan 1

when used for HB simulations

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_noise_pwr() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations.
This is the signal power (in dBm) at the terminal(s) of each component, looking into the
component. Note that the fundamental frequency at different pins can be different, and
therefore values are given for all frequencies unless a Plan is referenced.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_pwr_inc()

Returns the budget incident power.

 Syntax

y = bud_pwr_inc(Zref, Plan, pinNumber, "simName")

 Arguments

Measurement Expressions

33

Name Description Default Range Type Required

Zref input source port impedance 50.0 [0:∞) Real No

Plan number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced †

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_pwr_inc() returns incident power at all frequencies

y = bud_pwr_inc(75, 1) returns incident power at reference frequencies in plan

1

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_pwr_refl() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations
This is the incident power (in dBm) at the terminal(s) of each component, looking into the
component. Note that the fundamental frequency at different pins can be different, and
therefore values are given for all frequencies unless a Plan is referenced.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_pwr_refl()

Returns the budget reflected power

 Syntax

Measurement Expressions

34

 Syntax

y = bud_pwr_refl(Zref, Plan, pinNumber, "simName")

 Arguments

Name Description Default Range Type Required

Zref input source port impedance 50.0 [0:∞) Real No

Plan number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced †

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_pwr_refl() returns reflected power at all frequencies

y = bud_pwr_refl(75, 1) returns reflected power at reference frequencies in

plan 1

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_pwr_inc() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations
This is the reflected power (in dBm) at the terminal(s) of each component, looking into
the component. Note that the fundamental frequency at different pins can be different,
and therefore values are given for all frequencies unless a Plan is referenced.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined

Measurement Expressions

35

in the Schematic window, needs to be entered as the pinNumber argument.
 bud_snr()

Returns the budget signal-to-noise-power ratio

 Syntax

y = bud_snr(Plan, pinNumber, "simName")

 Arguments

Name Description Default Range Type Required

Plan number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced †

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_snr() returns the SNR at all frequencies

y = bud_snr(1) returns the SNR at reference frequencies in plan 1

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 Notes/Equations

Used in AC and harmonic balance simulations
This is the SNR (in dB) at the terminal(s) of each component, looking into that
component. Note that the fundamental frequency at different pins can in general be
different, and therefore values are given for all frequencies unless a Plan is referenced.
The noise analysis control parameter in the AC and Harmonic Balance Simulation
components must be selected. For the AC Simulation component select: "Calculate Noise"
and "Include port noise." For the source, the parameter "Noise" should be set to yes. In
Harmonic Balance select the "Nonlinear noise" option.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To

Measurement Expressions

36

facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_tn()

Returns the budget equivalent output-noise temperature

 Syntax

y = bud_tn(vIn, iIn, noisevIn, Zs, BW, pinNumber, "simName") or y =
bud_tn("SourceName")

 Arguments

Name Description Default Range Type Required

vIn voltage flowing into the input port None (-
∞:∞)

Complex Yes

iIn current flowing into the input port None (-
∞:∞)

Complex Yes

noisevIn noise input at the input port None (-
∞:∞)

Complex Yes

Zs input source port impedance 50.0 [0:∞) Real No

BW † bandwidth 1 [1:∞) Real No

pinNumber Used to choose which pins of each network element are
referenced ††

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

SourceName component name at the input port None None String Yes

† BW must be set as the value of Bandwidth used on the noise page of the AC controller
†† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_tn(PORT1.t1.v, PORT1.t1.i, PORT1.t1.v.noise)

x = bud_tn("PORT1")

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

bud_nf() (expmeas), bud_nf_deg() (expmeas)

 Notes/Equations

Used in AC simulation

Measurement Expressions

37

This is an equivalent output-noise temperature (in Kelvin) from the input port to the
terminal(s) of each component, looking into that component. The noise analysis and noise
contribution control parameters in the AC Simulation component must be selected:
"Calculate Noise" and "Include port noise." For the source, the parameter "Noise" should
be set to yes. The output-noise temperature is always calculated per IEEE standard
definition with the input termination at 290 K.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.
 bud_vswr()

Returns the budget voltage-standing-wave ratio

 Syntax

y = bud_vswr(Zref, Plan, pinNumber, "simName")

 Arguments

Name Description Default Range Type Required

Zref input source port impedance 50.0 [0:∞) Real No

Plan number of the selected frequency plan(needed only for HB) None None String No

pinNumber Used to choose which pins of each network element are
referenced †

1 [1:∞) Integer No

simName simulation instance name, such as "AC1" or "HB1", used to
qualify the data when multiple simulations are performed.

None None String No

† If 1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the pinNumber
is set to 1.

 Examples

x = bud_vswr() returns the vswr at all frequencies

y = bud_vswr(75, 1) returns the vswr at reference frequencies in plan 1

 Defined in

$HPEESOF_DIR/expressions/ael/budget_fun.ael

 See Also

Measurement Expressions

38

bud_gamma() (expmeas)

 Notes/Equations

Used in AC and harmonic balance simulations
This is the VSWR looking into the terminal(s) of each component. Note that the
fundamental frequency at different pins can be different, and therefore values are given
for all frequencies unless a Plan is referenced.

Note
Remember that the budget function can refer only to the default dataset, that is, the dataset selected in
the data display window.

 Budget Path Measurements

Instead of all components in alphabetical order, this function can report its values just for
the components selected in a budget path, and following the sequence in that path. To
facilitate the budget path measurements the name of the budget path variable, as defined
in the Schematic window, needs to be entered as the pinNumber argument.

Measurement Expressions

39

 Circuit Envelope Functions
This section describes the circuit envelope functions in detail. The functions are listed in
alphabetical order.

ACPR ChPwr or EVM from 1tone swp() (expmeas)
acpr vi() (expmeas)
acpr vr() (expmeas)
channel power vi() (expmeas)
channel power vr() (expmeas)
const evm() (expmeas)
cross hist() (expmeas)
delay path() (expmeas)
evm wlan dsss cck pbcc() (expmeas)
evm wlan ofdm() (expmeas)
fs() (expmeas)
Mod Data from 1tone swpUNI() (expmeas)
peak pwr() (expmeas)
peak to avg pwr() (expmeas)
power ccdf() (expmeas)
power ccdf ref() (expmeas)
pwr vs t() (expmeas)
relative noise bw() (expmeas)
sample delay pi4dqpsk() (expmeas)
sample delay qpsk() (expmeas)
spectrum analyzer() (expmeas)
total pwr() (expmeas)
trajectory() (expmeas)

 Working with Envelope Data

Circuit Envelope Analysis produces complex frequency spectra as a function of time. A
single envelope analysis can produce 2-dimensional data where the outermost
independent variable is time and the innermost is frequency or harmonic number.
Indexing can be used to look at a harmonic against time, or a spectrum at a particular
time index.
 ACPR_ChPwr_or_EVM_from_1tone_swp()

Returns an amplifier's adjacent or alternate channel power ratios, or main channel power,
or error vector magnitude

 Syntax

ACPR_ChPwr_or_EVM_from_1tone_swp(returnVal, algorithm, allowextrap, charVoltage,
inputSig, sourceZ, loadZ, mainCh, lowerAdjCh, upperAdjCh, winType, winConst)

 Arguments

Measurement Expressions

40

Name Description Default Range Type Required

returnVal Specifies what the function is to return. Use
"ACPR" for Adjacent (or Alternate) Channel
Power Ratio (dBc), "MAINCHP" for Main
Channel Power (dBm), or "EVM" for Error
Vector Magnitude (%).

None "ACPR",
"MAINCHP", or
"EVM"

String Yes

algorithm Specifies the algorithm to be used to model
the vout-versus-vin data from the HB sweep.
Use "CF" for Curve Fit or "LI" for Linear
Interpolation.

None "LI" or "CF" String Yes

allowextrap Allow or disallow extrapolation when applying
the scaled, modulated input signal to the
vout-versus-vin model.

1 0, "No", "NO",
"no", 1, "Yes",
"YES", "yes"

String or
Integer

No

charVoltage This is the characterization voltage (the
fundamental output voltage from the
harmonic balance sweep.) Example:
Vload_fund, where Vload_fund=Vload[1].

None (-∞:∞) Complex Yes

inputSig This is the input modulated signal (the
envelope.) This signal should be a function of
time, only.

None (-∞:∞) Complex Yes

sourceZ This is the source impedance. This can be a
swept parameter.

None (0:∞) Complex Yes

loadZ This is the load impedance. This can be a
swept parameter.

None (0:∞) Complex Yes

mainCh These are the main channel frequency limits,
as an offset from the carrier frequency.
Example: {(-3.84 MHz/2),(3.84 MHz/2)}

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

lowerAdjCh These are the lower adjacent (or alternate)
channel frequency limits as an offset from the
carrier frequency. Example: MainLimits - (5
MHz)

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

upperAdjCh These are the upper adjacent (or alternate)
channel frequency limits as an offset from the
carrier frequency. Example: MainLimits + (5
MHz)

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

winType window type "Kaiser" † string No

winConst window constant that affects the shape of the
applied window.

depends
on
winType
used

[0:∞) Real No

† winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

Vload_fundHB=Vload[1]

Vin_fund=_3GPPFDD_UE_Tx_12_2_SigGen..Vsource

Zsource=50

Zload=50

MainLimits={-3.84 MHz/2,3.84 MHz/2}
LoChLimits=MainLimits-(5 MHz)

UpChLimits=MainLimits+(5 MHz)

LoChLimitsAlt=MainLimits-(10 MHz)

UpChLimitsAlt=MainLimits+(10 MHz)

ACPR_dBc=ACPR_ChPwr_or_EVM_from_1tone_swp("ACPR", "LI", "Yes", Vload_fundHB,

Measurement Expressions

41

Vin_fund, Zsource, Zload, MainLimits, LoChLimits, UpChLimits, "Kaiser",)

AltCPR_dBc=ACPR_ChPwr_or_EVM_from_1tone_swp("ACPR", "LI", "Yes", Vload_fundHB,

Vin_fund, Zsource, Zload, MainLimits, LoChLimitsAlt, UpChLimitsAlt, "Kaiser",)

Pout_dBm=ACPR_ChPwr_or_EVM_from_1tone_swp("MAINCHP", "LI", "Yes", Vload_fundHB,

Vin_fund, Zsource, Zload, MainLimits, LoChLimits, UpChLimits, "Kaiser",)

ACPR_vs_Pout=vs(ACPR_dBc,Pout_dBm)

AltCPR_vs_Pout=vs(AltCPR_dBc,Pout_dBm)

EVM_percent=ACPR_ChPwr_or_EVM_from_1tone_swp("EVM", "LI", "Yes", Vload_fundHB,

Vin_fund, Zsource, Zload, MainLimits, LoChLimits, UpChLimits, "Kaiser",)

EVM_vs_Pout=vs(EVM_percent,Pout_dBm)

 See Also

Mod_Data_from_1toneSwpUNI() (expmeas)

 Notes/Equations

This function returns the adjacent or alternate channel power ratio (in dBc), main channel
power (in dBm), or EVM in percent.
It can be used in a measurement expression in a schematic or in the data display. While it
is slower to use the ACPR_ChPwr_or_EVM_from_1tone_swp() function on the schematic
than the Mod_Data_from_1tone_swpUNI() in the data display, the advantage is that the
results are written into the dataset, and data displays that show these results open
instantly.

However, when using ACPR_ChPwr_or_EVM_from_1tone_swp(), you have to call it once
to get the adjacent channel power ratios, once again to get the alternate channel power
ratios, once again to get the main channel power, and once again to get the EVM. The big
disadvantage of using the Mod_Data_from_1tone_swpUNI() is that this function will get
executed each time you open a data display that contains it.

For EVM, this single-tone method is not specification-compliant. It just measures the
“raw” EVM, computed at each time point. The EVM is computed after correcting for the
average phase difference and RMS amplitude difference between the output and input
modulated signals. If the modulated signal at the output of the amplifier has only a
constant phase shift and a constant gain (meaning that neither vary with the amplitude of
the input modulated signal), then the EVM will be zero. With this method, the EVM is
computed at each time point, not at just the symbol times. There is no demodulation or
decoding of the signal, so you can’t calculate the EVM of each sub-carrier, say for an LTE
signal.

For ACPR, this single-tone method does not include any receive-side filtering. It just
generates the spectrum at the output of the amplifier, integrates the power in the main,
adjacent, and alternate channels, then computes the ratios. The single-tone method of
computing EVM (and ACPR) will tend to become less accurate as the bandwidth of the

Measurement Expressions

42

signal gets larger. This is because this method assumes the response of the amplifier is
constant across the modulation bandwidth (we’re modeling the nonlinearity by injecting a
single tone at the carrier frequency, after all.)
 acpr_vi()

Computes the adjacent-channel power ratio following a Circuit Envelope simulation

 Syntax

ACPRvals = acpr_vi(voltage, current, mainCh, lowerAdjCh, upperAdjCh, winType,
winConst)

 Arguments

Name Description Default Range Type Required

voltage single complex voltage spectral component (for example,
the fundamental) across a load versus time

None (-
∞:∞)

Complex Yes

current single complex current spectral component into the same
load versus time

None (-
∞:∞)

Complex Yes

mainCh two-dimensional vector defining the main channel
frequency limits (as an offset from the single voltage and
current spectral component)

None (-
∞:∞)

Real Yes

lowerAdjCh the two-dimensional vector defining the lower adjacent-
channel frequency limits (as an offset from the single
voltage and current spectral component);

None (-
∞:∞)

Real Yes

upperAdjCh two-dimensional vector defining the upper adjacent channel
frequency limits (as an offset from the single voltage and
current spectral component);

None (-
∞:∞)

Real Yes

winType window type None † string No

winConst window constant that affects the shape of the applied
window.

0.75 [0:∞) Real No

† winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

VloadFund = vload[1]

IloadFund = iload.i[1]

mainlimits = {-16.4 kHz, 16.4 kHz}
UpChlimits = {mainlimits + 30 kHz}
LoChlimits = {mainlimits - 30 kHz}
TransACPR = acpr_vi(VloadFund, IloadFund, mainlimits, LoChlimits, UpChlimits,

"Kaiser")

where vload is the named connection at a load, and iload.i is the name of the

current probe that samples the current into the node. The {} braces are used to

define vectors, and the upper channel limit and lower channel limit frequencies

do not need to be defined by means of the vector that defines the main channel

limits.

examples/RF_Board/NADC_PA_wrk/NADC_PA_ACPRtransmitted.dds

Measurement Expressions

43

Note
acpr_vi() function is intended to be used in Circuit Envelope design as MeasEqn or in resulting Circuit
Envelope simulation's data display as an Eqn equation. If you want to do similar function in Ptolemy
environment, recommend to look for ACPR/ACLR examples on support website and/or use the
spec_power() function implement similar effect in Ptolemy.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

acpr_vr() (expmeas), channel_power_vi() (expmeas), channel_power_vr() (expmeas),
relative_noise_bw() (expmeas)

 Notes/Equations

Used in Adjacent-channel power computations.
The user must supply a single complex voltage spectral component (for example, the
fundamental) across a load versus time and a single complex current spectral component
into the same load. The user must also supply the upper and lower adjacent-channel and
main-channel frequency limits, as offsets from the spectral component frequency of the
voltage and current. These frequency limits must be entered as two-dimensional vectors.
An optional window and window constant may also be supplied, for use in processing non-
periodic data.
 acpr_vr()

Computes the adjacent-channel power ratio following a Circuit Envelope simulation.

 Syntax

ACPRvals = acpr_vr(voltage, resistance, mainCh, lowerAdjCh, upperAdjCh, winType,
winConst)

 Arguments

Measurement Expressions

44

Name Description Default Range Type Required

voltage single complex voltage spectral component (for example,
the fundamental) across a load versus time

None (-
∞:∞)

Complex Yes

resistance load resistance in ohms 50 (-
∞:∞)

Complex No

mainCh two-dimensional vector defining the main channel
frequency limits (as an offset from the single voltage
spectral component)

None (-
∞:∞)

Real Yes

lowerAdjCh the two-dimensional vector defining the lower adjacent-
channel frequency limits (as an offset from the single
voltage spectral component);

None (-
∞:∞)

Real Yes

upperAdjCh two-dimensional vector defining the upper adjacent channel
frequency limits (as an offset from the single voltage
spectral component);

None (-
∞:∞)

Real Yes

winType window type None † string No

winConst window constant that affects the shape of the applied
window.

0.75 [0:∞) Real No

† winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

Vfund = vOut[1]

mainlimits = {-(1.2288 MHz/2), (1.2288 MHz/2)}
UpChlimits = {885 kHz, 915 kHz}
LoChlimits = {-915 kHz, -885 kHz}
TransACPR = acpr_vr(VloadFund, 50, mainlimits, LoChlimits, UpChlimits,

"Kaiser")

where vOut is the named connection at a resistive load. The {} braces are used

to define vectors.

Note vOut is a named connection on the schematic. Assuming that a Circuit

Envelope simulation was run, vOut is output to the dataset as a two-dimensional

matrix. The first dimension is time, and there is a value for each time point

in the simulation. The second dimension is frequency, and there is a value for

each fundamental frequency, each harmonic, and each mixing term in the

analysis, as well as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the

lowest non-baseband frequency (the fundamental analysis frequency, unless a

multitone analysis has been run and there are mixing products). For former MDS

users, the notation "vOut[*, 2]" in MDS corresponds to the notation of

"vOut[1]".

examples/Tutorial/ModSources_wrk/IS95RevLinkSrc.dds

Note
acpr_vr() function is intended to be used in Circuit Envelope design as MeasEqn or in resulting Circuit
Envelope simulation's data display as an Eqn equation. If you want to do similar function in Ptolemy
environment, recommend to look for ACPR/ACLR examples on support website and/or use the
spec_power() function implement similar effect in Ptolemy.

 Defined in

Measurement Expressions

45

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

acpr_vi() (expmeas), channel_power_vi() (expmeas), channel_power_vr() (expmeas),
relative_noise_bw() (expmeas)

 Notes/Equations

Used in Adjacent-channel power computations.
The user must supply a single complex voltage spectral component (for example, the
fundamental) across a resistive load versus time and the load resistance. The user must
also supply the upper and lower adjacent-channel and main-channel frequency limits, as
offsets from the spectral component frequency of the voltage. These frequency limits must
be entered as two-dimensional vectors. An optional window and window constant may
also be supplied, for use in processing non-periodic data.
 channel_power_vi()

Computes the power (in watts) in an arbitrary frequency channel following a Circuit
Envelope simulation.

 Syntax

Channel_power = channel_power_vi(voltage, current, mainCh, winType, winConst)

 Arguments

Name Description Default Range Type Required

voltage single complex voltage spectral component (for example, the
fundamental) across a load versus time

None (-
∞:∞)

Complex Yes

current single complex current spectral component into the same load
versus time

None (-
∞:∞)

Complex Yes

mainCh two-dimensional vector defining channel frequency limits (as
an offset from the single voltage and current spectral
component †

None (-
∞:∞)

Real Yes

winType window type None † string No

winConst window constant that affects the shape of the applied window. 0.75 [0:∞) Real No

† note that these frequency limits do not have to be centered on the voltage and current
spectral component frequency.
† winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

VloadFund = vload[1]

IloadFund = iload.i[1]

mainlimits = {-16.4 kHz, 16.4 kHz}
Main_Channel_Power = channel_power_vi(VloadFund, IloadFund, mainlimits,

"Kaiser")

where vload is the named connection at a load, and iload.i is the name of the

Measurement Expressions

46

current probe that samples the current into the node. The {} braces are used to

define a vector. Note that the computed power is in watts. Use the following

equation to convert the power to dBm.

Main_Channel_Power_dBm = 10 * log(Main_Channel_Power) + 30

Do not use the dBm function, which operates on voltages.

examples/RF_Board/NADC_PA_wrk/NADC_PA_ACPRtransmitted.dds

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

acpr_vi() (expmeas), acpr_vr() (expmeas), channel_power_vr() (expmeas)

 Notes/Equations

Used in Channel power computations.
The user must supply a single complex voltage spectral component (for example, the
fundamental) across a load versus time, and a single complex current spectral component
into the same load. The user must also supply the channel frequency limits, as offsets
from the spectral component frequency of the voltage and current. These frequency limits
must be entered as a two-dimensional vector. An optional window and window constant
may also be supplied, for use in processing non-periodic data.
 channel_power_vr()

Computes the power (in watts) in an arbitrary frequency channel following a Circuit
Envelope simulation.

 Syntax

Channel_power = channel_power_vr(voltage, resistance, mainCh, winType, winConst)

 Arguments

Name Description Default Range Type Required

voltage single complex voltage spectral component (for example, the
fundamental) across a load versus time

None (-
∞:∞)

Complex Yes

resistance load resistance in ohms 50 (-
∞:∞)

Complex No

mainCh two-dimensional vector defining the main channel frequency
limits (as an offset from the single voltage spectral
component) †

None (-
∞:∞)

Real Yes

winType window type None † † string No

winConst window constant that affects the shape of the applied
window.

0.75 [0:∞) Real No

† note that these frequency limits do not have to be centered on the voltage and current
spectral component frequency

Measurement Expressions

47

† † winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

Vmain_fund = Vmain[1]

mainlimits = {-16.4 kHz, 16.4 kHz}
Main_Channel_Power = channel_power_vr(Vmain_fund, 50, mainlimits, "Kaiser")

where Vmain is the named connection at a resistive load (50 ohms in this case.)

The {} braces are used to define a vector. Note that the computed power is in

watts. Use the equation

Main_Channel_Power_dBm = 10 * log(Main_Channel_Power) + 30

to convert the power to dBm. Do not use the dBm function, which operates on

voltages.

Example file

examples/RF_Board/NADC_PA_wrk/NADC_PA_ACPRreceived.dds

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

acpr_vi() (expmeas), acpr_vr() (expmeas), channel_power_vi() (expmeas)

 Notes/Equations

Used in Channel power computations.
The user must supply a single complex voltage spectral component (for example, the
fundamental) across a load versus time and the resistance of the load. The user must also
supply the channel frequency limits, as offsets from the spectral component frequency of
the voltage. These frequency limits must be entered as a two-dimensional vector. An
optional window and window constant may also be supplied, for use in processing non-
periodic data.
 const_evm()

Takes the results of a Circuit Envelope simulation and generates data for the ideal and
distorted constellation and trajectory diagrams, as well as the error vector magnitude, in
percent, and a plot of the error vector magnitude versus time.

 Syntax

data = const_evm(vfund_ideal, vfund_dist, symbol_rate, sampling_delay, rotation,
transient_duration, path_delay)

 Arguments

Measurement Expressions

48

Name Description Default Range Type Required

vfund_ideal single complex voltage spectral component (for
example the fundamental) that is ideal
(undistorted). This could be constructed from two
baseband signals instead, by using the function
cmplx().

None (-
∞:∞)

Complex Yes

vfund_dist single complex voltage spectral component (for
example, the fundamental) that has been distorted
by the network being simulated. This could be
constructed from two baseband signals instead, by
using the function cmplx()

None (-
∞:∞)

Complex Yes

symbol_rate symbol rate of the modulation signal None [0:∞) Integer,
real

Yes

sampling_delay sampling delay † 0 [0:∞) Integer,
real

No

rotation parameter that rotates the constellations by that
many radian ††

0 [0:∞) Integer,
real

No

transient_duration time in seconds that causes this time duration of
symbols to be eliminated from the error-vector-
magnitude calculation †† †

0 [0:∞) Integer,
real

No

path_delay time in seconds of the sum of all delays in the signal
path †† ††

0 [0:∞) Integer,
real

No

† sampling_delay - (if nonzero) throws away the first delay = N seconds of data from the
constellation and trajectory plots. It is also used to interpolate between simulation time
points, which is necessary if the optimal symbol-sampling instant is not exactly at a
simulation time point. Usually this parameter must be nonzero to generate a constellation
diagram with the smallest grouping of sample points
†† rotation does not need to be entered, and it will not affect the error-vector-magnitude
calculation, because both the ideal and distorted constellations will be rotated by the same
amount.
†† † Usually the filters in the simulation have transient responses, and the error-vector-
magnitude calculation should not start until these transient responses have finished.
†† †† If the delay is 0, this parameter may be omitted. If it is non-zero, enter the delay
value. This can be calculated by using the function delay_path().

 Examples

rotation = -0.21

sampling_delay = 1/sym_rate[0, 0] - 0.5 * tstep[0, 0]

vfund_ideal = vOut_ideal[1]

vfund_dist = vOut_dist[1]

symbol_rate = sym_rate[0, 0]

data = const_evm(vfund_ideal, vfund_dist, symbol_rate, sampling_delay,

rotation, 1.5ms, path_delay)

where the parameter sampling_delay can be a numeric value, or in this case an

equation using sym_rate, the symbol rate of the modulated signal, and tstep,

the time step of the simulation. If these equations are to be used in a Data

Display window, sym_rate and tstep must be defined by means of a variable (VAR)

component, and they must be passed into the dataset as follows: Make the

parameter Other visible on the Envelope simulation component, and edit it so

that

Other = OutVar = sym_rate OutVar = tstep

In some cases, it may be necessary to experiment with the delay value to get

the constellation diagrams with the tightest points.

Measurement Expressions

49

Note that const_evm() returns a list of data. So in the example above,
data[0]= ideal constellation
data[1]= ideal trajectory
data[2]= distorted constellation
data[3]= distorted trajectory
data[4]= error vector magnitude versus time
data[5]= percent error vector magnitude
Refer to the example file to see how these data are plotted.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

constellation() (expmeas), delay_path() (expmeas), sample_delay_pi4dqpsk() (expmeas),
sample_delay_qpsk() (expmeas)

 Notes/Equations

Used in constellation and trajectory diagram generation and error-vector-magnitude
calculation.

The user must supply a single complex voltage spectral component (for example, the
fundamental) that is ideal (undistorted), as well as a single complex voltage spectral
component (for example, the fundamental) that has been distorted by the network being
simulated. These ideal and distorted complex voltage waveforms could be generated from
baseband I and Q data. The user must also supply the symbol rate, a delay parameter, a
rotation factor, and a parameter to eliminate any turn-on transient from the error-vector-
magnitude calculation are optional parameters.

The error vector magnitude is computed after correcting for the average phase difference
and RMS amplitude difference between the ideal and distorted constellations.
 cross_hist()

Returns jitter histogram

 Syntax

y = cross_hist(Vout_time, time_start, time_stop, level_low, level_high, number_of_bins,
BitRate, No_of_Eye, Delay, steps)

 Arguments

Measurement Expressions

50

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Real Yes

time_start define the rectangular window points for jitter histogram
plot

None [0:∞) Real Yes

time_stop define the rectangular window points for jitter histogram
plot

None [0:∞) Real Yes

level_low define the rectangular window points for jitter histogram
plot

None [0:∞) Real Yes

level_high define the rectangular window points for jitter histogram
plot

None [0:∞) Real Yes

number_of_bins defines the number of bins on the time axis of eye
diagram and controls the resolution of jitter histogram
plot

None [1:∞) Integer Yes

BitRate bit rate of the channel and is expressed in frequency
units

None (0:∞) Real Yes

No_of_Eye Used for multiple eye jitter histogram plots None [0:∞) Integer Yes

Delay used to remove initial transient in the eye diagram and
is expressed in time units

None [0:∞) Real Yes

steps represents the number of sampling points between
level_low and level_high and is used for controlling the
density of jitter histogram.

None [1:∞) Integer Yes

 Examples

Jitter_Histogram = cross_hist(vout, 0 ps, 100 ps, 0 V, 0.1V, 300, 10 GHz, 1,0,

20)

 Defined in

Built in

 See Also

eye_amplitude() (expmeas), eye_closure() (expmeas), eye_fall_time() (expmeas),
eye_rise_time() (expmeas), eye_height() (expmeas)

 Notes/Equations

Jitter histogram plots the jitter histogram of a time domain voltage waveform.
 delay_path()

This function is used to determine the time delay and the constellation rotation angle
between two nodal points along a signal path.

 Syntax

y = delay_path(vin, vout)

 Arguments

Measurement Expressions

51

Name Description Default Range Type Required

vin envelope (I + j * Q) at the input
node

None (-
∞:∞)

Complex Yes

vout I + j * Q at the output node None (-
∞:∞)

Complex Yes

 Examples

x = delay_path(vin[1], vout[1])

where vin[1] and vout[1] are complex envelopes around the first carrier

frequency in envelope simulation. In return, x[0] is the time delay (in

seconds) between vin and vout. x[1] is the rotation angle (in radians) between

vin and vout constellations.

or

x = delay_path(T1, T2)

where T1 and T2 are instance names of two TimedSink components.

 Defined in

Built in

 See Also

ber_pi4dqpsk() (expmeas), ber_qpsk() (expmeas), const_evm() (expmeas), cross_corr()
(expmeas)

 Notes/Equations

Used in Circuit Envelope simulation, Ptolemy simulation.
This function outputs an array of two values. The first value, data[0], is the time delay
between vin and vout. The second value, data[1], is the rotation angle between vin-
constellation and vout-constellation.

Note
This function is only available in 32-bit simulator.

 evm_wlan_dsss_cck_pbcc()

Returns EVM (error vector magnitude) analysis results for WLAN DSSS/CCK/PBCC (IEEE
802.11b and IEEE 802.11g non-OFDM) voltage signals.

 Syntax

evm = evm_wlan_dsss_cck_pbcc(voltage{, mirrorSpectrum, start, averageType,
burstsToAverage, modulationFormat, searchTime, resultLengthType, resultLength,
measurementOffset, measurementInterval, chipRate, clockAdjust, equalizationFilter,
filterLength, descrambleMode, referenceFilter, referenceFilterBT, output})

 Arguments

Measurement Expressions

52

Name Description Default Range Type Required

voltage complex envelope
WLAN
DSSS/CCK/PBCC
voltage signal

None (-∞:∞) Complex Yes

mirrorSpectrum specifies whether the
input signal should be
mirrored or not

NO See Notes String No

start specifies the start
time for the EVM
analysis

first point of the
input data

[0:max(indep(voltage))] Real No

averageType specifies what type of
averaging is done

OFF See Notes String No

burstsToAverage number of bursts over
which the results will
be averaged

20 (0:∞) Integer No

modulationFormat modulation format "Auto Detect" See Notes String No

searchTime search time 550 usec [0:max(indep(voltage))] Real No

resultLengthType specifies how the
result length is
determined

"Auto Select" See Notes String No

resultLength result length in chips 2816 [1:108344] Integer No

measurementOffset measurement offset in
chips

22 (0:∞) Integer No

measurementInterval measurement interval
in chips

2794 (0:∞) Integer No

chipRate chip rate in Hz 11e6 Hz (0:∞) Real No

clockAdjust clock adjustment as a
fraction of a chip

0 [-0.5, 0.5] Real No

equalizationFilter specifies whether an
equalization filter is
used or not

OFF See Notes String No

filterLength equalization filter
length in chips

21 [3:∞) must be odd Integer No

descrambleMode specifies how
descrambling is done

On See Notes String No

referenceFilter specifies the reference
filter to be used

Gaussian See Notes String No

referenceFilterBT BT value for the
reference filter if a
Gaussian reference
filter is selected

0.3 [0.05:100] Real No

output EVM analysis result to
be returned

Avg_EVMrms_pct See Notes String No

 Examples

evmRMS = evm_wlan_dsss_cck_pbcc(Vout[1])

where Vout is a named node in a Circuit Envelope simulation, will return the

EVM rms value in percent for the voltage envelope at the fundamental frequency.

The voltage data Vout[1] must contain at least one complete burst. The EVM

result will be from the analysis of the first burst in the input signal.

evmPk = evm_wlan_dsss_cck_pbcc(Vout[1], , , "RMS (Video)", 10, , 300e-6, , , ,

, , , , , , "Gaussian", 0.5, "EVM_Pk_pct")

where Vout is a named node in a Circuit Envelope simulation, will return a

Measurement Expressions

53

vector with 10 values each representing the peak EVM in percent for the first

10 bursts in the voltage envelope at the fundamental frequency. Since

searchTime is set to 300 usec, the first 300 usec of Vout[1] must contain at

least one complete burst. In addition, since 10 bursts need to be processed,

Vout[1] must contain at least 10 complete bursts. A Gaussian filter with BT=0.5

will be used as a reference filter.

AvgMagErr = evm_wlan_dsss_cck_pbcc(Vout[1], , , "RMS (Video)", 3, , 400e-6, , ,

100, 500, , , , , , , , "Avg_MagErr_rms_pct")

where Vout is a named node in a Circuit Envelope simulation, will return the

average (over 3 bursts) magnitude error in percent for the voltage envelope at

the fundamental frequency. Since searchTime is set to 400 usec, the first 400

usec of Vout[1] must contain at least one complete burst. In addition, since 3

bursts need to be averaged, Vout[1] must contain at least 3 complete bursts.

Only the chips 101 to 600 (measurementOffset = 100 and measurementInterval =

500) will be considered for the EVM analysis.

 Defined in

Built in

 See Also

evm_wlan_ofdm() (expmeas)

 Notes/Equations

Used in Circuit Envelope simulation and Data Flow simulation.
This expression can be used with input data of up to two dimensions. Only complex
envelope input signals are allowed as input.

The evm_wlan_dsss_cck_pbcc() expression performs an EVM measurement for WLAN
DSSS/CCK/PBCC (IEEE 802.11b and IEEE 802.11g non-OFDM) signals. Available
Measurement Results for evm_wlan_dsss_cck_pbcc() displays the available measurement
results.

 Available Measurement Results for evm_wlan_dsss_cck_pbcc()

Measurement Expressions

54

Measurement Result Description

Avg_WLAN_80211b_1000_chip_Pk_EVM_pct average EVM in percentage as specified by the standard (section
18.4.7.8 Transmit modulation accuracy in 802.11b specification;
pages 55-57) except that the EVM value is normalized

WLAN_80211b_1000_chip_Pk_EVM_pct EVM in percentage as specified by the standard (section
18.4.7.8 Transmit modulation accuracy in 802.11b specification;
pages 55-57) with the exception that the EVM value is
normalized versus burst

Avg_EVMrms_pct average EVM rms in percentage as defined in the Agilent 89600
VSA

EVMrms_pct EVM rms in percentage as defined in the Agilent 89600 VSA
versus burst

EVM_Pk_pct peak EVM in percentage versus burst

EVM_Pk_chip_idx peak EVM chip index versus burst

Avg_MagErr_rms_pct average magnitude error rms in percentage

MagErr_rms_pct magnitude error rms in percentage versus burst

MagErr_Pk_pct peak magnitude error in percentage versus burst

MagErr_Pk_chip_idx peak magnitude error chip index versus burst

Avg_PhaseErr_deg average phase error in degrees

PhaseErr_deg phase error in degrees versus burst

PhaseErr_Pk_deg peak phase error in degrees versus burst

PhaseErr_Pk_chip_idx peak phase error chip index versus burst

Avg_FreqError_Hz average frequency error in Hz

FreqError_Hz frequency error in Hz versus burst

Avg_IQ_Offset_dB average IQ offset in dB

IQ_Offset_dB IQ offset in dB versus burst

Avg_SyncCorrelation average sync correlation

SyncCorrelation sync correlation versus burst

Results whose name is prefixed with " Avg"_ are averaged over the number of bursts
specified by the user (if averageType is set to " RMS (Video)"). Results whose name is
not prefixed with " Avg"_ are results versus burst.

The following is a brief description of the algorithm used (the algorithm used is the same
as the one used in the Agilent 89600 VSA) and a detailed description of its arguments.
Starting at the time instant specified by the start argument, a signal segment of length
searchTime is acquired. This signal segment is searched in order for a complete burst to
be detected. The burst search algorithm looks for both a burst on and a burst off
transition. In order for the burst search algorithm to detect a burst, an idle part must exist
between consecutive bursts and the bursts must be at least 15 dB above the noise floor.

If the acquired signal segment does not contain a complete burst, the algorithm will not
detect any burst and the analysis that follows will most likely produce wrong results.
Therefore, searchTime must be long enough to acquire at least one complete burst. Since
the time instant specified by the start argument can be a little after the beginning of a
burst, it is recommended that searchTime is set to a value approximately equal to 2 x
burstLength, where burstLength is the duration of a burst in seconds including the
duration of the idle part. If it is known that the time instant specified by the start
argument is a little before the beginning of a burst, then searchTime can be set to
burstLength.

After a burst is detected, synchronization is performed based on the preamble. The burst

Measurement Expressions

55

is then demodulated. Finally, the burst is analyzed to get the EVM measurement results.

If averageType is set to OFF , only one burst is detected, demodulated, and analyzed.
If averageType is set to RMS (Video) , after the first burst is analyzed the signal segment
corresponding to it is discarded and new signal samples are acquired to fill in the signal
buffer of length searchTime. When the buffer is full again a new burst search is performed
and when a burst is detected it is demodulated and analyzed. These steps repeat until
burstsToAverage bursts are processed.

If for any reason a burst is misdetected the results from its analysis are discarded. The
EVM results obtained from all the successfully detected, demodulated, and analyzed bursts
are averaged to give the final result.
The mirrorSpectrum argument accepts the following strings: "NO" and "YES". This
argument can be used to mirror (conjugate) the input signal before any other processing
is done. Mirroring the input signal is necessary if the configuration of the mixers in your
system has resulted in a mirrored signal compared to the one at the input of the up-
converter and if the preamble and header are short format. In this case, if mirrorSpectrum
is not set to " YES " the header bits (which carry the modulation format and length
information) will not be recovered correctly so the demodulation of the PSDU part of the
burst will most likely fail.

The start argument sets the starting point for acquiring the signal to be processed. By
default, the starting point is the beginning of the input signal (voltage argument).
However, if for any reason an initial part of the input signal needs to be omitted this can
be done by setting the start argument appropriately.
The averageType argument accepts the following strings: "Off" and "RMS (Video)". This
argument can be used to turn on/off video averaging. If set to "Off" the EVM result
returned is from the processing of only one burst. Otherwise, multiple bursts are
processed and the results are averaged.

The burstsToAverage argument set the number of bursts whose results will be averaged if
averageType is set to "RMS (Video)". If averageType is set to "Off" this argument is
ignored.

The modulationFormat argument accepts the following strings: "Auto Detect", "Barker 1",
"Barker 2", "CCK 5.5", "CCK 11", "PBCC 5.5", "PBCC 11", "PBCC 22", "PBCC 33". This
argument sets the modulation format used in the PSDU part of the burst. If
modulationFormat is set to "Auto Detect", the algorithm will use the information detected
in the PLCP header part of the burst to automatically determine the modulation format.
Otherwise, the modulation format determined from the PLCP header is ignored and the
modulation format specified by the modulationFormat argument is used in the
demodulation of the PSDU part of the burst.

The searchTime argument sets the duration of the signal segment that is acquired and
searched in order to detect a complete burst. Recommendations on how to set this
argument are given in the brief description of the algorithm used by this expression earlier
in these Notes/Equations section.

The resultLengthType argument accepts the following strings: "Auto Select" and "Manual
Override". The resultLengthType and resultLength arguments control how much data is
acquired and demodulated.

When resultLengthType is set to " Auto Select", the measurement result length is

Measurement Expressions

56

automatically determined from the information in the PLCP header part of the burst.
In this case, the argument resultLength defines a maximum result length for the
burst in symbol times; that is, if the measurement result length that is automatically
detected is bigger than resultLength it will be truncated to resultLength. The
maximum result length specified by the resultLength argument includes the PLCP
preamble and PLCP header.
When resultLengthType is set to " Manual Override ", the measurement result length
is set to resultLength regardless of what is detected in the PLCP header part of the
burst. The result length specified by the resultLength argument includes the PLCP
preamble and PLCP header.

Measurement result length setting summarizes the differences between how "Auto Select"
and " Manual Override " modes determine the measurement result length. The table lists
the measurement result lengths actually used for " Auto Select" and " Manual Override"
modes for three different values of the resultLength argument (3300, 2816 and 2200
chips). It is assumed that the input burst is 2816 symbols long.

 Measurement result length setting

resultLengthType resultLength Measurement Result Length Actually Used

Auto Select 2200 2200

Auto Select 2816 2816

Auto Select 3300 2816

Manual Override 2200 2200

Manual Override 2816 2816

Manual Override 3300 3300

Note that when resultLengthType is set to " Manual Override" and resultLength=3300
(greater than the actual burst size) the algorithm will demodulate the full 3300 chips even
though this is 484 chips beyond the burst width.

The measurementOffset and measurementInterval arguments can be used to isolate a
specific segment of the burst for analysis. The values of measurementInterval and
measurementOffset are in number of chips and are relative to the ideal starting point of
the PLCP preamble portion of the burst. For a signal that uses the long PLCP format, the
ideal starting point of the PLCP preamble is exactly 128 symbol times (128 x 11 chips)
before the start of the SFD sync pattern. For a signal that uses the short PLCP format, the
ideal starting point of the PLCP preamble is exactly 56 symbol times (56 x 11 chips)
before the start of the SFD sync pattern.
The chipRate argument sets the fundamental chip rate of the signal to be analyzed. The
default is 11 MHz, which matches the chip rate of 802.11b and 802.11g; however, this
argument can be used when experimenting with signals that do not follow the standard
specifications. A special case is the optional 802.11g 33 Mbit PBCC mode, where the chip
rate of the transmitted signal starts at 11 MHz, but changes to 16.5 MHz in the middle of
the burst. In this case chipRate should still be set to 11 MHz (the algorithm will
automatically switch to 16.5 MHz at the appropriate place in the burst).

Although the algorithm synchronizes to the chip timing of the signal, it is possible for the
synchronization to be slightly off. The clockAdjust argument allows the user to specify a
timing offset which is added to the chip timing detected by the algorithm. This argument
should only be used when trying to debug unusual signals.
The equalizationFilter argument accepts the following strings: "OFF" and "ON". This
argument can be used to turn on/off the equalization filter. The filterLength argument sets

Measurement Expressions

57

the equalization filter length (in number of chips). Using an equalization filter can
dramatically improve the EVM results since the equalizer can compensate for ISI due to
the transmit filter. However, it can also compensate the distortion introduced by the DUT.
If the filter used in the transmitter is Gaussian, then having the equalizer off and selecting
a Gaussian reference filter might be a better option.

The descrambleMode argument accepts the following strings: "Off", "Preamble Only",
"Preamble & Header Only", "On". This argument can be used to control how descrambling
is done.

"Off" does no descrambling.
"Preamble Only" descrambles only the PLCP preamble.
"Preamble & Header Only" descrambles only the PLCP preamble and PLCP header.
"On" descrambles all parts of the burst.
Normally, 802.11b or 802.11g signals have all bits scrambled before transmission, so
this parameter should normally be set to "On" . However, when debugging an
802.11b or 802.11g transmitter, it is sometimes helpful to disable scrambling in the
transmitter, in which case you should disable descrambling in this component.

If the input signal's preamble is scrambled but you disable descrambling of the preamble
(or vice versa), then the algorithm will not be able to synchronize to the signal properly.
Similarly, if the input signal's header is scrambled but you disable descrambling of the
header (or vice versa) then the algorithm will not be able to correctly identify the burst
modulation type and burst length from the header.

The referenceFilter argument accepts the following strings: "Rectangular" and "Gaussian".
This argument can be used to select a reference filter for the EVM analysis. Although, the
IEEE 802.11b/g standards do not specify either a transmit filter or a receive filter, they do
have a spectral mask requirement, and a transmitter must use some sort of transmit filter
to meet the spectral mask. On the other hand, the description of the EVM measurement in
the standard does not use any receive or measurement filter. The absence of the need to
use any transmit or receive filter is partly because the standard has a very loose limit for
EVM (35% peak on 1000 chips worth of data).

If the standard definition is followed when computing EVM, no measurement or reference
filter should be used (referenceFilter must be set to "Rectangular"). However, what this
means is that even a completely distortion-free input signal will still give non-zero EVM
unless the input signal has a zero-ISI transmit filter. If a non-zero-ISI transmit filter is
used and there is additional distortion added to the signal due to the DUT, then the EVM
will measure the overall error due to both the transmit filter's ISI and the DUT distortion.
Turning on the equalizer will remove most of the transmit filter's ISI but it can also
remove some of the distortion introduced by the DUT. To get a better idea of the EVM due
to the DUT distortion a reference filter that matches the transmit filter can be used.
Currently, only "Rectangular" and "Gaussian" filters are available as reference filters.

The referenceFilterBT argument sets the BT (Bandwidth Time product) for the Gaussian
reference filter. If referenceFilter is set to "Rectangular" this argument is ignored.

The output argument accepts the following strings (see Available Measurement Results for
evm_wlan_dsss_cck_pbcc()): "Avg_WLAN_80211b_1000_chip_Pk_EVM_pct",
"WLAN_80211b_1000_chip_Pk_EVM_pct", "Avg_EVMrms_pct", "EVMrms_pct",
"EVM_Pk_pct", "EVM_Pk_chip_idx", "Avg_MagErr_rms_pct", "MagErr_rms_pct",
"MagErr_Pk_pct", "MagErr_Pk_chip_idx". "Avg_PhaseErr_deg", "PhaseErr_deg",

Measurement Expressions

58

"PhaseErr_Pk_deg", "PhaseErr_Pk_chip_idx", "Avg_FreqError_Hz", "FreqError_Hz",
"Avg_IQ_Offset_dB", "IQ_Offset_dB", "Avg_SyncCorrelation", "SyncCorrelation". This
argument selects which EVM analysis result will be returned.

Relationship Between WLAN_802_11b Source Parameters and evm_wlan_dsss_cck_pbcc()
Expression Arguments summarizes how some of the arguments of the
evm_wlan_dsss_cck_pbcc() expression should be set based on the parameter values of
the WLAN_802_11b source.

 Relationship Between WLAN_802_11b Source Parameters and evm_wlan_dsss_cck_pbcc() Expression Arguments

WLAN_802_11b evm_wlan_dsss_cck_pbcc() Comments

DataRate (default
is 11 Mbps)

searchTime (default is 550
µsec)

The recommended searchTime is !expmeas-05-09-
01.gif! . BurstLength=
tRamp+tPLCP+tPSDU+IdleInterval, where, tRamp =
!expmeas-05-09-02.gif! tPLCP = !expmeas-05-09-
03.gif! tPSDU = !expmeas-05-09-04.gif!

PreambleFormat
(default is Long)

PwrRamp (default
is None)

IdleInterval
(default is 10 µsec)

DataLength
(default is 100)

MirrorSpectrum
(default is NO)

mirrorSpectrum (default is NO) If DUT introduces spectrum mirroring, then
mirrorSpectrum must be set to "NO" ("YES") when
MirrorSpectrum is set to "YES" ("NO"); otherwise
mirrorSpectrum must be set to the same value as
MirrorSpectrum.

FilterType (default
is Gaussian)

referenceFilter (default is
Gaussian)

When FilterType is set to "Gaussian", the recommended
setting of referenceFilter is "Gaussian"; otherwise, the
recommended setting is "Rectangular"

GaussianFilter_bT
(default is 0.3)

referenceFilterBT (default is
0.3)

The recommended setting of referenceFilterBT is the
same value as GaussianFilter_bT. This parameter is
only used when referenceFilter is set to "Gaussian".

Note
This function is only available in 32-bit simulator.

 evm_wlan_ofdm()

Returns EVM (error vector magnitude) analysis results for WLAN OFDM (IEEE 802.11a)
voltage signals

 Syntax

evm = evm_wlan_ofdm(voltage{, mirrorSpectrum, start, averageType, burstsToAverage,
subcarrierModulation, guardInterval, searchTime, resultLengthType, resultLength,
measurementOffset, measurementInterval, subcarrierSpacing, symbolTimingAdjust, sync,
output})

 Arguments

Measurement Expressions

59

Name Description Default Range Type Required

voltage complex envelope
WLAN OFDM
(orthogonal frequency
division multiplexing)
voltage signal

None (-∞:∞) Complex Yes

mirrorSpectrum specifies whether the
input signal should be
mirrored or not

NO See Notes String No

start specifies the start time
for the EVM analysis

first point of the
input data

[0:max(indep(voltage))] Real No

averageType specifies what type of
averaging is done

OFF See Notes String No

burstsToAverage number of bursts over
which the results will
be averaged

20 (0:∞) Integer No

subcarrierModulation data subcarrier
modulation format

"Auto Detect" See Notes String No

guardInterval guard interval length
for the OFDM symbols
(as a fraction of the
FFT time period)

0.25 [0:1] Real No

searchTime search time 80 usec [0:max(indep(voltage))] Real No

resultLengthType specifies how the result
length is determined

"Auto Select" See Notes String No

resultLength result length in OFDM
symbols

60 [1:1367] Integer No

measurementOffset measurement offset in
OFDM symbols

0 [0:∞) Integer No

measurementInterval measurement interval
in OFDM symbols

11 (0:∞) Integer No

subcarrierSpacing frequency spacing
between the
subcarriers

312.5 kH (0:∞) Real No

symbolTimingAdjust specifies (as a percent
of the FFT time period)
the timing adjustment
done on the OFDM
symbols before
performing the FFT

-3.125 [-100*guardInterval:0] Real No

sync preamble sequence
that will be used for
synchronization

Short Training
Seq

See Notes String No

output EVM analysis result to
be returned

EVMrms_percent See Notes String No

 Examples

evmRMS = evm_wlan_ofdm(Vout[1])

where Vout is a named node in a Circuit Envelope simulation, will return the

evm rms value in percent for the voltage envelope at the fundamental frequency.

The voltage data Vout[1] must contain at least one complete OFDM burst.

iqOffset = evm_wlan_ofdm(Vout[1], , , "RMS (Video)", 5, , 0.125, 200e-6, , ,

5, 10, , , , "IQ_Offset_dB")

where Vout is a named node in a Circuit Envelope simulation, will return the IQ

offset in dB for the voltage envelope at the fundamental frequency. Five bursts

Measurement Expressions

60

will be analyzed and their results averaged. The guard interval used in the

generation of the input signal must be 0.125. Since searchTime is set to 200

usec, the first 200 usec of Vout[1] must contain at least one complete OFDM

burst. In addition, since 5 bursts need to be averaged Vout[1] must contain at

least 5 complete OFDM bursts. Only the OFDM symbols 6 to 15 (measurementOffset

= 5 and measurementInterval = 10) will be considered for the EVM analysis.

 Defined in

Built in

 See Also

evm_wlan_dsss_cck_pbcc() (expmeas)

 Notes/Equations

Used in Circuit Envelope simulation and Data Flow simulation.

This expression can be used with input data of up to two dimensions. Only complex
envelope input signals are allowed as input.

The evm_wlan_ofdm() expression performs an EVM measurement for WLAN OFDM (IEEE
802.11a) signals. Available Measurement Results for evm_wlan_ofdm() seen below,
displays the available measurement results.

 Available Measurement Results for evm_wlan_ofdm()

Measurement Result Description

EVMrms_percent average EVM rms in percentage

EVM_dB average EVM in dB

PilotEVM_dB average pilot EVM in dB

CPErms_percent average Common Pilot Error rms in percentage

IQ_Offset_dB average IQ offset in dB

SyncCorrelation average sync correlation

The following is a brief description of the algorithm used (the algorithm used is the same
as the one used in the Agilent 89600 VSA) and a detailed description of its arguments.
Structure of an OFDM burst. shows the structure of an OFDM burst. Many of the terms
mentioned later in these notes such as the preamble, SIGNAL symbol, DATA symbols,
guard intervals (GI) are shown in this figure.

Measurement Expressions

61

 Structure of an OFDM burst.

Starting at the time instant specified by the start argument, a signal segment of length
searchTime is acquired. This signal segment is searched in order for a complete burst to
be detected. The burst search algorithm looks for both a burst on and a burst off
transition. In order for the burst search algorithm to detect a burst, an idle part must exist
between consecutive bursts and the bursts must be at least 15 dB above the noise floor.

If the acquired signal segment does not contain a complete burst, the algorithm will not
detect any burst and the analysis that follows will most likely produce incorrect results.
Therefore, searchTime must be long enough to acquire at least one complete burst. Since
the time instant specified by the start argument can be a little after the beginning of a
burst, it is recommended that searchTime is set to a value approximately equal to 2 x
burstLength, where burstLength is the duration of a burst in seconds including the
duration of the idle part. If it is known that the time instant specified by the start
argument is a little before the beginning of a burst, then searchTime can be set to
burstLength.

After a burst is detected, synchronization is performed based on the value of the sync
argument. The burst is then demodulated. Finally, the burst is analyzed to get the EVM
measurement results.

If averageType is set to Off , only one burst is detected, demodulated, and analyzed.

If averageType is set to RMS (Video) , after the first burst is analyzed the signal segment
corresponding to it is discarded and new signal samples are acquired to fill in the signal
buffer of length searchTime. When the buffer is full again a new burst search is performed
and when a burst is detected it is demodulated and analyzed. These steps repeat until
burstsToAverage bursts are processed.

If for any reason a burst is mis-detected, the results from its analysis are discarded. The
EVM results obtained from all the successfully detected, demodulated, and analyzed bursts
are averaged to give the final result.

The mirrorSpectrum argument accepts the following strings: "NO" and "YES". This
argument can be used to mirror (conjugate) the input signal before any other processing
is done. Mirroring the input signal is necessary if the configuration of the mixers in your
system has resulted in a mirrored signal compared to the one at the input of the up-

Measurement Expressions

62

converter. The demodulation process recovers a lot of the information about the burst
from the burst preamble and SIGNAL symbol. If the input signal is mirrored, then some of
this information may not be recovered correctly and the demodulation will most likely fail.

The start argument sets the starting point for acquiring the signal to be processed. By
default, the starting point is the beginning of the input signal (voltage argument).
However, if for any reason an initial part of the input signal needs to be omitted this can
be done by setting the start argument appropriately.

The averageType argument accepts the following strings: "Off" and "RMS (Video)". This
argument can be used to turn on/off video averaging. If set to "Off" the EVM result
returned is from the processing of only one burst. Otherwise, multiple bursts are
processed and the results are averaged.

The burstsToAverage argument set the number of bursts whose results will be averaged if
averageType is set to "RMS (Video)". If averageType is set to "Off" this argument is
ignored.

The subcarrierModulation argument accepts the following strings: "Auto Detect", "BPSK",
"QPSK", "QAM 16", and "QAM 64". This argument sets the data subcarrier modulation
format. If subcarrierModulation is set to " Auto Detect" , the algorithm will use the
information detected within the OFDM burst (SIGNAL symbol - RATE data field) to
automatically determine the data subcarrier modulation format. Otherwise, the format
determined from the OFDM burst will be ignored and the format specified by the
subcarrierModulation argument will be used in the demodulation for all data subcarriers.
This argument has no effect on the demodulation of the pilot subcarriers and the SIGNAL
symbol, whose format is always BPSK.

The guardInterval argument sets the guard interval (also called cyclic extension) length
for the OFDM symbols. The value is expressed as a fraction of the FFT time period and so
its valid range is [0, 1]. The value must match the guard interval length actually used in
the generation of the input signal in order for the demodulation to work properly.

The searchTime argument sets the duration of the signal segment that is acquired and
searched in order to detect a complete OFDM burst. Recommendations on how to set this
argument are given in the brief description of the algorithm used by this expression earlier
in these Notes/Equations section.

The resultLengthType argument accepts the following strings: "Auto Select" and "Manual
Override". The resultLengthType and resultLength arguments control how much data is
acquired and demodulated.

When resultLengthType is set to " Auto Select", the measurement result length is
automatically determined from the information in the decoded SIGNAL symbol
(LENGTH data field). In this case, the argument resultLength defines a maximum
result length for the burst in symbol times; that is, if the measurement result length
that is automatically detected is bigger than resultLength it will be truncated to
resultLength.
When resultLengthType is set to " Manual Override ", the measurement result length
is set to resultLength regardless of what is detected from the SIGNAL symbol of the
burst. The value specified in resultLength includes the SIGNAL symbol but does not
include any part of the burst preamble.

Measurement Expressions

63

Measurement Result Length Setting table shown below, summarizes the differences
between how "Auto Select" and " Manual Override " modes determine the measurement
result length. The table lists the measurement result lengths actually used for "Auto
Select" and " Manual Override" modes for three different values of the resultLength
argument (30, 26 and 20 symbols). It is assumed that the input burst is 26 symbols long.

 Measurement Result Length Setting

resultLengthType resultLength Measurement Result Length Actually Used

Auto Select 20 20

Auto Select 26 26

Auto Select 30 26

Manual Override 20 20

Manual Override 26 26

Manual Override 30 30

Note that when resultLengthType is set to " Manual Override" and resultLength=30
(greater than the actual burst size) the algorithm will demodulate the full 30 symbols even
though this is 4 symbols beyond the burst width.

The measurementOffset and measurementInterval arguments can be used to isolate a
specific segment of the burst for analysis. Both are expressed in number of OFDM
symbols. The offset starts counting from the SIGNAL symbol. An offset of 0 will include
the SIGNAL symbol in the EVM analysis, an offset of 1 will exclude the SIGNAL symbol,
and an offset of 5 will exclude the SIGNAL symbol as well as the first 4 DATA symbols.

Interrelationship between searchTime, resultLength, measurementInterval, and
measurementOffsetnshown below illustrates the interrelationship between searchTime,
resultLength, measurementInterval, and measurementOffset.

Measurement Expressions

64

 Interrelationship between searchTime, resultLength, measurementInterval, and measurementOffset.

The subcarrierSpacing argument sets the frequency spacing between the subcarriers of
the OFDM signal. The value must match the subcarrier spacing actually used in the
generation of the input signal in order for the demodulation to work properly.

The symbolTimingAdjust argument sets the timing adjustment done on the OFDM symbols
before performing the FFT. The value is expressed as a percent of the FFT time period. Its
valid range is [-100*guardInterval, 0]. Normally, when demodulating an OFDM symbol,
the guard interval is skipped and an FFT is performed on the last portion of the symbol.
However, this means that the FFT will include the transition region between this symbol
and the following symbol. To avoid this, it is generally beneficial to back away from the
end of the symbol and use part of the guard interval. The symbolTimingAdjust argument
controls how far the FFT part of the symbol is adjusted away from the end of the symbol.
Note that the value of this argument is negative because the FFT start time is moved back
by the amount specified by it. The definition of symbolTimingAdjust shown below, explains
this concept graphically. When setting this argument, care should be taken to not back
away from the end of the symbol too much because this may make the FFT include
corrupt data from the transition region at the beginning of the symbol.

Measurement Expressions

65

 Definition of symbolTimingAdjust.

The sync argument accepts the following strings: "Short Training Seq", "Channel
Estimation Seq". This argument determines which preamble sequence will be used for
synchronization.

The output argument accepts the following strings (see Available Measurement Results for
evm_wlan_ofdm()): "EVMrms_percent", "EVM_dB", "PilotEVM_dB", "CPErms_percent",
"IQ_Offset_dB", "SyncCorrelation". This argument selects which EVM analysis result will
be returned.

Relationship Between WLAN_802_11a Source Parameters and evm_wlan_ofdm()
Expression Arguments summarizes how some of the arguments of the evm_wlan_ofdm()
expression should be set based on the parameter values of the WLAN_802_11a source.

 Relationship Between WLAN_802_11a Source Parameters and evm_wlan_ofdm() Expression Arguments

WLAN_802_11a evm_wlan_ofdm() Comments

DataRate (default is
54 Mbps)

searchTime (default is
80 µsec)

The recommended searchTime is:

2 BurstLength.

BurstLength= {[5 + (1 + OFDMSymbolsPerBurst)*(1 +
GuardInterval)]*64} / Bandwidth + IdleInterval,

where:

OFDMSymbolsPerBurst = ceil[(22 + 8 *DataLength)* 250000
/ DataRate]

Bandwidth (default
is 20 MHz)

DataLength (default
is 100)

IdleInterval (default
is 4 µsec) †

GuardInterval
(default is 0.25)

MirrorSpectrum
(default is NO)

mirrorSpectrum (default
is NO)

If DUT introduces spectrum mirroring, then mirrorSpectrum
must be set to "NO" ("YES") when MirrorSpectrum is set to
"YES" ("NO"); otherwise mirrorSpectrum must be set to the
same value as MirrorSpectrum.

Bandwidth (default
is 20 MHz)

subcarrierSpacing
(default is 312.5 kHz)

subcarrierSpacing must be set to Bandwidth/64.

GuardInterval
(default is 0.25)

guardInterval (default is
0.25)

guardInterval must be set to the same value as
GuardInterval.

† The source IdleInterval must be >= 2 sec because the EVM measurement provided by the evm_wlan_ofdm()
needs enough Idle Interval to detect the burst start time.

 fs()

Performs a time-to-frequency transform

 Syntax

y = fs(x, fstart, fstop, numfreqs, dim, windowType, windowConst, tstart, tstop,
interpOrder, transformMethod)

 Arguments

Measurement Expressions

66

Name Description Default Range Type Required

x Time-domain data to be
transformed

None (-∞:∞) Real Yes

fstart starting frequency 0 † [0:∞) Real No

fstop stoping frequency 1/(2*newdeltat) † [0:∞) Real No

numfreqs number of frequencies (fstop-fstart)*(tstop-
tstart)+1

[1:∞) Integer No

dim dimension to be transformed
(not used currently)

highest dimension [1:∞) Integer No

windowType type of window to be applied to
the data

0 [0:9] †† Integer,
string

No

windowConst window constant †† † 0 [0:∞) Integer,
Real

No

tstart start time †† †† first time point in given
data

[0:∞) Integer,
Real

No

tstop stop time †† †† last time point in given
data

[0:∞) Integer,
Real

No

interpOrder Interpolation Order 1 [1:3] ††
†† †

Integer No

transformMethod Transformation method 1 [1:3] ††
†† ††

Integer No

† If data is real, fstart = 0, fstop=1/(2*newdeltat). If data is complex, fstart = -
1/(time[startIndex+2]-time[stopIndex]) and fstop=1/(time[startIndex+2]-
time[stopIndex]). Where newdeltat is the new uniform timestep of the resampled data,
and startIndex and stopIndex are the index of tstart and tstop.

†† The window types and their default constants are:
0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the time-to-frequency transformation with normal gate
shape setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13

†† † windowConst is not used if windowType is 8510

†† †† If tstart or tstop lies between two time points in the data, then the values are
interpolated for these values.

†† †† † If the tranorder variable is not present, or if the user wishes to override the
interpolation scheme, then interpOrder may be set to a nonzero value:
1 = use only linear interpolation
2 = use quadratic interpolation
3 = use cubic polynomial interpolation

†† †† †† The time-to-frequency transform can be changed by using transformMethod:

Measurement Expressions

67

1 = Chirp-z transform
2 = Discrete Fourier integral evaluated at each frequency
3 = Fast Fourier transform

 Examples

The following example equations assume that a transient simulation was

performed from 0 to 5 ns with 176 timesteps, on a 1-GHz-plus-harmonics signal

called vOut:

y=fs(vOut) returns the spectrum (0, 0.2GHz, ... , 17.6GHz), evaluated from 0 to

5 ns.

y=fs(vOut, 0, 10GHz) returns the spectrum (0, 0.2GHz, ... , 10.0GHz), evaluated

from 0 to 5 ns.

y=fs(vOut, 0, 10GHz, 11) returns the spectrum (0, 1.0GHz, ... , 10.0GHz),

evaluated from 0 to 5 ns.

y=fs(vOut, , , , , , , 3ns, 5ns) returns the spectrum (0, 0.5GHz, ... ,

32.0GHz), evaluated from 3 to 5 ns.

y=fs(vOut, 0, 10GHz, 21, , , , 3ns, 5ns) returns the spectrum (0, 0.5GHz, ... ,

10.0GHz), evaluated from 3 to 5 ns.

y=fs(vOut, 0, 10GHz, 11, , "Blackman") returns the spectrum (0, 1.0GHz, ... ,

10.0GHz), evaluated from 0 to 5 ns after a Blackman window is applied.

 Defined in

Built in

 See Also

fft() (expmeas), fspot() (expmeas)

 Notes/Equations

The dim argument is not used and should be left empty in the expression. Entering a
value will have no impact on the results.

fs(x) returns the frequency spectrum of the vector x by using a chirp-z transform. The
values returned are peak, complex values. The data to be transformed is typically from a
transient, signal processing, or envelope analysis.

Transient simulation uses a variable timestep and variable order algorithm. The user sets
an upper limit on the allowed timestep, but the simulator will control the timestep so that
the local truncation error of the integration is also controlled. The non-uniformly sampled
data are uniformly resampled for fs.

If the Gear integration algorithm is used, the order can also change during simulation. fs
can use this information when resampling the data. This variable order integration
depends on the presence of a special dependent variable, tranorder, which is output by
the transient simulator. When the order varies, the Fourier integration will adjust the
order of the polynomial it uses to interpolate the data between timepoints.

Measurement Expressions

68

Only polynomials of degree one to three are supported. The polynomial is fit from the
timepoint in question backwards over the last n points. This is because time-domain data
are obtained by integrating forward from zero; previous data are used to determine future
data, but future data can never be used to modify past data.

The data are uniformly resampled, with the number of points being determined by
increasing the original number of points to the next highest power of two.

The data to be transformed default to all of the data. The user may specify tstart and
tstop
to transform a subset of the data.

The starting frequency defaults to 0 and the stopping frequency defaults to
1/(2*newdeltat), where newdeltat is the new uniform timestep of the resampled data. The
number of frequencies defaults to (fstop-fstart)*(tstop-tstart)+1. The user may change
these by using fstart, fstop, and numfreqs. Note that numfreqs specifies the number of
frequencies, not the number of increments. Thus, to get frequencies at (0, 1, 2, 3, 4, 5),
numfreqs should be set to 6, not 5.

When the data to be operated on is of the baseband type, such as VO[0] from a Circuit
Envelope analysis, where VO is an output node voltage and [0] is index for DC, then in
order to obtain a single sided spectrum, only the real part of VO[0] should be used as the
argument. i.e., x=fs(real(VO[0],...). This is necessary because the fs() function has no
way of knowing the data VO[0] is baseband. Even though VO[0] contains an imaginary
part of all zeroes, it is still represented by a complex data type. When the first argument
of fs() is complex, the result will be a double-sided spectrum by default.

An alternative method of obtaining a single-sided spectrum from the above baseband data
is to specify the frequencies ranges in the spectrum, using the fstart, fstop, and numfreqs
parameters of the fs() function.

For example, y=fs(VO[0], 0, 25e3, 251). This will yield a spectrum from 0 to 25 kHz with
26 frequencies and 1 kHz spacing.

This does not apply to data from Transient analysis or Ptolemy simulation because voltage
data from Transient and baseband data from Ptolemy are real.

For Envelope analysis, the transform is centered around the fundamental tone. For Signal
Processing analysis, it is centered around the characterization frequency.

 Differences Between the fs() and fft() Functions

For a periodic signal from t=0 to t=per, fs() requires the full data [0,per], where [] means
0 <= t <= per. The fft is defined as needing data [0,per), meaning 0 <= t < per. The last
point at per should be the same as value at zero. fs() requires this point, fft() does not.
That is why fs() really requires 2n+1 points and fft() requires 2n . So for using the FFT
option in the fs() function, there should be 2n+1 points. However, for the default Chirp Z-
transform option, any number of points will work.
Conditions under which fs() may not work properly:

Measurement Expressions

69

When deltaF equals 0. Where deltaF = (Fstop - Fstart)/(numFreqs).1.
When 1.0/deltaF > Tstop - Tstart. In this case there are not enough time data for2.
requested frequency resolution.
When 2*numFreqs > numDataPts. In this case there are not enough data points for3.
frequencies.

 Mod_Data_from_1tone_swpUNI()

Returns an amplifier's adjacent and alternate channel power ratios, main channel power,
and error vector magnitude

 Syntax

Mod_Data_from_1tone_swpUNI(algorithm, allowextrap, charVoltage, inputSig, sourceZ,
loadZ, mainCh, mainChForPout, lowerAdjCh, upperAdjCh, lowerAltCh, upperAltCh,
winType, winConst)

 Arguments

Measurement Expressions

70

Name Description Default Range Type Required

algorithm Specifies the algorithm to be used to model the
vout-versus-vin data from the HB sweep. Use
"CF" for Curve Fit or "LI" for Linear
Interpolation.

None "LI" or
"CF"

String Yes

allowextrap Allow or disallow extrapolation when applying
the scaled, modulated input signal to the vout-
versus-vin model.

1 0, "No",
"NO",
"no", 1,
"Yes",
"YES",
"yes"

String or
Integer

No

charVoltage This is the characterization voltage (the
fundamental output voltage from the harmonic
balance sweep.) Example: Vload_fund, where
Vload_fund=Vload[1].

None (-∞:∞) Complex Yes

inputSig This is the input modulated signal (the
envelope.) This signal should be a function of
time, only.

None (-∞:∞) Complex Yes

sourceZ This is the source impedance. This can be a
swept parameter.

None (0:∞) Complex Yes

loadZ This is the load impedance. This can be a swept
parameter.

None (0:∞) Complex Yes

mainCh These are the main channel frequency limits, as
an offset from the carrier frequency. Example:
{(-3.84 MHz/2),(3.84 MHz/2)}

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

mainChForPout These are the frequency limits used for
computing the modulated output power.
Normally these would be the same as the
mainCh argument, but this allows you to specify
a different bandwidth for computing the
modulated output power.

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

lowerAdjCh These are the lower adjacent channel frequency
limits as an offset from the carrier frequency.
Example: MainLimits - (5 MHz)

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

upperAdjCh These are the upper adjacent channel frequency
limits as an offset from the carrier frequency.
Example: MainLimits + (5 MHz)

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

lowerAltCh These are the lower alternate channel frequency
limits as an offset from the carrier frequency.
Example: MainLimits - (10 MHz)

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

upperAltCh These are the upper alternate channel
frequency limits as an offset from the carrier
frequency. Example: MainLimits + (10 MHz)

None (-∞:∞) 1X2
matrix,
Real or
Integer

Yes

winType window type "Kaiser" † string No

winConst window constant that affects the shape of the
applied window.

depends
on
winType
used

[0:∞) Real No

† winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

Measurement Expressions

71

Vload_fundHB=Vload[1]

Vin_fund=_3GPPFDD_UE_Tx_12_2_SigGen..Vsource

Zsource=50

Zload=50

MainLimits={-3.84 MHz/2,3.84 MHz/2}
MainLimitsForPout=MainLimits

LoChLimits=MainLimits-(5 MHz)

UpChLimits=MainLimits+(5 MHz)

LoChLimitsAlt=MainLimits-(10 MHz)

UpChLimitsAlt=MainLimits+(10 MHz)

Data_DDS=Mod_Data_from_1tone_swpUNI("LI", "Yes", Vload_fundHB, Vin_fund,

Zsource, Zload, MainLimits, MainLimitsForPout, LoChLimits, UpChLimits,

LoChLimitsAlt, UpChLimitsAlt, "Kaiser",)

ACPR_dBc=Data_DDS(0)

Pout_dBm=Data_DDS(2)

ACPR_vs_Pout=vs(ACPR_dBc,Pout_dBm)

AltCPR_dBc=Data_DDS(1)

AltCPR_vs_Pout=vs(AltCPR_dBc,Pout_dBm)

EVM_percent=Data_DDS(3)

EVM_vs_Pout=vs(EVM_percent,Pout_dBm)

 See Also

ACPR_ChPwr_or_EVM_from_1toneSwp() (expmeas)

 Notes/Equations

This function returns the adjacent and alternate channel power ratios, main channel
power, and EVM. Because it returns multiple results, it cannot be used in a measurement
expression on the schematic. It can only be used in the data display.
The advantage of using this function instead of ACPR_ChPwr_or_EVM_from_1tone_swp()
is that it is more efficient for obtaining all these results. When using
ACPR_ChPwr_or_EVM_from_1tone_swp(), you have to call it once to get the adjacent
channel power ratios, once again to get the alternate channel power ratios, once again to
get the main channel power, and once again to get the EVM. The big disadvantage of
using the Mod_Data_from_1tone_swpUNI() is that this function will get executed each
time you open a data display that contains it. While it is slower to use the
ACPR_ChPwr_or_EVM_from_1tone_swp() function on the schematic, the advantage is that
the results are written into the dataset, and data displays that show these results open
instantly.

For EVM, the single-tone method is not specification-compliant. It just measures the “raw”
EVM, computed at each time point. The EVM is computed after correcting for the average
phase difference and RMS amplitude difference between the output and input modulated
signals. If the modulated signal at the output of the amplifier has only a constant phase
shift and a constant gain (meaning that neither vary with the amplitude of the input
modulated signal), then the EVM will be zero. With this method, the EVM is computed at
each time point, not at just the symbol times. There is no demodulation or decoding of the
signal, so you can’t calculate the EVM of each sub-carrier, say for an LTE signal.

For ACPR, the single-tone method does not include any receive-side filtering. It just
generates the spectrum at the output of the amplifier, integrates the power in the main,
adjacent, and alternate channels, then computes the ratios. The single-tone method of

Measurement Expressions

72

computing EVM (and ACPR) will tend to become less accurate as the bandwidth of the
signal gets larger. This is because this method assumes the response of the amplifier is
constant across the modulation bandwidth (we’re modeling the nonlinearity by injecting a
single tone at the carrier frequency, after all.)
 peak_pwr()

Returns the peak power of the input voltage data

 Syntax

peakP = peak_pwr(voltage, refR, percent, unit)

 Arguments

Name Description Default Range Type Required

voltage baseband or complex envelope voltage
signal

None (-∞:∞) Integer, Real,
Complex

Yes

refR reference resistance in Ohms 50.0 (0:∞) Real No

percent percentage of time the returned power
value is exceeded

0.0 [0:100] Real No

unit power unit to be used "W" "W","dBm","dBW" string No

 Examples

peakP = peak_pwr(Vout[1], 100, , "dBW")

where Vout is a named node in a Circuit Envelope simulation, will return the

peak power (in dBW) at the fundamental frequency using 100 Ohms as reference

resistance.

peakP = peak_pwr(T1, , 5)

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the power level (in W) that is exceeded 5% of the time for the voltage signal

recorded in the TimedSink using 50 Ohms as reference resistance. If the signal

recorded by the TimedSink is complex envelope Gaussian noise with a standard

deviation of 30 mV for each of the I and Q envelopes, then peakP will be very

close to 5.39e-5 W (-ln(0.05) / 0.032 / 50).

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

peak_to_avg_pwr() (expmeas), power_ccdf() (expmeas), pwr_vs_t() (expmeas),
total_pwr() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with input data (voltage) of any dimensions when the percent
argument is 0 and up to three dimensions when the percent argument is greater than 0. It

Measurement Expressions

73

can handle both baseband as well as complex envelope data.

When the percent argument is set to 0, the returned value is the maximum instantaneous
power of the input voltage signal. When the percent argument is set to a value greater
than 0, the returned value is the power level that is exceeded for percent amount of time.
This argument is useful since some wireless standards specify the peak power not as the
absolute maximum instantaneous power but as the power level that is exceeded for some
percentage of time. For example, the 3GPP standard defines the maximum power as the
power level that is exceeded for 1% of the time.
 peak_to_avg_pwr()

Returns the peak to average power ratio of the input voltage data

 Syntax

peak_avg_ratio = peak_to_avg_pwr(voltage, percent, unit)

 Arguments

Name Description Default Range Type Required

voltage baseband or complex envelope voltage signal None (-∞:∞) Integer, Real,
Complex

Yes

percent percentage of time the returned power value is
exceeded

0.0 [0:100] Real No

unit unit to be used "dB" "dB","ratio" string No

 Examples

peak_avg_ratio = peak_to_avg_pwr(Vout[1], , "ratio")

where Vout is a named node in a Circuit Envelope simulation, will return the

peak to average power ratio (as a ratio) at the fundamental frequency.

peak_avg_ratio = peak_to_avg_pwr(T1, 5, "ratio")

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the ratio of the power level that is exceeded 5% of the time to the average

power level for the voltage signal recorded in the TimedSink. If the signal

recorded by the TimedSink is complex envelope Gaussian noise with the same

standard deviation for both the I and Q envelopes, then peak_avg_ratio will be

very close to 2.99 (-ln(0.05)).

peak_avg_ratio = peak_to_avg_pwr(T1)

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the peak to average power ratio (in dB) for the voltage signal recorded in the

TimedSink. If the signal recorded by the TimedSink is an ideal QPSK signal

(filtered using a raised cosine filter of ExcessBW 0.5), then peak_avg_ratio

will be very close to 3.95 dB. If the signal recorded by the TimedSink is an

ideal /4-DQPSK signal (filtered using a raised cosine filter of ExcessBW 0.5),

then peak_avg_ratio will be very close to 3.3 dB.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

Measurement Expressions

74

 See Also

peak_pwr() (expmeas), power_ccdf() (expmeas), pwr_vs_t() (expmeas), total_pwr()
(expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with input data (voltage) of any dimensions when the percent
argument is 0 and up to three dimensions when the percent argument is greater than 0.
The expression can accommodate both baseband as well as complex envelope data.

The peak to average ratio is computed by calling the peak_pwr() and total_pwr()
expressions and then taking the ratio of the two values returned by these expressions.
The percent argument is used for the calculation of the peak power value. For the use and
meaning of the percent argument see the peak_pwr() (expmeas) Notes/Equations.

Since a ratio of power values is calculated a reference resistance is not needed for this
measurement.
 power_ccdf()

Returns the power CCDF (Complementary Cumulative Distribution Function) curve for the
input voltage/current data.

 Syntax

pCCDF = power_ccdf(data, numBins)

 Arguments

Name Description Default Range Type Required

data baseband or complex envelope
voltage/current signal

None (-
∞:∞)

Integer, Real,
Complex

Yes

numBins number of points in the returned power
CCDF curve

log2(numDataPoints) [1:∞) Integer No

 Examples

pCCDF = power_ccdf(Vout[1])

where Vout is a named node in a Circuit Envelope simulation, will return the

power CCDF curve for the voltage at the fundamental frequency. The returned

power CCDF curve will have the default number of points.

pCCDF = power_ccdf(T1, 10)

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the power CCDF curve for the voltage signal recorded in the TimedSink. The

returned curve will have 10 points.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

Measurement Expressions

75

 See Also

peak_pwr() (expmeas), peak_to_avg_pwr() (expmeas), power_ccdf_ref() (expmeas),
pwr_vs_t() (expmeas), total_pwr() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with input data of up to two dimensions. It can accommodate
both baseband as well as complex envelope data.

The power CCDF (typically called just CCDF) measurement is a very common
measurement performed on 2G and 3G wireless signals. The CCDF curve shows the
probability that the instantaneous signal power will be higher than the average signal
power by a certain amount of dB. The independent axis of the CCDF curve shows power
levels in dB with respect to the signal average power level (0 dB corresponds to the signal
average power level). The dependent axis of the CCDF curve shows the probability that
the instantaneous signal power will exceed the corresponding power level on the
independent axis. CCDF Curve for WLAN 802.11a 54 Mbps Signal shows the CCDF curve
for a WLAN 802.11a 54 Mbps signal.

 CCDF Curve for WLAN 802.11a 54 Mbps Signal

Measurement Expressions

76

In CCDF Curve for WLAN 802.11a 54 Mbps Signal, you can see that the instantaneous
signal power exceeds the average signal power (0 dB) for 20% of the time. You can also
see that the instantaneous signal power exceeds the average signal power by 5 dB for
only 0.3% of the time.
 power_ccdf_ref()

Returns the power CCDF (Complementary Cumulative Distribution Function) curve for
white gaussian noise.

 Syntax

ccdfRef = power_ccdf_ref(indepPowerRatioValues)

 Arguments

Name Description Default Range Type Required

indepPowerRatioValues power levels (in dB with respect to the average
power level of a white gaussian noise signal) at
which the power CCDF for white gaussian noise
will be calculated

None (-
∞:∞)

Integer,
Real

Yes

 Examples

pCCDF = power_ccdf(T1)

ccdfRef = power_ccdf_ref(indep(pCCDF))

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the power CCDF curve for white gaussian noise evaluated at the same power

levels as the pCCDF curve.

ccdfRef = power_ccdf_ref([-10::2::8])

will return the power CCDF curve for white gaussian noise evaluated at the

power levels -10, -8, -6, -4, -2, 0, 2, 4, 6, 8 (in dB with respect to the

average power level of a white gaussian noise signal).

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

power_ccdf() (expmeas)

 Notes/Equations

This expression can be used with input data of up to two dimensions.
The input data must be sorted in increasing or decreasing order. In addition, it is
recommended that the input vector argument has uniformly spaced values. The vector
"indep(X)", where X is the value returned by the power_ccdf() expression, is guaranteed
to have uniformly spaced values sorted in increasing order. This would be the most typical
value for the input argument of power_ccdf_ref().

Measurement Expressions

77

A typical power CCDF measurement (see Notes/Equations for power_ccdf() (expmeas))
provides a reference CCDF curve along with the measured CCDF curve. This reference
curve is typically the power CCDF curve for a white gaussian noise signal. This expression
can generate this reference curve. CCDF Curve for WLAN 802.11a Signal with Reference
Curve shows the CCDF curve for a WLAN 802.11a signal along with the reference curve.

 CCDF Curve for WLAN 802.11a Signal with Reference Curve

 pwr_vs_t()

Returns the power vs. time waveform for the input voltage data

 Syntax

p_vs_t = pwr_vs_t(voltage, refR, unit)

 Arguments

Name Description Default Range Type Required

voltage baseband or complex envelope voltage
signal

None (-∞:∞) Integer, Real,
Complex

Yes

refR reference resistance in Ohms 50.0 (0:∞) Real No

unit power unit to be used "W" "W","dBm","dBW" string No

 Examples

p_vs_t = pwr_vs_t(Vout[1], 100, "dBm")

Measurement Expressions

78

where Vout is a named node in a Circuit Envelope simulation, will return the

power (in dBm) vs. time waveform for the voltage at the fundamental frequency

using 100 Ohms as reference resistance.

p_vs_t = pwr_vs_t(T1)

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the power (in W) vs. time waveform for the voltage signal recorded in the

TimedSink using 50 Ohms as reference resistance.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

peak_pwr() (expmeas), peak_to_avg_pwr() (expmeas), power_ccdf() (expmeas),
total_pwr() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with input data (voltage) of any dimensions. It can
accommodate both baseband as well as complex envelope data.
 relative_noise_bw()

Computes the relative noise bandwidth of the smoothing windows used by the fs()
function

 Syntax

y = relative_noise_bw(winType, winConst)

 Arguments

Name Description Default Range Type Required

winType window type None † string No

winConst window constant that affects the shape of the applied window. 0.75 [0:∞) Real No

† winType can be: "none", "hamming", "hanning", "gaussian", "kaiser", "8510",
"blackman","blackman-harris"

 Examples

winType = "Kaiser"

winConst = 8

relNoiseBW = relative_noise_bw("Kaiser", 8) = 1.666

Vfund=vOut[1]

VoltageSpectralDensity = fs(Vfund, , , , , winType, winConst)

PowerSpectralDensity = 0.5 * mag(VoltageSpectralDensity**2)/50/relNoiseBW

where vOut is the named connection at a 50-ohm load, and it is an output from a

Circuit Envelope simulation.

Measurement Expressions

79

Note vOut is a named connection on the schematic. Assuming that a Circuit

Envelope simulation was run, vOut is output to the dataset as a two-dimensional

matrix. The first dimension is time, and there is a value for each time point

in the simulation. The second dimension is frequency, and there is a value for

each fundamental frequency, each harmonic, and each mixing term in the

analysis, as well as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the

lowest non-baseband frequency (the fundamental analysis frequency, unless a

multitone analysis has been run and there are mixing products). For former MDS

users, the notation "vOut[*, 2]" in MDS corresponds to the notation of

"vOut[1]".

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

acpr_vi() (expmeas), acpr_vr() (expmeas), channel_power_vi() (expmeas),
channel_power_vr() (expmeas), fs() (expmeas)

 Notes/Equations

Used in The following functions: acpr_vi, acpr_vr, channel_power_vi, channel_power_vr.

The relative noise bandwidth function is used to account for the fact that as windows are
applied, the effective noise bandwidth increases with respect to the normal resolution
bandwidth. The resolution bandwidth is determined by the time span and not by the
displayed frequency resolution.
 sample_delay_pi4dqpsk()

This function calculates the optimal sampling point within a symbol for a given pi4dqpsk
waveform. "Optimal" is defined as the sampling point that provides the lowest bit error
rate.

 Syntax

y = sample_delay_pi4dqpsk(vlQ, symbolRate, path_delay, timeResolution)

 Arguments

Measurement Expressions

80

Name Description Default Range Type Required

vlQ complex envelope (I + j * Q) of a pi/4 DQPSK signal None (-
∞:∞)

Complex Yes

symbolRate symbol rate of the pi/4 DQPSK signal None (0:∞) Real Yes

path_delay time delay on the waveform before the sampling starts † None (0:∞) Real Yes

timeResolution time step (typically one-tenth of a symbol time or less)
used to search for the best sampling point in a given
symbol period

None (0:∞) Real Yes

† If the delay is 0, this parameter may be omitted. If it is non-zero, enter the delay value.
This can be calculated using the function delay_path().

 Examples

a = sample_delay_pi4dqpsk(vout[1], 25e3, 1.5e-6, 0.15e-6)

 Defined in

Built in

 See Also

ber_pi4dqpsk() (expmeas), ber_qpsk() (expmeas), const_evm() (expmeas)

 Notes/Equations

This function can be used only with 1-dimensional data.
 sample_delay_qpsk()

This function calculates the optimal sampling point within a symbol for a given QPSK
waveform."Optimal" is defined as the sampling point that provides the lowest bit error
rate.

 Syntax

y = sample_delay_qpsk(vlQ, symbolRate, path_delay, timeResolution)

 Arguments

Name Description Default Range Type Required

vlQ complex envelope (I + j * Q) of a QPSK signal None (-
∞:∞)

Complex Yes

symbolRate symbol rate of the QPSK signal None (0:∞) Real Yes

path_delay time delay on the waveform before the sampling starts † None (0:∞) Real Yes

timeResolution time step (typically one-tenth of a symbol time or less)
used to search for the best sampling point in a given
symbol period

None (0:∞) Real Yes

† If the delay is 0, this parameter may be omitted. If it is non-zero, enter the delay value.
This can be calculated using the function delay_path().

Measurement Expressions

81

 Examples

a = sample_delay_qpsk(vout[1], 25e3, 1.5e-6, 0.15e-6)

 Defined in

Built in

 See Also

ber_pi4dqpsk() (expmeas), ber_qpsk() (expmeas), const_evm() (expmeas)

 Notes/Equations

This function can be used only with 1-dimensional data.

Note
This function is only available in 32-bit simulator.

 spectrum_analyzer()

Performs a spectrum analysis for the input voltage/current data

 Syntax

spectrum = spectrum_analyzer(data, fCarrier, start, stop, window, resBW)

 Arguments

Name Description Default Range Type Required

data baseband or complex envelope voltage/current
signal

None (-
∞:∞)

Real,
Complex

Yes

fCarrier frequency around which the spectrum will be
centered

0 [0:∞) Real No

start start time for the spectrum analysis first point of input
data

[0:∞) Integer, Real No

stop stop time for the spectrum analysis last point of input
data

[0:∞) Integer, Real No

window type of window to be used 0 [0:7] † Integer,
string

No

resBW resolution bandwidth 0 [0:∞) Integer, Real No

† See Notes for the window type.

 Examples

spectrum = spectrum_analyzer(Vout[1])

where Vout is a named node in a Circuit Envelope simulation, will return the

voltage spectrum at the fundamental frequency. The spectrum will be centered

Measurement Expressions

82

around 0 Hz. All the input data will be processed in one block resulting in the

highest resolution bandwidth possible. No windowing will be done.

spectrum = spectrum_analyzer(Vout[1], 3.5e9, , , "Kaiser 7.865", 30e3)

where Vout is a named node in a Circuit Envelope simulation, will return the

voltage spectrum at the fundamental frequency. The spectrum will be centered

around 3.5 GHz. The input signal will be broken down in smaller segments in

order to achieve 30 kHz of resolution bandwidth. All segments will be windowed

with a Kaiser 7.865 window. The spectra of all segments will be averaged.

spectrum = spectrum_analyzer(T1, , 1.0e-3, 2.0e-3, "Hanning 0.5")

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the voltage spectrum for the segment between 1 msec and 2 msec of the signal

recorded in the TimedSink. Of course, the TimedSink component must have

recorded a signal that starts before 1 msec and ends after 2 msec. The spectrum

will be centered around 0 Hz. A Hanning 0.5 window will be used.

 Defined in

Built in

 See Also

fs() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with input data of up to two dimensions. It can handle both
baseband as well as complex envelope input data. Although non-uniformly sampled data is
supported, it is recommended to use this expression with uniformly sampled data.

The spectrum_analyzer() expression returns the voltage or current spectrum of the input
(voltage or current) signal. The returned values are the complex amplitude voltages or
currents at the frequencies of the spectral tones. The returned values are not the powers
at the frequencies of the spectral tones. However, one can calculate and display the power
spectrum by using the dbm() (expmeas) expression (for voltage input data) or writing a
simple equation (for current input data) in the data display window.

Note that, for baseband signals and for the frequency of 0 Hz, the dBm function returns a
power value that is 3 dB less than the actual power. This is because the primary use of
the dBm function is with RF signals, where the 0 Hz frequency corresponds to the carrier
frequency and not really 0 Hz signal frequency. If the baseband signal has no significant
power at DC, this 3 dB error is insignificant and can be ignored-otherwise, it must be
considered.

The basis of the algorithm used by the spectrum_analyzer() expression is the fs()
(expmeas) expression (the chirp-Z transform option of fs() is used). The input data can be
processed as one block and the spectrum calculated over the entire input signal.
Alternatively, the input signal can be broken down in smaller blocks and the spectra of all

Measurement Expressions

83

blocks averaged.

The fCarrier argument sets the frequency around which the spectrum will be centered.
This is only true for a complex envelope signal. For baseband signals, this argument is
ignored. The spectrum span is:

for complex envelope signals [fCarrier-0.5/TStep, fCarrier+0.5/TStep]
for baseband signals [0, 0.5/TStep]
where TStep is the simulation time step.

If it is not desirable to process all the input data, the start and stop arguments can be
used to define a segment of the input data to be processed. This can be useful when
trying to exclude parts of the signal where transients occur.
The window argument sets the window that will be used to window the input data.
Windowing is often necessary in transform-based (chirp-Z, FFT) spectrum estimation.
Without windowing, the estimated spectrum may suffer from spectral leakage that can
cause misleading measurements or masking of weak signal spectral detail by spurious
artifacts. If the input data is broken down in multiple blocks then the window is applied to
each block.

The window argument accepts the following strings: "none", "Hamming 0.54", "Hanning
0.50", "Gaussian 0.75", "Kaiser 7.865", "8510 6.0", "Blackman", "Blackman-Harris". The
equations defining these windows are given below:

none:

where N is the window size
Hamming 0.54:

where N is the window size
Hanning 0.5:

where N is the window size
Gaussian 0.75:

where N is the window size
Kaiser 7.865:

Measurement Expressions

84

where N is the window size, α = N / 2, and I0(.) is the 0th order modified Bessel

function of the first kind
8510 6.0 (Kaiser 6.0):

where N is the window size, α = N / 2, and I0(.) is the 0th order modified Bessel

function of the first kind
Blackman:

where N is the window size
Blackman-Harris:

where N is the window size

The resBW parameter can be used to set the spectrum measurement resolution
bandwidth. If set to 0, it is ignored and the signal segment defined by start and stop is
processed as one segment. In this mode of operation, the returned spectrum will have the
highest possible resolution bandwidth (resolution bandwidth is inversely proportional to
the input signal length). If resBW is set to a value greater than 0, then the input signal
segment defined by start and stop is broken down in smaller subsegments of the
appropriate length. The length of each segment is decided based on the value of resBW
and the selected window. The spectrum of each subsegment is calculated and averaged
with the spectra of the other subsegments. In this mode of operation, the resolution
bandwidth achieved is resBW. Averaging multiple input signal segments. shows an
example where the input signal is broken down in multiple segments. As can be seen in
this figure, if an exact integer multiple of subsegments cannot fit in the segment defined
by start and stop, then part of the signal may not be used.

Measurement Expressions

85

 Averaging multiple input signal segments.

In an analog swept spectrum analyzer, the resolution bandwidth is determined by the last
in a series of analog IF filters. In contrast, the spectrum_analyzer() expression calculates
the spectrum using DSP algorithms and so the resolution bandwidth is determined by the
length of the input data segment the algorithm processes and the selected window.
ResBW = ENBW = NENBW / T
where ENBW is the window equivalent noise bandwidth
T is the length of the input data segment in seconds and
NENBW is the window normalized equivalent noise bandwidth The following table shows
the NENBW values for the available windows).

Window NENBW

none 1.0

Hamming 0.54 1.363

Hanning 0.5 1.5

Gaussian 0.75 1.883

Kaiser 7.865 1.653

8510 6.0 1.467

Blackman 1.727

Blackman-Harris 2.021

The equivalent noise bandwidth (ENBW) of a window is defined as the width of a
rectangular filter that passes the same amount of white noise as the window. The
normalized equivalent noise bandwidth (NENBW) is computed by multiplying ENBW with
the time record length. For example, a Hanning window with a 0.5 second input data
segment will result in an ENBW (as well as ResBW) of 3 Hz (1.5 / 0.5).

How to choose the right window
Every time a window is applied to a signal (Window = none effectively applies a
rectangular window to the signal), leakage occurs, that is, power from one spectral
component leaks into the adjacent ones. Leakage from strong spectral components can
result in hiding/masking of nearby weaker spectral components. Even strong spectral
components can be affected by leakage. For example, two strong spectral components
close to each other can appear as one due to leakage.
Choosing the right window for a spectral measurement is very important. The choice of
window depends on what is being measured and what the trade-offs between frequency
resolution (ability to distinguish spectral components of comparable strength that are
close to each other) and dynamic range (ability to measure signals with spectral
components of widely varying strengths and distributed over a wide range) are.

Measurement Expressions

86

As described above, windows can be characterized by their Normalized Equivalent Noise
Bandwidth (NENBW). In general, for the same length of signal processed, the higher the
NENBW of a window the higher its dynamic range (less leakage) and the poorer its
frequency resolution.
Some general guidelines for choosing a window are given below:

Do not use a window (Window = none) when analyzing transients.
For periodic signals whose spectral components have comparable strengths and when
the signal segment processed includes an exact integer multiple of periods, the best
results are obtained if no window is used (Window = none, which is equivalent to
using a rectangular window). Any start up transients should be excluded.
For periodic signals whose spectral components have significantly different strengths
and/or when the signal segment processed does not include an exact integer multiple
of periods, the use of a window can improve the detection of the weaker spectral
components. The higher the NENBW the more likely the weaker spectral components
will be detected. However, this trades-off frequency resolution and so if the spectral
components are very close to each other the weaker one might remain unresolved.
To improve frequency resolution while still maintaining a good dynamic range use a
window but process a longer signal segment.
For aperiodic signals such as modulated signals (QPSK, QAM, GSM, EDGE, CDMA,
OFDM) the use of a window is highly recommended. The window will attenuate the
signal at both ends of the signal segment processed to zero. This makes the signal
apear periodic and reduces leakage.

 total_pwr()

Returns the total (average) power of the input voltage data

 Syntax

totalP = total_pwr(voltage, refR, unit)

 Arguments

Name Description Default Range Type Required

voltage baseband or complex envelope voltage
signal

None (-∞:∞) Integer, Real,
Complex

Yes

refR reference resistance in Ohms 50.0 (0:∞) Real No

unit power unit to be used "W" "W","dBm","dBW" string No

 Examples

totalP = total_pwr(Vout[1], 100, "dBm")

where Vout is a named node in a Circuit Envelope simulation, will return the

total power (in dBm) at the fundamental frequency using 100 Ohms as reference

resistance.

totalP = total_pwr(T1)

where T1 is the name of a TimedSink component (in a DSP schematic), will return

the total power (in W) for the voltage signal recorded in the TimedSink using

50 Ohms as reference resistance. If the signal recorded by the TimedSink is

baseband Gaussian noise with a standard deviation of 30 mV, then totalP will be

very close to 1.8e-5 W (0.032 / 50).

Measurement Expressions

87

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

peak_pwr() (expmeas), peak_to_avg_pwr() (expmeas), power_ccdf() (expmeas),
pwr_vs_t() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with input data (voltage) of any dimensions. It can
accommodate both baseband as well as complex envelope data.
 trajectory()

Generates the trajectory diagram from I and Q data, which are usually produced by a
Circuit Envelope simulation.

 Syntax

Traj = trajectory(i_data, q_data)

 Arguments

Name Description Default Range Type Required

i_data in-phase component of data versus time of a single complex
voltage spectral component (for example, the fundamental) †

None (-
∞:∞)

Complex Yes

q_data quadrature-phase component of data versus time of a single
complex voltage spectral component (for example, the
fundamental) †

None (-
∞:∞)

Complex Yes

† This could be a baseband signal instead, but in either case it must be real valued versus
time.

 Examples

Rotation = -0.21

Vfund=vOut[1] *exp(j * Rotation)

Vimag = imag(Vfund)

Vreal = real(Vfund)

Traj = trajectory(Vreal, Vimag)

where Rotation is a user-selectable parameter that rotates the trajectory

diagram by that many radians and vOut is the named connection at a node.

Note vOut is a named connection on the schematic. Assuming that a Circuit

Envelope

simulation was run, vOut is output to the dataset as a two-dimensional matrix.

The first dimension is time, and there is a value for each time point in the

simulation. The second dimension is frequency, and there is a value for each

fundamental frequency, each harmonic, and each mixing term in the analysis, as

well as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the

Measurement Expressions

88

lowest non-baseband frequency (the fundamental analysis frequency, unless a

multitone analysis has been run and there are mixing products). For former MDS

users, the notation "vOut[*, 2]" in MDS corresponds to the notation of

"vOut[1]".

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

constellation() (expmeas), const_evm() (expmeas)

 Notes/Equations

Used in Trajectory diagram generation.
The I and Q data do not need to be baseband waveforms. For example, they could be the
in-phase (real or I) and quadrature-phase (imaginary or Q) part of a modulated carrier.
The user must supply the I and Q waveforms versus time.

Measurement Expressions

89

 Data Access Functions for Measurement Expressions
This section describes data access and data manipulation functions in detail. The functions
are listed in alphabetical order.

You can use these functions to find information about a piece of data (e.g., independent
values, size, type, attributes, etc.). You can also use some functions to generate data for
plotting circles and contours.

Note
For information on how these functions are used, see the tutorial example Using Expressions in the Data
Display Window (examples).

build subrange() (expmeas)
chop() (expmeas)
chr() Measurement (expmeas)
circle() (expmeas)
collapse() (expmeas)
contour_ex() (expmeas)
contour() (expmeas)
contour polar() (expmeas)
copy() (expmeas)
create() (expmeas)
dd_threshold() (expmeas)
delete() (expmeas)
expand() (expmeas)
find() (expmeas)
find index() (expmeas)
generate() (expmeas)
get attr() (expmeas)
get indep values() (expmeas)
indep() (expmeas)
max index() (expmeas)
min index() (expmeas)
permute() (expmeas)
plot vs() (expmeas)
set attr() (expmeas)
size() (expmeas)
sort() (expmeas)
sweep dim() (expmeas)
sweep size() (expmeas)
type() (expmeas)
vs() (expmeas)
what() (expmeas)
write var() (expmeas)

 build_subrange()

Builds the subrange data according to the innermost independent range. Use with all
swept data

 Syntax

y = build_subrange(data, innermostIndepLow, innermostIndepHigh)

Measurement Expressions

90

 Arguments

Name Description Default Range Type Required

data analysis results or user
input.

None (-
∞:∞)

Integer, Real,
Complex

Yes

innermostIndepLow lowest value of
innermost independent

minimum value of the inner
most independent variable

(-
∞:∞)

Integer, Real,
Complex

No

innermostIndepHigh highesr value of
innermost independent

maximum value of the inner
most independent variable

(-
∞:∞)

Integer, Real,
Complex

No

 Examples

Given S-parameter data swept as a function of frequency with a range of 100 MHz

to 500 MHz, find the values of S12 in the range of 200 MHz to 400 MHz.

subrange_S12 = build_subrange(S12, 200MHz, 400MHz)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael
 chop()

Replace numbers in x with magnitude less than dx with 0

 Syntax

y = chop(x, dx)

 Arguments

Name Description Default Range Type Required

x numbers to replace None (-
∞:∞)

Integer, real, complex Yes

dx value to compare to 1e-10 (-
∞:∞)

Integer, real, complex Yes

 Examples

chop(1) returns 1

chop(1e-12) returns 0

chop(1+1e-12i) returns 1+0i

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 Notes/Equations

The chop() function acts independently on the real and complex components of x,
comparing each to mag(dx). For example,
y = x if mag(x) >= mag(dx)

y = 0 if mag(x)

Measurement Expressions

91

 chr()

Returns the character representation of an integer

 Syntax

y = chr(x)

 Arguments

Name Description Default Range Type Required

x valid number representing a ASCII character None [0:127] Integer Yes

 Examples

a = chr(64) returns @

a = chr(60) returns <

a = chr(117) returns u

 Defined in

Built in

Note
The function name chr() is used for more than one type of expression. For comparison, see the AEL
Function chr() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 circle()

Used to draw a circle on a Data Display page. Accepts the arguments center, radius, and
number of points. Can only be used on polar plots and Smith charts.

 Syntax

a = circle(center, radius, numPts)

 Arguments

Name Description Default Range Type Required

center center coordinate None (-
∞:∞)

Integer, real,
Complex

Yes

radius radius None [0:∞) Integer, real Yes

numPts number of points in the circle None [0:∞) Integer Yes

 Examples

x = circle(1,1,500)

y = circle(1+j*1,1,500)

 Defined in

Built in

Measurement Expressions

92

 collapse()

Collapses the inner independent variable and returns one dimensional data

 Syntax

y = collapse(x)

 Arguments

Name Description Default Range Type Required

x multi-dimensional data to be collapsed (dimension is
larger than one and less than four)

None (-
∞:∞)

Integer, real,
complex

Yes

 Examples

Given monte carlo analysis results for the S11 of a transmission line:

It is two-dimensional data: the outer sweep is mcTrial; the inner sweep is the

frequency from 100 MHz to 300 MHz and is given in the following format:

mcTrial freq S11

1 100MHz 0.2

200MHz 0.4

300MHz 0.6

2 100MHz 0.3

200MHz 0.5

300MHz 0.7

Returns a one dimensional data with mcTrail, containing all of the previous

data:

collapsed_S11 = collapse(S11)

mcTrial S11

1 0.2

1 0.4

1 0.6

2 0.3

2 0.5

2 0.7

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

expand() (expmeas)

 Notes/Equations

The collapse() function cannot be used to convert a matrix into an array or vector. Use the
expand() function instead.

Measurement Expressions

93

 contour_ex()

Generates contours at desired levels that you specify, or at "round number" values on
polar, or rectangular surface data

 Syntax

Response1_Contours=contour_ex(data, rect_or_polar, step_size, num_lines,
desired_levels, interp_type, min_or_max, data_format)

 Arguments

Name Description Default Range Type Required

data 2-dimensional, or 3-dimensional
data

None (-∞:∞) Real Yes

rect_or_polar specifies whether to use the
contour() or contour_polar()
function internally

"POLAR"
or 1

(0, 1), or ("RECT",
"POLAR")
0/"RECT" - use
contour(), 1/"POLAR"
- use contour_polar()

integer/string No

step_size step size between contour lines,
a single real or integer number

1 (0:∞) Real or Integer No

num_lines number of contour lines
requested

5 [1:∞) Real or Integer No

desired_levels specific desired contour levels None (-∞:∞) Real or Integer
single value or
array

No

interp_type specifies the type of interpolation
to perform

2 (0, 1, 2) 0 - No
Interpolation, 1 -
Cubic Spline, 2 - B-
Spline

integer No

min_or_max boolean variable that specifies
whether the contours are to be
drawn from the maximum value
down or from the minimum value
up

1 (0, 1), or ("Min",
"Max")
0/"Min", from the
minimum value up
1/"Max", from the
maximum value down

integer or string No

data_format specifies data format. It is
required for the polar contour
plot

"RI" "RI"/"MA" string No

 Examples

polar contours

Response1=PAE

StepSize=1

Num_Lines=5

InterpType=2

Response1_Contours=contour_ex(Response1, StepSize, Num_Lines, [25,30,35],

InterpType)

 Defined in

Built in

Measurement Expressions

94

 See Also

contour() (expmeas), contour_polar() (expmeas)

 Notes/Equations

This function is an extended function for contour() and contour_polar(). It generates
contours at desired levels that you specify, or at "round number" values on polar, or
rectangular surface data.
 contour()

Generates contour levels on surface data

 Syntax

y = contour(data, contour_levels, interpolation_type)

 Arguments

Name Description Default Range Type Required

data data to be contoured, which
must be at least two-
dimensional real, integer or
implicit

None (-∞:∞) Integer,
Real

Yes

contour_levels one-dimensional quantity
specifying the levels of the
contours †

six levels equally spaced
between the maximum and
the minimum of the data

(-∞:∞) Integer,
Real

No

interpolation_type specifies the type of
interpolation to perform

0 [0,1,2]
† †

Integer No

† Normally specified by the sweep generator "[]," but can also be specified as a vector
† † Interpolation types are: 0 - No Interpolation,1 - Cubic Spline,2 - B-Spline

 Examples

a = contour(dB(S11), [1::3::10])

a = contour(dB(S11), {1, 4, 7, 10})

produces a set of four equally spaced contours on a surface generated as a

function of, say, frequency and strip width.

a = contour(dB(S11), {1, 4, 7, 10}, 1)

produces the same set of contours as the above example, but with cubic spline

interpolation.

 Defined in

Built in

 See Also

Measurement Expressions

95

contour_polar() (expmeas)

 Notes/Equations

This function introduces three extra inner independents into the data. The first two are
"level", the contour level, and "number", the contour number. For each contour level there
may be n contours. The contour is an integer running from 1 to n. The contour is
represented as an (x, y) pair with x as the inner independent.
 contour_polar()

Generates contour levels on polar or Smith chart surface data

 Syntax

y = contour_polar(data, contour_levels, InterpolationType, DataFormat)

 Arguments

Name Description Default Range Type Required

data polar or Smith chart data to
be contoured, (and
therefore is surface data)

None (-∞:∞) Integer,
Real,
Complex

Yes

contour_levels one-dimensional quantity
specifying the levels of the
contours †

six levels equally spaced
between the maximum and
the minimum of the data

(-∞:∞) Integer,
Real

No

InterpolationType specifies the type of
interpolation to perform

0 [0,1,2]
† †

Integer No

DataFormat format of swept data "RI" "RI",
"MA" ††

String No

† Normally specified by the sweep generator "[]," but can also be specified as a vector
† † Interpolation types are: 0 - No Interpolation,1 - Cubic Spline,2 - B-Spline
†† DataFormat are: "RI" = real-imaginary, "MA" = magnitude-phase

 Examples

a = contour_polar(data_polar, [1::4])

a = contour_polar(data_polar, {1, 2, 3, 4})

produces a set of four equally spaced contours on a polar or Smith chart

surface.

a = contour_polar(data_polar, {1, 2, 3, 4}, 2)

produces the same set of contours as the above example, but with B-spline

interpolation.

 Defined in

$HPEESOF_DIR/expressions/ael/display_fun.ael

 See Also

Measurement Expressions

96

contour() (expmeas)

 Notes/Equations

This function introduces three extra inner independents into the data. The first two are
"level", the contour level, and "number", the contour number. For each contour level there
may be n contours. The contour is an integer running from 1 to n. The contour is
represented as an (x,y) pair with x as the inner independent.
 copy()

Makes a copy of a multi-dimensional data variable

 Syntax

y = copy(DataVar)

 Arguments

Name Description Default Range Type Required

DataVar data variable or array that is to be
copied

None None Boolean, integer, real, complex,
string

Yes

 Examples

result = copy(S21) returns the copy of the data stored in the data variable S21

The array or data variable created above can be used as follows:

indepV = indep(result,"Index");

result[0] = complex(1, 2); Sets the first value to a complex number

indepV[0] = 1GHz;

 Defined in

Built in

 See Also

create() (expmeas), delete() (expmeas)

 Notes/Equations

Makes a copy of a multi-dimensional data variable, so that the contents of the copy can be
manipulated. Data Variables in ADS are data structures that are used to hold multi-
dimensional data. Internally they are not implemented as arrays, and therefore do not
have the performance of an array. Accessing and setting data in these arrays are
performance intensive and should be noted.
 create()

Creates a multi-dimensional data variable

Measurement Expressions

97

 Syntax

y = create(Dimensionality, DependDataType, IndepName, IndepType, NumRows,
NumColumns)

 Arguments

Name Description Default Range Type Required

Dimensionality dimensionality of the data variable or
array

None [1:∞) Integer Yes

DependDataType Dependent data type "Real" † String No

IndepName Name(s) of independent "__i" None String No

IndepType Independent data type "Real" † String No

NumRows Number of rows 0 [0:∞) Integer No

NumColumns Number of columns 0 [0:∞) Integer No

† "Boolean", "Integer", "Real", "Complex", "String" or "Byte16"

 Examples

result = create(1, "Complex", {"Index"}, {"Real"},1, 1) returns a 1 dimensional

data variable with dependent type Complex, independent name "Index" and type

real with 1 row and column

The array or data variable created above can be used as follows:

indepV = indep(result,"Index");

result[0] = 1.1;

indepV[0] = 1.0;

A 2-dimensional example is given in the Measurement Expression AEL function

below. Test the function by doing the following:

* Copy the code below into the file user_defined_fun.ael in the directory

$HOME/hpeesof/expressions/ael.

* Launch ADS. In a DDS window create an equation: cre2D=datavar_test_create2()

* Display cre2D to see the contents.

defun datavar_test_create2()

{

decl result = create(2, "Complex", {"Index1", "Index2"}, {"String", "Real"},1,

1);

decl idenp1V = indep(result, "Index1");

decl idenp2V = indep(result, "Index2");

decl iD1, iD2;

for (iD1=0; iD1 < 2; iD1++) {

for (iD2=0; iD2 < 3; iD2++) {

result[iD1,iD2] = complex(iD1, iD2);

idenp2V[iD2] = iD2;

} //for

idenp1V[iD1] = strcat("Val", iD1);

} //for

return result;

}

 Defined in

Measurement Expressions

98

 Defined in

Built in

 See Also

copy() (expmeas), delete() (expmeas)

 Notes/Equations

The create() function can only be used from the measurement expression AEL code and
not from the DDS, the schematic, or PDE AEL.
See the Examples section.

This function is used to create multi-dimensional data variable or arrays. Data Variables in
ADS are data structures that are used to hold multi-dimensional data. Internally they are
not implemented as arrays, and therefore do not have the performance of an array.
Accessing and setting data in these arrays are performance intensive and should be noted.
The number of rows and columns are used in specifying the dimension of matrix data. For
a scalar this would be 1, 1.
 dd_threshold()

Returns the filtered S Parameter matrix

 Syntax

S_Filtered = dd_threshold(S, rep_func, mod_func , relop,threshold,low_freq,high_freq)

 Arguments

Name Description Default Range Type Required

S the input S matrix that needs to be filtered None (-∞:∞) Real,
Complex

Yes

rep_func a function that reduces linear data to scalar data
that can be compared with the threshold eg:
dd_rms,min

None (-∞:∞) function Yes

mod_func a function that is used to modify the Sij data to
comparable units with the threshold eg: dB

None (-∞:∞) function Yes

relop the relational operator, in double quotes as a
string, to compare the Sij statistic and the
threshold.: lhs = statistic rhs = threshold

">=" (">" , ">=" ,
"==", "!=" ,
"<=" ,"<")

String Yes

threshold the rhs value for the relational operator None (-∞:∞) Real Yes

low_freq lower bound for frequency None (-∞) Real No

high_freq higher bound for freq None (∞) Real No

 Examples

S_Filtered = dd_threshold(S, dd_rms,dB ,">=", -30.0,10 Hz, 8GHz).

 Defined in

$HPEESOF_DIR/expressions/ael/utility_fun.ael

Measurement Expressions

99

 See Also

find index() (expmeas), mix() (expmeas)

 Notes/Equations

This function filteres out unwanted S parameters
This function can accept conditionals such as ==, !=, >, <, >= and <=, but not logical
operators such as && and ||.
 delete()

Deletes the multi-dimensional data variable

 Syntax

y = delete(DataVar)

 Arguments

Name Description Default Range Type Required

DataVar data variable or array that is to be
deleted

None None Boolean, integer, real, complex,
string

Yes

 Examples

result = delete(S21) returns true or false depending on whether the data

variable was deleted or not

 Defined in

Built in

 See Also

copy() (expmeas), create() (expmeas)
 expand()

Expands the dependent data of a variable into single points by introducing an additional
inner independent variable

 Syntax

y = expand(x)

 Arguments

Name Description Default Range Type Required

x data to be expanded (dimension is larger than one and
less than four)

None (-
∞:∞)

Integer, real,
Complex

Yes

 Examples

Given a dependent data A which has independent variables

Measurement Expressions

100

B: If A is a 1 dimensional data containing 4 points (10, 20, 30, and 40) and

similarly B is made up of 4 points (1, 2, 3, and 4),

Eqn A = [10,20,30,40]

Eqn B = [1,2,3,4]

Eqn C = vs(A,B,"X")

Using expand(C) increases the dimensionality of the data by 1 where each inner

dependent variable ("X") consists of 1 point.

Eqn Y = expand(C)

X C A B Y

1234 10203040 10203040 1234 X=1 10X=2 20X=3 30X=4 40

 Defined in

Built in

 See Also

collapse() (expmeas)

 Notes/Equations

In addition to the application above, the expand() function can also be used to convert a
matrix into an array or vector. For example, an S-parameter matrix can be converted into
an array by using the equation arr=expand(S) .

 find()

Finds the indices of the conditions that are true. Use with all simulation data

 Syntax

indices = find(condition)

 Arguments

Name Description Default Range Type Required

condition condition None None string Yes

 Examples

Given an S-parameter data swept as a function of frequency, find the value of

S11 at 1GHz:

index_1 = find(freq == 1GHz)

data = S11[index_1]

Given an S-parameter data swept as a function of frequency, find the values of

the frequencies where the

magnitude of S11 is greater than a given value.

lookupValue = 0.58

indices = find(mag(S11) > lookupValue))

Measurement Expressions

101

firstPoint = indices[0]

lastPoint = indices[sweep_size(indices)-1]

freqDifference = freq[lastPoint]- freq[firstPoint]

The following examples assume a Harmonic Balance data vtime, and a marker m1.

Find the dependent value at the marker:

vVal = find(indep(vtime) >= indep(m1) && indep(vtime) <= indep(m1))

Find all the dependent values less than that of the m1 or the value at m1:

vVal = find(indep(vtime) < indep(m1) ,, indep(vtime) == indep(m1))

Find all the dependent values that are not equal to m1:

vVal = find(indep(vtime) != indep(m1))

 Defined in

$HPEESOF_DIR/expressions/ael/utility_fun.ael

 See Also

find_index() (expmeas), mix() (expmeas)

 Notes/Equations

The find function will return all the indices of the conditions that are true. If none of the
conditions are true, then a -1 is returned. The find function performs an exhaustive search
on the given data. The supplied data can be an independent or dependent data. In
addition, the dimension of the data that is returned will be identical to the dimension of
the input data.
The find function can accept conditionals such as ==, !=, >, <, >= and <=, and logical
operators such as && and ||.
 find_index()

Finds the closest index for a given search value. Use with all simulation data

 Syntax

index = find_index(data_sweep, search_value)

 Arguments

Name Description Default Range Type Required

data_sweep data to search None (-
∞:∞)

Integer, Real, complex,
string

Yes

search_value value to
search

None (-
∞:∞)

Integer, Real, complex,
string

Yes

 Examples

Given S-parameter data swept as a function of frequency, find the value of S11 at 1 GHz:
index = find_index(freq, 1GHz)

Measurement Expressions

102

a = S11[index]

 Defined in

Built in

 See Also

find() (expmeas), mix() (expmeas)

 Notes/Equations

To facilitate searching, the find_index function finds the index value in a sweep that is
closest to the search value. Data of type int or real must be monotonic. find_index also
performs an exhaustive search of complex and string data types.

Note
For a more robust and versatile data-search tool, see the find() (expmeas) function.

 generate()

This function generates a sequence of real numbers. The modern way to do this is to use
the sweep generator "[]."

 Syntax

y = generate(start, stop, npts)

 Arguments

Name Description Default Range Type Required

start start value of sequence None (-
∞:∞)

Integer,
real

Yes

stop stop value of sequence None (-
∞:∞)

Integer,
real

Yes

npts Numper of points in the sequence None [2:∞) Integer Yes

 Examples

a = generate(9, 4, 6) returns the sequence 9., 8., 7., 6., 5., 4

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael
 get_attr()

Gets a data attribute. This function only works with frequency swept variables.

Measurement Expressions

103

 Syntax

y = get_attr(data, "attr_name", eval)

 Arguments

Name Description Default Range Type Required

data frequency swept variable None (-∞:∞) Integer, Real, Complex Yes

attr_name name of the attribute None None string Yes

eval specifies whether to evaluate the
attribute

true false,true boolean No

 Examples

y = get_attr(data, "fc", true) returns 10GHz

y = get_attr(data, "dataType") returns "TimedData"

y = get_attr(data, "TraceType", false) returns "Spectral"

 Defined in

Built in

 See Also

set_attr() (expmeas)
 get_indep_values()

Returns the independent values associated with the given dependent value as an array.

 Syntax

indepVals = get_indep_values(Data, LookupValue)

 Arguments

Name Description Default Range Type Required

Data 1 to 5 dimensional array. None (-
∞:∞)

Integer, Real,
Complex

Yes

LookupValue Dependent value for which the corresponding
independent values have to be found.

None (-
∞:∞)

Real, Complex Yes

Tolerance tolerance to be used while comparing numbers 0 [0:∞) Real No

All Finds all matches of the LookupValue. Default
behavior is to return after the first match.

0 [0:1] Integer No

 Examples

We assume that the data is 2-dimensional i.e. 2 independent variables created

from a Harmonic Balance Analysis with Pout being the output data.

indepVals = get_indep_values(Pout, max(max(Pout)) returns the values of the

indepenent as an array.

indepVals = get_indep_values(Pout, [m1,m2]) returns the indepenent values of

the markers m1 and m2.

Measurement Expressions

104

 Defined in

$HPEESOF_DIR/expressions/ael/utility_fun.ael

 See Also

indep() (expmeas)

 Notes/Equations

This function can be used only on 1 to 5 dimensional data. The independent values have
to be real. The dependent value to be looked up can be a single value or multiple values.
 indep()

Returns the independent attached to the data

 Syntax

Y = indep(x, NumberOrName)

 Arguments

Name Description Default Range Type Required

x data to access the independent
values

None (-
∞:∞)

Integer, Real, Complex Yes

NumberOrName number or name of independent 0 [0:6] Integer, string No

 Examples

Given S-parameters versus frequency and power: Frequency is the innermost

independent, so its index is 1. Power has index 2.

freq = indep(S, 1)

freq = indep(S, "freq")

power = indep(S, 2)

power = indep(S, "power")

 Defined in

Built in

 See Also

find_index() (expmeas), get_indep_values() (expmeas)

Measurement Expressions

105

 Notes/Equations

The indep() function returns the independent (normally the swept variable) attached to
simulation data. When there is more than one independent, then the independent of
interest may be specified by number or by name. If no independent specifications are
passed, then indep() returns the innermost independent.
 max_index()

Returns the index of the maximum

 Syntax

max_index(x)

 Arguments

Name Description Default Range Type Required

x data to find maximum index None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

y = max_index([1, 2, 3]) returns 2

y = max_index([3, 2, 1]) returns 0

 Defined in

Built-in

 See Also

min_index() (expmeas)
 min_index()

Returns the index of the minimum

 Syntax

y = min_index(x)

 Arguments

Name Description Default Range Type Required

x data to find the minimum
index

None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

a = min_index([3, 2, 1]) returns 2

a = min_index([1, 2, 3]) returns 0

Measurement Expressions

106

 Defined in

Built in

 See Also

max_index() (expmeas)

 permute()

Permutes data based on the attached independents

 Syntax

y = permute(data, permute_vector)

 Arguments

Name Description Default Range Type Required

data any N-dimensional square data (all inner
independents must have the same value N)

None (-
∞:∞)

Integer, Real,
Complex

Yes

permute_vector any permutation vector of the numbers 1
through N †

None (-
∞:∞)

Integer, Real,
Complex

Yes

† The permute_vector defaults to {N::1}, representing a complete reversal of the data
with respect to its independent variables. If permute_vector has fewer than N entries, the
remainder of the vector, representing the outer independent variables, is filled in. In this
way, expressions remain robust when outer sweeps are added

 Examples

Lets assume that the variable data has 3 independent variables. Then:

a1 = permute(data)

reverses the (three inner independents of) the data.

a2 = permute(data, {3, 2, 1})

Same as above.

aOrig = permute(data, {1, 2, 3})

preserves the data.

In the example below lets assume that a DC analysis has been done with two

independent variables VGS and VDS, and IDS.i is the dependent variable. To see

a plot of IDS vs VGS for different values of VDS the data can be permuted as

follows:

permutedData=permute(IDS.i,{2,1})

See the example $HPEESOF_DIR/examples/Tutorial/sweep.dds

 Defined in

Built in

Measurement Expressions

107

 See Also

plot_vs() (expmeas)

 Notes/Equations

The permute() function is used to swap the order of the independent variables that are
attached to a data variable. For example, a data could have two independent variables in
a particular order. To swap the order so that it can be easily plotted, the order of the
independents must be swapped. The permute() function can be used for this purpose.

The permute() function cannot be used to swap the rows and columns of a matrix.
However, it can be used to swap the orders of the independent, even if the dependent is a
matrix. For example, a parameter sweep of an S-parameter analysis.
 plot_vs()

Attaches an independent to data for plotting

 Syntax

y = plot_vs(dependent, independent)

 Arguments

Name Description Default Range Type Required

dependent any N-dimensional square data (all inner
independents must have the same value N)

None (-
∞:∞)

Integer, Real,
Complex

Yes

independent independent variable None (-
∞:∞)

Integer, Real Yes

 Examples

Example 1:

a=[1, 2, 3]

b=[4, 5, 6]

c=plot_vs(a, b)

Builds c with independent b, and dependent a.

Example 2:

Assume that an S-parameter analysis has been done with one swept variable Cval

(of say 10 values) for 20 frequency points. The dependent data dbS11=db(S11) is

of 2 dimension and Dependency of [10, 20]. A standard plot would display dbS11

vs freq(the inner independent), for 10 values of Cval. Instead to plot dbS11 vs

Cval, the plot_vs() function can used as follows:

plot_vs(dbS11, Cval)

To plot dbS11 for half the values of Cval:

CvalH=Cval/2

plot_vs(dbS11, CvalH)

Example 3:

In the example below lets assume that a DC analysis has been done with two

independent variables Vgs and Vds, and Ids.i is the dependent variable. To see

a plot of Ids vs Vgs for different values of Vds the data can be plotted as

Measurement Expressions

108

follows:

plot_vs(Ids.i, Vgs)

 Defined in

$HPEESOF_DIR/expressions/ael/display_fun.ael

 See Also

indep() (expmeas), permute() (expmeas), vs() (expmeas)

 Notes/Equations

When using plot_vs(), the independent and dependent data should be the same size (i.e.,
not irregular). This function works as follows:

Checks to see if the argument "independent", is an independent of argument
"depend" or argument "independent" is dis-similar to independent of argument
"depend".
If one of the above conditions is met, then the data is swapped or sliced, and the
new result formed with the argument "independent" is returned.

 set_attr()

Sets the data attribute

 Syntax

y = set_attr(data, "attr_name", attribute_value)

 Arguments

Name Description Default Range Type Required

data data None (-
∞:∞)

Integer, Real, Complex Yes

attr_name name of the
attribute

None None string Yes

attribute_value value of the attribute None (-
∞:∞)

boolean, integer, real, complex Yes

 Examples

a = set_attr(data, "TraceType", "Spectral")

a = set_attr(data, "TraceType", "Histogram")

 Defined in

Built in

Measurement Expressions

109

Notes: When a variable's attributes are set using set_attr, any other equations using that
variable are not re-evaluated.

 See Also

get_attr() (expmeas)
 size()

Returns the row and column size of a vector or matrix

 Syntax

y = size(x)

 Arguments

Name Description Default Range Type Required

x data None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

Given 2-port S-parameters versus frequency, and given 10 frequency points. Then

for ten 2 2 matrices, size() returns the dimensions of the S-parameter matrix,

and its companion function sweep_size() returns the size of the sweep:

Y = size(S) returns {2, 2}
Y = sweep_size(S) returns 10

 Defined in

Built in

 See Also

sweep_size() (expmeas)
 sort()

This measurement returns a sorted variable in ascending or descending order. The sorting
can be done on the independent or dependent variables. String values are sorted by
folding them to lower case.

 Syntax

y = sort(data, sortOrder, indepName)

 Arguments

Measurement Expressions

110

Name Description Default Range Type Required

data data to be sorted
(multidimensional scalar variable)

None (-∞:∞) Integer, real or
complex

Yes

sortOrder sorting order "ascending" "ascending" or
"descending"

string No

indepName specify the name of the
independent variable for sorting

dependent
value †

None string No

† if indepName not specified, the sorting is done on the dependent.

 Examples

a = sort(data)

a = sort(data, "descending", "freq")

 Defined in

Built in
 sweep_dim()

Returns the dimensionality of the data

 Syntax

y = sweep_dim(x)

 Arguments

Name Description Default Range Type Required

x data None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

a = sweep_dim(1) returns 0

a = sweep_dim([1, 2, 3]) returns 1

 Defined in

Built in

 See Also

sweep_size() (expmeas)
 sweep_size()

Returns the sweep size of a data object

 Syntax

y = sweep_size(x)

Measurement Expressions

111

 Arguments

Name Description Default Range Type Required

x data None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

Given 2-port S-parameters versus frequency, and given 10 frequency points,

there are then ten 2 X 2 matrices. sweep_size() is used to return the sweep

size of the S-parameter matrix, and its companion function size() returns the

dimensions of the S-parameter matrix itself:

a = sweep_size(S) returns 10

a = size(S) returns {2, 2}
Irregular data:

Assume that the data is 3 dimensional with the last dimension being irregular.

The independents are: Vsrc, size, time with dimension [3,2,irreg]. Then:

SwpSz=sweep_size(data) would return:

__SIZE SwpSz

Vsrc=1.0,size=1.0

1 20

Vsrc=1.0,size=2.0

1 21

Vsrc=2.0,size=1.0

1 59

Vsrc=2.0,size=2.0

1 61

Vsrc=3.0,size=1.0

1 76

Vsrc=3.0,size=2.0

1 78

where __SIZE is an independent added by the sweep_size() function.

sweep_size(SwpSz) would return the correct size of the two outer variables:

(1) (2) (3)

3 2 1

 Defined in

Built in

 See Also

size() (expmeas), sweep_dim() (expmeas)

 Notes/Equations

For regular data, this function returns a vector with an entry corresponding to the length
of each sweep. For irregular data, the function returns a multi-dimensional data, which
needs to be processed further to get the size. See example above.

Measurement Expressions

112

 type()

Returns the type of the data.

 Syntax

y = type(x)

 Arguments

Name Description Default Range Type Required

x data to find the type None (-
∞:∞)

Integer, Real, Complex, String Yes

 Examples

a = type(1) returns "Integer"

a = type(1.1) returns "Real"

a = type(1i) returns "Complex"

a = type("type") returns "String"

 Defined in

Built in

 See Also

what() (expmeas)
 vs()

Attaches an independent to dependent data

 Syntax

y = vs(dependent, independent, indepName)

 Arguments

Name Description Default Range Type Required

dependent dependent values None (-
∞:∞)

Integer, real Yes

independent independent values None (-
∞:∞)

Integer, real, string, complex Yes

indepName independent name None None string No

 Examples

a=[1, 2, 3]

b=[4, 5, 6]

c = vs(a, b)

Measurement Expressions

113

 Defined in

Built in

 See Also

indep() (expmeas), plot_vs() (expmeas)

 Notes/Equations

Use the plot_vs() function to plot the dependent with the order of independent changed.
For example, to plot Ids vs Vgs, in a DC analysis data with two independent variables, Vgs
and Vds, and a dependent variable Ids.i, use as below:
plot_vs(Ids.i, Vgs)
 what()

Returns size and type of data

 Syntax

y = what(x, DisplayBlockName)

 Arguments

Name Description Default Range Type Required

x data None (-
∞:∞)

Integer, Real, Complex, String Yes

DisplayBlockName Displays block
name

0 [0:1] † Integer No

† If DisplayBlockName equals 0, no block name is specified (default behavior). If
DisplayBlockName equals 1, then block name is displayed. If DisplayBlockName is not
equal to 0 or 1, it defaults to 0.

 Examples

x=[10,20,30,40]

y=what(x)

returns:

y

Dependency : []

Num. Points : [4]

Matrix Size : scalar

Type : Integer

y=what(x, 1)

returns:

y

Dependency : []

Num. Points : [4]

Matrix Size : scalar

Type : Integer

Block Name: __tmp_XX

Measurement Expressions

114

 Defined in

Built in

 See Also

type() (expmeas)

 Notes/Equations

This function is used to determine the dimensions of a piece of data, the attached
independents, the type, and (in the case of a matrix) the number of rows and columns.
Use what() by entering a listing column and using the trace expression what(x).
 write_var()

Writes dataset variables to a file

 Syntax

y = write_var(FileName, WriteMode, Comment, Delimiter, Format, Precision, Var1,
Var2,...,VarN)

 Arguments

Name Description Default Range Type Required

FileName Name of the output file None None String Yes

WriteMode Describes the write mode - overwrite or
append

None "W","A" † String Yes

Comment Text to be written at the top of the file "" None String No

Delimiter Delimiter that separates the data "\t" None String No

Format Format of the data "f" "f","s" †† String No

Precision precision of the data 6 [1:64] Integer No

Var1,...,VarN Data variables to be written None None dataset
variable

Yes

† WriteMode: "W" - overwrite the file, "A" - append to the file
†† Format: "f" - full notation, "s" - scientific notation

 Examples

write_var_f=write_var("output_S21.txt","W","! Freq real(S21) imag(S21)"," ",,

14, freq, S21)

writes S21 to the output file output_S21.txt as:

! Freq real(S21) imag(S21)

1000000000 0.60928892074273 -0.10958342264718

2000000000 0.52718867597783 -0.13319167002392

3000000000 0.4769067837712 -0.12080489345341

wv_ib=write_var("output_hbIb.txt","W","! HB Ib.i", " ",,,freq, Ib.i)

Measurement Expressions

115

write the Harmonic Balance frequency and current Ib.i to the output file

output_hbIb.txt.

 Defined in

$HPEESOF_DIR/expressions/ael/utility_fun.ael

 See Also

indep() (expmeas)

 Notes/Equations

This function can be used to write multiple dataset variables to a file. Currently only 1
dimensional data is supported. All variables that are to be written must be of the same
size. Each variable data is written in column format. Complex data type is written in 2
columns as real and imaginary.

Measurement Expressions

116

 FrontPanel Eye Diagram Functions
This section describes the eye diagram FrontPanel and associated functions in detail.
These functions are not generalized functions, they are provided specifically to support the
eye diagram utility available from the Data Display.

eye binning() (expmeas)
eye density() (expmeas)
FrontPanel eye 2d indepvar maximum inner() (expmeas)
FrontPanel eye() (expmeas)
FrontPanel eye amplitude histogram() (expmeas)
FrontPanel eye crossings() (expmeas)
FrontPanel eye delay() (expmeas)
FrontPanel eye fall trace() (expmeas)
FrontPanel eye horizontal histogram() (expmeas)
FrontPanel eye regular() (expmeas)
FrontPanel eye risefall marker() (expmeas)
FrontPanel eye rise trace() (expmeas)
FrontPanel eye topbase() (expmeas)
FrontPanel get histogram mean stddev() (expmeas)
FrontPanel pp rms jitter() (expmeas)
FrontPanel wave 1st falling edge period() (expmeas)
FrontPanel wave 1st rising edge period() (expmeas)
FrontPanel wave 1st transition fall time() (expmeas)
FrontPanel wave 1st transition rise time() (expmeas)
FrontPanel wave datarate() (expmeas)
FrontPanel wave negative pulse width() (expmeas)
FrontPanel wave positive pulse width() (expmeas)
FrontPanel wave topbase() (expmeas)

 Working with the Eye Diagram FrontPanel

The eye diagram FrontPanel is available from the Data Display Tools > Eye Diagram
menu. The FrontPanel features two modes of operation: oscilloscope and eye/mask . For
more information on working with the eye diagram FrontPanel, refer to the Data Display
documentation.
 eye_binning()

Returns density binning data

 Syntax

y = eye_binning(eye_data, Indep_bins, Dep_bins)

 Arguments

Measurement Expressions

117

Name Description Default Range Type Required

eye_data eye diagram data None (-
∞:∞)

Real Yes

Indep_bins number of independent bins None [1:∞) Integer Yes

Dep_bins number of dependent bins None [1:∞) Integer Yes

 Examples

Eye_data=FrontPanel_eye(vout,10GHz)

Eye_bins = eye_binning(Eye_data, 100, 70);

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

eye() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

This function takes a multi-dimensional eye diagram plot and performs binning. The
binning is performed by slicing the eye diagram on its X-axis (Indep_bins) and Y-axis
(Dep_bins) and returning number of traces passing through every bin. The eye binning
information can be used to calculate trace distribution in any region of the eye diagram.
 eye_density()

Returns density trace.

 Syntax

y = eye_density(eye_data, Indep_bins, Dep_bins)

 Arguments

Measurement Expressions

118

Name Description Default Range Type Required

eye_data eye diagram data None (-
∞:∞)

Real Yes

Indep_bins number of independent bins None [1:∞) Integer Yes

Dep_bins number of dependent bins None [1:∞) Integer Yes

 Examples

Eye_data=FrontPanel_eye(vount,10GHz)

Eye_bins = eye_density(Eye_data, 100, 70);

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

eye() (expmeas), eye_binning() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)
 FrontPanel_eye_2d_indepvar_maximum_inner()

Given two dimensional data, returns maximum value of the inner indpendent variable

 Syntax

y = FrontPanel_eye_2d_indepvar_maximum_inner(eye_bin_data)

 Arguments

Name Description Default Range Type Required

eye_bin_data eye binning data None (-
∞:∞)

real Yes

 Examples

maximum_indep=FrontPanel_eye_2d_indepvar_maximum_inner(eye_bin_data)

Measurement Expressions

119

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_2d_indepvar_maximum_inner() function essentially takes two
dimensional binning data and returns maximum value of inner independent variable.
 FrontPanel_eye()

Creates data for an eye diagram plot with one bit shift per trace, adding an additional
cycle to the number of cycles defined

 Syntax

y = FrontPanel_eye(NRZ_data, symbolRate, Cycles, Delay)

 Arguments

Name Description Default Range Type Required

NRZ_data either numeric data or a time domain waveform,
typically NRZ data

None (-
∞:∞)

Complex Yes

symbolRate bit rate of the channel None (0:∞) Real Yes

Cycles number of cycles to repeat 1 [1:∞) Integer No

Delay sampling delay 0 [0:∞) Integer,
Real

No

 Examples

y = FrontPanel_eye(NRZ_data, symbol_rate)

 Defined in

Measurement Expressions

120

Built in

 See Also

eye_binning() (expmeas), eye_density() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

This function will shift the eye trace by one bit when multiple eyes are plotted as opposed
to eye() function.
 FrontPanel_eye_amplitude_histogram()

Returns amplitude histogram from binning data

 Syntax

y = FrontPanel_eye_amplitude_histogram(data)

 Arguments

Name Description Default Range Type Required

data Eye binning data, usually the output of eye_binning
function

None (-
∞:∞)

Real Yes

 Examples

Find_hist = FrontPanel_eye_amplitude_histogram(eye_bin_data)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

Measurement Expressions

121

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_amplitude_histogram() function calculates the amplitude histogram
from eye binning data.
 FrontPanel_eye_crossings()

Given lower boundary, top boundary and the data type returns the eye crossing points

 Syntax

y = FrontPanel_eye_crossings(data,base_upper,top_lower,data_type)

 Arguments

Name Description Default Range Type Required

data eye binning data None (-
∞:∞)

real Yes

base_upper upper three sigma point of the base boundary None (-
∞:∞)

Real Yes

top_lower lower three sigma point of the top boundary None (-
∞:∞)

Real Yes

data_type data type, current version supports only "NRZ"
data

None String Yes

 Examples

Eye_crossing_array = FrontPanel_eye_crossings(eye_bin_data,0.2,0.8,"NRZ")

Eye_crossing_1_level=Eye_crossing_array[0]

Eye_crossing_1_time=Eye_crossing_array[1]

Eye_crossing_2_level=Eye_crossing_array[3]

Eye_crossing_2_time=Eye_crossing_array[4]

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

Measurement Expressions

122

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_delay() (expmeas),
FrontPanel_eye_fall_trace() (expmeas), FrontPanel_eye_horizontal_histogram()
(expmeas), FrontPanel_eye_regular() (expmeas), FrontPanel_eye_rise_trace()
(expmeas), FrontPanel_eye_risefall_marker() (expmeas), FrontPanel_eye_topbase()
(expmeas), FrontPanel_get_histogram_mean_stddev() (expmeas),
FrontPanel_pp_rms_jitter() (expmeas), FrontPanel_wave_1st_falling_edge_period()
(expmeas), FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_crossings() function essentially takes the eye binning data, the top
and base boundary limits, and the data type, and returns crossing points as an array.
 FrontPanel_eye_delay()

Returns delay required for eye pattern positioning

 Syntax

y = FrontPanel_eye_delay(Vout_time,BitRate)

 Arguments

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Real Yes

BitRate bit rate of the channel and is expressed in frequency units None [0:∞) Real Yes

 Examples

Find_delay = FrontPanel_eye_delay(vout,1e9)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_fall_trace() (expmeas),

Measurement Expressions

123

FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_delay() function determines eye mid crossing point of NRZ data and
calculates the delay required to position 50% eye crossing at the center of unit interval.
 FrontPanel_eye_fall_trace()

Returns eye falling edges

 Syntax

y = FrontPanel_eye_fall_trace(eye_bin_data, level_zero, level_one, low_threshold,
high_threshold)

 Arguments

Name Description Default Range Type Required

eye_bin_data eye binning data None (-
∞:∞)

real Yes

level_zero logic level zero amplitude None (-
∞:∞)

Real Yes

level_one logic level one amplitude None (-
∞:∞)

Real Yes

low_threshold low threshold percentage None (-
∞:∞)

Real Yes

high_threshold high threshold precentage None (-
∞:∞)

Real Yes

 Examples

Eye_falling_traces = FrontPanel_eye_fall_trace(eye_bin_data,0,1.8, 10, 90)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),

Measurement Expressions

124

FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_horizontal_histogram()
(expmeas), FrontPanel_eye_regular() (expmeas), FrontPanel_eye_rise_trace()
(expmeas), FrontPanel_eye_risefall_marker() (expmeas), FrontPanel_eye_topbase()
(expmeas), FrontPanel_get_histogram_mean_stddev() (expmeas),
FrontPanel_pp_rms_jitter() (expmeas), FrontPanel_wave_1st_falling_edge_period()
(expmeas), FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_fall_trace() function essentially takes the eye binning data and
returns the falling edges which crosses the lower and upper threshold points.
 FrontPanel_eye_horizontal_histogram()

Given start, stop time and amplitude,returns horizontal histogram from the eye binning
data

 Syntax

y =
FrontPanel_eye_horizontal_histogram(data,start_time,stop_time,start_amp,stop_amp)

 Arguments

Name Description Default Range Type Required

data eye binning data None (-
∞:∞)

real Yes

start_time start time of horizontal histogram None (-
∞:∞)

Real Yes

stop_time stop time of horizontal histogram None (-
∞:∞)

Real Yes

start_amp start amplitude of horizontal histogram None (-
∞:∞)

Real Yes

stop_amp start amplitude of horizontal histogram None (-
∞:∞)

Real Yes

 Examples

Eye_histogram = FrontPanel_eye_horizontal_histogram(eye_bin_data,0,10e-9, -0.1,

0.1)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

Measurement Expressions

125

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_regular() (expmeas), FrontPanel_eye_rise_trace() (expmeas),
FrontPanel_eye_risefall_marker() (expmeas), FrontPanel_eye_topbase() (expmeas),
FrontPanel_get_histogram_mean_stddev() (expmeas), FrontPanel_pp_rms_jitter()
(expmeas), FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_horizontal_histogram() function essentially takes the eye binning
data and returns horizontal histogram between start and stop points.
 FrontPanel_eye_regular()

Given eye data and the resolution, returns uniformally spaced eye data

 Syntax

y = FrontPanel_eye_regular(eye_data,resolution_x)

 Arguments

Name Description Default Range Type Required

eye_data eye diagram data None (-
∞:∞)

real Yes

resolution_x inner independent variable resolution None (-
∞:∞)

real Yes

 Examples

eye_data=eye(vout,1GHz)

uniform_eye_data=FrontPanel_eye_regular(eye_data,450)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

Measurement Expressions

126

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_rise_trace()
(expmeas), FrontPanel_eye_risefall_marker() (expmeas), FrontPanel_eye_topbase()
(expmeas), FrontPanel_get_histogram_mean_stddev() (expmeas),
FrontPanel_pp_rms_jitter() (expmeas), FrontPanel_wave_1st_falling_edge_period()
(expmeas), FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_regular() function essentially takes eye data, and returns uniform
spaced data. The first and last trace of the eye diagram will be removed when using this
function.
 FrontPanel_eye_risefall_marker()

Returns the threshold points from rising or falling edge data

 Syntax

y = FrontPanel_eye_risefall_marker(data, level_zero, level_one, low_threshold,
high_threshold)

 Arguments

Name Description Default Range Type Required

data eye binning data None (-
∞:∞)

real Yes

level_zero logic level zero amplitude None (-
∞:∞)

Real Yes

level_one logic level one amplitude None (-
∞:∞)

Real Yes

low_threshold low threshold percentage None (-
∞:∞)

Real Yes

high_threshold high threshold precentage None (-
∞:∞)

Real Yes

 Examples

Eye_rise_marker = FrontPanel_eye_risefall_marker(eye_bin_data,0,1.8, 10, 90)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

Measurement Expressions

127

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_topbase() (expmeas),
FrontPanel_get_histogram_mean_stddev() (expmeas), FrontPanel_pp_rms_jitter()
(expmeas), FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_risefall_marker() function essentially takes the eye binning data and
returns the gaussian mean position at lower threshold, 50% crossing, and upper threshold
crossing points as an array. The first element of the array will give the indepedent and
dependent value at the lower threshold, the second element will give the 50% crossing
point, and the third element will give the high threshold point.
 FrontPanel_eye_rise_trace()

Returns eye rising edges

 Syntax

y = FrontPanel_eye_rise_trace(data, level_zero, level_one, low_threshold,
high_threshold)

 Arguments

Name Description Default Range Type Required

data eye binning data None (-
∞:∞)

real Yes

level_zero logic level zero amplitude None (-
∞:∞)

Real Yes

level_one logic level one amplitude None (-
∞:∞)

Real Yes

low_threshold low threshold percentage None (-
∞:∞)

Real Yes

high_threshold high threshold precentage None (-
∞:∞)

Real Yes

 Examples

Eye_rising_traces = FrontPanel_eye_rise_trace(eye_bin_data,0,1.8, 10, 90)

Measurement Expressions

128

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_risefall_marker() (expmeas), FrontPanel_eye_topbase() (expmeas),
FrontPanel_get_histogram_mean_stddev() (expmeas), FrontPanel_pp_rms_jitter()
(expmeas), FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_rise_trace() function essentially takes the eye binning data and
returns the rising edges which crosses the lower and upper threshold points.
 FrontPanel_eye_topbase()

Given lower boundary, top boundary and the data type returns the eye crossing points

 Syntax

y =
FrontPanel_eye_topbase(data,eye_crossing_points,lower_threshold,upper_threshold,data_type)

 Arguments

Name Description Default Range Type Required

data eye binning data None (-
∞:∞)

real Yes

eye_crossing_points array of eye crossing points, typically
FrontPanel_eye_crossings function returned value

None (-
∞:∞)

Real Yes

lower_threshold lower threshold point % None (-
∞:∞)

Real Yes

upper_threshold upper threshold point % None (-
∞:∞)

Real Yes

data_type data type, current version supports only "NRZ" data None String Yes

 Examples

eye_crossing_points=FrontPanel_eye_crossings(eye_bin_data,-1.0,1,0,"NRZ")

Measurement Expressions

129

eye_top_base =

FrontPanel_eye_topbase(eye_bin_data,eye_crossing_points,20,80,"NRZ")

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_get_histogram_mean_stddev() (expmeas), FrontPanel_pp_rms_jitter()
(expmeas), FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_eye_topbase() function essentially takes the eye binning data, the
crossing points, the lower and upper threshold percentage value, and returned top and
base levels.
 Frontpanel_get_histogram_mean_stddev()

Given histogram data computes mean and standard deviation values

 Syntax

y = Frontpanel_get_histogram_mean_stddev(data,start_bin,stop_bin)

 Arguments

Name Description Default Range Type Required

data histogram data None (-
∞:∞)

real Yes

start_bin start bin
number

None (-
∞:∞)

real Yes

stop_bin stop bin number None (-
∞:∞)

real Yes

 Examples

histogram_statistics=Frontpanel_get_histogram_mean_stddev(histogram_data,10,100)

Measurement Expressions

130

histogram_mean=histogram_statistics[0]

histogram_stddev=histogram_statistics[1]

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_get_histogram_mean_stddev() function essentially takes histogram data
and returns mean and standard deviation.
 FrontPanel_pp_rms_jitter()

Given histogram data computes peak to peak jitter value and RMS jitter value

 Syntax

y = FrontPanel_pp_rms_jitter(histogram_data)

 Arguments

Name Description Default Range Type Required

histogram_data histogram data None (-
∞:∞)

real Yes

 Examples

eye_jitter=FrontPanel_pp_rms_jitter(histogram_data)

peak2peak_jitter=eye_jitter[0]

rms_jitter=eye_jitter[1]

Measurement Expressions

131

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_pp_rms_jitter() function essentially takes histogram data, and returns
peak to peak jitter by determining non-zero start and stop values and one standard
deviation. The first element of the array represents peak-to-peak value and the second
element represents one standard deviation.
 FrontPanel_wave_1st_falling_edge_period()

Given time domain voltage waveform, the logic levels, and the threshold levels, returns
first falling edge period

 Syntax

y =
FrontPanel_wave_1st_falling_edge_period(data,base,top,base_threshold_pct,top_threshold_pct)

 Arguments

Name Description Default Range Type Required

data time domain voltage waveform None (-
∞:∞)

real Yes

base logic level zero voltage level None (-
∞:∞)

real Yes

top logic level one voltage level None (-
∞:∞)

real Yes

base_threshold_pct low threshold point None (-
∞:∞)

real Yes

high_threshold_pct high threshold point None (-
∞:∞)

real Yes

Measurement Expressions

132

 Examples

get_rise_time=FrontPanel_wave_1st_falling_edge_period(data,-1.0,1.0,20,80)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

Period is a measure of the time between the first detected edge of a waveform and the
next occurrence of the same type of edge. The time between the edges of the waveform
used for measurement is taken at the middle threshold crossings. The
FrontPanel_wave_1st_falling_edge_period() function essentially takes time domain data
and returns the first falling edge period.
 FrontPanel_wave_1st_rising_edge_period()

Given time domain voltage waveform, the logic levels, and the threshold levels, returns
first rising edge period

 Syntax

y =
FrontPanel_wave_1st_rising_edge_period(data,base,top,base_threshold_pct,top_threshold_pct)

 Arguments

Measurement Expressions

133

Name Description Default Range Type Required

data time domain voltage waveform None (-
∞:∞)

real Yes

base logic level zero voltage level None (-
∞:∞)

real Yes

top logic level one voltage level None (-
∞:∞)

real Yes

base_threshold_pct low threshold point None (-
∞:∞)

real Yes

high_threshold_pct high threshold point None (-
∞:∞)

real Yes

 Examples

get_rising_period=FrontPanel_wave_1st_rising_edge_period(data,-1.0,1.0,20,80)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

Period is a measure of the time between the first detected edge of a waveform and the
next occurrence of the same type of edge. The time between the edges of the waveform
used for measurement is taken at the middle threshold crossings. The
FrontPanel_wave_1st_rising_edge_period() function essentially takes time domain data
and returns the first rising edge period.
 FrontPanel_wave_1st_transition_fall_time()

Given time domain voltage waveform, the logic levels, and the threshold levels, returns
wave first negative transition fall time

Measurement Expressions

134

 Syntax

y =
FrontPanel_wave_1st_transition_fall_time(data,base,top,base_threshold_pct,top_threshold_pct)

 Arguments

Name Description Default Range Type Required

data time domain voltage waveform None (-
∞:∞)

real Yes

base logic level zero voltage level None (-
∞:∞)

real Yes

top logic level one voltage level None (-
∞:∞)

real Yes

base_threshold_pct low threshold point None (-
∞:∞)

real Yes

high_threshold_pct high threshold point None (-
∞:∞)

real Yes

 Examples

get_rise_time=FrontPanel_wave_1st_transition_fall_time(data,-1.0,1.0,20,80)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_wave_1st_transition_rise_time() function essentially takes time domain
data and measures the fall time of the first negative edge of the waveform. The fall time
will not be measured until the falling edge completes the transition through the upper and
lower threshold.

Measurement Expressions

135

 FrontPanel_wave_1st_transition_rise_time()

Given time domain voltage waveform, the logic levels, and the threshold levels, returns
wave first transition rise time

 Syntax

y =
FrontPanel_wave_1st_transition_rise_time(data,base,top,base_threshold_pct,top_threshold_pct)

 Arguments

Name Description Default Range Type Required

data time domain voltage waveform None (-
∞:∞)

real Yes

base logic level zero voltage level None (-
∞:∞)

real Yes

top logic level one voltage level None (-
∞:∞)

real Yes

base_threshold_pct low threshold point None (-
∞:∞)

real Yes

high_threshold_pct high threshold point None (-
∞:∞)

real Yes

 Examples

get_rise_time=FrontPanel_wave_1st_transition_rise_time(data,-1.0,1.0,20,80)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

Measurement Expressions

136

 Notes/Equations

The FrontPanel_wave_1st_transition_rise_time() function essentially takes time domain
data and measures the rise time of the first positive edge of the waveform. The rise time
will not be measured until the rising edge completes the transition through the lower and
upper threshold.
 FrontPanel_wave_datarate()

Estimate data rate from NRZ bitstream

 Syntax

y = FrontPanel_wave_datarate(Vout_time,Data_Type)

 Arguments

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Real Yes

 Examples

Find_datarate = FrontPanel_wave_datarate(vout,"NRZ")

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas),
FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas), FrontPanel_wave_topbase()
(expmeas)

 Notes/Equations

The FrontPanel_wave_datarate() estimate the data rate of the NRZ bit stream.
 FrontPanel_wave_negative_pulse_width()

Measurement Expressions

137

Given time domain voltage waveform, the logic levels, and the threshold levels, returns
negative pulse width of the first cycle

 Syntax

y =
FrontPanel_wave_negative_pulse_width(data,base,top,base_threshold_pct,top_threshold_pct)

 Arguments

Name Description Default Range Type Required

data time domain voltage waveform None (-
∞:∞)

real Yes

base logic level zero voltage level None (-
∞:∞)

real Yes

top logic level one voltage level None (-
∞:∞)

real Yes

base_threshold_pct low threshold point None (-
∞:∞)

real Yes

high_threshold_pct high threshold point None (-
∞:∞)

real Yes

 Examples

get_negative_pulse_width=FrontPanel_wave_negative_pulse_width(data,-

1.0,1.0,20,80)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_positive_pulse_width() (expmeas),
FrontPanel_wave_topbase() (expmeas)

 Notes/Equations

Measurement Expressions

138

Negative pulse width is defined as the time from the mid-threshold of the first falling edge
to the mid-threshold of the next rising edge. The
FrontPanel_wave_negative_pulse_width() function essentially takes time domain data and
returns the first negative pulse width.
 FrontPanel_wave_positive_pulse_width()

Given time domain voltage waveform, the logic levels, and the threshold levels, returns
positive pulse width of the first cycle

 Syntax

y =
FrontPanel_wave_positive_pulse_width(data,base,top,base_threshold_pct,top_threshold_pct)

 Arguments

Name Description Default Range Type Required

data time domain voltage waveform None (-
∞:∞)

real Yes

base logic level zero voltage level None (-
∞:∞)

real Yes

top logic level one voltage level None (-
∞:∞)

real Yes

base_threshold_pct low threshold point None (-
∞:∞)

real Yes

high_threshold_pct high threshold point None (-
∞:∞)

real Yes

 Examples

get_negative_pulse_width=FrontPanel_wave_positive_pulse_width(data,-

1.0,1.0,20,80)

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),
FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()

Measurement Expressions

139

(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_topbase() (expmeas)

 Notes/Equations

Positive pulse width is defined as the time from the mid-threshold of the first rising edge
to the mid-threshold of the next falling edge. The
FrontPanel_wave_positive_pulse_width() function essentially takes time domain data and
returns the first positive pulse width.
 FrontPanel_wave_topbase()

Given amplitude histogram of a time domain waveform, returns logic level one and zero
statistics

 Syntax

y = FrontPanel_wave_topbase(data,data_type)

 Arguments

Name Description Default Range Type Required

data amplitude histogram data None (-
∞:∞)

real Yes

data_type data type, only "NRZ" data is supported in current
release

None (-
∞:∞)

real Yes

 Examples

get_level=FrontPanel_wave_topbase(amplitude_histogram,"NRZ")

top_data=get_level[0::3]

level_one_mean=top_data[0]

level_one_stddev=top_data[1]

level_one_start=top_data[2]

level_one_stop=top_data[3]

base_data=get_level[4::7]

level_zero_mean=base_data[0]

level_zero_stddev=base_data[1]

level_zero_start=base_data[2]

level_zero_stop=base_data[3]

 Defined in

$HPEESOF_DIR/expressions/ael/FrontPanel_fun.ael

 See Also

eye_binning() (expmeas), eye_density() (expmeas), FrontPanel_eye() (expmeas),
FrontPanel_eye_2d_indepvar_maximum_inner() (expmeas),
FrontPanel_eye_amplitude_histogram() (expmeas), FrontPanel_eye_crossings()
(expmeas), FrontPanel_eye_delay() (expmeas), FrontPanel_eye_fall_trace() (expmeas),

Measurement Expressions

140

FrontPanel_eye_horizontal_histogram() (expmeas), FrontPanel_eye_regular() (expmeas),
FrontPanel_eye_rise_trace() (expmeas), FrontPanel_eye_risefall_marker() (expmeas),
FrontPanel_eye_topbase() (expmeas), FrontPanel_get_histogram_mean_stddev()
(expmeas), FrontPanel_pp_rms_jitter() (expmeas),
FrontPanel_wave_1st_falling_edge_period() (expmeas),
FrontPanel_wave_1st_rising_edge_period() (expmeas),
FrontPanel_wave_1st_transition_fall_time() (expmeas),
FrontPanel_wave_1st_transition_rise_time() (expmeas), FrontPanel_wave_datarate()
(expmeas), FrontPanel_wave_negative_pulse_width() (expmeas),
FrontPanel_wave_positive_pulse_width() (expmeas)

 Notes/Equations

The FrontPanel_wave_topbase() function essentially takes amplitude histogram data and
returns logic level one and zero statistics as an array.

Measurement Expressions

141

 FrontPanel S-Parameter TDR Functions
This section describes the S-Parameter TDR FrontPanel and associated functions in detail.
The majority of these functions are not generalized functions; they are provided
specifically to support the S-Parameter TDR FrontPanel utility available from the Data
Display. Any function with the prefix "FrontPanel_TDR" requires a special data structure
for input parameters.

FrontPanel_TDRExtrapolate() (expmeas)
FrontPanel_TDREye() (expmeas)
FrontPanel_TDRFreqMode() (expmeas)
FrontPanel_TDRFreqScale() (expmeas)
FrontPanel_TDRFreqSweep() (expmeas)
FrontPanel_TDRGate() (expmeas)
FrontPanel_TDRIFW() (expmeas)
FrontPanel_TDRInversePeeling() (expmeas)
FrontPanel_TDRPeeling() (expmeas)
FrontPanel_TDRPortExt() (expmeas)
FrontPanel_TDRPortMap() (expmeas)
FrontPanel_TDRSmooth() (expmeas)
FrontPanel_TDRTimeScale() (expmeas)
FrontPanel_TDRTimeSweep() (expmeas)
FrontPanel_TDRWindow() (expmeas)
tdr_inverse_peeling() (expmeas)
tdr_peeling() (expmeas)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRExtrapolate()

Extrapolates frequency data with the ability to add a DC and low frequency points

 Syntax

y = FrontPanel_TDRExtrapolate(Data, Flag, DCFlag, OptFlag, DCValue, Step, PolyList)

 Arguments

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE will return the original waveform None [0:1] Real Yes

DCFlag boolean flag if set TRUE a DC point will be added before
Extrapolate

None [0:1] Real Yes

OptFlag boolean flag if set TRUE an optimizer is run on extrapolated
data

None [0:1] Real Yes

DCValue array of values at DC (one value for each S parameter) None (-
∞:∞)

Real Yes

Step frequency step after Extrapolate None (0:∞) Real Yes

PolyList list data type representing parameters for extrapolation -
list(even order, even num points, odd order, odd num
points)

None (1:∞) List Yes

Measurement Expressions

142

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

ExtrapolateOut = FrontPanel_TDRExtrapolate(FP_TDRFreq1Dto3D(S), TRUE, TRUE,

TRUE, [0,1,1,0], 1e9, list(3,5,3,5))

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDREye()

Returns the eye waveform produced by running a randomly generated NRZ trace through
the system described by the input S parameter

 Syntax

y = FrontPanel_TDREye(Data, NumBits, DataRate, BitSpan, Vmax)

 Arguments

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

NumBits number of bits in NRZ waveform None [1:∞) Real Yes

DataRate data rate of NRZ wafeform None [1:∞) Real Yes

BitSpan number of samples per bit of NRZ
waveform

None [1:∞) Real Yes

Vmax maximum voltage for NRZ waveform None (-
∞:∞)

Real Yes

Vmin minimum voltage for NRZ waveform None (-
∞:∞)

Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

EyeOut = FrontPanel_TDREye(S11, 101, 1 GHz, 5, 1)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRFreqMode()

Returns single-ended or mixed-mode S parameters for 4-port datasets

 Syntax

y = FrontPanel_TDRFreqMode(Data, Mode)

 Arguments

Measurement Expressions

143

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Mode type of frequency mode † † None [0:4] Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).
† † The different type of modes are:
Mode = 0 Single-Ended
Mode = 1 Differential
Mode = 2 Common
Mode = 3 Differential-Common
Mode = 4 Common-Differential
Any Mode > 0 is only valid for 4-port S parameters

 Examples

FreqModeOut = FrontPanel_TDRFreqMode(FP_TDRFreq1Dto3D(S), 0)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRFreqScale()

Scales raw frequency data

 Syntax

y = FrontPanel_TDRFreqScale(Data, Scale)

 Arguments

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Scale type of scaling † † None [0:4] Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).
† † The available scale types are:
Scale = 0 dB
Scale = 1 Magnitude
Scale = 2 Phase
Scale = 3 Real
Scale = 4 Imaginary

 Examples

FreqScaleOut = FrontPanel_TDRFreqScale(FP_TDRFreq1Dto3D(S), 1)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRFreqSweep()

Performs the time-to-frequency transform across multiple dimensions

 Syntax

Measurement Expressions

144

y = FrontPanel_TDRFreqSweep(Data, Flag, Mode, Start, Stop, NumPoints, FArray)

 Arguments

Name Description Default Range Type Required

Data multi-dimensional time waveform † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE default sweep values are used None [0:1] Real Yes

Mode type of time mode (0 = Lowpass Impulse, 1 = Lowpass
Step, 2 = Bandpass Impulse, 3 = Bandpass Step)

None [0:2] Real Yes

Start start frequency None [0:∞) Real Yes

Stop stop frequency None [0:∞) Real Yes

NumPoints number of frequency points None [1:∞) Real Yes

FArray frequency sweep of the initial S parameter waveform None (-
∞:∞)

Real Array Yes

† The input data is a multi-dimensional temporal array representing the time transform of
an S parameter array.
The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

FreqSweepOut = FrontPanel_TDRFreqSweep(ts(FP_TDRFreq1Dto3D(S)), TRUE, 0, 1 GHz,

101, 0)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRGate()

Returns a gated time waveform

 Syntax

y = FrontPanel_TDRGate(Data, Flag, Start, Length, OutFlag, ResponseType, sm, sn)

 Arguments

Name Description Default Range Type Required

Data multi-dimensional time waveform † None (-
∞:∞)

Real
Array

Yes

Flag boolean flag if set FALSE will return the original waveform None [0,1] Real Yes

Start gate start time for each time waveform None (-
∞:∞)

Real
Array

Yes

Length gate length time for each time waveform None (0:∞) Real
Array

Yes

OutFlag boolean flag if set TRUE will zero values inside the gate None [0,1] Real Yes

ResponseType gate response type: (0) standard gate for impulse modes
or (1) flat, (2) linear, or (3) hyperbolic for step modes

None [0:3] Real Yes

† The input data is a multi-dimensional temporal array representing the time transform of
an S parameter array.
The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

Measurement Expressions

145

GateOut = FrontPanel_TDRGate(ts(FP_TDRFreq1Dto3D(S)), GateMask, TRUE, FALSE)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRIFW()

Converts an IFW dataset to S parameters

 Syntax

y = FrontPanel_TDRIFW(DatasetName)

 Arguments

Name Description Default Range Type Required

DatasetName name of IFW
dataset

None None String Yes

 Examples

IFWOut = FrontPanel_TDRIFW("my_sym.ds")

 FrontPanel_TDRInversePeeling()

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

FrontPanel_TDRInversePeeling() is a wrapper function for tdr_inverse_peeling()
(expmeas).

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRPeeling()

Applies the peeling algorithm to all ports of an S parameter array

 Syntax

y = FrontPanel_TDRPeeling(Data, Flag, Step)

 Arguments

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE will return the original waveform None [0:1] Real Yes

Step voltage step value None (0:∞) Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

PeelingOut = FrontPanel_TDRPeeling(FP_TDRFreq1Dto3D(S), TRUE, 1)

Measurement Expressions

146

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRPortExt()

Adds a virtual length of ideal transmission line to each port of S parameter data

 Syntax

y = FrontPanel_TDRPortExt(Data, Flag, Length, Velocity, LossType, Loss1, Loss2, Freq1,
Freq2)

 Arguments

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE default sweep values are used None [0:1] Real Yes

Length array representing virtual lengths for each port † † None (-
∞:∞)

Real Array Yes

Velocity normalized velocity None (-
∞:∞)

Real Array Yes

LossType array representing loss types for each port (0 = Lossless,
1 = Constant, 2 = Linear) † †

None (-
∞:∞)

Real Array Yes

Loss1 array representing loss in dB for each port (only used for
LossType > 0) † †

None (-
∞:∞)

Real Array Yes

Loss2 array representing loss in dB for each port (only used for
LossType > 1) † †

None (-
∞:∞)

Real Array Yes

Freq1 array representing frequency bin of loss for each port
(only used for LossType > 0) † †

None (-
∞:∞)

Real Array Yes

Freq2 array representing frequency bin of loss for each port
(only used for LossType > 1) † †

None (-
∞:∞)

Real Array Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).
† † Each parameter for port extensions is the same length as the number of ports in the
input S parameter

 Examples

PortExtOut = FrontPanel_TDRPortExt(FP_TDRFreq1Dto3D(S), TRUE, [1,1], [1,1],

[0,0], [3,3], [3,3], [1 Ghz, 1 GHz], [2 GHz, 2 GHz])

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRPortMap()

Maps input and output ports of an S parameter array

 Syntax

y = FrontPanel_TDRPortMap(Data, Flag, MapArray)

 Arguments

Measurement Expressions

147

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE will return the original waveform None [0:1] Real Yes

MapArray array where indicies represent output ports and values
represent input ports

None [1:∞) Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

PortMapOut = FrontPanel_TDRPortMap(FP_TDRFreq1Dto3D(S), TRUE, [1,2,3,4])

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRSmooth()

Performs the specified smoothing operation on S parameter data

 Syntax

y = FrontPanel_TDRSmooth(Data, Flag, Type, ParmList)

 Arguments

Name Description Default Range Type Required

Data frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE will return the original waveform None [0:1] Real Yes

Type specifies the type of smoothing (0 = moving average, 1 =
alpha-beta)

None [1:∞) Real Yes

ParmList filter specific parameters (e.g. list(10) for N=10 width
moving average filter)

None (0:∞) Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

SmoothOut = FrontPanel_TDRSmooth(FP_TDRFreq1Dto3D(S), TRUE, 0, list(10))

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRTimeScale()

Scales raw time data and sweep

 Syntax

y = FrontPanel_TDRTimeScale(Data, Scale, Units, Z0, VelocityFactor, TimeModeFlag,
FreqModeFlag, sm, sn)

 Arguments

Measurement Expressions

148

Name Description Default Range Type Required

Data multi-dimensional time waveform † None (-
∞:∞)

Real
Array

Yes

Scale type of time scale (Scale = 1 for Impedance, Scale = 5
for Ref. Coeff.)

None [1,5] Real Yes

Units type of sweep units "seconds" or "meters" None [0,1] Real Yes

Z0 characteristic impedance 50 [1::∞) Real Yes

VelocityFactor speed of light scale factor None [1::∞) Real Yes

TimeModeFlag time mode flag (see FrontPanel_TDRTimeSweep()) None [0:1] Real Yes

FreqModeFlag freq mode flag (see FrontPanel_TDRFreqMode()) None [0:1] Real Yes

† The input data is a multi-dimensional temporal array representing the time transform of
an S parameter array.
The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

TimeScaleOut = FrontPanel_TDRTimeScale(ts(FP_TDRFreq1Dto3D(S)), "seconds", 50)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRTimeSweep()

Transforms S parameter data into a time waveform

 Syntax

y = FrontPanel_TDRTimeSweep(Data, Flag, Mode, Start, Stop, NumPoints)

 Arguments

Name Description Default Range Type Required

Data multi-dimensional frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE default sweep values are used None [0:1] Real Yes

Mode type of time mode (0 = Lowpass Impulse, 1 = Lowpass
Step, 2 = Bandpass Impulse, 3 = Bandpass Step)

None [0:2] Real Yes

Start start time None (-
∞:∞)

Real Yes

Stop stop time None (-
∞:∞)

Real Yes

NumPoints number of time points None [1:∞) Real Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).

 Examples

TimeSweepOut = FrontPanel_TDRTimeSweep(FP_TDRFreq1Dto3D(S), TRUE, 1, 0, 10 ns,

101)

Note
Any function with the prefix "FrontPanel_TDR" requires a special data structure for input parameters and
is used exclusively by the S-Parameter TDR FrontPanel.

 FrontPanel_TDRWindow()

Measurement Expressions

149

Returns windowed S parameter data

 Syntax

y = FrontPanel_TDRWindow(Data, Flag, Type, ParmArray)

 Arguments

Name Description Default Range Type Required

Data multi-dimensional frequency transfer function † None (-
∞:∞)

Complex
Array

Yes

Flag boolean flag if set FALSE will return the original
waveform

None [0:1] Real Yes

Type specifies the type of window † † None [0:6] Real Yes

ParmArray list containing window parameter values: list(TimeMode,
Parm1, Parm2)

None None Real Array Yes

† The multi-dimensional S parameter array can be created with FP_TDRFreq1Dto3D(S).
† † The window types are enumerated by the following:
0 = Rectangular
1 = Hanning
2 = Hamming
3 = Gaussian
4 = Kaiser
5 = Blackman

 Examples

WindowOut = FrontPanel_TDRWindow(FP_TDRFreq1Dto3D(S), TRUE, 2, list(0, .42))

 tdr_inverse_peeling()

Undoes the layer peeling algorithm on a lossless, peeled, time-domain step response.

 Syntax

y = tdr_inverse_peeling(Peeled_Data)

 Arguments

Name Description Range Type Default Required

Peeled_Data peeled time-domain waveform (-1, 1) real yes

 Examples

y = tdr_inverse_peeling(PeeledResponse)

 Defined in

Built in

 See Also

tdr_peeling() (expmeas)

 Notes/Equations

Measurement Expressions

150

This function is the inverse of the peeling function; thus, excluding numerical sensitivity, y
= tdr_inverse_peeling(tdr_peeling(y)).
 tdr_peeling()

Performs TDR peeling or inverse scattering.

 Syntax

yTDR = tdr_peeling(TDR_data, TDR_step)

 Arguments

Name Description Default Range Type Required

TDR_data the TDR data to be impedance
peeled

None (-
∞:∞)

Real Yes

TDR_step Step height 0.5 [0:1] Real No

 Examples

peeled=tdr_peeling(vout, 0.5)

 Defined in

Built in

 See Also

tdr_inverse_peeling() (expmeas)

 Notes/Equations

A more detailed explanation of the peeling algorithm can be found in the S-Parameter TDR
FrontPanel (data) documentation.

Measurement Expressions

151

 Harmonic Balance Functions For Measurement
Expressions
This section describes the Harmonic Balance functions in detail. The functions are listed in
alphabetical order.

carr to im() (expmeas)
cdrange() (expmeas)
dc to rf() (expmeas)
ifc() (expmeas)
ip3 in() (expmeas)
ip3 out() (expmeas)
ipn() (expmeas)
it() (expmeas)
mix() (expmeas)
pae() (expmeas)
pfc() (expmeas)
phase gain() (expmeas)
pspec() (expmeas)
pt() (expmeas)
remove noise() (expmeas)
sfdr() (expmeas)
snr() (expmeas)
spur track() (expmeas)
spur track with if() (expmeas)
thd func() (expmeas)
ts() (expmeas)
vfc() (expmeas)
vspec() (expmeas)
vt() (expmeas)

 Working with Harmonic Balance Data

Harmonic Balance (HB) Analysis produces complex voltages and currents as a function of
frequency or harmonic number. A single analysis produces 1-dimensional data. Individual
harmonic components can be indexed by means of "[]". Multi-tone HB also produces 1-
dimensional data. Individual harmonic components can be indexed as usual by means of
"[]". However, the function mix() (expmeas) provides a convenient way to select a
particular mixing component.

 carr_to_im()

This measurement gives the suppression (in dB) of a specified IMD product below the
fundamental power at the output port.

 Syntax

y = carr_to_im(vOut, fundFreq, imFreq, Mix)

Measurement Expressions

152

 Arguments

Name Description Default Range Type Required

vOut signal voltage at the output port None [0:∞) Real,
Complex

Yes

fundFreq harmonic frequency indices for the fundamental frequency None (-
∞:∞)

Integer
array

Yes

imFreq harmonic frequency indices for the IMD product of interest None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis †

None (-
∞:∞)

Integer
array

No

† It is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

a = carr_to_im(out, {1, 0}, {2, -1})

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ip3_out() (expmeas)
 cdrange()

Returns compression dynamic range

 Syntax

y = cdrange(nf, inpwr_lin, outpwr_lin, outpwr)

 Arguments

Name Description Default Range Type Required

nf noise figure at the output port None [0:∞) Real Yes

inpwr_lin input power in the linear region None [0:∞) Real Yes

outpwr_lin output power in the linear region None [0:∞) Real Yes

outpwr output power at 1 dB compression None [0:∞) Real Yes

 Examples

a = cdrange(nf2, inpwr_lin, outpwr_lin, outpwr)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

Measurement Expressions

153

 See Also

sfdr() (expmeas)

 Notes/Equations

Used in XDB simulation. The compressive dynamic range ratio identifies the dynamic
range from the noise floor to the 1-dB gain-compression point. The noise floor is the noise
power with respect to the reference bandwidth.
 dc_to_rf()

This measurement computes the DC-to-RF efficiency of any part of the network

 Syntax

y = dc_to_rf(vPlusRF, vMinusRF, vPlusDC, vMinusDC, currentRF, currentDC,
harm_freq_index, Mix)

 Arguments

Name Description Default Range Type Required

vPlusRF voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinusRF voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

vPlusDC DC voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinusDC DC voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

currentRF RF current for power calculation None (-
∞:∞)

Real,
Complex

Yes

currentDC DC current for power calculation None (-
∞:∞)

Real,
Complex

Yes

harm_freq_index harmonic index of the RF frequency at the output
por

None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic
frequency (mixing terms) in the analysis †

None (-
∞:∞)

Matrix No

† It is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

a = dc_to_rf(vrf, 0, vDC, 0, I_Probe1.i, SRC1.i, {1,0})

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael
 ifc()

Measurement Expressions

154

This measurement gives the RMS current value of one frequency-component of a
harmonic balance waveform

 Syntax

y = ifc(iOut, harm_freq_index, Mix)

 Arguments

Name Description Default Range Type Required

iOut current through a branch None (-
∞:∞)

Real,
Complex

Yes

harm_freq_index harmonic index of the desired frequency † None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic
frequency (mixing terms) in the analysis † †

None (-
∞:∞)

Matrix No

† Note that the harm_freq_index argument's entry should reflect the number of tones in
the harmonic balance controller. For example, if one tone is used in the controller, there
should be one number inside the braces; two tones would require two numbers separated
by a comma.
† † Mix is required whenever the first argument is a spectrum obtained from an
expression that operates on the voltage and/or current spectrums.

 Examples

The following example is for two tones in the harmonic balance controller:

y = ifc(I_Probe1.i, {1, 0})

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pfc() (expmeas), vfc() (expmeas)

 Notes/Equations

This function should not be used for DC measurements. If used, the results will be less by
a factor of sqrt(2.0).

 ip3_in()

This measurement determines the input third-order intercept point (in dBm) at the input
port with reference to a system output port.

 Syntax

Measurement Expressions

155

y = ip3_in(vOut, ssGain, fundFreq, imFreq, zRef, Mix)

 Arguments

Name Description Default Range Type Required

vOut signal voltage at the output port None [0:∞) Real,
Complex

Yes

ssGain small signal gain in dB None [0:∞) Real Yes

fundFreq harmonic frequency indices for the fundamental frequency None (-
∞:∞)

Integer
array

Yes

imFreq harmonic frequency indices for the intermodulation
frequency

None (-
∞:∞)

Integer
array

Yes

zRef reference impedance 50.0 (-
∞:∞)

Real,
Complex

No

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis †

None (-
∞:∞)

Integer
array

No

† It is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

y = ip3_in(vOut, 22, {1, 0}, {2, -1}, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ip3_out() (expmeas), ipn() (expmeas)

 Notes/Equations

To measure the third-order intercept point, you must setup a Harmonic Balance simulation
with the input signal driving the circuit in the linear range. Input power is typically set 10
dB below the 1 dB gain compression point. If you simulate the circuit in the nonlinear
region, the calculated results will be incorrect.

 ip3_out()

This measurement determines the output third-order intercept point (in dBm) at the
system output port.

 Syntax

y = ip3_out(vOut, fundFreq, imFreq, zRef, Mix)

 Arguments

Measurement Expressions

156

Name Description Default Range Type Required

vOut signal voltage at the output port None [0:∞) Real,
Complex

Yes

fundFreq harmonic frequency indices for the fundamental frequency None (-
∞:∞)

Integer
array

Yes

imFreq harmonic frequency indices for the intermodulation
frequency

None (-
∞:∞)

Integer
array

Yes

zRef reference impedance 50.0 (-
∞:∞)

Real,
Complex

No

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis †

None (-
∞:∞)

Integer
array

No

† It is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

y = ip3_out(vOut, {1, 0}, {2, -1}, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ip3_in() (expmeas), ipn() (expmeas)

 Notes/Equations

To measure the third-order intercept point, you must setup a Harmonic Balance simulation
with the input signal driving the circuit in the linear range. Input power is typically set 10
dB below the 1 dB gain compression point. If you simulate the circuit in the nonlinear
region, the calculated results will be incorrect.
 ipn()

This measurement determines the output nth-order intercept point (in dBm) at the system
output port

 Syntax

y = ipn(vPlus, vMinus, iOut, fundFreq, imFreq, n, Mix)

 Arguments

Measurement Expressions

157

Name Description Default Range Type Required

vPlus voltage at the positive output terminal None (-
∞:∞)

Real,
Complex

Yes

vMinus voltage at the negative output terminal None (-
∞:∞)

Real,
Complex

Yes

iOut current through a branch None (-
∞:∞)

Real,
Complex

Yes

fundFreq harmonic indices of the fundamental frequency None (-
∞:∞)

Integer
array

Yes

imFreq harmonic indices of the intermodulation frequency None (-
∞:∞)

Integer
array

Yes

n order of the intercept None [1:∞) Integer Yes

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis †

None (-
∞:∞)

Matrix No

† It is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

y = ipn(vOut, 0, I_Probe1.i, {1, 0}, {2, -1}, 3)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ip3_in() (expmeas), ip3_out() (expmeas)

 Notes/Equations

To measure the third-order intercept point, you must setup a Harmonic Balance simulation
with the input signal driving the circuit in the linear range. Input power is typically set 10
dB below the 1 dB gain compression point. If you simulate the circuit in the nonlinear
region, the calculated results will be incorrect.
 it()

This measurement converts a harmonic-balance current frequency spectrum to a time-
domain current waveform.

 Syntax

it(iOut, tmin, tmax, numOfPnts)

 Arguments

Measurement Expressions

158

Name Description Default Range Type Required

iOut current through a
branch

None (-
∞:∞)

Real, Complex Yes

tmin start time 0 [0:∞) Real No

tmax stop time 2*cycle
time

[0:∞) Real No

numOfPnts number of points 101 [0:∞) Integer No

 Examples

y = it(I_Probe1.i, 0, 10nsec, 201)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

vt() (expmeas)
 mix()

Returns a component of a spectrum based on a vector of mixing indices

 Syntax

mix(xOut, harmIndex, Mix)

 Arguments

Name Description Default Range Type Required

xOut voltage or a current spectrum None (-
∞:∞)

Real,
Complex

Yes

harmIndex desired vector of harmonic frequency indices (mixing
terms)

None (-
∞:∞)

Integer
array

Yes

Mix variable consisting of all possible vectors of harmonic
frequency indices (mixing terms) in the analysis

† (-
∞:∞)

Matrix No †

† Mix, is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums. This is not required if the voltage
is a named node or if the current is from a probe.

 Examples

In the example below, vOut is the voltage at a named node. Therefore the third

argument Mix is not required.

y = mix(vOut, {2, -1})

In the example below, vExp is an expression. Therefore in the mix() function,

the third argument Mix is required.

vExp=vOut*vOut/50

z = mix(vExp, {2, -1}, Mix)

Obtain the frequency corresponding to the mixing term {2, -1}
f = mix(freq, {2, -1})

Measurement Expressions

159

In the examples below, Vload is the load voltage from a 2-tone Harmonic Balance

analysis with sweep input power.

f1=mix(freq[0,::],{1,0},Mix[0,::]) returns the fundamental frequency at the

first power point.

freI=vs(freq,freq)

f2=mix(freI,{1,0},Mix) returns the fundamental frequency vs the input power.

 Defined in

Built in

 See Also

find_index() (expmeas)

 Notes/Equations

Used in Harmonic Balance analysis.
It is used to obtain the mixing component of a voltage or a current spectrum
corresponding to particular harmonic frequency indices or mixing terms.
 pae()

This measurement computes the power-added efficiency (in percent) of any part of the
circuit

 Syntax

y = pae(vPlusOut, vMinusOut, vPlusIn, vMinusIn, vPlusDC, vMinusDC, iOut, iIn, iDC,
outFreq, inFreq)

 Arguments

Measurement Expressions

160

Name Description Default Range Type Required

vPlusOut output voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinusOut output voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

vPlusIn input voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinusIn input voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

vPlusDC DC voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinusDC DC voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

iOut output current None (-
∞:∞)

Real,
Complex

Yes

iIn input current None (-
∞:∞)

Real,
Complex

Yes

iDC DC current None (-
∞:∞)

Real,
Complex

Yes

outFreq harmonic indices of the fundamental frequency at the
output port

None (-
∞:∞)

Integer
array

Yes

inFreq harmonic indices of the fundamental frequency at the
input port

None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis †

None (-
∞:∞)

Matrix No

† It is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

y = pae(vOut, 0, vIn, 0, v1, 0, I_Probe1.i, I_Probe2.i, I_Probe3.i, 1, 1)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

db() (ael), dbm() (ael)
 pfc()

This measurement gives the RMS power value of one frequency component of a harmonic
balance waveform

 Syntax

y = pfc(vPlus, vMinus, iOut, harm_freq_index)

 Arguments

Measurement Expressions

161

Name Description Default Range Type Required

vPlus voltage at the positive output terminal None (-
∞:∞)

Real,
Complex

Yes

vMinus voltage at the negative output terminal None (-
∞:∞)

Real,
Complex

Yes

iOut current through a branch None (-
∞:∞)

Real,
Complex

Yes

harm_freq_index harmonic index of the desired frequency † None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic
frequency (mixing terms) in the analysis † †

None (-
∞:∞)

Matrix No

† Note that the harm_freq_index argument's entry should reflect the number of tones in
the harmonic balance controller. For example, if one tone is used in the controller, there
should be one number inside the braces; two tones would require two numbers separated
by a comma.
† † Mix is required whenever the first argument is a spectrum obtained from an
expression that operates on the voltage and/or current spectrums.

 Examples

y = pfc(vOut, 0, I_Probe1.i, {1, 0})

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ifc() (expmeas), vfc() (expmeas)

 Notes/Equations

This function should not be used for DC measurements. If used, the results will be less by
a factor of 2.0.
 phase_gain()

Returns the gain associated with the phase (normally zero)
crossing at associated power. Can be used in Harmonic Balance Analysis of
an oscillator to get the loop-gain. Returns an array of gains.

 Syntax

y = phase_gain(Gain, DesiredPhase)

 Arguments

Measurement Expressions

162

Name Description Default Range Type Required

Gain Two dimensional data representing gain. E.g. Loop-gain of
an oscillator.

None (-
∞:∞)

Complex Yes

DesiredPhase A single value representing the desired phase. 0 (-
∞:∞)

Real No

 Examples

We assume that a Harmonic Balance analysis has been performed at different

power.

gainAtZeroPhase = phase_gain(Vout/Vin, 0) returns the gain at zero phase.

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael
 pspec()

This measurement gives a power frequency spectrum in harmonic balance analyses

 Syntax

y = pspec(vPlus, vMinus, iOut)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive node None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative node None (-
∞:∞)

Real, Complex Yes

iOut current through a branch 0 (-
∞:∞)

Real No

 Examples

a = pspec(vOut, 0, I_Probe1.i)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pt() (expmeas), ispec() (expmeas), vspec() (expmeas)
 pt()

This measurement calculates the total power of a harmonic balance frequency spectrum.

 Syntax

y = pt(vPlus, vMinus, iOut)

Measurement Expressions

163

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive node None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative node None (-
∞:∞)

Real, Complex Yes

iOut current through a branch 0 (-
∞:∞)

Real No

 Examples

y = pt(vOut, 0, I_Probe1.i)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pspec() (expmeas)
 remove_noise()

Removes noise floor data from noise data and returns an array.

 Syntax

nd = remove_noise(NoiseData, NoiseFloor)

 Arguments

Name Description Default Range Type Required

NoiseData Two dimensional array representing noise data None (-
∞:∞)

Real, Complex Yes

NoiseFloor Single dimensional array representing noise floor None (-
∞:∞)

Real, Complex Yes

 Examples

nd = remove_noise(vnoise, noiseFloor) returns the noise data with the noise

floor removed

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 Notes/Equations

Used in Harmonic Balance analysis.

Measurement Expressions

164

NoiseData is [m,n] where m is receive frequency and n is interference offset frequency. If
NoiseData is [m,n], then NoiseFloor must be [m]. If NoiseData - NosieFloor is less than
zero, then -200 dBm is used.
 sfdr()

Returns the spurious-free dynamic range

 Syntax

y = sfdr(vOut, ssGain, nf, noiseBW, fundFreq, imFreq, zRef{, Mix})

 Arguments

Name Description Default Range Type Required

vOut signal voltage at the output port None [0:∞) Real,
Complex

Yes

ssGain small signal gain in dB None [0:∞) Real Yes

nf noise figure at the output port None [0:∞) Real Yes

fundFreq harmonic frequency indices for the fundamental frequency None (-
∞:∞)

Integer
array

Yes

imFreq harmonic frequency indices for the intermodulation
frequency

None (-
∞:∞)

Integer
array

Yes

zRef reference impedance 50.0 (-
∞:∞)

Real,
Complex

No

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis †

None (-
∞:∞)

Integer
array

No

† Mix is required whenever the first argument is a spectrum obtained from an expression
that operates on the voltage and/or current spectrums.

 Examples

a = sfdr(vIn, 12, nf2, , {1, 0}, {2, -1}, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ip3_out() (expmeas)

 Notes/Equations

Used in a Harmonic Balance and Small-signal S-parameter. It appears in the HB
Simulation palette.

Measurement Expressions

165

This measurement determines the spurious-free dynamic-range ratio for noise power with
respect to the reference bandwidth.

To measure the third-order intercept point, you must setup a Harmonic Balance simulation
with the input signal driving the circuit in the linear range. Input power is typically set 10
dB below the 1 dB gain compression point. If you simulate the circuit in the nonlinear
region, the calculated results will be incorrect.

For the NoiseBW argument, you normally have to use the default value of 1 Hz. If you
increase it, as per the bandwidth of a filter you are using, dynamic range can be greatly
reduced by the resulting rise in the noise floor.
 snr()

This measurement gives the ratio of the output signal power (at the fundamental
frequency for a harmonic balance simulation) to the total noise power (in dB).

 Syntax

y = snr(vOut, vOut.noise, fundFreq, Mix)

 Arguments

Name Description Default Range Type Required

vOut signal voltage at the output port None [0:∞) Real,
Complex

Yes

vOut.noise noise voltage at the output port None [0:∞) Real,
Complex

Yes

fundFreq harmonic frequency indices for the fundamental
frequency †

None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic frequency
(mixing terms) in the analysis † †

None (-
∞:∞)

Integer
array

No

† Note that fundFreq is not optional; it is required for harmonic balance simulations, but it
is not applicable in AC simulations.
† † Mix is required whenever the first argument is a spectrum obtained from an
expression that operates on the voltage and/or current spectrums.

 Examples

a = snr(vOut, vOut.noise, {1, 0})

returns the signal-to-power noise ratio for a harmonic balance simulation.

a = snr(vOut, vOut.noise)

returns the signal-to-power noise ratio for an AC simulation.

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ns_pwr_int() (expmeas), ns_pwr_ref_bw() (expmeas)

Measurement Expressions

166

 Notes/Equations

If the second argument is of higher dimension than the first, the noise bandwidth used for
the purpose of computing snr will be equal to the frequency spacing of the innermost
dimension of the noise data, instead of the standard value of 1 Hz.
 spur_track()

Returns the maximum power of all signals appearing in a user-specifiable IF band, as a
single RF input signal is stepped. If there is no IF signal appearing in the specified band,
for a particular RF input frequency, then the function returns an IF signal power of -500
dBm.

 Syntax

IFspur = spur_track(vs(vout, freq), if_low, if_high, rout)

 Arguments

Name Description Default Range Type Required

vout IF output node name None None String Yes

if_low lowest frequency in the IF band None [0:∞) Real Yes

if_high highest frequency in the IF band None [0:∞) Real Yes

rout load resistance connected to the IF port, necessary for computing
power delivered to the load

None [0:∞) Real Yes

 Examples

IFspur = spur_track(vs(HB.VIF1, freq), Fiflow[0, 0], Fifhigh[0, 0], 50)

where

VIF1 is the named node at the IF output.

Fiflow is the lowest frequency in the IF band.

Fifhigh is the highest frequency in the IF band.

50 is the IF load resistance.

Fiflow and Fifhigh are passed parameters from the schematic page (although they

can be defined on the data display page instead.) These parameters, although

single-valued on the schematic, become matrices when passed to the dataset,

where each element of the matrix has the same value. The [0, 0] syntax just

selects one element from the matrix.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

spur_track_with_if() (expmeas)

Measurement Expressions

167

 Notes/Equations

Used in Receiver spurious response simulations.
IFspur computed above will be the power in dBm of the maximum signal appearing in the
IF band, versus RF input frequency. Note that it would be easy to modify the function to
compute dBV instead of dBm.

This function is meant to aid in testing the response of a receiver to RF signals at various
frequencies. This function shows the maximum power of all signals appearing in a user-
specifiable IF band, as a single RF input signal is stepped. There could be fixed, interfering
tones present at the RF input also, if desired. The maximum IF signal power may be
plotted or listed versus the stepped RF input signal frequency. If there is no IF signal
appearing in the specified band, for a particular RF input frequency, then the function
returns an IF signal power of -500 dBm.
 spur_track_with_if()

Returns the maximum power of all signals appearing in a user-specifiable IF band, as a
single RF input signal is stepped. In addition, it shows the IF frequencies and power levels
of each signal that appears in the IF band, as well as the corresponding RF signal
frequency.

 Syntax

IFspur = spur_track_with_if(vs(vout, freq), if_low, if_high, rout)

 Arguments

Name Description Default Range Type Required

vout IF output node name None None String Yes

if_low lowest frequency in the IF band None [0:∞) Real Yes

if_high highest frequency in the IF band None [0:∞) Real Yes

rout load resistance connected to the IF port, necessary for computing
power delivered to the load

None [0:∞) Real Yes

 Examples

IFspur=spur_track_with_if(vs(HB.VIF1, freq), Fiflow[0, 0], Fifhigh[0, 0], 50)

where

VIF1 is the named node at the IF output.

Fiflow is the lowest frequency in the IF band.

Fifhigh is the highest frequency in the IF band.

50 is the IF load resistance.

Fiflow and Fifhigh are passed parameters from the schematic page (although they

can be defined on the data display page instead.) These parameters, although

single-valued on the schematic, become matrices when passed to the dataset,

where each element of the matrix has the same value. The [0, 0] syntax just

selects one element from the matrix.

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

Measurement Expressions

168

 See Also

spur_track() (expmeas)

 Notes/Equations

Used in Receiver spurious response simulations.

IFspur computed above will be the power in dBm of the maximum signal appearing in the
IF band, versus RF input frequency. Note that it would be easy to modify the function to
compute dBV instead of dBm.

This function is meant to aid in testing the response of a receiver to RF signals at various
frequencies. This function, similar to the spur_track function, shows the maximum power
of all signals appearing in a user-specifiable IF band, as a single RF input signal is
stepped. In addition, it shows the IF frequencies and power levels of each signal that
appears in the IF band, as well as the corresponding RF signal frequency. There could be
fixed, interfering tones present at the RF input also, if desired. The maximum IF signal
power may be plotted or listed versus the stepped RF input signal frequency.
 thd_func()

This measurement returns the Total Harmonic Distortion percentage.

 Syntax

y = thd_func(v)

 Arguments

Name Description Default Range Type Required

v voltage None (-
∞:∞)

Real, Complex Yes

 Examples

y = thd_func(Vload)

 Defined In

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael
 ts()

Performs a frequency-to-time transform

 Syntax

y= ts(x, tstart, tstop, numtpts, dim, windowType, windowConst, nptsspec)

 Arguments

Measurement Expressions

169

Name Description Default Range Type Required

x frequency-domain data to be
transformed

None (-∞:∞) Real Yes

tstart starting time 0 [0:∞) Integer,
Real

No

tstop stoping time tstop = tstart +
2.0/fabs(freq[0])

[0:∞) Integer,
Real

No

numtpts number of time points 101 [1:∞) Integer No

dim dimension to be transformed
(not used currently)

highest dimension [1:∞) Integer No

windowType type of window to be applied to
the data

0 [0:9] † Integer,
string

No

windowConst window constant †† 0 [0:∞) Integer,
Real

No

nptsspec number of first harmonics to be
transformed

1 [1:NumFreqs] Integer No

† The window types and their default constants are:
0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the time-to-frequency transformation with normal gate
shape setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13
†† windowConst is not used if windowType is 8510

 Examples

The following examples of ts assume that a harmonic balance simulation was

performed with a fundamental frequency of 1 GHz and order = 8:

Y=ts(vOut) returns the time series (0, 20ps, ... , 2ns)

Y=ts(vOut, 0, 1ns) returns the time series (0, 10ps, ..., 1ns)

Y=ts(vOut, 0, 10ns, 201) returns the time series (0, 50ps, ... , 10ns)

Y=ts(vOut, , , , , , , 3) returns the time series (0, 20ps, ... , 2ns), but

only uses harmonics from 1 to 3 GHz

 Defined in

Built in

 See Also

fft() (expmeas), fs() (expmeas), fspot() (expmeas)

Measurement Expressions

170

 Notes/Equations

Used in Harmonic Balance and Circuit Envelope simulations.

The default number of time points is computed as follows:
if the number of frequencies is < 2, it is set to 101
else use the following formula

newdefault_numtpts = fabs(16.0 * 2.0 * freq[numfreqs-1] / freq[1]);

 if the new value is less than 101

 it is set to 101

 if it is greater than 10001,

 it is set to 10001.

So the new default is a value between 101 and 10001, and varies based on the number of
frequencies, and the actual frequency values.

The dim argument is not used and should be left empty in the expression. Entering a
value will have no impact on the results.

ts(x) returns the time domain waveform from a frequency spectrum. When x is a
multidimensional vector, the transform is evaluated for each vector in the specified
dimension. For example, if x is a matrix, then ts(x) applies the transform to every row of
the matrix. If x is three dimensional, then ts(x) is applied in the lowest dimension over the
remaining two dimensions. The dimension over which to apply the transform may be
specified by dimension; the default is the lowest dimension (dimension=1). ts() originated
in MDS and is similar to vt().

Note
Where x is multi-dimensional, the ts (x) function expects frequency to be the most frequently-changing
variable in the input data, and the function may produce unpredictable results if this is not the case. For a
dataset which does not have frequency as the most frequently-changing variable, the problem can be
eliminated by using the permute (x) function to change the dimension order, as follows:

permx = permute(x)

ts(permx)

x must be numeric. It will typically be data from a Harmonic Balance analysis.

By default, two cycles of the waveform are produced with 101 points, starting at time
zero, based on the lowest frequency in the input spectrum. These may be changed by
setting tstart, tstop, or numtpts.

All of the harmonics in the spectrum will be used to generate the time domain waveform.
When the higher-order harmonics are known not to contribute significantly to the time
domain waveform, only the first n harmonics may be requested for the transform, by
setting nptsspec = n.

ts(x) can be used to process more than Harmonic Balance. For example, ts(x) can be used
to convert AC simulation data to a time domain waveform using only one frequency point
in the AC simulation.

Note that if the data does not have an explicit independent variable "freq", it is assumed
to be starting at 0.0 and incremented in steps of 1. In some cases, this might lead to an

Measurement Expressions

171

incorrect time waveform. For example to obtain the time waveform of the second tone in a
single tone analysis, using ts(Vout[2]) would give incorrect results. In this case use
ts(Vout[2::3],,,,,,,1) to obtain the correct waveform.

In harmonic balance analysis if variables are swept, the dataset saved has an inner most
independent harmindex and a first dependent freq . In the case of argument tstop not
being given the default is calculated using the dependent variable freq . But if the
argument x in the ts() function is arithmetically operated or sub-indexed, the dependent
freq is not maintained and in such cases the ts() function returns incorrect time values.
This can be prevented by first using the ts() function on such data and then obtaining the
necessary data. The example below illustrates this point.
Assume that the harmonic balance analysis has swept variable Pin . In this case the data
has two independents [Pin, harmindex]. If Idd.i and Iout.i are 2 currents then the
expression below:
tsERR = ts(Idd.i - Iout.i)

would return the incorrect time axis values. This can be solved by the expression:
tsWORKS = ts(Idd.i) - ts(Iout.i)

Similarly the expression:
tsERR1 = ts(Idd.i[0,::])

would return the incorrect time axis values. This can be solved by the expressions:
ts_Idd = ts(Idd.i)

ts_Idd_0 = ts_Idd[0,::]

 vfc()

This measurement gives the RMS voltage value of one frequency-component of a
harmonic balance waveform

 Syntax

y = vfc(vPlus, vMinus, harm_freq_index)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive output terminal None (-
∞:∞)

Real,
Complex

Yes

vMinus voltage at the negative output terminal None (-
∞:∞)

Real,
Complex

Yes

harm_freq_index harmonic index of the desired frequency † None (-
∞:∞)

Integer
array

Yes

Mix consists of all possible vectors of harmonic
frequency (mixing terms) in the analysis † †

None (-
∞:∞)

Matrix No

† Note that the harm_freq_index argument's entry should reflect the number of tones in
the harmonic balance controller. For example, if one tone is used in the controller, there
should be one number inside the braces; two tones would require two numbers separated
by a comma.
† † Mix is required whenever the first argument is a spectrum obtained from an
expression that operates on the voltage and/or current spectrums.

 Examples

a = vfc(vOut, 0, {1, 0})

Measurement Expressions

172

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ifc() (expmeas), pfc() (expmeas)

 Notes/Equations

This function should not be used for DC measurements. If used, the results will be less by
a factor of sqrt(2.0).
 vspec()

Returns the voltage frequency spectrum

 Syntax

y = vspec(vPlus, vMinus)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive node None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative node None (-
∞:∞)

Real, Complex Yes

 Examples

a = vspec(v1, v2)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ispec() (expmeas), pspec() (expmeas)

 Notes/Equations

Used in Harmonic Balance analysis.
This measurement gives a voltage frequency spectrum across any two nodes. The
measurement gives a set of RMS voltages at each frequency.

Measurement Expressions

173

 vt()

This measurement converts a harmonic-balance voltage frequency spectrum to a time-
domain voltage waveform.

 Syntax

y = vt(vPlus, vMinus, tmin, tmax, numOfPnts)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive node None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative node None (-
∞:∞)

Real, Complex Yes

tmin start time 0 [0:∞) Real No

tmax stop time 2*cycle
time

[0:∞) Real No

numOfPnts number of points 101 [0:∞) Integer No

 Examples

a = vt(vOut, 0, 0, 10nsec, 201)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

it() (expmeas), ts() (expmeas)

 Notes/Equations

The vt() function originated in Series IV and simply calls the frequency to time domain
transformer function, ts(). In some cases, if default values are used for tmin, tmax, and
numOfPnts, the proper results may not be obtained due to an insufficient number of
points. In such cases, the appropriate values for tmin, tmax, and numOfPnts need to be
used. This function uses default values for window type and window constant, and in
certain cases the correct results may not be obtained due to this fact. In this situation,
use the ts() function instead with the proper windowing. For more information, refer to the
Notes/Equations section for the ts() function.

Measurement Expressions

174

 Jitter Analysis Functions
This section describes the jitter analysis concepts and functions in detail. These are not
generalized functions, they are provided specifically to support jitter analysis.

bathtub() (expmeas)
jitter separation() (expmeas)

 Working with Jitter Analysis Data

Jitter Analysis is used to decompose aggregate total jitter of serial data into the individual
jitter components, random jitter (RJ), and deterministic jitter (DJ) as shown in Jitter
Components. Jitter analysis leverages the techniques from the DCA-J, equivalent-time
sampling, and the Infiniium DSO80000 real-time oscilloscopes.

 Jitter Components

 Definitions

Measurement Expressions

175

BER Bit Error Rate

DCD Duty Cycle Distortion. Derived from the Composite DDJ Histogram graph. It is the absolute
value of the difference between the mean of the histogram of the rising edge positions and the
mean of the histogram of the falling edge positions.

DDJ Data Dependent Jitter. DDJ is the difference in the position of the earliest edge (rising or falling)
and the latest (rising or falling) edge. If DCD = zero, DDJ = ISI. If ISI = zero, DDJ = DCD.

DDJpp Data dependent jitter, peak-to-peak value of the jitter that is correlated to the data pattern. It is
the difference in the position of the earliest edge (rising or falling) and the latest (rising or
falling) edge. If DCD=0, DDJ is just ISI. If ISI=0, then DDJ is just DCD.

DJ Deterministic Jitter. DJ is bounded by a finite magnitude. It can be broken into jitter which is
correlated to the data sequence and jitter that occurs independent of data.

DJ(δδ) Delta-Delta Deterministic Jitter of the bimodal equivalent model used to represent all aggregate
deterministic jitter as defined in the dual-Dirac model for total jitter. Deterministic jitter is
defined by the dual-Dirac jitter model as all those components of total jitter that do not fit a
Gaussian probability density function. It is given by the time delay separation of the two delta
functions.

ISIpp Inter-Symbol Interference peak-to-peak (p-p) range of the jitter that is correlated to rising
edges or the jitter that is correlated to falling edges (whichever is greater). ISI is the largest of
the difference between the earliest falling/rising and latest falling/rising edges, determined from
measuring the average position of each bit in the pattern. When doing a jitter analysis if the
rising or falling edge modes are selected, then only the specified edges are used in the
calculation of ISIpp.

MinSeqDDJ Minimum number of sequences needed for a successful DDJ separation.

MinNTIEs Minimum number of TIEs that are needed if the corresponding number of Nbps is used.

MinNSeqs Minimum number of sequences that can be used for given NTIEs.

MaxNSeqs Maximum number of sequences that can be used for given MinSeqsDDJ.

Nbps Number of bits per sequence

Nbpp Number of bits per pattern

NTIEs Number of TIEs

NumSeqs Number of sequences

Nwpps Number of whole patterns per sequence

PJ Periodic Jitter. PJ represents all of the periodic jitter that is uncorrelated from the data pattern.
There are 2 types:

PJ(δδ) Periodic Jitter delta-delta, is the jittered magnitude required to make RJ PDFs match the Dual-
Dirac model with the measured or simulated RJ and PJ.

PJrms The root-mean-square value of the uncorrelated periodic jitter.

RJ Random Jitter. RJ follows a Gaussian distribution and is represented by the rms value of the RJ
distribution, RJrms. RJ is the baseline noise floor of the aliased power spectrum. Peaks (anything

above a particular threshold) are identified and removed.

RJrms Random Jitter follows a Gaussian distribution. RJ is the baseline noise floor of the aliased power
spectrum. Anything above it is periodic jitter and is removed in calculating RJ.

TJ Total Jitter. TJ is interpreted as total eye closure at a specified BER (10-12 default). If the
closure threshold is the default and TJ=50ps, the likelihood that and edge will be 25ps late or
25ps early is 1 in a billion.

TJpp The peak-to-peak value of the total jitter calculated at a specific bit error rate (BER). The BER
level specified as one of the arguments during jitter analysis identifies the specified BER for
which the TJ value was calculated. This TJpp value is calculated as an estimate of the true total
jitter, as defined by the dual-Dirac jitter model.

 Jitter Analysis Process

Measurement Expressions

176

This section describes steps involved in jitter analysis.

 Time Interval Error

The first step in the jitter analysis/decomposition process is finding the time interval error
(TIE), which is the time difference between the serial data signal relative to a reference
signal (usually a clock signal) as shown in Time Interval Error. TIE is then used in the
jitter decomposition.

 Time Interval Error

 Sub-Sampled Decimation for DDJ Separation

After the TIE data has been calculated, the next step is DDJ separation. Jitter analysis can
be done on periodic or arbitrary data. Currently, only periodic data is supported. In order
to decompose jitter, the TIE calculated is associated with the specific bit in the source
signal's logical bit sequence. The TIE data is decimated into sub-sampled TIE data, where
the value in the sub-sampled sequence corresponds to a specific bit within the pattern.
The number of original samples skipped during decimation is a function of the RJ
bandwidth. The narrow-band mode maximizes the decimation ratio, and the wide-band
minimizes the decimation. The next step is to perform a FFT on the sub-sampled data. The
first value of each jitter spectrum (DC component) is the DDJ for the particular bit of the
repeating pattern.

 RJ PJ Separation

Once the DDJ component has been subtracted from TJ, the remaining jitter spectrum is
comprised of RJ and PJ. The power spectrum density (PSD) of the RJ/PJ spectrum is
calculated. All of the individual RJ/PJ spectrums are averaged together (as well as
averaged with spectrums from previous sequences) to form the averaged PSD (APSD). All
APSD's frequency components that have a value above a threshold are removed as PJ.

Measurement Expressions

177

The remaining APSD are then combined to obtain RJrms. Refer to Reference 1 in
References for more details.

 Viewing Results

Jitter Analysis FrontPanel is part of the Data Display. For information on viewing Jitter
Analysis simulation results, see "Jitter Analysis FrontPanel" in the Data Display
documentation.
BER Bathtub Graph

 Bathtub

The BER Bathtub graph plots the sampling time (in UI) of a serial data signal on the X-axis
versus bit error rate on the Y-axis. The trace in red represents BER values that are
calculated directly from the TIE data, and the trace in blue represents BER values that are
extrapolated using the calculated values of RJ and DJ.
The BER value for the TIE data is calculated by integrating the TJ Histogram. The
extrapolated values are obtained from the Dual-Dirac model of the way RJ and DJ combine
into a CDF. RJ is modeled as a Gaussian distribution with standard deviation RJ, and DJ is
modeled as two Dirac-Delta functions, separated by distance DJ. This function is basically
the integral of the function defined by Dual-Dirac PDF model, except that because this is
intended to model BER curves, this CDF has been modified to peak at the transition
density rather than 1.0, for a maximum BER equivalent to the transition density.
The Q of BER bathtub graph plots the sampling time (in UI) versus the Q of BER.

Measurement Expressions

178

 Q of BER Bathtub

 Jitter Histograms

 TJ Histogram

 Total Jitter (TJ) Histogram

The Total Jitter (TJ) Histogram shows the combined Random Jitter (RJ), Periodic Jitter (PJ)
and Data Dependent Jitter (DDJ) probability density functions. The TJ histogram is
calculated by cross-correlating the RJ, PJ histogram with the DDJ histogram. It is the a
histogram of all of the measured jitter, both correlated to the data pattern and
uncorrelated to the data pattern, combined in a single histogram. The graph's horizontal
axis indicates negative time for samples that occur earlier than expected and positive time
for samples that occur later than expected.

 RJ PJ Histogram

Measurement Expressions

179

 Random Jitter, Periodic Jitter (RJ, PJ) Histogram

The RJ, PJ Jitter Histogram shows the histogram of all uncorrelated jitter. The graph's
horizontal axis indicates negative time for samples that occur earlier than expected and
positive time for samples that occur later than expected.

 Composite TJ Histogram

 Composite TJ Histogram

The Composite TJ Histogram shows separate graphs of Total Jitter (TJ), Data-Dependent
Jitter (DDJ), and the combined histogram of uncorrelated Random Jitter (RJ) and
uncorrelated Periodic Jitter (PJ). The graph's horizontal axis indicates negative time for
samples that occur earlier than expected and positive time for samples that occur later
than expected.

 Data Dependent Jitter Histogram

Measurement Expressions

180

 Data Dependent Jitter (DDJ) Histogram

The Data Dependent Jitter (DDJ) histogram displays the jitter that is correlated to the
data pattern. The graph's horizontal axis indicates negative time for samples that occur
earlier than expected and positive time for samples that occur later than expected. For
data-type source waveform signal, the mean of the histogram of DDJ from all edges is
always equal to zero.

 Composite DDJ Histogram

 Composite Data Dependent Jitter (DDJ) Histogram

The Composite Data Dependent Jitter (DDJ) Histogram shows three histograms of
correlated jitter based on data from all edges, rising edges, and falling edges. The peak-
to-peak spread of the all-edges histogram represents the DDJ. The peak-to-peak spread
of the rising-edges histogram or the falling-edges histogram, whichever is greater,
represents Inter-Symbol Interference (ISI). The difference between the mean of the rising
edge positions and the mean of the falling edge positions represents the Duty Cycle
Distortion (DCD). The graph's horizontal axis indicates negative time for samples that

Measurement Expressions

181

occur earlier than expected and positive time for samples that occur later than expected.

 DDJ versus Bits Graph

 Data Dependent Jitter (DDJ) versus Relative Bit Position

The graph of Data-Dependant Jitter (DDJ) versus Relative Bit Position shows relative bit
position on the horizontal axis. The vertical axis indicates negative time for samples that
occur earlier than expected and positive time for samples that occur later than expected.
The bit numbers displayed on the horizontal axis are relative values only and may change
each time the logical bit pattern of the source waveform is recalculated.

 RJ PJ Spectrum

 RJ, PJ Spectrum Graph

The RJ, PJ (Random Jitter, Periodic Jitter) Spectrum graph shows the discrete Fourier
transform of the combined RJ and PJ. The vertical axis represents the magnitude of each

Measurement Expressions

182

spectral jitter component and the horizontal axis identifies the frequency. The displayed
magnitude spectrum is calculated independently for each sequenced waveform and then
averaged with magnitude spectrums from previous sequences.
The frequency resolution of the RJ, PJ Spectrum is improved by increasing Nbps, sequence
record length. However, increasing the Nbps can significantly affect calculation time.
Overall calculation time can be improved by not displaying the RJ, PJ Spectrum graph (not
using MeasType equal 4).

 References

Precision Jitter Analysis Using the Agilent 86100C DCA-J - Agilent Literature Number1.
5989-1146EN
Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale - Agilent White Paper 5989-2.
3206EN
MJSQ - Methodologies for Jitter and Signal Quality Specification - T11.2/Project 1316-3.
DT
Analyzing Jitter Using Agilent EZJIT Plus Software - Application Note 15634.
Selecting RJ Bandwidth in EZJIT Plus Software - Application Note 15775.
EZJIT and EZJIT Plus Jitter Analysis Software for Infiniium Serial Oscilloscopes - Data6.
Sheet 5989-0109EN
U nderstanding Jitter and Wander Measurements and Standards - 5988-6254EN7.
Jitter Separation - 50 Mb/s to Over 40 Gb/s Using the Agilent 86100C Infiniium DCA-8.
J, whitepaper, Agilent Technologies, Inc.
http://www.eeplace.com/dm/2802/tw/DCAjwhitepaper3.pdf

 bathtub()

This measurement returns the data based and extrapolated bathtub curves and Q curves.

 Syntax

BathTub = bathtub(vJitterSig, vRefClkSig, Nbpp, BitPeriod, BERLevel, DataType, Pattern,
Nbps, NumSeq, RJBWMode, EdgeType)

 Arguments

http://www.eeplace.com/dm/2802/tw/DCAjwhitepaper3.pdf
http://www.eeplace.com/dm/2802/tw/DCAjwhitepaper3.pdf

Measurement Expressions

183

Name Description Default Range Type Required

vJitterSig time-domain based jittered signal None (-∞:∞) Real Yes

vRefClkSig time-domain based reference clock signal
or bit-period

None (0:∞) Real No

Nbpp number of bits per pattern None 2 to 2^17 integer Yes

BitPeriod bit period None 0 < BitPeriod < 1e-3 Real Yes

BERLevel BER level at which to measure TJ 1e-12 1e-40 < BERLevel <
1e-1

Real No

DataType data-type 1 1 (Periodic),
2(Random) †

Integer No

Pattern bit pattern vector or bit pattern file-name None 0 and 1 Array,
String

No

Nbps number of bits per sequence † † [2:Inf] Integer No

NumSeq number of sequences of data to be used in
creating the bathtub

† † † [1:Inf] Integer No

RJBWMode RJ Bandwidth Mode 1 1(Narrow), 2(Wide) Integer No

EdgeType Data Edge Type 3 1(Rising), 2(Falling),
3(Both)

Integer No

 Examples

The following example measures the bathtub of a jittered signal that uses a

PRBS10 source:

BathTub = bathtub(vJitSig, vRefClkSig, 1023, 50 ps, 1e-12, 1,, 5000, 95,,)

The returned value BathTub is a list of four measurements - data based BER

curve, extrapolated BER curve, data based Q BER curve and extrapolated Q BER

curve.

DataBath = BathTub[0]

MdlBath = BathTub[1]

DataQBath = BathTub[2]

MdlQBath = BathTub[3]

Where:
vJitterSig is the time-domain jittered signal. The argument jittered signal is the serial
data (time versus amplitude) used in jitter separation. This signal is used in calculating
the zero crossings, and the serial data is calculated from the zero crossings. If there are
no zero crossings, then jitter separation will terminate with an error message. Currently,
only periodic pattern serial data is supported, and the pattern must be repeatable.
Arbitrary or random serial data is not supported.
vRefClkSig can be a reference clock signal (time versus amplitude) or the bit period. If
the clock signal is given, the zero crossings are used to find the clock serial. This zero
crossing is used along with the zero crossings of the jittered data in calculating the Time
Interval Error (TIE). If the bit period is given, then the clock zero crossings are calculated
from the bit period. If not given, the fourth argument bit period is used.
Nbpp is the pattern length and is required in order to automatically detect the pattern. At

minimum this should be 2 (a clock signal) and a maximum of 217. Note that for larger
pattern length the number of serial bits needed would be large and jitter separation would
take a long time. See Viewing Results (expmeas) for more information.

BitPeriod = Bit period must be greater than 0 and less than 1e-3.
BERLevel is the level at which to calculate TJ, RJpp. This argument is optional and the
default value is 1e-12. For example if the system is being designed for a BER of 1e-12,
then doing a jitter separation at 1e-12 would calculate the TJ at 1e-12.

Measurement Expressions

184

Pattern can be an array of 0s and 1s or the name of a file containing the pattern. An
example of a pattern in array format is [1,0,0,0,0,0,0,0,1,0]. A pattern must have a 0 and
a 1. In addition, the minimum pattern is a [0, 1] - a clock signal. If the pattern is given in
a file, the pattern bits must be space separated and in a single line. If pattern is not given,
the pattern is automatically detected from the signal bits. For each sequence of data, the
pattern is detected and compared with the previous sequence patter or the given pattern.
If the pattern matches, that particular sequence of data is used.
Nbps indicates the number of bits-per-acquisition or sequence. Nbps is optional and the
default is 2 * Minimum # Whole Pattern per sequence * Nbpp = 2 * 64 * Nbpp. In most
cases this default value would work, but in some cases this value might need to be set
manually since this argument has a direct bearing on the number of serial bits needed for
a valid jitter separation and the RJPJ separation method. See Viewing Results (expmeas)
for more information.

NumSeqs can be used to control the amount of data to be used in jitter separation. The
default value is (# TIE Points)/Nbps, and in most cases this would work. But if increased
control is required over the number of bits to be used, this argument can be set to a
different value.
RJBWMode Jitter analysis uses a spectral technique to separate RJ from PJ. In the RJ, PJ
Spectrum the noise floor or baseline depicts RJ. The narrow spikes above RJ depict PJ (see
RJ, PJ Spectrum graph). This separation works well for wide bandwidth RJ, having a
uniform PSD across the entire jitter spectrum. But in some cases, this is not the norm and
the PJ components appear much broader. In such cases PJ can be mis-represented as RJ
and this affects the TJ (since TJ is a multiplier of RJ). Setting RJ bandwidth mode to Wide
or White treats RJ as flat. See References (expmeas) for more information.

 Defined in

$HPEESOF_DIR/expressions/ael/JitAnalysis.ael

 See Also

jitter_separation() (expmeas)

 Notes and Equations

Default value for Nbps = 2 * Minimum # Whole Pattern per sequence * Nbpp = 2 *1.
64 * Nbpp
For Periodic data type if the number of whole pattern per sequence, Nwpps = Nbps /
Ntpp, is less than 64, the method used for RJPJ Separation is random (which is
different than the data type or pattern being random). For PRBS15 if Nbps=60000,
Ntpp=16384, NTIEs=2621359 then Nwpps=3. If the number of sequences to use is
less than minimum number of sequences needed for DDJ separation, MinSeqsDDJ =
100/Nwpps, then DDJ cannot be separated and the initial sequences are not used.
For example if Nwpps=3, then MinSeqsDDJ =100/3 = 34. In this case, increase the
number of TIE to (MinSeqsDDJ+1) * Nbps.
Some calculations for the PRBS15 example are shown below:

Measurement Expressions

185

Nbps = BitMultiplier * Nbpp
Nwpps = floor(Nbps/Ntpp)
MinSeqsDDJ = ceil(100/Nwpps)
MinNTIEs = (MinSeqsDDJ + 1) * Nbps
MinNSeqs = floor(NTIEs/Nbps)
MaxNSeqs = MinNTIEs/Nbps
Where:
MinNTIEs is the minimum number of TIEs that are needed if the corresponding
number of Nbps is used.
MinSeqsDDJ is the minimum number of sequences that are needed for a successful
DDJ separation.
MinNSeqs is the minimum number of sequences that can be used for given NTIEs.
MaxNSeqs is the maximum number of sequences that can be used for given
MinSeqsDDJ.
So in the above example, if Nbps = 13 * Nbpp = 425971, then Nwpps = 25.
For this Nbps, the minimum number of sequences that can be used for a valid DDJ
separation is 4. This is less than the number of sequences, 6 that is possible with
NTIEs= 2621359. So a valid DDJ separation can be done. In the table below, for
Nwpps ≤63 the RJPJ separation used is random. For Nwpps ≥64, the RJPJ separation
used is periodic.
BitMultiplier Nbps Nwpps MinNTIEs MinSeqsDDJ MaxNSeqs MinNSeqs

1 32767 1 3309467 100 101 79

7 229369 13 2064321 8 9 11

13 425971 25 2129855 4 5 6

19 622573 37 2490292 3 4 4

25 819175 49 3276700 3 4 3

31 1015777 61 3047331 2 3 2

32 1048544 63 3145632 2 3 2

34 1114078 67 3342234 2 3 2

36 1179612 71 3538836 2 3 2

38 1245146 75 3735438 2 3 2

40 1310680 79 3932040 2 3 1

In addition the frequency resolution of the RJ, PJ Spectrum is improved by increasing
Nbps. But increasing Nbps can significantly increase the RJ, PJ spectrum calculation
time.
NumSeqs default value = (# TIE Points)/Nbps.2.
In order to get a valid jitter separation the number of data points should be at least
have 32 complete data patterns, otherwise jitter separation would terminate with an
error. With number of bits between 32 and 128, jitter separation will be performed,
but the results are questionable. For accurate results, use at least 128 patterns.
Since the separation algorithm is a statistical procedure, the results would correlate
better with more patterns.

PJ is separated from RJ by inspecting the spectral content of jitter. The robustness of this
separation methodology depends on having sufficient frequency resolution in the jitter
spectrum. When the frequency resolution drops below a threshold it could start to cause a
reduction in RJ/PJ separation accuracy. This happens when the number of complete data
patterns in the serial data falls below 128 patterns. When this happens, examine the RJ,
PJ spectrum. If the spectrum is comprised primarily of random noise with very few tall PJ
spikes, then the questionable results are accurate. If there are a large number of PJ spikes
then the jitter measurement should be repeated several times while varying the sequence

Measurement Expressions

186

record length. If the RJ and PJ results change significantly with record length, then the
results are correct.
 jitter_separation()

This function does a jitter analysis and separates the jitter components.

 Syntax

JitRes = jitter_separation(vJitterSig, vRefClkSig, Nbpp, BitPeriod, BERLevel, DataType,
Pattern, Nbps, NumSeq, RJBWMode, EdgeType, InterpType, MeasType)

 Arguments

Name Description Default Range Type Required

vJitterSig time-domain based jittered signal None (-∞:∞) Real Yes

vRefClk time-domain based reference clock
signal or bit period

None (0:∞) Real No

Nbpp number of bits per pattern None 2 to 2^17 integer Yes

BitPeriod bit period None 0 < BitPeriod < 1e-3 Real Yes

BERLevel BER level at which to measure TJ 1e-12 1e-40 < BERLevel < 1e-1 Real No

DataType data-type 1 1 (Periodic), 2(Random) † Integer No

Pattern bit pattern vector or bit pattern file-
name

None 0 and 1 Array,
String

No

Nbps number of bits per sequence † † [2:Inf] Integer No

NumSeq number of sequences of data to be
used in jitter analysis

† † † [1:Inf] Integer No

RJBWMode RJ Bandwidth Mode 1 1(Narrow or Pink), 2(Wide
or White)

Integer No

EdgeType Data Edge Type 3 1(Rising), 2(Falling),
3(Both)

Integer No

InterType Interpolation type for holes in TIE for
jitter spectrum

1 1(None), 2(Linear) Integer No

MeasType Specifies the jitter components and
graphs to calculate.

3 † † † † Integer No

† Note that Random data type is not supported in this release.
† † The default for Nbps is 2 * minimum number of whole patterns per sequence * Nbpp.
† † † NumSeq defaults is calculated as number of TIE points/Nbps.
† † † † MeasType can be one of the following:
1 Calculate TJpp,RJrms,DJdd
2 Returns TJpp,RJrms,DJdd,PJdd,PJrms,ISIpp,DCD,DDJpp.
3 In addition to measurements in type 2, calculate TJ,RJPJ,DDJ,DDJR,DDJF Histograms &
Bathtub Plot & DDJ vs Bit
4 In addition to measurements in type 3, calculate RJPJ spectrum.

 Examples

The following example does a jitter separation of a jittered signal that uses a

PRBS10 source:

JitRes = jitter_separation(vJitSig, vRefClk, 1023, 50 ps, 1e-12, 1,, 5000,

95,,,4)

The returned value JitRes is a list of 18 different measurements.

TJpp = JitRes[0]

RJrms = JitRes[1]

Measurement Expressions

187

DJdd = JitRes[2]

PJdd = JitRes[3]

PJrms = JitRes[4]

ISIpp = JitRes[5]

DCD = JitRes[6]

DDJpp = JitRes[7]

TJHist = JitRes[8]

RJPJHist = JitRes[9]

DDJHist = JitRes[10]

DDJFHist = JitRes[11]

DDJRHist = JitRes[12]

DataBath = JitRes[13]

MdlBath = JitRes[14]

DataQBath = JitRes[15]

MdlQBath = JitRes[16]

DDJvsBit = JitRes[17]

RJPJSpec = JitRes[18]

Where:
vJitterSig is the time-domain jittered signal. The argument jittered signal is the serial
data (time versus amplitude) used in jitter separation. This signal is used in calculating
the zero crossings, and the serial data is calculated from the zero crossings. If there are
no zero crossings, then jitter separation will terminate with an error message. Currently,
only periodic pattern serial data is supported, and the pattern must be repeatable.
Arbitrary or random serial data is not supported.
vRefClkSig can be a reference clock signal (time versus amplitude) or the bit period. If
the clock signal is given, the zero crossings are used to find the clock serial. This zero
crossing is used along with the zero crossings of the jittered data in calculating the Time
Interval Error (TIE). If the bit period is given, then the clock zero crossings are calculated
from the bit period. If not given, the fourth argument bit period is used.
Nbpp is the pattern length and is required in order to automatically detect the pattern. At

minimum this should be 2 (a clock signal) and a maximum of 217. Note that for larger
pattern length the number of serial bits needed would be large and jitter separation would
take a long time. See Viewing Results (expmeas) for more information.

BitPeriod = Bit period must be greater than 0 and less than 1e-3.
BERLevel is the level at which to calculate TJ, RJpp. This argument is optional and the
default value is 1e-12. For example if the system is being designed for a BER of 1e-12,
then doing a jitter separation at 1e-12 would calculate the TJ at 1e-12.
Pattern can be an array of 0s and 1s or the name of a file containing the pattern. An
example of a pattern in array format is [1,0,0,0,0,0,0,0,1,0]. A pattern must have a 0 and
a 1. In addition, the minimum pattern is a [0, 1] - a clock signal. If the pattern is given in
a file, the pattern bits must be space separated and in a single line. If pattern is not given,
the pattern is automatically detected from the signal bits. For each sequence of data, the
pattern is detected and compared with the previous sequence patter or the given pattern.
If the pattern matches, that particular sequence of data is used.
Nbps indicates the number of bits-per-acquisition or sequence. Nbps is optional and the
default is 2 * Minimum # Whole Pattern per sequence * Nbpp = 2 * 64 * Nbpp. In most
cases this default value would work, but in some cases this value might need to be set
manually since this argument has a direct bearing on the number of serial bits needed for
a valid jitter separation and the RJPJ separation method. See Viewing Results (expmeas)
for more information.

Measurement Expressions

188

NumSeqs can be used to control the amount of data to be used in jitter separation. The
default value is (# TIE Points)/Nbps, and in most cases this would work. But if increased
control is required over the number of bits to be used, this argument can be set to a
different value.
RJBWMode Jitter analysis uses a spectral technique to separate RJ from PJ. In the RJ, PJ
Spectrum the noise floor or baseline depicts RJ. The narrow spikes above RJ depict PJ (see
RJ, PJ Spectrum graph). This separation works well for wide bandwidth RJ, having a
uniform PSD across the entire jitter spectrum. But in some cases, this is not the norm and
the PJ components appear much broader. In such cases PJ can be mis-represented as RJ
and this affects the TJ (since TJ is a multiplier of RJ). Setting RJ bandwidth mode to Wide
or White treats RJ as flat. See References (expmeas) for more information.

MeasType specifies the jitter components and graphs to be calculated and displayed. There
are four values that can be used for MeasType:

1 (RJ DJ TJ): Calculate TJpp, RJrms, DJdd.
2 (Add PJ DDJ): TJpp, RJrms, DJdd, PJdd, PJrms, ISIpp, DCD, DDJpp
3 (Add Histograms, Bathtub, DDJ versus Bits): Measurements in MeasType=2 + TJ,
RJPJ, DDJ, DDJR, DDJF Histograms, Bathtub graphs, and DDJ versus Bits graph.
4 (Add full RJPJ spectrum): Measurements in mode 3 + RJPJ spectrum.

Note
Type 4 measurements can take an exceptionally long time to complete.

InterType For clock-type signals, the DFT is calculated from the uniformly spaced RJ, PJ
time record, where each value in the RJ, PJ time record corresponds to a voltage transition
in the clock-type waveform. For NRZ data-type signals, the RJ, PJ time record is not
comprised of uniformly spaced jitter values. For these signals, the RJ, PJ time record
contains "holes" caused by consecutive logical ones or zeros. The lack of information
about the jitter at times corresponding to these holes makes it impossible to determine
the true RJ, PJ spectrum.
There are two options for displaying the RJ, PJ spectrum. If InterType , the Data TIE
Interpolation mode is set to none, then the spectrum is calculated as if the holes were all
set to a value of zero. In this case, the resulting spectrum appears to be modulated
(convolved in the frequency domain) by the data pattern. If InterpType is set to linear,
then the spectrum is calculated as if the unknown values (holes) were determined using
linear interpolation. In this second case, the resulting spectrum is calculated by filtering
out the higher possible spectral components with a time-variant low-pass filter.

 Defined in

$HPEESOF_DIR/expressions/ael/JitAnalysis.ael

 See Also

bathtub() (expmeas)

Measurement Expressions

189

 Notes and Equations

This function requires the ads_si_verification license.1.

Caution
Due to memory limitations, large datasets created for performing jitter analysis can cause
instabilities in ADS. This can result in the Data Display window crashing without saving the DDS file.
To avoid losing any setup information, save the DDS file before performing a jitter analysis.

Default value for Nbps = 2 * Minimum # Whole Pattern per sequence * Nbpp = 2 *2.
64 * Nbpp
For Periodic data type if the number of whole pattern per sequence, Nwpps = Nbps /
Ntpp, is less than 64, the method used for RJPJ Separation is random (which is
different than the data type or pattern being random). For PRBS15 if Nbps=60000,
Ntpp=16384, NTIEs=2621359 then Nwpps=3. If the number of sequences to use is
less than minimum number of sequences needed for DDJ separation, MinSeqsDDJ =
100/Nwpps, then DDJ cannot be separated and the initial sequences are not used.
For example if Nwpps=3, then MinSeqsDDJ =100/3 = 34. In this case, increase the
number of TIE to (MinSeqsDDJ+1) * Nbps.
Some calculations for the PRBS15 example are shown below:
Nbps = BitMultiplier * Nbpp
Nwpps = floor(Nbps/Ntpp)
MinSeqsDDJ = ceil(100/Nwpps)
MinNTIEs = (MinSeqsDDJ + 1) * Nbps
MinNSeqs = floor(NTIEs/Nbps)
MaxNSeqs = MinNTIEs/Nbps
Where:
MinNTIEs is the minimum number of TIEs that are needed if the corresponding
number of Nbps is used.
MinSeqsDDJ is the minimum number of sequences that are needed for a successful
DDJ separation.
MinNSeqs is the minimum number of sequences that can be used for given NTIEs.
MaxNSeqs is the maximum number of sequences that can be used for given
MinSeqsDDJ.
So in the above example, if Nbps = 13 * Nbpp = 425971, then Nwpps = 25.
For this Nbps, the minimum number of sequences that can be used for a valid DDJ
separation is 4. This is less than the number of sequences, 6 that is possible with
NTIEs= 2621359. So a valid DDJ separation can be done. In the table below, for
Nwpps 63 the RJPJ separation used is random. For Nwpps 64, the RJPJ separation
used is periodic.
BitMultiplier Nbps Nwpps MinNTIEs MinSeqsDDJ MaxNSeqs MinNSeqs

1 32767 1 3309467 100 101 79

7 229369 13 2064321 8 9 11

13 425971 25 2129855 4 5 6

19 622573 37 2490292 3 4 4

25 819175 49 3276700 3 4 3

31 1015777 61 3047331 2 3 2

32 1048544 63 3145632 2 3 2

34 1114078 67 3342234 2 3 2

36 1179612 71 3538836 2 3 2

38 1245146 75 3735438 2 3 2

40 1310680 79 3932040 2 3 1

In addition the frequency resolution of the RJ, PJ Spectrum is improved by increasing

Measurement Expressions

190

Nbps. But increasing Nbps can significantly increase the RJ, PJ spectrum calculation
time.
NumSeqs default value = (# TIE Points)/Nbps.3.
In order to get a valid jitter separation the number of data points should be at least
have 32 complete data patterns, otherwise jitter separation would terminate with an
error. With number of bits between 32 and 128, jitter separation will be performed,
but the results are questionable. For accurate results, use at least 128 patterns.
Since the separation algorithm is a statistical procedure, the results would correlate
better with more patterns.
PJ is separated from RJ by inspecting the spectral content of jitter. The robustness of4.
this separation methodology depends on having sufficient frequency resolution in the
jitter spectrum. When the frequency resolution drops below a threshold it could start
to cause a reduction in RJ/PJ separation accuracy. This happens when the number of
complete data patterns in the serial data falls below 128 patterns. When this
happens, examine the RJ, PJ spectrum. If the spectrum is comprised primarily of
random noise with very few tall PJ spikes, then the questionable results are accurate.
If there are a large number of PJ spikes then the jitter measurement should be
repeated several times while varying the sequence record length. If the RJ and PJ
results change significantly with record length, then the results are correct.
Jitter separation algorithms are sensitive to input parameters in the following ways:5.

Accurate Bit period is essential in determining the Time Interval Errors. Linear
interpolation is used to determine the threshold crossing, and linear regression
is used to determine the bit period/frequency and phase of the input jittered
signal. The Agilent Infinium oscilloscopes use sinc() interpolation to detect
threshold crossings which is much more accurate than the interpolation method
used in jitter_separation(). In some cases, with the same input signal, results
from the oscilloscope and from jitter_separation() in ADS may be different.
In general it is better to use a longer signal sequence per acquisition (Nbps) to
increase confidence in the separation results. Longer sequences help to acquire
more information about the low-frequency components of jitter.
In some cases, the jitter separation function may produce different results for
the same input signal when treating it as a Periodic Sequence compared to
treating it as an Arbitrary Sequence. One of the major contributors to any such
difference is the length of each sequence. When the sequence is longer, the
results are more similar.

Measurement Expressions

191

 Math Functions For Measurement Expressions
This section describes the math functions in detail. The functions are listed in alphabetical
order.

abs() Measurement (expmeas)
acos() Measurement (expmeas)
acosh() Measurement (expmeas)
acot() Measurement (expmeas)
acoth() Measurement (expmeas)
asin() Measurement (expmeas)
asinh() Measurement (expmeas)
atan2() Measurement (expmeas)
atan() Measurement (expmeas)
atanh() Measurement (expmeas)
ceil() Measurement (expmeas)
cint() Measurement (expmeas)
cmplx() Measurement (expmeas)
complex() Measurement (expmeas)
conj() Measurement (expmeas)
convBin() Measurement (expmeas)
convHex() Measurement (expmeas)
convInt() (expmeas)
convOct() Measurement (expmeas)
cos() Measurement (expmeas)
cosh() Measurement (expmeas)
cot() Measurement (expmeas)
coth() Measurement (expmeas)
cum prod() (expmeas)
cum sum() (expmeas)
db() Measurement (expmeas)
dbm() Measurement (expmeas)
dbmtow() Measurement (expmeas)
deg() Measurement (expmeas)
diagonal() (expmeas)
diff() (expmeas)
erf() (expmeas)
erfc() (expmeas)
erfcinv() (expmeas)
erfinv() (expmeas)
exp() Measurement (expmeas)
fft() (expmeas)
fix() Measurement (expmeas)
float() Measurement (expmeas)
floor() Measurement (expmeas)
fmod() Measurement (expmeas)
hypot() Measurement (expmeas)
identity() (expmeas)
im() Measurement (expmeas)
imag() Measurement (expmeas)
int() Measurement (expmeas)
integrate() (expmeas)
interp() (expmeas)

Measurement Expressions

192

interpolate() (expmeas)
inverse() (expmeas)
jn() Measurement (expmeas)
ln() Measurement (expmeas)
log10() Measurement (expmeas)
log() Measurement (expmeas)
mag() Measurement (expmeas)
max2() Measurement (expmeas)
max() Measurement (expmeas)
max outer() (expmeas)
min2() Measurement (expmeas)
min() Measurement (expmeas)
min outer() (expmeas)
num() Measurement (expmeas)
ones() (expmeas)
phase() Measurement (expmeas)
phasedeg() Measurement (expmeas)
phaserad() Measurement (expmeas)
polar() Measurement (expmeas)
pow() Measurement (expmeas)
prod() (expmeas)
rad() Measurement (expmeas)
re() Measurement (expmeas)
real() Measurement (expmeas)
rms() (expmeas)
round() Measurement (expmeas)
sgn() Measurement (expmeas)
sin() Measurement (expmeas)
sinc() Measurement (expmeas)
sinh() Measurement (expmeas)
sqr() (expmeas)
sqrt() Measurement (expmeas)
step() Measurement (expmeas)
sum() Measurement (expmeas)
tan() Measurement (expmeas)
tanh() Measurement (expmeas)
transpose() (expmeas)
wtodbm() Measurement (expmeas)
xor() Measurement (expmeas)
zeros() (expmeas)

Note
You can generally use these functions with data from any type of analysis. They consist of traditional math
(e.g., trigonometric functions and matrix operations) and other functions.

 abs()

Returns the absolute value of a integer, real or complex number

 Syntax

y = abs(x)

Measurement Expressions

193

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = abs(-45) returns 45

 Defined in

Built in

 See Also

cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas), log() (expmeas),
log10() (expmeas), pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

Note
The function name abs() is used for more than one type of expression. For comparison, see the Simulator
Expression abs() Expression (expsim) and the AEL Function abs() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 Notes/Equations

In the case of a complex number, the abs function accepts one complex argument and
returns the magnitude of its complex argument as a positive real number.
 acos()

Returns the inverse cosine, or arc cosine, in radians

 Syntax

y = acos(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = acos(-1) returns 3.142

 Defined in

Built in

Measurement Expressions

194

 See Also

asin() (expmeas), atan() (expmeas), atan2() (expmeas)

Note
The function name acos() is used for more than one type of expression. For comparison, see the Simulator
Expression acos() Expression (expsim) and the AEL Function acos() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 Notes/Equations

Returned value ranges from 0 to pi.
 acosh()

Returns the inverse hyperbolic cosine

 Syntax

y = acosh(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = acosh(1.5) returns 0.962

 Defined in

Built in

 See Also

acos() (expmeas), asin() (expmeas), atan() (expmeas), atan2() (expmeas)

Note
The function name acosh() is used for more than one type of expression. For comparison, see the
Simulator Expression acosh() Expression (expsim) and the AEL Function acosh() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 acot()

Returns the inverse cotangent

Measurement Expressions

195

 Syntax

y = acot(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = acot(1.5) returns 0.588

 Defined in

Built in

 See Also

asin() (expmeas), atan() (expmeas), atan2() (expmeas)

Note
The function name acot() is used for more than one type of expression. For comparison, see the AEL
Function acot() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 acoth()

Returns the inverse hyperbolic cotangent

 Syntax

y = acoth(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = acoth(1.5) returns 0.805

 Defined in

Built in

 See Also

Measurement Expressions

196

acot() (expmeas), asin() (expmeas), atan() (expmeas), atan2() (expmeas)

Note
The function name acoth() is used for more than one type of expression. For comparison, see the AEL
Function acoth() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 asin()

Returns the inverse sine, or arc sine, in radians

 Syntax

y = asin(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = asin(-1) returns -1.571

 Defined in

Built in

 See Also

acos() (expmeas), atan() (expmeas), atan2() (expmeas)

Note
The function name asin() is used for more than one type of expression. For comparison, see the Simulator
Expression asin() Expression (expsim) and the AEL Function asin() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 asinh()

Returns the inverse hyperbolic sine

 Syntax

y = asinh(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

Measurement Expressions

197

a = asinh(.5) returns 0.481

 Defined in

Built in

 See Also

asin() (expmeas), acos() (expmeas), atan() (expmeas), atan2() (expmeas)

Note
The function name asinh() is used for more than one type of expression. For comparison, see the
Simulator Expression asinh() Expression (expsim). Also, for more information on the different expression
types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 atan2()

Returns the inverse tangent, or arc tangent, of the rectangular coordinates y and x

 Syntax

y = atan2(y, x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

y number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = atan2(1, 0) returns 1.571

 Defined in

Built in

 See Also

acos() (expmeas), asin() (expmeas), atan() (expmeas)

 Notes/Equations

Returned value range is -pi to pi. atan2(0,0) returns -pi/2.

Measurement Expressions

198

Note
The function name atan2() is used for more than one type of expression. For comparison, see the
Simulator Expression atan2() Expression (expsim) and the AEL Function atan2() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 atan()

Returns the inverse tangent, or arc tangent, in radians

 Syntax

y = atan(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = atan(-1) returns -0.785

 Defined in

Built in

 See Also

acos() (expmeas), asin() (expmeas), atan2() (expmeas)

 Notes/Equations

Returned value range is -pi/2 to pi/2.

Note
The function name atan() is used for more than one type of expression. For comparison, see the Simulator
Expression atan() Expression (expsim) and the AEL Function atan() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 atanh()

Returns the inverse hyperbolic tangent

 Syntax

y = atanh(x)

 Arguments

Measurement Expressions

199

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = atanh(.5) returns 0.549

 Defined in

Built in

 See Also

acos() (expmeas), asin() (expmeas), atan() (expmeas), atan2() (expmeas)

 Notes/Equations

Returned value ranges from 0 to pi.

Note
The function name atanh() is used for more than one type of expression. For comparison, see the
Simulator Expression atanh() Expression (expsim) and the AEL Function atanh() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 ceil()

Given a real number, returns the smallest integer not less than its argument; that is, its
argument rounded to the next highest number.

 Syntax

y = ceil(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

real Yes

 Examples

a = ceil(5.27) returns 6

 Defined in

Built in

Measurement Expressions

200

Note
The function name ceil() is used for more than one type of expression. For comparison, see the Simulator
Expression ceil() Expression (expsim) and the AEL Function ceil() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 cint()

Given a non-integer real number, returns a rounded integer.

 Syntax

y = cint(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

real Yes

 Examples

a = cint(45.6) returns 46

a = cint(-10.7) returns -11

 Defined in

Built in

 See Also

abs() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas), log() (expmeas),
log10() (expmeas), pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

 Notes/Equations

0.5 rounds up, -0.5 rounds down (up in magnitude).

Note
The function name cint() is used for more than one type of expression. For comparison, see the AEL
Function cint() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 cmplx()

Returns complex number given real and imaginary

 Syntax

y = cmplx(x, y)

Measurement Expressions

201

 Arguments

Name Description Default Range Type Required

x real part of complex number None (-
∞:∞)

Integer, Real Yes

y imaginary part of complex number None (-
∞:∞)

Integer, Real Yes

 Examples

a = cmplx(2, -1) returns 2 - 1j

 Defined in

Built in

 See Also

complex() (expmeas), imag() (expmeas), real() (expmeas)

Note
The function name cmplx() is used for more than one type of expression. For comparison, see the AEL
Function cmplx() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 complex()

Returns complex number given real and imaginary

 Syntax

y = complex(x, y)

 Arguments

Name Description Default Range Type Required

x real part of complex number None (-
∞:∞)

Integer, Real Yes

y imaginary part of complex number None (-
∞:∞)

Integer, Real Yes

 Examples

a = complex(2, -1) returns 2 - 1j

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 See Also

Measurement Expressions

202

cmplx() (expmeas), imag() (expmeas), real() (expmeas)

Note
The function name complex() is used for more than one type of expression. For comparison, see the
Simulator Expression complex() Expression (expsim). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 conj()

Returns the conjugate of a complex number

 Syntax

y = conj(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

complex Yes

 Examples

a = conj(3-4*j) returns 3.000 + j4.000

or 5.000 / 53.130 in magnitude / degrees

 Defined in

Built in

 See Also

mag() (expmeas)

Note
The function name conj() is used for more than one type of expression. For comparison, see the Simulator
Expression conj() Expression (expsim) and the AEL Function conj() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 convBin()

Returns a binary string of an integer with n-digits

 Syntax

y = convBin(val, num)

 Arguments

Measurement Expressions

203

Name Description Default Range Type Required

val integer to be converted to a binary
string

None (-
∞:∞)

Integer,
real

Yes

num number of digits in the binary string None [0:∞) Integer Yes

 Examples

a = convBin(1064, 8) returns 00101000

 Defined in

Built in

 See Also

convHex() (expmeas), convInt() (expmeas), convOct() (expmeas)

Note
The function name convBin() is used for more than one type of expression. For comparison, see the AEL
Function convBin() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 convHex()

Returns a hexadecimal string of an integer with n-digits

 Syntax

y = convHex(val, num)

 Arguments

Name Description Default Range Type Required

val integer to be converted to a hexadecimal string None (-
∞:∞)

Integer,
real

Yes

num number of digits in the hexadecimal string None [0:∞) Integer Yes

 Examples

a = convHex(1064, 8) returns 00000428

 Defined in

Built in

 See Also

convBin() (expmeas), convOct() (expmeas), convInt() (expmeas)

Measurement Expressions

204

Note
The function name convHex() is used for more than one type of expression. For comparison, see the AEL
Function convHex() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 convInt()

Returns an integer of a binary, octal or hexadecimal number

 Syntax

y = convInt(val, base)

 Arguments

Name Description Default Range Type Required

val string representation of the binary, octal or hexadecimal number
to be converted

None None String Yes

base base of the conversion None 2,8,16
†

Integer Yes

† base values: 2:binary, 8:octal, 16:hexadecimal

 Examples

b2I = convInt("11100", 2) returns 28

o2I = convInt("34", 8) returns 28

h2I = convInt("1c", 16) returns 28

 Defined in

Built in

 See Also

convBin() (expmeas), convHex() (expmeas), convOct() (expmeas)
 convOct()

Returns an octal string of an integer with n-digits

 Syntax

y = convOct(val, num)

 Arguments

Name Description Default Range Type Required

val integer to be converted to a octal
string

None (-
∞:∞)

Integer,
real

Yes

num number of digits in the octal string None [0:∞) Integer Yes

 Examples

Measurement Expressions

205

a = convOct(1064, 8) returns 00002050

 Defined in

Built in

 See Also

convBin() (expmeas), convHex() (expmeas), convInt() (expmeas)

Note
The function name convOct() is used for more than one type of expression. For comparison, see the the
AEL Function convOct() Function (ael). Also, for more information on the different expression types and
the contexts in which they are used, see Duplicated Expression Names (expmeas).

 cos()

Returns the cosine

 Syntax

y = cos(x)

 Arguments

Name Description Default Range Type Required

x number in radians None (-
∞:∞)

Integer, real, complex Yes

 Examples

y = cos(pi/3) returns 0.500

 Defined in

Built in

 See Also

sin() (expmeas), tan() (expmeas)

Note
The function name cos() is used for more than one type of expression. For comparison, see the Simulator
Expression cos() Expression (expsim) and the AEL Function cos() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 cosh()

Measurement Expressions

206

Returns the hyperbolic cosine

 Syntax

y = cosh(x)

 Arguments

Name Description Default Range Type Required

x number in radians None (-
∞:∞)

Integer, real, complex Yes

 Examples

y = cosh(0) returns 1

y = cosh(1) returns 1.543

 Defined in

Built in

 See Also

sinh() (expmeas), tanh() (expmeas)

Note
The function name cosh() is used for more than one type of expression. For comparison, see the Simulator
Expression cosh() Expression (expsim) and the AEL Function cosh() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 cot()

Returns the cotangent

 Syntax

y = cot(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = cot(1.5) returns 0.071

 Defined in

Built in

Measurement Expressions

207

 See Also

tan() (expmeas), tanh() (expmeas)

Note
The function name cot() is used for more than one type of expression. For comparison, see the Simulator
Expression cot() Expression (expsim) and the AEL Function cot() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 coth()

Returns the hyperbolic cotangent

 Syntax

y = coth(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = coth(1.5) returns 1.105

 Defined in

Built in

 See Also

cot() (expmeas), tan() (expmeas), tanh() (expmeas)

Note
The function name coth() is used for more than one type of expression. For comparison, see the Simulator
Expression coth() Expression (expsim) and the AEL Function coth() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 cum_prod()

Returns the cumulative product

 Syntax

y = cum_prod(x)

 Arguments

Measurement Expressions

208

Name Description Default Range Type Required

x data to find cumulative
product

None (∞:∞) Integer, real or
complex

Yes

 Examples

y = cum_prod(1) returns 1.000

y = cum_prod([1, 2, 3]) returns [1.000, 2.000, 6.000]

y = cum_prod([i, i]) returns [i, i2]

 Defined in

Built in

 See Also

cum_sum() (expmeas), max() (expmeas), mean() (expmeas), min() (expmeas), prod()
(expmeas), sum() (expmeas)
 cum_sum()

Returns the cumulative sum

 Syntax

y = cum_sum(x)

 Arguments

Name Description Default Range Type Required

x data to find cumulative sum None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

y = cum_sum([1, 2, 3]) returns [1.000, 3.000, 6.000]

y = cum_sum([i, i] returns [i,2i]

 Defined in

Built in

 See Also

cum_prod() (expmeas), max() (expmeas), mean() (expmeas), min() (expmeas), prod()
(expmeas), sum() (expmeas)
 db()

Returns the decibel measure of a voltage ratio

Measurement Expressions

209

 Syntax

y = db(r, z1, z2)

 Arguments

Name Description Default Range Type Required

r voltage ratio (vOut/vIn) None (-
∞:∞)

Integer, real, complex Yes

z1 source impedance 50.0 (-
∞:∞)

Integer, real, complex No

z2 load impedance 50.0 (-
∞:∞)

Integer, real, complex No

 Examples

y = db(100) returns 40

y = db(8-6*j) returns 20

 Defined in

Built in

 See Also

dbm() (expmeas), pae() (expmeas)

 Notes/Equations

dbValue = 20 log(mag(r)) - 10 log(zOutfactor/zInfactor)
zOutfactor = mag(z2)**2 / real (z2)
zInfactor = mag(z1)**2 / real (z1).

Note
The function name db() is used for more than one type of expression. For comparison, see the Simulator
Expression db() Expression (expsim) and the AEL Function dB() Function (ael). Also, for more information
on the different expression types and the contexts in which they are used, see Duplicated Expression
Names (expmeas).

 dbm()

Returns the decibel measure of a voltage referenced to a 1 milliwatt signal

 Syntax

y = dbm(v, z)

 Arguments

Measurement Expressions

210

Name Description Default Range Type Required

v voltage (the peak
voltage)

None (-
∞:∞)

Integer, real, complex Yes

z impedance 50.0 (-
∞:∞)

Integer, real, complex No

 Examples

y = dbm(100) returns 50

y = dbm(8-6*j) returns 30

 Defined in

Built in

 See Also

db() (expmeas), pae() (expmeas)

 Notes/Equations

The voltage is assumed to be a peak value. Signal voltages stored in the dataset from AC
and harmonic balance simulations are in peak volts. However, noise voltages obtained
from AC and HB simulations are in rms volts. Using the dbm() function with noise voltages
will yield a result that is 3 dB too low unless the noise voltage is first converted to peak:
noise_power = dbm(vout.noise * sqrt(2));

 Understanding the dbm() Function

Given a power Po in Watts, the power in dB is:

Po_dBW = 10*log(mag(Po/(1 W)))

while the power in dBm is:

Po_dBm = 10*log(mag(Po/(1 mW)))

= 10*log(mag(Po/(1 W)))+ 30

= Po_dB + 30

Given a voltage Vo in Volts, the voltage in dB is:

V_dBV = 20*log(mag((Vo/(1 V)))

This is the db() (expmeas) function - voltage in dB relative to 1V. Although dB is a
dimensionless quantity, it is normal to attach dB to a value in order to differentiate it from
the absolute value.

Given a real impedance Zo, the power-voltage relation is:

Measurement Expressions

211

Po = (Vo)2/(2*Zo)

Using the above, Po in dBm is then:

Po_dBm = 10*log(mag(Po/(1 W))) + 30

= 10*log(mag((Vo/(1 V))2/(2*Zo/(1 Ohm)))) + 30

= 10*log(mag((Vo/(1 V))2)) - 10*log(mag(2*Zo/(1 Ohm))) + 30

= 20*log(mag(Vo/(1 V))) - 10*log(mag(Zo/(50 Ohm))) + 10

This is the dbm() function - voltage in dBm in a Zo environment.

Note
The function name dbm() is used for more than one type of expression. For comparison, see the Simulator
Expression dbm() Expression (expsim) and the AEL Function dBm() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 dbmtow()

Converts dBm to watts

 Syntax

wValue = dbmtow(P)

 Arguments

Name Description Default Range Type Required

P power expressed in dBm None [0:∞) Real Yes

 Examples

y = dbmtow(0) returns .001 W

y = dbmtow(-10) returns 1.000E-4 W

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 See Also

dbm() (expmeas), wtodbm() (expmeas)

Note
The function name dbmtow() is used for more than one type of expression. For comparison, see the
Simulator Expression dbmtow() Expression (expsim). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 deg()

Converts radians to degrees

Measurement Expressions

212

 Syntax

y = deg(x)

 Arguments

Name Description Default Range Type Required

x number in radians None (-
∞:∞)

Integer, Real Yes

 Examples

y = deg(1.5708) returns 90

y = deg(pi) returns 180

 Defined in

Built in

See Also
rad() (expmeas)

Note
The function name deg() is used for more than one type of expression. For comparison, see the Simulator
Expression deg() Expression (expsim) and the AEL Function deg() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 diagonal()

Returns the diagonal of a square matrix as a matrix

 Syntax

y = diagonal(Matrix)

 Arguments

Name Description Default Range Type Required

Matrix square matrix to find the
diagonal

None (-
∞:∞)

Integer, Real or
Complex

Yes

 Examples

mat={{1,2,3},{4,5,6},{7,8,9}}
diag=diagonal(mat) returns {1,5,9}
For a 2-port S-parameter analysis of 10 freq points:

diagS=diagonal(S) would return S11 and S22 for each frequency point

 Defined in

Built In

Measurement Expressions

213

 See Also

transpose() (expmeas), inverse() (expmeas)
 diff()

Calculates the simple numerical first derivative. Can be used to calculate group delay.

 Syntax

y = diff(data, pad)

 Arguments

Name Description Default Range Type Required

data data to find numerical derivative None (-
∞:∞)

Real, Complex Yes

pad pad the differentiated data with an extra
value

0 [0:1] † Integer No

† If pad is 1, then the differentiated data is padded with an extra value (last value of
differentiated data) to make it the same length as the data to be differentiated. If 0
(default) then the length of the differentiated data is one less than the length of data to
be differentiated.

 Examples

group_delay = -diff(unwrap(phaserad(S21),pi))/(2*pi)

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 See Also

dev_lin_phase() (expmeas), integrate() (expmeas), phasedeg() (expmeas), phaserad()
(expmeas), ripple() (expmeas), unwrap() (expmeas)

 Notes/Equations

This function calculates the first derivative of the dependent data with respect to the inner
independent value i.e. dy/dx. The function uses the simple forward finite-divided-
difference formulas of 2 values. The error is O(h), where h is the independent step size.
The error decreases with smaller values of h. If the data to be differentiated does not have
an explicit independent-name, the differentiated data is given an independent name
"diffX'.
 erf()

Measurement Expressions

214

Calculates the error function, the area under the Gaussian curve exp(-x**2)

 Syntax

y = erf(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer,
real

Yes

 Examples

a = -erf(0.1) returns 0.112

a = -erf(0.2) returns 0.223

 Defined in

Built in

 See Also

erfc() (expmeas)
 erfc()

Calculates the complementary error function, or 1 minus the error function. For large x,
this can be calculated more accurately than the plain error function

 Syntax

y = erfc(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer,
real

Yes

 Examples

a = erfc(0.1) returns 0.888

a = erfc(0.2) returns 0.777

 Defined in

Built in

 See Also

Measurement Expressions

215

erf() (expmeas)

 erfcinv()

Returns the inverse complementary error function as a real number

 Syntax

y = erfcinv(x)

 Arguments

Name Description Default Range Type Required

x number None [0:2] † Integer,
real

Yes

† For numbers outside the range, erfcinv returns <-+∞>. If val is 0, erfcinv returns <∞>.
If val is 2, then <-∞>

 Examples

res= erfcinv(0.5) returns 0.477

res= erfcinv(1.9) returns -1.163

 Defined in

Built In

 See Also

erfc() (expmeas)

 erfinv()

Returns the inverse error function as a real number

 Syntax

y = erfinv(x)

 Arguments

Name Description Default Range Type Required

x number None [-1:1]
†

Integer,
real

Yes

† For numbers outside the range, erfinv returns <-+∞>. If x is +1, erfinv returns <∞>. If
x is -1, then <-∞>.

 Examples

Measurement Expressions

216

res= erfinv(-0.4) returns -0.371

res= erfinv(0.8) returns 0.906

 Defined in

Built In

 See Also

erf() (expmeas)
 exp()

The exponential function is used to calculate powers of e. Given a complex number, x, the
exp(x) function calculates e to the power of x (i.e. ex)

 Syntax

y = exp(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = exp(1) returns 2.71828

b = exp(1+j1) returns 1.469 + j*2.287

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), float() (expmeas), int() (expmeas), log() (expmeas),
log10() (expmeas), pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

 Notes/Equations

If
x = a+j*b

then
ex = ea+j*b = (ea)*(ej*b) = (ea)*(cos(b)+j*sin(b))

Measurement Expressions

217

Note
The function name exp() is used for more than one type of expression. For comparison, see the Simulator
Expression exp() Expression (expsim) and the AEL Function exp() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 fft()

Performs the discrete Fourier transform

 Syntax

y = fft(x, length)

 Arguments

Name Description Default Range Type Required

x data to be transformed None (-
∞:∞)

Integer, real, complex Yes

length length of the transform None [1:∞) Integer Yes

 Examples

fft([1, 1, 1, 1]) returns [4+0i, 0+0i]

fft([1, 0, 0, 0] returns [1+0i, 1+0i]

fft(1, 4) returns [1+0i, 1+0i]

 Defined in

Built in

 See Also

fs() (expmeas), ts() (expmeas)

 Notes/Equations

The fft() function uses a high-speed radix-2 fast Fourier transform when the length of x is
a power of two. fft(x, n) performs an n-point discrete Fourier transform, truncating x if
length(x) > n and padding x with zeros if length(x) < n.
fft() uses a real transform if x is real and a complex transform if x is complex. If the
length of x is not a power of two, then a mixed radix algorithm based on the prime factors
of the length of x is used.
The fft() function is designed to work with uniformly spaced waveforms. If a non-uniform
waveform is input, then the output spectrum will be incorrect. For non-uniformly spaced
data, use the fs() function.
 fix()

Takes a real number argument, truncates it, and returns an integer value

Measurement Expressions

218

 Syntax

y = fix(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer,
real

Yes

 Examples

a = fix(5.9) returns 5

 Defined in

Built in

Note
The function name fix() is used for more than one type of expression. For comparison, see the AEL
Function fix() Function (ael). Also, for more information on the different expression types and the contexts
in which they are used, see Duplicated Expression Names (expmeas).

 float()

Converts an integer to a real (floating-point) number

 Syntax

y = float(x)

 Arguments

Name Description Default Range Type Required

x number to convert None (-
∞:∞)

Integer Yes

 Examples

a = float(10)

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), int() (expmeas), log10() (expmeas), pow()
(expmeas), sgn() (expmeas), sqrt() (expmeas)

Measurement Expressions

219

Note
The function name float() is used for more than one type of expression. For comparison, see the AEL
Function float() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 floor()

Returns the largest integer not more than its argument from a real number

 Syntax

y = floor(x)

 Arguments

Name Description Default Range Type Required

x number to convert None (-
∞:∞)

Real Yes

 Examples

a = floor(4.3) returns 4

 Defined in

Built in

Note
The function name floor() is used for more than one type of expression. For comparison, see the Simulator
Expression floor() Expression (expsim) and the AEL Function floor() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 fmod()

Returns the remainder of the division of two real numbers

 Syntax

y = fmod(fNum, fDenom)

 Arguments

Name Description Default Range Type Required

fNum Value of numerator None (-
∞:∞)

Integer, Real Yes

fDenom Value of denominator None (-
∞:∞)

Integer, Real Yes

 Examples

y = fmod(4.2, 2.0) returns 0.2

 Defined In

Measurement Expressions

220

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

Note
The function name fmod() is used for more than one type of expression. For comparison, see the
Simulator Expression fmod() Expression (expsim). Also, for more information on the different expression
types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 hypot()

Returns the hypotenuse

 Syntax

y = hypot(xVal, yVal)

 Arguments

Name Description Default Range Type Required

xVal Value of X None (-
∞:∞)

Real, Complex Yes

yVal Value of Y None (-
∞:∞)

Real, Complex Yes

 Examples

y = hypot(2, 1) returns 5

 Defined In

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

Note
The function name hypot() is used for more than one type of expression. For comparison, see the
Simulator Expression hypot() Expression (expsim). Also, for more information on the different expression
types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 identity()

Returns the identity matrix

 Syntax

y = identity(rows, columns)

 Arguments

Name Description Default Range Type Required

rows number of rows † None [i:∞) Integer Yes

columns number of columns
†

None [i:∞) Integer No

† If one argument is supplied, then a square matrix is returned with ones on the diagonal
and zeros elsewhere. If two arguments are supplied, then a matrix with size rows cols is
returned, again with ones on the diagonal.

Measurement Expressions

221

 Examples

a = identity(2)

 Defined in

Built in

 See Also

ones() (expmeas), zeros() (expmeas)
 im()

Returns the imaginary component of a complex number

 Syntax

y = im(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

complex Yes

 Examples

y = imag(1-1*j) returns -1.000

 Defined in

Built in

 See Also

imag() (expmeas), cmplx() (expmeas), real() (expmeas)

Note
The function name im() is used for more than one type of expression. For comparison, see the AEL
Function im() Function (ael). Also, for more information on the different expression types and the contexts
in which they are used, see Duplicated Expression Names (expmeas).

 imag()

Returns the imaginary component of a complex number

 Syntax

y = imag(x)

Measurement Expressions

222

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

complex Yes

 Examples

y = imag(1-1*j) returns -1.000

 Defined in

Built in

 See Also

cmplx() (expmeas), im() (expmeas), real() (expmeas)

Note
The function name imag() is used for more than one type of expression. For comparison, see the
Simulator Expression imag() Expression (expsim) and the AEL Function imag() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 int()

Converts an real to an integer

 Syntax

y = int(x)

 Arguments

Name Description Default Range Type Required

x number to convert None (-
∞:∞)

Real Yes

 Examples

a = int(4.3) returns 4

b = int(334.235) returns integer 334

c = int(-.45e3) returns integer -450

 Defined in

Built in

Measurement Expressions

223

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), log10()
(expmeas), pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

Note
The function name int() is used for more than one type of expression. For comparison, see the Simulator
Expression int() Expression (expsim) and the AEL Function int() Function (ael). Also, for more information
on the different expression types and the contexts in which they are used, see Duplicated Expression
Names (expmeas).

 integrate()

Returns the integral of data

 Syntax

y = integrate(data, start, stop, incr)

 Arguments

Name Description Default Range Type Required

data data to be intergated None (-
∞:∞)

Integer, real Yes

start starting value of the
integration

first point in the data (-
∞:∞)

Integer, real No

stop stop value of the integration last point in the data (-
∞:∞)

Integer, real
†

No

incr increment (stop - start)/(# data points - 1) [0:∞) Integer, real No

† stop can be an array.

 Examples

x = [0::0.01::1.0]

y = vs(2*exp(-x*x) / sqrt(pi), x)

z= integrate(y, 0.1, 0.6, 0.001) returns 0.491

xx=[1::0.1::2]

yy=vs(sin(xx),xx)

Stop=[1.9,2.0]

intgYY=integrate(yy,1,Stop,0.1) returns [0.767, 0.958]

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

diff() (expmeas)

Measurement Expressions

224

 Notes/Equations

Returns the integral of data from start to stop with increment incr using the composite
trapezoidal rule on uniform subintervals. The Stop limit can be an array of values. In this
case, the function returns integration for limits [start, stop[0]], [start, stop[1]], etc.

If no incr parameter is given, then no increment (or no interpolation) will be performed.
 interp()

Returns linearly interpolated data between start and stop with increment.

 Syntax

y = interp(Data, Start, Stop, Increment)

 Arguments

Name Description Default Range Type Required

Data Data to be interpolated None (-
∞:∞)

Integer,
Real

Yes

Start Independent value specifying start First data point (-
∞:∞)

Integer,
Real

No

Stop Independent value specifying stop Last data point (-
∞:∞)

Integer,
Real

No

Increment Increment between interpolated
data points

(Stop-
Start)/(NumDataPoints-1)

(0:∞) Integer,
Real

No

 Examples

x=[1::0.5::2]

y=vs(sin(x),x)

interpP=interp(y,1,1.5,0.1) returns

1.0 0.841

1.1 0.873

1.2 0.904

1.3 0.935

1.4 0.966

1.5 0.997

y = interp(Data, Start, Stop, Increment)

 Defined in

Built in

 See also

interpolate() (expmeas)
 interpolate()

Interpolates data

 Syntax

Measurement Expressions

225

 Syntax

y = interpolate(InterpType,Data,iVar1,iVal1,iVar2,iVal2,....,iVarN,iValN)

 Arguments

Name Description Default Range Type Required

InterpType Type of interpolation None "linear", "cubic",
"spline"

String Yes

Data Data to interpolate None None Integer,
Real

Yes

iVar1,
iVar2,...

Dimension of independent variable to
interpolate

None None Integer Yes

iVal1,
iVal2,...

values to interpolate None None Integer,
real

Yes

 Examples

linI = interpolate("linear", colY, 1,[1::0.5::4])

cubicI = interpolate("cubic", colY, 1,[1::0.2::2])

splineI = interpolate("spline", colY, 1,[-2::0.2::2])

For a 2-D data with 2 independents, the following interpolates dimension 1

(inner-most)

from 1 to 4 in steps of 0.5 and second dimension at 0.5:

linI = interpolate("linear", colY, 1,[1::0.5::4],2,0.5)

 Defined in

Built in

 See also

interp() (expmeas)

 Notes/Equations

This function can interpolate data over multiple dimensions.
 inverse()

Returns the inverse of a matrix

 Syntax

y = inverse(Matrix)

 Arguments

Name Description Default Range Type Required

Matrix square matrix to find the inverse None (-
∞:∞)

Integer, Real or
Complex

Yes

Measurement Expressions

226

 Examples

inverse({{1, 2}, {3, 4) returns -2, 1}, {1.5, -0.5}}

 Defined in

Built in

 See Also

diagonal() (expmeas), transpose() (expmeas)
 jn()

Computes the Bessel function of the first kind and returns a real number

 Syntax

y = jn(n, x)

 Arguments

Name Description Default Range Type Required

n order None (-
∞:∞)

Integer Yes

x value for which the Bessel value is to be found None (-
∞:∞)

Real Yes

 Examples

jn0_15 = jn(0, 15) returns -0.014

jn1_xV = jn(1, 5.23) returns -0.344

jn10_15 = jn(10, 15) returns -0.09

 Defined in

in-built

Note
The function name jn() is used for more than one type of expression. For comparison, see the Simulator
Expression jn() Expression (expsim). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 ln()

Returns the natural logarithm (ln)

 Syntax

y = ln(x)

 Arguments

Measurement Expressions

227

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = ln(e) returns 1

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas),
pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

Note
The function name ln() is used for more than one type of expression. For comparison, see the Simulator
Expression ln() Expression (expsim) and the AEL Function ln() Function (ael). Also, for more information
on the different expression types and the contexts in which they are used, see Duplicated Expression
Names (expmeas).

 log10()

Returns the base 10 logarithm of an integer or real number

 Syntax

y = log10(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = log10(10) returns 1

a = log10(0+0i) returns NULL and an error message "log of zero"

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas),

Measurement Expressions

228

log() (expmeas), pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

Note
The function name log10() is used for more than one type of expression. For comparison, see the
Simulator Expression log10() Expression (expsim) and the AEL Function log10() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 log()

Returns the base 10 logarithm of an integer or real number

 Syntax

y = log(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = log(10) returns 1

a = log(0+0i) returns NULL and an error message "log of zero"

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas),
log10() (expmeas), pow() (expmeas), sgn() (expmeas), sqrt() (expmeas)

Note
The function name log() is used for more than one type of expression. For comparison, see the Simulator
Expression log() Expression (expsim) and the AEL Function log() Function (ael). Also, for more information
on the different expression types and the contexts in which they are used, see Duplicated Expression
Names (expmeas).

 mag()

Returns the magnitude

 Syntax

y = mag(x)

 Arguments

Measurement Expressions

229

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = mag(3-4*j) returns 5.000

 Defined in

Built in

 See Also

conj() (expmeas)

Note
The function name mag() is used for more than one type of expression. For comparison, see the Simulator
Expression mag() Expression (expsim) and the AEL Function mag() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 max2()

Returns the larger value of two numeric values, or NULL if parameters are invalid

 Syntax

y = max2(x, y)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

y number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = max2(1.5, -1.5) returns 1.500

 Defined in

Built in

 See Also

cum_prod() (expmeas), cum_sum() (expmeas), max() (expmeas), mean() (expmeas),
min() (expmeas), prod() (expmeas), sum() (expmeas)

Measurement Expressions

230

Note
The function name max2() is used for more than one type of expression. For comparison, see the AEL
Function max2() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 max()

Returns the maximum value.

 Syntax

y = max(x)

 Arguments

Name Description Default Range Type Required

x data to find max None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

a = max([1, 2, 3]) returns 3

 Defined in

Built in

 See Also

cum_prod() (expmeas), cum_sum() (expmeas), max2() (expmeas), mean() (expmeas),
min() (expmeas), prod() (expmeas), sum() (expmeas)

Note
The function name max() is used for more than one type of expression. For comparison, see the Simulator
Expression max() Expression (expsim). Also, for more information on the different expression types and
the contexts in which they are used, see Duplicated Expression Names (expmeas).

 max_outer()

Computes the maximum across the outer dimension of two-dimensional data

 Syntax

y = max_outer(data)

 Arguments

Name Description Default Range Type Required

data 2-dimensional data to find
max

None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

Measurement Expressions

231

y = max_outer(data)

 Defined in

$HPEESOF_DIR/expressions/ael/statistcal_fun.ael

 See Also

fun_2d_outer() (expmeas), mean_outer() (expmeas), min_outer() (expmeas)

 Notes/Equations

The max function operates on the inner dimension of two-dimensional data. The
max_outer function just calls the fun_2d_outer function, with max being the applied
operation. As an example, assume that a Monte Carlo simulation of an amplifier was run,
with 151 random sets of parameter values, and that for each set the S-parameters were
simulated over 26 different frequency points. S21 becomes a [151 Monte Carlo iteration X
26 frequency] matrix, with the inner dimension being frequency, and the outer dimension
being Monte Carlo index. Now, assume that it is desired to know the maximum value of
the S-parameters at each frequency. Inserting an equation max(S21) computes the
maximum value of S21 at each Monte Carlo iteration. If S21 is simulated from 1 to 26
GHz, it computes the maximum value over this frequency range, which usually is not very
useful. Inserting an equation max_outer(S21) computes the maximum value of S21 at
each frequency.
 min2()

Returns the lesser value of two numeric values, or NULL if parameters are invalid

 Syntax

y = min2(x, y)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

y number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = min2(1.5, -1.5) returns -1.500

 Defined in

Built in

Measurement Expressions

232

 See Also

cum_prod() (expmeas), cum_sum() (expmeas), max() (expmeas), max2() (ael), mean()
(expmeas), min() (expmeas), prod() (expmeas), sum() (expmeas)

Note
The function name min2() is used for more than one type of expression. For comparison, see the AEL
Function min2() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 min()

Returns the minimum value.

 Syntax

y = min(x)

 Arguments

Name Description Default Range Type Required

x data to find min None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

a = min([1, 2, 3]) returns 1

 Defined in

Built in

 See Also

cum_prod() (expmeas), cum_sum() (expmeas), max() (expmeas), max2() (expmeas),
mean() (expmeas), prod() (expmeas), sum() (expmeas)

Note
The function name min() is used for more than one type of expression. For comparison, see the Simulator
Expression min() Expression (expsim). Also, for more information on the different expression types and
the contexts in which they are used, see Duplicated Expression Names (expmeas).

 min_outer()

Computes the minimum across the outer dimension of two-dimensional data

 Syntax

y = min_outer(data)

 Arguments

Measurement Expressions

233

Name Description Default Range Type Required

data 2-dimensional data to find min None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

y = min_outer(data)

 Defined in

$HPEESOF_DIR/expressions/ael/statistcal_fun.ael

 See Also

fun_2d_outer() (expmeas), max_outer() (expmeas), mean_outer() (expmeas)

 Notes/Equations

The min function operates on the inner dimension of two-dimensional data. The min_outer
function just calls the fun_2d_outer function, with min being the applied operation. As an
example, assume that a Monte Carlo simulation of an amplifier was run, with 151 random
sets of parameter values, and that for each set the S-parameters were simulated over 26
different frequency points. S21 becomes a [151 Monte Carlo iteration X 26 frequency]
matrix, with the inner dimension being frequency, and the outer dimension being Monte
Carlo index. Now, assume that it is desired to know the minimum value of the S-
parameters at each frequency. Inserting an equation min(S21) computes the minimum
value of S21 at each Monte Carlo iteration. If S21 is simulated from 1 to 26 GHz, it
computes the minimum value over this frequency range, which usually is not very useful.
Inserting an equation min_outer(S21) computes the minimum value of S21 at each
frequency.
 num()

Returns an integer that represents an ASCII numeric value of the first character in the
specified string.

 Syntax

y = num(str)

 Arguments

Name Description Default Range Type Required

str string to convert to integer None None String Yes

 Examples

a = num("/users/myhome/fullpath") returns 47

a = num("alpha") returns 97

Measurement Expressions

234

 Defined in

Built in

Note
The function name num() is used for more than one type of expression. For comparison, see the AEL
Function num() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 ones()

Returns ones matrix

 Syntax

y = ones(rows, columns)

 Arguments

Name Description Default Range Type Required

rows number of rows † None [i:∞) Integer Yes

columns number of columns
†

None [i:∞) Integer No

† If only one argument is supplied, then a square matrix is returned. If two are supplied,
then a matrix of ones with size rows X cols is returned.

 Examples

a = ones(2) returns {{1, 1}, {1, 1}}

 Defined in

Built in

 See Also

identity() (expmeas), zeros() (expmeas)
 phase()

Phase in degrees

 Syntax

y = phase(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Complex Yes

 Examples

Measurement Expressions

235

a = phase(1*i) returns 90

a = phase(1+1i) returns 45

 Defined in

Built-in

 See Also

phaserad() (expmeas)

Note
The function name phase() is used for more than one type of expression. For comparison, see the
Simulator Expression phase() Expression (expsim) and the AEL Function phase() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 phasedeg()

Phase in degrees

 Syntax

y = phasedeg(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Complex Yes

 Examples

a = phasedeg(1*i) returns 90

a = phasedeg(1+1i) returns 45

 Defined in

Built-in

 See Also

dev_lin_phase() (expmeas), diff() (expmeas), phase() (expmeas), phaserad() (expmeas),
ripple() (expmeas), unwrap() (expmeas)

Measurement Expressions

236

Note
The function name phasedeg() is used for more than one type of expression. For comparison, see the
Simulator Expression phasedeg() Expression (expsim) and the AEL Function phasedeg() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 phaserad()

Phase in radians

 Syntax

y = phaserad(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Complex Yes

 Examples

a = phaserad(1*i) returns 1.5708

a = phaserad(1+1i) returns 0.785398

 Defined in

Built in

 See Also

dev_lin_phase() (expmeas), diff() (expmeas), phase() (expmeas), phasedeg() (expmeas),
ripple() (expmeas), unwrap() (expmeas)

Note
The function name phaserad() is used for more than one type of expression. For comparison, see the
Simulator Expression phaserad() Expression (expsim) and the AEL Function phaserad() Function (ael).
Also, for more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 polar()

Builds a complex number from magnitude and angle (in degrees)

 Syntax

y = polar(mag, angle)

 Arguments

Measurement Expressions

237

Name Description Default Range Type Required

mag magnitude part of complex
number

None (-
∞:∞)

Integer, Real Yes

angle angle part of complex number None (-
∞:∞)

Integer, Real Yes

 Examples

a = polar(1, 90) returns 0+1i

a = polar(1, 45) returns 0.707107+0.707107i

 Defined in

Built in

Note
The function name polar() is used for more than one type of expression. For comparison, see the
Simulator Expression polar() Expression (expsim) and the AEL Function polar() Function (ael). Also, for
more information on the different expression types and the contexts in which they are used, see
Duplicated Expression Names (expmeas).

 pow()

Raises a number to a given power

 Syntax

yPow = pow(x, y)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer,
real

Yes

y exponent None (-
∞:∞)

Integer,
real

Yes

 Examples

a = pow(4, 2) returns 16

a = pow(1+j*1,2+j*2) returns -0.266+j*0.32

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas),
log10() (expmeas), sgn() (expmeas), sqrt() (expmeas)

Measurement Expressions

238

Note
The function name pow() is used for more than one type of expression. For comparison, see the Simulator
Expression pow() Expression (expsim) and the AEL Function pow() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 prod()

Returns the product

 Syntax

y = prod(x)

 Arguments

Name Description Default Range Type Required

x data to find
product

None (∞:∞) Integer, real or
complex

Yes

 Examples

a = prod([1, 2, 3] returns 6

a = prod([4, 4, 4]) returns 64

 Defined in

Built-in

 See Also

sum() (expmeas)
 rad()

Converts degrees to radians

 Syntax

y = rad(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, Real Yes

 Examples

a = rad(90) returns 1.5708

a = rad(45) returns 0.785398

 Defined in

Measurement Expressions

239

Built in

 See Also

deg() (expmeas)

Note
The function name rad() is used for more than one type of expression. For comparison, see the Simulator
Expression rad() Expression (expsim) and the AEL Function rad() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 re()

Returns the real component of a complex number

 Syntax

y = re(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

complex Yes

 Examples

y = re(1-1*j) returns 1.000

 Defined in

Built in

 See Also

cmplx() (expmeas), imag() (expmeas), real() (expmeas)

Note
The function name re() is used for more than one type of expression. For comparison, see the AEL
Function re() Function (ael). Also, for more information on the different expression types and the contexts
in which they are used, see Duplicated Expression Names (expmeas).

 real()

Returns the real component of a complex number

 Syntax

y = real(x)

Measurement Expressions

240

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

complex Yes

 Examples

y = real(1-1*j) returns 1.000

 Defined in

Built in

 See Also

cmplx() (expmeas), imag() (expmeas), re() (expmeas)

Note
The function name real() is used for more than one type of expression. For comparison, see the Simulator
Expression real() Expression (expsim) and the AEL Function real() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 rms()

Returns the root mean square value

 Syntax

y = rms(Value)

 Arguments

Name Description Default Range Type Required

Value Value to find RMS None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

rmsR = rms(2) returns 1.414

rmsR = rms(complex(3, 10)) returns 7.382/73.301

rmsR = rms([1, 2, 3, 4, 5,]) returns [0.707, 1.414, 2.121, 2.828, 3.536]

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 Notes/Equations

Measurement Expressions

241

The rms() function calculates the root mean square value. If the data's inner independent
is freq, and if frequency equals 0 (DC), then the function returns mag() rather than rms
value.
 round()

Rounds to the nearest integer

 Syntax

y = round(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

real Yes

 Examples

a = round(0.1) returns 0

a = round(0.5) returns 1

a = round(0.9) returns 1

a = round(-0.1) returns 0

a = round(-0.5) returns -1

a = round(-0.9) returns -1

 Defined in

Built in

 See Also

int() (expmeas)

Note
The function name round() is used for more than one type of expression. For comparison, see the AEL
Function round() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 sgn()

Returns the integer sign of an integer or real number, as either 1 or -1

 Syntax

y = sgn(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer,
real

Yes

Measurement Expressions

242

 Examples

a = sgn(-1) returns -1

a = sgn(1) returns 1

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas),
log10() (expmeas), pow() (expmeas), sqrt() (expmeas)

Note
The function name sgn() is used for more than one type of expression. For comparison, see the Simulator
Expression sgn() Expression (expsim) and the AEL Function sgn() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 sin()

Returns the sine

 Syntax

y = sin(x)

 Arguments

Name Description Default Range Type Required

x number in radians None (-
∞:∞)

Integer, real, complex Yes

 Examples

y = sin(pi/2) returns 1

 Defined in

Built in

 See Also

cos() (expmeas), tan() (expmeas)

Measurement Expressions

243

Note
The function name sin() is used for more than one type of expression. For comparison, see the Simulator
Expression sin() Expression (expsim) and the AEL Function sin() Function (ael). Also, for more information
on the different expression types and the contexts in which they are used, see Duplicated Expression
Names (expmeas).

 sinc()

Returns the sinc of a number.

 Syntax

y = sinc(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = sinc(0.5) returns 0.959

 Defined in

Built in

 See Also

sin() (expmeas)

 Notes/Equations

The sinc function is defined as sinc(x) = sin(pi*x)/ (pi*x) and sinc(0)=1.

Note
The function name sinc() is used for more than one type of expression. For comparison, see the Simulator
Expression sinc() Expression (expsim) and the AEL Function sinc() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 sinh()

Returns the hyperbolic sine

 Syntax

y = sinh(x)

Measurement Expressions

244

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = sinh(0) returns 0

a = sinh(1) returns 1.1752

 Defined in

Built in

 See Also

cosh() (expmeas), tanh() (expmeas)

Note
The function name sinh() is used for more than one type of expression. For comparison, see the Simulator
Expression sinh() Expression (expsim) and the AEL Function sinh() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 sqr()

Returns the square of a number

 Syntax

y = sqr(x)

 Arguments

Name Description Default Range Type Required

x number to
square

None (-
∞:∞)

Integer, real, complex Yes

 Examples

y = sqr(2) returns 4

 Defined In

$HPEESOF_DIR/expressions/ael/elementary_fun.ael
 sqrt()

Returns the square root of number

 Syntax

Measurement Expressions

245

y = sqrt(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = sqrt(4) returns 2

a = sqrt(2+j*1) returns 1.455+j*0.344

 Defined in

Built in

 See Also

abs() (expmeas), cint() (expmeas), exp() (expmeas), float() (expmeas), int() (expmeas),
log10() (expmeas), pow() (expmeas), sgn() (expmeas)

Note
The function name sqrt() is used for more than one type of expression. For comparison, see the Simulator
Expression sqrt() Expression (expsim) and the AEL Function sqrt() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 step()

Returns 0, 0.5, or 1

 Syntax

y= step(x)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer, real, complex Yes

 Examples

a = step(-1.5) returns 0.000

a = step(0) returns 0.500

a = step(1.5) returns 1.000

 Defined in

Built in

Measurement Expressions

246

Note
The function name step() is used for more than one type of expression. For comparison, see the Simulator
Expression step() Expression (expsim) and the AEL Function step() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 sum()

Returns the sum

 Syntax

y = sum(x)

 Arguments

Name Description Default Range Type Required

x data to find
sum

None (-
∞:∞)

Integer, real or
complex

Yes

 Examples

a = sum([1, 2, 3]) returns 6

 Defined in

Built in

 See Also

max() (expmeas), mean() (expmeas), min() (expmeas)

Note
The function name sum() is used for more than one type of expression. For comparison, see the
Measurement Expression sum() Measurement (expmeas). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 tan()

Returns the tangent

 Syntax

y = tan(x)

 Arguments

Name Description Default Range Type Required

x number in radians None (-
∞:∞)

Integer, real, complex Yes

 Examples

Measurement Expressions

247

a = tan(pi/4) returns 1

a = tan(+/-pi/2) returns +/- 1.633E16

 Defined in

Built in

 See Also

cos() (expmeas), sin() (expmeas)

Note
The function name tan() is used for more than one type of expression. For comparison, see the Simulator
Expression tan() Expression (expsim) and the AEL Function tan() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 tanh()

Returns the hyperbolic tangent

 Syntax

y = tanh(x)

 Arguments

Name Description Default Range Type Required

x number in radians None (-
∞:∞)

Integer, Real, complex Yes

 Examples

a = tanh(0) returns 0

a = tanh(1) returns 0.761594

a = tanh(-1) returns -0.761594

 Defined in

Built in

 See Also

cosh() (expmeas), sinh() (expmeas)

Measurement Expressions

248

Note
The function name tanh() is used for more than one type of expression. For comparison, see the Simulator
Expression tanh() Expression (expsim) and the AEL Function tanh() Function (ael). Also, for more
information on the different expression types and the contexts in which they are used, see Duplicated
Expression Names (expmeas).

 transpose()

Returns the transpose of a matrix

 Syntax

y = transpose(Matrix)

 Arguments

Name Description Default Range Type Required

Matrix square matrix to find the
transpose

None (-
∞:∞)

Integer, Real or
Complex

Yes

 Examples

a={{1, 2}, {3, 4}}
b=transpose(a)

returns {{1, 3}, {2, 4}}

 Defined in

Built in

 See Also

diagonal() (expmeas), inverse() (expmeas)
 wtodbm()

Converts Watts to dBm and returns a real or complex number

 Syntax

dbmVal = wtodbm(Value)

 Arguments

Name Description Default Range Type Required

Value Value in
Watts

None (-
∞:∞)

Real, Complex Yes

 Examples

wtodbm01_M=wtodbm(0.01) returns 10

wtodbm1_M=wtodbm(1) returns 30

wtodbmC_M=wtodbm(complex(10,2)) returns 40.094/1.225

Measurement Expressions

249

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 See Also

dbmtow() (expmeas)

Note
The function name wtodbm() is used for more than one type of expression. For comparison, see the
Simulator Expression wtodbm() Expression (expsim). Also, for more information on the different
expression types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 xor()

Returns an integer that represents the exclusive OR between arguments

 Syntax

yXor = xor(x, y)

 Arguments

Name Description Default Range Type Required

x number None (-
∞:∞)

Integer Yes

y number None (-
∞:∞)

Integer Yes

 Examples

a = xor(16, 32) returns 48

 Defined in

Built in

Note
The function name xor() is used for more than one type of expression. For comparison, see the AEL
Function xor() Function (ael). Also, for more information on the different expression types and the
contexts in which they are used, see Duplicated Expression Names (expmeas).

 zeros()

Returns zeros matrix

 Syntax

y = zeros(rows, columns)

 Arguments

Measurement Expressions

250

Name Description Default Range Type Required

rows number of rows † None [i:∞) Integer Yes

columns number of columns
†

None [i:∞) Integer Yes

† If only one argument is supplied, then a square matrix is returned. If two are supplied,
then a matrix of zeros with size rows X cols is returned.

 Examples

a=zeros(2) returns {{0, 0}, {0, 0}}
b=(2, 3) returns {{0, 0, 0}, {0, 0, 0}}

 Defined in

Built in

 See Also

identity() (expmeas), ones() (expmeas)

Measurement Expressions

251

 Signal Processing Functions
This section describes the signal processing functions in detail. The functions are listed in
alphabetical order.

add rf() (expmeas)
ber pi4dqpsk() (expmeas)
ber qpsk() (expmeas)
eye() (expmeas)
eye amplitude() (expmeas)
eye closure() (expmeas)
eye fall time() (expmeas)
eye height() (expmeas)
eye rise time() (expmeas)
spec power() (expmeas)

 add_rf()

Returns the sum of two Timed Complex Envelope signals defined by the triplet in-phase
(real or I(t)) and quadrature-phase (imaginary or Q(t)) part of a modulated carrier
frequency(Fc).

 Syntax

y = add_rf(T1, T2)

 Arguments

Name Description Default Range Type Required

T1 Timed Complex Envelope signals at carrier frequencies Fc1 None (-
∞:∞)

Complex Yes

T2 Timed Complex Envelope signals at carrier frequencies Fc2 None (-
∞:∞)

Complex Yes

 Examples

y= add_rf(T1, T2)

 Defined in

$HPEESOF_DIR/expressions/ael/signal_proc_fun.ael

 Notes/Equations

Used in Signal processing designs that output Timed Signals using Timed Sinks
This equation determines the sum of two Timed Complex Envelope at a new carrier
frequency Fc3. Given Fc1 and Fc2 as the carrier frequencies of the two input waveforms,
the output carrier frequency Fc3 will be the greater of the two.
 ber_pi4dqpsk()

Returns the symbol probability of error versus signal-to-noise ratio per bit for pi/4 DQPSK
modulation.

Measurement Expressions

252

 Syntax

data = ber_pi4dqpsk(vIn, vOut, symRate, noise, samplingDelay, rotation, tranDelay,
pathDelay)

 Arguments

Name Description Default Range Type Required

vIn complex envelope voltage signals at the input node None (-
∞:∞)

Complex Yes

vOut complex envelope voltage signals at the output node None (-
∞:∞)

Complex Yes

symRate symbol rate (real) of the modulation signal None (0:∞) Real Yes

noise RMS noise vector None (0:∞) Real Yes

samplingDelay clock phase in seconds calculated [0:∞) Real Yes

rotation carrier phase in radians calculated [0:∞) Real Yes

tranDelay time in seconds that causes this time duration of
symbols to be eliminated from the bit error rate
calculation †

calculated [0:∞) Real Yes

pathDelay delay from input to output in seconds calculated [0:∞) Real Yes

† Usually the filters in the simulation have transient responses, and the bit error rate
calculation should not start until these transient responses have finished.

 Examples

y = ber_pi4dqpsk(videal[1], vout[1], 0.5e6, {0.1::-0.01::0.02})

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

ber_qpsk() (expmeas), constellation() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
The arguments vIn and vOut usually come from a circuit envelope simulation, while noise
usually comes from a harmonic balance simulation, and is assumed to be additive white
Gaussian. It can take a scalar or vector value. The function uses the quasi-analytic
approach for estimating BER: for each symbol, Eb / N0 and BER are calculated
analytically; then the overall BER is the average of the BER values for the symbols.
Note that ber_pi4dqpsk returns a list of data:
data[0]= symbol probability of error versus Eb / N0
data[1]= path delay in seconds
data[2]= carrier phase in radians

Measurement Expressions

253

data[3]= clock phase in seconds
data[4]= complex(Isample, Qsample)
 ber_qpsk()

Returns the symbol probability of error versus signal-to-noise ratio per bit for QPSK
modulation

 Syntax

data = ber_qpsk(vIn, vOut, symRate, noise{, samplingDelay, rotation, tranDelay,
pathDelay})

 Arguments

Name Description Default Range Type Required

vIn complex envelope voltage signals at the input node None (-
∞:∞)

Complex Yes

vOut complex envelope voltage signals at the output node None (-
∞:∞)

Complex Yes

symRate symbol rate (real) of the modulation signal None (0:∞) Real Yes

noise RMS noise vector None (0:∞) Real Yes

samplingDelay clock phase in seconds calculated [0:∞) Real Yes

rotation carrier phase in radians calculated [0:∞) Real Yes

tranDelay time in seconds that causes this time duration of
symbols to be eliminated from the bit error rate
calculation †

calculated [0:∞) Real Yes

pathDelay delay from input to output in seconds calculated [0:∞) Real Yes

† Usually the filters in the simulation have transient responses, and the bit error rate
calculation should not start until these transient responses have finished.

 Examples

y = ber_qpsk(videal[1], vout[1], 1e6, {0.15::-0.01::0.04})

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

ber_pi4dqpsk() (expmeas), constellation() (expmeas)

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
The arguments vIn and vOut usually come from a circuit envelope simulation, while noise
usually comes from a harmonic balance simulation, and is assumed to be additive white
Gaussian. It can take a scalar or vector value. The function uses the quasi-analytic

Measurement Expressions

254

approach for estimating BER: for each symbol, Eb / N0 and BER are calculated
analytically; then the overall BER is the average of the BER values for the symbols.
Note that ber_qpsk returns a list of data:
data[0]= symbol probability of error versus Eb / N0
data[1]= path delay in seconds
data[2]= carrier phase in radians
data[3]= clock phase in seconds
data[4]= complex(Isample, Qsample)
 eye()

Creates data for an eye diagram plot

 Syntax

y = eye(data, symbolRate, Cycles, Delay)

 Arguments

Name Description Default Range Type Required

data either numeric data or a time domain waveform typically
from the I or Q data channel

None (-
∞:∞)

Complex Yes

symbolRate symbol rate of the channel. For numeric data, the symbol
rate is the reciprocal of the number of points in one cycle;
for a waveform, it is the frequency

None (0:∞) Real Yes

Cycles number of cycles to repeat 1 [1:∞) Integer No

Delay sampling delay 0 [0:∞) Integer,
Real

No

 Examples

y = eye(I_data, symbol_rate)

 Defined in

Built in

 See Also

constellation() (expmeas), eye_amplitude() (expmeas), eye_closure() (expmeas),
eye_fall_time() (expmeas), eye_height() (expmeas), eye_rise_time() (expmeas)
 eye_amplitude()

Returns eye amplitude

 Syntax

y = eye_amplitude(Vout_time, Delay, BitRate, SamplePoint, WindowPct)

 Arguments

Measurement Expressions

255

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Complex Yes

Delay used to remove initial transient in the eye diagram and is
expressed in time units

None [0:∞) Real Yes

BitRate bit rate of the channel and is expressed in frequency units None [0:∞) Real Yes

SamplePoint marker name placed on the eye diagram measurement.
The independent value of this marker is used to determine
the symbol offset.

None None string Yes

WindowPct used to determine level '1' and level '0' of the time domain
waveform and its typical value is 0.2.

None [0:1] Real Yes

 Examples

Eye_amp = eye_amplitude(vout,12 ps,10 GHz, m1, 0.2)

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

cross_hist() (expmeas), eye() (expmeas), eye_closure() (expmeas), eye_fall_time()
(expmeas), eye_height() (expmeas), eye_rise_time() (expmeas)

 Notes/Equations

The eye_amplitude() function essentially takes the vertical histogram of the eye voltages
and subtracts the "0" level mean from "1" level mean within a given measurement
window.
 eye_closure()

Returns eye closure

 Syntax

y = eye_closure(Vout_time, Delay, BitRate, SamplePoint, WindowPct)

 Arguments

Measurement Expressions

256

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Complex Yes

Delay used to remove initial transient in the eye diagram and is
expressed in time units

None [0:∞) Real Yes

BitRate bit rate of the channel and is expressed in frequency units None [0:∞) Real Yes

SamplePoint marker name placed on the eye diagram measurement.
The independent value of this marker is used to determine
the symbol offset.

None None string Yes

WindowPct used to determine level '1' and level '0' of the time domain
waveform and its typical value is 0.2.

None [0:1] Real Yes

 Examples

Eye_Close = eye_closure(vout,12 ps,10 GHz, m1, 0.2)

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

cross_hist() (expmeas), eye() (expmeas), eye_amplitude() (expmeas), eye_fall_time()
(expmeas), eye_height() (expmeas), eye_rise_time() (expmeas)

 Notes/Equations

Computes the ratio of eye height to eye amplitude to provide eye closure.
 eye_fall_time()

Returns eye fall time

 Syntax

y = eye_fall_time(Vout_time,Delay,BitRate,SamplePoint,WindowPct)

 Arguments

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Complex Yes

Delay used to remove initial transient in the eye diagram and is
expressed in time units

None [0:∞) Real Yes

BitRate bit rate of the channel and is expressed in frequency units None [0:∞) Real Yes

SamplePoint marker name placed on the eye diagram measurement.
The independent value of this marker is used to determine
the symbol offset.

None None string Yes

WindowPct used to determine level '1' and level '0' of the time domain
waveform and its typical value is 0.2.

None [0:1] Real Yes

Measurement Expressions

257

 Examples

Eye_Fall = eye_fall_time(vout,12 ps,10 GHz, m1, 0.2)

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

cross_hist() (expmeas), eye() (expmeas), eye_amplitude() (expmeas), eye_closure()
(expmeas), eye_height() (expmeas), eye_rise_time() (expmeas)

 Notes/Equations

Computes 20% - 80% fall time of a time domain waveform.
 eye_height()

Returns eye height

 Syntax

y = eye_height(Vout_time, Delay, BitRate, SamplePoint, WindowPct)

 Arguments

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Complex Yes

Delay used to remove initial transient in the eye diagram and is
expressed in time units

None [0:∞) Real Yes

BitRate bit rate of the channel and is expressed in frequency units None [0:∞) Real Yes

SamplePoint marker name placed on the eye diagram measurement.
The independent value of this marker is used to determine
the symbol offset.

None None string Yes

WindowPct used to determine level '1' and level '0' of the time domain
waveform and its typical value is 0.2.

None [0:1] Real Yes

 Examples

Eye_Ht = eye_height(vout,12 ps,10 GHz, m1, 0.2)

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

Measurement Expressions

258

cross_hist() (expmeas), eye() (expmeas), eye_amplitude() (expmeas), eye_closure()
(expmeas), eye_fall_time() (expmeas), eye_rise_time() (expmeas)

 Notes/Equations

The eye_height() function essentially takes the vertical histogram of the eye voltages and
computes inner bounds of the eye opening.
 eye_rise_time()

Returns eye rise time

 Syntax

y = eye_rise_time(Vout_time,Delay,BitRate,SamplePoint,WindowPct)

 Arguments

Name Description Default Range Type Required

Vout_time time domain voltage waveform None (-
∞:∞)

Complex Yes

Delay used to remove initial transient in the eye diagram and is
expressed in time units

None [0:∞) Real Yes

BitRate bit rate of the channel and is expressed in frequency units None [0:∞) Real Yes

SamplePoint marker name placed on the eye diagram measurement.
The independent value of this marker is used to determine
the symbol offset.

None None string Yes

WindowPct used to determine level '1' and level '0' of the time domain
waveform and its typical value is 0.2.

None [0:1] Real Yes

 Examples

Eye_Rise = eye_rise_time(vout,12 ps,10 GHz, m1, 0.2)

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

cross_hist() (expmeas), eye() (expmeas), eye_amplitude() (expmeas), eye_closure()
(expmeas), eye_fall_time() (expmeas), eye_height() (expmeas)

 Notes/Equations

Computes 20% - 80% rise time of a time domain waveform.
 spec_power()

Measurement Expressions

259

Returns the integrated signal power (dBm) of a spectrum

 Syntax

y = spec_power(spectralData{, lowerFrequencyLimit, upperFrequencyLimit})

 Arguments

Name Description Default Range Type Required

spectralData spectral data in
dBm

None None Real Yes

lowerFrequencyLimit lower frequency
limit to be used in
calculating the
integrated power

min(indep(spectralData)) (-∞:∞) Real No

upperFrequencyLimit upper frequency
limit to be used in
calculating the
integrated power

max(indep(spectralData)) [lowerFrequencyLimit:∞) Real No

 Examples

total_power = spec_power(dBm(Mod_Spectrum), 60 MHz, 71 MHz)

where Mod_Spectrum is the instance name of a SpectrumAnalyzer sink component,

will return the integrated power between 60 and 71 MHz.

total_power = spec_power(dBm(fs(Vout[1])), indep(m1), indep(m2))

where Vout is a named node in a Circuit Envelope simulation, will return the

integrated power between markers 1 and 2.

 Defined in

$HPEESOF_DIR/expressions/ael/signal_proc_fun.ael

 Notes/Equations

Used in Circuit Envelope and Signal Processing simulations.
This expression can be used with spectral data of up to 4 dimensions (frequency should be
the inner dimension).

The spec_power() function returns the power (in dBm) of a spectrum integrated between
the lower and upper frequency limits specified. If no lower (upper) limit is specified, the
lowest (highest) frequency in the spectral data is used instead.

The input spectral data must be in dBm. Spectral data can be generated in several
different ways, such as applying the fs() expression on voltage or current time domain
data or using the SpectrumAnalyzer sink component.

The fs() expression returns the voltage or current spectrum of the input data and so the
dBm() expression should be applied to the fs() output before it is passed to the
spec_power() expression. The frequency axis values in the spectral data returned by fs()
are in Hz and so if lower and/or upper frequency limits are to be passed to spec_power(),
they should be specified in Hz.

Measurement Expressions

260

Similarly, the SpectrumAnalyzer sink component returns the voltage spectrum of the input
signal and so the dBm() expression should be applied to the spectral data generated by
SpectrumAnalyzer before it is passed to the spec_power() expression. The frequency axis
values in the spectral data generated by SpectrumAnalyzer are in Hz, so if lower and/or
upper frequency limits are to be passed to spec_power(), they should be specified in Hz.

Measurement Expressions

261

 S-Parameter Analysis Functions for Measurement
Expressions
This section describes the S-parameter analysis functions in detail. The functions are listed
in alphabetical order.

abcdtoh() (expmeas)
abcdtos() (expmeas)
abcdtoy() (expmeas)
abcdtoz() (expmeas)
bandwidth func() (expmeas)
center freq() (expmeas)
dev lin gain() (expmeas)
dev lin phase() (expmeas)
ga circle() (expmeas)
gain comp() (expmeas)
gl circle() (expmeas)
gp circle() (expmeas)
gs circle() (expmeas)
htoabcd() (expmeas)
htos() (expmeas)
htoy() (expmeas)
htoz() (expmeas)
ispec() (expmeas)
l stab circle() (expmeas)
l stab circle center radius() (expmeas)
l stab region() (expmeas)
map1 circle() (expmeas)
map2 circle() (expmeas)
max gain() (expmeas)
mu() (expmeas)
mu prime() (expmeas)
ns circle() (expmeas)
ns pwr int() (expmeas)
ns pwr ref bw() (expmeas)
phase comp() (expmeas)
pwr gain() (expmeas)
ripple() Measurement (expmeas)
sm gamma1() (expmeas)
sm gamma2() (expmeas)
sm y1() (expmeas)
sm y2() (expmeas)
sm z1() (expmeas)
sm z2() (expmeas)
s stab circle() (expmeas)
s stab circle center radius() (expmeas)
s stab region() (expmeas)
stab fact() (expmeas)
stab meas() (expmeas)
stoabcd() (expmeas)
stoh() (expmeas)
stos() (expmeas)

Measurement Expressions

262

stot() (expmeas)
stoy() (expmeas)
stoz() (expmeas)
tdr_step_impedance() (expmeas)
tdr sp gamma() (expmeas)
tdr sp imped() (expmeas)
tdr step imped() (expmeas)
ttos() (expmeas)
unilateral figure() (expmeas)
unwrap() (expmeas)
v dc() (expmeas)
volt gain() (expmeas)
volt gain max() (expmeas)
vswr() (expmeas)
write snp() (expmeas)
yin() (expmeas)
yopt() (expmeas)
ytoabcd() (expmeas)
ytoh() (expmeas)
ytos() (expmeas)
ytoz() (expmeas)
zin() (expmeas)
zopt() (expmeas)
ztoabcd() (expmeas)
ztoh() (expmeas)
ztos() (expmeas)
ztoy() (expmeas)

 abcdtoh()

This measurement transforms the chain (ABCD) matrix of a 2-port network to a hybrid
matrix.

 Syntax

h=abcdtoh(a)

 Arguments

Name Description Default Range Type Required

A chain (ABCD) matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

h=abcdtoh(a)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

Measurement Expressions

263

abcdtos() (expmeas), abcdtoy() (expmeas), abcdtoz() (expmeas), htoabcd() (expmeas),
stoabcd() (expmeas), ytoabcd() (expmeas), ztoabcd() (expmeas)
 abcdtos()

This measurement transforms the chain (ABCD) matrix of a 2-port network to a scattering
matrix.

 Syntax

sp = abcdtos(A, zRef)

 Arguments

Name Description Default Range Type Required

A chain (ABCD) matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

sp = abcdtos(a, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

abcdtoh() (expmeas), abcdtoy() (expmeas), abcdtoz() (expmeas), htoabcd() (expmeas),
stoabcd() (expmeas), ytoabcd() (expmeas), ztoabcd() (expmeas)
 abcdtoy()

This measurement transforms the chain (ABCD) matrix of a 2-port network to an
admittance matrix.

 Syntax

y = abcdtoy(a)

 Arguments

Name Description Default Range Type Required

A chain (ABCD) matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

y = abcdtoy(a)

 Defined in

Measurement Expressions

264

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

abcdtoh() (expmeas), abcdtos() (expmeas), abcdtoz() (expmeas), htoabcd() (expmeas),
stoabcd() (expmeas), ytoabcd() (expmeas), ztoabcd() (expmeas)
 abcdtoz()

This measurement transforms the chain (ABCD) matrix of a 2-port network to impedance
matrix.

 Syntax

z = abcdtoz(a)

 Arguments

Name Description Default Range Type Required

A chain (ABCD) matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

z = abcdtoz(a)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

abcdtoh() (expmeas), abcdtos() (expmeas), abcdtoy() (expmeas), htoabcd() (expmeas),
stoabcd() (expmeas), ytoabcd() (expmeas), ztoabcd() (expmeas)
 bandwidth_func()

Returns the bandwidth at the specified level as a real number. Typically used in filter
application to calculate the 1, 3 dB bandwidth.

 Syntax

bw = bandwidth_func(Data, DesiredValue, Type)

 Arguments

Measurement Expressions

265

Name Description Default Range Type Required

Data data (usually gain) to find the bandwidth None (-
∞:∞)

Integer,
Real

Yes

DesiredValue A single value representing the desired bandwidth
level.

None (-
∞:∞)

Real Yes

Type Type of response 0 [0:3] † Integer No

† Type:
0 - Band-pass
1 - Band-stop
2 - Low-pass
3 - High-pass

 Examples

We assume that a S-Parameter analysis has been performed.

bw3dB = bandwidth_func(db(S21), 3) returns the 3dB bandwidth

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

center_freq() (expmeas)

 Notes/Equations

This function returns the bandwidth of a filter response. Bandwidth is defined as the
difference between the upper and lower frequency at which the amplitude response is
DesiredValue dB below the maximum amplitude. It uses an iterative process to find the
bandwidth on non-ideal responses for the band limited responses.
Data can be from 1 to 4 dimensions.
 center_freq()

Returns the center frequency at the specified level as a real number.
Typically used in filter application to calculate the center frequency at 1, 3 dB bandwidth.

 Syntax

fc = center_freq(Data, ReferenceBW)

 Arguments

Name Description Default Range Type Required

Data data (usually gain) to find the center frequency None (-
∞:∞)

Complex Yes

ReferenceBW a single value representing the reference bandwidth None (-
∞:∞)

Real Yes

Measurement Expressions

266

 Examples

We assume that a S-Parameter analysis has been performed.

fc3 = center_freq(db(S21), 3) returns the center frequency using the 3dB point

as reference

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

bandwidth_func() (expmeas)

 Notes/Equations

This function returns the center frequency of a filter response. Linear interpolation is
performed between data points. The function uses an iterative process to find the
bandwidth on non-ideal responses. The data can be from 1 to 4 dimensions.
 dev_lin_gain()

Given a variable sweep over a frequency range, a linear least-squares fit is performed on
the gain of the variable, and the deviation from this linear fit is calculated at each
frequency point.

 Syntax

y = dev_lin_gain(voltGain)

 Arguments

Name Description Default Range Type Required

voltGain gain as a function of frequency None [0:∞) Complex Yes

 Examples

a = dev_lin_gain(volt_gain(S,PortZ(1),PortZ(2)))

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

dev_lin_phase() (expmeas), diff() (expmeas), phasedeg() (ael), phaserad() (ael),
pwr_gain() (expmeas), ripple() (expmeas), unwrap() (expmeas), volt_gain() (expmeas)

Measurement Expressions

267

 dev_lin_phase()

Given a variable sweep over a frequency range, a linear least-squares fit is performed on
the phase of the variable, and the deviation from this linear fit is calculated at each
frequency point.

 Syntax

y = dev_lin_phase(voltGain)

 Arguments

Name Description Default Range Type Required

voltGain function of
frequency

None [0:∞) Complex Yes

 Examples

a = dev_lin_phase(S21)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

dev_lin_gain() (expmeas), diff() (expmeas), phasedeg() (expmeas), phaserad()
(expmeas), pwr_gain() (expmeas), ripple() (expmeas), unwrap() (expmeas), volt_gain()
(expmeas)

 Notes/Equations

In order to use this function, the Group Delay option must be enabled in the S-parameter
analysis setup. For more information, refer to " Calculating Group Delay " in your " S-
Parameter Simulation " documentation.
 ga_circle()

Generates an available gain circle.

 Syntax

y = ga_circle(S, gain, numOfPts, numCircles, gainStep)

 Arguments

Measurement Expressions

268

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

gain specified gain in dB † [0:∞) Integer or Real
array

No

numOfPts desired number of points per circle 51 [1:∞) Integer No

numCircles number of desired circles. This is used if gain is
not specified.

None [0:∞) Integer No

gainStep gain step size. This is used if gain is not specified. 1.0 [0:∞) Integer or Real No

† Default value for gain is min(max_gain(S)) - {1, 2, 3}

 Examples

circleData = ga_circle(S, 2, 51)

circleData = ga_circle(S, {2, 3, 4}, 51) return the points on the circle(s).

circleData = ga_circle(S, , 51, 5, 0.5) return the points on the circle(s) for

5 circles at maxGain - {0,0.5,1.0,1.5,2.0}
circleData = ga_circle(S, , , 2, 1.0) return the points on the circle(s) for 2

circles at maxGain - {0,1.0}

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

gl_circle() (expmeas), gp_circle() (expmeas), gs_circle() (expmeas)

 Notes/Equations

This function is used in Small-signal S-parameter simulations.
The function generates the constant available-gain circle resulting from a source
mismatch. The circle is defined by the loci of the source-reflection coefficients resulting in
the specified gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values can be
specified for a scattering parameter that has dimension less than four. This measurement
is supported for 2-port networks only.
If gain and numCircles are not specified, gain circles are drawn at min(max_gain(S)) -
{0,1,2,3}. That is, gain is calculated at a loss of 0,1,2,3 dB from maxGain.

If gain is not specified and numCircles is given, then numCircles gain circles are drawn at
gainStep below max_gain(). Gain is also limited by max_gain(S). That is, if gain >
max_gain(S), then the circle is generated at max_gain(S).

Measurement Expressions

269

Where:

 gain_comp()

Returns gain compression

 Syntax

y = gain_comp(Sji)

 Arguments

Name Description Default Range Type Required

Sji Sji is a power-dependent complex transmission coefficient
obtained from large-signal S-parameter simulation.

None (-
∞:∞)

Complex Yes

 Examples

gc = gain_comp(S21[::, 0])

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

phase_comp() (expmeas)

 Notes/Equations

Used in Large-signal S-parameter simulations.
This measurement calculates the small-signal minus the large-signal power gain, in dB.
The first power point (assumed to be small) is used to calculate the small-signal power
gain.
 gl_circle()

Returns a load-mismatch gain circle.

 Syntax

y = gl_circle(S, gain, numOfPts, numCircles, gainStep)

Measurement Expressions

270

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

gain specified gain in dB maxGain - {0, 1,
2, 3} †

[0:∞) Integer or Real
array

No

numOfPts desired number of points per circle 51 [1:∞) Integer No

numCircles number of desired circles. This is used if
gain is not specified.

None [0:∞) Integer No

gainStep gain step size. This is used if gain is not
specified.

1.0 [0:∞) Integer or Real No

† Where maxGain = 10*log(1 / (1 - mag(S22)**2))

 Examples

circleData = gl_circle(S, 2, 51)

circleData = gl_circle(S, {2, 3, 4}, 51) return the points on the circle(s).

circleData = gl_circle(S, , 51, 5, 0.5) return the points on the circle(s) for

5 circles at maxGain - {0,0.5,1.0,1.5,2.0}
circleData = gl_circle(S, , , 2, 1.0) return the points on the circle(s) for 2

circles at maxGain - {0,1.0}

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

 ga_circle() (expmeas), gp_circle() (expmeas), gs_circle() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
This function generates the unilateral gain circle resulting from a load mismatch. The circle
is defined by the loci of the load-reflection coefficients that result in the specified gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values can be
specified for a scattering parameter that has dimension less than four. This measurement
is supported for 2-port networks only.

If gain and numCircles are not specified, gain circles are drawn at maxGain - {0,1,2,3}.
That is, gain is calculated at a loss of 0,1,2,3 dB from the maximum gain. If gain is not
specified and numCircles is given, then numCircles gain circles are drawn at gainStep
below maxGain. Gain is also limited by maxGain. That is, if gain > maxGain, then the
circle is generated at maxGain.

Measurement Expressions

271

Where Gabs is the absolute gain, and is given by:

 gp_circle()

Generates a power gain circle.

 Syntax

y = gp_circle(S, gain, numOfPts, numCircles, gainStep)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

gain specified gain in dB † [0:∞) Integer or Real
array

No

numOfPts desired number of points per circle 51 [1:∞) Integer No

numCircles number of desired circles. This is used if gain is
not specified.

None [0:∞) Integer No

gainStep gain step size. This is used if gain is not specified. 1.0 [0:∞) Integer or Real No

† Default value for gain is min(max_gain(S)) - {1, 2, 3}

 Examples

circleData = gp_circle(S, 2, 51)

circleData = gp_circle(S, {2, 3, 4}, 51) return the points on the circle(s).

circleData = gp_circle(S, , 51, 5, 0.5) return the points on the circle(s) for

5 circles at maxGain - {0,0.5,1.0,1.5,2.0}
circleData = gp_circle(S, , , 2, 1.0) return the points on the circle(s) for 2

circles at maxGain - {0,1.0}

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

ga_circle() (expmeas), gl_circle() (expmeas), gs_circle() (expmeas)

Measurement Expressions

272

 Notes/Equations

Used in Small-signal S-parameter simulations.
This function generates a constant-power-gain circle resulting from a load mismatch. The
circle is defined by the loci of the output-reflection coefficients that result in the specified
gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values can be
specified for a scattering parameter that has dimension less than four. This measurement
is supported for 2-port networks only.

If gain and numCircles are not specified, gain circles are drawn at min(max_gain(S)) -
{0,1,2,3}. That is, gains are calculated at a loss of 0,1,2,3 dB from the maximum gain. If
gain is not specified and numCircles is given, then numCircles gain circles are drawn at
gainStep below max_gain(). Gain is also limited by max_gain(S). That is, if gain >
max_gain(S), then the circle is generated at max_gain(S)).

Where:

 gs_circle()

Returns a source-mismatch gain circle.

 Syntax

y = gs_circle(S, gain, numOfPts, numCircles, gainStep)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

gain specified gain in dB maxGain - {0, 1,
2, 3} †

[0:∞) Integer or Real
array

No

numOfPts desired number of points per circle 51 [1:∞) Integer No

numCircles number of desired circles. This is used if
gain is not specified.

None [0:∞) Integer No

gainStep gain step size. This is used if gain is not
specified.

1.0 [0:∞) Integer or Real No

† Where maxGain = 10*log(1 / (1 - mag(S11)**2))

Measurement Expressions

273

 Examples

circleData = gs_circle(S, 2, 51)

circleData = gs_circle(S, {2, 3, 4}, 51) return the points on the circle(s).

circleData = gs_circle(S, , 51, 5, 0.5) return the points on the circle(s) for

5 circles at maxGain - {0,0.5,1.0,1.5,2.0}
circleData = gs_circle(S, , , 2, 1.0) return the points on the circle(s) for 2

circles at maxGain - {0,1.0}

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

ga_circle() (expmeas), gl_circle() (expmeas), gp_circle() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
This function generates the unilateral gain circle resulting from a source mismatch. The
circle is defined by the loci of the source-reflection coefficients that result in the specified
gain. A gain circle is created for each value of the swept variable(s). Multiple gain values
can be specified for a scattering parameter that has dimension less than four. This
measurement is supported for 2-port networks only.

If gain and numCircles are not specified, gain circles are drawn at maxGain - {0,1,2,3}.
That is, gain values are calculated at a loss of 0,1,2,3 dB from the maximum gain. If gain
is not specified and if numCircles is given, then numCircles gain circles are drawn at
gainStep below maxGain. Gain is also limited by maxGain. That is, if gain > maxGain,
then the circle is generated at maxGain.

Where Gabs is the absolute gain, and is given by:

 htoabcd()

This measurement transforms the hybrid matrix of a 2-port network to a chain (ABCD)
matrix.

 Syntax

Measurement Expressions

274

a = htoabcd(H)

 Arguments

Name Description Default Range Type Required

H hybrid matrix of a 2-port network None (-
∞:∞)

Complex Yes

 Examples

a = htoabcd(H)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

abcdtoh() (expmeas), htoz() (expmeas), ytoh() (expmeas)
 htos()

This measurement transforms the hybrid matrix of a 2-port network to a scattering
matrix.

 Syntax

sp = htos(h, zRef)

 Arguments

Name Description Default Range Type Required

H hybrid matrix of a 2-port network None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

sp = htos(h, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

htoy() (expmeas), htoz() (expmeas), stoh() (expmeas)
 htoy()

Measurement Expressions

275

This measurement transforms the hybrid matrix of a 2-port network to an admittance
matrix.

 Syntax

y = htoy(H)

 Arguments

Name Description Default Range Type Required

H hybrid matrix of a 2-port network None (-
∞:∞)

Complex Yes

 Examples

y = htoy(H)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

htos() (expmeas), htoz() (expmeas), ytoh() (expmeas)
 htoz()

This measurement transforms the hybrid matrix of a 2-port network to an impedance
matrix.

 Syntax

z = htoz(H)

 Arguments

Name Description Default Range Type Required

H hybrid matrix of a 2-port network None (-
∞:∞)

Complex Yes

 Examples

z = htoz(h)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

htos() (expmeas), htoy() (expmeas), ytoh() (expmeas)

Measurement Expressions

276

 ispec()

Returns the current frequency spectrum

 Syntax

y = ispec(current)

 Arguments

Name Description Default Range Type Required

current current None (-
∞:∞)

Real, Complex Yes

 Examples

a = ispec(i1)

 Defined In

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pspec() (expmeas), vspec() (expmeas)

 Notes/Equations

This measurement gives a current frequency spectrum. The measurement gives a set of
RMS currents at each frequency.
 l_stab_circle()

Returns load (output) stability circles.

 Syntax

y = l_stab_circle(S, numOfPts)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

numOfPts desired number of points per circle 51 [1:∞) Integer No

 Examples

circleData = l_stab_circle(S, 51) returns the points on the circle(s).

Measurement Expressions

277

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

l_stab_circle_center_radius() (expmeas), l_stab_region() (expmeas), s_stab_circle()
(expmeas), s_stab_region() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
The function generates a load stability circle. The circle is defined by the loci of load-
reflection coefficients where the magnitude of the source-reflection coefficient is 1.

A circle is created for each value of the swept variable(s). This measurement is supported
for 2-port networks only.
Use the function _l_stab_circle_center_radius()_ to find the center and radius of the
stability circle.

Use the function _l_stab_region(S)_ to determine the region of stability.
 l_stab_circle_center_radius()

Returns the center and radius of the load (output) stability circle

 Syntax

l_cr = l_stab_circle_center_radius(S, Type)

 Arguments

Name Description Default Range Type Required

S 2-port S-Parameters None None Complex Yes

Type Type of parameter to
return

"both" ["both","center","radius"] String No

 Examples

1. l_cr=l_stab_circle_center_radius(S) returns a 1X2 matrix containing center

and radius

lCirc=expand(circle(l_cr(1), real(l_cr(2)), 51)) returns data for the load

stability circle

2. l_radius=l_stab_circle_center_radius(S, "radius") returns the radius

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

Measurement Expressions

278

 See Also

l_stab_circle() (expmeas), s_stab_circle() (expmeas), s_stab_circle_center_radius()
(expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
If the argument Type is not specified, the function returns complex data. Although radius
is of type real, the values are returned as complex. Therefore, when using the returned
radius, use the real part. To obtain the radius as a real number, set the Type argument to
radius .
 l_stab_region()

This expression returns a string identifying the region of stability of the corresponding load
stability circle.

 Syntax

y = l_stab_region(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

 Examples

region = l_stab_region(S) returns "Outside" or "Inside".

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

l_stab_circle() (expmeas), s_stab_circle() (expmeas), s_stab_region() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
 map1_circle()

Returns source-mapping circles from port 2 to port 1.

 Syntax

circleData=map1_circle(S, numOfPts)

Measurement Expressions

279

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

numOfPts desired number of points per circle 51 [1:∞) Integer No

 Examples

circleData=map1_circle(S, 51) returns the points on the circle(s).

 Defined in

$HPEESOF_DIR/expressions/ael/circles_fun.ael

 See Also

map2_circle() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations
The function maps the set of terminations with unity magnitude at port 2 to port 1. The
circles are defined by the loci of terminations on one port as seen at the other port. A
source-mapping circle is created for each value of the swept variable(s). This
measurement is supported for 2-port networks only.
 map2_circle()

Returns load-mapping circles from port 1 to port 2.

 Syntax

circleData=map2_circle(S, numOfPts)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

numOfPts desired number of points per circle 51 [1:∞) Integer No

 Examples

circleData=map2_circle(S, 51) returns the points on the circle(s).

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

Measurement Expressions

280

 See Also

map1_circle() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations
The function maps the set of terminations with unity magnitude at port 1 to port 2. The
circles are defined by the loci of terminations on one port as seen at the other port. A
source-mapping circle is created for each value of the swept variable(s). This
measurement is supported for 2-port networks only.
 max_gain()

Given a 2 x 2 scattering matrix, this measurement returns the maximum available and
stable gain (in dB) between the input and the measurement ports.

 Syntax

y = max_gain(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of 2-port network None (-
∞:∞)

Complex Yes

 Examples

y = max_gain(S)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

sm_gamma1() (expmeas), sm_gamma2() (expmeas), stab_fact() (expmeas),
stab_meas() (expmeas)

 Notes/Equations

This function should be used in a stable system, i.e. when the stability factor (k) is greater
than 1. The function actually works for both k > 1 and k <= 1. If k > 1, then k is used in
the max gain calculations. However, if k <= 1, then k = 1 is used in the max gain
calculations.

Measurement Expressions

281

 mu()

Returns the geometrically derived stability factor for the load.

 Syntax

y = mu(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

x=mu(S)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

mu_prime() (expmeas)

 Notes/Equations

This measurement gives the distance from the center of the Smith chart to the1.
nearest output (load) stability circle. This stability factor is given by:
mu = {1-|S11|2} / {|S22 - conj(S11)*Delta | + |S12*S21| }

where Delta is the determinant of the S-parameter matrix. Having mu > 1 is the
single necessary and sufficient condition for unconditional stability of the 2-port
network.
The Mu component is available in the Simulation-S_Param palette.2.

 Reference

M. L. Edwards and J. H. Sinsky, "A new criterion for linear 2-port stability using1.
geometrically derived parameters", IEEE Transactions on Microwave Theory and
Techniques, Vol. 40, No. 12, pp. 2303-2311, Dec. 1992.

 mu_prime()

Returns the geometrically derived stability factor for the source.

 Syntax

y = mu_prime(S)

Measurement Expressions

282

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

x=mu_prime(S)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

mu() (expmeas)

 Notes/Equations

This measurement gives the distance from the center of the Smith chart to the nearest
unstable-input (source) stability circle. This stability factor is given by:
mu_prime = {1-|S22|2} / {|S11 - conj(S 22)*Delta | + |S21*S12| }

where Delta is the determinant of the S-parameter matrix. Having mu_prime > 1 is the
single necessary and sufficient condition for unconditional stability of the 2-port network.

 Reference

M. L. Edwards and J. H. Sinsky, "A new criterion for linear 2-port stability using
geometrically derived parameters", IEEE Transactions on Microwave Theory and
Techniques, Vol. 40, No. 12, pp. 2303-2311, Dec. 1992.
 ns_circle()

Returns noise-figure circles.

 Syntax

y = ns_circle(nf2, NFmin, Sopt, rn, numOfPts, numCircles, NFStep)

 Arguments

Measurement Expressions

283

Name Description Default Range Type Required

nf2 specified noise figure † (-
∞:∞)

Real No

NFmin minimum noise figure None [0:∞) Integer or
Real

Yes

Sopt optimum mismatch None [0:∞) Complex Yes

rn equivalent normalized noise resistance of a 2-port
network ††

None [0:∞) Complex Yes

numOfPts desired number of points per circle 51 [1:∞) Integer No

numCircles number of desired circles. This is used if nf2 is not
specified.

None [0:∞) Integer No

NFStep nf step size. This is used if nf2 is not specified. 1.0 [0:∞) Integer or
Real

No

† If nf2 is NULL or not specified the default is max(NFmin)+{0,1,2,3}.
†† rn = Rn/zRef where Rn is the equivalent noise resistance and zRef is the reference
impedance.

 Examples

circleData = ns_circle(0+NFmin, NFmin, Sopt, Rn/50, 51)

circleData = ns_circle(NULL, NFmin, Sopt,Rn/50,51) return the points on the

circle for 4 circles at max(NFmin)+{0,1,2,3}
Returns the points on the circle(s):

circleData = ns_circle({0, 1}+NFmin, NFmin, Sopt, Rn/50, 51)

Returns the points on the circle(s) for 3 circles at max(NFmin) + {0, 0.5,

1.0}:

circleData = ns_circle(, NFmin, Sopt, Rn/50, 51, 3, 0.5)

Returns the points on the circle(s) for 3 circles at max(NFmin) + {0, 1, 2.0}:

circleData = ns_circle(, NFmin, Sopt, Rn/50, , 3)

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 Notes/Equations

Used in Small-signal S-parameter simulations and Harmonic Balance analysis.
The expression generates constant noise-figure circles. The circles are defined by the loci
of the source-reflection coefficients that result in the specified noise figure. NFmin, Sopt,
and Rn are generated from noise analysis.
A circle is created for each value of the swept variable(s).

If both nf2 and numCircles are specified, then circles are drawn at nf2 values (numCircles
is not used).

If nf2 and numCircles are not specified, then nf2 circles are drawn at max(NFmin) +
{0,1,2,3}.

If nf2 is not specified, and numCircles is given, then numCircles nf2 circles are drawn at

Measurement Expressions

284

NFStep above max(NFmin).

If nf2 is specified, and numCircles is not specified, then circles are drawn at nf2 values.
 ns_pwr_int()

Returns the integrated noise power

 Syntax

y = ns_pwr_int(Sji, nf, resBW, stop)

 Arguments

Name Description Default Range Type Required

Sji complex transmission coefficient None (-
∞:∞)

Complex Yes

nf noise figure at the output port (in dB) None (-
∞:∞)

Complex Yes

resBW user-defined resolution bandwidth None (-
∞:∞)

Complex Yes

stop stop value (works for nonuniform delta frequency) None [0:∞) Real No

 Examples

Y = ns_pwr_int(S21, nf2, 1MHz)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ns_pwr_ref_bw() (expmeas), snr() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulation
This is the integrated noise power (in dBm) calculated by integrating the noise power over
the entire frequency sweep. The noise power at each frequency point is calculated by
multiplying the noise spectral density by a user-defined resolution bandwidth.
 ns_pwr_ref_bw()

Returns noise power in a reference bandwidth

 Syntax

y = ns_pwr_ref_bw(Sji, nf, resBW)

 Arguments

Measurement Expressions

285

Name Description Default Range Type Required

Sji complex transmission coefficient None (-
∞:∞)

Complex Yes

nf noise figure at the output port (in
dB)

None (-
∞:∞)

Complex Yes

resBW user-defined resolution bandwidth None (-
∞:∞)

Complex Yes

 Examples

Y = ns_pwr_ref_bw(S21, nf2, 1MHz) returns the noise power with respect to the

reference bandwidth.

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

ns_pwr_int() (expmeas), snr() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulation.
This is the noise power calculated by multiplying the noise spectral density at a frequency
point by a user-defined resolution bandwidth. Unlike NsPwrInt, this gives the noise power
(in dBm) at each frequency sweep.

The ns_pwr_ref_bw() function ignores noise from the load. It will always take into account
the noise from the source resistor to be fixed at 290K. You can raise the temperature of
the source resistor (Term), or set Noise to no in the source resistor (Term), or set Noise to
yes in the load resistor. These actions will not change the ns_pwr_ref_bw() results.

 phase_comp()

Returns the phase compression (phase change)

 Syntax

y = phase_comp(Sji)

 Arguments

Name Description Default Range Type Required

Sji power-dependent parameter obtained from large-signal
S-parameters simulation

None (-
∞:∞)

Integer, real,
complex

Yes

 Examples

a = phase_comp(S21[::, 0])

Measurement Expressions

286

 Defined in

$HPEESOF_DIR/expressions/ael/rf_systems_fun.ael

 See Also

gain_comp() (expmeas)

 Notes/Equations

Used in Large-signal S-parameter simulations
This measurement calculates the small-signal minus the large-signal phase, in degrees.
The first power point (assumed to be small) is used to calculate the small-signal phase.
Phase compression (change) is only available for 1-D power sweep.
 pwr_gain()

This measurement is used to determine the transducer power gain (in dB) and is defined
as the ratio of the power delivered to the load, to the power available from the source.
(where power is in dBm).

 Syntax

y = pwr_gain(S, Zs, Zl, Zref)

 Arguments

Name Description Default Range Type Required

S 2 X 2 scattering
matrix

None (-
∞:∞)

Complex Yes

Zs input impedance None (-
∞:∞)

Real, Complex Yes

Zl Output impedance None (-
∞:∞)

Real, Complex Yes

Zref reference impedance 50.0 (-
∞:∞)

Real, Complex Yes

 Examples

pGain = pwr_gain(S,50,75) - Zref defaults to 50 ohms

pGain1 = pwr_gain(S, 50, 75, 75) - Zref = 75 ohms

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

Measurement Expressions

287

stos() (expmeas), volt_gain() (expmeas), volt_gain_max() (expmeas)
 ripple()

This function measures the deviation of x from the average of x

 Syntax

y = ripple(x, fstart, fstop)

 Arguments

Name Description Default Range Type Required

x can be a gain or group delay data over a given frequency
range

None (-
∞:∞)

Real Yes

fstart start frequency None (0:∞) Real No

fstop stop frequency None (0:∞) Real No

 Examples

a = ripple(pwr_gain(S21))

a1 = ripple(pwr_gain(S21), 1GHz, 3GHz)

 Defined in

$HPEESOF_DIR/expressions/ael/elementary_fun.ael

 See Also

dev_lin_gain() (expmeas), dev_lin_phase() (expmeas), diff() (expmeas), mean()
(expmeas), phasedeg() (ael), phaserad() (ael), unwrap() (expmeas)

 Notes/Equations

In order to use this function, the Group Delay option must be enabled in the S-parameter
analysis setup. For more information, refer to " Calculating Group Delay " in your " S-
Parameter Simulation " documentation.
This function supports data up to four dimensions.

Note
The function name ripple() is used for more than one type of expression. For comparison, see the
Simulator Expression ripple() Expression (expsim). Also, for more information on the different expression
types and the contexts in which they are used, see Duplicated Expression Names (expmeas).

 sm_gamma1()

Returns the simultaneous-match input-reflection coefficient.

 Syntax

y = sm_gamma1(S)

Measurement Expressions

288

 Arguments

Name Description Default Range Type Required

S scattering matrix of 2-port network None (-
∞:∞)

Complex Yes

 Examples

a = sm_gamma1(S)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

max_gain() (expmeas), sm_gamma2() (expmeas), stab_fact() (expmeas), stab_meas()
(expmeas)

 Notes/Equations

This complex measurement determines the reflection coefficient that must be presented to
the input (port 1) of the network to achieve simultaneous input and output reflections. If
the Rollett stability factor stab_fact(S) is less than unity for the analyzed circuit, then
sm_gamma1(S) returns 1+j*0.
 sm_gamma2()

Returns the simultaneous-match output-reflection coefficient.

 Syntax

y = sm_gamma2(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of 2-port network None (-
∞:∞)

Complex Yes

 Examples

a = sm_gamma2(S)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

Measurement Expressions

289

 See Also

max_gain() (expmeas), sm_gamma1() (expmeas), stab_fact() (expmeas), stab_meas()
(expmeas)

 Notes/Equations

This complex measurement determines the reflection coefficient that must be presented to
the output (port 2) of the network to achieve simultaneous input and output reflections. If
the Rollett stability factor stab_fact(S) is less than unity for the analyzed circuit, then
sm_gamma2(S) returns1+j*0.
 sm_y1()

This complex measurement determines the admittance that must be presented to the
input (port 1) of the network to achieve simultaneous input and output reflections.

 Syntax

y = sm_y1(S, Z)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

Z port impedance 50.0 (-
∞:∞)

Integer, real or Complex Yes

 Examples

a = sm_y1(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

sm_y2() (expmeas)
 sm_y2()

This complex measurement determines the admittance that must be presented to the
input (port 1) of the network to achieve simultaneous input and output reflections.

 Syntax

y = sm_y2(S, Z)

 Arguments

Measurement Expressions

290

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

Z port impedance 50.0 (-
∞:∞)

Integer, real or Complex Yes

 Examples

a = sm_y2(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

sm_y1() (expmeas)
 sm_z1()

This complex measurement determines the impedance that must be presented to the
input (port 1) of the network to achieve simultaneous input and output reflections.

 Syntax

y = sm_z1(S, Z)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

Z port impedance 50.0 (-
∞:∞)

Integer, real or Complex Yes

 Examples

a = sm_z1(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

sm_z2() (expmeas)
 sm_z2()

This complex measurement determines the impedance that must be presented to the
output (port 2) of the network to achieve simultaneous input and output reflections.

Measurement Expressions

291

 Syntax

y = sm_z2(S, Z)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

Z port impedance 50.0 (-
∞:∞)

Integer, real or Complex Yes

 Examples

a = sm_z2(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

sm_z1() (expmeas)
 s_stab_circle()

Returns source (input) stability circles.

 Syntax

y = s_stab_circle(S, numOfPts)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

numOfPts desired number of points per circle 51 [1:∞) Integer No

 Examples

circleData = s_stab_circle(S, 51) returns the points on the circle(s).

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

l_stab_circle() (expmeas), l_stab_region() (expmeas), s_stab_circle_center_radius()

Measurement Expressions

292

(expmeas), s_stab_region() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
This expression generates source stability circles. The circles are defined by the loci of
source-reflection coefficients where the magnitude of the load-reflection coefficient is 1. A
circle is created for each value of the swept variable(s). This measurement is supported
for 2-port networks only.
To find the center and radius of the stability circle use the following expressions:
cir=s_stab_circle(S,2)
cir_center=sum((cir[0::1]) /2)
cir_radius=abs(cir[1]-cir[0]) /2
Alternately, the function s_stab_circle_center_radius() can be used. Use the function
s_stab_region(S) to determine the region of stability.
 s_stab_circle_center_radius()

Returns the center and radius of the source stability circle

 Syntax

s_cr = s_stab_circle_center_radius(S, Type)

 Arguments

Name Description Default Range Type Required

S 2-port S-Parameters None None Complex Yes

Type Type of parameter to
return

"both" ["both","center","radius"] String No

 Examples

1. s_cr=s_stab_circle_center_radius(S) returns a 1X2 matrix containing center

and radius

sCirc=expand(circle(s_cr(1), real(s_cr(2)), 51)) returns data for the source

stability circle

2. s_radius=s_stab_circle_center_radius(S, "radius") returns the radius

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

l_stab_circle() (expmeas), s_stab_circle() (expmeas), l_stab_circle_center_radius()
(expmeas)

 Notes/Equations

Measurement Expressions

293

Used in Small-signal S-parameter simulations
If the argument Type is not specified, the function returns complex data. Although radius
is of type real, the values are returned as complex. Therefore, when using the returned
radius, use the real part. To obtain the radius as a real number, set Type to radius .
 s_stab_region()

This expression returns a string identifying the region of stability of the corresponding
source stability circle.

 Syntax

y = s_stab_region(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port network. None (-
∞:∞)

Complex Yes

 Examples

region = s_stab_region(S) returns "Outside" or "Inside".

 Defined in

$HPEESOF_DIR/expressions/ael/circle_fun.ael

 See Also

l_stab_circle() (expmeas), l_stab_region() (expmeas), s_stab_region() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations
 stab_fact()

Returns the Rollett stability factor.

 Syntax

k = stab_fact(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of 2-port network None (-
∞:∞)

Complex Yes

 Examples

k = stab_fact(S)

Measurement Expressions

294

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

max_gain() (expmeas), sm_gamma1() (expmeas), sm_gamma2() (expmeas),
stab_meas() (expmeas)

 Notes/Equations

Given a 2 x 2 scattering matrix between the input and measurement ports, this function
calculates the stability factor. The Rollett stability factor is given by:
k = {1- |S11|2- |S22|2 + |S11*S22 - S12*S21|2} / {2*|S12*S21|}

The necessary and sufficient conditions for unconditional stability are that the stability
factor is greater than unity and the stability measure is positive.

 Reference

Guillermo Gonzales, Microwave Transistor Amplifiers, second edition, Prentice-Hall,1.
1997.

 stab_meas()

Returns the stability measure

 Syntax

k = stab_meas(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of 2-port network None (-
∞:∞)

Complex Yes

 Examples

k = stab_meas(S)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

Measurement Expressions

295

 See Also

max_gain() (expmeas), sm_gamma1() (expmeas), sm_gamma2() (expmeas), stab_fact()
(expmeas)

 Notes/Equations

Given a 2 x 2 scattering matrix between the input and measurement ports, this function
calculates the stability measure. The stability measure is given by:
b = 1+ |S11|2 - |S22|2 - |S11*S22 - S12*S21|2

The necessary and sufficient conditions for unconditional stability are that the stability
factor is greater than unity and the stability measure is positive.

 Reference

Guillermo Gonzales, Microwave Transistor Amplifiers, second edition, Prentice-Hall,1.
1997.

 stoabcd()

This measurement transforms the scattering matrix of a 2-port network to a chain (ABCD)
matrix

 Syntax

y = stoabcd(S, zRef)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

a = stoabcd(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

abcdtoh() (expmeas), stoh() (expmeas), stoy() (expmeas)
 stoh()

This measurement transforms the scattering matrix of a 2-port network to a hybrid matrix

Measurement Expressions

296

 Syntax

y = stoh(S, zRef)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

h = stoh(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

htos() (expmeas), stoabcd() (expmeas), stoy() (expmeas)
 stos()

Changes the normalizing impedance of a scattering matrix.

 Syntax

y = stos(S, zRef, zNew, zy)

 Arguments

Name Description Default Range Type Required

S scattering matrix None (-
∞:∞)

Complex Yes

zRef normalizing impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

zNew new normalizing impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

zy directs the conversion through the Z- or Y-
matrix. †

1 (Y-
matrix)

[0:1] Integer No

† f zy=0, the S-to-S conversion is performed through the Z-matrix. If zy=1, the S-to-S
conversion is performed through the Y-matrix

 Examples

Converts the 50 ohm terminated S-parameters to 75 ohm terminated S-parameters

through the Y-matrix:

a = stos(S, 50, 75, 1)

Converts the 75 ohm terminated S-parameters to 50 ohm terminated S-parameters

Measurement Expressions

297

through the Y-matrix:

a = stos(S, 75)

Assume that a two-port S-parameter analysis has been done with port 1

terminated in50 ohms, and port 2 in 75 ohms. The expression below converts the

S-parameters at a 50 ohm impedance termination at both ports:

S50 = stos(S, PortZ, 50, 1)

The above converted S-parameters can than be written to a S2P file using the

function write_snp().

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stoy() (expmeas), stoz() (expmeas)
 stot()

This function transforms the scattering matrix of a 2-port network to a chain scattering
matrix.

 Syntax

t = stot(S)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

Tparams = stot(S)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

ttos() (expmeas)
 stoy()

This measurement transforms a scattering matrix to an admittance matrix.

 Syntax

Measurement Expressions

298

y = stoy(S, zRef)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

y = stoy (S, 50.0)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stoh() (expmeas), stoz() (expmeas), ytos() (expmeas)
 stoz()

This measurement transforms a scattering matrix to an impedance matrix.

 Syntax

z = stoz(S, zRef)

 Arguments

Name Description Default Range Type Required

S scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

z = stoz(S, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stoh() (expmeas), stoy() (expmeas), ztos() (expmeas)
 tdr_step_impedance()

Measurement Expressions

299

Returns time domain Impedance. This function essentially takes
voltage reflection coefficient and calculates impedance versus time.

 Syntax

y = tdr_step_impedance(VSource, Zref, Vincident)

 Arguments

Name Description Default Range Type Required

VSource Step voltage source None (-
∞:∞)

Complex Yes

zRef Reference impedance None [0:∞) real Yes

Vincident time domain pulse TDR waveform None (-
∞:∞)

Complex Yes

 Examples

x = tdr_step_impedance(VSrc, 50, Vin)

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

tdr_sp_gamma() (expmeas), tdr_sp_imped() (expmeas)

 Notes/Equations

This function takes a time domain pulse TDR waveform, and computes the impedance
versus time. The function requires that a step impulse was applied to the DUT.
Use this function instead of tdr_step_imped() (expmeas).
 tdr_sp_gamma()

Returns step response. This function calculates time domain response from the S-
parameter measurement directly. Normalization is taken into account.

 Syntax

y = tdr_sp_gamma(Sii, delay, Tstart, Tstop, NumPts, window)

 Arguments

Name Description Default Range Type Required

Sii Complex reflection
coefficient

None (-
∞:∞)

Complex Yes

delay delay value None [0:∞) real Yes

Tstart Start Time 0 [0:∞) real No

Tstop Stop Time 2 cycles [0:∞) real No

NumPts Number of points 101 [0:∞) real ot string No

Window Windowing to be applied 0 [0:9] † real No

† The window types allowed and their default constants are:

0 = None

Measurement Expressions

300

1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the frequency-to-time transformation with
normal gate window setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13

 Examples

x = tdr_sp_gamma(S(1,1), 0.05ns, -0.2 ns, 3.8 ns, 401, "Hamming")

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

tdr_sp_imped() (expmeas), tdr_step_imped() (expmeas)

 Notes/Equations

This function takes an S-parameter dataset and changes it to a step response. The step
response is normalized and used to calculate reflection coefficient vs. time.
 tdr_sp_imped()

Returns step response. This function calculates time domain response from the S-
parameter measurement directly. Normalization is taken into account.

 Syntax

y = tdr_sp_imped(Sii, delay, zRef, Tstart, Tstop, NumPts, window)

 Arguments

Name Description Default Range Type Required

Sii Complex reflection
coefficient

None (-
∞:∞)

Complex Yes

delay delay value None [0:∞) real Yes

zRef Reference impedance None [0:∞) real Yes

Tstart Start Time 0 [0:∞) real No

Tstop Stop Time 2 cycles [0:∞) real No

NumPts Number of points 101 [0:∞) real ot string No

Window Windowing to be applied 0 [0:7] † real No

† The window types allowed and their default constants are:

Measurement Expressions

301

0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the frequency-to-time transformation with
normal gate window setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13

 Examples

x = tdr_sp_imped(S(1,1), 0.05ns, 50, -0.2 ns, 3.8 ns, 401, "Hamming")

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

tdr_sp_gamma() (expmeas), tdr_step_imped() (expmeas)

 Notes/Equations

This function takes an S-parameter dataset and changes it to a step response. The step
response is normalized and used to calculate reflection coefficient vs. time. This gamma is
then used to calculate impedance versus time.
 tdr_step_imped()

Returns time domain Impedance. This function essentially takes
voltage reflection coefficient and calculates impedance versus time.

 Syntax

y = tdr_step_imped(time_waveform, zRef)

 Arguments

Name Description Default Range Type Required

time_waveform time domain pulse TDR waveform None (-
∞:∞)

Complex Yes

zRef Reference impedance None [0:∞) real Yes

 Examples

x = tdr_step_imped(vout, 50)

Measurement Expressions

302

 Defined in

$HPEESOF_DIR/expressions/ael/DesignGuide_fun.ael

 See Also

tdr_sp_gamma() (expmeas), tdr_sp_imped() (expmeas)

 Notes/Equations

This function takes a time domain pulse TDR waveform, and computes the1.
impedance versus time. The function also assumes that a step impulse was applied to
the DUT, since it normalizes the impedance data to the last time point.
Please use tdr_step_impedance() (expmeas) function instead of this function.2.

 ttos()

This function transforms the chain scattering matrix of a 2-port network to a scattering
matrix.

 Syntax

sp = ttos(T)

 Arguments

Name Description Default Range Type Required

T scattering matrix of a 2-port
network

None (-
∞:∞)

Complex Yes

 Examples

sp = ttos(t)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stot() (expmeas)
 unilateral_figure()

Returns the unilateral figure as a real number

 Syntax

U = uniltaeral_figure(SParam)

Measurement Expressions

303

 Arguments

Name Description Default Range Type Required

SParam 2-Port S-Parameters None None Complex Yes

 Examples

sMat={{polar(0.55,-50), polar(0.02,10)}, {polar(3.82,80),polar(0.15,-20)}}
U=uniltaeral_figure(sMat) returns 0.009

U_plus=10*log(1/(1-U)**2) returns 0.081

U_minus=10*log(1/(1+U)**2) returns -0.08

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 Notes/Equations

Used in Small-signal S-parameter simulations.
This function is used to calculate the Unilateral Figure of Merit, which determines whether
the simplification can be made in neglecting the effect of S12 (unilateral behavior of

device). It is calculated as:

The error limit on unilateral figure or merit, U is:

where:
GT is Transducer Gain
GTU is Unilateral Transducer Gain
This function can be used only with 2-Port S-parameters and works only on 1-dimensional
or single swept parameter data.
 unwrap()

This measurement unwraps a phase by changing an absolute jump greater than jump to
its 2*jump complement

 Syntax

y = unwrap(phase, jump)

 Arguments

Measurement Expressions

304

Name Description Default Range Type Required

phase swept real
variable

None (-
∞:∞)

Real Yes

jump absolute jump 180.0 (-
∞:∞)

Integer, Real No

 Examples

a = unwrap(phase(S21))

a = unwrap(phaserad(S21), pi)

 Defined in

Built-in

 See Also

dev_lin_phase() (expmeas), diff() (expmeas), phase() (ael), phasedeg() (ael), phaserad()
(ael), ripple() (expmeas)

 Notes/Equations

The unwrap function requires that the difference between two succesive data should be
less than or greater than 2*jump. Otherwise no jump is made for that phase and the
original data is maintained. And, if the number of phase data points is one, no phase is
unwrapped and the original data is maintained.
 v_dc()

Returns the voltage difference.

 Syntax

y = v_dc(vPlus, vMinus)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive output terminal None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative output terminal None (-
∞:∞)

Real, Complex Yes

 Examples

y = v_dc(vp, vm)

 Defined In

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

Measurement Expressions

305

 volt_gain()

Returns the voltage gain

 Syntax

y= volt_gain(S, Zs, Zl, Zref)

 Arguments

Name Description Default Range Type Required

S 2 2 scattering matrix measured with equal terminations of
Zref

None None Complex Yes

Zs input impedance None (-
∞:∞)

Real,
Complex

Yes

Zl Output impedance None (-
∞:∞)

Real,
Complex

Yes

Zref reference impedance 50.0 (-
∞:∞)

Real,
Complex

Yes

 Examples

a = volt_gain(S, 50, 75)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pwr_gain() (expmeas), volt_gain_max() (expmeas)

 Notes/Equations

This function calculates the ratio of the voltage across the load impedance to the voltage
applied at the input port of the network. The network-parameter transformation function
stos() can be used to change the normalizing impedance of the scattering matrix.

Signal Flow Diagram used for volt_gain Calculation illustrates the volt_gain measurement.

Measurement Expressions

306

 Signal Flow Diagram used for volt_gain Calculation

In the S-parameter simulation setup, the source and load impedances must be1.
identical.
For a case of unequal source and load impedances, S-parameter analysis should be2.
performed with identical source and load impedances. Voltage gain can then be
computed with the actual source and load impedances as the second and third
arguments.
For example, compute voltage gain with Zs=100 and Zl=50. Perform an S-parameter
analysis with both the Zs=Zl=50 ohms. The voltage gain is computed as follows:
volt_gain(S, 100, 50, 50)
This expression gives the voltage gain when the source impedance is 100 ohms and
the load impedance is 50 ohms. The fourth argument in volt_gain is the reference
impedance, which is the value of the Z parameter of the Term components used in
the S-parameter analysis.

 volt_gain_max()

This measurement determines the ratio of the voltage across the load to the voltage
available from the source at maximum power transfer.

 Syntax

y = volt_gain_max(S, Zs, Zl, Zref)

 Arguments

Name Description Default Range Type Required

S 2 X 2 scattering
matrix

None (-
∞:∞)

Complex Yes

Zs input impedance None (-
∞:∞)

Real, Complex Yes

Zl Output impedance None (-
∞:∞)

Real, Complex Yes

Zref reference impedance 50.0 (-
∞:∞)

Real, Complex Yes

 Examples

vGain = volt_gain_max(S,50,75) - Zref defaults to 50 ohms

vGain1 = volt_gain(S, 50, 75, 75) - Zref = 75 ohms

Measurement Expressions

307

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

pwr_gain() (expmeas), volt_gain() (expmeas)

 Note/Equations

The network-parameter transformation function stos() can be used to change the
normalizing impedance of the scattering matrix.
 vswr()

Given a complex reflection coefficient, this measurement returns the voltage standing
wave ratio.

 Syntax

y = vswr(Sii)

 Arguments

Name Description Default Range Type Required

Sii complex reflection
coefficient

None (-
∞:∞)

Complex Yes

 Examples

y = vswr(S11)

 Defined in

$HPEESOF_DIR/expressions/ael/rf_system_fun.ael

 See Also

yin() (expmeas), zin() (expmeas)
 write_snp()

Write S-Parameters in Touchstone SnP file format. Returns True or False.

 Syntax

y = write_snp(FileName, S, Comment, FreqUnit, DataFormat, Zref, Znorm, ZorY,
Precision, Delimiter)

Measurement Expressions

308

 Arguments

Name Description Default Range Type Required

FileName Name or full-path of the S-
Parameter file.

None None String Yes

S S-parameter matrix variable None None Real,
Complex

Yes

Comment Text that is to be written at the top
of file.

"" None String No

FreqUnit Frequency Unit GHz "Hz", "KHz", "MHz",
"GHz", "THz"

String No

DataFormat Format of S-Parameter that is to be
output

"MA" "MA", "DB", "RI" † String No

Zref Reference impedance (scalar or
vector)

50 (0:∞) Real No

Znorm Normalizing impedance (a scalar
value)

50 (0:∞) Real No

ZorY Directs the conversion through Z or
Y transform ††

1 (Y-
matrix)

[0:1] Integer No

Precision precision of the data 6 [1:64] Integer No

Delimiter Delimiter that separates the data "\t" None String No

† "MA" = magnitude-phase, "DB" = dB-phase, "RI" = real-imaginary
†† If ZorY=0, the S-to-S conversion is performed through the Z-matrix. If ZorY=1, the S-
to-S conversion is performed through the Y-matrix

 Examples

We assume that a S-Parameter Analysis has been performed.

write_snp("spar_ts.s2p", S, "S-par simulation data", "GHz", "MA", 50)

writes the S-Parameters to the file spar_ts.s2p in mag-phase format

write_snp("spar_ts_1.s2p", S, "S-par simulation data")

writes the S-Parameters to the file spar_ts_1.s2p in default "GHz", mag-phase

format and referenece impedance of 50.0.

We assume that a 2-port S-Parameter Analysis has been performed with source

terminated in 60 ohms and load terminated in 70 ohms:

write_snp("spar_norm_ts.s2p", S, "S-par simulation data", "GHz", "MA", PortZ,

50, 1,9," ")

writes the S-Parameters to the file spar_norm_ts.s2p in "GHz", mag-phase

format, with 9 digit precision and delimited by " " and normalized impedance of

50.0.

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stos() (expmeas)

Measurement Expressions

309

 Notes/Equations

The function supports only 1-dimensional S-parameter data. S-parameters can be from 1
to 99 ports. The S-parameters to be written can be normalized by a different impedance
through the arguments Znorm and ZorY . If the argument Znorm is not specified, then the
S-parameters are normalized to 50 ohms.
When using this function from the schematic page, the output file will be written in the
workspace data directory. When used from the Data Display, the file will be written to the
workspace directory.
 yin()

Given a reflection coefficient and the reference impedance, this measurement returns the
input admittance looking into the measurement ports.

 Syntax

y = yin(Sii, Z)

 Arguments

Name Description Default Range Type Required

Sii complex reflection
coefficient

None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

yIN = yin(S11, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

vswr() (expmeas), zin() (expmeas)
 yopt()

Returns optimum admittance for noise match

 Syntax

y = yopt(gammaOpt, zRef)

 Arguments

Measurement Expressions

310

Name Description Default Range Type Required

gammaOpt optimum reflection coefficient None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Real, Complex No

 Examples

a = yopt(Sopt, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

zopt() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations
This complex measurement produces the optimum source admittance for noise matching.
gammaOpt is the optimum reflection coefficient that must be presented at the input of the
network to realize the minimum noise figure (NFmin).
 ytoabcd()

This measurement transforms an admittance matrix of a 2-port network into a hybrid
matrix.

 Syntax

a = ytoabcd(Y)

 Arguments

Name Description Default Range Type Required

Y 2-port admittance matrix None (-
∞:∞)

Complex Yes

 Examples

a = ytoabcd(Y)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

Measurement Expressions

311

 See Also

abcdtoh() (expmeas), htoabcd() (expmeas)
 ytoh()

This measurement transforms an admittance matrix of a 2-port network into a hybrid
matrix.

 Syntax

h = ytoh(Y)

 Arguments

Name Description Default Range Type Required

Y 2-port admittance matrix None (-
∞:∞)

Complex Yes

 Examples

h = ytoh(Y)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

htoy() (expmeas), ytoabcd() (expmeas)
 ytos()

This measurement transforms an admittance matrix into a scattering matrix.

 Syntax

z = ytos(Y, zRef)

 Arguments

Name Description Default Range Type Required

Y admittance matrix None (-
∞:∞)

Complex Yes

zRef reference
impedance

50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

s = ytos(Y, 50.0)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

Measurement Expressions

312

 See Also

stoy() (expmeas), ytoz() (expmeas)
 ytoz()

This measurement transforms an admittance matrix to an impedance matrix.

 Syntax

Z = ytoz(Y)

 Arguments

Name Description Default Range Type Required

Y admittance
matrix

None (-
∞:∞)

Complex Yes

 Examples

Z = ytoz(Y)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

ytos() (expmeas), ztoy() (expmeas)
 zin()

Given a reflection coefficient and the reference impedance, this measurement returns the
input impedance looking into the measurement ports.

 Syntax

z = zin(Sii, Z)

 Arguments

Name Description Default Range Type Required

Sii complex reflection coefficient. None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

zIN = zin(S11, 50.0)

Measurement Expressions

313

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

vswr() (expmeas), yin() (expmeas)
 zopt()

Returns optimum impedance for noise match

 Syntax

y = zopt(gammaOpt, zRef)

 Arguments

Name Description Default Range Type Required

gammaOpt optimum reflection coefficient None (-
∞:∞)

Complex Yes

zRef reference impedance 50.0 (-
∞:∞)

Real, Complex No

 Examples

a = zopt(Sopt, 50)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

yopt() (expmeas)

 Notes/Equations

Used in Small-signal S-parameter simulations.
This complex measurement produces the optimum source impedance for noise matching.
gammaOpt is the optimum reflection coefficient that must be presented at the input of the
network to realize the minimum noise figure (NFmin).
 ztoabcd()

This measurement transforms an impedance matrix of a 2-port network into a chain
(ABCD) matrix.

 Syntax

Measurement Expressions

314

a = ztoabcd(Z)

 Arguments

Name Description Default Range Type Required

Z 2-port impedance
matrix

None (-
∞:∞)

Complex Yes

 Examples

a = ztoabcd(Z)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

abcdtoz() (expmeas), ytoabcd() (expmeas), ztoh() (expmeas)
 ztoh()

This measurement transforms an impedance matrix of a 2-port network into a hybrid
matrix.

 Syntax

h = ztoh(Z)

 Arguments

Name Description Default Range Type Required

Z 2-port impedance
matrix

None (-
∞:∞)

Complex Yes

 Examples

h = ztoh(Z)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

htoz() (expmeas), ytoh() (expmeas), ztoabcd() (expmeas)
 ztos()

This measurement transforms an impedance matrix to a scattering matrix.

Measurement Expressions

315

 Syntax

sp = ztos(Z, zRef)

 Arguments

Name Description Default Range Type Required

Z impedance matrix None (-
∞:∞)

Complex Yes

zRef reference
impedance

50.0 (-
∞:∞)

Integer, real or
complex

No

 Examples

s = ztos(Z, 50.0)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stoz() (expmeas), ytoz() (expmeas), ztoy() (expmeas)
 ztoy()

This measurement transforms an impedance matrix to an admittance matrix.

 Syntax

y = ztoy(Z)

 Arguments

Name Description Default Range Type Required

Z impedance
matrix

None (-
∞:∞)

Complex Yes

 Examples

y = ztoy(Z)

 Defined in

$HPEESOF_DIR/expressions/ael/network_fun.ael

 See Also

stoz() (expmeas), ytos() (expmeas), ztoy() (expmeas)

Measurement Expressions

316

 Statistical Analysis Functions
This section describes the statistical analysis functions in detail. The functions are listed in
alphabetical order.

cdf() (expmeas)
cross corr() (expmeas)
fun 2d outer() (expmeas)
histogram() (expmeas)
histogram multiDim() (expmeas)
histogram sens() (expmeas)
histogram stat() (expmeas)
interpolate swept data() (expmeas)
interpolate_swept_data_Xdb()
lognorm dist1D() (expmeas)
lognorm dist inv1D() (expmeas)
mean() (expmeas)
mean outer() (expmeas)
median() (expmeas)
moving average() (expmeas)
norm dist1D() (expmeas)
norm dist inv1D() (expmeas)
norms dist1D() (expmeas)
norms dist inv1D() (expmeas)
pdf() (expmeas)
stddev() (expmeas)
stddev outer() (expmeas)
uniform dist1D() (expmeas)
uniform dist inv1D() (expmeas)
yield sens() (expmeas)

 cdf()

Returns the cumulative distribution function (CDF)

 Syntax

y = cdf(data, numBins, minBin, maxBin)

 Arguments

Name Description Default Range Type Required

data the signal None (-
∞:∞)

Real Yes

numBins number of subintervals or bins used to
measure CDF

log(numOfPts)/log(2.0) [1:∞) Real No

minBin beginning of the evaluation of the CDF minimum value of the
data

(-
∞:∞)

Real No

maxBin end of the evaluation of the CDF maximum value of the
data

(-
∞:∞)

Real No

 Examples

y = cdf(data)

y = cdf(data, 20)

Measurement Expressions

317

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

histogram() (expmeas), pdf() (expmeas), yield_sens() (expmeas)

 Notes/Equations

This function measures the cumulative distribution function of a signal. This function can
only be used by entering an equation (Eqn) in the Data Display window.
 cross_corr()

Returns the cross-correlation

 Syntax

y = cross_corr(v1, v2)

 Arguments

Name Description Default Range Type Required

v1 one-dimensional data None (-
∞:∞)

Real Yes

v2 one-dimensional data None (-
∞:∞)

Real Yes

 Examples

v1 = qpsk..videal[1]

v2 = qpsk..vout[1]

x_corr_v1v2 = cross_corr(v1, v2)

auto_corr_v1 = cross_corr(v1, v1)

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael
 fun_2d_outer()

Applies a function to the outer dimension of two-dimensional data

 Syntax

y = fun_2d_outer(data, fun)

 Arguments

Measurement Expressions

318

Name Description Default Range Type Required

data two-dimensional data None (-
∞:∞)

Integer, Real,
Complex

Yes

fun name of function (usually mean, max, or min) that will be
applied to the outer dimension of the data

None None string Yes

 Examples

y = fun_2d_outer(data, min)

 Defined in

$HPEESOF_DIR/expressions/ael/statistcal_fun.ael

 See Also

max_outer() (expmeas), mean_outer() (expmeas), min_outer() (expmeas)

 Notes/Equations

Used in max_outer(), mean_outer(), min_outer() functions.
Functions such as mean, max, and min operate on the inner dimension of two-dimensional
data. The function fun_2d_outer enables these functions to be applied to the outer
dimension. As an example, assume that a Monte Carlo simulation of an amplifier was run,
with 151 random sets of parameter values, and that for each set the S-parameters were
simulated over 26 different frequency points. S21 becomes a [151 Monte Carlo iteration X
26 frequency] matrix, with the inner dimension being frequency, and the outer dimension
being Monte Carlo index. Now, assume that it is desired to know the mean value of the S-
parameters at each frequency. Inserting an equation mean(S21) computes the mean
value of S21 at each Monte Carlo iteration. If S21 is simulated from 1 to 26 GHz, it
computes the mean value over this frequency range, which usually is not very useful. The
function fun_2d_outer allows the mean to be computed over each element in the outer
dimension.
 histogram()

Generates a histogram representation. This function creates a histogram that represents
data

 Syntax

y = histogram(data, numBins, minBin, maxBin)

 Arguments

Measurement Expressions

319

Name Description Default Range Type Required

data signal(must be one-dimensional) None (-
∞:∞)

Integer,
Real

Yes

numBins number of subintervals or bins used to
measure the histogram.

log(numOfPts)/log(2.0) [1:∞) Integer No

minBin beginning of the evaluation of the
histogram

minimum value of the
data

(-
∞:∞)

Real No

maxBin end of the evaluation of the histogram maximum value of the
data

(-
∞:∞)

Real No

 Examples

y = histogram(data)

y = histogram(data, 20)

If you have performed a parameter sweep such that the first argument (data) in

the histogram function is a function of two independent variables, then you

must reduce the dimensionality of data before using it in the histogram

function. For example, if you run a Monte Carlo simulation on the S-parameters

of a circuit, S21 would be a function of both the Monte Carlo index and the

frequency (assuming you have swept frequency).

So, you could plot the histogram of S21 at the 100th frequency in the sweep by

using:

y = histogram(dB(S21[::,99]))

See also $HPEESOF_DIR/examples/Tutorial/yldex1_wrk

(see measurement_hist.dds and worstcase_measurement_hist.dds)

 Defined in

Built in

 See Also

cdf() (expmeas), pdf() (expmeas), yield_sens() (expmeas), histogram_multiDim()
(expmeas), histogram_stat() (expmeas)

 Notes/Equations

This function can only be used by entering an equation (Eqn) in the Data Display window.
Use the histogram_multiDim() function for multi-dimensional data.
 histogram_multiDim()

Collapses the multi-dimensional data down to one-dimensional data and applies the
histogram to the one-dimensional data.

 Syntax

y = histogram_multiDim(data, normalized, numBins, minBin, maxBin)

 Arguments

Measurement Expressions

320

Name Description Default Range Type Required

data the signal None (-∞:∞) Real Yes

normalized sets normalization of data † no "no",
"yes"

String No

numBins number of subintervals or bins used to
measure CDF

log(numOfPts)/log(2.0) [1:∞) Real No

minBin beginning of the evaluation of the CDF minimum value of the
data

(-∞:∞) Real No

maxBin end of the evaluation of the CDF maximum value of the
data

(-∞:∞) Real No

† When normalized is set to "yes", the histogram is generated with percent on the Y-axis
instead of the number of outcomes.

 Examples

Given monte carlo analysis results for the S12. It is two-dimensional data: the

outer sweep is mcTrial; the inner sweep is the frequency from 100 MHz to 500

MHz.

Histogram_multiDim_S12 = histogram_multiDim(S12)

See also $HPEESOF_DIR/examples/Tutorial/yldex1_wrk

(see measurement_hist.dds and worstcase_measurement_hist.dds)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

collapse() (expmeas), histogram() (expmeas)
 histogram_sens()

Produces the yield sensitivity histogram displaying the sensitivity of a measurement
statistical response to a selected statistical variable. The function is mainly applied to the
statistical analysis (Monte Carlo/Yield/YieldOpt) results.

 Syntax

y = histogram_sens(data, sensitivityVar, goalMin, goalMax, innermostIndepLow,
innermostIndepHigh, numBins)

 Arguments

Measurement Expressions

321

Name Description Default Range Type Required

data statistical response None (-
∞:∞)

Real Yes

sensitivityVar selected statistical variable None None String Yes

goalMin specifies the performance range † None (-
∞:∞)

Real No

goalMax specifies the performance range † None (-
∞:∞)

Real No

innermostIndepLow specifies the low value of the subrange
of data with the inner most sweep
variable

None (-
∞:∞)

Real Yes

innermostIndepHigh specifies the high value of the
subrange of data with the inner most
sweep variable

None (-
∞:∞)

Real Yes

numBins number of sub-intervals or bins used
to measure the histogram.

log(numOfPts)/log(2.0) (1:∞) Real No

† The yield is 1 inside the range, and the yield is zero outside the range. Note that while
goalMin and goalMax are optional arguments, at least one of them must be specified.

 Examples

Given monte carlo analysis results for the S11. It is two-dimensional data: the

outer sweep is mcTrial; the inner sweep is the frequency from 100 MHz to 500

MHz.

The design wants the maximum of db(S11) is -18.0dB in the frequency range of

200 MHz to 400 MHz. The yield sensitivity of such performance to statistical

variable "C1v" can be calculated as:

Histogram_sens_S11 = histogram_sens(dB(S11),C1v,,-18.0,200MHz,400MHz)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

histogram() (expmeas), histogram_multiDim() (expmeas), histogram_stat() (expmeas),
build_subrange() (expmeas), yield_sens() (expmeas)
 histogram_stat()

Reduces the histogram of a subrange of the multi-dimension data. It first calls
build_subrange() to build the subrange of a mulit-dimension data, then calls
histogram_multiDim() to produce the histogram.

 Syntax

y = histogram_stat(data, normalized, innermostIndepLow, innermostIndepHigh, numBins,
minBin, maxBin)

 Arguments

Measurement Expressions

322

Name Description Default Range Type Required

data statistical data to be analyzed None (-∞:∞) Real Yes

normalized sets normalization of data † no "no",
"yes"

String No

innermostIndepLow specifies the low value of the
subrange of data with the inner
most sweep variable

None (-∞:∞) Real Yes

innermostIndepHigh specifies the high value of the
subrange of data with the inner
most sweep variable

None (-∞:∞) Real Yes

numBins number of subintervals or bins used
to measure histogram

log(numOfPts)/log(2.0) [1:∞) Real No

minBin beginning of the evaluation of the
histogram

minimum value of the
data

(-∞:∞) Real No

maxBin end of the evaluation of the
histogram

maximum value of the
data

(-∞:∞) Real No

† When normalized is set to "yes", the histogram is generated with percent on the Y-axis
instead of the number of outcomes.

 Examples

Given monte carlo analysis results for the S12. It is two-dimensional data: the

outer sweep is mcTrial; the inner sweep is the frequency from 100 MHz to 500

MHz.

Histogram_stat_S12 = histogram_stat(S12,,200MHz,400MHz)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

histogram() (expmeas), histogram_multiDim() (expmeas), build_subrange() (expmeas)
 interpolate_swept_data()

Returns a function or trace's y-axis value or values corresponding to a specific x-axis
value

 Syntax

Interpolated_Pout=interpolate_swept_data(original_data_Y_vs_X, desired_X,
interpStepSize, interpType)

 Arguments

Measurement Expressions

323

Name Description Default Range Type Required

original_data_Y_vs_X one-, two-, or three-dimensional
data

None (-∞:∞) Real Yes

desired_X X-axis search value, a single real or
integer number

None (-∞:∞) Real or
Integer

Yes

interpStepSize interpolation step size, a single real
or integer number

0.05 (-∞:∞) Real or
Integer

No

interpType type of interpolation None "linear", "spline",
or "cubic"

String Yes

 Examples

Pout=dBm(Vload_fundHB)

Pin=indep(Vload_fundHB)

Gain_HB=Pout-Pin

Gain_vs_Pout=vs(Gain,Pout)

Search_Value=30

interpStepSize=0.05

interpType="spline"

Gain_at_Specified_Pout=interpolate_swept_data(Gain_vs_Pout, Search_Value,

interpStepSize, interpType)

 Notes/Equations

This function would be useful for the following application. You have run a swept input
power simulation of an amplifier.
You plot a trace that is gain versus output power or gain compression versus output
power. Use this function to find the gain or gain compression at a particular output power.
This function is applicable even if you have run a Monte Carlo analysis or swept some
parameter. It enables you to see the distribution of the gain or gain compression when the
amplifier is delivering a
particular output power.
 lognorm_dist_1D()

Returns a lognormal distribution: either its probability density function (pdf), or
cumulative distribution function (cdf).

 Syntax

y = lognorm_dist1D(data, m, s, absS, is_cpf)

 Arguments

Name Description Default Range Type Required

data number or a one-dimensional data None (-∞:∞) Real Yes

m mean for the lognormal distribution None (-∞:∞) Integer, Real Yes

s standard deviation for the lognormal
distribution

None (-∞:∞) Integer, Real Yes

absS specifies absolute or relative standard deviation 1 [0:∞) † Integer No

is_cpf specifies cdf or pdf og lognormal distribution 0 [0:∞) †
†

Integer No

† When absS is not equal to "0", s is the absolute standard deviation; otherwise, s is the
relative standard deviation
† † When is_cdf is not equal to "0", the function returns the cdf of the lognormal

Measurement Expressions

324

distribution. Otherwise, it returns the pdf of the lognormal distribution.

 Examples

X = 0.5

X_pdf= lognorm_dist1D(X, 2.0,0.2, 1, 0)

X_cdf = lognorm_dist1D(X,2.0,0.1, 0, 1)

XX=[-3.9::0.1::3.9]

XX_pdf = lognorm_dist1D(XX,2.0, 0.2,1,0)

XX_cdf = lognorm_dist1D(XX,2.0,0.2,0,1)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael
 lognorm_dist_inv1D()

Returns the inverse of the cumulative distribution function (cdf) for a lognormal
distribution

 Syntax

y = lognorm_dist_inv1D(data, m, s, absS)

 Arguments

Name Description Default Range Type Required

data real number representing the cumulative
probability

None [0:1] Real Yes

m mean for the lognormal distribution None (-∞:∞) Integer, Real Yes

s standard deviation for the lognormal distribution None (-∞:∞) Integer, Real Yes

absS specifies absolute or relative standard deviation 1 [0:∞)
†

Integer No

† absS is not equal to "0", s is the absolute standard deviation; otherwise, s is the relative
standard deviation

 Examples

X_cpf = 0.5

X= lognorm_dist_inv1D(X_cpf, 2.0, 0.2, 1)

XX_cpf=[0.0::0.01::1.0]

XX= lognorm_dist_inv1D(XX_cpf, 2.0, 0.2, 1)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael
 mean()

Returns the mean

 Syntax

Measurement Expressions

325

y = mean(x)

 Arguments

Name Description Default Range Type Required

x data to find mean None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

a = mean([1, 2, 3]) returns 2

 Defined in

Built in

 See Also

 cum_prod() (expmeas), cum_sum() (expmeas), max() (expmeas), min() (expmeas),
prod() (expmeas), sum() (expmeas)
 mean_outer()

Computes the mean across the outer dimension of two-dimensional data

 Syntax

y = mean_outer(data)

 Arguments

Name Description Default Range Type Required

data 2-dimensional data to find mean None (-
∞:∞)

Integer, Real, Complex Yes

 Examples

a = mean_outer(data)

 Defined in

$HPEESOF_DIR/expressions/ael/statistcal_fun.ael

 See Also

fun_2d_outer() (expmeas), max_outer() (expmeas), min_outer() (expmeas)

 Notes/Equations

Measurement Expressions

326

The mean function operates on the inner dimension of two-dimensional data. The
mean_outer function just calls the fun_2d_outer function, with mean being the applied
operation. As an example, assume that a Monte Carlo simulation of an amplifier was run,
with 151 random sets of parameter values, and that for each set the S-parameters were
simulated over 26 different frequency points. S21 becomes a [151 Monte Carlo iteration X
26 frequency] matrix, with the inner dimension being frequency, and the outer dimension
being Monte Carlo index. Now, assume that it is desired to know the mean value of the S-
parameters at each frequency. Inserting an equation mean(S21) computes the mean
value of S21 at each Monte Carlo iteration. If S21 is simulated from 1 to 26 GHz, it
computes the mean value over this frequency range, which usually is not very useful.
Inserting an equation mean_outer(S21) computes the mean value of S21 at each Monte
Carlo frequency.
 median()

Returns the median

 Syntax

y = median(x)

 Arguments

Name Description Default Range Type Required

data data to find the
median

None (-
∞:∞)

Real Yes

 Examples

a = median([1, 2, 3, 4]) returns 2.5

 Defined in

$HPEESOF_DIR/expressions/ael/statistcal_fun.ael

 See Also

mean() (expmeas), sort() (expmeas)

 Notes/Equations

This function can only be used by entering an equation (Eqn) in the Data Display window.
 moving_average()

Returns the moving_average of a sequence of data

 Syntax

y = moving_average(Data, NumPoints)

 Arguments

Measurement Expressions

327

Name Description Default Range Type Required

Data one or multi-dimensional sequence of
numbers

None (-∞:∞) Integer, real or
complex

Yes

NumPoints Number of points to be averaged together None [1:∞)
†

Integer Yes

† NumPoints must be an odd number. If even, the value is
increased to the next odd number. If greater or equal to the number of data
points, the value is set to number of data points - 1 for even number of data
points. For odd number of data points, NumPoints is set to number of data points.

 Examples

a = moving_average([1, 2, 3, 7, 5, 6, 10], 3) returns [1, 2, 4, 5, 6, 7, 10]

 Defined in

Built in

 Notes/Equations

The first value of the smoothed sequence is the same as the original data. The second
value is the average of the first three. The third value is the average of data elements 2,
3, and 4, etc. If NumPoints were set to 7, for example, then the first value of the
smoothed sequence would be the same as the original data. The second value would be
the average of the first three original data points. The third value would be the average of
the first five data points, and the fourth value would be the average of the first seven data
points. Subsequent values in the smoothed array would be the average of the seven
closest neighbors. The last points in the smoothed sequence are computed in a way
similar to the first few points. The last point is just the last point in the original sequence.
The second from last point is the average of the last three points in the original sequence.
The third from the last point is the average of the last five points in the original sequence,
etc.
 norm_dist_1D()

Returns a normal distribution: either its probability density function (pdf), or cumulative
distribution function (cdf)

 Syntax

y = norm_dist1D(data, m, s, absS, is_cdf)

 Arguments

Measurement Expressions

328

Name Description Default Range Type Required

data number or a one-dimensional data None (-∞:∞) Real Yes

m mean for the normal distribution None (-∞:∞) Integer, Real Yes

s standard deviation for the normal distribution None (-∞:∞) Integer, Real Yes

absS specifies absolute or relative standard
deviation

1 [0:∞) † Integer No

is_cdf specifies cdf or pdf of normal distribution 0 [0:∞) †
†

Integer No

† When absS is not equal to "0", s is the absolute standard deviation; otherwise, s is the
relative standard deviation
† † When is_cdf is not equal to "0", the function returns the cdf of the normal distribution.
Otherwise, it returns the pdf of the normal distribution.

 Examples

X = 0.5

X_pdf= norm_dist1D(X, 0, 1, 1, 0)

X_cdf = norm_dist1D(X,0, 1, 1, 1)

XX=[-3.9::0.1::3.9]

XX_pdf = norm_dist1D(XX,5.0, 0.5,1,0)

XX_cdf = norm_dist1D(XX,5.0,0.1,0,1)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

norm_dist_inv1D() (expmeas), norms_dist_inv1D() (expmeas), norms_dist1D()
(expmeas), lognorm_dist_inv1D() (expmeas), lognorm_dist1D() (expmeas),
uniform_dist_inv1D() (expmeas), uniform_dist1D() (expmeas)
 norm_dist_inv1D()

Returns the inverse of the cumulative distribution function (cdf) for a normal distribution

 Syntax

y = norm_dist_inv1D(data, m, s, absS)

 Arguments

Name Description Default Range Type Required

data represents the cumulative probability None [0:1] Real Yes

m mean for the normal distribution None (-∞:∞) Integer, Real Yes

s standard deviation for the normal distribution None (-∞:∞) Integer, Real Yes

absS specifies absolute or relative standard
deviation

1 [0:∞)
†

Integer No

† When absS is not equal to "0", s is the absolute standard deviation; otherwise, s is the

Measurement Expressions

329

relative standard deviation

 Examples

X_cpf = 0.5

X= norm_dist_inv1D(X_cpf, 0, 1, 1) will be equal to 0.0

XX_cpf=[0.0::0.01::1.0]

XX= norm_dist_inv1D(XX_cpf, 5.0, 0.5, 1)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

norm_dist1D() (expmeas), norms_dist_inv1D() (expmeas), norms_dist1D() (expmeas),
lognorm_dist_inv1D() (expmeas), lognorm_dist1D() (expmeas), uniform_dist_inv1D()
(expmeas), uniform_dist1D() (expmeas)
 norms_dist1D()

Returns the standard normal distribution: either its probability density function (pdf), or
cumulative distribution function (cdf).

 Syntax

y = norms_dist1D(data, is_cdf)

 Arguments

Name Description Default Range Type Required

data number or a one-dimensional data None (-∞:∞) Real Yes

is_cdf specifies cdf or pdf of standard normal distribution 0 [0:∞)
†

Integer No

† When is_cdf is not equal to "0", the function returns the cdf of the standard normal
distribution. Otherwise, it returns the pdf of the standard normal distribution.

 Examples

X = 0.5

X_pdf= norms_dist1D(X, 0)

X_cdf = norms_dist1D(X,1)

XX=[-3.9::0.1::3.9]

XX_pdf = norms_dist1D(XX,0)

XX_cdf = norms_dist1D(XX,1)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

Measurement Expressions

330

 See Also

norm_dist1D() (expmeas), norm_dist_inv1D() (expmeas), norms_dist_inv1D()
(expmeas), lognorm_dist_inv1D() (expmeas), lognorm_dist1D() (expmeas),
uniform_dist_inv1D() (expmeas), uniform_dist1D() (expmeas)
 norms_dist_inv1D()

Returns the inverse of the cumulative distribution function (cdf) for a standard normal
distribution

 Syntax

y = norms_dist_inv1D(data)

 Arguments

Name Description Default Range Type Required

data number represents the cumulative probability None [0:1] Integer, Real Yes

 Examples

X_cpf = 0.5

X= norms_dist_inv1D(X_cpf) will be equal to 0.0

XX_cpf=[0.0::0.01::1.0]

XX= norms_dist_inv1D(XX_cpf)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

norm_dist1D() (expmeas), norm_dist_inv1D() (expmeas), norms_dist1D() (expmeas),
lognorm_dist_inv1D() (expmeas), lognorm_dist1D() (expmeas), uniform_dist_inv1D()
(expmeas), uniform_dist1D() (expmeas)
 pdf()

Returns a probability density function (PDF)

 Syntax

y = pdf(data, numBins, minBin, maxBin)

 Arguments

Measurement Expressions

331

Name Description Default Range Type Required

data the signal None (-
∞:∞)

Real Yes

numBins number of subintervals or bins used to
measure PDF

log(numOfPts)/log(2.0) [1:∞) Real No

minBin beginning of the evaluation of the PDF minimum value of the
data

(-
∞:∞)

Real No

maxBin end of the evaluation of the PDF maximum value of the
data

(-
∞:∞)

Real No

 Examples

y = pdf(data)

y = pdf(data, 20)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

cdf() (expmeas), histogram() (expmeas), yield_sens() (expmeas)

 Notes/Equations

This function measures the probability density function of a signal. This function can only
be used by entering an equation (Eqn) in the Data Display window.
 stddev()

This function calculates the standard deviation of the data

 Syntax

y = stddev(data, flag)

 Arguments

Name Description Default Range Type Required

data data to find the stddev None (-
∞:∞)

Real Yes

flag indicates how stddev normalizes 0 [0:1] † Integer No

† When flag equals 0, the stddev normalizes by N-1, where N is the length of the data
sequence. Otherwise, stddev normalizes by N.

 Examples

a = stddev(data)

a = stddev(data, 1)

Measurement Expressions

332

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

mean() (expmeas)

 Notes/Equations

This function can only be used by entering an equation (Eqn) in the Data Display window.
 stddev_outer()

Computes the stddev across the outer dimension of two-dimensional data

 Syntax

y = stddev_outer(x, flag)

 Arguments

Name Description Default Range Type Required

data data to find the stddev None (-
∞:∞)

Real Yes

flag indicates how stddev normalizes 0 [0:1] † Integer No

† When flag equals 0, the stddev normalizes by N-1, where N is the length of the data
sequence. Otherwise, stddev normalizes by N.

 Examples

a = stddev_outer(data)

a = stddev_outer(data, 1)

 Defined In

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

fun_2d_outer() (expmeas), max_outer() (expmeas), mean_outer() (expmeas),
min_outer() (expmeas)

 Notes/Equations

The stddev_outer() function operates on the inner dimension of two-dimensional data.

Measurement Expressions

333

This function just calls the fun_2d_outer function, with stddev being the applied operation.
As an example, assume that a Monte Carlo simulation of an amplifier was run, with 151
random sets of parameter values, and that for each set the S-parameters were simulated
over 26 different frequency points. S21 becomes a [151 Monte Carlo iteration X 26
frequency] matrix, with the inner dimension being frequency, and the outer dimension
being Monte Carlo index. Now, assume that it is desired to know the stddev value of the
S-parameters at each frequency. Inserting an equation stddev(S21) computes the stddev
value of S21 at each Monte Carlo iteration. If S21 is simulated from 1 to 26 GHz, it
computes the stddev value over this frequency range, which usually is not very useful.
Inserting an equation stddev_outer(S21) computes the stddev value of S21 at each Monte
Carlo frequency.
 uniform_dist1D()

Returns a uniform distribution: either its probability density function (pdf), or cumulative
distribution function (cdf)

 Syntax

y = uniform_dist1D(data, A, B, is_cdf)

 Arguments

Name Description Default Range Type Required

data number or a one-dimensional data None (-∞:∞) Integer, Real Yes

A uniform distributed range None [0:∞) Integer, real Yes

B uniform distributed range None [0:∞) Integer, real Yes

is_cdf specifies cdf or pdf of standard uniform distribution 0 [0:∞)
†

Integer No

† When is_cdf is not equal to "0", the function returns the cdf of the uniform distribution.
Otherwise, it returns the pdf of the uniform distribution.

 Examples

X = 0.5

X_pdf= uniform_dist1D(X, 0.0,1.0, 0)

X_cdf = uniform_dist1D(X,0.0,1.0, 1)

XX=[-3.9::0.1::3.9]

XX_pdf = uniform_dist1D(XX,0.0,5.0,0)

XX_cdf = uniform_dist1D(XX,0.0,5.0,1)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

norm_dist1D() (expmeas), norm_dist_inv1D() (expmeas), norms_dist_inv1D()
(expmeas), norms_dist1D() (expmeas), lognorm_dist_inv1D() (expmeas),
lognorm_dist1D() (expmeas), uniform_dist_inv1D() (expmeas)

Measurement Expressions

334

 uniform_dist_inv1D()

Returns the inverse of the cumulative distribution function (cdf) for a uniform distribution

 Syntax

y = uniform_dist_inv1D(data, A, B)

 Arguments

Name Description Default Range Type Required

data represents the cumulative probability None [0:1] Integer, Real Yes

A uniform distributed range None [0:∞) Integer, real Yes

B uniform distributed range None [0:∞) Integer, real Yes

 Examples

X_cpf = 0.5

X= uniform_dist_inv1D(X_cpf, 0.0, 1.5)

XX_cpf=[0.0::0.01::1.0]

XX= uniform_dist_inv1D(XX_cpf, 0.0, 1.5)

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

norm_dist1D() (expmeas), norm_dist_inv1D() (expmeas), norms_dist_inv1D()
(expmeas), norms_dist1D() (expmeas), lognorm_dist_inv1D() (expmeas),
lognorm_dist1D() (expmeas), uniform_dist1D() (expmeas)
 yield_sens()

Returns the yield as a function of a design variable

 Syntax

y = yield_sens(pf_data, numBins)

 Arguments

Name Description Default Range Type Required

pf_data binary-valued scalar data set indicating the
pass/fail status of each value of a companion
independent variable

None [0-1] Integer Yes

numBins number of subintervals or bins used to measure
yield_sens

log(numOfPts)/log(2.0) [1:∞) Real No

 Examples

a = yield_sens(pf_data)

a = yield_sens(pf_data, 20)

Measurement Expressions

335

 Defined in

$HPEESOF_DIR/expressions/ael/statistical_fun.ael

 See Also

cdf() (expmeas), histogram() (expmeas), pdf() (expmeas)

 Notes/Equations

Used in Monte Carlo simulation.
This function measures the yield as a function of a design variable. For more information
and an example refer to " Creating a Sensitivity Histogram " in the Optimization and
Statistical Design documentation.
This function can only be used by entering an equation (Eqn) in the Data Display window.

Measurement Expressions

336

 Transient Analysis Functions
This section describes the transient analysis functions in detail. The functions are listed in
alphabetical order.

constellation() (expmeas)
cross() (expmeas)
fspot() (expmeas)
ifc tran() (expmeas)
ispec tran() (expmeas)
pfc tran() (expmeas)
pspec tran() (expmeas)
pt tran() (expmeas)
vfc tran() (expmeas)
vspec tran() (expmeas)
vt tran() (expmeas)

 Working with Transient Data

Transient analysis produces real voltages and currents as a function of time. A single
analysis produces 1-dimensional data. Sections of time-domain waveforms can be indexed
by using a sequence within "[]".
 constellation()

Generates the constellation diagram from Circuit Envelope, Transient, or Ptolemy
simulation I and Q data.

 Syntax

Const = constellation(i_data, q_data, symbol_rate, delay)

 Arguments

Name Description Default Range Type Required

i_data in-phase component of data versus time of a single
complex voltage spectral component (for example, the
fundamental) †

None (-
∞:∞)

Complex Yes

q_data quadrature-phase component of data versus time of a
single complex voltage spectral component (for example,
the fundamental) †

None (-
∞:∞)

Real Yes

symbol_rate symbol rate of the modulation signal None [0:∞) Real Yes

delay delay value † † None [0:∞) Real No

† this could be a baseband signal instead, but in either case it must be real-valued versus
time.
† † (if nonzero) throws away the first delay = N seconds of data from the constellation
plot. It is also used to interpolate between simulation time points, which is necessary if
the optimal symbol-sampling instant is not exactly at a simulation time point. Usually this
parameter must be nonzero to generate a constellation diagram with the smallest
grouping of sample points.

 Examples

Measurement Expressions

337

Rotation = -0.21

Vfund =vOut[1] * exp(j * Rotation)

delay =1/sym_rate[0, 0] - 0.5 * tstep[0, 0]

Vimag = imag(Vfund)

Vreal = real(Vfund)

Const = constellation(Vreal, Vimag, sym_rate[0, 0], delay)

where Rotation is a user-selectable parameter that rotates the constellation by

that many radians, and vOut is the named connection at a node. The parameter

delay can be a numeric value, or in this case an equation using sym_rate, the

symbol rate of the modulated signal, and tstep, the time step of the

simulation. If these equations are to be used in a Data Display window,

sym_rate and tstep must be defined by means of a variable (VAR) component, and

they must be passed into the dataset as follows: Make the parameter Other

visible on the Envelope simulation component, and edit it so that

Other = OutVar = sym_rate OutVar = tstep

In some cases, it may be necessary to experiment with the value of delay to get

the constellation diagram with the tightest points.

Note vOut is a named connection on the schematic. Assuming that a Circuit

Envelope simulation was run, vOut is output to the dataset as a two-dimensional

matrix. The first dimension is time, and there is a value for each time point

in the simulation. The second dimension is frequency, and there is a value for

each fundamental frequency, each harmonic, and each mixing term in the

analysis, as well as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the

lowest non-baseband frequency (the fundamental analysis frequency, unless a

multitone analysis has been run and there are mixing products). For former MDS

users, the notation "vOut[*, 2]" in MDS corresponds to the notation of

"vOut[1]".

 Defined in

$HPEESOF_DIR/expressions/ael/digital_wireless_fun.ael

 See Also

const_evm() (expmeas)

 Notes/Equations

Used in Constellation diagram generation.1.
The I and Q data do not need to be baseband waveforms. For example, they could be2.
the in-phase (real or I) and quadrature-phase (imaginary or Q) part of a modulated
carrier. The user must supply the I and Q waveforms versus time, as well as the
symbol rate. A delay parameter is optional. The i_data and q_data must be of the
same dimension, and up to 5-dimensional data is supported.
The result of a constellation calculation using the constellation() function may be3.
plotted directly on a rectangular plot.
For example, you may add Const directly to a rectangular plot, where

Measurement Expressions

338

Const=constellation(Vreal,Vimag,sym_rate,delay).
If you want to plot Const on a polar plot, then add to the plot indep(Const)+j*Const.

 cross()

Computes the zero crossings of a signal, interval between successive zero crossings or
slope at the crossing.

 Syntax

yCross = cross(signal, direction, slope)

 Arguments

Name Description Default Range Type Required

signal the signal for which the zero crossing is to be found None (-
∞:∞)

Real Yes

direction type of zero crossing † 0 [-1:1] Integer Yes

slope specifies if slope is to be calculated, rather than interval
between zero crossing

0 (no
slope)

[0:1] Integer No

† If direction = +1, compute positive going zero crossings.
If direction = -1, compute negative going zero crossings.
If direction = 0, compute all zero crossings.

 Examples

period=cross(vosc-2.0, 1)

This computes the period of each cycle of the vosc signal. The period is

measured from each positive-going transition through 2.0V.

period = cross(vosc-2.0, 1, 1) returns the zero crossings and the slope at the

zero crossings.

 Defined In

Built in

 Notes/Equations

The independent axis returns the time when the crossing occurred. If the third argument
is set to 1, the dependent axis returns the slope at zero crossing. Otherwise the
dependent axis returns the time interval since the last crossing (default behavior).
 fspot()

Performs a single-frequency time-to-frequency transform

 Syntax

y = fspot(x, fund, harm, windowType, windowConst, interpOrder, tstart)

 Arguments

Measurement Expressions

339

Name Description Default Range Type Required

x time domain signal None (-∞:∞) Real Yes

fund period 1/fund for the
Fourier transform

period that matches the length of
the independent axis of x

[1:∞) Real No

harm harmonic number † 1 [1:∞) Integer No

windowType type of window to apply
to the data

0 [0:9] †† Integer,
String

No

windowConst window constant †† † 1 [0:∞) Real No

interpOrder interpolation scheme None [1:3] ††
††

Integer No

tstart start time 1 [0:∞) Real No

† harm=0 will compute the dc component of x.
†† The window types and their default constants are:
0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13
windowType can be specified either by the number or by the name.

†† † windowConst is not used if windowType is 8510

†† †† If the tranorder variable is not present, or if the user wishes to override the
interpolation scheme, then interpOrder may be set to a nonzero value:
1 = use only linear interpolation
2 = use quadratic interpolation
3 = use cubic polynomial interpolation

 Examples

The following example equations assume that a transient simulation was

performed from 0 to 5 ns on a 1-GHz-plus-harmonics signal called vOut:

fspot(vOut)

returns the 200-MHz component, integrated from 0 to 5 ns.

fspot(vOut, , 5)

returns the 1-GHz component, integrated from 0 to 5 ns.

fspot(vOut, 1GHz, 1)

returns the 1-GHz component, integrated from 4 to 5 ns.

fspot(vOut, 0.5GHz, 2, , , , 2.5ns)

returns the 1-GHz component, integrated from 2.5 to 4.5 ns.

fspot(vOut, 0.25GHz, 4, "Kaiser")

returns the 1-GHz component, integrated from 1 to 5 ns, after applying the

default Kaiser window to this range of data.

fspot(vOut, 0.25GHz, 4, 3, 2.0)

returns the 1-GHz component, integrated from 1 to 5 ns, after applying a

Gaussian window with a constant of 2.0 to this range of data.

Measurement Expressions

340

 Defined in

Built in

 See Also

fft() (expmeas), fs() (expmeas)

 Notes/Equations

fspot(x) returns the discrete Fourier transform of the vector x evaluated at one specific
frequency. The value returned is the peak component, and it is complex. The harmth
harmonic of the fundamental frequency fund is obtained from the vector x. The Fourier
transform is applied from time tstop-1/fund to tstop, where tstop is the last timepoint in x.

When x is a multidimensional vector, the transform is evaluated for each vector in the
specified dimension. For example, if x is a matrix, then fspot(x) applies the transform to
every row of the matrix. If x is three dimensional, then fspot(x) is applied in the lowest
dimension over the remaining two dimensions. The dimension over which to apply the
transform may be specified by dim; the default is the lowest dimension (dim=1). x must
be numeric. It will typically be data from a transient, signal processing, or envelope
analysis.
By default, the transform is performed at the end of the data from tstop-1/fund to tstop.
By using tstart, the transform can be started at some other point in the data. The
transform will then be performed from tstart to tstart+1/fund.
Unlike with fft() or fs(), the data to be transformed are not zero padded or resampled.
fspot() works directly on the data as specified, including non-uniformly sampled data from
a transient simulation.

Transient simulation uses a variable timestep and variable order algorithm. The user sets
an upper limit on the allowed timestep, but the simulator will control the timestep so the
local truncation error of the integration is controlled. If the Gear integration algorithm is
used, the order can also be changed during simulation. fspot() can use all of this
information when performing the Fourier transform. The time data are not resampled; the
Fourier integration is performed from timestep to timestep of the original data.

When the order varies, the Fourier integration will adjust the order of the polynomial it
uses to compute the shape of the data between timepoints.
This variable order integration depends on the presence of a special dependent variable,
tranorder, which is output by the transient simulator. If this variable is not present, or if
the user wishes to override the interpolation scheme, then interpOrder may be set to a
nonzero value.

Only polynomials of degree one to three are supported. The polynomial is fit because time
domain data are obtained by integrating forward from zero; previous data are used to
determine future data, but future data can never be used to modify past data.
 ifc_tran()

Measurement Expressions

341

Returns frequency-selective current in Transient analysis

 Syntax

y = ifc_tran(iOut, fundFreq, harmNum)

 Arguments

Name Description Default Range Type Required

iOut current through a branch None (-
∞:∞)

Real, Complex Yes

fundFreq fundamental frequency None [0:∞) Real Yes

harmNum harmonic number of the fundamental
frequency

None [0:∞) Integer Yes

 Examples

y = ifc_tran(I_Probe1.i, 1GHz, 1)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pfc_tran() (expmeas), vfc_tran() (expmeas)

 Notes/Equations

This measurement gives RMS current, in current units, for a specified branch at a
particular frequency of interest. fundFreq determines the portion of the time-domain
waveform to be converted to the frequency domain. This is typically one full period
corresponding to the lowest frequency in the waveform. harmNum is the harmonic
number of the fundamental frequency at which the current is requested.
 ispec_tran()

Returns current spectrum

 Syntax

y = ispec_tran(iOut, fundFreq, numHarm, windowType, windowConst)

 Arguments

Measurement Expressions

342

Name Description Default Range Type Required

iOut current through a branch None (-
∞:∞)

Real, Complex Yes

fundFreq fundamental frequency None [0:∞) Real Yes

numHarm number of harmonics of fundamental frequency None [0:∞) Integer Yes

windowType type of window to be applied to the data 0 [0:9] † Integer, string No

windowConst window constant †† † 0 [0:∞) Integer, Real No

† The window types and their default constants are:
0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the time-to-frequency transformation with normalgate
shape setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13

 Examples

y = ispec_tran(I_Probe1.i, 1GHz, 8)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

pspec_tran() (expmeas), vspec_tran() (expmeas)

 Notes/Equations

This measurement gives a current spectrum for a specified branch. The measurement
gives a set of RMS current values at each frequency. The fundFreq argument determines
the portion of the time-domain waveform to be converted to frequency domain. This is
typically one full period corresponding to the lowest frequency in the waveform. The
numHarm argument is the number of harmonics of fundamental frequency to be included
in the currents spectrum.
 pfc_tran()

Returns frequency-selective power

 Syntax

y = pfc_tran(vPlus, vMinus, iOut, fundFreq, harmNum)

Measurement Expressions

343

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinus voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

iOut current through a branch measured for power
calculation

None (-
∞:∞)

Real,
Complex

Yes

fundFreq fundamental frequency None [0:∞) Real Yes

harmNum harmonic number of the fundamental frequency None [0:∞) Integer Yes

 Examples

a = pfc_tran(v1, v2, I_Probe1.i, 1GHz, 1)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ifc_tran() (expmeas), vfc_tran() (expmeas)

 Notes/Equations

This measurement gives RMS power, delivered to any part of the circuit at a particular
frequency of interest. fundFreq determines the portion of the time-domain waveform to be
converted to frequency domain. This is typically one full period corresponding to the
lowest frequency in the waveform. harmNum is the harmonic number of the fundamental
frequency at which the power is requested.
 pspec_tran()

Returns transient power spectrum

 Syntax

y = pspec_tran(vPlus, vMinus, iOut, fundFreq, numHarm, windowType, windowConst)

 Arguments

Measurement Expressions

344

Name Description Default Range Type Required

vPlus voltage at the positive terminal None (-
∞:∞)

Real,
Complex

Yes

vMinus voltage at the negative terminal None (-
∞:∞)

Real,
Complex

Yes

iOut current through a branch measured for power
calculation

None (-
∞:∞)

Real,
Complex

Yes

fundFreq fundamental frequency None [0:∞) Real Yes

numHarm number of harmonics of fundamental frequency None [0:∞) Integer Yes

windowType type of window to be applied to the data 0 [0:9] † Integer,
string

No

windowConst window constant †† † 0 [0:∞) Integer, Real No

† The window types and their default constants are:
0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the time-to-frequency transformation with normalgate
shape setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0
9 = 8510-Maximum 13

 Examples

a = pspec_tran(v1, v2, I_Probe1.i, 1GHz, 8)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ispec_tran() (expmeas), vspec_tran() (expmeas)

 Notes/Equations

This measurement gives a power spectrum, delivered to any part of the circuit. The
measurement gives a set of RMS power values at each frequency. The fundFreq argument
is the fundamental frequency that determines the portion of the time-domain waveform to
be converted to frequency domain (typically one full period corresponding to the lowest
frequency in the waveform). The numHarm argument is the number of harmonics of the
fundamental frequency to be included in the power spectrum.
 pt_tran()

This measurement produces a transient time-domain power waveform for specified nodes.

Measurement Expressions

345

 Syntax

y = pt_tran(vPlus, vMinus, current, fundFreq)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive terminal None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative terminal None (-
∞:∞)

Real, Complex Yes

current current None (-
∞:∞)

Real, Complex Yes

fundFreq fundamental frequency None [0:∞) Real Yes

 Examples

a = pt_tran(v1, v2, i1, 1GHz)

 Defined In

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

vt() (expmeas), vt_tran() (expmeas)

 Notes/Equations

DC-to-RF efficiency is based on HB analysis.
 vfc_tran()

Returns the transient frequency-selective voltage

 Syntax

y = vfc_tran(vPlus, vMinus, fundFreq, harmNum)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive terminal None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative terminal None (-
∞:∞)

Real, Complex Yes

fundFreq fundamental frequency None [0:∞) Real Yes

harmNum harmonic number of the fundamental
frequency

None [0:∞) Integer Yes

 Examples

Measurement Expressions

346

a = vfc_tran(vOut, 0, 1GHz, 1)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ifc_tran() (expmeas), pfc_tran() (expmeas)

 Notes/Equations

This measurement gives the RMS voltage across any two nodes at a particular frequency
of interest. The fundamental frequency determines the portion of the time-domain
waveform to be converted to frequency domain. This is typically one full period
corresponding to the lowest frequency in the waveform. The harmonic number is the
fundamental frequency at which the voltage is requested (positive integer value only).
 vspec_tran()

Returns the transient voltage spectrum

 Syntax

y = vspec_tran(vPlus, vMinus, fundFreq, numHarm, windowType, windowConst)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive terminal None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative terminal None (-
∞:∞)

Real, Complex Yes

fundFreq fundamental frequency None [0:∞) Real Yes

numHarm number of harmonics of fundamental frequency None [0:∞) Integer Yes

windowType type of window to be applied to the data 0 [0:9] † Integer, string No

windowConst window constant 0 [0:∞) Integer, Real No

† The window types and their default constants are:
0 = None
1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865
5 = 8510 6.0 (This is equivalent to the time-to-frequency transformation with normalgate
shape setting in the 8510 series network analyzer.)
6 = Blackman
7 = Blackman-Harris
8 = 8510-Minimum 0

Measurement Expressions

347

9 = 8510-Maximum 13

 Examples

a = vspec_tran(v1, v2, 1GHz, 8)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

 See Also

ispec_tran() (expmeas), pspec_tran() (expmeas)

 Notes/Equations

This measurement gives a voltage spectrum across any two nodes. The measurement
gives a set of RMS voltages at each frequency. The fundamental frequency determines the
portion of the time-domain waveform to be converted to the frequency domain. This is
typically one full period corresponding to the lowest frequency in the waveform. The
numHarm argument is the number of harmonics of the fundamental frequency to be
included in the voltage spectrum.
 vt_tran()

This measurement produces a transient time-domain voltage waveform for specified
nodes. vPlus and vMinus are the nodes across which the voltage is measured.

 Syntax

y = vt_tran(vPlus, vMinus)

 Arguments

Name Description Default Range Type Required

vPlus voltage at the positive terminal None (-
∞:∞)

Real, Complex Yes

vMinus voltage at the negative terminal None (-
∞:∞)

Real, Complex Yes

 Examples

a = vt_tran(v1, v2)

 Defined in

$HPEESOF_DIR/expressions/ael/circuit_fun.ael

Measurement Expressions

348

 See Also

vt() (expmeas)

Measurement Expressions

349

 Utility Functions for Measurement Expressions
This section describes the utility functions in detail.

amodelb_snp() (expmeas)
design_name() (expmeas)

 amodelb_snp()

Returns the cartesian difference between Two S Parameter matrices

 Syntax

modelGoal = amodelb_snp(measured..S, model..S)

 Arguments

Name Description Default Range Type Required

Target the input S matrix that needs to be matched None (-
∞:∞)

Real Yes

Model input S matrix to compare None (-
∞:∞)

Real Yes

 Examples

modelGoal = abodelb_snp(measured..S, model..S)

 design_name()

Returns design name given by TopDesignName in netlist.log

 Syntax

design = design_name()

 Arguments

Name Description Default Range Type Required

None None None None None No

 Notes

The design_name() function returns the value of the TopDesignName parameter in the
netlist.log file. It allows the design name to be saved in the dataset for documentation.

Measurement Expressions

350

 Duplicated Expression Names
Expressions used in ADS are of three types:

Simulator Expressions (expsim) are used during a simulation; they are the
expressions that are added to a VAR block on a schematic page.
Measurement Expressions (expmeas) are used after a simulation, for post-processing
of simulation results. There are two ways to use them:

As MeasEqn blocks on a schematic page; although these blocks are on the
schematic, they execute only after the actual simulation has finished (except in
the case of Optimization; then the expression can be evaluated repeatedly, once
for each try). The MeasEqn result is also written to the dataset.
As EQN blocks on a DDS page; after the simulation has finished, these blocks
can be used to process the data for display or further calculations.

AEL Expressions (ael) are employed by users to develop custom functions. They can
be used wherever AEL is used. AEL expressions are valid even on a DDS page.

In many cases, the same function name is used for different types of expressions, and the
expressions can differ. For example, there is a step() Measurement Expression, a step()
Simulator Expression, and a step() AEL expression. Although these three expressions
operate similarly, the Simulator Expression assumes that the value passed in represents
time, and cannot be a complex number; that is not the case with the other two
expressions.

Because expressions with the same function name do not necessarily operate in the same
way, it is important to know which expression type will actually be used in a given
situation, and to be aware of any differences between that expression and others with the
same name.

 Which Type is Used?

Where an expression name is duplicated, ADS uses the expression type that is appropriate
to the place in which the expression name appears:
Measurement expressions include all AEL expressions, plus some new functions that are
usable only in a measurement context and not in general AEL code. That is, AEL
Expression functions are a proper subset of Measurement Expression functions.

If the expression name appears in a VAR block on a schematic page, ADS interprets
it as a Simulator Expression. If no Simulator Expression is found by that name, an
Error is shown.
If the expression name appears in a MeasEqn block on a schematic page, ADS
interprets it as a Measurement Expression. If no Measurement Expression is found by
that name, but an AEL Expression is found, it is used, otherwise an Error is shown.
If the expression name appears in an EQN block on a DDS page, ADS interprets it as
a Measurement Expression. If no Measurement Expression is found by that name, but
an AEL Expression is found, it is used, otherwise an Error is shown.
If the expression name appears in an AEL file, ADS interprets it as an AEL
Expression. If no AEL Expression is found by that name, an Error is shown.

 Expression Types and Expression Names

This table lists the duplicated expression names. Follow the links to find information about

Measurement Expressions

351

the individual expressions.

Measurement Expression AEL Expression Simulator Expression

abs() Measurement (expmeas) abs() Function (ael) abs() Expression (expsim)

acos() Measurement (expmeas) acos() Function (ael) acos() Expression (expsim)

acosh() Measurement (expmeas) acosh() Function (ael) acosh() Expression (expsim)

acot() Measurement (expmeas) acot() Function (ael)

acoth() Measurement (expmeas) acoth() Function (ael)

asin() Measurement (expmeas) asin() Function (ael) asin() Expression (expsim)

asinh() Measurement (expmeas) asinh() Expression (expsim)

atan() Measurement (expmeas) atan() Function (ael) atan() Expression (expsim)

atan2() Measurement (expmeas) atan2() Function (ael) atan2() Expression (expsim)

atanh() Measurement (expmeas) atanh() Function (ael) atanh() Expression (expsim)

ceil() Measurement (expmeas) ceil() Function (ael) ceil() Expression (expsim)

chr() Measurement (expmeas) chr() Function (ael)

cint() Measurement (expmeas) cint() Function (ael)

cmplx() Measurement (expmeas) cmplx() Function (ael)

complex() Measurement (expmeas) complex() Expression (expsim)

conj() Measurement (expmeas) conj() Function (ael) conj() Expression (expsim)

convBin() Measurement (expmeas) convBin() Function (ael)

convHex() Measurement (expmeas) convHex() Function (ael)

convOct() Measurement (expmeas) convOct() Function (ael)

cos() Measurement (expmeas) cos() Function (ael) cos() Expression (expsim)

cosh() Measurement (expmeas) cosh() Function (ael) cosh() Expression (expsim)

cot() Measurement (expmeas) cot() Function (ael) cot() Expression (expsim)

coth() Measurement (expmeas) coth() Function (ael) coth() Expression (expsim)

db() Measurement (expmeas) dB() Function (ael) db() Expression (expsim)

dbm() Measurement (expmeas) dBm() Function (ael) dbm() Expression (expsim)

dbmtow() Measurement (expmeas) dbmtow() Expression (expsim)

deg() Measurement (expmeas) deg() Function (ael) deg() Expression (expsim)

exp() Measurement (expmeas) exp() Function (ael) exp() Expression (expsim)

fix() Measurement (expmeas) fix() Function (ael)

float() Measurement (expmeas) float() Function (ael)

floor() Measurement (expmeas) floor() Function (ael) floor() Expression (expsim)

fmod() Measurement (expmeas) fmod() Expression (expsim)

hypot() Measurement (expmeas) hypot() Expression (expsim)

im() Measurement (expmeas) im() Function (ael)

imag() Measurement (expmeas) imag() Function (ael) imag() Expression (expsim)

 index() Function (ael) index() Expression (expsim)

int() Measurement (expmeas) int() Function (ael) int() Expression (expsim)

jn() Measurement (expmeas) jn() Expression (expsim)

 list() Function (ael) list() Expression (expsim)

ln() Measurement (expmeas) ln() Function (ael) ln() Expression (expsim)

log() Measurement (expmeas) log() Function (ael) log() Expression (expsim)

log10() Measurement (expmeas) log10() Function (ael) log10() Expression (expsim)

mag() Measurement (expmeas) mag() Function (ael) mag() Expression (expsim)

Measurement Expressions

352

max2() Measurement (expmeas) max2() Function (ael)

max() Measurement (expmeas) max() Expression (expsim)

min() Measurement (expmeas) min() Expression (expsim)

min2() Measurement (expmeas) min2() Function (ael)

num() Measurement (expmeas) num() Function (ael)

phase() Measurement (expmeas) phase() Function (ael) phase() Expression (expsim)

phasedeg() Measurement
(expmeas)

phasedeg() Function (ael) phasedeg() Expression
(expsim)

phaserad() Measurement (expmeas) phaserad() Function (ael) phaserad() Expression (expsim)

polar() Measurement (expmeas) polar() Function (ael) polar() Expression (expsim)

pow() Measurement (expmeas) pow() Function (ael) pow() Expression (expsim)

rad() Measurement (expmeas) rad() Function (ael) rad() Expression (expsim)

re() Measurement (expmeas) re() Function (ael)

real() Measurement (expmeas) real() Function (ael) real() Expression (expsim)

ripple() Measurement (expmeas) ripple() Expression (expsim)

round() Measurement (expmeas) round() Function (ael)

sgn() Measurement (expmeas) sgn() Function (ael) sgn() Expression (expsim)

sin() Measurement (expmeas) sin() Function (ael) sin() Expression (expsim)

sinc() Measurement (expmeas) sinc() Function (ael) sinc() Expression (expsim)

sinh() Measurement (expmeas) sinh() Function (ael) sinh() Expression (expsim)

 sprintf() Function (ael) sprintf() Expression (expsim)

sqrt() Measurement (expmeas) sqrt() Function (ael) sqrt() Expression (expsim)

step() Measurement (expmeas) step() Function (ael) step() Expression (expsim)

 strcat() Function (ael) strcat() Expression (expsim)

sum() Measurement (expmeas) sum() Expression (expsim)

tan() Measurement (expmeas) tan() Function (ael) tan() Expression (expsim)

tanh() Measurement (expmeas) tanh() Function (ael) tanh() Expression (expsim)

wtodbm() Measurement (expmeas) wtodbm() Expression (expsim)

xor() Measurement (expmeas) xor() Function (ael)

	 Introduction to Measurement Expressions
	 Using Measurement Expressions in Advanced Design System
	 Circuit Budget Functions
	 Circuit Envelope Functions
	 Data Access Functions for Measurement Expressions
	 FrontPanel Eye Diagram Functions
	 FrontPanel S-Parameter TDR Functions
	 Harmonic Balance Functions For Measurement Expressions
	 Jitter Analysis Functions
	 Math Functions For Measurement Expressions
	 Signal Processing Functions
	 S-Parameter Analysis Functions for Measurement Expressions
	 Statistical Analysis Functions
	 Transient Analysis Functions
	 Utility Functions for Measurement Expressions

	 Duplicated Expression Names

