NOTICE: This document contains references to Agilent Technologies. Agilent's former Test and Measurement business has become Keysight Technologies. For more information, go to **www.keysight.com.** 



NOTICE: This document contains references to Agilent Technologies. Agilent's former Test and Measurement business has become Keysight Technologies. For more information, go to **www.keysight.com.** 







# Contents

| Installing the DDR4 Compliance Test Bench                    | 2  |
|--------------------------------------------------------------|----|
| Prereguisites                                                | 2  |
| Install Instructions                                         | 2  |
| Introduction to DDR4 Signals                                 | 3  |
| Setting up Basic DDR4 Signal Simulation for Compliance Tests | 4  |
| Clock Signal                                                 | 5  |
| Command and Address (CA) signal                              | 6  |
| Control Signal                                               | 7  |
| Data Signal in READ Cycle                                    | 8  |
| Data Signal in WRITE Cycle                                   | 9  |
| Transient Simulation Control Parameters                      | 11 |
| Save signals to .h5 files for running compliance tests       | 12 |
| Running DDR4 Compliance Tests                                | 14 |
| Setting up DDR4 Compliance Test Bench Simulations            | 23 |
| Command and Address (CA) Bus simulation setup (_1_Sim_CA)    | 23 |
| WRITE cycle data bus simulation setup (_2_Sim_DQ_WRITE)      | 26 |
| READ cycle data bus simulation setup (_3_Sim_DQ_READ)        | 30 |
| DQ Eye Simulation (_4_Sim_DQ_Eye)                            | 34 |
| Running Compliance Tests on Simulated Signals                | 36 |
| Known Issues                                                 | 47 |

# Installing the DDR4 Compliance Test Bench

### Prerequisites

Before installing the DDR4 Compliance Test Bench, ensure that the following softwares are installed:

- Infiniium Offline
- DDR4 Compliance App
- ADS 2014.01 Hotfix 3

After installing the DDR4 Compliance App, launch the Infiniium Offline software to ensure the DDR4 Test App is available under **Analyze > Automated Test Apps**.

| File Control Setup Display Trigger Measure Math | Analyze Utilities Demos Help                                                                 | 🔆 Agilent                              |
|-------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|
|                                                 | Histogram<br>Mask Test                                                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| ∃ <mark>108 mV/ 0.0 v + </mark> ₽               | Automated Test Apps                                                                          | U7231B DDR3 Test App                   |
| e Meas                                          | Measurement Analysis (EZJIT)<br>Jitter/Noise (EZJIT Complete)<br>Serial Data<br>Equalization | N6462A DDR4 Test App                   |

### Install Instructions

To install the DDR4 Compliance Test Bench, perform the following steps:

1. Download the ADS 2014.01 DDR4\_CTB.zip file and unzip it.



The DDR4\_CTB.zip includes:

DDR\_CTB.deb: DDR4 Compliance Test Bench Debian file SetupInfiniium05100003.exe: Infiniium Offline Oscilloscope Analysis Software Installer SetupInfDDR401100000.exe: DDR4 Compliance Test Application Software Installer

- 2. Launch ADS.
- 3. Select **DesignGuide > Add DesignGuide** from the ADS Main window. The Add DesignGuide dialog box is displayed.
- 4. Click Add Global DesignGuide.
- 5. Browse to the DDR4\_CTB.deb file and click **Open**.
- 6. After the installation is complete, restart ADS and open a Schematic view.
- 7. Select DesignGuide.

The DDR4 Advanced Compliance Test Bench will be listed under the DesignGuide menu.

## Introduction to DDR4 Signals

There are 4 groups of signals in a typical DDR4 memory system:

- Data group: DQS[7:0], DQSb[7:0], DQ[63:0]
- Command and Address (CA) group: BA[2:0] (3 bits for 8 banks), A[15:0], command input including RAS#, CAS#, WE#
- Control group: Chip Select CS[3:0] (4 bits for 16 chips), Clock Enable CKE[3:0] (4 bits for 16 clocks pairs, ODT[3:0]
- Clock group: CLK[3:0] and CLKb[3:0]

| _ |           | There are 4 groups of signals between Controller and DRAM |                                                                             | м    |
|---|-----------|-----------------------------------------------------------|-----------------------------------------------------------------------------|------|
| C | ontroller |                                                           |                                                                             | DRAM |
|   |           | Clock (CLK), Command and Address (CA), Control, and Data  | a (DQ, DQS) Data is transfered<br>from DRAM to Control<br>in READ Cycle <<< | ler  |

Following is a block diagram of a memory controller.

# Setting up Basic DDR4 Signal Simulation for Compliance Tests

To understand the basic simulation setups and compliance tests a test bench named \_0\_DDR4\_Ideal will be used.



The DDR4 Compliance Test Bench uses the IBIS Models from Micron: z80.v5p0.ibs throughout all simulations.



IBIS Models are for educational demonstration only and are not intended for design purposes. Please download the latest up to date models for your application directly from the vendor's website. Models in this example were downloaded from Micron Technology, Inc. www.micron.com

In an IBIS Model, an Alias name is used to reference the IBIS file name, component name, Pin name, and Model name, as illustrated in the following figure.

|             | IBIS_DIO Ins | stance | Name         |          |                 |        |                 |                     |
|-------------|--------------|--------|--------------|----------|-----------------|--------|-----------------|---------------------|
| IBIS_DIO    | IBIS_TX_CL   | ĸ      |              |          |                 |        |                 |                     |
| IBIS_TX_CLK | IBIS File    |        | z80a_v5p0.it | os       |                 |        | Select IBIS Fil | e) View             |
|             | Component    |        | MT40A256M    | 16Z80A   |                 | -      |                 |                     |
|             | 🔽 Set all da | ita    | Тур          | •        |                 |        |                 |                     |
| Fo Bigo     | 🔽 Use pack   | age    |              |          |                 |        |                 |                     |
|             | Package      | Pin    | Model        | I-V Data | Driver Schedule | SubMod | del Alias       | Display             |
|             |              |        |              |          |                 |        |                 |                     |
|             |              |        |              |          |                 |        |                 |                     |
|             |              |        |              |          |                 |        |                 |                     |
|             |              |        |              |          |                 |        |                 |                     |
|             |              |        |              |          |                 |        |                 |                     |
|             |              |        |              |          |                 | 👿 Llee | Aliacec         |                     |
|             |              |        |              |          |                 | 030    | - Alidaca       |                     |
|             |              |        |              |          |                 |        |                 |                     |
|             |              |        |              |          |                 | IbisFi | le Alias        | DRAM_IBIS_File      |
|             |              |        |              |          |                 | Comp   | onentName A     | lias DRAM_Component |
|             |              |        |              |          |                 | _      |                 |                     |
|             |              |        |              |          |                 | PinNa  | ame Alias       | DRAM_TX_DQS_Pin     |
|             |              |        |              |          |                 | Mode   | IName Alias     | DRAM_TX_DQS_Model   |
|             |              |        |              |          |                 | InvPi  | nName Alias     | DRAM_TX_DQSb_Pin    |
|             |              |        |              |          |                 |        |                 |                     |

|   |   | IBIS Alias Names for I/O Pins and Model Selections                                                       |
|---|---|----------------------------------------------------------------------------------------------------------|
| • | · |                                                                                                          |
| • | · |                                                                                                          |
| · | · | DRAM_IBIS_File="z80a_v5p0.ibs" DRAM_RX_DQS_Model="DQS_IN_ODT40_2400"                                     |
| · | · | DRAM_Component="MT40A512M8HX" DRAM_RX_DQS_Pin="DQS_t"                                                    |
| • |   | Ver     DRAM_RX_DQSb_Pin="DQS_c"       DRAM_IBIS_Alias_TX_DQS_DQ     DRAM_RX_DQ_Model="DQ_IN_ODT40_2400" |
| • | • | DRAM_TX_DQS_Model="DQS_40_2400" DRAM_RX_DQ_Pin="DQ0"                                                     |
| · | · | DRAM_TX_DQS_Pin="DQS_t"                                                                                  |
| · |   | DRAM_TX_DQSb_Pin="DQS_c"                                                                                 |
|   |   | DRAM_TX_DQ_Model="DQ_40_2400"                                                                            |
| • |   | DRAM_TX_DQ_Pin="DQ0" Notes:                                                                              |
| : |   | DRAM_IBIS_AliasRX_CLK_CA_CMD<br>DRAM_RX_CA_Model="INPLIT_2400" 1. The same IBIS file is used             |
|   |   | DRAM_RX_CA_Pin="A0" for DRAM and Controler I/O                                                           |
|   |   | DRAM_RX_CLK_Model="CLKIN_2400"                                                                           |
|   |   | DRAM_RX_CLK_Pin="CK_t" 2. DQS driver is used to drive                                                    |
|   |   | DRAM_RX_CLKb_Pin="CK_c" clock signal<br>DRAM_RX_CKE_Model="INPUT_2400"                                   |
| · | • | DRAM_RX_CKE_Pin="CKE" 3. DQ driver is used to drive                                                      |
|   |   | DRAM_RX_CS_Pin="CS_n" Command/Address/Control signals                                                    |
|   |   | DRAM_RX_CS_Model="INP.UT_2400".                                                                          |
|   |   |                                                                                                          |

## Clock Signal

Clock is differential signal labeled as CLK (+ pin) and CLKb (- pin). The clock signal is of repetitive "1010" pattern with a pattern bit rate equal to that of the DDR4 data rate, resulting in a clock frequency of ½ Data Rate. The clock driver pin is referencing a DQS driver model and the clock receiver pin is referencing a CLK receiver model in the IBIS file.





Command and Address (CA) signal

CA is single-ended signal labeled as CA0. The CA signal is a random pattern with a pattern bit rate equal to that of the DDR4 data rate, because the columns and row address signals are multiplexed onto one address line. CA driver pin is referencing a DQ driver model in the IBIS file. CA receiver pin is referencing a CA receiver model in the IBIS file.





## Control Signal

The control signals are single-ended. In this example, the clock-enable signal is labeled as CKEO, and the Chip Select signal is labeled as CSO. These signals use a random pattern with a pattern bit rate equal to one-half of the DDR4 data rate, because the control signal is only triggered on the clock rising edge. CKEO and CSO driver pins are referencing a DQ driver model in the IBIS file. CKEO and CSO receiver pins are referencing CKEO and CSO receiver models respectively in the IBIS file.





## Data Signal in READ Cycle

Data Strobe is a differential signal labeled as DQS\_Read and DQSb\_Read. The Data signal is a singleended signal labeled as DQ0. In Read cycle, DQS and DQ are edge-aligned, as shown in the waveform below. DQS and DQ driver pins are referencing the DQS and DQ driver models respectively in the IBIS file. DQS and DQ receiver pins are referencing the DQS and DQ receiver models respectively in the IBIS file.

## NOTE

The DQS and DQ drivers are driving a 50 Ohm load because the DDR4 DQS and DQ drivers are of pseudo open drain (POD) type, the voltage level at the load termination is set to Vdd.

The waveforms generated from this simulation setup can be used for AC and DC Output Measurements as specified in chapter 8 of JDEC 79-4 document.





## Data Signal in WRITE Cycle

In Write cycle, the differential Data Strobe signal is labeled as DQS and DQSb, and the single-ended data signal is labeled as DQ0. In Write cycle, DQS and DQ are center-aligned, as shown in the waveform below. This alignment is done by offsetting the DQS signal by 0.5\*UI. DQS and DQ driver pins are referencing the DQS and DQ driver models respectively in the IBIS file. DQS and DQ receiver pins are referencing DQS and DQ receiver models respectively in the IBIS file.





permute(Eye\_DQS.Height)

1.050

3.917E-10

## Transient Simulation Control Parameters

You need to set the SpeedGrade variable to one of the DDR Speed values. You can also change the number of simulation bits, where the minimal number of bits is 500 to get reasonable measurement results. To get robust results, it is recommended to use 2000 bits or more.

There is an En\_Burst variable with a default value of 1 to enable burst simulations for DQ and DQS signals. DDR4 Read/Write cycles operate in burst mode in real systems. Burst signals are required by Infiniium Offline DDR4 App software to perform valid compliance tests.



When the burst mode is enabled, the ADS data display window can display invalid DQ and DQS Eyes as shown in the following figure. This is because the DQS and DQ burst signals contain switching-on/off transients. Additionally the DQS burst signals contain preamble/post-amble edges.



To see a clean eye, run the simulation with En\_Burst=0, and save the dataset with the name \_0\_DDR4\_Ideal\_En\_Burst\_0. By switching to this dataset, you will see the DQ and DQS eyes.



Save signals to .h5 files for running compliance tests

In the Schematic view, double-click the "Netlist Include List" component to open the Edit Instance dialog box.



The ADS netlist file named MeasEqn\_Ideal.net is included in the simulation:

| 🔛 Edit Instance P                                           | arameters                                                             | ×                              |
|-------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|
| Library name:<br>Cell name:<br>View name:<br>Instance name: | ads_simulation<br>NetlistIncludeList<br>symbol<br>NetlistIncludeList1 |                                |
| Select Parame                                               | ter                                                                   | Parameter Entrv Mode           |
| NetlistType=<br>NetlistName                                 | ads ^<br>=[1]="MeasEqn_Ideal.net"                                     | (arre                          |
|                                                             | Ψ.                                                                    | Display parameter on schematic |
| Add                                                         | Cut Paste                                                             | Component Options Reset        |
| NetlistType:Ne                                              | tlist type (repeatable)                                               |                                |
| ОК                                                          | Apply                                                                 | Cancel Help                    |

MeasEqn\_Ideal.net is available in the data folder of your current workspace. In ADS Main Window, under the **File View** tab, you can right-click the data folder to explore the files in the folder. You will see several MeasEqn\*.net files in this folder; each of them is being used in a simulation setup. You can copy a netlist file with a new name, and use a text editor to modify it for your unique simulation setups.



The following function is used to generate the .h5 file:

write\_infiniium\_h5(NodeName, FileName\_h5, Waveform\_Path, Sub\_Folder, InterpolationFlag, Tstart, Tstop, Tstep, BW)

where,

- NodeName is the node name defined by the user in schematic window,
- FileName\_h5 is the file name to be saved in .hdf5 format
- Waveform\_Path is the file path to the folder where .h5 files are saved
- Sub\_Folder is the sub-folder name under Waveform\_Path. It can be NULL if no sub-folder is needed.
- InterpolationFlag: 0 means no interpolation. 1 means "interpolating the data between Tstart and Tstop using a uniform Tstep"
- Tstart is start time for data collection
- Tstop is stop time for data collection
- Tstep is time step for data collection
- BW is bandwidth value used by Infiniium Offline for processing the waveform samples. Default value is 50GHz, which is sufficient for DDR4 applications.

#### Example of writing DQ0 signal to DQ0.h5 file:

ael DQ0\_HDF5=write\_infiniium\_h5(DQ0, "DQ0", WaveformPath, "", 1, Data\_Collection\_Start[0], Data\_Collection\_Stop[0], Data\_Output\_Increment[0], 50e9)

# Running DDR4 Compliance Tests

- 1. Launch Infiniium Offline.
- 2. Select Analyze > Automated Test Apps > N6462A DDR4 Test App.



3. Select Speed Grade as DDR4-2400 under the Set Up tab.

| DDR4 Test D   | DR4 Device 1 *                    |                                             |                 |
|---------------|-----------------------------------|---------------------------------------------|-----------------|
| File View Too | ls Help                           |                                             |                 |
| 🗅 📽 🖬 🔤       |                                   |                                             |                 |
| Task Flow _   | Set Up   Select Tests   Configure | Connect Run Tests Automation Results        | Html Report     |
| Set Up        |                                   | DDR4 Test En                                | vironment Setup |
|               | Device Under Test (DUT)           |                                             |                 |
| U V I         | Speed Grade                       | Test Mode                                   | AC Levels       |
| Select Tests  | O DDR4-1600                       | Compliance                                  | DQ CA           |
|               | O DDR4-1866                       | C Custom                                    | (• 120 (• 120   |
| $\vee$        | O DDR4-2133                       |                                             |                 |
| Configure     | ODR4-2400                         | Burst Triggering Method                     |                 |
| Configure     | C DDR4-2666                       | <ul> <li>DQS-DQ Phase Difference</li> </ul> |                 |
| $\downarrow$  | C DDR4-3200                       | C MSOx Logic Triggering                     |                 |
| Connect       | Set Mask File Derate              | e Table File Threshold Settings Offli       | DDR Debug Tool  |
|               | Test Report Comment               | s (Optional)                                |                 |
| <b>V</b>      | Device Identifier:                | User Description:                           |                 |
| Run Tests     | (SELECT OR TYPE)                  | ✓ (SELECT OR TYPE)                          | <b>▼</b>        |
|               | Comments:                         |                                             |                 |
|               |                                   |                                             | *               |
|               |                                   |                                             | -               |
|               | <i>p</i> .                        |                                             |                 |
|               |                                   |                                             |                 |

- 4. Click **Offline Setup** to load the ADS simulated waveform files from the directory data/Waveforms\_DDR4\_ideal.
- 5. Select Enable Offline Processing in the Offline Processing window.
- 6. Click **Browse** to load DQ\_Read and DQS\_Read signals to perform a set of Read Cycle tests.

| Enable Offline Processi  | ing                                                                          |          | Done   |
|--------------------------|------------------------------------------------------------------------------|----------|--------|
| Source Waveform File (*. | wfm / *.h5)                                                                  |          |        |
| lock :                   | 4_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\CLK_Diff.h5    | ∢ _      | Browse |
| QS Differential :        | DR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\DQS_Read_Diff.h5     | ¥.       | Browse |
| ata (DQ)/Data Mask (DN   | N): [11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\DQ0_Read.h5 | ¥.       | Browse |
| hip Select (CS) :        | ault14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\CS0.h5    | ¥.       | Browse |
| A/Command/Address :      | ault14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\CA0.h5    | ¥.       | Browse |
| QS Plus:                 | 11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\DQS_Read.h5      | <b>√</b> | Browse |
| QS Minus :               | 1\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\DQSb_Read.h5      | ¥ .      | Browse |
| LK Plus :                | ault14 11\DDR4 Compliance Test Bench wrk\data\Waveforms DDR4 ideal\CLK.h5    | 1        | Browse |

- 7. Click Done.
- 8. Click the **Select Tests** tab.

There are a total of 66 tests available, 31 of them being electrical tests and the other 35 being timing tests. We will perform the following set of tests on the signals loaded in the previous tests.

Because the Read cycle DQ/DQS signals and Clock signals are loaded in the Offline Processing window, we will do Read cycle tests and clock signal tests, which add up to a total number of 50. It is recommended to incrementally perform these tests, that is, run a sub-group of tests at a time. The test results under the **Results** and **HTML Report** tabs will accumulate incrementally, as illustrated in the following screenshots.



b. Electrical Tests -> Single Ended Signals -> Overshoot/Undershoot: 8 tests

| 🖻 🖳 🔘 Single-Ended Signals                      |
|-------------------------------------------------|
| 😟 🗌 🔿 WRITE cycle tests                         |
| 🕀 🗖 🔘 READ cycle tests                          |
| 🖻 🔽 🔿 Overshoot/Undershoot (Address, Control)   |
| Overshoot amplitude (Address, Control)          |
| 🗹 🔿 Overshoot area (Address, Control)           |
| 🗹 🔿 Undershoot amplitude (Address, Control)     |
| Undershoot area (Address, Control)              |
| 🖃 🔽 🔿 Overshoot/Undershoot (Data, Strobe, Mask) |
| 🗹 🔿 Overshoot amplitude (Data, Strobe, Mask)    |
| 🗹 🔿 Overshoot area (Data, Strobe, Mask)         |
| 🗹 🔿 Undershoot amplitude (Data, Strobe, Mask)   |
| 🔤 🖸 Undershoot area (Data, Strobe, Mask)        |
|                                                 |

| Test Name                                              | Actual Val          | Margin | Pass Limits                         |
|--------------------------------------------------------|---------------------|--------|-------------------------------------|
| VOH(AC)                                                | 1.20929000000 V     | 18.6%  | VALUE >= 0.85*VDDQ_Volt V           |
| X VOH(DC)                                              | 1.20929000000 V     | -8.4%  | VALUE >= 1.1*VDDQ_Volt V            |
| VOL(AC)                                                | 528.81000000 mV     | 19.9%  | VALUE <= 0.55*VDDQ_Volt V           |
| VOL(DC)                                                | 528.81000000 mV     | 11.9%  | VALUE <= 0.5*VDDQ_Volt V            |
| √ SRQseR                                               | 6.309028000000 V/ns | 46.2%  | 4.00000000000 V/ns <= VALUE <= 9.00 |
| √ SRQseF                                               | 5.391627000000 V/ns | 27.8%  | 4.00000000000 V/ns <= VALUE <= 9.00 |
| ✓ Overshoot amplitude (Address, Control)               | 67.73000000 mV      | 77.4%  | VALUE <= 300.00000000 mV            |
| <ol> <li>Overshoot area (Address, Control)</li> </ol>  |                     |        | Information Only                    |
| ✓ Undershoot amplitude (Address, Control)              | 75.83000000 mV      | 74.7%  | VALUE <= 300.00000000 mV            |
| <ol> <li>Undershoot area (Address, Control)</li> </ol> |                     |        | Information Only                    |
| ✓ Overshoot amplitude (Data, Strobe, Mask)             | 18.45000000 mV      | 95.4%  | VALUE <= 400.00000000 mV            |
| √ Overshoot area (Data, Strobe, Mask)                  | 500.443200 µV-ns    | 99.7%  | VALUE <= 200.00000000 mV-ns         |
| ✓ Undershoot amplitude (Data, Strobe, Mask)            | -484.37000000 mV    | 251.4% | VALUE <= 320.00000000 mV            |
| ✓ Undershoot area (Data, Strobe, Mask)                 | 0.00000000000 V-ns  | 100.0% | VALUE <= 100.00000000 mV-ns         |

c. Electrical Tests -> Differential Signals -> READ cycle tests: 4 tests





d. Timing Tests -> READ cycle tests: 13 tests

| <ul> <li>Timing Tests</li> <li>WRITE cycle tests</li> <li>READ cycle tests</li> <li>P &lt; O Data Timing</li> <li>O Data Timing</li> <li>O tDQSQ</li> <li>O tQH</li> <li>O tLZDQ</li> <li>O tHZDQ</li> <li>O tRPRE</li> <li>O tRPRE</li> <li>O tRPST</li> <li>O tDQSCK</li> <li>O tDVAC(Clock)</li> <li>O tLZDQS</li> <li>O tLZDQS</li> <li>O tQSL</li> <li>O tDVAC(Strobe)</li> </ul> |                      |        |                                      |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|--------------------------------------|---|
| Test Name                                                                                                                                                                                                                                                                                                                                                                              | Actual Val           | Margin | Pass Limits                          | * |
| <li>Undershoot area (Address, Control)</li>                                                                                                                                                                                                                                                                                                                                            |                      |        | Information Only                     |   |
| ✓ Overshoot amplitude (Data, Strobe, Mask)                                                                                                                                                                                                                                                                                                                                             | 18.45000000 mV       | 95.4%  | VALUE <= 400.00000000 mV             |   |
| √ Overshoot area (Data, Strobe, Mask)                                                                                                                                                                                                                                                                                                                                                  | 500.443200 µV-ns     | 99.7%  | VALUE <= 200.00000000 mV-ns          |   |
| √ Undershoot amplitude (Data, Strobe, Mask)                                                                                                                                                                                                                                                                                                                                            | -484.37000000 mV     | 251.4% | VALUE <= 320.00000000 mV             |   |
| √ Undershoot area (Data, Strobe, Mask)                                                                                                                                                                                                                                                                                                                                                 | 0.00000000000 V-ns   | 100.0% | VALUE <= 100.00000000 mV-ns          |   |
| VOHdiff(AC)                                                                                                                                                                                                                                                                                                                                                                            | 672.01000000 mV      | 86.7%  | VALUE >= 0.3*VDDQ_Volt V             |   |
| √ VOLdiff(AC)                                                                                                                                                                                                                                                                                                                                                                          | -673.99000000 mV     | 87.2%  | VALUE <= -0.3*VDDQ_Volt V            |   |
| √ SRQdiffR                                                                                                                                                                                                                                                                                                                                                                             | 11.313870000000 V/ns | 33.1%  | 8.00000000000 V/ns <= VALUE <= 18.00 |   |
| √ SRQdiffF                                                                                                                                                                                                                                                                                                                                                                             | 11.311140000000 V/ns | 33.1%  | 8.00000000000 V/ns <= VALUE <= 18.00 |   |
| 1 DQSQ                                                                                                                                                                                                                                                                                                                                                                                 |                      |        | Information Only                     |   |
| (Î) tQH                                                                                                                                                                                                                                                                                                                                                                                |                      |        | Information Only                     |   |
| 1 tLZDQ                                                                                                                                                                                                                                                                                                                                                                                |                      |        | Information Only                     |   |
| (i) tHZDQ                                                                                                                                                                                                                                                                                                                                                                              |                      |        | Information Only                     |   |
| (i) tRPRE                                                                                                                                                                                                                                                                                                                                                                              |                      |        | Information Only                     | Ε |
| (i) tRPST                                                                                                                                                                                                                                                                                                                                                                              |                      |        | Information Only                     |   |
| 1 DQSCK                                                                                                                                                                                                                                                                                                                                                                                |                      |        | Information Only                     |   |
| (i) tDVAC(Clock)                                                                                                                                                                                                                                                                                                                                                                       |                      |        | Information Only                     |   |
| tLZDQS                                                                                                                                                                                                                                                                                                                                                                                 |                      |        | Information Only                     |   |
| 1 tHZDQS                                                                                                                                                                                                                                                                                                                                                                               |                      |        | Information Only                     |   |
| (i) tQSH                                                                                                                                                                                                                                                                                                                                                                               |                      |        | Information Only                     |   |
| (Î) tQSL                                                                                                                                                                                                                                                                                                                                                                               |                      |        | Information Only                     |   |
| 💭 tDVAC(Strobe)                                                                                                                                                                                                                                                                                                                                                                        |                      |        | Information Only                     | Ŧ |
| •                                                                                                                                                                                                                                                                                                                                                                                      |                      |        | •                                    |   |

e. Timing Tests -> Clock timing: 19 tests

| 🖻 🗌 🔿 Timing Test                              | s                                                |
|------------------------------------------------|--------------------------------------------------|
|                                                | cycle tests                                      |
| 🗄 🗌 🔘 READ c                                   | yde tests                                        |
| 🗄 🛛 🗹 🔿 🖸 Clock Ti                             | ming                                             |
| 🖻 🔽 🔿 Risi                                     | ng Edge Measurements                             |
| <b>V</b> O                                     | tjit(CC) Rising Edge Measurements                |
| - <b>V</b> O                                   | tCK(avg) Rising Edge Measurements                |
| ✓ ○                                            | tjit(per) Rising Edge Measurements               |
| <b>-</b> O                                     | terr(2per) Rising Edge Measurements              |
| ···· 🗹 🔿                                       | terr(3per) Rising Edge Measurements              |
| - <b>·</b> · · · · · · · · · · · · · · · · · · | terr(4per) Rising Edge Measurements              |
| ···· 🗹 🔿                                       | terr(5per) Rising Edge Measurements              |
| ···· 🗹 🔿                                       | terr(6per) Rising Edge Measurements              |
| - <b>V</b> O                                   | terr(7per) Rising Edge Measurements              |
| ···· 🗹 🔿                                       | terr(8per) Rising Edge Measurements              |
| ···· 🗹 🔿                                       | terr(9per) Rising Edge Measurements              |
|                                                | terr(10per) Rising Edge Measurements             |
| ···· 🗹 🔿                                       | terr(11per) Rising Edge Measurements             |
| ···· 🗹 🔿                                       | terr(12per) Rising Edge Measurements             |
| ····· 🗹 🔿                                      | terr(nper) Rising Edge Measurements              |
| 🖻 🖳 💽 Puls                                     | se Measurements                                  |
|                                                | tCH Average High Measurements                    |
| - <b>V</b> O                                   | tCL Average Low Measurements                     |
| - <b>I</b> O                                   | tjit(duty-high) Jitter Average High Measurements |

✓ ○ tiit(duty-low) Jitter Average Low Measurements

| <u> </u> | gregality | 1011 | SILCOLI | ~~~ | uge | LOW | ricusui | cincii | • |
|----------|-----------|------|---------|-----|-----|-----|---------|--------|---|
|          |           |      |         |     |     |     |         |        |   |

| Test Name                                               | Actual Val              | Margin | Pass Limits                  |   |
|---------------------------------------------------------|-------------------------|--------|------------------------------|---|
| 1 tQSH                                                  |                         |        | Information Only             |   |
| 1 tQSL                                                  |                         |        | Information Only             |   |
| 1 tDVAC(Strobe)                                         |                         |        | Information Only             |   |
| √ tjit(CC) Rising Edge Measurements                     | 24 ps                   | 71.1%  | VALUE <= 83 ps               |   |
| (1) tCK(avg) Rising Edge Measurements                   |                         |        | Information Only             |   |
| √ tjit(per) Rising Edge Measurements                    | -18 ps                  | 28.6%  | -42 ps <= VALUE <= 42 ps     |   |
| i terr(2per) Rising Edge Measurements                   |                         |        | Information Only             |   |
| (i) terr(3per) Rising Edge Measurements                 |                         |        | Information Only             |   |
| terr(4per) Rising Edge Measurements                     |                         |        | Information Only             |   |
| i terr(5per) Rising Edge Measurements                   |                         |        | Information Only             |   |
| 🛈 terr(6per) Rising Edge Measurements                   |                         |        | Information Only             |   |
| <ol> <li>terr(7per) Rising Edge Measurements</li> </ol> |                         |        | Information Only             |   |
| terr(8per) Rising Edge Measurements                     |                         |        | Information Only             |   |
| (1) terr(9per) Rising Edge Measurements                 |                         |        | Information Only             |   |
| terr(10per) Rising Edge Measurements                    |                         |        | Information Only             |   |
| (1) terr(11per) Rising Edge Measurements                |                         |        | Information Only             |   |
| (1) terr(12per) Rising Edge Measurements                |                         |        | Information Only             | E |
| (1) terr(nper) Rising Edge Measurements                 |                         |        | Information Only             |   |
| ✓ tCH Average High Measurements                         | 499.430532562 mtCK(avg) | 48.6%  | 480.000000000 mtCK(avg) <= \ | 6 |
| ✓ tCL Average Low Measurements                          | 500.598587745 mtCK(avg) | 48.5%  | 480.000000000 mtCK(avg) <= \ | 6 |
| i tjit(duty-high) Jitter Average High Measurements      |                         |        | Information Only             | ш |
| 🚺 tjit(duty-low) Jitter Average Low Measurements        |                         |        | Information Only             | Ŧ |
| · ·                                                     |                         |        | 4                            |   |
| Details: tjit(duty-low) Jitter Average Low Measu        | rements                 |        |                              |   |
| Trial 1                                                 |                         |        |                              |   |
| Parameter Value                                         |                         |        |                              | ~ |
| Pass Limits Info Only                                   |                         |        |                              |   |
| Parameter Tested tjit Duty Low                          |                         |        | 1                            | = |
| Actual Value 24 ps                                      |                         |        |                              |   |
| Min -20,347 ps                                          |                         |        |                              |   |
| Max 23.745 ps                                           |                         |        |                              |   |
| Abs. Diff 44.092 ps                                     |                         |        |                              | - |

9. Load the Write cycle DQ/DQS signals and Clock signals in the Offline Processing window, and perform Write cycle tests, which add up to a total number of 16.

| DQS Differential :  | 4_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal/DQS_Diff.h5            | Browse |
|---------------------|--------------------------------------------------------------------------------------|--------|
| Data (DQ)/Data Masl | k (DM) : jsult 14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_ideal\DQ0.h5 | Browse |
| Chip Select (CS) :  | C:\Users\kedhawan\default14_11\DDR4_Compliance_Test_Bench_wrk\data\Wavefor 🗸         | Browse |
| CA/Command/Addres   | ss : C:\Users\kedhawan\default14_11\DDR4_Compliance_Test_Bench_wrk\data\Wavefor 🗸    | Browse |
| DQS Plus:           | jult14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_deal\DQS.h5             | Browse |
| DQS Minus :         | lt14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_idsal\DQSb.h5             | Browse |

Out of the 16 tests for Write cycle, 13 of them are electrical tests, and 3 of them are timing tests:



| USEH(Strobe)        |                   |        | Information Only                           |   |
|---------------------|-------------------|--------|--------------------------------------------|---|
| (i) VSEL(Strobe)    |                   |        | Information Only                           |   |
| (i) VSEH(Clock)     |                   |        | Information Only                           |   |
| (1) VSEL(Clock)     |                   |        | Information Only                           |   |
| VIHdiff.CK(AC)      | 1.149970000000 V  | 379.2% | VALUE >= 2*(VIHAC_CA_Volt-VrefCA_Volt) V   |   |
| (I) VIHdiff.CK(DC)  |                   |        | Information Only                           |   |
| VILdiff.CK(AC)      | -1.149590000000 V | 379.0% | VALUE <= 2*(VILAC_CA_Volt-VrefCA_Volt) V   |   |
| (1) VILdiff.CK(DC)  |                   |        | Information Only                           |   |
| VIHdiff.DQS(AC)     | 661.88000000 mV   | 175.8% | VALUE >= 2*(VIHAC_DQ_Volt-VrefDQ_Volt) V   |   |
| (i) VIHdiff.DQS(DC) |                   |        | Information Only                           | Ξ |
| VILdiff.DQS(AC)     | -632.26000000 mV  | 163.4% | VALUE <= 2*(VILAC_DQ_Volt-VrefDQ_Volt) V   |   |
| (1) VILdiff.DQS(DC) |                   |        | Information Only                           |   |
| X VIX(CK)           | -133.015000000 mV | -5.4%  | -120.00000000 mV <= VALUE <= 120.000000000 |   |
| 1 twpre             |                   |        | Information Only                           |   |
| (i) tWPST           |                   |        | Information Only                           | Ŧ |
| •                   | III               |        | 4                                          |   |

The tCKE test generates the following error message: DDR4 Test Internal Error

| oontric. |                                                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Exception: Run Stopped.<br>The run has been stopped.                                                                                                                                                                                          |
|          | Test Name: tCKE<br>Unable to find signal below that is required for this test.<br>Please ensure that signal below is selected as one of the Pin Under Test(PUT) option<br>under the Configure tab for the corresponding Timing test;<br>1.CKE |
|          | ОК                                                                                                                                                                                                                                            |

To complete tCKE test, perform the following steps:

- 1. Click the **Configure** tab.
- 2. Find Timing Tests > Test Setup for Command and Address Timing ONLY > Channel 4 > Signal selected
- 3. Change the selected signal from (/CS0 Gnd) to (/CKE0 Gnd)
  - ⊡… Test Setup for: Command and Address Timing ONLY
    - ---- 🎱 Max Measurement Count (100)
    - --- 🕘 Clocking Method (1T Timing)
    - ---- 🕒 Edge Type for SetupTime measurements (BOTH Rising and Falling edge)
    - ---- 🕘 Edge Type for HoldTime measurements (BOTH Rising and Falling edge)

    - . ⊡… ○ Channel4
      - ---- 🎱 Option (Pin Under Test)
      - Signal selected (CKE0,Gnd)
- 4. Run this 1 test only. Clear all the tests that have been completed already in the earlier steps.

| Select Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Configure Connect Run |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|
| All DDR4 Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All DDR4 Tests        |  |  |  |  |  |  |  |
| 🗌 🌒 Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al Tests              |  |  |  |  |  |  |  |
| 🗄 🖳 🌒 Sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gle-Ended Signals     |  |  |  |  |  |  |  |
| 🗄 🔲 🌒 Diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ferential Signals     |  |  |  |  |  |  |  |
| 🗌 🕕 Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tests                 |  |  |  |  |  |  |  |
| 🚊 🔲 🕕 🗰 🕅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITE cycle tests       |  |  |  |  |  |  |  |
| 🚊 🗖 🌑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data Strobe Timing    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) tWPRE             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🔲 🚺 tWPST             |  |  |  |  |  |  |  |
| O Command Address Timing     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O |                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |  |  |  |  |
| 🗄 🔲 🌒 RE/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD cycle tests        |  |  |  |  |  |  |  |
| 🗄 🥅 🌑 Clo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ck Timing             |  |  |  |  |  |  |  |

After all tests are completed, click the **HTML Report** tab to view the Test Report.



## **Agilent Technologies**

## **DDR4 Test Report**

### Overall Result: FAIL

| Test Configuration Details   |                                |  |  |  |  |
|------------------------------|--------------------------------|--|--|--|--|
| Device Description           |                                |  |  |  |  |
| Burst Triggering Method      | DQS-DQ Phase Difference        |  |  |  |  |
| Test Mode                    | Compliance                     |  |  |  |  |
| Speed Grade                  | DDR4-2400                      |  |  |  |  |
| Test Session Details         |                                |  |  |  |  |
| Infiniium SW Version         | 05.01.9040                     |  |  |  |  |
| Infiniium Model Number       | N8900A                         |  |  |  |  |
| Infiniium Serial Number      | No Serial                      |  |  |  |  |
| Application SW Version       | 1.10.9002                      |  |  |  |  |
| Debug Mode Used              | No                             |  |  |  |  |
| Compliance Limits (official) | DDR4-2400 Test Limit           |  |  |  |  |
| Last Test Date               | 2014-07-25 13:56:18 UTC -07:00 |  |  |  |  |

#### Summary of Results



# Setting up DDR4 Compliance Test Bench Simulations

Command and Address (CA) Bus simulation setup (\_1\_Sim\_CA)



In \_1\_Sim\_CA, the following CA Bus topology simulation has been setup:

It is a simplified CA bus topology, with 6 singled-ended CA signals (CA0~CA5), 1 single-ended control signal (CS0 for Chip Select), and 1 differential clock signal (+/-, CLK/CLKb).

The block on the left side is a pattern generator:

- a. CA0~CA5 are generating pseudo-random bit patterns at a rate equal to the data rate. The reason for this bit rate is that column and row address signals are multiplexed to the same address line. As a result, the address bus is running the same bit rate as that on the data bus.
- b. CLK\_0101 is generating a repetitive 0101 bit pattern at the same rate as CA0~CA5
- c. CS0 is generating a pseudo-random bit pattern at a ½ the rate of CA0~CA5.

The CA\_Driver and CA\_Receiver blocks contain I/O buffer models referencing the same IBIS file. In practice, you should get at least 2 IBIS files, one from your DRAM vendor (e.g., Micron) for the DRAM I/O, and another one from your processor vendor (e.g., Intel) for the controller I/O. This example uses only one IBIS file from Micron for the DRAM I/O. It uses a DRAM DQ pin driver model, as if it were the controller CA pin driver, to drive the CA bus. Following screenshot shows how the CA Pin driver and receiver models are set up using alias names:

CA and CLK Driver Pin:



CA Receiver Pin:

#### Use Aliases



| ile Alias        | DRAM_IBIS_File |
|------------------|----------------|
| oonentName Alias | DRAM_Component |
| ame Alias        | DRAM_CA_Pin    |
| elName Alias     | DRAM_CA_Model  |
| inName Alias     |                |

CS0 Receiver Pin:

Use Aliases



| IbisFile Alias      | DRAM_IBIS_File |
|---------------------|----------------|
|                     |                |
| ComponentName Alias | DRAM_Component |
|                     |                |
| PinName Alias       | DRAM_CS_Pin    |
|                     |                |
| ModelName Alias     | DRAM_CS_Model  |
|                     |                |
| InvPinName Alias    |                |
|                     |                |

CLK/CLKb Receiver Pin:

Use Aliases



| Var  | DDR4_DRAM_IBIS_AliasParameter  | •   | •        | •   | •   | ·     | ·        |
|------|--------------------------------|-----|----------|-----|-----|-------|----------|
| حجعا | DRAM_Corner=Corner             |     | •        | •   | •   | •     | ·        |
| •    | DRAM_IBIS_File="z80a_v5p0.ibs" |     |          | •   |     |       |          |
|      | DRAM_Component="MT40A512M8H    | IX' | <b>.</b> |     |     |       |          |
|      | DRAM_TX_DQS_Model="DQS_40_2    | 240 | 0"       |     |     |       |          |
|      | DRAM_TX_DQS_Pin="DQS_t"        |     |          |     |     |       |          |
| •    | DRAM_TX_DQSb_Pin="DQS_c"       | •   | •        | •   | •   | •     | •        |
| •    | DRAM_TX_DQ_Model="DQ_40_240    | 0"  | •        | •   | ·   | •     | •        |
|      | DRAM_TX_DQ_Pin="DQ0"           |     |          | •   | •   | •     |          |
|      | DRAM_ODT_DQS_Model="DQS_IN     | 0   | DT1      | 120 | _24 | 00'   | <b>1</b> |
|      | DRAM_ODT_DQS_Pin="DQS_t"       |     |          |     |     |       |          |
|      | DRAM_ODT_DQSb_Pin="DQS_c"      |     |          |     |     |       |          |
| •    | DRAM_ODT_DQ_Model="DQ_IN_OI    | DT  | 120      | _24 | 100 | er er | •        |
| •    | DRAM_ODT_DQ_Pin="DQ0"          |     | ·        | •   | ·   | ·     | ·        |
|      | DRAM_CA_Model="INPUT_2400"     |     |          |     |     |       |          |
|      | DRAM_CA_Pin="A6"               |     |          |     |     |       |          |
|      | DRAM_CLK_Model="CLKIN_2400"    |     |          |     |     |       |          |
|      | DRAM_CLK_Pin="CK_t"            |     |          |     |     |       |          |
|      | DRAM CLKb Pin="CK c"           |     |          |     |     |       |          |

There is a wide range of CA bus/channel topologies connecting the controller and the memory devices:

- 1. A system can have 1~4 memory channels
- 2. Each channel can have 1~4 DIMM (dual in-line memory module) slots
- 3. Each DIMM can have 1~2 ranks of memory
- 4. Each rank can have 1~8 DRAM packaged devices
- 5. Each DRAM device package can have 1~4 memory dies
- 6. Each die can have 4~8 banks of memory
- 7. Each die can be X4~X16 in width.

Two CA bus topology examples are available in the folder named "PCB, DIMM and Package Models" as shown in the following figure:



DDR4 uses a "fly-by" topology for distributing Command & Address, Clock and Command Signals. Following is an illustration of the "fly-by" topology, as compared to the "tree" topology (also known as "symmetrical T-branch topology") used in DDR2 or earlier designs:



In this example, we have run 300-bit simulation for the CA bus, and generated CA Eye diagrams. The waveforms for CA0~CA5, CS0 and CLK/CLKb signals are saved in the data directory of your current workspace, which will be used later for compliance tests.



| 12.97                      | Name        | Date modified      | Type         | Size                                                                                                            |
|----------------------------|-------------|--------------------|--------------|-----------------------------------------------------------------------------------------------------------------|
| ntes                       |             |                    |              | A DESCRIPTION OF THE OWNER OF THE |
| :ktop                      | CA0.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
| ent Places                 | CA1.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
| NG, JIAN (A-Americas, ex1) | E CA2.h5    | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
|                            | CA3.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 K8                                                                                                           |
| ries                       | CA4.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
| cuments                    | CAS.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
| sic                        | CLK.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
| tures                      | CLK_Diff.h5 | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
| eos                        | CLKb.h5     | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
|                            | CS0.h5      | 7/26/2014 11:26 AM | NCSA HDFView | 17 KB                                                                                                           |
|                            |             |                    |              |                                                                                                                 |

## WRITE cycle data bus simulation setup (\_2\_Sim\_DQ\_WRITE)

In \_2\_Sim\_DQ\_WRITE, the following WRITE cycle data bus simulation has been setup.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WRITE operation: Memor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry Controller is transmitting data to | DRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pat_DO0<br>Pat_DO1<br>Pat_DO2<br>Pat_DO2<br>Pat_DO3<br>Pat_DO3<br>Pat_DO3<br>Pat_DO3<br>Pat_DO3<br>Pat_DO3<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO5<br>Pat_DO | Patin_DQD Patin_DQ2 Patin_DQ2 Patin_DQ2 Patin_DQ3 Patin_DQ3 Patin_DQ3 Patin_DQ3 Patin_DQ3 Patin_DQ3 Patin_DQ4 Patin_DQ5 Patin_DQ5 Patin_QQ5 Patin_ | DDR4 DQ Channel                       | DQ0         000_in           DQ1         001_in           DQ2         001_in           DQ2         002_in           DQ3         002_in           DQ3         002_in           DQ3         003_in           DQ5         005_in           DQ5         005_in           DQ4         004_in           DQ5         005_in           DQ6         006_in           DQ6         006_in           DQ7         007_in           CLK         0K_in           CLKb         0LNb_in |
| PatternGen_DQ_WRITE_Burst<br>DQ_DQS_Pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Controller_DQ_Driver F<br>DQ_DQS_Driver E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CB_DQ_1DIMM_2Ranks<br>DQ_DQS_Bus      | DRAM_DQ_Receiver<br>DQ_DQS_Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                    |

The data (DQ/DQS) bus has different characteristics compared to the command address (CA) bus:

- DQ bus is bi-directional to handle data traffic in "controller-write-to-DRAM" and "controller-readfrom-DRAM" cycles.
- DQ bus runs in burst mode. Data strobe (DQS) also runs in burst mode. DQ and DQS bursts are edge-aligned in READ cycle, and center-aligned in WRITE cycle.
- DQ bus is using a point-to-point topology, not a fly-by topology used for CA bus.

The block on the left side is a DQ/DQS pattern generator for a byte-lane:

- 1. DQ0~DQ7 are generating pseudo-random bit patterns at a rate set by the SpeedGrade parameter. The Delay parameter on DQ0~DQ7 is set to be 0.
- 2. CLK is generating a repetitive 0101 clock pattern at the same rate as DQ0~DQ7, resulting in a clock frequency equal to ½ of the data rate.
- 3. DQS is generating a repetitive 0101 bit pattern at the same rate as DQ0~DQ7. The Delay parameter on DQs is set to be 0.5\*UI, which will make the DQS pattern center-aligned with the DQ pattern



- 4. DQS pattern has preamble and post-amble bits on it.
- 5. EnableDQ and EnableDQS pulses are used to control the on/off states of DQS/DQS bursts. BL (Burst Length) parameter is set to 16 to simulate 2 consecutive 8-bit bursts.

The DQ\_DQS\_Driver and DQ\_DQS\_Receiver blocks contain I/O buffer models referencing the same IBIS file. In practice, you should get at least 2 IBIS files, one from your DRAM vendor (e.g., Micron) for the DRAM I/O, and another one from your processor vendor (e.g., Intel) for the controller I/O. This example uses only one IBIS file from Micron for the DRAM I/O. It uses a DRAM DQ pin driver model, as if it were the controller DQ pin driver, to drive the DQ bus. Following screenshot shows how the DQ Pin driver and receiver models are set up using alias names:

DQ and DQS Driver Pins:



Use Aliases

IbisFile Alias

PinName Alias

ModelName Alias

InvPinName Alias

DRAM\_IBIS\_File

DRAM\_TX\_DQ\_Pin

DRAM\_TX\_DQ\_Model

ComponentName Alias DRAM\_Component

Use Aliases

| IbisFile Alias      | DRAM_IBIS_File    |
|---------------------|-------------------|
| ComponentName Alias | DRAM_Component    |
| PinName Alias       | DRAM_TX_DQS_Pin   |
| ModelName Alias     | DRAM_TX_DQS_Model |
| InvPinName Alias    | DRAM_TX_DQSb_Pin  |

DQ and DQS Receiver Pins:

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vise Aliases                                                                                                      |                   | Vise Aliases        |                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|--------------------|
|     | BIS DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                   |                     |                    |
| Int |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IbisFile Alias                                                                                                    | DRAM_IBIS_File    | IbisFile Alias      | DRAM_IBIS_File     |
|     | PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ComponentName Alias                                                                                               | DRAM_Component    | ComponentName Alias | DRAM_Component     |
| lr. | GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PinName Alias                                                                                                     | DRAM_ODT_DQ_Pin   | PinName Alias       | DRAM_ODT_DQS_Pin   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ModelName Alias                                                                                                   | DRAM_ODT_DQ_Model | ModelName Alias     | DRAM_ODT_DQS_Model |
|     | DigÒ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | InvPinName Alias                                                                                                  |                   | InvPinName Alias    | DRAM_ODT_DQSb_Pin  |
|     | DDR4_DRAM_IBIS_AliasPara<br>DRAM_Corner=Corner<br>DRAM_IBIS_File="z80a_v5p0:<br>DRAM_Component="MT40A5<br>DRAM_TX_DQS_Model="DQS<br>DRAM_TX_DQS_Pin="DQS_t"<br>DRAM_TX_DQS_Pin="DQS_t"<br>DRAM_TX_DQ_SPin="DQS_t"<br>DRAM_TX_DQ_Pin="DQS"<br>DRAM_ODT_DQS_Model="DQ<br>DRAM_ODT_DQS_Pin="DQS<br>DRAM_ODT_DQS_Pin="DQS<br>DRAM_ODT_DQS_Pin="DQS<br>DRAM_ODT_DQ_Model="DQ<br>DRAM_ODT_DQ_Pin="DQ0"<br>DRAM_ODT_DQ_Pin="DQ0"<br>DRAM_ODT_DQ_Pin="DQ0"<br>DRAM_CA_Model="INPUT_24<br>DRAM_CA_Pin="A6"<br>DRAM_CLK_Pin="CK_t" | meter<br>ibs"<br>12M8HX"<br>§_40_2400"<br>c"<br>0_2400"<br>QS_IN_ODT120_2<br>t"<br>§_c"<br>IN_ODT120_2400<br>000" | 2400".            |                     |                    |

Two DQ bus topology examples are available in the folder named "PCB, DIMM and Package Models" as shown in the following figure. One is a 24-port S-parameter file. The other one is a sub-circuit built from multi-layer transmission line models.



In this example, we have run 500-bit simulation for the DQ bus to check the validity of the DQ/DQS signals, for example, check if DQ0 and DQS are center-aligned. The waveforms for DQ0~DQ7, DQS/DQSb and CLK/CLKb signals are saved in the data directory of your current workspace, which will be used later for compliance tests.





| <ul> <li>Include in library</li> </ul> | Share with  Burn New folder |                   |              | ]≡ ▼  |
|----------------------------------------|-----------------------------|-------------------|--------------|-------|
| ites                                   | Name                        | Date modified     | Туре         | Size  |
| ktop                                   | DQ0.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| ent Places                             | DQ1.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| VG, JIAN (A-Americas, ex1)             | DQ2.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
|                                        | DQ3.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| ies                                    | DQ4.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| uments                                 | DQ5.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| sic                                    | DQ6.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| ures                                   | DQ7.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| eos                                    | DQS.h5                      | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
|                                        | DQS_Diff.h5                 | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| 31CXC7                                 | DQSb.h5                     | 7/26/2014 9:02 AM | NCSA HDFView | 10 KB |
| al Dick (C)                            | CALINE VENTO VEN            |                   |              |       |

## READ cycle data bus simulation setup (\_3\_Sim\_DQ\_READ)

In \_3\_Sim\_DQ\_READ, the following READ cycle data bus simulation has been set up.

- The block on the right-hand side is a data pattern generator on the DRAM side, generating PRBS pattern at a rate specified by SpeedGrade parameter.
- Next to the DRAM pattern generator is the DQ/DQS pin drivers on the DRAM side, referencing an IBIS model from Micron. The output signals from DRAM driver output pins are labeled as DQ0\_out~DQ7\_out, DQS\_out/DQSb\_out.
- The DRAM output signals leave the IO pads, go through "package->DIMM PCB->DIMM connector->Motherboard PCB lines and vias->CPU package", and finally arrive at the controller I/O pads. The input pins to the controller receivers are labeled as DQ0~DQ7, DQS/DQSb.

| Please Choose one of the DDR4 Speed-Grade Options: 1600, 1866, 2133, 2400, 2666, 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| SimControlParameters<br>SpeedGrade=2400<br>No_of_simBits=500<br>Tran Netlist Include List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br><br>  |
| Final_Sim.       NetlistIncludeList1         CalcSimControlParams       StartTime=Data_Collection_Start         Diff_CLK       StopTime=Data_Collection_Stop         WaveformPath=".\WaveformPath"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br><br>  |
| Iver<br>Signal_PostProcessing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · |
| READ operation: DRAM is transmitting data to Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| DDR4 DQ Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| D00_inD01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| DQ2_inDQ2 and DIMM SlotDQ2_outPath_DQ2_outPath_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ2Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path_DQ3Path |           |
| DQ3_inDQ3_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| DQSb_inDQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| CLKb_outCLKb_outvxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Controller_DQ_Receiver PCB_DQ_1DIMM_2Ranks DRAM_DQ_Driver PatternGen_DQ_R<br>Controller_DQ_RX DQ_Interconnect DRAM_DQ_TX DQ_READ_Patterr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EAD_Burst |
| Clock Signal is transmitted from Controller to DRAM triggering DQ output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>,</u>  |
| ClK out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| CLKb.jn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |

### NOTE

In this simulation setup, the clock signal labeled as CLK\_out/CLKb\_out is sent from the controller (the block on the left-hand side) to the DRAM (the block on the right-hand side). The clock signal labeled as "CLK\_in/CLKb\_in" is the signal at the input pin to DRAM clock receiver. The DRAM clock signal is used to as an "external trigger" to the DRAM DQ/DQS pattern generators, as shown in the following figure.

| PRBS_DQ7<br>Mode=User <u>Defined LFSR</u><br>Trigge= <u>External</u><br>BitRate=DQ_BitRate_Sim<br>Delay=0 | Patt_DQ7<br>Num=8 |
|-----------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                           |                   |
|                                                                                                           |                   |
|                                                                                                           |                   |
| Patt_CLKref                                                                                               |                   |
| Num=12                                                                                                    |                   |

Unlike the WRITE cycle where DQS and DQ signals are center-aligned, the READ cycle DQS and DQ signals are edge-aligned. This edge-alignment is realized by setting the **Delay** parameter on the DQ/DQS pulse generators to 0, as shown in the following figure:



In this example, we have run 500-bit simulation for the DQ bus to check the validity of the DQ/DQS signals, for example, check if DQ0 and DQS are edge-aligned in READ cycle. The waveforms for DQ0~DQ7, DQS/DQSb and CLK/CLKb signals are saved in the data directory of your current workspace, which will be used later for compliance tests.





| Include in library ▼       | Share with  Burn New folder |                   |              |       |
|----------------------------|-----------------------------|-------------------|--------------|-------|
| ites                       | Name                        | Date modified     | Туре         | Size  |
| ktop                       | CLK.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| ent Places                 | CLK_Diff.h5                 | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| NG, JIAN (A-Americas, ex1) | CLKb.h5                     | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
|                            | DQ0.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| ries                       | DQ1.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| uments                     | DQ2.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| sic                        | DQ3.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| tures                      | DQ4.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| eos                        | DQ5.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
|                            | DQ6.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| 31CXC7                     | B DQ7.h5                    | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| al Disk (C:)               | DQS.h5                      | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
|                            | DQS_Delayed.h5              | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
| ork                        | DQS_Delayed_Diff.h5         | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
|                            | DQS_Diff.h5                 | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
|                            | DQSb.h5                     | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |
|                            | DQSb_Delayed.h5             | 7/27/2014 9:41 AM | NCSA HDFView | 10 KB |

There are 3 additional .h5 files saved in the DDR4\_Read folder: DQS\_Delayed, DQSb\_Delayed and DQS\_Diff\_Delayed. These are the DQS, DQSb and DQS\_Diff waveforms with a 0.5\*UI time delay. These 3 additional waveforms are generated using the following post-processing equations:

| Meas                 |      |      | •    |      |       | •    |      | ·   | •    | •  |
|----------------------|------|------|------|------|-------|------|------|-----|------|----|
| Signal_PostProcessin | g    | •    | ·    | •    | •     | •    | •    | •   | •    | •  |
| Delay=0.5 * UI       |      | •    | •    | •    | •     | •    | •    | •   | •    | •  |
| time_Axis=indep(DQS  | ;).  |      |      |      |       |      |      |     |      |    |
| DQS_Diff=DQS-DQSb    | ).   |      |      |      |       |      |      |     |      |    |
| DQSb_Delayed=vs(D0   | QSb  | ), D | elay | ∕+ti | me    | _Ах  | is)  |     |      |    |
| DQS_Delayed=vs(DQ    | S, E | Dela | ay+t | ime  | è_A_s | xis) |      |     |      |    |
| DQS_Diff_Delayed=vs  | 6(D0 | QS-  | DQ   | Sb,  | De    | lay  | +tin | iė_ | Axis | 5) |

DQS\_Diff is edge-aligned with DQ0~DQ7 in READ cycle. By off-setting DQS\_Diff with 0.5\*UI, the DQS\_Diff\_Delayed signal will be center-aligned with DQ0~DQ7 waveforms at the controller receiver pins. The intent is to use these waveforms to perform compliance tests at the input pins to the controller receivers.

## DQ Eye Simulation (\_4\_Sim\_DQ\_Eye)

Open \_4\_Sim\_DQ\_Eye schematic. Place single-ended eye probes on DQ0~DQ7 signals, and place a differential eye probe on DQS/DQSb signals, as shown in the following figure:

| Please Choose one of the DDR4 Speed-Grade Options: 1600, 1866, 2133, 2400, 2666, 3200                                                                                                                                                                                             |                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|--|
| SimControlParameters<br>SpeedGrade=2400<br>No_of_simBits=200                                                                                                                                                                                                                      | SIENT                                                                                    | Eye_Probe<br>Eye_DQ0              | Eye_Probe<br>Eye_DQ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eye_Probe<br>Eye_DQ2           | Eye_Probe<br>Eye_DQ3 |  |
| CalcSimControlParanas Tran_Sim<br>StartTime=Da<br>StopTime=Da<br>PostProcessing                                                                                                                                                                                                   | ta_Collection_Start<br>ta_Collection_Stop                                                | Eye_DQ4                           | Eye_Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eye_Probe<br>Eye_DQ6           | Eye_Probe<br>Eye_DQ7 |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                             | E operation: Memory C                                                                    | Controller is transmitting data   | to DRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                      |  |
| Pati_DOG Patin_DO<br>Pati_DOI Patin_DO<br>Pat_DO2 Patin_DO<br>Pat_DO3 Patin_DO<br>Pati_DO3 Patin_DO<br>Pati_DO3 Patin_DO<br>Pati_DO4 Patin_DO<br>Patin_DO5 Patin_DO<br>Patin_DO5 Patin_DO<br>Patin_DO5 Patin_DO<br>Patin_DO5 Patin_DO<br>Patin_DO5 Patin_DO<br>Patin_DO5 Patin_DO | 0<br>11<br>2<br>2<br>32<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | DDR4 DQ Channel                   | DQD     dog in     DQ1     DQ2     dog in     DQ2     dog in     DQ2     dog in     DQ3     dog in     DQ5     DQ5     dog in     DQ4     dog in     DQ4     dog in     DQ5     DQ5     dog in     dog in | D0 keaker Bis (toad with 0 00) |                      |  |
| Enable_DQSEnable_DQ                                                                                                                                                                                                                                                               | as                                                                                       |                                   | 7 <u>DQ7</u> DQ7_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WANG CONTRACT                  |                      |  |
| · · · · Enable_DQ Enable_DX                                                                                                                                                                                                                                                       | Q · · · CLK <u>-</u> out                                                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · ·                |                      |  |
| Patt_CLKrefPattln_CL                                                                                                                                                                                                                                                              | K · · · CLKb_out · · · · · · · · ·                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                      |  |
| PatternGen_DQ_Continuous Controlle<br>DQ_Pattern DQ_Drive                                                                                                                                                                                                                         | er_DQ_Driver PCB                                                                         | 3_DQ_1DIMM_2Ranks<br>Interconnect | DRAM_<br>DQ_Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _DQ_Receiver<br>ceiver         |                      |  |

Click the **Simulate** icon to run the simulation. The graphs in the data display windows show DQ eye and DQS eye, and the listing tables show eye measurement values such as eye width and eye height.





These eye diagrams are generated from a transient simulation of ~500 bits, which are not sufficient for any meaningful BER contour measurements. These eye diagrams are for visual inspection and qualitative measurements only. To get meaningful BER contour or margin measurements, it is recommended to use the DDR Bus simulator in ADS 2014.11 release.

# Running Compliance Tests on Simulated Signals

We have generated .h5 waveform files for command address (CA), data signals (DQ and DQS), and clock signals (CLK), all stored in .data\waveforms folder.

| ude in library 🔻 | Share with 🔻 | Burn | New folder         |
|------------------|--------------|------|--------------------|
| Name             | ^            |      | Date modified      |
| DDR4             | CA           |      | 7/26/2014 11:26 AM |
| DDR4             | _ideal       |      | 7/25/2014 10:36 AM |
| DDR4             | Read         |      | 7/27/2014 10:04 AM |
| DDR4             | _Write       |      | 6/24/2014 11:23 AM |

To perform compliance on these signals, follow these steps:

- 1. Launch Infiniium Offline.
- 2. Select Analyze > Automated Test Apps > N6462A/N6462B DDR4 Test App.

| Analyze Utilities Demos Help |                             |
|------------------------------|-----------------------------|
| Histogram                    |                             |
| Mask Test                    |                             |
| Automated Test Apps          | U7231B DDR3 Test App        |
| Measurement Analysis (EZJIT) | N6462A/N6462B DDR4 Test App |

The DDR4 Test window is displayed.

3. Select **Speed Grade** as DDR4-2400 under the **Set Up** tab.

| DDR4 Test D                                                                                            | DR4 Device 1 *                                   |                              |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| File View Tool                                                                                         | s Help                                           |                              |  |  |  |  |  |  |  |
| 🗅 📽 🖬 🛛 🖬                                                                                              |                                                  |                              |  |  |  |  |  |  |  |
| Task Flow _ Set Up Select Tests   Configure   Connect   Run Tests   Automation   Results   Html Report |                                                  |                              |  |  |  |  |  |  |  |
| Set Up                                                                                                 | DDR4                                             | Test Environment Setup       |  |  |  |  |  |  |  |
|                                                                                                        | Device Under Test (DUT)                          |                              |  |  |  |  |  |  |  |
|                                                                                                        | Speed Grade Test Mode                            | AC Levels                    |  |  |  |  |  |  |  |
| Select Tests                                                                                           | C DDR4-1600  © Compliance                        | DQ CA                        |  |  |  |  |  |  |  |
|                                                                                                        | C DDR4-1866 C Custom                             |                              |  |  |  |  |  |  |  |
| $\downarrow$                                                                                           | C DDR4-2133                                      |                              |  |  |  |  |  |  |  |
| Configure                                                                                              | DDR4-2400     Burst Triggering Method            |                              |  |  |  |  |  |  |  |
| Configure                                                                                              | C DDR4-2666 C DQS-DQ Phase Differ                | ence                         |  |  |  |  |  |  |  |
|                                                                                                        | C DDR4-3200 C MSOx Logic Triggerin               | Ig                           |  |  |  |  |  |  |  |
| Connect                                                                                                | Set Mask File Derate Table File Threshold Settin | Offline Setup DDR Debug Tool |  |  |  |  |  |  |  |
|                                                                                                        | Test Report Comments (Optional)                  |                              |  |  |  |  |  |  |  |
| V V                                                                                                    | Device Identifier: User Descriptio               | n:                           |  |  |  |  |  |  |  |
| Run Tests                                                                                              | (SELECT OR TYPE)                                 | YPE) 💽                       |  |  |  |  |  |  |  |
|                                                                                                        | Comments:                                        |                              |  |  |  |  |  |  |  |
|                                                                                                        |                                                  | *                            |  |  |  |  |  |  |  |
|                                                                                                        |                                                  | Ŧ                            |  |  |  |  |  |  |  |
|                                                                                                        |                                                  |                              |  |  |  |  |  |  |  |
|                                                                                                        |                                                  |                              |  |  |  |  |  |  |  |

To run compliance tests on waveforms generated from "\_2\_Sim\_DQ\_WRITE", click **Offline Setup** to load ADS simulated waveform files. Instead of performing all the compliance tests at once, we will take an incremental approach to do one signal group at a time.

#### Clock signal group

1. Load CLK, CLKb, and CLK\_Diff signals from DDR4\_Write directory as shown in the following figure:

| 🖳 Offline Processing                                                                  |          |        |
|---------------------------------------------------------------------------------------|----------|--------|
| Enable Offline Processing                                                             |          | Done   |
| Source Waveform File (*.wfm / *.h5)                                                   |          |        |
| Clock : [4_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\CLK_Diff.h5    | ∢.       | Browse |
| DQS Differential :                                                                    | ×        | Browse |
| Data (DQ)/Data Mask (DM) :                                                            | ×        | Browse |
| Chip Select (CS) :                                                                    | ×        | Browse |
| CA/Command/Address :                                                                  | ×        | Browse |
| DQS Plus:                                                                             | ×        | Browse |
| DQS Minus :                                                                           | ×        | Browse |
| CLK Plus : jult 14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\CLK.h5 | <b>V</b> | Browse |
| CLK Minus :                                                                           | ¥        | Browse |

- 2. Click the **Select Tests** tab.
- 3. Select the 24 tests related to clock signals as shown in the following figure:



After running the tests, the test results become available under the **Results** tab, as shown in the following figure:

| Test Name                                               | Actual Val              | Margin | Pass Limits                                   |
|---------------------------------------------------------|-------------------------|--------|-----------------------------------------------|
| VIHdiff.CK(AC)                                          | 1.15840000000 V         | 382.7% | VALUE >= 2*(VIHAC_CA_Volt-VrefCA_Volt) V      |
| VIHdiff.CK(DC)                                          |                         |        | Information Only                              |
| √ VILdiff.CK(AC)                                        | -1.143530000000 V       | 376.5% | VALUE <= 2*(VILAC_CA_Volt-VrefCA_Volt) V      |
| 1 VILdiff.CK(DC)                                        |                         |        | Information Only                              |
| X VIX(CK)                                               | 288.117000000 mV        | -70.0% | -120.00000000 mV <= VALUE <= 120.00000000 mV  |
| √ tjit(CC) Rising Edge Measurements                     | 28 ps                   | 66.3%  | VALUE <= 83 ps                                |
| 1 tCK(avg) Rising Edge Measurements                     |                         |        | Information Only                              |
| √ tjit(per) Rising Edge Measurements                    | -18 ps                  | 28.6%  | -42 ps <= VALUE <= 42 ps                      |
| <ol> <li>terr(2per) Rising Edge Measurements</li> </ol> |                         |        | Information Only                              |
| (1) terr(3per) Rising Edge Measurements                 |                         |        | Information Only                              |
| (1) terr(4per) Rising Edge Measurements                 |                         |        | Information Only                              |
| <ol> <li>terr(5per) Rising Edge Measurements</li> </ol> |                         |        | Information Only                              |
| (1) terr(6per) Rising Edge Measurements                 |                         |        | Information Only                              |
| <ol> <li>terr(7per) Rising Edge Measurements</li> </ol> |                         |        | Information Only                              |
| <ol> <li>terr(8per) Rising Edge Measurements</li> </ol> |                         |        | Information Only                              |
| <ol> <li>terr(9per) Rising Edge Measurements</li> </ol> |                         |        | Information Only                              |
| (1) terr(10per) Rising Edge Measurements                |                         |        | Information Only                              |
| (1) terr(11per) Rising Edge Measurements                |                         |        | Information Only                              |
| (1) terr(12per) Rising Edge Measurements                |                         |        | Information Only                              |
| (i) terr(nper) Rising Edge Measurements                 |                         |        | Information Only                              |
| ✓ tCH Average High Measurements                         | 501.256170166 mtCK(avg) | 46.9%  | 480.00000000 mtCK(avg) <= VALUE <= 520.000000 |
| ✓ tCL Average Low Measurements                          | 498.743829834 mtCK(avg) | 46.9%  | 480.00000000 mtCK(avg) <= VALUE <= 520.000000 |
| 🛈 tjit(duty-high) Jitter Average High Measurements      |                         |        | Information Only                              |
| itit(duty-low) Jitter Average Low Measurements          |                         |        | Information Only                              |
| U tjit(duty-low) Jitter Average Low Measurements        |                         |        | Information Only                              |

#### DRAM DQ/DQS and CA Input Signal Group: WRITE Cycle

In WRITE cycle, data signals are at the input pins of the DRAM receivers. Load DQS\_Diff, DQS, DQSb, and DQ0 signals from the DDR4\_Write directory. Load CA0 and CS0 signals from DDR4\_CA directory.

| 🖳 Off | fline Processing         |                                                                                                   |   |        |
|-------|--------------------------|---------------------------------------------------------------------------------------------------|---|--------|
| Г E   | nable Offline Processing |                                                                                                   |   | Done   |
| So    | urce Waveform File (*.wf | m / *.h5)                                                                                         |   |        |
| Clo   | ck :                     | 4_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\CLK_Diff.h5                         | ∢ | Browse |
| DQ    | S Differential :         |                                                                                                   | ∢ | Browse |
| Dat   | a (DQ)/Data Mask (DM)    | ult14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\DQ0.h5                          | ∢ | Browse |
| Chi   | p Select (CS) :          | ${\tt sfault 14\_11\DDR4\_Compliance\_Test\_Bench\_wrk\data\Waveforms\_DDR4\_CA\CS0.h5}$          | ∢ | Browse |
| CA    | Command/Address :        | sfault14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_CA\CA0.h5                          | ∢ | Browse |
| DQ    | S Plus:                  | ult14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\DQS.h5                          | ∢ | Browse |
| DQ    | S Minus :                | $\label{eq:linear} t14_11\DDR4\_Compliance\_Test\_Bench\_wrk\data\Waveforms\_DDR4\_Write\DQSb.h5$ | ∢ | Browse |
| CLI   | (Plus :                  | ult14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\CLK.h5                          | ∢ | Browse |
| CLI   | KMinus :                 | Jtt 14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Write\CLKb.h5                        | ∢ | Browse |
|       |                          |                                                                                                   |   |        |

Under the Select Tests tab, all the 19 tests related to WRITE Cycle DQ, DQS, and CA signals



When the compliance tests are completed the results will be appended to those of the 24 previous tests, as shown in the following figure:

| Test Name                                               | Actual Val              | Margin | Pass Limits                                                |
|---------------------------------------------------------|-------------------------|--------|------------------------------------------------------------|
| tCK(avg) Rising Edge Measurements                       |                         |        | Information Only                                           |
| √ tjit(per) Rising Edge Measurements                    | -18 ps                  | 28.6%  | -42 ps <= VALUE <= 42 ps                                   |
| i terr(2per) Rising Edge Measurements                   |                         |        | Information Only                                           |
| i terr(3per) Rising Edge Measurements                   |                         |        | Information Only                                           |
| i terr(4per) Rising Edge Measurements                   |                         |        | Information Only                                           |
| terr(5per) Rising Edge Measurements                     |                         |        | Information Only                                           |
| (i) terr(6per) Rising Edge Measurements                 |                         |        | Information Only                                           |
| i terr(7per) Rising Edge Measurements                   |                         |        | Information Only                                           |
| (i) terr(8per) Rising Edge Measurements                 |                         |        | Information Only                                           |
| <ol> <li>terr(9per) Rising Edge Measurements</li> </ol> |                         |        | Information Only                                           |
| i terr(10per) Rising Edge Measurements                  |                         |        | Information Only                                           |
| i terr(11per) Rising Edge Measurements                  |                         |        | Information Only                                           |
| i terr(12per) Rising Edge Measurements                  |                         |        | Information Only                                           |
| <ol> <li>terr(nper) Rising Edge Measurements</li> </ol> |                         |        | Information Only                                           |
| ✓ tCH Average High Measurements                         | 501.256170166 mtCK(avg) | 46.9%  | 480.00000000 mtCK(avg) <= VALUE <= 520.00000000 mtCK(avg)  |
| ✓ tCL Average Low Measurements                          | 498.743829834 mtCK(avg) | 46.9%  | 480.00000000 mtCK(avg) <= VALUE <= 520.000000000 mtCK(avg) |
| itit(duty-high) Jitter Average High Measurements        |                         |        | Information Only                                           |
| itjit(duty-low) Jitter Average Low Measurements         |                         |        | Information Only                                           |
| (i) VSEH(Strobe)                                        |                         |        | Information Only                                           |
| (i) VSEL(Strobe)                                        |                         |        | Information Only                                           |
| (i) VSEH(Clock)                                         |                         |        | Information Only                                           |
| (i) VSEL(Clock)                                         |                         |        | Information Only                                           |
| X Overshoot amplitude (Address, Control)                | 565.56000000 mV         | -88.5% | VALUE <= 300.00000000 mV                                   |
| <ol> <li>Overshoot area (Address, Control)</li> </ol>   |                         |        | Information Only                                           |
| X Undershoot amplitude (Address, Control)               | 568.71000000 mV         | -89.6% | VALUE <= 300.00000000 mV                                   |
| <ol> <li>Undershoot area (Address, Control)</li> </ol>  |                         |        | Information Only                                           |
| ✓ Overshoot amplitude (Data, Strobe, Mask)              | 46.720000000 mV         | 88.3%  | VALUE <= 400.00000000 mV                                   |
| ✓ Overshoot area (Data, Strobe, Mask)                   | 6.402305000 mV-ns       | 96.8%  | VALUE <= 200.00000000 mV-ns                                |
| ✓ Undershoot amplitude (Data, Strobe, Mask)             | -560.56000000 mV        | 275.2% | VALUE <= 320.00000000 mV                                   |
| √ Undershoot area (Data, Strobe, Mask)                  | 0.00000000000 V-ns      | 100.0% | VALUE <= 100.00000000 mV-ns                                |
| VIHdiff.DQS(AC)                                         | 498.03000000 mV         | 107.5% | VALUE >= 2*(VIHAC_DQ_Volt-VrefDQ_Volt) V                   |
| (I) VIHdiff.DQS(DC)                                     |                         |        | Information Only                                           |
| VILdiff.DQS(AC)                                         | -513.27000000 mV        | 113.9% | VALUE <= 2*(VILAC_DQ_Volt-VrefDQ_Volt) V                   |
| UILdiff.DQS(DC)                                         |                         |        | Information Only                                           |
| Utwpre                                                  |                         |        | Information Only                                           |
| (i) tWPST                                               |                         |        | Information Only                                           |

### DRAM DQ/DQS Output Signal Group in READ Cycle

JDEC 79-4 specifies DRAM DQ/DQS output tests to be performed with 50 Ohm termination in READ cycle. For details on the READ cycle output tests, see Data Signal in READ Cycle section.

| Task Flow    | Set Up Select Tests Configure Connect Run Tests Automation Results Html Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Set Up       | Image: Constraint of the sector of the se |  |  |  |  |  |
|              | ⊡… □ ● Single-Ended Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| <b>₩</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Select Tests |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | VOH(AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| · ∨          | ····· ✓ ○ VOH(DC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Configure    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | SROseR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| ¥            | SRQseF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Connect      | 🕀 🖳 🜑 Overshoot/Undershoot (Address, Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|              | Overshoot/Undershoot (Data, Strobe, Mask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| $\mathbf{V}$ | E □ Differential Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Run Tests    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|              | READ cycle tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|              | 🖃 🔽 🖸 🔿 Data Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | 🖃 🔽 🔘 Data Strobe Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|              | ···· ✓ ○ tRPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | V O tHZDQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|              | U C tQSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | U O tDVAC(Strobe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | (Click a test's name to see description)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              | Limit Set: DDR4-2400 Test Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 10 Testa     | Thede the test(e) you would like to sup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| V 19 lests   | Chinection: UNKNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

Run compliance tests on waveforms generated from "\_3\_Sim\_DQ\_READ"

Click the **Offline Setup** to load ADS simulated waveform files from data\Waveforms\_DDR4\_Read folder as shown in the following figure:

| Processing                 | and the second | l        | - 0 X  |
|----------------------------|------------------------------------------------------------------------------------------------------------------|----------|--------|
| Enable Offline Processing  |                                                                                                                  |          | Done   |
| Source Waveform File (*.wf | m / *.h5)                                                                                                        |          |        |
| Clock :                    | 111\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Read\CLK_Diff.h5                                          | ¥.,      | Browse |
| DQS Differential :         | 4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Read\DQS_Diff_Delayed.h5                                         | <b>V</b> | Browse |
| Data (DQ)/Data Mask (DM)   | ult14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Read\DQ0.h5                                          | ∢        | Browse |
| Chip Select (CS) :         | sfault 14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_CA\CS0.h5                                        | <b>V</b> | Browse |
| CA/Command/Address :       | sfault14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_CA\CA0.h5                                         | ¥.,      | Browse |
| DQS Plus:                  | DDR4_Compliance_Test_Bench_wrk\dataj\Waveforms_DDR4_Read\DQS_Delayed.h5                                          | <b>V</b> | Browse |
| DQS Minus :                | DR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Read\DQSb_Delayed.h5                                           | <b>V</b> | Browse |
| CLK Plus :                 | ult14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Read\CLK.h5                                          | ¥        | Browse |
| CLK Minus :                | itt14_11\DDR4_Compliance_Test_Bench_wrk\data\Waveforms_DDR4_Read\CLKb.h5                                         | ¥.       | Browse |

NOTE

In the DQS-related fields, load the delayed versions of the DQS data strobe signals. The reason for doing so is:

- a. We will perform compliance tests on the input signals to the controller receiver pins in READ cycle. These tests are considered as "WRITE cycle tests" for the controller receiver pins, while DRAM DQ/DQS pins are generating the outputs in the READ cycle.
- b. For DDR4 WRITE cycle tests, DQS and DQ signals must be center-aligned. Therefore we use the post-processing equation to delay the DQS signal by 0.5\*UI, which become the DQS\_Delayed signal.

Under the **Select Tests** tab, select all Electrical Tests and Timing Tests, which results in a total of total of 66 tests. Then clear all the **READ cycle tests**, which will reduce the total amount of tests to 43, as shown in the following figure:

| File View Tools Help                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |                |                                                                        |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|----------------|------------------------------------------------------------------------|
| 🗅 🚅 🛃 🔄 🕫 👘 👘 🔞                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |                |                                                                        |
| Task Flow _                                                              | Set Up       Select Tests       Configure       Connect       Run Tests       Automation       Results       Html Report         Image: Image |  |  |  |  |                |                                                                        |
| Select Tests                                                             | Image: Control         Image: Contret         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                |                                                                        |
| Connect                                                                  | □···□       ○       Timing Tests         □···□       ○       WRITE cycle tests         □···□       ○       READ cycle tests         □···□       ○       READ cycle tests         □···□       ○       Clock Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |                |                                                                        |
| (Click a test's name to see description) Limit Set: DDR4-2400 Test Limit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |                |                                                                        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  | ✓ 43 Tests Che | ck the test(s) you would like to run Connection: Clock Test Connection |

When the compliance test is complete, the results are available under the **Results** tab, and an HTML report is available under the **HTML Report** tab.

|     | Test Name                                   | Actual Val         | Margin | Pass Limits                    | _ ^   |
|-----|---------------------------------------------|--------------------|--------|--------------------------------|-------|
| -11 | (i) VSEH(Strobe)                            |                    |        | Information Only               |       |
|     | (i) VSEL(Strobe)                            |                    |        | Information Only               |       |
| - 1 | (i) VSEH(Clock)                             |                    |        | Information Only               |       |
| s   | (i) VSEL(Clock)                             |                    |        | Information Only               |       |
| 11  | 🗶 Overshoot amplitude (Address, Control)    | 565.56000000 mV    | -88.5% | VALUE <= 300.00000000 mV       |       |
|     | (i) Overshoot area (Address, Control)       |                    |        | Information Only               |       |
|     | 🔀 Undershoot amplitude (Address, Control)   | 568.71000000 mV    | -89.6% | VALUE <= 300.00000000 mV       |       |
|     | 🛈 Undershoot area (Address, Control)        |                    |        | Information Only               |       |
|     | √ Overshoot amplitude (Data, Strobe, Mask)  | 44.44000000 mV     | 88.9%  | VALUE <= 400.00000000 mV       |       |
|     | √ Overshoot area (Data, Strobe, Mask)       | 5.651503000 mV-ns  | 97.2%  | VALUE <= 200.00000000 mV-ns    |       |
|     | √ Undershoot amplitude (Data, Strobe, Mask) | -222. 16000000 mV  | 169.4% | VALUE <= 320.00000000 mV       |       |
|     | √ Undershoot area (Data, Strobe, Mask)      | 0.00000000000 V-ns | 100.0% | VALUE <= 100.00000000 mV-ns    | -     |
|     | VIHdiff.CK(AC)                              | 1.095270000000 V   | 356.4% | VALUE >= 2*(VIHAC_CA_Volt-Vre  | FC, = |
|     | (I) VIHdiff.CK(DC)                          |                    |        | Information Only               |       |
|     | VILdiff.CK(AC)                              | -1.09076000000 V   | 354.5% | VALUE <= 2*(VILAC_CA_Volt-Vref | C/    |
|     | (I) VILdiff.CK(DC)                          |                    |        | Information Only               |       |
|     | VIHdiff.DQS(AC)                             | 618.94000000 mV    | 157.9% | VALUE >= 2*(VIHAC_DQ_Volt-Vre  | fD    |
|     | VIHdiff.DQS(DC)                             |                    |        | Information Only               |       |
|     | VILdiff.DQS(AC)                             | -786.57000000 mV   | 227.7% | VALUE <= 2*(VILAC_DQ_Volt-Vref | Ð     |
|     | () VILdiff.DQS(DC)                          |                    |        | Information Only               |       |
|     | VIX(CK)                                     | -114.708900000 mV  | 2.2%   | -120.00000000 mV <= VALUE <=   | = 1   |
|     | 1 tWPRE                                     |                    |        | Information Only               |       |
|     | 1 tWPST                                     |                    |        | Information Only               |       |
|     | √ tjit(CC) Rising Edge Measurements         | 32 ps              | 61.4%  | VALUE <= 83 ps                 |       |
|     | tCK(avg) Rising Edge Measurements           |                    |        | Information Only               |       |
|     | √ tjit(per) Rising Edge Measurements        | -18 ps             | 28.6%  | -42 ps <= VALUE <= 42 ps       |       |
|     | (1) terr(2per) Rising Edge Measurements     |                    |        | Information Only               |       |
|     | (i) terr(3per) Rising Edge Measurements     |                    |        | Information Only               |       |
|     | (1) terr(4per) Rising Edge Measurements     |                    |        | Information Only               |       |
|     | terr(5per) Rising Edge Measurements         |                    |        | Information Only               |       |
|     | terr(6per) Rising Edge Measurements         |                    |        | Information Only               |       |
|     | (i) terr(7per) Rising Edge Measurements     |                    |        | Information Only               |       |
|     | terr(8per) Rising Edge Measurements         |                    |        | Information Only               | -     |

Т



## Known Issues

- Currently, the .h5 output setup is for single simulation only. It is not possible to generate multiple .h5 files using batch or parameter sweep.
- The About DDR4 Compliance Test Bench menu option opens an additional HTML page along with the About DDR4 Compliance Test Bench dialog box. Please ignore it and close the page.