

Simulation

1

IC-CAP 2012.01
January 2012

Simulation

Simulation

2

© Agilent Technologies, Inc. 2000-2011
3501 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments

UNIX ® is a registered trademark of the Open Group.
MS-DOS ®, Windows ®, and MS Windows ® are U.S. registered trademarks of Microsoft
Corporation.
Pentium ® is a U.S. registered trademark of Intel Corporation.
PostScript® is a trademark of Adobe Systems Incorporated.
Java™ is a U.S. trademark of Sun Microsystems, Inc.
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries.
Qt Version 4.6
Qt Notice
The Qt code was modified. Used by permission.
Qt Copyright
Qt Version 4.6, Copyright (c) 2009 by Nokia Corporation. All Rights Reserved.
Qt License Your use or distribution of Qt or any modified version of Qt implies that you
agree to this License. This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any later
version. This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You
should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program
under the terms of the GNU LGPL, provided that the Copyright, this License, and the
Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
Qt Availability http://www.qtsoftware.com/downloads
Patches Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches.
You may also contact Brian Buchanan at Agilent Inc. at brian_buchanan@agilent.com for
more information. For details see:
http://bmaster.soco.agilent.com/mw/Qt_License_Information

Errata The IC-CAP product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof." To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads
http://bmaster.soco.agilent.com/mw/Qt_License_Information
http://bmaster.soco.agilent.com/mw/Qt_License_Information

Simulation

3

Warranty The material contained in this documentation is provided "as is", and is subject
to being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this manual and any information contained herein, including but not limited
to the implied warranties of merchantability and fitness for a particular purpose. Agilent
shall not be liable for errors or for incidental or consequential damages in connection with
the furnishing, use, or performance of this document or of any information contained
herein. Should Agilent and the user have a separate written agreement with warranty
terms covering the material in this document that conflict with these terms, the warranty
terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

Simulation

4

 IC-CAP Simulation Overview . 5
 Simulation Types . 7
 Simulation Input and Output Requirements . 8
 Performing a Simulation . 21
 Using Simulation Debugger . 30
 Linking a Simulator to IC-CAP . 33
 Adding a Simulator . 34
 Remote Simulation . 42
 Simulators in IC-CAP . 50

 ADS Simulator . 51
 SPECTRE Simulator . 106
 HSPICE Simulator . 117
 SPICE Simulators . 119
 Eldo Simulator . 137
 Saber Simulator . 140

Simulation

5

 IC-CAP Simulation Overview
Simulation in IC-CAP is the process of generating device and circuit output characteristics
based on an available model. The accuracy of a model determines how simulated
characteristics agree with the real physical behavior of devices and circuits.

The following figure illustrates the IC-CAP simulation process.

 Figure: Simulation Flow Diagram

You can use five types of simulators in IC-CAP:

Advanced Design System (ADS) simulator
SPICE simulators
HSPICE simulator
Saber simulator

For details on types of simulators you can use with IC-CAP, refer to Simulators in IC-CAP
(simulation).

Simulation

6

Notes

The PC version of IC-CAP supports ADS version 2002 or newer. Older versions of ADS cannot be1.
used with the PC version of IC-CAP.
Simulators are provided with IC-CAP as a courtesy and are not supported by Agilent Technologies2.
except the ADS simulator.

 Simulation Interfaces

Simulation Interfaces, also known as templates, are provided with the simulators. The IC-
CAP simulator interface is an open system. It allows you to add any simulator which is
similar to one of the provided templates. For details on adding a simulator, refer to Adding
a Simulator (simulation) section.

The following table lists the IC-CAP Supported Simulators and Corresponding Template
Names.

Simulator Template Name

UCB SPICE2G.6 spice2

UCB SPICE3E2 spice3

HPSPICE hpspice

HSPICE hspice

ELDO eldo

Saber saber

SPECTRE spectre (native circuit syntax) spectre443 (spice circuit syntax)

Advanced Design System
(ADS)

hpeesofsim (native circuit syntax)

Simulation

7

 Simulation Types
IC-CAP supports eight basic types of simulation which can be categorized as:

Standard Simulation
Special Simulation

 Standard Simulation

Standard simulation types are available in the SPICE simulators and include the following:

DC simulation
AC simulation
Transient simulation
Noise simulation

 Special Simulation

The special simulation types include:

Capacitance Voltage (CV) simulation
2-Port (S,H,Y,Z,K,A parameter) simulation
Multiport (S parameter) simulation
Time-Domain Reflectometry (TDR) simulation
Harmonic Balance simulation

Note
Special simulations are not directly available in the SPICE simulators. IC-CAP builds an additional circuitry
required in the simulator input files to perform the simulation.

Running a simulation with input and output specifications that do not match with the
simulation types could result in the following error:

ERROR: Unable to simulate.

Check the Input and Output specifications.

The simulators interfaced with IC-CAP may only support a subset of these simulation
types and not all of the analysis types available in a particular simulator. For example,
non-electrical analysis for Saber is not supported, and Harmonic Balance is supported only
with the ADS simulators.

For detailed information on the types of simulation that each simulator supports, refer to
the following topics:

SPICE Simulators (simulation)
SPECTRE Simulator (simulation)
Saber Simulator (simulation)
ADS Simulator (simulation)

See Also

Simulation

8

Simulation Input and Output Requirements (simulation)

Simulation

9

 Simulation Input and Output
Requirements
This section describes the input and output specifications required for a valid setup for
each simulation type and the corresponding measurement types.

DC Simulation
AC Simulation
Transient Simulation
Noise Simulation
CV Simulation
2-Port Simulation
Multiport Simulation
TDR Simulation
Harmonic Balance Simulation

 DC Simulation

The following table describes the input and output specifications required for a valid setup
for DC simulation.

INPUT MODE VALID SWEEPS VALID OUTPUTS

V LIN, LOG, LIST, SYNC, CON V, I

I LIN, LOG, LIST, SYNC, CON V, I

The following figure shows an example of input and output specifications for a MOSFET id
versus vg setup.

 Figure: Example Input and Output, DC Simulation

Simulation

10

 AC Simulation

The following table describes the input and output specifications required for a valid setup
for AC simulation.

INPUT MODE VALID SWEEPS VALID OUTPUTS FOOTNOTES

V LIN, LOG, LIST, SYNC, CON,
AC

V, I 1, 2, 3

I LIN, LOG, LIST, SYNC, CON,
AC

V, I 1, 2, 3

F LIN, LOG, LIST, CON V, I

1. Exactly one frequency sweep required.
2. At least one AC source required.
3. SYNC is not a valid sweep type when using ADS simulators.

The following figure shows an example of input and output specifications for simulating
the output voltage versus frequency of an inverting operational amplifier.

 Figure: Example Input and Output, AC Simulation

Simulation

11

 Transient Simulation

The following table describes the input and output specifications required for a valid setup
for Transient simulation.

INPUT MODE VALID SWEEPS VALID OUTPUTS FOOTNOTES

T LIN, LIST, CON V, I 1, 2

V LIN, LOG, LIST, SYNC, CON, EXP, PULSE, PWL, SFFM, SIN V, I 1, 2

I LIN, LOG, LIST, SYNC, CON, EXP, PULSE, PWL, SFFM, SIN V, I

1. Exactly one time sweep required.
2. LIST sweep not supported with Saber.

The following figure shows an example of input and output specifications for voltage
versus time characteristics of a differential pair.

 Figure: Example Input and Output, Transient Simulation

Simulation

12

 Noise Simulation

The following tables describe the input and output specifications required for a valid setup
for Noise simulation depending on the simulator being used.

 Table: Input and Output Requirements for a Noise Simulation using SPICE Simulators

INPUT MODE VALID SWEEPS VALID OUTPUTS FOOTNOTES

V LIN, LOG, LIST, SYNC, CON,
AC

N 1, 2, 3

I LIN, LOG, LIST, SYNC, CON,
AC

N 1, 2, 3

F LIN, LOG, CON N 1, 2, 3

1. Exactly one noise output required.
2. Exactly one frequency sweep required.
3. At least one AC source required.

 Table: Input and Output Requirements for a Noise Simulation using ADS Simulators

INPUT MODE VALID SWEEPS VALID OUTPUTS FOOTNOTES

V LIN, LOG, LIST, SYNC, CON,
AC

N, V, I 1, 2, 3

I LIN, LOG, LIST, SYNC, CON,
AC

N, V, I 1, 2, 3

F LIN, LOG, SEG, CON N, V, I 1, 2, 3

1. There can be multiple outputs.
2. Exactly one frequency sweep required.

Simulation

13

3. Both V and I Outputs are DC outputs.

 CV Simulation

The following table describes the input and output specifications required for a valid setup
for CV simulation.

Note
The frequency at which the CV simulation is performed can be specified using the System Variable
CV_FREQ in Hz. If this variable is not specified, the simulation is performed at 1-MG (Hz).

INPUT
MODE

VALID SWEEPS VALID OUTPUTS FOOTNOTES

V LIN, LOG, LIST, SYNC,
CON

a single C, a single G, a single R, a single X, C + G, C
+ R

1, 2

I LIN, LOG, LIST, SYNC,
CON

a single C, a single G, a single R, a single X, C + G, C
+ R

1, 2

1. Any single output type of C, G, R, or X; or exactly one C and one G; or exactly one C
and one R.
2. A single C or a C + G is the capacitance using Cp-Gp mode, while a C + R simulates Cs-
Rs data

The following figure shows an example of input and output specifications for a BJT base-
emitter pn-junction capacitance versus voltage setup.

 Figure: Example Input and Output, CV Simulation

 2-Port Simulation

The following tables describe the input and output specifications required for a valid setup
for 2-port simulation.

 Table: Input and Output Requirements for a 2-Port Simulation

Simulation

14

INPUT MODE VALID SWEEPS VALID OUTPUTS FOOTNOTES

F LIN, LOG, LIST, CON S, H, Y, Z, K, A, F 1, 2, 3, 4, 5

V LIN, LOG, LIST, SYNC, CON S, H, Y, Z, K, A, F 1, 2, 3, 4, 5

I LIN, LOG, LIST, SYNC, CON S, H, Y, Z, K, A, F 1, 2, 3, 4, 5

1. Exactly one frequency sweep required.
2. Exactly one 2-port output (S,H,Y,Z,K, or A) required.
3. Only ADS supports F output. (2-Port noise simulation supports ADS only. If the
SIMULATOR is not equal to hpeesofsim, the following error message appears. Error: in
"Output xxxx" High frequency noise output is not supported with current simulator.)
4. Exactly one 2-port output required for F output.
5. F output can be multiple outputs.

 Table: High Frequency Noise Output and Its Data Type Description

F
Output

Name (Output
Editor)

Symbol shown on
Setup Page

Description Port Input
Requirement

Mode High Frequency Noise F High frequency noise mode
type

Data
Type

Noise Figure NF Noise figure data Yes,1, 2

 Gamma Opt GAMMAOPT Optimum source reflection
coefficients

No

 Equivalent R Noise RN Equivalent noise resistance
data

No

 Min Noise Figure NFMIN Minimum noise figure data No

 Equivalent Noise
Temperature

TE Equivalent Noise
Temperature data

Yes 1, 2

1. The port field of the NF/TE noise parameter must not be blank. If the port field set
NF/TE type is blank, the following error message appears:
Error: in "Output xxxx"
Blank output node name for NF specified.

2. The port name of the NF/TE parameter must be consistent with the port name of the 2-
port output.
The port name of the NF/TE output noise must be equal to one of the port names of the 2-
port output; otherwise, the following error message appears:
Error: in "Output xxxx"
Port "xx" is not consistent with the 2-port specification node: "xx" or "xx"

The following figure shows an example of input and output specifications for an H21-
parameter versus Vbe setup.

 Figure: Example Input and Output, 2-Port Simulation

Simulation

15

 Figure: Example Input and Output, 2-Port Noise Simulation

 2-Port Circuits

An L-network of LCR is added to port 1 and port 2 to uncouple an AC signal from a DC
bias to simulate a DUT using AC analysis. To see an actual input circuit deck, use the

Simulation

16

Simulator Debugger.

When the port 1 has an AC source, its signal goes through an R whose value is defined by
TWOPORT_Z0 and its default is 50 [ohm]. Then this signal is given to a port 1 through a C
whose value is defined by TWOPORT_C, and its default is 100 [F]. The port 1 is also
connected to a DC bias source through an L whose value is defined by TWOPORT_L and its
default is 100 [H]. The port 2 has a similar L-network whose AC source is replaced by a
short to ground.

Note
As the default C and L values are so large compared to actual DUT values, sometimes it is necessary to
specify smaller values to reduce numeric errors in simulation. For example, 1mF for C and 1mH for L are
more realistic values.

There are two circuits in a single deck to represent two cases where the port 1 has a
source and the port 2 has a source. These circuits are generated and added to a DUT for
simulators.

 Multiport Simulation

Multiport simulations are currently only supported with the ADS simulator (hpeesofsim).
This simulation type allows for 3 and 4 port S parameter simulations.

The following table describes the input and output specifications required for a valid setup
for multiport simulation in ADS.

INPUT MODE VALID SWEEPS VALID OUTPUTS FOOTNOTES

F LIN, LOG, LIST, CON M 1, 2, 3

V LIN, LOG, LIST, SYNC, CON M 1, 2, 3

I LIN, LOG, LIST, SYNC, CON M 1, 2, 3

1. Exactly one frequency sweep required.
2. Exactly one multiport output M required.
3. # of Ports can be 3 or 4.

The following figure shows an example of input and output specifications.

 Figure: Example Input and Output, Multiport Simulation

Simulation

17

 TDR Simulation

The following table describes the input and output specifications required for a valid setup
for TDR (Time Domain Reflect) simulation.

INPUT MODE VALID SWEEPS VALID OUTPUTS COMMENTS

T LIN, LIST, CON V 1, 2, 3

V LIN, LOG,L IST, SYNC, CON,
TDR

V 1, 2, 3

I LIN, LOG, LIST, SYNC, CON V 1, 2, 3

1. Exactly one time sweep required.
2. Only voltage outputs allowed.
3. Exactly one voltage sweep of type TDR required.

The following figure shows an example of input and output specifications for simulating
the reflected and transmitted signal of a simple TDR circuit.

 Figure: Example of Input and Output Specifications for a TDR Simulation

Simulation

18

 Harmonic Balance Simulation

The following table describes the input and output specifications required for a valid setup
for Harmonic Balance simulation.

INPUT MODE VALID SWEEPS VALID OUTPUTS COMMENTS

V LIN, LOG, LIST, SYNC, CON,
AC

V, I 1, 2, 3, 4

I LIN, LOG, LIST, SYNC, CON,
AC

V, I 1, 2, 3, 4

F HB V, I 1, 2, 3, 4, 5

W (Power) LIN, LOG, LIST, CON V, I 1, 2, 3, 4

1. Exactly one frequency sweep with Sweep Type = HB required.
2. Exactly one AC source required: V or I (AC), or W.
3. The Test Circuit includes elements such as DCFEED or DCBLOCK.
4. Units for the Power (W) source can be set to dBm(d) or Watts (W).
5. HB Sweep Type provides 3 fields, Value: the fundamental, Order: number of
harmonics, and Saved Order: if blank, DC and all harmonics (that is, Order+1) is read
back from simulator. Setting this to a lower value (N) reads only DC and the first N
harmonics.

The following figure shows an example of input and output specifications for a BJT power-
in versus power-out setup.

 Figure: Example of Input and Output Specifications for a Harmonic Balance Simulation

Simulation

19

hpsimvbic.mdl Active Setup: /vbic_npn/hb/Harmonic_Balance

 2 tone Harmonic Balance

The 2 tone Harmonic Balance is currently only supported with the ADS simulator
hpeesofsim. The following table describes the input and output specifications required for
a valid setup for 2 tone Harmonic Balance simulation.

INPUT MODE VALID SWEEPS VALID OUTPUTS COMMENTS

V LIN, LOG, LIST, SYNC, CON V, I

I LIN, LOG, LIST, SYNC, CON V, I

F HB2 V, I 1, 6

W (Power) LIN, LOG, LIST, CON, SYNC,
LSYNC

V, I 2, 3, 4, 5

1. Exactly one frequency sweep with Sweep Type = HB2 required.
2. Two Power sources with type W required, the setting field should be equal in these two
sources.
3. Two Power sources can be in nested sweeps, master-sync or master-lsync pairs.
4. The Test Circuit includes elements such as DCFEED or DCBLOCK.
5. Units for the Power (W) source can be set to dBm(d) or Watts (W).
6. HB2 Sweep Type provides 8 fields.

Simulation

20

Value 1: the fundamental for the first tone
Value 2: the fundamental for the second tone
Order 1: number of harmonics of the first tone
Order 2: number of harmonics of the second tone
Saved Order 1: if blank, DC and all harmonics (that is, Order1+1) is read back from
simulator. Setting this to a lower value (N) reads only DC and the first N harmonics.
Saved Order 2: if blank, DC and all harmonics (that is, Order2+1) is read back from
simulator. Setting this to a lower value (N) reads only DC and the first N harmonics.
maxOrder: determines how many mixing products are to be included in a 2 tone
simulation
Saved maxOrder: if blank, all mixing products specified in maxOrder is read back
from simulator. Setting this to a lower value (N) reads first N mix products.

The following figure shows an example of input and output specifications.

 Figure: Example of Input and Output Specifications for a 2 tone Harmonic Balance Simulation

Simulation

21

 Performing a Simulation
The steps to perform a simulation include:

Selecting a Simulator1.
Specifying Inputs and Outputs2.
Connecting Nodes3.
Specifying Parameter, Variable or Text Sweeps4.
Running a Simulation5.
Aborting a Simulation6.

 Selecting a Simulator

This section describes how you can set a simulator to begin with IC-CAP simulation.

The simulator can be set in one of the following three ways:

Specify a default startup simulator
Specify a simulator for a specific model, DUT, or setup
Specify a simulator using a command

 Default Startup Simulator

You can specify a simulator as the default simulator on startup by setting the
DEFAULT_SIMU variable to one of the simulators. This setting is only effective if set at the
global level. It is overridden if a different simulator is specified by setting a SIMULATOR
variable or selecting a simulator through the Select Simulator command. When you exit
the program, the DEFAULT_SIMU setting is saved in the .icconfig file.

If this variable is not defined, the default simulator on startup is spice2.

To specify a default startup simulator:

In the IC-CAP/Main window, select Tools > System Variables.1.
In the IC-CAP System Variables window, click System Variables.2.
In the System Variables dialog box, select General Simulation Options as the3.
Variable Type and select the DEFAULT_SIMU variable.
Enter the simulator name in the Value field and click OK.4.

Simulation

22

4.

Note
You can type the variable name and value in the System Variables window directly without going through
the dialog box.

 Simulator for a Specific Model, DUT, or Setup

Some models require or perform better with a specific simulator. In these model files, you
can specify a simulator for a model, DUT, or setup by setting the SIMULATOR variable. This
allows you to use different simulators for different models, DUTs or setups, since a
SIMULATOR variable can be specified at any level.

The following table lists the model files for which the SIMULATOR variable is defined.

 Table: Model Files with Predefined Simulators

Model File Name SIMULATOR Value

bjt_ft.mdl hpspice

bjt_ncehf.mdl hpspice

hpsimbjt_ncehf.mdl hpeesofsim

hpsimbjt_nhf.mdl hpeesofsim

hpsimnpn.mdf hpeesofsim

hpsimvbic.mdl hpeesofsim

mxt504_npn.mdl hpeesofsim

sabernpn.mdl saber

spectre_ncehf.mdl spectre

Simulation

23

spectrenpn spectre

pn_diode.mdl spice2

CGaas1.mdl hpspice

CGaas2.mdl hpspice

CGaashf.mdl hpspice

CGaashfax.mdl hpspice

hpsimHPEEfet3.mdl hpeesofsim

UCBGaas.mdl spice3

UGaashf spice3

lc.mdl spice3

sabercirc.mdl saber

sys110_verify.mdl hpspice

hnmos6.mdl hspice

hnmos28.mdl hspice

hpmos28.mdl hspice

sabernmos.mdl saber

noise_simu.mdl spice3

bjt_1f_noise.mdl hpspice

mos_1f_noise.mdl spice3

opamp.mdl hpspice

bjt_ncehfp.mdl hpspice

BSIM3_DC_CV_Measure.mdl spice3

BSIM3_DC_CV_Extract.mdl spice3

BSIM3_RF_Measure.mdl spice3

BSIM3_RF_Extract.mdl spice3

BSIM3_AC_Noise_Tutorial.mdl spice3

BSIM3_CV_Tutorial.mdl spice3

BSIM3_DC_Tutorial.mdl spice3

BSIM3_Temp_Tutorial.mdl spice3

BSIM3_DC_CV_Finetune.mdl spice3

BSIM4_DC_CV_Measure.mdl spice3

BSIM4_DC_CV_Extract.mdl spice3

BSIM4_RF_Measure.mdl spice3

BSIM4_RF_Extract.mdl spice3

BSIM4_DC_CV_Tutorial.mdl spice3

BSIM4_DC_CV_Finetune.mdl spice3

When a simulation is performed, IC-CAP looks for the SIMULATOR variable first, and if
found, IC-CAP makes simulator specified in the variable as the active simulator.

The Select Simulator dialog box changes to reflect the name of the active simulator. If the
SIMULATOR variable is not defined, IC-CAP uses the simulator displayed in the Select
Simulator dialog box. For information on selecting a simulator using Select Simulator
dialog box, refer to Specify Simulator Using a Command.

Simulation

24

To set a simulator for a specific model, DUT, or setup:

Select the appropriate model, DUT, or setup folder and click the corresponding1.
Variables tab.
Type SIMULATOR in an empty variable Name field and type the name of the simulator2.
in the corresponding Value field.

Note
To use a different simulator after one has been specified by the SIMULATOR variable, reset the simulator
using the Select Simulator command.

 Simulator Using a Command

The Select Simulator command sets the simulator to be used for all simulations
performed in the current session, except when simulating a model, DUT, or setup for
which a SIMULATOR variable has been defined.

To set a simulator without using a variable:

In the IC-CAP Main window, choose Tools > Select Simulator. A hpeesoficcap1.
dialog box is displayed which list the supported simulators.

Select a simulator name or type the name of a simulator you have linked with IC-CAP2.
in the Default Simulator field and click OK.

Simulation

25

 Specifying Inputs and Outputs

When running a simulation, IC-CAP builds the simulation input deck using the circuit
description and the input and output specifications. The circuit description provides the
model information. The input and output specifications provide the input stimuli and
requested output data, as well as the information needed to determine the type of
simulation being performed.

Specifying inputs and outputs is independent of the type of simulation being performed.
When specifying input for a simulation, you must enter the sweep mode in the Mode field
of the Input table, and the node connections. The Input field changes, depending on the
type of mode specified.

 Connecting Nodes

The convention used for node connections when sourcing voltage and current are provided
below:

When you specify an Input Mode of V, the +Node and *-Node* fields are available in
the Input table. In this case, the +Node is considered to be the positive side of the
voltage source and the -Node is the negative side.
When you specify an Input Mode of I, the To Node and From Node fields are
available in the Input table. Current flows from the From Node to the To Node.

When IC-CAP builds the simulation input deck, it creates the source name by
concatenating the mode character, the first three characters of the +Node (or To Node)
and the first three characters of the -Node (or From Node). These source names are
used in the simulation input deck to specify the sweeps and constants. Specified outputs
may also reference these names.

Source names are limited to 8-characters. This limit may cause issues in a simulation, if,
for example, two inputs are specified as follows:

Mode = V
+Node = BASE
-Node = EMITTER

Mode = V
+Node = BASE
-Node = EMITTER2

From this input, IC-CAP creates the same source names: VBASEMI and VBASEMI. You can

Simulation

26

avoid this potential conflict with source names by choosing node names in circuit
descriptions carefully. When choosing node names with more than three characters, make
sure that the first three characters are unique with respect to the first three characters of
any other node names.

When you enter an invalid node name, such as K in any of the input and output node
fields and try to simulate, the program sends an error message:

ERROR: Invalid Input node name K used

ERROR: Unable to simulate.

Check the Input and Output specifications.

 Specifying Parameter, Variable or Text Sweeps

In addition to the list of valid sweep modes for each simulation type listed, you can sweep
parameter values and variables. For example, you can generate a family of beta versus IC
curves by using the BF parameter of the bipolar transistor model as the step input or you
can sweep the operating temperature variable TEMP to analyze temperature effects.

Note
You can set the value for a constant or values for sweeps of the simulation temperature by adding the
TEMP variable to the variable table and creating an input (Mode = Parameter and Name = TEMP) in the
setup.

To sweep parameters or variables:

In the Model window, select the DUT and the setup.1.
Click Measure/Simulate.2.
Click New Input. The Input Editor is displayed.3.

In the Mode field, select Parameter from the drop-down list.4.
Specify a parameter or variable by entering its name in the Param Name field.5.
Enter all other necessary information and click OK.6.

A parameter sweep is a valid input mode for all simulation types. Specifying parameter

Simulation

27

sweeps may differ for devices and circuits depending on the type of simulator being used.

For an example of simulator-specific parameter sweeps, refer to the following topics:

SPICE Parameter Sweeps (simulation)
Saber Parameter Sweeps (simulation)
ADS Parameter Sweeps (simulation)

 Hierarchical Parameter Sweeps

You can perform parameter sweeps when using hierarchical models. However, when you
sweep a parameter from a model lower than the level from which the simulation is being
performed, you must specify the complete path name of the parameter in the Name field
of the input.

 Sychronized List Sweeps (LSYNC)

To synchronize a parameter sweep with other parameter sweeps, set the sweep type to
LSYNC (Synchronized List when using the Edit feature on an input). Just like a normal
SYNC sweep, you must specify the name of the master sweep by entering it in the Master
Sweep field.

Unlike a normal SYNC sweep, the entries are not limited to an offset and a multiplier. The
LSYNC sweep enables you to specify an arbitrary list of points. IC-CAP automatically
provides the required number of points after the master sweep is set. If the number of
points in the master sweep changes, simply click on the LSYNC Master Sweep field to
update the number of points in the input.

One application of LSYNC sweeps is to simulate an arbitrary collection of device Lengths
and Widths.

If a master sweep and multiple LSYNC sweeps are saved to an MDM file, they can only be
imported into a setup where the same sweeps are either all CON sweeps or the sweeps
are synchronized using LSYNC. One sweep cannot be a LIN sweep and another one be a
CON sweep, even if that combination exist in the MDM file. To use a LIN sweep with a
CON sweep, use LSYNC to synchronize the CON sweep to the LIN sweep and enter the
same value for all list points.

Note
The LSYNC sweep type is only available with Parameter sweeps.
The LSYNC sweep is not supported with the Saber simulator.

 Specifying Text Sweeps

The sweep type TLIST is a LIST accept string values.
The sweep type TLSYNC is LSYNC accept string values.

Note
These two sweep types are only available with Parameter sweeps.
The system variable RETAIN_DATA is used for keeping the data when changing the sweep type.

Simulation

28

 Simulating Open Circuits

IC-CAP uses the OPEN_RES variable to handle any floating nodes. This variable allows an
open circuit to be simulated as a large resistance. The value of the resistance is equal to
the value of the OPEN_RES variable. A resistor of this magnitude is automatically
connected to all external circuit nodes not connected to a specified source. When the
OPEN_RES variable is not specified, a current source set to zero (0) amps is used instead.
However, using the current source may cause simulation convergence problems.

 Running a Simulation

You can perform a simulation on an active setup or on all the setups in an active DUT.

 Simulating an Active Setup

To perform a simulation on the active setup, select the setup and click Simulate Setup

icon () in the Model window.

You can also choose Simulate > Active Setup from the menu bar of the Model window
to perform simulation on an active setup.

 Simulating All the Active Setups in a DUT

To perform a simulation on all the setups in an active DUT, select the DUT and choose
Active DUT under Simulate menu in the Model window.

 Aborting a Simulation

You can abort a running simulation at any time from the IC-CAP Status window.

To abort a simulation:

Click Interrupt IC-CAP Activity icon or choose Interrupt > IC-CAP Activity in the IC-
CAP/Status window.

Simulation

29

After you abort a running simulation, the simulation stops and the following message
appears in the Status window:

HALTED: Simulation interrupted by user

Simulation

30

 Using Simulation Debugger
The Simulation Debugger is a useful tool for determining why a simulation failed.

When a simulation fails, the program displays an error message:

Simulation Failed: Data Unchanged Use Simulation Debugger in Utilities Menu for

more information

The SPICE-type simulators accept an input deck that contains both the circuit description
and analysis commands.

The Saber simulator requires two separate decks. The Saber input deck, displayed in the
Input editor, contains the circuit description, written in the MAST modeling language. The
Saber command deck, displayed in the Command editor, contains the analysis commands
to be performed by the simulator. The Command editor is only used with the Saber
simulator.

The input editor displays the input information used in the simulation. For Saber
simulations, the command editor information is used also. You can quickly see how
changes would affect your results by changing the input (and for Saber, command) files,
performing a manual simulation, and observing the results in the output editor. For more
information, refer to Using the Manual Simulate Function.

In many cases, the output text file includes the error messages displayed when the
simulation fails. You cannot edit an output text file.

To use the Simulation Debugger:

In the IC-CAP/Main window, click Simulation Debugger icon (). The IC-CAP1.
Simulation Debugger window is displayed. By default, the Input, Command, and
Output editors are blank.
Initiate the simulation in the Model window. The program sends the input deck and2.
output text files to the input and output editors of the Simulation Debugger.

Simulation

31

2.

 Manual Simulate Function

The Manual Simulate function simulates the input deck displayed in the Input Editor.
For example, you can perform a manual simulation after changing some parameter values
or sweep values directly in the input file deck, without having to change these values in
the IC-CAP Circuit definition, parameter tables, or input and output specifications.

To execute a manual simulation:

In the Simulation Debugger window, edit the inputs and command decks displayed in1.
the Input and Command editors panes.

Then, select File > Manual Simulation in the Simulation Debugger window.2.

Simulation

32

2.

 Saving the Simulation Debugger Files

You can save the input, command, and output files displayed in the individual panes of the
Simulation Debugger.

To save Simulation Debugger Input, Output, and Command files:

Select File > Save and choose the appropriate option in the Simulation Debugger1.
window.

Note
You can save the Command files for Saber simulation only.

In the Input Prompt dialog box, enter a file name.2.

If you enter a file name only, the file is saved to the current working directory. To save
the file to another directory, enter the file name along with the full path.

Simulation

33

 Linking a Simulator to IC-CAP
The interface for linking a simulator to IC-CAP depends on the type of simulator being
used.

A non-piped simulation receives the input deck information from a file, performs the
simulation, and sends the binary output data and resulting text output to other files. The
simulator process is restarted for every simulation. The non-piped simulations are
identical, regardless of simulator type.

The definition of a piped simulation differs for SPICE simulators, Saber simulators, and the
ADS simulator. For descriptions of these differences, refer to one of the following:

Piped and Non-Piped SPICE Simulations (simulation)
Piped and Non-Piped SPECTRE Simulations (simulation)
Piped and Non-Piped Saber Simulations (simulation)
Piped ADS Simulations (simulation) and Non-Piped ADS Simulations (simulation)

The following simulator links have been tested to work for IC-CAP 2002 PC:

Remote to spectre on UNIX
Local to HSPICE on PC
Local to hpeesofsim on PC
Local to SPICE2 on PC
Local to SPICE3 on PC
Local to HPSPICE on PC

The following simulator links may work for IC-CAP 2002 PC, but were not thoroughly
tested:

Remote to HSPICE on UNIX
Remote to HSPICE on another PC
Remote to hpeesofsim in CANNOT_PIPE mode on another PC
Remote to hpeesofsim in CANNOT_PIPE mode on UNIX

Simulation

34

 Adding a Simulator
The IC-CAP Open Simulator Interface allows the addition of any simulator to IC-CAP. The
Figure: IC-CAP Open Simulator Interface Data Flow Diagram shows a data flow diagram of
this interface.

In this design, the IC-CAP system has no knowledge of your simulator. The circuit
description is entered in the format corresponding to the template name in the
usersimulators field (second argument).

Template Name Syntax

spice2
spice3
hpspice
hspice
eldo
spectre443
spicemodeads

spice

spectre spmodeads spectre

saber saber

hpeesofsim hpeesofsim (ADS)

These simulators are referred to as the template simulators when writing interface code.
For example, when you specify a circuit description with syntax matching the syntax of
spice2, then spice2 is referred to as the template simulator.

 IC-CAP Open Simulator Interface Data Flow Diagram

Simulation

35

IC-CAP generates the input deck as if the selected simulator were the template simulator.
When you enter your simulator in the Select Simulator dialog box or the SIMULATOR
variable, the input deck is sent through a module of code that you have written. This
module of code is referred to as the Translation Module in the figure. The Translation
Module consists of two translators. The first translates the IC-CAP generated input deck to
your simulator's input deck. The deck is then sent to your simulator for analysis. When the
simulation is completed, the second translation accepts your simulator's raw data and
converts this to the raw data format of the template simulator. This data is returned to IC-
CAP for evaluation.

Starting with IC-CAP 2002 PC and IC-CAP 2004 UNIX, you can specify whether the
simulator returns the raw data in big-endian or little-endian format. If you do not specify a
format, IC-CAP assumes that the data is returned in the order native to the platform,
which is big endian for UNIX and little endian for the PC. To specify big endian, append .be
or the alias .hpux or .sparc to the template name. To specify little endian, append .le or
the alias .pc to the template name. For additional information, see the README.byteorder
file in the source directory $ICCAP_ROOT/src directory.

It is possible to have a circuit description in the native syntax of the simulator that you
will use. This is done by using the Open Circuit Parsing Interface that is available in IC-
CAP. Though the netlist body is provided in your selected simulator's native syntax, the
source and sweep information that IC-CAP adds to the netlist body is still in the template
syntax. To use this interface, you must specify the name of the executable responsible for

Simulation

36

generating the netlist body.

When the Simulation Debugger is running, the file displayed as the input file is the
template simulator's input deck generated by IC-CAP. The Simulation Debugger's output
file can be any text file generated in the Translation Module section of code. This allows
many options with respect to what information can be included in this text file that may be
helpful for debugging purposes.

The Translation Module section of code consists of the two translators, but may also
include any other desired functionality. For example, you may read the text file back from
your simulator and send this file back to IC-CAP to be displayed in the Simulation
Debugger's output file. The Translation Module can also be written to generate debug
statements in a text file to show the progress of the input and output translations. This
text file can then be sent to IC-CAP and displayed in the Simulation Debugger's output
file.

As part of the interface code, you are supplied with a file called usersimulators in the
directory $ICCAP_ROOT\iccap\lib. This file must contain the user-specified information for
each simulator added to the IC-CAP system. Five fields of information must be specified
when adding a user simulator to IC-CAP. The fields of information must be separated by a
space. The fields may or may not be surrounded by quotation marks. A blank, such as
host_name, is indicated by a pair of quotation marks (""). An optional sixth field is
available to use the Open Circuit Parsing Interface.

The general format is as follows:

simulator_name template_name path_name host_name pipe_capability

[parser_path] [special_path]

where:

simulator_name is the name of the user simulator being added to the list. This is
the name you will specify when selecting the simulator in the Select Simulator
dialog box or the SIMULATOR variable. You may assign any name to this field
EXCEPT for any of the reserved IC-CAP template names. The reserved template
names are shown in the table IC-CAP Supported Simulators and Corresponding
Template Names (simulation).

template_name is the name of the template simulator. The user-written
translation modules map the input file format of the user's simulator to the input
file format of the template simulator. Likewise, the output file format of the
template simulator is translated into the output file format of the user's
simulator. To specify that the simulator returns the raw data in big endian
format, append .be or the alias .hpux or .sparc. To specify that the simulator
returns the raw data in little endian format, append .le or the alias .pc.

path_name is the complete path name of the user's simulator executable file or
translation module. Use back slashes when naming the path to a simulator on a
PC and forward slashes when naming the path to a simulator on UNIX.

host_name is the host machine name on which the simulator can be used. The

Simulation

37

purpose of this information is for remote simulations where only a particular
computer is able to access a simulator. If this field is blank, indicated by a pair
of quotation marks (""), the simulation is executed on the machine currently
running IC-CAP. The format of host_name is < host > [< tmp_dir >], where
<host> is any host name permitted by rsh and remsh. Examples include
remotebox, remotebox.my.com, 192.168.4.4, and icuser@remotebox. The last
form enables users with sufficient permission to simulate to the machine
remotebox as if the user icuser was performing the simulation. This is useful
when simulating to a UNIX machine from a PC when the login names for the PC
don't match the login names for the UNIX machine. < temp_dir > is optional
and it enables you to specify a location for IC-CAP's temporary files. The default
location is /var/tmp on the remote machine. For example, if a PC is running
services and it meets the requirements in Network Security (simulation),
/var/tmp (UNIX notation) may not work for the PC. You can override this by
specifying something like _c:\temp_. For more information, see Remote
Simulation (simulation).

pipe_capability is either CAN_PIPE or CANNOT_PIPE. It specifies whether or not
the simulator has the ability to perform piped simulations. When CANNOT_PIPE
is specified in this field, a non-piped simulation is done even when the IC-CAP
simulation debugger is off.

parser_path is an optional entry that specifies the name of the executable
responsible for generating the netlist body and providing IC-CAP with the
necessary parameter/node information.

special_path is a simulator-specific field and may have different meanings for
each simulator. Currently it is only required by the saber interface and will be
ignored for any other simulator template. The field can be completely omitted
from all templates but saber. For saber, it should provide the path to the aimsh
executable in your saber installation. Note, to specify this field without declaring
a parser_path, you must specify two quotations "" for the parser_path field.

 Using the Open Circuit Parsing Interface

To use the interface and generate a circuit description in the native syntax of the
simulator, you must specify the executable in the usersimulators file. This optional field in
usersimulators is the path to the circuit parser. This enables the simulator link to use your
simulator's native syntax in IC-CAP's circuit description shown in the Circuit folder.
Without this interface, your circuit must be represented as spice, hpeesofsim, or sabre. If
you specify an executable, it is responsible for the following actions:

Creates a parsed_file that IC-CAP will use to merge parameters at each simulation.
Identifies all pertinent parameters for in the DUT Parameters and Model Parameters
folders.
Identifies the number and names of all nodes that will be used in IC-CAP.

Your parser will be invoked with two arguments, the source file name and the output file
name. The parser is responsible for generating the output file which is the same as the
input file with substitutions for node names, parameters, and model names. In addition,

Simulation

38

the circuit type must be declared.

Determining the circuit type differs depending on the template being used. For any of the
spice templates, the netlist should consist of one instantiation of one model or a
subcircuit.

<instance line>

<model card>{code}

or

.subckt

.

.

.ends

The first should be declared a circuittype of the first character of the instance line. The
second should be declared a circuit of type X. The instance line should be omitted from
the output file as IC-CAP will generate this line with the proper node numbers for the type
of simulation being performed.

For hpeesofsim simulations, the circuit is similar, either a subcircuit, or a model and an
instance. circuittype for a subcircuit is still X, but for the instance netlist, the type is
always D.

For saber simulations, circuittype is again a D for device netlists and an X for subcircuit
netlists, but for this template, you must set device type as well which is the actual name
of the device type.

The output file should place the token $ where the name of the model should appear in
the netlist. It should place the token <name>$ where the value for parameter named
<name> should appear.

Example Device circuit:

D1 1 = A 2 = C DIODE

.MODEL DIODE D

+ IS = 1E-14

+ N = 1.0

+ BV = 1000

+ IBV = 1m

+ RS = 0

+ CJO = 0

+ VJ = 1.0

+ M = 0.5

+ FC = 0.5

+ TT = 0

+ EG = 1.110

+ XTI = 3.0

Output File:

.MODEL $modname$ D

+ IS = $pvalIS$

+ N = $pvalN$

+ BV = $pvalBV$

Simulation

39

+ IBV = $pvalIBV$

+ RS = $pvalRS$

+ CJO = $pvalCJO$

+ VJ = $pvalVJ$

+ M = $pvalM$

+ FC = $pvalFC$

+ TT = $pvalTT$

+ EG = $pvalEG$

+ XTI = $pvalXTI$

Example subcircuit circuit

.OPTION gmin=1e-30

.SUBCKT LED 1=A 2=C

RS 1 11 1m

DLO 11 2 DLO

DHI 11 2 DHI

.MODEL DLO D

+ IS = 1E-29

+ N = 1

.MODEL DHI D

+ IS = 1E-34

+ N = 1

+ CJO = 100p

+ M = .4

+ VJ = 2

+ FC = .5

.ENDS

Output File:

.SUBCKT $modname$ 1 2

RS 1 11 $pvalRS$

DLO 11 2

+ DLO

DHI 11 2

+ DHI

.MODEL DLO D

+ IS = $pvalDLO.IS$

+ N = $pvalDLO.N$

.MODEL DHI D

+ IS = $pvalDLO.IS$

+ N = $pvalDLO.N$

+ CJO = $pvalDLO.CJO$

+ M = $pvalDLO.M$

+ VJ = $pvalDLO.VJ$

+ FC = $pvalDLO.FC$

.ENDS

The parser must print the commands to standard output that tell IC-CAP about the circuit
it has parsed. Each line must meet one of the following formats:

PARAM <name> <value>

MODELPARAM <name> <value>

DEVPARAM <name> <value>

DEVMODELPARAM <name> <value>

DEVPARAMs and DEVMODELPARAMs are parameters that are to appear at the
DUT level. The difference between DEVPARAMs and DEVMODELPARAMs are that

Simulation

40

DEVMODELPARAMs appear in model cards.

MODELPARAMs are PARAMs that appear in model cards. PARAMs and
MODELPARAMs appear in the model parameters page.

<name> is the name of the model. <value> is its default value.
For certain saber parameters that can be altered, you may prepend SPECIAL to
any of the PARAM keywords.

NODE <nodename>

Each NODE line declares a node to be recognized in IC-CAP setups. The order of
the NODE lines must match the order the nodes are to appear when IC-CAP
instantiates the instance card.

CIRCUITTYPE <x>

Here <x> is a single character. See above discussion of circuit types for proper
values.

DEVICETYPE <x>

Here <x> is the name of the device for a device type circuit. See discussion
about circuit types. This line is only required for saber.

UNRESOLVED <x>

Here <x> is the name of a model which was referenced in the netlist, but had
no associated model card. In this case IC-CAP will try to find a model in its
loaded list of models to insert.

ERROR: <x>

Here <x> is any arbitrary error message. The space after the colon is required.
The entire line, including ERROR: will be reported in an error dialog.

DECKCOMPLETE

This should be the last line issued indicating that the parse is successful and that
the output file is generated.

 Translation Module Example

An example translation module, $ICCAP_ROOT/src/mysim.c, is provided with IC-CAP. The
executable version of this program is $ICCAP_ROOT/bin/mysim. The following line is an
example for adding a simulator called mysim to the IC-CAP simulator list:

mysim spice2 $ICCAP_ROOT/bin/mysim "" CAN_PIPE

where:

Simulation

41

The simulator mysim uses spice2 as the template simulator.
mysim is a user-written module that does the following:

Translates a spice2 input format deck to a mysim input format deck.
Makes the call to the user's simulator. In this example, the executable
simulator is spice2.
Translates the user's binary output format to spice2 binary output format.
Optionally sends information to the output text file.

mysim is located in the $ICCAP_ROOT/bin directory.

The current host computer can perform a mysim simulation. The quotation
marks ("") mean that no remote host is specified and therefore the simulation
can be done on the current host machine.
The simulator mysim is capable of piped simulations.

After creating a translation module, you must compile it, using the system command:

cc -o mysim mysim.o -lm

Note
Whenever $ICCAP_ROOT/iccap/lib/usersimulators is modified, always restart IC-CAP to read the new
simulator configuration. This file may be a symbolic link on SunOS so that each host served by a single file
server can have a different simulator configuration.

 Reserved Simulator Names

The following simulator names are reserved by IC-CAP and you cannot assign the same
name to a different simulator:

spice2, spice3, hpspice

The following simulator names are defined in the usersimulators file but you can change
their name and assign the same name to a different simulator.

hspice, saber, eldo, precise, spectre, spectre_spi, pspice, hpeesofsim

 Simulator Argument Syntax

The command syntax for each simulator differs depending on whether a piped or non-
piped simulation is being invoked. For details, refer to the documentation for each
simulator (ADS Simulator (simulation), Saber Simulator (simulation), SPECTRE Simulator
(simulation), SPICE Simulators (simulation)).

Simulation

42

 Remote Simulation
You can perform a simulation on a computer other than your computer by using the
remote simulation feature. You can perform remote simulation due to any of the following
reasons:

Running the simulation on a faster machine
Running the simulation on a computer authorized to run a particular simulator
Running the simulation with a simulator that is not supported on the machine running
IC-CAP, but supported on a remote machine

 Before you Begin with Remote Simulation

To execute a remote simulation, the remote machine must meet the following
requirements:

The remote machine must possess Linux, SunOS, or a similar operating system that
supports execution of Berkeley's remote shell (remsh or rsh) and remote file copy
(rcp) commands. Alternatively, if the machine supports secure shell (ssh) and secure
shell copy (scp), IC-CAP can be configured to this mechanism by modifying
iccap.cfg file.

Note
The remote machine must be set to receive secure shell connections. The machine running IC-CAP
must have ssh and scp installed for this mechanism to function.

Both local and remote machines are familiar with each other. This means that both
the machines are connected through a network and the IP address database is
updated to respond to the other machine. This database is usually found in
/etc/hosts.
Allows remote shell and copy program execution from your local host without
entering a password (relaxed network security). With ssh/scp, this requires
generation of an authentication key. A utility is provided at
$ICCAP_ROOT/examples/model_files/misc/Setup_SSH.mdl to assist with the
generation of the key.
Allows for the removal of files using /bin/rm.
The remote machine must contain /var/tmp directory to write temporary files unless
an alternate directory is specified in the usersimulators file for that simulators
host_name field. See host_name (simulation) for more information.

The procedure for setting up the appropriate network security for your simulator depends
on the remote host operating system.

 Remote Simulation Algorithm

The name of the remote host is specified in the usersimulators file under
$ICCAP_ROOT/iccap/lib file path. Remote simulation is supported in both CAN_PIPE and
CANNOT_PIPE mode for most simulators. However, few simulators may only work in
CANNOT_PIPE mode. See Linking a Simulator to IC-CAP (simulation).

Simulation

43

The machine name for a simulator in the usersimulators file determines where each
simulator runs.

When a remote machine is not specified, the simulation occurs locally on your host
computer.
If the remote machine is specified, ensure that remote machine name is same as the
current host name. When the remote machine is identical to the current host, the
simulation is executed on the current host directly.
If a remote machine is specified and remote machine name is not the same as the
current host name, a remote simulation is performed by a remote shell command as
shown below:

For SunOS and Linux
/usr/ucb/rsh

On a PC
cygwin ssh

cygwin rsh can be configured in iccap.cfg file but for Windows XP only. The cygwin
rsh shipped with IC-CAP does not function under Windows Vista or Windows 7.

In non-piped simulation, necessary files are copied to the remote machine using a
remote file copy command as shown below:

For SunOS and Linux
/usr/ucb/rcp

On a PC
cygwin scp

cygwin rcp can be configured in iccap.cfg for Windows XP only. The cygwin rcp
shipped with IC-CAP does not function with Windows Vista or Windows 7.

 Network Security

When the remote commands (listed in the Remote Simulation Algorithm are executed, the
current user ID is used to establish access to the remote machine. Therefore, it is
necessary to have the same user ID on both local and remote machines. Also, the
following files must be modified to allow remote program execution from a particular host.

For rsh/rcp

/usr/adm/inetd.sec
/etc/hosts.equiv
. rhosts

For ssh/scp

. ssh/known_hosts

. ssh/authorized_keys

 Reconfiguring IC-CAP to use ssh/scp or rsh/rcp

Simulation

44

IC-CAP defaults to rsh/rcp on Linux or Sun and to ssh/scp on Windows operating system.
Due to site security restrictions, it could be necessary to reconfigure IC-CAP on Linux or
SunOS to use ssh/scp, or if you are using Windows XP, it could be appropriate to use
rsh/rcp. To change the mechanism used by IC-CAP, you must modify the
C_REMOTE_SH_CMD and IC_REMOTE_CP_CMD variables in your iccap.cfg file (for more details
on configuring the iccap.cfg file, refer to Customization and Configuration
(customization)).

The default values of C_REMOTE_SH_CMD and IC_REMOTE_CP_CMD variables are:

On Windows

IC_REMOTE_SH_CMD=%ICCAP_PC_UNIX_CMDS\ssh.exe

IC_REMOTE_CP_CMD=%ICCAP_PC_UNIX_CMDS\scp.exe

To change the default on Windows, use the following commands:

IC_REMOTE_SH_CMD=%ICCAP_PC_UNIX_CMDS\rsh.exe

IC_REMOTE_CP_CMD=%ICCAP_PC_UNIX_CMDS\rcp.exe

On Linux

IC_REMOTE_SH_CMD=/usr/bin/rsh

IC_REMOTE_CP_CMD=/usr/bin/rcp

On SunOS
IC_REMOTE_SH_CMD=/usr/ucb/rsh

IC_REMOTE_CP_CMD=/usr/ucb/rcp

To change the default on Linux or SunOS, specify the full path to ssh and scp depending
on your system installation.

 Validating rsh/rcp

When the security is set up, ensure that the following command returns the current date
without any errors (substitute your remote machine name where < remote_machine >
appears in the example).

On SunOS or Linux, type:

rsh <remote_machine> date

For the PC, execute the following line of PEL in an IC-CAP macro. The results are displayed
in the IC-CAP Status window.

print system$("rsh <remote machine> date")

 Validating ssh/scp

Simulation

45

Perform the following steps to test remote simulation:

Open the Setup_SSH.mdl example file from the examples/model_files/misc directory.1.
The ssh_Config model file icon is displayed in the IC-CAP Main window.
Double-click the model icon to open the remote test wizard. The remote test wizard2.
tests the ssh connection and and generates a key which can be copied to the remote
machines authorized_keys file.

Note
To use the remote test wizard, ssh and scp must be installed on the local machine.

This the recommended way to test remote simulation for Windows Vista and Windows 7.

 Specifying the Remote simulator

If your remote simulator requires licensing variables, write a small shell-script on the
remote host machine. The shell-script sets all the required environment variables before
invoking the simulator. The shell script is specified in your usersimulators file instead of
the actual simulator executable.

Example:

#!/bin/sh

LM_LICENSE_FILE=my_license_file.lic

export LM_LICENSE_FILE

PATH=/path/to/my/simulator/bin:$PATH

export PATH

/path/to/my/simulator/bin/xxxxx $*

The $* on the last line is required to pass along the IC-CAP command-line parameters.

 Executing a Remote Simulation

After the usersimulators file is set up correctly and the network security is adjusted, the

Simulation

46

steps for performing a remote simulation are identical to those required to perform a non-
remote simulation. For more information, refer to Performing a Simulation (simulation).

Note
Ensure that there are no commands in the .cshrc file on the remote host that may generate output. Also,
do not perform terminal related operations in your .cshrc file such as termset or stty. Since there is no
physical terminal with remote shell commands, commands expecting one in your .cshrc file lead to errors.

 Remote Simulation Examples

The following example specifications for running the template simulators remotely can be
added to the usersimulators file in the $ICCAP_ROOT/iccap/lib filepath.

Note
If you prefer to preserve the defaults as shipped, you can add the specifications to your local, or Home,
directory by copying and editing the usersimulators file. If you set the specifications in your home
directory, you must change the pointers in your configuration file. Copy the file
$ICCAP_ROOT/config/iccap.cfg to $HOME/hpeesof/config/iccap.cfg. See Customization and Configuration
(customization) for additional information.

The examples contain sample user-assigned simulator names, remote host machine
names, and directory path (on the remote machine) information. This information must be
replaced by the actual names in your system. The purpose of these examples is to show
the names of the simulator executable files.

You must specify a full path name for each simulator because the PATH variable on the
remote machine may not have the necessary search path to find your simulator.

Note
User-assigned simulator names can be any name you choose except for the reserved names. See
Reserved Simulator Names (simulation). To use a user-assigned simulator, ensure that the simulator
name is listed in the first column of the usersimulators file, and then set your simulator in IC-CAP to the
same name.

Running spectre on the Remote Solaris Machine

To run spectre on the remote Solaris machine called cadencebox, enter the following
command:

remspectre_SS spectre443 /cadence/5.0.0/tools/bin/spectre "cadencebox"

CANNOT_PIPE

where,

spectre443 is the template for spectre version 4.4.3 and greater, which causes IC-CAP to
parse its circuit page expecting spice syntax.

Running spectre from a PC

From a PC, enter the following command:

remspectre_SS spectre443.be /cadence/5.0.0/tools/bin/spectre "cadencebox"

CANNOT_PIPE

Simulation

47

Since the Solaris machine's byte order is big endian, append the .be extension to the
template name.

Running Native spectre on the remote Solaris Machine

To run native spectre on the remote Solaris machine called cadencebox, enter the
following command:
remspectre spectre /cadence/5.0.0/tools/bin/spectre "cadencebox" CANNOT_PIPE

where,

spectre is the template for native spectre, which causes IC-CAP to parse its circuit page
expecting native spectre syntax. See SPECTRE Interfaces (simulation).

Running Native spectre from a PC

From a PC, enter the following command:

remspectre spectre.be /cadence/5.0.0/tools/bin/spectre "cadencebox" CANNOT_PIPE

Since the Solaris machine's byte order is big endian, append the .be extension to the
template name.

Running UCB SPICE 2G.6 on a Remote Machine

To run UCB SPICE 2G.6 on the remote machine called spice2mach, enter the following
command:
spice2rem spice2 /usr/iccap/bin/ucbspice2g6 "spice2mach" CAN_PIPE

where:,

spice2rem represents the name of the simulator and pipe creates an interprocess channel
that responds to read/write calls.

To run UCB SPICE 3E2 on the remote machine called spice3mach, enter the following
command:

spice3rem spice3 /usr/iccap/bin/spice3e2 "spice3mach" CAN_PIPE

where,

spice3rem represents the name of the simulator and pipe creates an interprocess channel
that responds to read/write calls.

Running HPSPICE on a Remote Machine

To run HPSPICE on the remote machine called hpspicemach, enter the following
command:

Simulation

48

hpspicerem hpspice /usr/iccap/bin/shpspice "hpspicemach" CAN_PIPE

where,

hpspicerem represents the name of the simulator and pipe creates an interprocess
channel that responds to read/write calls.

When performing remote simulations using the HPSPICE simulator, both of the executable
files called shpspice and spice2.4n1 must be present on the remote machine.

To run HSPICE on the remote machine called hspicemach , enter the following command:

hspicerem hspice /usr/bin/hspice "hspicemach" CANNOT_PIPE

where,

hpspicerem represents the name of the simulator and pipe creates an interprocess
channel that responds to read/write calls

Depending on the version of HSPICE you have installed, the execution script called hspice
can exist in a different directory path from /usr/bin/hspice. In this case, create a symbolic
link from /usr/bin/hspice to the actual hspice script that will be called. For example, if your
hspice script exists under /usr/meta/h9007/bin/hspice, then execute the following
command to create the required symbolic link:

ln -s /usr/meta/h9007/bin/hspice /usr/bin/hspice

Note
You must be in the root directory when executing the above command.

Running ELDO on a Remote Machine

To run ELDO on the remote machine called eldomach ,enter the following command:

eldorem eldo<anacad_root>/eldo/<version>/com/eldo"eldomach" CANNOT_PIPE

where,

<anacad_root> and <version> are replaced with the home directory of the ANACAD
software and the current version number of ELDO, respectively.
eldorem represents the name of the simulator.
pipe creates an interprocess channel that responds to read/write calls.

Running Saber on a Remote Machine

To run Saber on the remote machine called sabermach, enter the following command:
saberrem saber /usr/saber/bin/saber "sabermach" CAN_PIPE

where,

saberrem represents the name of the simulator and pipe creates an interprocess channel

Simulation

49

that responds to read/write calls.

Running HPEESOFSIM on a Remote Machine

To run HPEESOFSIM on the remote machine called hpsimmach, enter the following
command:

hpsimrem hpeesofsim <simulator path> "hpsimmach" CAN_PIPE

where,

hpsimrem represents the name of the simulator and pipe creates an interprocess channel
that responds to read/write calls.
hpeesofsim is the simulator name.
The third field is the path to the simulators location installed on the remote machine.

To launch an external simulation, copy the file $ICCAP_ROOT/bin/hpeesofsim_start to
some location on the remote machine. Modify the file (as explained within the file) to set
HPEESOF_DIR and HPEESOFSIMFRONT_DIR for the remote machine. Then, ensure that
hpeesofsim_front is on the remote machine. If the remote machine contains the same OS
as the local machine, then you can copy $ICCAP_ROOT/bin/hpeesofsim_front from the
local machine. If the remote machine has a different architecture, hpeesofsim_front for all
architectures can be found on your distribution CD under the subdirectory simlinks.
Finally, modify the file usersimulators to refer to the remote host and the path to
hpeesofsim_start on the remote host.

Simulation

50

 Simulators in IC-CAP
ADS Simulator (simulation)
SPECTRE Simulator (simulation)
HSPICE Simulator (simulation)
SPICE Simulators (simulation)
ELDO Simulator (simulation)
Saber Simulator (simulation)

Simulation

51

 ADS Simulator
About ADS Simulator (simulation)
ADS Interfaces (simulation)
System Requirements (simulation)
Setting Environment Variables (simulation)
ADS Simulation Example (simulation)
Piped and Non-Piped ADS Simulations (simulation)
Circuit Model Descriptions (simulation)
ADS Parameter Sweeps (simulation)
ADS Simulator Syntax (simulation)

 About ADS Simulator in IC-CAP

This section describes the details of using the Advanced Design System (ADS) Simulator
with IC-CAP. For general information on IC-CAP simulation, refer to Simulation
(simulation).

Note
The PC version of IC-CAP supports ADS version 2002 or newer. Older versions of ADS can not be used
with the PC version of IC-CAP.

IC-CAP supports the following ADS features:

DC, Small Signal AC, Small Signal S-Parameter, and Transient analysis options
Parameter sweeps for device and circuit simulation
Temperature sweeps
Hierarchical simulation
Variables
Constants
Expressions
Spectre circuit page
Spice circuit page

The ADS Optimizer features are not currently supported in IC-CAP. IC-CAP optimization
(different from the ADS Optimizer) of simulated data to target data is supported.

The ADS simulator supports the following analysis types:

DC
AC
2-port
Multiport
Transient
Noise
Capacitance Voltage (CV)
Time-Domain Reflectometry (TDR)
Steady State Harmonic Balance

Simulation

52

Note
2-port simulation with high frequency noise is supported to extract noise parameters such as noise
figure, optimum source reflection coefficients, equivalent noise resistance data, minimum noise
figure data, and equivalent noise temperature data.

IC-CAP does not add extra circuitry in order to perform a 2-port simulation since this is a standard
type in ADS.

 ADS Interfaces

IC-CAP provides three template names to interface to the ADS simulator's Circuit and Test
Circuit pages:

hpeesofsim uses native ADS simulator syntax
spmodeads uses spectre simulator syntax, and
hspicemodeads uses hspice simulator syntax

All interfaces use native ADS simulator syntax to specify the sweep and output requests.

usersimulators file should have a line similar to the following:

To specify hpeesofsim, type the following:

hpeesofsim hpeesofsim $ADS_DIR/bin/iccapinterface "" CAN_PIPE

To specify spmodeads, type the following:

spmodeads spmodeads $ADS_DIR/bin/iccapinterface "" CAN_PIPE

To specify hspicemodeads, type the following:

hspicemodeads hspicemodeads $ADS_DIR/bin/iccapinterface "" CAN_PIPE

The first field can be any name as per your choice and it will show up in your simulator
list. It can be used with the SIMULATOR variable.

The hpeesofsim , spmodeads and hspicemodeads lines shown above are in the
usersimulators file by default.

When using the spmodeads interface, refer to Circuit Model Descriptions (simulation) in
SPECTRE Simulator (simulation) for spectre syntax for the Circuit and Test Circuit pages.
When using the hspicemodeads interface, refer to Circuit Model Descriptions (simulation)
in SPICE Simulators (simulation) for spice syntax for the Circuit and Test Circuit pages.

 System Requirements

 Hardware and Operating System Requirements

The ADS Simulator on IC-CAP is supported on the following platforms:

Simulation

53

Linux RedHat Enterprise 4.0 or Linux Novell SUSE SLES 9
Solaris 10
Microsoft Windows XP or Microsoft Windows Vista.

 Codewording and Security

The ADS Simulator is a secured program that requires, at a minimum, a license for the
E8881 Linear Simulator to run. Depending on the type of simulation, additional licenses
may be required.
 Setting Environment Variables

Before running the ADS Simulator, set the environment variable HPEESOF_DIR on UNIX or
ADS_DIR on Windows to point to the ADS Simulator's installation location.

To set HPEESOF_DIR using the Korn Shell, add the following to your ~/.profile.

export HPEESOF_DIR=< ADS_install_directory >

To set HPEESOF_DIR using the C Shell, add the following to your ~/.cshrc.

setenv HPEESOF_DIR < ADS_install_directory >

To set ADS_DIR for Windows 2000, right click on My Computer and select
Properties. Click on the Advanced tab. Then select Environment Variables and
set ADS_DIR either for the local user or system wide, depending on your needs.
To set ADS_DIR for Windows NT 4.0, right click on My Computer and select
Properties. Click on the Environment tab. Then set ADS_DIR either for the local
user or system wide, depending on your needs. You may need to log off and log back
onto the computer for the new variable to be found by IC-CAP.

 ADS Simulation Example

The circuit description is predefined for all IC-CAP configuration files. Enter this description
if a new model is being defined; edit the description to fit specific needs. The syntax is
identical to the syntax used for describing circuits in a typical ADS simulation deck.

This ADS simulation example will use the IC-CAP supplied Model hpsimnpn.mdl.

Choose File > Examples > model_files/bjt/hpsimnpn.mdl. Choose OK.1.
View the description by clicking the Circuit tab.2.
The circuit description is shown in the following figure. This deck describes the circuit
(in this case, a single device) to be used in the simulation.

 ADS Circuit Description Deck for an NPN Bipolar Transistor

; Simulation Input File for BJT

options ascii=no

model npnbjt BJT NPN=yes \

Is=401.5a Bf = 87.01 \

Nf = 995.5m Vaf = 84.56 \

Ikf = 11.95m Ise = 34.05f \

Ne = 1.594 Br = 10.79 \

Simulation

54

Nr = 1.002 Var = 9.759 \

Ikr = 23.7m Isc = 1.095f \

Nc = 1.100 Rb = 9.117 \

Irb = 1.613m Rbm = 5.620 \

Re = 1.385 Rc = 9.292 \

Xtb = 1.7 Eg = 1.110 \

Xti = 3.000 Cje = 1.312p \

Vje = 1.110m Mje = 347.5m \

Tf = 52.74p Xtf = 5.625 \

Vtf = 2.678 Itf = 23.82 \

Ptf = 154.1 Cjc = 1.396p \

Vjc = 451.1m Mjc = 192.4m \

Xcjc = 300m Tr = 1.00n \

Cjs = 99.85f Vjs = 813.7m \

Mjs = 350.9m Fc = 500.0m \

Tnom = 27

npnbjt:Q1 C B E S

To view the input and output for the fearly setup, click the DUTs-Setups tab and select
fearly.
The Measure/Simulate folder appears with the inputs vb, vc, ve, and vs, and the output ic.
The vc input specifies a voltage source at node C that sweeps linearly from 0 to 5V in 21
steps. The ic output specifies that current at node C be monitored.
In the Plots folder, icvsvc is specified so that the results of the simulation can be viewed
graphically.
To simulate, click the Simulate button in the Measure/Simulate folder. The Status line
displays Simulate in progress. Under most configurations, the ADS status window will
appear. For more information about these configurations, see Piped ADS Simulations
(simulation).
When the simulation is complete, the Status line displays Simulate Complete.
To view the results of the simulation, right-click on fearly, then choose Plots > icvsvc.
(This is a shortcut for displaying the plot from the Plots folder.) The plot displays
measured data represented by solid lines and simulated data represented by dashed lines.

Note
For syntax examples of running a remote simulation, refer to Remote Simulation Examples (simulation).

 The Simulation Debugger

When using ADS with the Simulation Debugger to perform an IC-CAP simulation (as
opposed to a manual simulation), an output text file consists of only the computational
analysis information. An example of a typical AC analysis output text file is as follows:

HPEESOFSIM (ver. 03.00 -- 12/14/01 09:28:45)

Copyright Agilent Technologies, 2004

CT ct1[1] </var/tmp/ICCAAa18727> VBGROUND.Vdc=(700 mV->720 mV)

DC ct1[1].dc1[1/3] </var/tmp/ICCAAa18727> VBGROUND.Vdc=700 mV VCGROUND.Vdc=(0 V->5 V)

DC ct1[1].dc1[2/3] </var/tmp/ICCAAa18727> VBGROUND.Vdc=710 mV VCGROUND.Vdc=(0 V->5 V)

DC ct1[1].dc1[3/3] </var/tmp/ICCAAa18727> VBGROUND.Vdc=720 mV VCGROUND.Vdc=(0 V->5 V)

Simulation finished.

This file does not include the resulting data. To generate a more informative output text
file, change the ASCII_Rawfile option in the Input File from ASCII_Rawfile=no to

Simulation

55

ASCII_Rawfile=yes and perform a manual simulation. An output text file that includes the
simulated output data values is produced. The ASCII_Rawfile option is set to no by IC-CAP
before every simulation so that the binary raw data file is generated by ADS. IC-CAP
needs the binary raw data file to read the resulting simulation data. However, this data is
not needed for a manual simulation.

ADS version 1.3 requires that the option UseNutmegFormat be set to yes to cause ADS to
generate the binary raw data file required by IC-CAP. If the UseNutmegFormat option is
not specified, the default is UseNutmegFormat = yes. If you set UseNutmegFormat = no,
ADS will generate an output data format that IC-CAP cannot understand.

 Piped and Non-Piped ADS Simulations

 Piped ADS Simulations

Specifying CAN_PIPE (the default) in your usersimulators file for the ADS simulator
enables IC-CAP to take advantage of the tune mode built into the ADS simulator. This
mode permits changing parameters of a simulation without requiring the simulator to be
relaunched. This greatly reduces the time required for optimizations to run. However, each
setup requires a new simulator to be launched. By default, IC-CAP permits up to 3 ADS
simulators to be running at once so that an optimization across as many as 3 setups can
be completed in the fastest time possible. Certain large simulations may require a great
deal of system resources and having 3 simulations currently active can degrade system
performance. If you encounter this problem, you can set the
MAX_PARALLEL_SIMULATORS system variable to 1 or 2. If your system can handle more
than 3 simulators in parallel and you need to optimize across more than 3 setups at a
time, the value of MAX_PARALLEL_SIMULATORS can be increased.

When CAN_PIPE mode is used, the ADS simulator will bring up a status window during
simulation. The first time the simulator is launched it can take several seconds for this
window to appear. Once it is open, successive simulations will attach to the same status
window. Each time a new setup is simulated, a new simulator must be started. There is a
certain start-up delay associated with each invocation. This will be much shorter than the
very first invocation which needed to launch the status window. Successive simulations of
a setup which has been previously simulated will return in the shortest time as the
simulator does not need to be reinvoked.

Opening the Simulation Debugger will terminate all running simulators, and close the ADS
status window. Simulations done with the Simulation Debugger window open are
performed in non-piped mode and thus the ADS status window is not opened.

In situations when you want to use the $mpar or $dpar feature in #echo lines for ADS
netlists, you must enter names properly. The proper ADS name syntax is a dot-separated
name, such as NPN.Bf. If you fail to use a proper name, simulations will yield incorrect
results when you try to use the simulator in CAN_PIPE mode. If names cannot be revised,
use CANNOT_PIPE.

This was especially problematic for userdefined models requiring many #echo lines using
the $mpar feature in order for IC-CAP to parse it properly. This problem occurs when the
technique used to implement userdefined models in ADS is declaring 2 new components, 1

Simulation

56

a modelform and another an instance. This implementation of user-defined models led to
the requirement for #echo lines. The modelform component looked like any other ADS
netlist component, but it had no nodes. The parser is modified for IC-CAP 2001 to
recognize a nodeless component as a userdefined model; however, only in the context of
a subcircuit. If you want to create this type of userdefined model in ADS, then you must
use a subcircuit. Doing so eliminates the need for #echo lines in the netlist and the
subcircuit will parse and simulate properly.

 Non-Piped ADS Simulations

Execute a simulation with the Simulation Debugger ON to perform a non-piped simulation.
ADS is capable of performing piped simulations, which enables you to turn the Simulation
Debugger OFF without requiring that ADS be restarted for every simulation.
 Circuit Model Descriptions

This section explains the circuit descriptions for the ADS simulator.

 Selecting Simulator Options

ADS simulation options are specified using the HPEESOFSIM_OPTIONS variable in the
Setup DUT or System Variable tables. Enter the options in the value section of the variable
exactly as they should appear in the ADS options command.

 Entering Circuit Descriptions

The circuit description is entered into the IC-CAP Circuit Editor or the Test Circuit Editor.
The circuit description includes the necessary definitions of devices, sources and
components, as well as node connections and model descriptions. ADS accepts a netlist
description that is different from SPICE and Saber simulators.

Note
IC-CAP accepts a modified form of a netlist that enables you to use binning. To simulate a netlist with
binned models from IC-CAP, you must declare the bin model (and only the bin model) immediately
following the subcircuit definition. You must declare each Model[x]= to be a name of the form
XCKT.modname since that is how IC-CAP netlists the bin model.

 Parameter Table Generation

The circuit description is parsed by IC-CAP and specific model information (such as
parameters and their corresponding values) as well as circuit component values are
reflected in the Parameters table. Model parameters and component values specified in
the circuit description entered in the Circuit Editor are saved in the Parameters table.
Device parameters specified in the model call statement are saved in the DUT Parameters
table-unless a Test Circuit is specified, in which case, parameter values specified in the
test circuit description are saved in the DUT Parameters table.

By default, all parameter names will be converted to uppercase, since most extraction
routines look for parameters named with all uppercase letters. Some extraction routines
(e.g., Root models and EExxx models) require all lowercase letters. In these .mdl files, the
variable HPEESOFSIM_USE_LOWER_CASE_PARAMS is declared to override the default
behavior. If you want to write extraction routines using the native mixed case parameters,

Simulation

57

declare the variable HPEESOFSIM_USE_MIXED_CASE_PARAMS in your model file. For a
description of these functions, see the System Variables.

 Non-numeric Parameter Values

ADS allows non-numeric values for a number of parameters in predefined component
definitions. One example is the BJT model parameter npn. This parameter can take on the
value of yes if it is an nmos device. Alpha format parameters do not appear in the IC-CAP
Parameters table but do appear in the simulation input decks.

Circuit descriptions must be entered with valid model and parameter names for the
particular model being used.

 Node Names

ADS accepts alphanumeric names as well as numbers to represent nodes. There is no limit
on the number of characters allowed in a node name; however, delimiters or non-
alphanumeric characters are not allowed. Also, a node name that begins with a digit must
consist only of digits.

Numeric node names are discouraged as they will result in warnings during simulation that
the results will not be displayed properly in ADS Data Display Server (DDS). However,
these warnings are of no consequence to ICCap.

 Comments

To indicate comments in an ADS input deck, start an input line with a semicolon (;). All
text on the line following the semicolon will be ignored.

Note
ADS will treat the suffix M as MEG and m as milli, whereas IC-CAP parses both M and m as milli. When
specifying a value multiplied by10-3 use m; when specifying a value multiplied by 106 use MEG.

 Device Model Descriptions

A device model is used to characterize a single ADS-defined element of any type. This
specification requires a model definition that describes the device and an instance
statement that calls the model definition.

The model description specifies the value of a device model that describes a particular
element. When a parameter is not specified, the default value in the model is used. The
general form of the model definition is:

model MNAME TYPE PNAME1 = PVAL1 PNAME2 = PVAL2...

where

MNAME is the model name. (Regardless of the model name entered into the
MNAME field of the ADS model definition statement, IC-CAP substitutes this field
with the name of the Model as it is called in the Main window when the simulator

Simulation

58

input deck is built.)

TYPE is a valid ADS element type.

PNAMEs are parameter names available for the particular model type.

PVALs are the parameter values.

A backslash immediately followed by a return (no space between the backslash and the
return) at the end of a line indicates that the statement is continued on the next line This
continuation character is often used for easier readability when specifying the model
description.

The general form of the instance statement that calls the device model is:

TYPE :DNAME NNAME1 NNAME2...NNAMEN DPAR1 = DVAL1

DPAR2 = DVAL2...DPARN = DVALN

where

TYPE is the instance type descriptor. This field can contain either the ADS
instance type name or a user-supplied model or subcircuit name.

DNAME is the device name.

NNAMEs denote node names.

DPAR is a predefined DUT parameter name.

DVAL is the specified DUT parameter value. Refer to General Syntax
(simulation) for DUT parameter names available for each model.

 Subcircuit Model Descriptions

A subcircuit definition represents a circuit that contains more than 1 device. The syntax for
defining a subcircuit is identical to the syntax used for the ADS input language.

The general form of the subcircuit definition is:

define SUBCKTNAME (NNAME1 NNAME2 ...NNAMEN)

parameters PAR1 = VAL1 PAR2 = VAL2 ...PARN = VALN

< body of subcircuit >

end SUBCKTNAME

where

SUBCKTNAME is the name of the subcircuit.

NNAMEs are the node names of the external nodes of the subcircuit. These
external nodes are used to connect the subcircuit to another circuit.

Simulation

59

PARs are the names of the parameters passed into the subcircuit. These
parameters are optional in a subcircuit definition.

If parameters are specified, the assigned default values VAL are also optional. A
parameter is assigned to this default value if the parameter is not specified in the
subcircuit call.

The body of the subcircuit contains element statements. It can contain calls to other
subcircuits but it cannot contain other subcircuit definitions.

The subcircuit definition is completed using the end SUBCKTNAME statement.

Calling a subcircuit definition allows you to insert all instances specified within the
subcircuit into the circuit. The call requires a syntax identical to the syntax used in the
ADS input language for any instance statement. The general form of the instance
statement is:

TYPE :INAME NNAME1 NNAME2....NNAMEN PAR1 = VAL1 PAR2 =

VAL2......PARN = VALN

(While the syntax shown here is correct, passed parameters are ignored by IC-CAP.)

where

TYPE is the instance type descriptor. If a subcircuit is being called, this field
would contain the subcircuit name denoted by SUBCKTNAME.

INAME is the instantiated name of the subcircuit.

NNAMEs denote node names.

PARs are the subcircuit parameter names.

VALs are the specified subcircuit parameter values.

The following is an example of a complete subcircuit definition and subcircuit call.

Added by IC-CAP for output format/etc.

Options ASCII_Rawfile=no UseNutmegFormat=yes

Defined by the user in the Circuit folder:

;Simulation Input File in hpeesofsim Input Deck Format

global RC1_r=4352

define hpsimopamp (2 3 4 6 7)

; Internal OpAmp circuit

; using Boyle-Pederson Macro Model

; Input differential amplifier

NPN1:Q1 10 2 12

NPN2:Q2 11 3 13

model NPN1 BJT NPN=yes \

Simulation

60

Is = 8E-16 \

Bf = 52.81

model NPN2 BJT NPN=yes \

Is = 8.093E-16 \

Bf = 52.66

R:RC1 7 10 R=RC1_r

R:RC2 7 11 R=4352

C:C1 10 11 C=4.529E-12

R:RE1 12 14 R=2392

R:RE2 13 14 R=2392

R:RE 14 0 R=7.27E+06

C:CE 14 0 C=7.5E-12

; Power dissipation modeling resistor

R:RP 7 4 R=1.515E+04

; 1st gain stage

#uselib "ckt", "VCCS"

VCCS:GCM 14 0 0 15 G=1.152E-09

VCCS:GA 10 11 15 0 G=0.0002298

R:R2 15 0 R=1E+05

; Compensation capacitor

C:C2 15 16 C=3E-11

; 2nd gain stage

VCCS:GB 15 0 16 0 G=37.1

R:RO2 16 0 R=489.2

DMOD1:D1 16 17

DMOD1:D2 17 16

model DMOD1 Diode \

Is = 3.822E-32

R:RC 17 0 R=0.0001986

VCCS:GC 6 0 0 17 G=5034

; Output circuit

R:RO1 16 6 R=76.8

DMOD2:D3 6 18

DMOD2:D4 19 6

model DMOD2 Diode \

Is = 3.822E-32

V_Source:VC 7 18 Vdc=1.604

V_Source:VE 19 4 Vdc=3.104

; Input diff amp bias source

I_Source:IEE 14 4 Idc=2.751E-05

end hpsimopamp

Defined by the user in the Test Circuit folder:

; Inverting Amplifier

define inv_amp (1 2 3 4 6 7)

hpsimopamp:X1 2 3 4 6 7

R:Rf 6 2 R=1E+04

R:Rin 2 1 R=2000

R:Rgnd 3 0 R=0.001

end inv_amp

Added by IC-CAP to the circuit description:

inv_amp:XCKT n1 n2 n3 n4 n5 n6

; START SOURCES

V_Source:V1GROUND n1 0 Vdc=0 Vac=1

Simulation

61

V_Source:V7GROUND n6 0 Vdc=15

V_Source:V4GROUND n4 0 Vdc=-15

; END SOURCES

R:RO2 n2 0 R=100MEG

R:RO3 n3 0 R=100MEG

R:RO5 n5 0 R=100MEG

SweepPlan:swpfreq Start = 1000 Stop = 1e+07 Dec = 3

AC:ac1 SweepPlan=swpfreq SweepVar="freq"

 ADS Parameter Sweeps

When using the ADS simulator in IC-CAP, the method of specifying parameter sweeps is
unique when performing simulations with a defined Test Circuit at the DUT level which
references a subcircuit style netlist from the model level.

Note
When performing parameter sweeps, the name of the parameter to be swept must be recognized by ADS,
since the analysis is performed from within the simulator. If you need to sweep a parameter from the
model level netlist in this scenario, you must define a variable manually-- both within the netlist and in the
IC-CAP variable table and sweep the variable.

 Normal Parameter Sweep Specification

To sweep a parameter in an ADS device simulation, or in a circuit simulation without a test
circuit:

Add an input specification of mode P to the Setup. Enter the name of the parameter1.
as it appears in the Parameters table.
Enter the sweep type and values.2.

The Device Simulation Parameter Sweep example uses the hpsimnpn.mdl model with an
input of mode P to the fearly setup. This input specifies a linear sweep of the parameter
from 200.0e-15 to 230.0e-15 amperes in steps of 15.0e-15 amperes.

 ADS Device Simulation Parameter Sweep Setup Example

During the simulation, IC-CAP generates the following input deck.

Options\

ASCII_Rawfile=no UseNutmegFormat=yes

; Simulation Input File for BJT

model npn BJT NPN=yes \

Is = 2.704E-16 \

Simulation

62

Bf = 86.16 \

Nf = 0.979 \

Vaf = 86.95 \

Ikf = 0.01491 \

Ise = 1.886E-14 \

Ne = 1.522 \

Br = 8.799 \

Nr = 0.9967 \

Var = 9.757 \

Ikr = 0.02369 \

Isc = 1.095E-15 \

Nc = 1.1 \

Rb = 8.706 \

Irb = 0.001509 \

Rbm = 5.833 \

Re = 1.385 \

Rc = 10.68 \

Xtb = 0 \

Eg = 1.11 \

Xti = 3 \

Cje = 1.312E-12 \

Vje = 0.6151 \

Mje = 0.2052 \

Tf = 4.781E-11 \

Xtf = 4.359 \

Vtf = 3.237 \

Itf = 0.01753 \

Ptf = 176.2 \

Cjc = 1.394E-12 \

Vjc = 0.5428 \

Mjc = 0.2254 \

Xcjc = 1 \

Tr = 5.099E-09 \

Cjs = 1.004E-13 \

Vjs = 0.5668 \

Mjs = 0.2696 \

Fc = 0.5 \

Tnom = 27

npn:devckt 1 2 3 4

; START SOURCES

V_Source:VBGROUND 2 0 Vdc=0

V_Source:VCGROUND 1 0 Vdc=0

V_Source:VEGROUND 3 0 Vdc=0

V_Source:VSGROUND 4 0 Vdc=-3

; END SOURCES

SweepPlan:swp1 Start=0 Stop=5 Step=0.25

SweepPlan:swp2 Start=0.7 Stop=0.72 Step=0.01

DC:dc1 SweepPlan=swp1 SweepVar="VCGROUND.Vdc"

ParamSweep:ct1 SimInstanceName="dc1" SweepPlan=swp2

SweepVar="VBGROUND.Vdc"

 Circuit Simulation Plus Test Circuit Parameter Sweep

Specifying a parameter sweep for a circuit simulation which includes a Test circuit requires
a different approach from a parameter sweep for a device simulation.

To sweep a parameter at the model level in an ADS circuit simulation:

Specify a global variable in the ADS circuit description and set it to an initial value.1.

Simulation

63

Set the value of the parameter in the circuit description equal to the global variable2.
name.
Add a variable in IC-CAP with the same name as the global ADS parameter.3.
Add an input specification of mode P to the Setup.4.
Enter the global variable name in the Name field of the Input table.5.
Enter the sweep type and values.6.

DUT Level parameters can be specified in the normal way covered in the previous section.

 Example Circuit Simulation Parameter Sweep

The Circuit Simulation Parameter Sweep example, uses a model for opamp simulation.
The following line is included with the circuit description:

global RC1_r=4352

This complete circuit description is shown below.

;Simulation Input File in hpeesofsim Input Deck Format

global RC1_r=4352

define opamp1 (2 3 4 6 7)

; Internal OpAmp circuit

; using Boyle-Pederson Macro Model

; Input differential amplifier

NPN1:Q1 10 2 12

NPN2:Q2 11 3 13

model NPN1 BJT NPN=yes \

Is = 8E-16 \

Bf = 52.81

model NPN2 BJT NPN=yes \

Is = 8.093E-16 \

Bf = 52.66

R:RC1 7 10 R=RC1_r

R:RC2 7 11 R=4352

C:C1 10 11 C=4.529E-12

R:RE1 12 14 R=2392

R:RE2 13 14 R=2392

R:RE 14 0 R=7.27E+06

C:CE 14 0 C=7.5E-12

; Power dissipation modeling resistor

R:RP 7 4 R=1.515E+04

; 1st gain stage

#uselib "ckt", "VCCS"

VCCS:GCM 14 0 0 15 G=1.152E-09

VCCS:GA 10 11 15 0 G=0.0002298

R:R2 15 0 R=1E+05

; Compensation capacitor

C:C2 15 16 C=1E-11

; 2nd gain stage

VCCS:GB 15 0 16 0 G=37.1

R:RO2 16 0 R=489.2

DMOD1:D1 16 17

DMOD1:D2 17 16

model DMOD1 Diode \

Is = 3.822E-32

R:RC 17 0 R=0.0001986

Simulation

64

VCCS:GC 6 0 0 17 G=5034

; Output circuit

R:RO1 16 6 R=76.8

DMOD2:D3 6 18

DMOD2:D4 19 6

model DMOD2 Diode \

Is = 3.822E-32

V_Source:VC 7 18 Vdc=1.604

V_Source:VE 19 4 Vdc=3.104

; Input diff amp bias source

I_Source:IEE 14 4 Idc=2.751E-05

end opamp1

define inv_amp (1 2 3 4 6 7)

opamp1:X1 2 3 4 6 7

R:Rf 6 2 R=1E+004

R:Rin 2 1 R=2000

R:Rgnd 3 0 R=0.001

end inv_amp

inv_amp:XCKT n1 n2 n3 n4 n5 n6

; START SOURCES

V_Source:V1GROUND n1 0 Vdc=0 Vac=polar(1,0)

V_Source:V7GROUND n6 0 Vdc=15

V_Source:V4GROUND n4 0 Vdc=-15 ; END SOURCES

R:RO2 n2 0 R=100MEG

R:RO3 n3 0 R=100MEG

R:RO5 n5 0 R=100MEG

SweepPlan:swpfreq Start=1000 Stop=1e+07 Dec=3

SweepPlan:swp1 Start=4 Stop=10 Step=6

AC:ac1 SweepPlan=swpfreq SweepVar="freq"

ParamSweep:ct1 SimInstanceName="ac1"

SweepPlan=swp1 SweepVar="RC1_r"

In this example, the value of R:RC1 is set to RC1_r. You must also add a variable called
RC1_r to the IC-CAP model variables table and set the variable to a value, such as,
4.000K. In the example model, you must then add an input call RC1_r to the setup. The
Inputs table is shown in the following figure.

 ADS Circuit Parameter Sweep Setup Example

For additional information on sweeping parameters, refer to Specifying Parameter or
Variable Sweeps (simulation).

The following sections of this topic describe in detail the syntax for the ADS Simulator.

 Using LSYNC sweeps

Simulation

65

When you use LSYNC sweeps for an ADS simulation, data is written to a data access
component file. This file contains the synchronized lists and the specific elements in the
netlist that refer to LSYNC values. These elements are accessed using variables and an
index.

A single sweep for the LSYNC group is then created to sweep the index.

Example Netlist:

Options ASCII_Rawfile=no UseNutmegFormat=yes

model nmos3 MOSFET nmos=yes \

UO = 1000 \

Vto = 1.136 \

Nfs = 0 \

Tox = 1E-007 \

Nsub = 5.31E+015 \

Nss = 0 \

Vmax = 1E+006 \

Rs = 0 \

Rd = 0 \

Rsh = 0 \

Cbd = 0 \

Cbs = 0 \

Cj = 0 \

Mj = 0.5 \

Cjsw = 0 \

Mjsw = 0.33 \

Is = 1E-014 \

Simulation

66

Pb = 0.8 \

Fc = 0.5 \

Xj = 9.438E-008 \

Ld = 2.955E-007 \

Delta = 0.9338 \

Theta = 0.04124 \

Eta = 0 \

Kappa = 0.2

nmos3:devckt n1 n2 n3 n4 L = lsync0_0 W = lsync0_1 Ad = 1e-10

As = 1e-10 Pd = 0.000104 Ps = 0.000104 ; START SOURCES

V_Source:VGGROUND n2 0 Vdc=0 V_Source:VBGROUND n4 0 Vdc=0

V_Source:VDGROUND n1 0 Vdc=0.1 V_Source:VSGROUND n3 0 Vdc=0

; END SOURCES

INDEX0=0

#uselib "ckt" , "DAC"

DAC:DAC0 File="c:\ictmp\IC19_lsync0" Type="dscr"

InterpMode="index_lookup" iVar1=1 iVal1=INDEX0

lsync0_0=file {DAC0, "lval0"}

lsync0_1 = file {DAC0, "lval1"}

SweepPlan:swp1 Start=0 Stop=5 Step=0.2

SweepPlan:swp2 Start=-3 Stop=0 Step=1.5 Reverse=yes

SweepPlan:swp3 Start=0 Stop=2 Step=1

DC:dc1 SweepPlan=swp1 SweepVar="VGGROUND.Vdc"

ParamSweep:ct1 SimInstanceName="dc1" SweepPlan=swp2

SweepVar="VBGROUND.Vdc"

ParamSweep:ct2 SimInstanceName="ct1" SweepPlan=swp3

SweepVar="INDEX0"

And the contents of IC19_lsync0 will be:

BEGIN DSCRDATA

% INDEX0 lval0 lval1

0 5e-05 5e-05

1 5e-05 5e-06

2 2.5e-06 5e-05

 Interpreting this Section

To make this section more accurate and easier to update, much of the information in it is
derived directly from the help facility in the ADS Simulator. The parameter information in
the help facility has the following format.

Parameters:

 name (units) attributes description

Attributes:

 field 1: settable.

 s = settable.

 S = settable and required.

 field 2: modifiable.

 m = modifiable.

 field 3: optimizable.

 o = optimizable.

 field 4: readable.

 r = readable.

 field 5: type.

 b = boolean.

Simulation

67

 i = integer.

 r = real number.

 c = complex number.

 d = device instance.

 s = character string.

 Model Parameter Attribute Definitions

Attribute Meaning Example

settable Can be defined in the instance or model
statement. Most parameters are settable, there
are a few cases where a parameter is calculated
internally and could be used either in an equation
or sent to the dataset via the OutVar parameter
on the simulation component. The parameter
must have its full address.

Gbe (Small signal Base-Emitter Conductance)
in the BJT model can be sent to the dataset
by setting OutVar="MySubCkt.X1.Gbe" on the
simulation component.

required Has no default value; must be set to some value,
otherwise the simulator will return an error.

modifiable The parameter value can be swept in simulation.

optimizable The parameter value can be optimized.

readable Can be queried for value in simulation using the
OutVar parameter. See settable.

boolean Valid values are 1, 0, True, and False.

integer The maximum value allowed for an integer type is
32767, values between 32767 and 2147483646
are still valid, but will be netlisted as real
numbers. In some cases the value of a parameter
is restricted to a certain number of legal values.

The Region parameter in the BJT model is
defined as integer but the only valid values
are 0, 1, 2, and 3.

real
number

The maximum value allowed is
1.79769313486231e308+.

complex
number

The maximum value allowed for the real and
imaginary parts is 1.79769313486231e308+.

device
instance

The parameter value must be set to the name of
one of the instances present in the circuit.

The mutual inductance component (Mutual),
where the parameters Inductor1 and
Inductor2 are defined by instance names of
inductors present in the circuit or by a
variable pointing to the instance names.
Inductor1="L1" or Inductor1=Xyz where
Xyz="L1"

character
string

Used typically for file names. Must be in double
quotes.

Filename="MyFileName"

There are 2 other identifiers not in flag format. One is [] next to a parameter name and it
means that the parameter is structured as an array. The other is (repeatable) appended
to the parameter description and it means that the parameter can appear more than once
in the same instance. An example is OutVar.

 General Syntax

In this section, the following typographical conventions apply:

 Typographic Conventions

Simulation

68

Type Style Used For

[. . .] Data or character fields enclosed in brackets are optional.

italics Names and values in italics must be supplied

bold Words in bold are ADS simulator keywords and are also required.

 The ADS Simulator Syntax

The following sections outline the basic language rules.

 Field Separators

A delimiter is one or more blanks or tabs.

 Continuation Characters

A statement may be continued on the next line by ending the current line with a backslash
and continuing on the next line.

 Name Fields

A name may have any number of letters or digits in it but must not contain any delimiters
or non alphanumeric characters. The name must begin with a letter or an underscore (_
).

 Fundamental Units

Dimension Fundamental Unit

Frequency Hertz

Resistance Ohms

Conductance Siemens

Capacitance Farads

Inductance Henries

Length meters

Time seconds

Voltage Volts

Current Amperes

Power Watts

Distance meters

Temperature Celsius

 Parameter Fields

A parameter field takes the form name = valu e, where name is a parameter keyword and
value is either a numeric expression, the name of a device instance, the name of a model
or a character string surrounded by double quotes.

Some parameters can be indexed, in which case the name is followed by [i], [i,j], or [i,j,k]
.

Simulation

69

i, j and k must be integer constants or variables.

 Node Names

A node name may have any number of letters or digits in it but must not contain any
delimiters or non alphanumeric characters. If a node name begins with a digit, then it
must consist only of digits.

 Lower/Upper Case

The ADS Simulator is case sensitive.

 Units and Scale Factors

An integer or floating point number may be scaled by following it with either an e or E and
an integer exponent (e.g., 2.65e3, 1e-14).

An ADS Simulator parameter with a given dimension assumes its value has the
corresponding units. For example, for a resistance, R=10 is assumed to be 10 Ohms. The
fundamental units for the ADS Simulator are shown in the table Fundamental Units.

A number or expression can be scaled by following it with a scale factor. A scale factor is a
single word that begins with a letter or an underscore. The remaining characters, if any,
consist of letters, digits, and underscores. Note that ''/'' cannot be used to represent
''per''. The value of a scale factor is resolved using the following rule: If the scale factor
exactly matches one of the factors in the table Predefined Scale Factors, then use the
numerical equivalent; otherwise, if the first character of the scale factor is one of the
prefixes in the table Single-character prefixes, the corresponding scaling is applied.

 Predefined Scale Factors

Simulation

70

Scale Factor Scaling Meaning

A 1 Amperes

F 1 Farads

ft 0.3048 feet

H 1 Henries

Hz 1 Hertz

in 0.0254 inches

meter 1 meters

meters 1 meters

metre 1 meters

metres 1 meters

mi 1609.344 miles

mil 2.54*10-5 mils

mils 2.54*10-5 mils

nmi 1852 nautical miles

Ohm 1 Ohms

Ohms 1 Ohms

S 1 Siemens

sec 1 seconds

V 1 Volts

W 1 Watts

 Predefined Scale Factors

This type of scale factor is a predefined sequence of characters which the ADS Simulator
parses as a single token. The predefined scale factors are listed in the previous table.

 Single-character prefixes

If the first character of the scale factor is one of the legal scale-factor prefixes, the
corresponding scaling is applied.The single-character prefixes are based on the metric
system of scaling prefixes and are listed in the following table

For example, 3.5 GHz is equivalent to 3.5*109 and 12 nF is equivalent to 1.2*108. Note
that most of the time, the ADS Simulator ignores any characters that follow the single-
character prefix. The exceptions are noted in Unrecognized Scale Factors.

Most of these scale factors can be used without any additional characters (e.g., 3.5 G, 12n
). This means that m, when used alone, stands for ''milli''.

The underscore _ is provided to turn off scaling. For example, 1e-9 _farad is equivalent
to 109, and 1e-9 farad is equivalent to 10-24.

Predefined scale factors are case sensitive.

Unless otherwise noted, additional characters can be appended to a predefined scale
factor prefix without affecting its scaling value.

Simulation

71

 Single-character prefixes

Prefix Scaling Meaning

T 1012 tera

G 109 giga

M 106 mega

K 103 kilo

k 103 kilo

- 1

m 10-3 milli

u 10-6 micro

n 10-9 nano

p 10-12 pico

f 10-15 femto

a 10-18 atto

A predefined scale factor overrides any corresponding single-character-prefix scale factor.
For example, 3 mm is equivalent to 3*10-3, not 3*106. In particular, note that M does not
stand for milli, m does not stand for mega, and F does not stand for femto.

There are no scale factors for dBm, dBW, or temperature, see section on Functions for
conversion functions.

 Unrecognized Scale Factors

The ADS Simulator treats unrecognizable scale factors as equal to 1 and generates a
warning message.

 Scale-Factor Binding

More than one scale factor may appear in an expression, so expressions like x in + y mil
are valid and behave properly.

Scale factors bind tightly to the preceding variable. For instance, 6 + 9 MHz is equal to
9000006. Use parentheses to extend the scope of a scale factor (e.g., (6 + 9) MHz).

 Booleans

Many devices, models, and analyses have parameters that are boolean valued. Zero is
used to represent false or no, whereas any number besides zero represents true or yes.
The keywords yes and no can also be used.

 Ground Nodes

Node 0 is assumed to be the ground node. Additional ground node aliases can be defined

Simulation

72

using the ground statement. Multiple ground statements can be used to define any
number of ground aliases, but they must all occur at the top-level hierarchy in the netlist.

General Form:

Ground [:name] node1 [... nodeN]

Example:

Ground gnd

 Global Nodes

Global nodes are user-defined nodes which exist throughout the hierarchy. The global
nodes must be defined on the first lines in the netlist. They must be defined before they
are used.

General Form:

globalnode nodename1 [nodename2] [... nodenameN]

Example:

globalnode sumnode my_internal_node

 Comments

Comments are introduced into an ADS Simulator file with a semicolon; they terminate at
the end of the line. Any text on a line that follows a semicolon is ignored. Also, all blank
lines are ignored.

 Statement Order

Models can appear anywhere in the netlist. They do not have to be defined before a model
instance is defined.

Some parameters expect a device instance name as the parameter value. In these cases,
the device instance must already have been defined before it is referenced. If not, the
device instance name can be entered as a quoted string using double quotes (").

 Naming Conventions

The full name for an instance parameter is of the form:

[pathName].instanceName.parameterName[index]

where pathName is a hierarchical name of the form

[pathName].subcircuitInstanceName

Simulation

73

The same naming convention is used to reference nodes, variables, expressions,
functions, device terminals, and device ports.

For device terminals, the terminal name can be either the terminal name given in the
device description, or tn where n is the terminal number (the first terminal in the
description is terminal 1, etc.). Device ports are referenced by using the name pm, where m
is the port number (the first pair of terminals in the device description is port 1, etc.).

Note that t1 and p1 both correspond to the current flowing into the first terminal of a
device, and that t2 corresponds to the current flowing into the second terminal. If
terminals 1 and 2 define a port, then the current specified by t2 is equal and opposite to
the current specified by t1 and p1.

 Currents

The only currents that can be accessed for simulation, optimization, or output purposes
are the state currents.

 State currents

Most devices are voltage controlled, that is, their terminal currents can be calculated given
their terminal voltages. Circuits that contain only voltage-controlled devices can be solved
using node analysis. Some devices, however, such as voltage sources, are not voltage
controlled. Since the only unknowns in node analysis are the node voltages, circuits that
contain non-voltage-controlled devices cannot be solved using node analysis. Instead,
modified node analysis is used. In modified node analysis, the unknown vector is
enlarged. It contains not only the node voltages but the branch currents of the non-
voltage-controlled devices as well. The branch currents that appear in the vector of
unknowns are called state currents. Since the ADS Simulator uses modified node analysis,
the values of the state currents are available for output.

If the value of a particular current is desired but the current is not a state current, insert a
short in series with the desired terminal. The short does not affect the behavior of the
circuit but does create a state current corresponding to the desired current.

To reference a state current, use the device instance name followed by either a terminal
or port name. If the terminal or port name is not specified, the state current defaults to
the first state current of the specified device. Note that this does not correspond to the
current through the first port of the device whenever the current through the first port is
not a state current. For some applications, the positive state current must be referenced,
so a terminal name of t1 or t3 is acceptable but not t2. Using port names avoids this
problem. The convention for current polarity is that positive current flows into the positive
terminal.

 Instance Statements

General Form:

type [:name] node1 ... nodeN [[param=value] ...]

Simulation

74

type [:name] [[param=value] ...]

Examples:

ua741:OpAmp in out out

C:C1 2 3 C=10pf

HB:Distortion1 Freq=10GHz

The instance statement is used to define to the ADS Simulator the information unique to a
particular instance of a device or an analysis. The instance statement consists of the
instance type descriptor and an optional name preceded by a colon. If it is a device
instance with terminals, the nodes to which the terminals of the instance are connected
come next. Then the parameter fields for the instance are defined. The parameters can be
in any order. The nodes, though, must appear in the same order as in the device or
subcircuit definition.

The type field may contain either the ADS Simulator instance type name, or a user-
supplied model or subcircuit name. The name can be any valid name, which means it
must begin with a letter, can contain any number of letters and digits, must not contain
any delimiters or non alphanumeric characters, and must not conflict with other names
including node names.

 Model Statements

General Form:

model name type [[param = value] ...]

Examples:

model NPNbjt bjt NPN=yes Bf=100 Js=0.1fa

Often characteristics of a particular type of element are common to a large number of
instances. For example, the saturation current of a diode is a function of the process used
to construct the diode and also of the area of the diode. Rather than describing the
process on each diode instantiation, that description is done once in a model statement
and many diode instances refer to it. The area, which may be different for each device, is
included on each instance statement. Though it is possible to have several model
statements for a particular type of device, each instance may only reference at most one
model. Not all device types support model statements.

The name in the model statement becomes the type in the instance statement. The type
field is the ADS Simulator-defined model name. Any parameter value not supplied will be
set to the model's default value.

Most models, such as the diode or bjt models, can be instantiated with an instance
statement. There are exceptions. For instance, the Substrate model cannot be
instantiated. Its name, though, can be used as a parameter value for the Subst parameter
of certain transmission line devices.

 Subcircuit Definitions

Simulation

75

General Form:

define subcircuitName (node1 ... nodeN)

 [parameters name1 = [value1] ... name n = [value n]]

 .

 .

 .

 elementStatements

 .

 .

 .

 end [subcircuitName]

Examples:

define DoubleTuner (top bottom left right)

parameters vel=0.95 r=1.0 l1=.25 l2=.25

 tline:tuner1 top bottom left left len=l1 vel=vel r=r

 tline:tuner2 top bottom right right len=l2 vel=2*vel r=r

end DoubleTuner

DoubleTuner:InputTuner t1 b2 3 4 l1=0.5

A subcircuit is a named collection of instances connected in a particular way that can be
instantiated as a group any number of times by subcircuit calls. The subcircuit call is in
effect and form, an instance statement. Subcircuit definitions are simply circuit macros
that can be expanded anywhere in the circuit any number of times. When an instance in
the input file refers to a subcircuit definition, the instances specified within the subcircuit
are inserted into the circuit. Subcircuits may be nested. Thus a subcircuit definition may
contain other subcircuits. However, a subcircuit definition cannot contain another
subcircuit definition. All the definitions must occur at the top level.

An instance statement that instantiates a subcircuit definition is referred to as a subcircuit
call. The node names (or numbers) specified in the subcircuit call are substituted, in order,
for the node names given in the subcircuit definition. All instances that refer to a
subcircuit definition must have the same number of nodes as are specified in the
subcircuit definition and in the same order. Node names inside the subcircuit definition are
strictly local unless they are a global ground defined with a ground statement or global
nodes defined with a globalnode statement. A subcircuit definition with no nodes must
still include the parentheses ().

Parameter specification in subcircuit definitions is optional. Any parameters that are
specified are referred to by name followed by an equals sign and then an optional default
value. If, when making a subcircuit call in your input file, you do not specify a particular
parameter, then this default value is used in that instance. Subcircuit parameters can be
used in expressions within the subcircuit just as any other variable.

Subcircuits are a flexible and powerful way of developing and maintaining hierarchical
circuits. Parameters can be used to modify one instance of a subcircuit from another.
Names within a subcircuit can be assigned without worrying about conflicting with the
same name in another subcircuit definition. The full name for a node or instance include
its path name in addition to its instance name. For example, if the above subcircuit is

Simulation

76

included in subckt2 which is itself included in subckt1, then the full path name of the
length of the first transmission line is subckt1.subckt2.tuner1.len.

Only enough of the path name has to be specified to unambiguously identify the
parameter. For example, an analysis inside subckt1 can reference the length by
subckt2.tuner1.len since the name search starts from the current level in the hierarchy.
If a reference to a name cannot be resolved in the local level of hierarchy, then the parent
is searched for the name, and so on until the top level is searched. In this way, a sibling
can either inherit its parent's attributes or define its own.

 Expression Capability

The ADS Simulator has a powerful and flexible symbolic expression capability, called
VarEqn, which allows the user to define variables, expressions, and functions in the
netlist. These can then be used to define other VarEqn expressions and functions, to
specify device parameters and optimization goals, etc.

The names for VarEqn variables, expressions, and functions follow the same hierarchy
rules that instance and node names do. Thus, local variables in a subcircuit definition can
assume values that differ from one instance of the subcircuit to the next.

Functions and expressions can be defined either globally or locally anywhere in the
hierarchy. All variables are local by default. Local variables are known in the subcircuit in
which they are defined, and all lower subcircuits; they are not known at higher levels.
Expressions defined at the root (the top level) are known everywhere within the circuit. To
specify an expression to be global the global keyword must precede the expression. The
global keyword causes the variable to be defined at the root of the hierarchy tree
regardless of the lexical location.

Examples:

global exp1 = 2.718

The expression capability includes the standard math operations of + - / * ^ in addition to
parenthesis grouping. Scale factors are also allowed in general expressions and have
higher precedence than any of the math operators (see Units and Scale Factors).

 Constants

An integer constant is represented by a sequence of digits optionally preceded by a
negative sign (e.g, 14, -3).

A real number contains a decimal point and/or an exponential suffix using the e notation
(e.g, 14.0, -13e-10).

The only complex constant is the predefined constant j which is equal to the square root
of -1. It can be used to generate complex constants from real and integer constants (e.g.,
j*3, 9.1 + j*1.2e-2). The predefined functions complex() and polar() can also be used
to enter complex constants into an expression.

Simulation

77

A string constant is delimited by single quotes (e.g.,'string','this is a string').

 Predefined Constants

 Predefined Constants

Constant Definition Constant Definition

boltzmann Boltzmann's constant ln10 2.30...

c0 Speed of light in a vacuum j Square root of -1

DF_DefaultInt Reference to default int value defined in Data Flow
controller

pi 3.14...

DF_ZERO_OHMS Symbol for use as zero ohms planck Planck's constant

e 2.718... qelectron Charge of an electron

e0 Permittivity of a vacuum tinyReal Smallest real number

hugeReal Largest real number u0 Permeability of a
vacuum

 Variables

General Form:

variableName = constantExpression

Examples:

x1 = 4.3inches + 3mils

syc_a = cos(1.0+sin(pi*3))

Zin = 7.8k - j*3.2k

The type of a variable is determined by the type of its value. For example, x=1 is an
integer, x=1+j is complex, and x = "tuesday" is a string.

 Predefined Variables

In addition to the predefined constants, there are several predefined global variables.
Since they are variables, they can be modified and swept.

Simulation

78

__fdd Flag to indicate a new FDD instance

__fdd_v Flag to indicate updated FDD state vars

_ac_state Is analyses in AC state

_c1 to _c30 Symbolic controlling current

_dc_state Is analyses in DC state

_freq1 to _freq12 Fundamental frequency

_harm Harmonic number index for sources and FDD

_hb_state Is analyses in harmonic balance state

_p2dInputPower Port input power for P2D simulation

_sigproc_state Is analyses in signal processing state

_sm_state Is analyses in sm state

_sp_state Is analyses in sparameter analysis state

_tr_state Is analyses in transient state

CostIndex Index for optimization cost plots

DF_Value Reference to corresponding value defined in Data Flow
controller

DefaultValue Signal processing default parameter value

DeviceIndex Device Index used for noise contribution or DC OP output

dcSourceLevel used for DC source-level sweeping

doeindex Index for Design of Experiment sweeps

freq The frequency in Hertz of the present simulation (1MHz)

logNodesetScale Used for DC nodeset simulation

logRshunt Used for DC Rshunt sweeping

mcTrial Trial counter for Monte Carlo based simulations

noisefreq The spectral noise analysis frequency

Nsample Signal processing analysis sample number

optIter Optimization job iteration counter

temp The ambient temperature, in degrees Celsius. (25 degrees)

time The analysis time

timestep The analysis time step

tranorder The transient analysis integration order

ScheduleCycle Signal processing schedule cycle number

sourcelevel The relative attenuation of the spectral sources (1.0)

ssfreq The small-signal mixer analysis frequency

_v1 to _v19 State variable voltages used by the sdd device

_i1 to _i19 State variable currents used by the sdd device

mc_index Index variable used by Monte Carlo controller

The sourcelevel variable is used by the spectral analysis when it needs to gradually
increase source power from 0 to full scale to obtain convergence. It can be used by the
user to sweep the level of ALL spectral source components, but is not recommended. The
_v and _i variables should only be used in the context of the sdd device.

 Expressions

Simulation

79

General Form:

expressionName = nonconstantExpression

Examples:

x1 = 4.3 + freq;

syc_a = cos(1.0+sin(pi*3 + 2.0*x1))

Zin = 7.8 ohm + j*freq * 1.9 ph

y = if (x equals 0) then 1.0e100 else 1/x endif

The main difference between expressions and variables is that a variable can be directly
swept and modified by an analysis but an expression cannot. Note however, that any
instance parameter that depends on an expression is updated whenever one of the
variables that the expression depends upon is changed (e.g., by a sweep).

 Predefined Expressions

gaussian = _gaussian_tol(10.0) default gaussian distribution

nfmin = _nfmin() the minimum noise figure

omega = 2.0*pi*freq the analysis frequency

rn = _rn() the noise resistance

sopt = _sopt the optimum noise match

tempkelvin = temp + 273.15 the analysis temperature

uniform = _uniform_tol(10.0) default uniform distribution

 Functions

General Form:

functionName ([arg1, ..., argn]) = expression

Examples:

y_srl(freq, r, l) = 1.0/(r + j*freq*l)

expl(a,b) = exp(a)*step(b-a) + exp(b)*(a-b-1)*step(a-b)

In expression, the function's arguments can be used, as can any other VarEqn variables,
expressions, or functions.

 Predefined Functions

_discrete_density(...) user-defined discrete density function

_gaussian([mean, sigma, lower_n_sigmas, upper_n_sigmas,
lower_n_sigmas_del, upper_n_sigmas_del])

gaussian density function

_gaussian_tol[percent_tol, lower_n_sigmas, upper_n_sigmas,
lower_percent_tol, upper_percent_tol, lower_n_sigmas_del,
upper_n_sigmas_del])

gaussian density function (tolerance
version)

_get_fnom_freq(...) Get analysis frequency for FDD carrier

Simulation

80

frequency index and harmonic

_lfsr(x, y, z) linear feedback shift register (trigger,
seed, taps)

_mvgaussian(...) multivariate gaussian density function
(correlation version)

_mvgaussian_cov(...) multivariate gaussian density function
(covariance version)

_n_state(x, y) _n_state(arr, val) array index nearest
value

_pwl_density(...) user-defined piecewise-linear density
function

_pwl_distribution(...) user-defined piecewise-linear
distribution function

_randvar(distribution, mcindex, [nominal, tol_percent, x_min,
x_max, lower_tol, upper_tol, delta_tol, tol_factor])

random variable function

_shift_reg(x, y, z, t) (trigger, mode(ParIn:MSB1st), length,
input)

_uniform([lower_bound, upper_bound]) uniform density function

_uniform_tol([percent_tol, lower_tol, upper_tol]) uniform density function (tolerance
version)

abs(x) absolute value function

access_all_data(...) datafile indep+dep lookup/interpolation
function

access_data(...) datafile dependents'
lookup/interpolation function

arcsinh(x) arcsinh function

arctan(x) arctan function

atan2(y, x) arctangent function (2 real arguments)

awg_dia(x) wire gauge to diameter in meters

bin(x) function convert a binary to integer

bitseq(time, [clockfreq, trise, tfall, vlow, vhigh, bitseq]) bitsequence function

complex(x, y) real-to-complex conversion function

conj(x) complex-conjugate function

cos(x) cosine function

cos_pulse(time, [low, high, delay, rise, fall, width, period]) periodic cosine shaped pulse function

cosh(x) hyperbolic cosine function

cot(x) cotangent function

coth(x) hyperbolic cotangent function

ctof(x) convert Celsius to Fahrenheit

ctok(x) convert Celsius to Kelvin

cxform(x, y, z) transform complex data

damped_sin(time, [offset, amplitude, freq, delay, damping, phase])
damped sin function

db(x) decibel function

dbm(x, y) convert voltage and impedance into
dbm

dbmtoa(x, y) convert dbm and impedance into short
circuit current

Simulation

81

dbmtov(x, y) convert dbm and impedance into open
circuit voltage

dbmtow(x) convert dBm to Watts

dbpolar(x, y) (dB,angle)-to-rectangular conversion
function

dbwtow(x) convert dBW to Watts

deembed(x) deembedding function

deg(x) radian-to-degree conversion function

dep_data(x, y, [z]) dependent variable value

dphase(x, y) Continuous phase difference (radians)
between x and y

dsexpr(x, y) Evaluate a dataset expression to an
hpvar

dstoarray(x, [y]) Convert an hpvar to an array

echo(x) echo-arguments function

erf_pulse(time, [low, high, delay, rise, fall, width, period]) periodic error function shaped pulse
function

eval_poly(x, y, z) polynomial evaluation function

exp(x) exponential function

exp_pulse(time, [low, high, delay1, tau1, delay2, tau2]) exponential pulse function

fread(x) raw-file reading function

ftoc(x) convert Fahrenheit to Celsius

ftok(x) convert Fahrenheit to Kelvin

get_array_size(x) Get the size of the array

get_attribute(...) value of attribute of a set of data

get_block(x, y) HPvar tree from block name function

get_fund_freq(x) Get the frequency associated with a
specified fundamental index

get_max_points(x, y) maximum points of independent
variable

imag(x) imaginary-part function

index(x, y, [z, t]) get index of name in array

innerprod(...) inner-product function

int(x) convert-to-integer function

itob(x, [y]) convert integer to binary

jn(x, y) bessel function

ktoc(x) convert Kelvin to Celsius

ktof(x) convert Kelvin to Fahrenheit

length(x) returns number of elements in array

limit_warn([x, y, z, t, u]) limit, default and warn function

list(...)

ln(x) natural log function

log(x) log base 10 function

mag(x) magnitude function

makearray(...) (1:real-2:complex-3:string, y, z..) or
(array, startIndex, stopIndex)

Simulation

82

max(x, y) maximum function

min(x, y) minimum function

multi_freq(time, amplitude, freq1, freq2, n, [seed]) multifrequency function

names(x, y) array of names of indepVars and/or
depVars in dataset

norm(x) norm function

phase(x) phase (in degrees) function

phase_noise_pwl(...) piecewise-linear function for computing
phase noise

phasedeg(x) phase (in degrees) function

phaserad(x) phase (in radians) function

polar(x, y) polar-to-rectangular conversion
function

polarcpx(...) polar to rectangular conversion function

pulse(time, [low, high, delay, rise, fall, width, period]) periodic pulse function

pwl(...) piecewise-linear function

pwlr(...) piecewise-linear-repeated function

rad(x) degree-to-radian conversion function

ramp(x) ramp function

read_data(...) read_data("file-dataset", "locName",
"fileType")

read_lib(...) read_lib("libName", "item", "fileType")

real(x) real-part function

rect(x, y, z) rectangular pulse function

rem(...) remainder function

ripple(x, y, z, v) ripple(amplitude, intercept, period,
variable) sinusoidal ripple function

rms(...) root-mean-square function

rpsmooth(x) rectangular-to-polar smoothing function

scalearray(x, y) scalar times a vector (array) function

setDT(x) Turns on discrete time transient mode
(returns argument)

sffm(time, [offset, amplitude, carrier_freq, mod_index, signal_freq]) signal frequency FM

sgn(x) signum function

sin(x) sine function

sinc(x) sin(x)/x function

sinh(x) hyperbolic sine function

sprintf(x, y) formatted print utility

sqrt(x) square root function

step(x) step function

tan(x) tangent function

tanh(x) hyperbolic tangent function

vswrpolar(x, y) (VSWR,angle)-to-rectangular
conversion function

Simulation

83

Note
The VarEqn trigonometric functions always expect the argument to be specified in radians. If the user
wants to specify the angle in degrees then the VarEqn function deg() can be used to convert radians to
degrees or the VarEqn function rad() can be used to convert degrees to radians.

 Detailed Descriptions of the Predefined Functions

_discrete_density (x1, p1, x2, p2, …) allows the user to define a discrete density

distribution: returns x1 with probability p1, x2 with probability p2, etc. The xn, pn pairs

needn't be sorted. Each pn will be normalized automatically.

_gaussian([mean, sigma, lower_n_sigmas, upper_n_sigmas, lower_n_sigmas_del,
upper_n_sigmas_del]) returns a value randomly distributed according to the standard
bell-shaped curve. mean defaults to 0. sigma defaults to 1. lower_n_sigmas,
upper_n_sigmas define truncation limits (default to 3). lower_n_sigmas_del and
upper_n_sigmas_del define a range in which the probability is zero (a bimodal
distribution). _gaussian_tol ([percent_tol, lower_n_sigmas, upper_n_sigmas,
lower_percent_tol, upper_percent_tol, lower_n_sigmas_del_, upper_n_sigmas_del]) is
similar, but percent_tol defines the percentage tolerance about the nominal value (which
comes from the RANDVAR expression).

_get_fnom_freq(x) returns the actual analysis frequency associated with the carrier
frequency specified in the surrounding FDD context. If x is negative, it is the carrier
frequency index. If x is positive, it is the harmonic index.

_mvgaussian(N, mean1, … meanN, sigma1, … sigmaN, correlation1,2, …, correlation1,N …,

correlationN-1,N) multivariate gaussian density function (correlation version). Returns an N

dimensional vector. The correlation coefficient matrix must be positive definite.
_mvgaussian_cov(N, mean1, … meanN, sigma1, … sigmaN, covariance1,2, ..., covariance1,N

, ..., covarianceN-1,N) is similar, but defined in terms of covariance. The covariance matrix

must be positive definite.

_pwl_density(x1, p1, x2, p2, …) returns a value randomly distributed according to the

piecewise-linear density function with values pn at xn, i.e. it will return xn with probability pn

and return

The xn, pn pairs needn't be sorted. Each pn will be normalized automatically.

_pwl_distribution(x1, p1, x2, p2, …) is similar, but is defined in terms of the distribution

values. It will return a value less than or equal to xn with probability pn. The xn, pn pairs

will be sorted in increasing xn order. After sorting, a pn should never decrease. Each pn

Simulation

84

will be normalized so that pn =1.

randvar(distribution, mcindex, [nominal, tol_percent, x_min, x_max, lower_tol, upper_tol,
delta_tol, tol_factor]) returns a value randomly distributed according to the distribution.
The value will be the same for a given value of mcindex. The other parameters are
interpreted according to the distribution.

_shift_reg(x, y, z, t) implements a z-bit shift register. x specifies the trigger. y = 0
means LSB First, Serial To Parallel, 1 means MSB First, Serial To Parallel, 2 means LSB
First, Parallel to Serial, 3 means MSB First, Parallel to Serial. t is the input (output) value.

_uniform([lower_bound, upper_bound]) returns a value between lower_bound and
upper_bound. All such values are equally probable. uniform_tol([_percent_tol, lower_tol,
upper_tol]) is similar, but tolerance version.

access_all_data(InterpMode, source, indep1, dep1 …) datafile independent and

dependent lookup/interpolation function.

access_data(InterpMode, nData, source, dep1 …) datafile dependents' lookup/interpolation

function.

bin(String) calculates the integer value of a sequence of 1's and 0's. For example
bin('11001100')= 204. The argument of the bin function must be a string denoted by
single quotes. The main use of the bin function is with the System Model Library to define
an integer which corresponds to a digital word.

cxform(x, OutFormat, InFormat) transform complex data x from format InFormat to
format OutFormat. The values for OutFormat and InFormat are 0: real and imaginary, 1:
magnitude (linear) and phase (degrees), 2: magnitude (linear) and phase (radians), 3:
magnitude (dB) and phase (degrees), 4: magnitude (dB) and phase (radians), 5:
magnitude (SWR) and phase (degrees), 6: magnitude (SWR) and phase (radians). For
example, to convert linear magnitude and phase in degrees to real and imaginary parts:
result = cxform(invar, 0, 1)

damped_sin(time, [offset, amplitude, freq, delay, damping, phase]). See Transient Source
Functions.

The function db(x) is a shorthand form for the expression: 20log(mag(x)).

The deembed(x) function takes an array, x, of 4 complex numbers (the 2-port S-parameter
array returned from the VarEqn interp() function) and returns an array of equivalent de-
embedding S-parameters for that network. The array must be of length 4 (2 x 2-two-port
data only), or an error message will result. The transformation used is:

Simulation

85

where det is the determinant of the 2 x 2 array.

Caution
This transformation assumes that the S-parameters are derived from equal port termination impedances.
This transformation does not work when the port impedances are unequal.

The function deg(x) converts from radians to degrees.

dphase(x,y) Calculates phase difference phase(x)-phase(y) (in radians).

dsexpr(x,y) Evaluate x, a DDS expression, to an hpvar. y is the default location data
directory.

echo(x) prints argument on terminal and returns it as a value.

erf_pulse(time, [low, high, delay, rise, fall, width, period]) periodic pulse function, edges
are error function (integral of Gaussian) shaped.

eval_poly(x, y, z) y is a real number. z is an integer that describes what to evaluate: -1
means the integral of the polynomial, 0 means the polynomial itself, +1 means the
derivative of the polynomial. x is a VarEqn array that contains real numbers. The
polynomial is

exp_pulse(time, [low, high, delay1, tau1, delay2, tau2]) See Transient Source Functions.

get_fund_freq(fund) returns the value of frequency (in Hertz) of a given fundamental
defined by fund.

index(nameArray, "varName", [caseSense, length]) returns position of "varName" in
nameArray, -1 if not found. caseSense sets case-sensitivity, defaults to yes. length sets
how many characters to check, defaults to 0 (all).

innerprod(x,y) forms the inner product of the vectors x and y:

j and k are optional integers which specify a range of harmonics to include in the
calculation:

Simulation

86

j defaults to 0 and k defaults to infinity.

int(x) Truncates the fractional part of x.

itob(x, [bits]) convert integer x to bits-bit binary string.

The function jn(n, x) is the n-th order bessel function evaluated at x.

limit_warn([Value, Min, Max, default, Name]) sets Value to default, if not set. Limits it to
Min and Max and generates a warning if the value is limited.

makearray(arg1[,arg2,..] creates an array with elements defined by arg1 to argN where N
can be any number of arguments. The data type of args must be Integer, Real, or
Complex and the same for all args.

word = bin('1101')

fibo = makearray(0,1,1,2,3,5,8,word)

foo = fibo[0]

multi_freq(time, amplitude, freq1, freq2, n, [seed]) seed defaults to 1. If it is 0, phase is
set to 0, otherwise it is used as a seed for a randomly-generated phase.

norm(x) returns the L-2 norm of the spectrum x:

j and k are optional integers which specify a range of harmonics to include in the
calculation:

j defaults to 0 and k defaults to infinity.

phase(x) is the same as phasedeg(x).

The function phasedeg(x) returns phase in degrees.

The function phaserad(x) returns phase in radians.

The function polarcpx(x[, leave_as_real]) takes a complex argument, assumes that the
real and complex part of the argument represents mag and phase (in radians)
information, and converts it to real/imaginary. If the argument is real or integer instead of
complex, the imaginary part is assumed to be zero. However, if the optional leave_as_real
variable is specified, and is the value ''1'' (note that the legal values are ''0'' and ''1''
only), a real argument will be not be converted to a complex one.

Simulation

87

pulse(time,[low, high, delay, rise, fall, width, period]) See Transient Source Functions.

pwl(...) piecewise-linear function. See Transient Source Functions.

pwlr(...) piecewise-linear-repeated function.

The function rect(t, tc, tp) is pulse function of variable t centered at time tc with duration
tp.

The function rad(x) converts from degrees to radians.

ramp(x) 0 for , x for

read_data(source, locName, [fileType]) returns data from a file or dataset. source = "file"
--- "dataset". locName is the name of the source. fileType specifies the file type.

read_lib(libName, locName, [fileType]) returns data from a library. libName is the name
of the library. locName is the name of the source. fileType specifies the file type.
read_lib("libName", "item", "fileType")

rect(x,y,z) Returns:

z |x - y| < |z
|

|x - y| > |z|

> 0 1 0

< 0 0 1

rem(x, [y]) Returns remainder of dividing x/y. y defaults to 0 (which returns x).

rms(x) returns the RMS value (including DC) of the spectrum x:

j and k are optional integers which specify a range of harmonics to include in the
calculation:

j defaults to 0 and k defaults to infinity.

The function rpsmooth(x) takes a VarEqn pointer (one returned by readraw()), converts to
polar format the rectangular data given by the VarEqn pointer, and smooths out 'phase
discontinuities'.

Simulation

88

Caution
This function uses an algorithm that assumes that the first point is correct (i.e., not off by some multiple
of 2π) and that the change in phase between any 2 adjacent points is less than π. This interpolation will
not work well with noisy data or with data within roundoff error of zero. It should be used only with S-
parameters in preparation for interpolation or extrapolation by one of the interpolation functions like
interp1(). Also note that the result is left in a polar 'mag/phase' format stored in a complex number; the
real part is magnitude, and the imaginary part is phase. The polarcpx() function must be used to convert
the result of the rpsmooth() function back into a real/imaginary format.

sffm(time, [offset, amplitude, carrier_freq, mod_index, signal_freq]) See Transient Source
Functions.

The sprintf() function is similar to the C function which takes a format string for
argument s and a print argument x and returns a formatted string (x must be a string, an
integer, or a real number). This string then may be written to the console using the
system function with an echo command.

 Transient Source Functions

There are several built-in functions that mimic Spice transient sources. They are:

SPICE source ADS Simulator function

exponential exp_pulse(time, low, high, tdelay1, tau1, tdelay2, tau2)

single-frequency FM sffm(time, offset, amplitude, carrier_freq, mod_index, signal_freq)

damped sine damped_sin(time, offset, amplitude, freq, delay, damping)

pulse pulse(time, low, high, delay, rise, fall, width, period)

piecewise linear pwl(time, t1, x1, ..., tn, xn)

There functions are typically used with the vt parameter of the voltage source and the it
parameter of the current source.

 exp_pulse

Examples:

ivs:vin n1 0 vt=exp_pulse(time)

ics:iin n1 0 it=exp_pulse(time, -0.5mA, 0.5mA, 10ns, 5ns,

20ns, 8ns)

Arguments for exp_pulse

Name Optional Default

TIME NO

LOW YES 0

HIGH YES 1

TDELAY1 YES 0

TAU1 YES TSTEP

TDELAY2 YES TDELAY1 + TSTEP

TAU2 YES TSTEP

TSTEP is the output step-time time specified on the TRAN analysis.

Simulation

89

 sffm

Examples:

ivs:vin n1 0 vt=sffm(time, , , , 0.5)

ics:iin n1 0 it=sffm(time, 0, 2, 1GHz, 1.2, 99MHz)

Arguments for sffm

Name Optional Default

TIME NO

OFFSET YES 0

AMPLITUDE YES 1

CARRIER_FREQ YES 1/TSTOP

MOD_INDEX YES 0

SIGNAL_FREQ YES 1/TSTOP

TSTOP is the stop time specified on the TRAN analysis.

 damped_sin

Examples:

ivs:vin n1 0 vt=damped_sin(time)

ics:iin n1 0 it=damped_sin(time, 0, 5V, 500MHz, 50ns, 200ns)

Arguments for damped_sin

Name Optional Default

TIME NO

OFFSET YES 0

AMPLITUDE YES 1

FREQ YES 1/TSTOP

DELAY YES 0

DAMPING YES 1/TSTOP

TSTOP is the stop time specified on the TRAN analysis.

 pulse

Examples:

ivs:vin n1 0 vt=pulse(time)

ics:iin n1 0 it=pulse(time, -5V, 5V, 500MHz, 50ns, 200ns)

Simulation

90

Arguments for pulse

Name Optional Default

TIME NO

LOW YES 0

HIGH YES 1

DELAY YES 0

RISE YES TSTEP

FALL YES TSTEP

WIDTH YES TSTOP

PERIOD YES TSTOP

TSTEP is the output step-time time specified on the TRAN analysis. TSTOP is the
stop time specified on the TRAN analysis.

 pwl

Examples:

ivs:vin n1 0 vt=pulse(time, 0, 0, 1ns, 1, 10ns, 1, 15ns, 0)

ics:iin n1 0 it=pwl(time, 0, 0, 1ns, 1, 5ns, 1, 5ns, 0.5,

10ns,0.5, 15ns, 0)

Arguments for pwl

Name Optional Default

TIME NO

T1 NO

X1 NO

T2 YES NONE

X2 YES NONE

.

TN YES NONE

XN YES NONE

 Conditional Expressions

The ADS Simulator supports simple in-line conditional expressions:
if boolExpr then expr else expr endif

if boolExpr then expr elseif boolExpr then expr else expr endif

boolExpr is a boolean expression, that is, an expression that evaluates to TRUE or FALSE.

expr is any non-boolean expression.

The else is required (because the conditional expression must always evaluate to some
value).

There can be any number of occurrences of elseif expr then expr.

Simulation

91

A conditional expression can legally occur as the right-hand side of an expression or
function definition or, if parenthesized, anywhere in an expression that a variable can
occur.

 Boolean operators

equals logical equals

= logical equals

== logical equals

notequals logical not equals

!= logical not equals

not logical negative

! logical negative

and logical and

&& logical and

or logical or

|| logical or

< less than

> greater than

<= less than or equals

>= greater than or equals

 Boolean expressions

A boolean expression must evaluate to TRUE or FALSE and, therefore, must contain a
relational operator (equals, =, ==, notequals, !=, <, >, <=, or >=).

The only legal place for a boolean expression is directly after an if or an elseif.

A boolean expression cannot stand alone, that is,
x = a > b

is illegal.

 Precedence

Tightest binding: equals, =, ==, notequals, !=, >, <, >=, <=

NOT, !

AND,

Loosest binding: OR, ||

All arithmetic operators have tighter binding than the boolean operators.

 Evaluation

Boolean expressions are short-circuit evaluated. For example, if when evaluating a and b,

Simulation

92

expression a evaluates to FALSE, expression b will not be evaluated.

During evaluation of boolean expressions with arithmetic operands, the operand with the
lower type is promoted to the type of the other operand. For example, in 3 equals x
+j*b, 3 is promoted to complex.

A complex number cannot be used with <, >, <=, or >=. Nor can an array (and remember
that strings are arrays). This will cause an evaluation-time error.

Pointers can be compared only with pointers.

 Examples:

Protect against divide by zero:

f(a) = if a equals 0 then 1.0e100 else 1.0/a endif}

Nested if's #1:

f(mode) = if mode equals 0 then 1-a else f2(mode) endif

f2(mode) = if mode equals 1 then log(1-a) else f3(mode) endif

f3(mode) = if mode equals 2 then exp(1-a) else 0.0 endif

Nested if's #2:

f(mode) = if mode equals 0 then 1-a elseif mode equals 1 then \

log(1-a) elseif mode equals 2 then exp(1-a) else 0.0 endif

Soft exponential:

exp_max = 1.0e16

x_max = ln(exp_max)

exp_soft(x) = if x<x_max then exp(x) else

(x+1-x_max)*exp_max endif

 VarEqn Data Types

The 4 basic data types that VarEqn supports are integer, real, complex, and string. There
is a fifth data type, pointer, that is also supported. Pointers are not allowed in an algebraic
expression, except as an argument to a function that is expecting a pointer. Strings are
not allowed in algebraic expressions either except that addition of strings is equivalent to
catenation of the strings. String catenation is not commutative, and since VarEqn's
simplification routines can internally change the order of operands of commutative
operators, this feature should be used cautiously. It will most likely be replaced by an
explicit catenation function.

 Type conversion

The data type of a VarEqn expression is determined at the time the expression is

Simulation

93

evaluated and depends on the data types of the terms in the expression. For example, let
y=3*x^2. If x is an integer, then y is integer-valued. If x is real, then y is real-valued. If x
is complex, then y is complex-valued.

As another example, let y=sqrt(2.5*x). If x is a positive integer, then y evaluates to a
real number. If, however, x is a negative integer, then y evaluates to a complex number.

There are some special cases of type conversion:

If either operand of a division is integer-valued, it is promoted to a real before the
division occurs. Thus, 2/3 evaluates to 0.6666....
The built-in trigonometric, hyperbolic, and logarithmic functions never return an
integer, only a real or complex number.

 "C-Preprocessor"

Before being interpreted by the ADS Simulator, all input files are run through a built-in
preprocessor based upon a C preprocessor. This brings several useful features to the ADS
Simulator, such as the ability to define macro constants and functions, to include the
contents of another file, and to conditionally remove statements from the input. All C
preprocessor statements begin with # as the first character.

Unfortunately, for reasons of backward compatibility, there is no way to specify include
directories. The standard C preprocessor "-I" option is not supported; instead, "-I" is
used to specify a file for inclusion into the netlist.

 File Inclusion

Any source line of the form

#include "filename"

is replaced by the contents of the file filename. The file must be specified with an absolute
path or must reside in either the current working directory or in
/$HPEESOF_DIR/circuit/components/.

 Library Inclusion

The C preprocessor automatically includes a library file if the -N command line option is
not specified and if such a file exists. The first file found in the following list is included as
the library:

$HPEESOF_DIR/circuit/components/gemlib

$EESOF_DIR/circuit/components/gemlib

$GEMLIB

.gemlib

~/.gemlib

~/gemini/gemlib

A library file is specified by the user using the -I filename command line option. More

Simulation

94

than 1 library may be specified. Specifying a library file prevents the ADS Simulator from
including any of the above library files.

 Macro Definitions

A macro definition has the form:
#define name replacement-text

It defines a macro substitution of the simplest kind--subsequent occurrences of the token
name are replaced by replacement-text. The name consists of alphanumeric characters
and underscores, but must not begin with a numeric character; the replacement text is
arbitrary. Normally the replacement text is the rest of the line, but a long definition may
be continued by placing a "\" at the end of each line to be continued. Substitutions do not
occur within quoted strings. Names may be undefined with
#undef name

It is also possible to define macros with parameters. For example,

#define to_celcius(t) (((t)-32)/1.8)

is a macro with the formal parameter t that is replaced with the corresponding actual
parameters when invoked. Thus the line

options temp=to_celcius(77)

is replaced by the line

options temp=(((77)-32)/1.8)

Macro functions may have more than 1 parameter, but the number of formal and actual
parameters must match.

Macros may also be defined using the -D command line option.

 Conditional Inclusion

It is possible to conditionally discard portions of the source file. The #if line evaluates a
constant integer expression, and if the expression is non-zero, subsequent lines are
retained until an #else or #endif line is found. If an #else line is found, any lines between
it and the corresponding #endif are discarded. If the expression evaluates to zero, lines
between the #if and #else are discarded, while those between the #else and #endif are
retained. The conditional inclusion statements nest to an arbitrary level of hierarchy. The
following operators and functions can be used in the constant expression;

Simulation

95

! Logical negation.

|| Logical or.

&& Logical and.

== Equal to.

!= Not equal to.

> Greater than.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

+ Addition.

defined(x) 1 if x defined, 0 otherwise.

The #ifdef and #ifndef lines are specialized forms of #if that test whether a name is
defined.

Caution
Execution of preprocessor instructions depend on the order in which they appear on the netlist. When
using preprocessor statements make sure that they are in the proper order. For example, if an #ifdef
statement is used to conditionally include part of a netlist, the corresponding #define statement is
contained in a separate file and #include is used to include the content of the file into the netlist, the
#include statement will have to appear before the #ifdef statement for the expression to evaluate
correctly.

 Data Access Component

The Data Access Component provides a clean, unified way to access tabular data from
within a simulation. The data may reside in either a text file of a supported, documented
format (e.g. discrete MDIF, model MDIF, Touchstone, CITIfile), or a dataset. It provides a
variety of access methods, including lookup by index/value, as well as linear, cubic spline
and cubic interpolation modes, with support for derivatives.

The Data Access Component provides a "handle" with which one may access data from
either a text file or dataset for use in a simulation. The DAC is implemented as a cktlib
subcircuit fragment with internally known expressions names (e.g. _DAC, _TREE) that are
assigned via VarEqn calls such as read_data() and access_all_data(). The accessed data
can be used by other components (including models, devices, variables, subcircuit calls
and other DAC instances) in the netlist, either by the specific file syntax or via the VarEqn
function dep_data().

The DAC can also be used to supply parameters to device and model components from
text files and datasets. In this case, the AllParams device/model parameter is used to
refer to a DAC component. The component's parameters will then be accessed from the
DAC and supplied to the instance. Care is taken to ensure that only matching (between
parameter names in the component definition and DAC dependent column names) data is
used. Also, parameter data can be assigned "inline" - as is usually done - in which case
the inline data takes precedence over the DAC data.

As the DAC component is composed of just a parameterized subcircuit, it allows
alterations (sweep, tune, optimize, yield) of its parameters. Consequently any component
that uses DAC data via file, dep_data() or AllParams will automatically be updated when a

Simulation

96

DAC parameter is altered. A caveat with sweeping over files using AllParams is that all the
files must contain the same number of dependent columns of data.

Below is an example definition of a simple DAC component that accesses discrete values
from a text file:

#uselib "ckt" , "DAC"

DAC:DAC1 File="C:\jeffm\ADS_testing\ADS13_test_prj/

.\data\SweptData.ds"

Type="dataset" Block="S" InterpMode="linear" InterpDom="ri"

iVar1="X" iVal1=X iVar2="freq" iVal2=freq

S_Port:S2P1 _net1 0 _net6 0 S[1,1]=file{DAC1, "S[1,1]"}

S[1,2]=file{DAC1,"S[1,2]"} S[2,1]=1 S[2,2]=0 Recip=no

dindex = 1

DAC:atc1 File="vdcr.mdf" Type="dscr" \

InterpMode="index_lookup" iVar1=1 iVal1=dindex

And its use to provide the resistance value to a pair of circuit components:

R:R1 n1 0 R=file{atc1, "R"} kOhm

R:R2 n1 0 R=dep_data(atc1, "R") kOhm

Here, it provides the value to a variable:

V1 = file{atc1, "Vdc"}

V1 could be used elsewhere in the circuit, as expected.

In this example, a scaling factor applied to the result of a DAC access is shown:

File = "atc.mdf"

Type = "dscr"

Mode="index_lookup"

Cnom = "Cnom"

DAC:atc_s File=File Type=Type InterpMode=Mode iVar1=1

iVal1 = Cs_row

C:Cs n1 n2 C=file{atc_s, Cnom} Pf

In this example, a use of AllParams is shown to enter model parameters from a text file:

File = "c:\gemini\vdcr.mdf"

Type = "dscr"

Mode="index_lookup"

DAC:dac1 File=File Type=Type InterpMode=Mode iVar1=1

iVal1 = ix

model rm1 R_Model R=0 AllParams = dac1._DAC

rm1:rm1i1 n3 0

 Reserved Words

The words on the following pages have built-in meaning and should not be defined or used
in a way not consistent with their pre-defined meaning:

Simulation

97

AC CPWCPL4

ACPWDS CPWCTL

ACPWDTL CPWDS

AIRIND1 CPWEF

Alter CPWEGAP

Amplifier CPWG

AmplifierP2D CPWOC

AntLoad CPWSC

BFINL CPWSUB

BFINLT CPWTL

BJT CPWTLFG

BR3CTL CTL

BR4CTL C_Model

BRCTL Chain

BROCTL Chebyshev

Bessel Connector

BudLinearization CostIndex

Butterworth Crossover

C DC

CAPP2 DF

CAPQ DFDevice1

CIND2 DFDevice2

CLIN DF_DefaultInt

CLINP DF_Value

COAX DF_ZERO_OHMS

COAXTL DICAP

CPW DILABMLC

CPWCGAP DOE

CPWCPL2 DRC

DefaultValue JFET

DeviceIndex L

Diode LineCalcTest

EE_BJT2 MACLIN

EE_FET3 MACLIN3

EE_HEMT1 MBEND

EE_MOS1 MBEND2

ETAPER MBEND3

Elliptic MBSTUB

FDD MCFIL

FINLINE MCLIN

FSUB MCORN

GCPWTL MCROS

GMSK_Lowpass MCROSO

GaAs MCURVE

Simulation

98

Gaussian MCUREVE2

Goal MGAP

HB MICAP1

HP_Diode MICAP2

HP_FET MICAP3

HP_FET2 MICAP4

HP_MOSFET MLANG

Hybrid MLANG6

IFINL MLANG8

IFINLT MLEF

INDQ MLIN

I_Source MLOC

InitCond MLSC

InoiseBD MLYRSUB

MOS9 MSRTL

MOSFET MSSLIT

MRIND MSSPLC

MRINDELA MSSPLR

MRINDELM MSSPLS

MRINDNBR MSSTEP

MRINDSBR MSSVIA

MRINDWNR MSTAPER

MRSTUB MSTEE

MS2CTL MSTEP

MS3CTL MSTL

MS4CTL MSUB

MS5CTL MSVIA

MSABND MSWRAP

MSACTL MTAPER

MSAGAP MTEE

MSBEND MTEEO

MSCRNR MTFC

MSCROSS MextramBJT

MSCTL Mixer

MSGAP MixerIMT

MSIDC Multipath

MSIDCF Mutual

MSLANGE NodeSet

MSLIT NoiseCorr2Port

MSOBND Noisey2Port

MSOC Nsample

MSOP OldMonteCarlo

MSRBND OldOpt

OldOptim PC_Corner

Simulation

99

OldYield PC_CrossJunction

Optim PC_Crossover

OptimGoal PC_Gap

Options PC_Line

OscPort PC_OpenStub

OutSelector PC_Pad

PCBEND PC_Slanted

PCCORN PC_Taper

PCCROS PC_Tee

PCCURVE PC_Via

PCILC PIN

PCLIN1 PIN2

PCLIN10 PLCQ

PCLIN2 ParamSweep

PCLIN3 PinDiode

PCLIN4 PoleZero

PCLIN5 Polynomial

PCLIN6 Port

PCLIN7 PowerBounce

PCLIN8 PowerGroundPlane

PCLIN9 R

PCSTEP RCLIN

PCSUB RIBBON

PCTAPER RIBBON_MDS

PCTEE RIND

PCTRACE RWG

PC_Bend RWGINDF

PC_Clear RWGT

RWGTL SLSTEP

R_Model SLTEE

RaisedCos SLTL

SAGELIN SLUCTL

SAGEPAC SLUTL

SBCLIN SMITER

SBEND SOCLIN

SBEND2 SPIND

SCLIN SS3CTL

SCROS SS4CTL

SCURVE SS5CTL

SDD SSACTL

SL3CTL SSCLIN

SL4CTL SSCTL

SL5CTL SSLANGE

SLABND SSLIN

Simulation

100

SLCQ SSSPLC

SLCRNR SSSPLR

SLCTL SSSPLS

SLEF SSSUB

SLGAP SSTEP

SLIN SSTFR

SLINO SSTL

SLOBND SSUB

SLOC SSUBO

SLOC_MDS STEE

SLOTTL S_Param

SLRBND S_Port

SLSC ScheduleCycle

Short VBIC

Substrate VIA

SweepPlan VIA2

SwitchV V_Source

SwitchV_Model VnoiseBD

TAPIND1 WIRE

TFC WIRE_MDS

TFC_MDS Y_Port

TFR Yield

TFR_MDS YieldOptim

TL YieldSpec

TLIN YieldSpecOld

TLIN4 Z_Port

TLINP __fdd

TLINP4 __fdd_v

TL_New _ac_state

TQAVIA _c1

TQCAP _c10

TQFET _c11

TQFET2 _c12

TQIND _c13

TQRES _c14

TQSVIA _c15

TQSWH _c16

TQTL _c17

Tran _c18

UFINL _c19

UFINLT _c2

Unalter _c20

_c21 _freq6

Simulation

101

_c22 _freq7

_c23 _freq8

_c24 _freq9

_c25 _gaussian

_c26 _gaussian_tol

_c27 _get_fnom_freq

_c28 _get_fund_freq_for_fdd

_c29 _harm

_c3 _hb_state

_c30 _i1

_c4 _i10

_c5 _i11

_c6 _i12

_c7 _i13

_c8 _i14

_c9 _i15

_dc_state _i16

_default _i17

_discrete_density _i18

_divn _i19

_freq1 _i2

_freq10 _i20

_freq11 _i21

_freq12 _i22

_freq2 _i23

_freq3 _i24

_freq4 _i25

_freq5 _i26

_i27 _sopt

_i28 _sp_state

_i29 _sv

_i3 _sv_bb

_i30 _sv_d

_i4 _sv_e

_i5 _tn

_i6 _to

_i7 _tr_state

_i8 _tt

_i9 _uniform

_lfsr _uniform_tol

_mvgaussian _v1

_mvgaussian_cov _v10

_n_state _v11

_nfmin _v12

Simulation

102

_p2dInputPower _v13

_phase_freq _v14

_pwl_density _v15

_pwl_distribution _v16

_randvar _v17

_rn _v18

_shift_reg _v19

_si _v2

_si_bb _v20

_si_d _v21

_si_e _v22

_sigproc_state _v23

_sm_state _v24

_v25 conj

_v26 cos

_v27 cos_pulse

_v28 cosh

_v29 cot

_v3 coth

_v30 coupling

_v4 ctof

_v5 ctok

_v6 cxform

_v7 d_atan2

_v8 damped_sin

_v9 db

_xcross dbm

abs dbmtoa

access_all_data dbmtov

access_data dbmtow

aele dbpolar

and dbwtow

arcsinh dcSourceLevel

arctan deembed

atan2 define

awg_dia deg

bin delay

bitseq dep_data

boltzmann deriv

by discrete

c0 distcompname

complex doe

doeindex generate_qam16_spectra

dphase generate_qpsk_pulse_spectra

Simulation

103

dsexpr get_array_size

dstoarray get_attribute

e get_block

e0 get_fund_freq

echo get_max_points

else global

elseif globalnode

end ground

endif hugereal

equals i

erf_pulse if

eval_poly ilsb

exp imag

exp_pulse index

file innerprod

fread inoise

freq int

freq_mult_coef internal_generate_gmsk_iq_spectra

freq_mult_poly internal_generate_gmsk_pulse_spectra

ftoc internal_generate_piqpsk_spectra

ftok internal_generate_pulse_train_spectra

gauss internal_generate_qam16_spectra

gaussian internal_generate_qpsk_pulse_spectra

generate_gmsk_iq_spectra internal_get_fund_freq

generate_gmsk_pulse_spectra internal_window

generate_piqpsk_spectra interp

generate_pulse_train_spectra interp1

interp2 names

interp3 nested

interp4 nf

iss nfmin

itob no

iusb nodoe

jn noisefreq

ktoc noopt

ktof norm

lbtran nostat

length not

limit_warn notequals

list omega

ln opt

ln10 optIter

local or

log parameters

Simulation

104

logNodesetScale phase

logRshunt phase_noise_pwl

log_amp phasedeg

log_amp_cas phaserad

mag planck

makearray polar

max polarcpx

mcTrial ppt

mcindex pulse

min pwl

model pwlr

multi_freq qelectron

qinterp sprintf

rad sqrt

ramp ssfreq

randtime stat

rawtoarray step

read_data strcat

read_lib stypexform

readdata sym_set

readlib system

readraw tan

real tanh

rect temp

rem tempkelvin

ripple thd

rms then

rn time

rpsmooth timestep

scalearray tinyreal

sens to

setDT toi

sffm tranorder

sgn transform

sin u0

sinc unconst

sine unicap

sinh uniform

sink v

sopt value

sourceLevel vlsb

vnoise

vss

Simulation

105

vswrpolar

vusb

window

yes

Simulation

106

 SPECTRE Simulator
This section describes the details of using the SPECTRE simulator with IC-CAP. For general
information on IC-CAP simulation, refer to Simulation (simulation).

 SPECTRE Interfaces

SPECTRE is a SPICE-like circuit simulator developed by Cadence Design Systems that
simulates analog and digital circuits at the differential equation level using direct methods.

SPECTRE uses the same basic algorithms used in UCB SPICE but the implementation of
these algorithms uses the most up-to-date methods currently available.

IC-CAP offers 3 different interfaces for use with the SPECTRE simulator:

SPECTRE
SPECTRE443
SPECTRE442

 SPECTRE Interface

The SPECTRE interface is compatible with SPECTRE version 4.4.3 simulators and later.
Unlike the SPECTRE443 and SPECTRE442 interfaces which invoke the SPICE netlist parser,
this interface uses native SPECTRE netlist syntax to parse data from the circuit page. This
alleviates the need to translate SPECTRE netlists to SPICE syntax prior to entering the
netlists on the circuit page. See the following section, Valid SPECTRE Netlist Syntax for IC-
CAP.

 SPECTRE443 Interface

This interface is compatible with SPECTRE versions up to 5.0.0. The SPECTRE443 interface
invokes a SPICE netlist parser, unlike the SPECTRE implementation which uses native
SPECTRE netlist syntax to parse data from the circuit page. This interface requires that
SPECTRE netlists are first converted to SPICE syntax prior to entering them on the circuit
page.

 SPECTRE442 Interface

This interface is compatible with SPECTRE simulator version 4.2.2 only. The SPECTRE442
interface invokes the SPICE netlist parser, unlike the SPECTRE interface which uses native
SPECTRE netlist syntax to parse data from the circuit page. This interface requires that
SPECTRE netlists are first converted to SPICE syntax prior to entering them on the circuit
page.

Caution
The SPECTRE442 interface is no longer recommended. IC-CAP is only tested against the latest version of
SPECTRE. The SPECTRE442 interface is documented only to assist in migrating to the SPECTRE443 or
SPECTRE interface.

 Open Simulator Interface (OSI)

Simulation

107

This interface requires the compilation of a translation module (see spectre3.c in
$ICCAP_ROOT/src). This translation module allows IC-CAP to operate as though it is
interfacing to SPICE 3. This interface is no longer recommended, but is documented to
help migration efforts from the old interface to the new SPECTRE interface template. For
details, see Using Template SPICE3 and the Open Simulator Interface spectre3.c.

 Circuit Model Descriptions

The following section describes the type of circuit page netlists required when using the
SPECTRE interface. Please refer to Circuit Model Descriptions for the netlist requirements
for the SPECTRE443, SPECTRE442, or the SPICE3 OSI interfaces.

For valid circuit syntax descriptions, see the Cadence SPECTRE simulator user's
documentation.

 Specifying Simulator Options

For information on available simulator options and their syntax, refer to the Cadence
SPECTRE simulator user's documentation.

Simulator options are specified in the first line of the circuit definition using the following
syntax:

options OPT1 = OPTVAL1 OPT2 = OPTVAL2 ... OPTN = OPTVALN

where

OPT denotes the option keyword used by the simulator.

OPTVAL is the corresponding option value. Some options do not require a value.
This field may or may not be specified, depending on the option.

A space is the only delimiter required between options.

The nominal and operating temperatures, TNOM and TEMP, are commonly used options.
TNOM is the temperature at which the model parameters are extracted. TEMP is the
temperature at which the simulation is performed.

Note
When performing an optimization to extract model parameters, TEMP and TNOM should be set to the
same value so that simulations during optimization are performed at TNOM. TNOM must be defined to
guarantee consistency between simulation and extraction.

You can also specify these variables by entering a value (in °C) for the global variables
TNOM and TEMP in the System Variables table in the Utilities application.

In general, TNOM and TEMP can be in any variable table, allowing different Models, DUTs
or Setups to use different nominal and operating temperatures.

IC-CAP checks for these global variables before running a simulation. If it does not find

Simulation

108

the variable, IC-CAP uses the value set in the Circuit Editor options statement. Otherwise,
IC-CAP analyzes the circuit using the simulator's default values.

 Valid SPECTRE Netlist Syntax for IC-CAP

The SPECTRE interface parses netlists written in native SPECTRE syntax.

During a simulation using the SPECTRE template, IC-CAP examines the netlist entered on
the Circuit page for:

The name of the device to be modelled
The external nodes of the device
The model-level parameters
The device-level parameters

IC-CAP is intended for single-device model extractions. Therefore, not all valid SPECTRE
netlists are accepted by IC-CAP.

 Valid SPECTRE Constructs

IC-CAP uses 3 SPECTRE constructs:

the device statement
the subcircuit (subckt) block
the model statement

 Valid SPECTRE Circuit Page Configurations

There are 3 valid Circuit page configurations:

A single device statement and a single model card
A single subcircuit block
A single device statement followed by a single subcircuit block

Note
Other supporting statements can be added in and around the configurations mentioned above. This
includes all valid SPECTRE syntax statements other than the device, subckt, and model statements.
These 3 constructs are limited in number and combination as described above.

 Describing a Device

A device statement describes a single SPECTRE element of any type. The general form of
device statement is:

DNAME NODE1 NODE2...NODEN MNAME DPAR1=DVAL1 DPAR2=DVAL2

where

DNAME is the device name with the first letter being a simulator-defined key
letter, denoting the type of model being specified.

Simulation

109

NODE denotes the node name for the device connection.

MNAME is the name of a built-in device, or the name of a model or subcircuit
definition. This is the same MNAME specified in the model definition described
below.

DPAR is a predefined DUT parameter name.

DVAL is the specified DUT parameter value. Refer to the SPICE Reference for the
DUT parameter names available for each model.

A plus sign (+) that appears as the first character of a line or a back slash (\) that
appears as the last character in a previous line denotes a continuation of the previous line.
This continuation character is often used for easier readability when specifying the model
card.

 Describing the Model

A model definition specifies the parameters of a particular model that is referenced by a
device statement (see Describing a Device). When a parameter is not specified, the
default value in the model is used. The general form of the model definition is:

model MNAME TYPE PNAME1=PVAL1 PNAME2=PVAL2 ...PNAMEN=PVALN

where

MNAME is the model name. Regardless of the model name entered in the
MNAME field of the model definition statement, IC-CAP substitutes the name of
the Model as it is called in the Model List when the simulator input deck is built.

Note
Noise is a reserved word in SPECTRE and must not be used in naming components of the netlist. Do not
use the name "noise" for DUTs or Models. IC-CAP substitutes the Model/DUT name for the name in the
Circuit or Test Circuit folders respectively.

TYPE is a valid SPECTRE component type.

PNAME is a parameter name for the particular model type.

PVAL is the parameter value.

A plus sign (+) that appears as the first character of a line or a back slash (\) that
appears as the last character in a previous line denotes a continuation of the previous line.
This continuation character is often used for easier readability when specifying the model
card.

 Describing Subcircuits

A subcircuit model is used to describe a circuit that contains more than 1 element.

The syntax is similar to the syntax in SPICE. The subcircuit description must begin with a

Simulation

110

subckt and end with an ends declaration. Statements between these 2 declarations
describe the subcircuit components.

The general form of a subcircuit definition is:

subckt SUBNAME (NODE1 NODE2...NODEN)

 parameters PAR1=PARVAL1 PAR2=PARVAL2 ...PARN=PARVALN

 <subcircuit devices and/or models listed here>

 ends SUBNAME

where

SUBNAME is the subcircuit name. Regardless of the subcircuit name entered in
the SUBNAME field of the subckt definition statement, IC-CAP substitutes the
name of the Model being simulated when the simulator input deck is built.

Note
Noise is a reserved word in SPECTRE and must not be used in naming components of the netlist. Do not
use the name "noise" for DUTs or Models. IC-CAP substitutes the Model/DUT name for the name in the
Circuit or Test Circuit folders respectively.

NODE denotes the node name for the device connection.

PAR1 ... PARN are subcircuit parameters that can be passed through subcircuit
calls. If a subcircuit is used in conjunction with a device statement, then the
parameters specified on the device line will also need to be listed here. In this
case, those parameters are added to the DUT Parameters table. All other
parameters not listed in the device statement will be added to the Model
Parameters table. If the subcircuit description is used without an associated
device statement, then all parameters listed here will be entered in the DUT
Parameters table.

PARVAL1 ... PARVALN are the corresponding parameter values. Depending on
the context (see previous paragraph), these parameters become either DUT
parameters or model parameters which can be modified in the DUT Parameters
table of the Model Parameters table.

The body of the subcircuit model description contains the components of the subcircuit
using element and model statements.

 Using a Device Statement and Model Card Configuration

The device statement and model card is the simplest circuit page configuration. The
template parses the model card into the Model Parameters page and the device
parameters into the DUT Parameters page. The device statement provides the external
nodes.

 Example syntax:

q1 C B E S NPN area = 1.0

model NPN bjt

+ is = 1E-16

Simulation

111

+ bf = 100

In this case, is and bf will appear on the Model Parameters page, and area will appear in
the DUT Parameters page.

Note
The device statement and model card may appear in any order.

 Using a Single Subcircuit Block Configuration

This circuit page configuration interprets the subcircuit as a single device. If the subcircuit
includes a Parameters statement, the template parses these parameters as device
parameters, where they appear in the DUT Parameter Table. All parameters on model or
device statements within the subcircuit appear in the Model Parameter Table in the form:

<inst/model>.<parameter>

 Example syntax:

subckt realnpn (C B E)

parameters area=1

LE E 4 inductor l=.35n

LB B 5 inductor l=.2n

CC C 0 capacitor c=.255p

Q1 C 5 4 NPN area = area

model NPN bjt

+ is = 1E-16

+ bf = 100

ends realnpn

In this case, LE.l, LB.l, CC.c, NPN.is, and NPN.bf will appear in the Model Parameters table
and area will appear in each DUT Parameters table.

Note
Note, Q1.area does not appear because its value is not a simple number. IC-CAP only identifies
parameters with simple numbers for extraction.

When this circuit is simulated, IC-CAP outputs the subcircuit as well as an device
statement to call the subcircuit.

See the example file model_files/bjt/spectre_ncehf.mdl for a working model.

 Using a Device Statement Followed by a Subcircuit Block

In some situations, you must extract parameters from a device defined by a subcircuit
whose parameters listed in the Parameters statement within the subcircuit are your model
parameters and not your device parameters. Use the "device statement followed by a
subcircuit block" configuration.

In this configuration, all parameters listed with the subcircuit parameters statement are
parsed as model parameters, unless they are referenced on the device statement, in
which case they are treated as device parameters.

Simulation

112

 Example syntax:

q1 C B E S realnpn area=1.0

subckt realnpn C B E S

parameters area=1.0 is=1e-16 bf=100 lb=1

lb1 B 1 inductor l=lb

q1 C 1 E S NPN area=area

model NPN bjt is=is bf=bf

ends realnpn

In the this example, there are 3 model parameters, is, bf and lb, and 1 device parameter,
area.

Note the difference between this configuration and the single-subcircuit configuration
which has only a subckt definition and no device.

 Test Circuits and Hierarchical Simulation

When characterizing a circuit, it is often necessary to add circuitry around a circuit or
device to model the actual measurement Setup. IC-CAP provides a Test Circuit Editor to
allow modeling of this additional bias circuitry. Select the DUT from the DUT/Setup panel.
Click the Test Circuit tab and enter the test circuit description in the same manner you
would enter a Circuit Description. The test circuit definition should include a call to the
device or subcircuit defined in the Circuit Editor, as well as the additional circuitry needed
to model the external parasitics of the measurement Setup.

Note
When you define a test circuit, the DUT Parameter table contains the values specified in the test circuit
specification. Regardless of the subcircuit name entered in the SUBNAME field of the subckt declaration,
IC-CAP uses the name of the DUT being simulated when the simulator input deck is built.

Note
Noise is a reserved word in SPECTRE and must not be used in naming components of the netlist. Do not
use the name "noise" for DUTs or Models. IC-CAP substitutes the Model/DUT name for the name in the
Circuit or Test Circuit folders respectively.

Subcircuit and device model specifications can be called from inside another model. This
enables you to perform hierarchical simulations to study a circuit at different levels.

When making reference to another model, the model name must be used as it appears in
the IC-CAP Model List. For example, assume you have defined 3 models, model1, model2,
and model3. model1 has a circuit model description that is a device definition. The circuit
model description for model2 is a subcircuit definition at the gate level that includes a call
to model1 in a device call statement. And, the circuit model description for model3 is a
subcircuit definition that includes a call to model2 in a subcircuit call statement. When you
simulate a Setup in model3, IC-CAP traverses the Model hierarchy and uses the circuit
model description defined in model3, which includes calls to model1 and model2. The
syntax for calling a device model is identical to that described in the Device Model
Description section.

The general form of the device call is:

Simulation

113

DNAME NODE1 NODE2...NODEN MNAME DPAR1=DVAL1 DPAR2=DVAL2

Calling a subcircuit specification allows you to insert an entire subcircuit into a circuit as if
it were a single component. The call requires a syntax identical to that used in SPECTRE.
The general form of the subcircuit call is:

DNAME NODE1 NODE2...NODEN SUBNAME DPAR1=DVAL1 DPAR2=DVAL2

where

DNAME is the name of the subcircuit call statement. The only requirement for
this name is that it must start with the letter D.

NODE denotes the node name for the device connection.

SUBNAME is the name of the subcircuit, previously described by a subckt
definition. This must have the name of the model as it appears in the Model List
if it is in a different model.

DPAR are passed in the parameter names.

DVAL are subcircuit parameter values. The order in which they are listed in the
subcircuit call statement must match the parameters list in the subcircuit
definition.

Note
When a test circuit is included in the Model, IC-CAP uses the test circuit description as the top level circuit
definition. The node number connections defined in the test circuit description, not the circuit description,
are used as the external nodes. Because of this, any node-number-to-node-name cross-referencing in the
circuit description is not used. Only node names equated to node numbers in the test circuit description
can be used when specifying Inputs and Outputs in the Setup Editor. When only node numbers are
specified in the test circuit description, (that is, they are not equated to node names) these same node
numbers must be used in the Input and Output node fields.

 Piped and Non-Piped SPECTRE Simulations

The following sections describe the differences in piped and non-piped simulations for the
various SPECTRE simulators. Each section also describes the argument syntax required to
invoke each of the template simulators. This information is needed when writing the user
translation module, since these are the arguments supplied by IC-CAP when it calls the
translation module. For information on the translation module and adding a simulator,
refer to Adding a Simulator (simulation).

There are 3 methods you can use to link to the SPECTRE simulator interface:

Use template SPECTRE, SPECTRE443, or SPECTRE442 with CANNOT_PIPE.
Use template SPECTRE, SPECTRE443, or SPECTRE442 with CAN_PIPE.
Use template SPICE3 and the Open Simulator Interface _spectre3.c.

Simulation

114

Note
The methods using SPECTRE or SPECTRE442/443 offer significant speed enhancements with some
minor features that will not work properly. Be sure to read the following sections describing their
limitations.

Note
The method using SPICE3 is fully supported, but offers the slowest speed. It is not recommended,
except when methods using SPECTRE or SPECTRE442/443 do not work, or are unavailable.

 Using SPECTRE Simulator Templates with CANNOT_PIPE

If you specify the template SPECTRE, SPECTRE442 or SPECTRE443, you can greatly speed
up your simulations. This template will use the SPECTRE alter command to simulate
multiple bias steps in 1 simulation. This improves many multi-sweep simulations such as
an S-parameter setup with 2 sweeps. Using the Open Simulator Interface method, each of
these bias steps would require a separate simulation.

The one known limitation with this method is that parameter sweeps will not work
properly with certain parameters that are declared in a subcircuit at the Circuit page level
when a Test circuit is being used. Parameters that are declared with an "=" sign will work
even under this configuration, but parameters that are declared without an "=" sign will
not work. In the following example, parameter sweeps will work for IS, but not for R1.

Circuit Page:

subckt CIRC 1=A 2=C

R1 1 2 50

Q1 1 2 1 2 NPN

model NPN BJT IS=10e-15

.ENDS

Test Circuit:

subckt CIRC2 1=A 2=C

XTEST 1 2 CIRC

.ENDS

 Using SPECTRE Simulator Templates with CAN_PIPE

IC-CAP may not work properly with parameters defined using $mpar() in #echo lines. If
using such a circuit, Agilent Technologies does not recommend using CAN_PIPE. Use
CANNOT_PIPE instead.

Specifying CAN_PIPE with SPECTRE, SPECTRE442 or SPECTRE443 templates will use a
mode that will allow the simulator to stay up for multiple simulations of the same setup as
long as the only thing changing are parameters. This is what happens during an
optimization which has all targets within 1 setup. This mode is not officially supported by
Cadence, so use the link at your own risk. Our testing has shown it to provide significant
performance improvements.

Simulation

115

Limitations of this method include:

This mode has the same limitation described in the previous section.
If a Test circuit is used, this mode offers no performance enhancement.
This mode does not work with remote hosts.

 Using Template SPICE3 and the Open Simulator Interface spectre3.c

Note
Using Template SPICE3 requires more processing time than the other SPECTRE templates. Using Template
SPICE3 is not recommended, except when methods using SPECTRE, SPECTRE442, or SPECTRE443 are
unavailable.

Using IC-CAP's Open Simulator Interface, a C-language Translation Module is provided
that makes SPECTRE simulation capability available in IC-CAP. This module and
instructions for performing SPECTRE simulations in IC-CAP are described here. For general
information on the Open Simulator Interface, refer to Adding a Simulator (simulation).

The IC-CAP/SPECTRE link uses UCB SPICE3 as the template simulator. When performing a
SPECTRE simulation in IC-CAP, IC-CAP behaves as if it is performing a SPICE3 simulation.
Therefore it generates an input deck in SPICE3 format, calls the simulator and reads back
a binary raw data file in SPICE3 format. Through the Open Simulator Interface, the call to
the simulator is actually calling the executable version of the C-language Translation
Module, spectre3.c. This executable, called spectre3, translates the SPICE3 input deck to
a SPECTRE input format, calls SPECTRE to perform the simulation, then translates the
SPECTRE format binary raw data file to SPICE3 format which is read by IC-CAP. The
source code file spectre3.c is located in the $ICCAP_ROOT/src directory.

Note
When using SPECTRE, the CDS_LICENSE_DIR environment variable must be set. This variable contains
the directory path for the license file required by the SPECTRE simulator. Refer to the SPECTRE Reference
Manual for detailed procedures on installing the SPECTRE simulator.

Note
SPECTRE does not support a secondary sweep in the DC specification. For DC simulations, set the System
Variable MAX_DC_SWEEPS to 1 so that IC-CAP generates a separate input deck for every point in the
secondary sweep, if it exists.

Note
If you set the SPECTRE variable SPECTRE_DEFAULTS in your system startup file, for example, the . profile
file, do not use the -E option. Use the following sntax:

SPECTRE_DEFAULTS +l %C.r.out -f psfascii

To set up SPECTRE simulation capability in IC-CAP:

Add the spectre_simulator to the _usersimulators file in the directory1.
$ICCAP_ROOT/iccap/lib, as shown next.
spectre spice3 /<your path>/spectre3 "<host_machine_name>" CANNOT_PIPE

The host_machine_name is the host computer for the SPECTRE simulations. This2.
name can be left blank ("") if SPECTRE and IC-CAP are running on the same
computer. Since SPECTRE does not have the ability to perform piped simulations in
IC-CAP, the CANNOT_PIPE flag must always be set, as shown in the above example.

Simulation

116

Make the following change to the spectre3.c program to customize it for your3.
environment:

In the main routine, specify the full pathname of the actual SPECTRE simulator
on your system.

Compile the translation module using the following command:4.
cc -o spectre3 spectre3.c -lm

Move the executable file, spectre3 to a permanent location such as5.
$ICCAP_ROOT/bin. The location must match the path specified in the usersimulators
file.
In IC-CAP, set the SIMULATOR variable to spectre or specify spectre with the Select6.
Simulator command in the IC-CAP Tools Menu.

The following files are generated in your home directory when running SPECTRE
simulations in IC-CAP:

spectre.cki - SPECTRE format circuit description deck file translated from the SPICE3
circuit description deck.
spectre.raw - SPECTRE formatted binary raw data output file generated by a
SPECTRE simulation.
spectre.log - Output print file generated by a SPECTRE simulation.

spectre.raw and spectre.log are automatically removed from your home directory after the
simulation is completed in IC-CAP.

Note
Some of the new models implemented in SPECTRE use slightly different syntax for the model statement
than they would for SPICE3. This difference will not be accounted for by the translator; you must change
the model statement in the Circuit Description folder before simulating. The following examples show how
the model statement would read for the MM9 and BSIM3 models:

model <name> mos902 type=n <parameters>

model <name> bsim3 type=n <parameters>

Simulation

117

 HSPICE Simulator
HPSPICE The Agilent Technologies implementation of SPICE2. Although there are some
differences between this version and the SPICE2G.6 version from U.C. Berkeley, these 2
simulators are compatible. For more information refer to SPICE Simulator Differences
(simulation). The version of HPSPICE provided with IC-CAP can be run only from within
the IC-CAP program-it cannot be run stand-alone.

Note
The HSPICE simulator, developed by Synopsys, uses input deck syntax similar to that of the SPICE-type
simulators; thus, it is referred to as a SPICE-type simulator in this manual. IC-CAP currently supports only
the features of HSPICE also available in the U.C. Berkeley SPICE simulators.

 Piped, Non-Piped, and Client/Server HSPICE Simulations

Note
The CAN_PIPE token is supported for HSPICE in user simulators. This token can now be used on local
Linux HSPICE and local Solaris HSPICE simulations with HSPICE-2007.03.SP1. It is not a true piped mode
(netlists and raw files are still written to disk), but provides substantial performance improvement by
using an interactive mode that avoids restarting HSPICE for every simulation. Beginning in HSPICE
2008.03-SP1, HSPICE license will time out in 1800 seconds for CAN_PIPE mode. You can customize the
license timeout by setting variable HSPICE_LICENSE_TIMEOUT (unit by second).

Non-piped HSPICE simulations are identical to non-piped SPICE simulations. This type of
simulation is performed when the Simulation Debugger is set to ON. If CANNOT_PIPE is
specified for HSPICE, even when the Simulation Debugger is OFF, it still performs a non-
piped simulation. This means that HSPICE must be restarted for every simulation. Because
of this, there is no noticeable difference in simulation speed when the Simulation
Debugger is set to ON or OFF.

 Syntax: Piped HSPICE Simulations

The command format for an HSPICE piped simulation is as follows:

hspice -I

load deckname and run commands are then passed to the running HSPICE process.

 Syntax: Non-Piped HSPICE Simulations

The command format for an HSPICE non-piped simulation is as follows:

hspice -i deckfile -o logfile

where

deckfile is the input deck file containing the circuit description and analysis
commands.

Simulation

118

logfile is the listing of information about the simulation generated by HSPICE. If
the simulation debugger is open, this file will be displayed in the Output Text
portion of the simulation debugger.

The output binary data file is written to a file named deckfile.suffix where suffix depends
on the type of analysis being performed. Refer to the HSPICE User's Manual for more
information.

 Syntax: Client/Server mode HSPICE Simulations

On Windows, CAN_PIPE is not supported, but HSPICE provides a method of invoking a
standing server process to access HSPICE licenses. If this was launched via the hspui
program, IC-CAP can simulate faster by launching HSPICE with the following syntax:

hspice -C deckfile -o logfile

where

deckfile is the input deck file containing the circuit description and analysis
commands.

logfile is the listing of information about the simulation generated by HSPICE. If
the simulation debugger is open, this file will be displayed in the Output Text
portion of the simulation debugger.

However, if the server has not been started, the simulation still occurs but at a slower
speed.

To configure IC-CAP to send the -C instead of -i, specify the template name hspice-C as
the second field in your usersimulators line example:

hspiceC hspice-C c:\synopsys\Z-2007.09\bin\hspice.exe ""

CANNOT_PIPE

 Circuit Model Descriptions

The circuit description for the HSPICE simulator is similar to the UCB SPICE simulator
circuit description. Refer Circuit Model Descriptions (simulation) described under section
SPICE Simulators.

 Circuit Description Syntax

Basic HSPICE syntax rules are the same as SPICE-type simulators. Refer to Circuit
Description Syntax (simulation) basic syntax rules for creating a circuit description. Refer
to HSPICE User's Manual for complete syntax rules.

Note
Before performing HSPICE simulations, specify the HSPICE version name in the System Variable
HSPICE_VERSION. If this variable is not specified, IC-CAP will assume the latest version of HSPICE is
being used.

Simulation

119

 SPICE Simulators
This section describes the details of using the SPICE simulators with IC-CAP. For general
information on IC-CAP simulation, refer to Simulation (simulation).

Note
The Solaris OS must include the cpp utility, which IC-CAP uses to manage output from SPICE simulators.
See "System Requirements" in the Installation and Configuration Guide for more details.

IC-CAP can interface with the following SPICE simulators. They are provided as a courtesy
to IC-CAP users (though not supported by Agilent Technologies).

The SPICE simulators support the following analysis types:

DC
AC
Transient
Noise
Capacitance Voltage (CV)
2-Port (S,H,Y,Z,K,A parameter)
Time-Domain Reflectometry (TDR)

Note
The latter 3 simulation types are not directly available in the SPICE simulators; IC-CAP builds the
additional circuitry required in the simulator input files to perform the simulation.

IC-CAP supports the features of ELDO that are also available in the UCB SPICE simulators
but also provides limited support for models written in either ELDO-FAS or HDL-A. ELDO is
an analog simulator developed by Mentor Graphics Corp. ELDO input deck syntax is
compatible with that of the SPICE type simulators; therefore, in ELDO is categorized as a
SPICE-type simulator this manual.

The IC-CAP version of SPICE3 supports the following models:

Simulation

120

Model Group Supported Models Model Files

MOSFET Level 1, Level 2, Level
3

nmos/pmos2
nmos3/pmos3

 BSIM3, BSIM4 BSIM3_DC_CV_Measure
BSIM3_DC_CV_Extract
BSIM3_RF_Measure
BSIM3_RF_Extract
BSIM3_AC_Noise_Tutorial

BSIM3_CV_Tutorial
BSIM3_DC_Tutorial
BSIM3_Temp_Tutorial
BSIM3_DC_CV_Finetune
BSIM4_DC_CV_Measure
BSIM4_DC_CV_Extract
BSIM4_RF_Measure
BSIM4_RF_Extract
BSIM4_DC_CV_Tutorial
BSIM4_DC_CV_Finetune

 MOS Model 9 mm9
mm9_demo

BJT Gummel Poon bjt_npn/bjt_pnp
bjt_nhf
bjt_ncehf
bjt_ft
mnsnpn
sabernpn

GaAs Statz UCBGaas
UGaashf

Diode PN Diode pn_diode

 Philips JUNCAP juncap

The following additional SPICE-like simulators are also discussed in this section:

PRECISE
PSPICE

 SPICE Simulation Example

The circuit description is predefined for all IC-CAP configuration files. Enter this description
if a new model is being defined; edit the description to fit specific needs. The syntax is
identical to the syntax used for describing circuits in a typical SPICE simulation deck.

This simulation example will use the IC-CAP supplied Model bjt_npn.mdl.

Select the simulator by choosing Tools > Options > Select Simulator > spice2.1.
Choose OK.
Choose File > Open > bjt_npn.mdl. Choose OK.2.
View the circuit description by clicking the Circuit tab.3.
The circuit description is shown below in Circuit Description Deck for an NPN Bipolar
Transistor. This deck describes the circuit (in this case, a single device) to be used in
the simulation.
To view input and output for the fearly setup, click the DUTs-Setups tab and select4.
fearly.

Simulation

121

The Measure/Simulate folder appears with the inputs vb, vc, ve, and vs, and the
output ic. The vc input specifies a voltage source at node C that sweeps linearly from
0 to 5V in 21 steps. The ic output specifies that current at node C be monitored.
In the Plots folder, icvsvc is specified so that the results of the simulation can be
viewed graphically.
To simulate, click the Simulate button in the Measure/Simulate folder. The Status5.
line displays Simulate in progress.
When the simulation is complete, the Status line displays IC-CAP Ready.
To view the results of the simulation, display the Plots folder and click Display Plot.6.
The plot displays measured data represented by solid lines and simulated data
represented by dashed lines.

Note
For syntax examples of running a remote simulation, refer to Remote Simulation Examples
(simulation).

 Circuit Description Deck for an NPN Bipolar Transistor

Q1 1 = C 2 = B 3 = E 4 = S NPN AREA = 1.0

.MODEL NPN NPN

+ IS = 36.76e-18

+ BF = 336.1

+ NF = 1.003

+ VAF = 35.25

+ IKF = 22.07m

+ ISE = 1.882f

+ NE = 1.932

+ BR = 4.103

+ NR = 1.005

+ VAR = 1.651

+ IKR = 147.3u

+ ISC = 15.69f

+ NC = 1.857

+ RB = 522.0

+ IRB = 61.43u

+ RBM = 1.000m

+ RE = 8.435

+ RC = 57.05

+ XTB = 1.700

+ EG = 1.110

+ XTI = 3.000

+ CJE = 44.06f

+ VJE = 871.7m

+ MJE = 429.9m

+ TF = 10.49p

+ TR = 1.700m

+ XTF = 247.4

+ VTF = 1.622

+ ITF = 140.6m

+ PTF = 218.8

+ CJC = 68.94f

+ VJC = 603.8m

+ MJC = 290.6m

+ XCJC = 300.0m

+ TR = 1.700n

+ CJS = 111.9f

+ VJS = 465.0m

Simulation

122

+ MJS = 241.9m

+ FC = 500.0m

 Piped and Non-Piped Simulations

The following sections describe the differences in piped and non-piped simulations for the
various SPICE simulators. Each section also describes the argument syntax required to
invoke each of the template simulators. This information is needed when writing the user
translation module, since these are the arguments supplied by IC-CAP when it calls the
translation module. For information on the translation module and adding a simulator,
refer to the section Adding a Simulator (simulation).

 Piped and Non-Piped SPICE Simulations

A non-piped simulation receives the input deck information from a file, performs the
simulation and sends the binary output data and resulting text output to other files. The
simulator process is restarted for every simulation.

A piped simulation receives the input deck information from a pipe connected to standard
input, performs the simulation and sends the output data to a pipe connected to standard
output. The simulator process will remain on until another simulator is selected. Setting
the RETAIN_SIMU variable to TRUE overrides this behavior and allows multiple simulators
to remain running. This uses additional memory but increases speed when frequently
switching between simulators. In all cases, a piped simulator process will be turned off
when the Simulation Debugger is turned on.

The text output from a simulation usually contains an explanation of any errors which may
have been encountered during the simulation. Piped simulations do not save any text
output from the simulation. If an error occurs during a piped simulation, IC-CAP issues a
message in an error box stating that an error has occurred and recommending that the
simulation be repeated with the Simulation Debugger turned on. IC-CAP performs non-
piped simulations when the Simulation Debugger is ON.

In general, piped simulations are faster than non-piped simulations for any given
simulator because the simulator process does not have to be restarted for every
simulation and less file activity is required.

 Syntax: Non-Piped 2G.6, 3E2, and HPSPICE Simulations

The command formats for non-piped simulations are shown next:

UCB SPICE 2G.6

ucbspice2g6 rawfile

where:

rawfile is the output binary data file.

The input deck file containing the circuit description and analysis commands comes from

Simulation

123

standard input and the output text file containing the results of the simulation goes to
standard output.

UCB SPICE 3E2

spice3e2 -b -r rawfile -o textfile deckfile

where:

-b specifies batch mode.

rawfile is the output binary data file.

textfile is the output text file containing the results of the simulation.

deckfile is the input deck file containing the circuit description and analysis
commands.

HPSPICE

spice2.4n1 deckfile textfile rawfile

where:

deckfile is the input deck file containing the circuit description and analysis
commands.

textfile is the output text file containing the results of the simulation.

rawfile is the output binary data file.

 Syntax: Piped 2G.6, 3E2, and HPSPICE Simulations

The command formats for piped simulations are shown next:

UCB SPICE 2G.6

ucbspice2g6 -

where:

The "-" denotes that the binary data output is going to the standard output pipe.
The input deck information comes from the standard input pipe and the output
text is sent to the file /dev/null.

UCB SPICE 3E2

spice3e2 -s

where:

Simulation

124

The -s option specifies that the input deck information is coming from standard
input and the binary data output is going to standard output.

HPSPICE

spice2.4n1 - /dev/null -

where:

The first "-" denotes that the input deck information is coming from the standard
input pipe.

The output text is sent to the file /dev/null.

The last "-" denotes that the binary data output is going to the standard output pipe.

 Output Data Formats

The example in the following figure shows the output data format of the spice2 template
simulator supported in IC-CAP.

 Output File Format Used For spice2

Record 1: Title card (80 bytes), date (8 bytes), time (8 bytes) TOTAL-96 BYTES

Record 2: Number of output variables (including "sweep" variable) (2 bytes)

Record 3: Integer '4' (2 bytes)

Record 4: Names of each output variable (8 bytes each)

Record 5: Type of each output (2 bytes each)

 0 = no type

 1 = time

 2 = frequency

 3 = voltage

 4 = current

 5 = output noise

 6 = input noise

 7 = HD2

 8 = HD3

 9 = DIM2

 10 = SIM2

 11 = DIM3

 Outputs 7 through 11 are distortion outputs.

Record 6: The location of each variable within each sweep point. (2-bytes each)

 (Normally just 1,2,3,4,...but needed if outputs are mixed up)

Record 6a: 24 characters that are the plot sub-title if Record 3 is a '4'.

Record 7: Outputs at first sweep point

Record 8: Outputs at second sweep point

Record 9:

 .

 .

 .

last record

All real data are 8-byte quantities.

All complex data are single precision reals, that is 4-byte quantities.

 (4-byte quantity for the real part,

Simulation

125

 4-byte quantity for the imaginary part)

EOF A special "end-of-file" indicator: 9.87654321D+27 for real data

 (9.876E+0,5.432E+0) for complex data

EOI A 4 byte integer zero indicates the end of all raw data

The binary format output by the spice3 template simulator is shown in the following
figure.

 Output File Format Used For spice3

Title Card (Newline (\n) terminated string)

Date and Time (Newline (\n) terminated string)

Plot Title (Newline (\n) terminated string)

Flags (Newline (\n) terminated string)

Number of Variables (No. Variables: [an integer])

Number of Points (No. Points: [an integer])

Version (Newline (\n) terminated string)

Variables List

 (Variables:

 [tab] (index) [tab] (name) [tab] (type)

 .

 .

 .

 { repeated num_var times }

 where: index = variable index [integer]

 name = variable name [string]

 type = variable type [string (that is, "current" or "voltage")]

 num_var = number of variables

Binary: (Newline (\n) terminated string indicating the

 start of the binary data)

Each data point is listed in the order listed in the variables list.

Each real data point is represented by 8 bytes.

Each complex data point consists of the real part and the imaginary

part of 8 bytes each.

There are no separators between data points.

 SPICE Parameter Sweeps

Note
Parameter sweeps should always be the outer most sweep.

LSYNC sweeps should have master sweeps that are also parameter sweeps.

For SPICE-type simulators, specifying parameter sweeps for devices and circuits requires
an input added to the setup (in this example, nmos2/short/idvd) with Mode P.

Simulation

126

 SPICE Parameter Sweep Setup Example

IC-CAP performs a simulation for each value of the parameter sweep. The following figure
shows the resulting plot.

 SPICE Parameter Sweep Plot Example

For additional information on sweeping parameters, refer to the section, Specifying
Parameter or Variable Sweeps (simulation).

 Circuit Model Descriptions

The circuit description for the HSPICE and ELDO simulators is similar to the UCB SPICE
simulator circuit description. The details in the following sections also apply to HSPICE and
ELDO.

 Specifying Simulator Options

For information on available options and their syntax, refer to Simulation (simulation) for
that simulator. Simulator options are specified in the first line of the circuit definition using
the following syntax:

.OPTIONS OPT1 = OPTVAL1 OPT2 = OPTVAL2 ... OPTN = OPTVALN

where

OPTs denote the option keywords used by the simulator

OPTVALs are the corresponding option values. Some options do not require a
value; this field may or may not be specified, depending on the option.

A space is the only delimiter required between options.

Simulation

127

The nominal and operating temperatures, TNOM and TEMP, are commonly used options;
they can also be specified by entering a value (in °C) for the global variables TNOM and
TEMP. To do this, enter the variable and its value in the System Variables table in the
Utilities application.

TNOM is the temperature at which the model parameters are extracted; TEMP is the
temperature at which the simulation is performed. When performing an optimization
to extract model parameters, TEMP and TNOM should be set to the same value so
that simulations during optimization are performed at TNOM. TNOM must be defined
to guarantee consistency between simulation and extraction.
In general, TNOM and TEMP can be in any variable table, allowing different Models,
DUTs or Setups to use different nominal and operating temperatures. IC-CAP checks
for these global variables before running a simulation. If the variable is not found,
the value of the option set in the .OPTIONS statement in the Circuit Editor is used
when it exists. Otherwise, the circuit is analyzed using the simulator's default values.

IC-CAP automatically adds the option POST=1 to the options list when the selected
simulator is hspice. Specifying this option causes hspice to return the binary raw data file,
which IC-CAP requires for reading back the simulated data. This option is not necessary
when performing a Manual Simulation from the Simulation Debugger command menu
because the data is not read back into IC-CAP.

 Describing the Device Model

A device model is used to characterize a single SPICE element of any type. This
description requires 2 parts:

An element statement that calls a defined model
A .MODEL definition, which is identical to a .MODEL card in SPICE

The general form of the element statement that calls the device model is:

DNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN = NNAMEN MNAME + DPAR1 = DVAL1

DPAR2 = DVAL2 ...DPARN = DVALN

where

DNAME is the device name with the first letter being a simulator defined key
letter denoting the type of model being specified.

NNUM denotes the node number connections.

NNAME denotes node names corresponding to the node numbers.

DPAR is a predefined DUT parameter name.

DVAL is the specified DUT parameter value. Refer to the SPICE Reference
manual for DUT parameter names available for each model.

MNAME is the model name being referenced. This is the same MNAME specified

Simulation

128

in the .MODEL definition described below

A .MODEL definition specifies the parameters of a device model that describe a particular
element. When a parameter is not specified, the default value in the model is used. The
general form of the .MODEL definition is:

.MODEL MNAME TYPE PNAME1=PVAL1 PNAME2=PVAL2 ...PNAMEN=PVALN

where

MNAME is the model name. Regardless of the model name entered in the
MNAME field of the .MODEL definition statement, IC-CAP substitutes the name of
the Model as it is called in the Model List when the simulator input deck is built.

TYPE is a valid SPICE component type

PNAME is a parameter name for the particular model type

PVAL is the parameter value

As in SPICE, a plus sign (+) that appears as the first character of a line denotes a
continuation of the previous line. This continuation character is often used for easier
readability when specifying the .MODEL card.

Note
When using the SPECTRE simulator with either the OSI, SPECTRE442, or SPECTRE443 interfaces (see
SPECTRE Interfaces (simulation)), the LEVEL parameter for a MOS .MODEL card may not translate
properly. IC-CAP outputs the value as a real number in the netlist, but SPECTRE requires an integer. To
work around this issue, use the model type BSIM3 instead of MOS and omit the LEVEL parameter.
Alternatively, enclose the LEVEL parameter with parentheses, for example, LEVEL = (11). By doing the
later, IC-CAP does not flag it as a model parameter and leaves the expression alone when passing the
netlist to SPECTRE.

 Describing Subcircuits

A subcircuit model is used to describe a circuit that contains more than 1 element.

The syntax is similar to the syntax in SPICE. The subcircuit description must begin with a
.SUBCKT and end with a .ENDS declaration. Statements between these 2 declarations
describe the subcircuit components.

The general form of the first line of a subcircuit definition is:

.SUBCKT SUBNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN = NNAMEN + (PAR1=PARVAL1

PAR2=PARVAL2 ...PARN=PARVALN)

where

SUBNAME is the name you give to the subcircuit. Regardless of the subcircuit
name entered in the SUBNAME field of the .SUBCKT definition statement, IC-
CAP substitutes the name of the Model being simulated when the simulator input
deck is built.

Simulation

129

NNUM are the numbers of the external nodes of the subcircuit. These external
nodes are used to connect the subcircuit to another circuit. External nodes in the
.SUBCKT declaration cannot be 0 (ground), but internal nodes can be connected
to ground and any external node to ground in a surrounding circuit.

NNAME is a node name assigned to a node number. As in the device model
description, IC-CAP allows the option of equating node numbers to node names.
If you assign node names, use these names when specifying the Inputs and
Outputs in the Setup.

PAR1 ... PARN are subcircuit parameters that can be passed through subcircuit
calls. These parameters are added to the DUT parameter table in IC-CAP.

PARVAL1 ... PARVALN are the corresponding parameter values. These subcircuit
parameters become DUT parameters and can be modified in the DUT Parameter
Editor.

(While the syntax shown here is correct, passed parameters are ignored by IC-CAP.)

The body of the subcircuit model description contains the components of the subcircuit
using element and .MODEL statements.

 Assigning Node Names

IC-CAP allows the option of equating node numbers to node names in circuit descriptions
because it is typically easier to refer to a node by a meaningful name rather than a
number. If node numbers only are specified, these node numbers must be used when
specifying inputs and outputs. Node identities can also be specified with the format
%<name>. For example:

Q1 1=C 2=B 3=E 4=S NPN or Q1 %C %B %E %S NPN

Although HSPICE and ELDO allow alphanumeric characters for node names, node numbers
must still be associated with node names because IC-CAP parses HSPICE as a SPICE-type
simulator.

When using this format, all node names within the circuit or device must be referenced
using the %[nodename] syntax.

 Test Circuits and Hierarchical Simulation

When characterizing a circuit, it is often necessary to add circuitry around a circuit or
device to model the actual measurement Setup. IC-CAP provides a Test Circuit Editor to
allow modeling of this additional bias circuitry. Select the DUT from the DUT/Setup panel.
Click the Test Circuit tab and enter the test circuit description in the same manner you
would enter a Circuit Description. The test circuit definition should include a call to the
device or subcircuit defined in the Circuit Editor, as well as the additional circuitry needed
to model the external parasitics of the measurement Setup.

Simulation

130

Note
When you define a test circuit, the DUT parameter table contains the values specified in the test circuit
specification. Regardless of the subcircuit name entered in the SUBNAME field of the .SUBCKT declaration,
IC-CAP uses the name of the DUT being simulated when the simulator input deck is built.

Subcircuit and device model specifications can be called from inside another Model. This
enables you to perform hierarchical simulations to study a circuit at different levels.

When making reference to another model, the model name must be used as it appears in
the IC-CAP Model List. For example, assume you have defined 3 Models, model1, model2,
and model3. model1 has a circuit model description that is a device definition. The circuit
model description for model2 is a subcircuit definition at the gate level that includes a call
to model1 in a device call statement. And, the circuit model description for model3 is a
subcircuit definition that includes a call to model2 in a subcircuit call statement. When you
simulate a Setup in model3, IC-CAP traverses the Model hierarchy and uses the circuit
model description defined in model3, which includes calls to model1 and model2. The
syntax for calling a device model is identical to that described in the Device Model
Description section.

The general form of the device call is:

DNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN = NNAMEN MNAME + DPAR1 = DVAL1

DPAR2 = DVAL2 ...DPARN = DVALN

Calling a subcircuit specification allows you to insert an entire subcircuit into a circuit as if
it were a single component. The call requires a syntax identical to that used in SPICE. The
general form of the subcircuit call is:

XNAME NNUM1 NNUM2 ...NNUMN SUBNAME (PARVAL1 PARVAL2 ... PARVALN)

where

XNAME is the name of the subcircuit call statement. The only requirement for
this name is that it must start with the letter X.

NNUM are the node numbers of the calling circuit that connect to the external
nodes of the subcircuit. The calling circuit node numbers need not be the same
as the external nodes of the subcircuit. The nodes are connected in the order
specified. Specify the same number of nodes declared in the subcircuit
definition.

SUBNAME is the name of the subcircuit, previously described by a .SUBCKT
definition. This must have the name of the model as it appears in the Model List
if it is in a different model.

PARVAL are subcircuit parameter values. The order in which they are listed in
the subcircuit call statement must match the parameters list in the subcircuit
definition.

(While the syntax shown here is correct, passed parameters are ignored by IC-CAP.)

Simulation

131

Note
When a test circuit is included in the Model, IC-CAP uses the test circuit description as the top level circuit
definition. The node number connections defined in the test circuit description, not the circuit description,
are used as the external nodes. Because of this, any node-number-to-node-name cross-referencing in the
circuit description is not used. Only node names equated to node numbers in the test circuit description
can be used when specifying Inputs and Outputs in the Setup Editor. When only node numbers are
specified in the test circuit description, (that is, they are not equated to node names) these same node
numbers must be used in the Input and Output node fields.

 .PARAM

.PARAM can be used in SPICE-type simulators such as hspice, eldo and hspicemodeads.

The .PARAM inside a sub-circuit based netlist always appear in the appropriate parameter
list.
That means, if they are defined:

in the Circuit, they appear in the Model Parameter List.
in a Test Circuit, they appear in the Device Parameter List.

The general form is:

.SUBCKT SUBNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN = NNAMEN + (PAR1=PARVAL1 PAR2=PARVAL2

...PARN=PARVALN)

[.PARAM PNAME1=PVAL1 PNAME2=PVAL2 ...PNAMEN=PVALN]

 -

 -

 elementStatements

 -

 -

.ENDS

Note
Note that not all spice simulators support it.
hspice support .PARAMETER/.PARAMETERS

 Circuit Description Syntax

This section describes basic syntax rules for creating a circuit description.

 SPICE Simulators

Start an input line with * to denote a comment in the circuit model description or in the
input file of the simulation debugger. Although some simulators accept # and *, IC-CAP
accepts * only. (# is recognized as a preprocessor directive when the simulator input deck
is built. Adding a comment using # causes a simulation generated from a DUT or Setup to
fail.)

The following table lists the SPICE element component specifications. For information on
available options and their syntax, refer to the SPICE Reference manual.

The table below lists the semiconductor device specifications. For information on available

Simulation

132

options and their syntax, refer to the SPICE Reference manual.

 SPICE Element Component Specifications

Component General Form Example

Resistor RXXXXXXX N1 N2 VALUE <TC=TC1<TC2>> R1 1 2 1000
TC=0.001,0.015

Capacitor CXXXXXXX N+ N- VALUE <IC=INCOND> COSC 15 2 10U IC=3

Inductor LXXXXXXX N+ N- VALUE <IC=INCOND> LSHUNT 3 29 10U
IC=15.7m

Mutual Inductor KXXXXXXX LYYYYYYY LZZZZZZZ VALUE K43 LAA LBB 0.999

Transmission Line TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE> + <F=FREQ
<NL=NRMLEN>> <IC=V1,I1,V2,I2>

T1 1 0 2 0 Z0=50
TD=10NS

Linear Voltage-
Controlled Current
Source

GXXXXXXX N+ N- NC+ NC- VALUE G1 2 0 5 0 0.1M

Linear Voltage-
Controlled Voltage
Source

EXXXXXXX N+ N- NC+ NC- VALUE E1 2 3 14 1 2.0

Linear Current-
Controlled Current
Source

FXXXXXXX N+ N- VNAM VALUE F1 13 5 VSENS 5

Linear Current-
Controlled Voltage
Source

HXXXXXXX N+ N- VNAM VALUE HX 5 17 VZ 0.5K

Independent Voltage
Source

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> + <AC <ACMAG
<ACPHASE>>>

VIN 12 0 DC 6

Independent Current
Source

IXXXXXXX N+ N- <<DC> DC/TRAN VALUE> + <AC <ACMAG
<ACPHASE>>> + SFFM(0 1 10K 5 1K)

ISRC 23 21 AC 0.333
45.0

 SPICE Semiconductor Component Specifications

Component General Form Example

Junction
Diode

DXXXXXXX N1 N2 MNAME + <OFF><IC=VD> DCLAMP 3 7
DMOD 3.0
IC=0.2

BJT QXXXXXXX NC NB NE <NS> MNAME + <OFF> <IC=VBE,VCE> Q2A 11 26 4
20 MOD1

JFET JXXXXXXX ND NG NS MNAME + <OFF> <IC=VDS,VGS> J1 7 2 3 JM1
OFF

MOSFET MXXXXXXX ND NG NS NB MNAME +
<L=VAL><W=VAL><AD=VAL><AS=VAL>
+<PD=VAL><PS=VAL><NRD=VAL><NRS=VAL> + <OFF>
<IC=VDS,VGS,VBS

M1 2 9 3 0
MOD1 L=10U
W=5U

 HSPICE Simulator

Basic HSPICE syntax rules are the same as SPICE-type simulators. Refer to the HSPICE
User's Manual for complete syntax and rules.

Simulation

133

Note
Before performing HSPICE simulations, specify the HSPICE version name in the System Variable
HSPICE_VERSION. If this variable is not specified, IC-CAP will assume the latest version of HSPICE is
being used.

 ELDO Simulator

Basic ELDO syntax rules are the same as SPICE-type simulators. In addition to the SPICE-
type syntax, FAS user-defined models can be defined and instantiated in the IC-CAP
Circuit Editor. An FAS model is defined as:

amodel name(pin1,pin2..)

.

<model body>

.

endmodel

(smodel and fmodel are also accepted).

The above model is instantiated in a circuit as:

yxx name [pin:] 1 2 ... [param: par1 = var1 ...] [model: ...]

In addition, the parser accepts the following ELDO constructs:

.ADDLIB number pathname

#com . . #endcom

FIDEL models (oxx p1:typ p2:typ ... mod=modelname) and transfer functions (FNS, FNZ)
are not currently supported by the IC-CAP parser. However, the #echo keyword can be
used to insert these statements into a circuit in the IC-CAP Circuit Editor.

The #echo keyword is available in the IC-CAP Circuit Editor for all supported simulators.
#echo can be used to pass a deck card or command directly through to the simulator
without any parsing by IC-CAP. For example, the line

#echo <something that the IC-CAP parser doesn't understand>

is sent to the simulator as

<something that the IC-CAP parser doesn't understand>

The following analog model instantiation syntax is supported for HDL-A:

HDL-A user-defined models with the following syntax can also be instantiated in the IC-
CAP Circuit Editor.

yxx name(xx) [pin:] 1 2 ... [param: par1 = var1 ...]

and
yxx name(xx) [pin:] 1 2 ... [generic: par1 = var1 ...]

Simulation

134

Note
Before performing ELDO simulations specify the ELDO version name in the System Variable
ELDO_VERSION. If this variable is not specified, IC-CAP will use the version name specified in the
environment variable eldover, if it exists. If neither ELDO_VERSION or eldover are specified, IC-CAP
assumes that the latest version of ELDO is being used.

 SPICE Simulator Differences

Subtle differences in syntax, behavior, error handling and calculation of data between the
simulators must be considered when creating a circuit description.

SPICE2 simulations will fail if an underscore is used in the Model name. An error
message will appear in the output text file generated by the Simulation Debugger:

0*ERROR*: MODEL TYPE IS MISSING

SPICE2 simulations will fail if an underscore is used in a test circuit and DUT name
because the simulation input deck uses the DUT name as a model name. An error
message will appear in the output text file:

0*ERROR*: SUBCIRCUIT NODES MISSING

When attempting a SPICE2 or SPICE3 simulation in the BJT model, if the ideal
maximum forward beta parameter BF=0 or the transport saturation current
parameter IS=0, the simulation will fail without an error message. (Other parameters
may yield similar results when set to zero.)
SPICE3 is the only simulator that supports the UCB GaAs model. Refer to UCB GaAs
MESFET Characterization (mesfet) for details on the syntax required to simulate this
model.
HPSPICE is the only simulator that supports the Curtice GaAs model. Refer to Curtice
GaAs MESFET Characterization (mesfet) for details on the syntax required to simulate
this model.
When using HPSPICE to simulate a UC Berkeley MOSFET model, specify the ucb
option in the .OPTIONS statement of the circuit description:

.OPTIONS ucb

When using SPICE3 with the Simulation Debugger to perform an IC-CAP simulation
(as opposed to a manual simulation), an output text file with the following message
results: print card ignored since rawfile was produced. To generate a more
informative output text file, perform a manual simulation. The manual simulation
results in an output text file that includes the requested output data values.

 Using the PSPICE Simulator with IC-CAP

PSPICE is a SPICE-based circuit simulator developed by MicroSim Corporation. PSPICE
uses the same basic numeric algorithms as the UCB SPICE2 simulator but claims superior
convergence and performance. Using IC-CAP's Open Simulator Interface, a C-language
Translation Module is provided that makes PSPICE simulation capability available in IC-
CAP. This module and instructions for performing PSPICE simulations in IC-CAP are
described here. For general information on the Open Simulator Interface, refer to the
section Adding a Simulator (simulation).

Simulation

135

The IC-CAP/PSPICE link uses UCB SPICE2 as the template simulator. When performing a
PSPICE simulation in IC-CAP, IC-CAP behaves as if it is performing a SPICE2 simulation.
Therefore it generates an input deck in SPICE2 format, calls the simulator and reads back
a binary raw data file in SPICE2 format. Through the Open Simulator Interface, the call to
the simulator is actually calling the executable version of the C-language Translation
Module, pspice.c. This executable, called pspice,_translates the SPICE2 input deck to a
PSPICE input format, calls PSPICE to perform the simulation, then translates the PSPICE
format binary raw data file to SPICE2 format which is read by IC-CAP. The source code file
_pspice.c is located in the $ICCAP_ROOT/src directory.

Note
The IC-CAP/PSPICE translation module pspice.c has been updated in IC-CAP 5.0 to support the output
binary data format of PSPICE 6.3. Only PSPICE versions with the identical output binary data format will
work with this translation module. For older PSPICE versions, use the translation module pspice5_4.c, also
supplied with this release.

To set up PSPICE simulation capability in IC-CAP:

Add the pspice_simulator to the _usersimulators file in the directory1.
$ICCAP_ROOT/iccap/lib, as shown next.

pspice spice2 /<your path>/pspice "<host_machine_name>"

CANNOT_PIPE

The host_machine_name is the host computer for the PSPICE simulations. This name2.
can be left blank ("") if PSPICE and IC-CAP are running on the same computer. Since
PSPICE does not have the ability to perform piped simulations in IC-CAP, the
CANNOT_PIPE flag must always be set, as shown in the above example.
Make the following change to the pspice.c program to customize it for your3.
environment:

In the main routine, specify the full pathname of the actual PSPICE simulator on
your system.

Compile the translation module using the following command: cc -o pspice pspice.c -4.
lm
Move the executable file, pspice to a permanent location such as ICCAP_ROOT/bin.5.
The location must match the path specified in the usersimulators file.
In IC-CAP, set the SIMULATOR variable to pspice or specify pspice with the Select6.
Simulator command in the IC-CAP Tools Menu.

The following files are generated in your home directory when running PSPICE simulations
in IC-CAP:

psp.cir - PSPICE format circuit description deck file translated from the SPICE2 circuit
description deck.
psp.raw - PSPICE formatted binary raw data output file generated by a PSPICE
simulation.
psp.out - Output print file generated by a PSPICE simulation.

psp.raw and _psp.out_are automatically removed from your home directory after the
simulation is completed in IC-CAP.

Simulation

136

Note
When using PSPICE, the LM_LICENSE_FILE environment variable must be set. This variable contains the
directory path for the license file required by the PSPICE simulator. Refer to the PSPICE Reference Manual
for detailed procedures on installing the PSPICE simulator.

Simulation

137

 Eldo Simulator
 Piped and Non-Piped ELDO Simulations

Prior to IC-CAP 2008 Addon 2, IC-CAP did not support the CAN_PIPE token for ELDO in usersimulators.
This token may now be used on local ELDO simulations with AMS-2007.2a. It is not a true piped mode
(netlists and raw files are still written to disk), however it does provide substantial performance
improvement by using an interactive mode that avoids restarting ELDO for every simulation.

Non-piped ELDO simulations are identical to non-piped SPICE simulations. This type of
simulation is performed when the Simulation Debugger is set to ON. This means that
ELDO must be restarted for every simulation. If CANNOT_PIPE is specified for ELDO, even
when the Simulation Debugger is OFF, it still performs a non-piped simulation.

 Syntax: Piped ELDO Simulations

The command format for an ELDO piped simulation is as follows:
eldo -inter -mgls_async

where:

-inter specifies the ELDO interactive mode. Commands are sent interactively
instead of sending the commands in the netlist.
-mgls_async allows asynchronous communication between the MGLS license
manager and ELDO.

load deckname and run commands are then passed to the running ELDO process.

 Syntax: Non-Piped ELDO Simulations

The command format for an ELDO non-piped simulation is as follows:

eldo deckfile

where

deckfile is the input deck file containing the circuit description and analysis
commands. The name of this deckfile is in the form <circuit_name>.cir.

The output binary data file is written to a file named <circuit_name>.spi3. This output
binary data format is similar to the output binary format of the UCB SPICE3 simulator and
is generated when you specify the option

.option spi3bin

Refer to the ELDO User's Manual for more information.

The output text file, is sent to the file named <circuit_name>.chi This file is displayed in
the Output table of the Simulation Debugger if it is on.

Simulation

138

 Circuit Model Descriptions

The circuit description for the ELDO simulator is similar to the UCB SPICE simulator circuit
description. For details, refer Circuit Model Descriptions (simulation).

 Circuit Description Syntax

Basic ELDO syntax rules are the same as SPICE-type simulators. In addition to the SPICE-
type syntax, FAS user-defined models can be defined and instantiated in the IC-CAP
Circuit Editor. An FAS model is defined as:

amodel name(pin1,pin2..)

.

<model body>

.

endmodel

(smodel and fmodel are also accepted).

The above model is instantiated in a circuit as:

yxx name [pin:] 1 2 ... [param: par1 = var1 ...] [model: ...]

In addition, the parser accepts the following ELDO constructs:

.ADDLIB number pathname

#com . . #endcom

FIDEL models (oxx p1:typ p2:typ ... mod=modelname) and transfer functions (FNS, FNZ)
are not currently supported by the IC-CAP parser. However, the #echo keyword can be
used to insert these statements into a circuit in the IC-CAP Circuit Editor.

The #echo keyword is available in the IC-CAP Circuit Editor for all supported simulators.
#echo can be used to pass a deck card or command directly through to the simulator
without any parsing by IC-CAP. For example, the line

#echo <something that the IC-CAP parser doesn't understand>

is sent to the simulator as

<something that the IC-CAP parser doesn't understand>

The following analog model instantiation syntax is supported for HDL-A:

HDL-A user-defined models with the following syntax can also be instantiated in the IC-
CAP Circuit Editor.

yxx name(xx) [pin:] 1 2 ... [param: par1 = var1 ...]

and
yxx name(xx) [pin:] 1 2 ... [generic: par1 = var1 ...]

Simulation

139

Note
Before performing ELDO simulations specify the ELDO version name in the System Variable
ELDO_VERSION. If this variable is not specified, IC-CAP will use the version name specified in the
environment variable eldover, if it exists. If neither ELDO_VERSION or eldover are specified, IC-CAP
assumes that the latest version of ELDO is being used.

Simulation

140

 Saber Simulator
This section describes the details of using the Saber simulator with IC-CAP. For general
information on IC-CAP simulation, refer to Simulation (simulation).

The Saber simulator, developed by Analogy, Inc., analyzes analog, digital, event-driven
analog and mixed-mode systems.

IC-CAP supports these Saber simulator features:

Vary command for unlimited sweeps and simulation at multiple operating points
DC Operating Point Analysis used with DC Transfer, AC Frequency, and Transient
Analysis
Options for each type of analysis (these options must be specified in the IC-CAP
Variables Table)
Parameter sweeps
Alter command (For details, refer to The Alter Command)
Hierarchical simulation
Remote simulation

IC-CAP supports other Saber features as follows. (Limited support includes workarounds
to achieve desired results that may not be in an ideal format.)

MAST capabilities.
Limited support for the syntax required for model and element development.
This can be done in a separate file and included in the Circuit Description using
the MAST syntax:
<filename

where filename is the name of the file that contains the template description of
the model or element under development.
IC-CAP does not support stimulus conversion to collect data on non-electrical
nodes

Limited support for noise analysis, Fourier analysis, distortion analysis, mixed-mode
simulation, and mixed technology simulation. This includes simulations involving non-
electrical types such as pressure, revolutions per minute, and torque.

IC-CAP does not support digital state type stimulus and response for mixed-mode
simulation. Hypermodels must be used to convert digital states to analog signals.

The Saber simulator supports the following analysis types:

DC
AC
Transient
Capacitance Voltage (CV)
2-Port (S,H,Y,Z,K,A parameter)
Time-Domain Reflectometry (TDR)

 Saber Simulation Example

Simulation

141

The circuit description is predefined for all IC-CAP configuration files. Enter this description
if a new model is being defined; edit the description to fit specific needs. The syntax is
identical to the syntax used for describing circuits in a typical Saber simulation deck.

This simulation example will use the IC-CAP supplied Model sabernpn.mdl.

Select the simulator by choosing Tools > Options > Select Simulator > saber.1.
Choose OK.
Choose File > Open > sabernpn.mdl. Choose OK.2.
View the circuit description by clicking the Circuit tab.3.
The circuit description is shown in MAST Circuit Description Deck for an NPN Bipolar
Transistor. This deck describes the circuit (in this case, a single device) to be used in
the simulation.
To view the input and output for the fearly setup, click the DUTs-Setups tab and4.
select fearly;
The Measure/Simulate folder appears with the inputs vb, vc, ve, and vs, and the
output ic. The vc input specifies a voltage source at node C that sweeps linearly from
0 to 5V in 21 steps. The ic output specifies that current at node C be monitored.
In the Plots folder, icvsvc is specified so that the results of the simulation can be
viewed graphically.
To simulate, click the Simulate button in the Measure/Simulate folder. The Status5.
line displays Simulate in progress.
When the simulation is complete, the Status line displays IC-CAP Ready.
To view the results of the simulation, display the Plots folder and click Display Plot.6.
The plot displays measured data represented by solid lines and simulated data
represented by dashed lines.

Note
For syntax examples of running a remote simulation, refer to Remote Simulation Examples
(simulation).

 MAST Circuit Description Deck for an NPN Bipolar Transistor

Saber NPN Device

q..model sabernpn= (IS=le-16,

TYPE= n,

BF = 100,

NF = 1,

VAF = 1000,

IKF = 10,

ISE = 0,

NE = 1.5,

BR = 1,

NR = 1,

VAR = 1000,

IKR = 10,

ISC = 0,

NC = 2,

RB = 0,

IRB = 10,

RBM = 0,

RE = 0,

RC = 0,

XTB = 0,

Simulation

142

EG = 1.110,

XTI = 3.000,

CJE = 0,

VJE = 750m,

MJE = 333m,

TF = 0,

XTF = 0,

VTF = 1000,

ITF = 0,

CJC = 0,

VJC = 750m,

MJC = 333m,

XCJC = 1.0,

TR = 0,

CJS = 0,

VJS = 750m,

MJS = 0,

FC = 500.0m)

q.qckt C B E S= model = sabernpn, AREA = 1.0

 Piped and Non-Piped Saber Simulations

Non-piped Saber simulations are identical to non-piped SPICE simulations. However, there
are differences between the 2 types of piped simulation. A piped simulation in Saber does
the following:

Read the input deck from a file upon start up of the simulator.1.
Read in the analysis commands from a pipe connected to standard input.2.
Perform the simulation.3.
Send the text output to a pipe connected to standard output.4.
Save the output data to files.5.

Saber is restarted if any topological changes are made to the circuit description. If
changes are made which do not affect the topology of the circuit, such as changed
parameter values, then alter commands are used and the simulator is not restarted.

Note
The path of the AIM shell interpreter (aimsh) must be specified in usersimulators. IC-CAP uses this utility
from the saber installation to interpret the simulation results and read them into IC-CAP. (AIM is a high-
level, embedded scripting language that controls and manages user input and other kinds of analyses and
processes in SaberDesigner applications.) The default saber specification in
$ICCAP_ROOT\iccap\lib\usersimulators is as follows:

saber saber $SABER_HOME/bin/saber "" CAN_PIPE "" $SABER_HOME/bin/aimsh

Therefore, no modifications to usersimulators are required if SABER_HOME is properly set in your
environment before launching IC-CAP.

 Syntax: Non-Piped simulations

This section describes the argument syntax required to invoke the template simulator.
This information is needed when writing the user translation module, since these are the
arguments supplied by IC-CAP when it calls the translation module. For information on the
translation module and adding a simulator, refer to Adding a Simulator (simulation).

The command format for a Saber non-piped simulation is as follows:

Simulation

143

saber -b deckfile

where:

-b specifies batch mode.

deckfile is the input file name. Saber will read deckfile as the input deck file
containing the circuit description and deckfile as the command file containing the
analysis statements.

The textfile is written to a file called deckfile.out.

The rawfile information is written to 2 files, called the control file and the data file. The
control file is named deckfile.p1. suffix and the data file is named deckfile.p2. suffix where
suffix is a keyword assigned by Saber according to the analysis being performed. Refer to
the Saber User's Manual for more information.

 Syntax: Piped simulations

The command format for a Saber piped simulation is as follows:
saber -c deckfile

where:

-c specifies the Saber command mode.

deckfile is the input deck file containing the circuit description.

Saber reads the analysis commands through standard input.

The textfile is written to a file called <deckfile>.out.

The rawfile is written to a file called <deckfile>.p1.<suffix> where suffix is a keyword
assigned by Saber according to the analysis being performed. Refer to the Saber User's
Manual for more information.

 Saber Parameter Sweeps

Note
The LSYNC sweep is not supported with the Saber simulator.

When using the Saber simulator, IC-CAP allows parameter sweeps of only parameters and
Saber global variables, such as the global variable for temperature called TEMP. Like
SPICE-type simulators, specifying parameter sweeps for devices and circuits is done the
same way. Parameter names must be entered in the Name field of the Input table exactly
as they appear in the Parameters table. An input for vto, with Mode set to P, is added to
the nmos2/short/idvd setup, as shown in the following figure.

 Saber Parameter Sweep Setup Example

Simulation

144

The following figure shows the resulting plot.

 Saber Parameter Sweep Plot Example

For additional information on sweeping parameters, refer to Specifying Parameter or
Variable Sweeps (simulation).

The following sections of this section describe in more detail each of the steps in these
simulation overview examples.

 The Alter Command

An alter command temporarily changes the value of any element or parameter in a MAST
template. It is used to make a change in a template description so that a simulation can
be re-executed without reloading the original circuit. The alter command cannot be used
to make a change that modifies the topology of a design.

Alter commands are used in IC-CAP Saber simulations when the Circuit Description and
Setup information, other than the sweep limits, remain unchanged from the previous
simulation.

If only parameter values in the Device Parameters table or Model Parameters table are
changed, IC-CAP will not restart the Saber simulator and reload the circuit. Instead, IC-
CAP generates alter commands for every parameter, then re-executes the simulation
commands. The USE_ALTER variable can be specified and set to No to override this

Simulation

145

behavior. In this case, Saber is restarted with every simulation whether or not the Circuit
Description or Setup was changed. If the USE_ALTER variable does not exist, IC-CAP
behaves as if the variable were set to Yes.

After a successful simulation, if a resistor is changed from a non-zero to zero value, Saber
collapses the nodes. This causes an implicit topological change in the circuit that is not
recognized by IC-CAP since the Circuit Description or Setup information has not been
changed. Turn the USE_ALTER variable off by setting it to NO to allow IC-CAP to restart
the Saber simulator and reload the altered circuit.

 Circuit Model Description

This section discusses the circuit description for the Saber simulator.

 Selecting Simulator Options

Saber simulation options are not specified in the circuit description, but rather in the
analysis command line. Saber simulator options are set using the SABER_OPTIONS
variable in the Setup, DUT or System variable tables.

Enter the options in the Value section of the variable exactly as they should appear in the
Saber command string. For example, to perform a transient simulation from 0 to 0.8 nsec
in 10 psec steps, the Saber command generated in IC-CAP is:

tr(ts le-11, te 8e-10, tb 0)

To specify that all step sizes be fixed instead of variable, append the following option to
the Saber command:

steps fix

To do this in IC-CAP, specify the options command steps fix in the value field of the
SABER_OPTIONS variable. Simulation now performs the following transient analysis
command:

tr(ts le-11, te 8e-10, tb 0, steps fix)

The SABER_OPTIONS variable can be specified in a variable table at any level. However, it
is important to note that a SABER_OPTIONS variable specified in the DUT, Model or
System variable tables is used by all simulations executed below that level. For example,
if a SABER_OPTIONS variable is specified in the DUT variable table, every Setup under
that DUT will use the specified option. This may result in simulation errors because 1
particular option may not be valid for every type of analysis being specified in the DUT.

Any number of options can be specified in the SABER_OPTIONS variable; they must be
separated by a comma.

A Saber analysis in IC-CAP is always preceded by a DC operating point analysis. This DC
command can also contain options and can be specified using the SABER_DC_OPTIONS
variable.

Simulation

146

Refer to Saber manuals for available options and corresponding syntax for each simulation
type. Invalid options entered into the SABER_DC_OPTIONS and SABER_OPTIONS
variables cause the simulation to fail.

 Entering Circuit Descriptions

Circuit descriptions contain templates of devices and components, as well as node
connections and model descriptions written in the MAST modeling language. All model
parameter names must be specified when defining models. Circuit descriptions can also be
read into the IC-CAP Circuit Editor from a file that already contains a description. You
must enter circuit descriptions using valid model names and valid parameter names for
the particular model being used.

Enter circuit descriptions for a Saber input deck with the Circuit Editor. IC-CAP contains a
parser for descriptions written in the MAST modeling language.

There are 2 types of Saber circuit editor descriptions: devices and templates. Syntax rules
for each type are described in the following sections.

 Device Model Descriptions

A device model is used to characterize a single element of any type. This element can be
predefined in the Saber library or defined by the user using the MAST modeling language.

A device model description requires a model definition written in the MAST modeling
language and an element statement that calls a defined model.

A model description specifies the values of a device model that describes a particular
element. When a parameter is not specified, the default value in the model template is
used and the parameter does not appear in the IC-CAP Parameters table. The general
form of the model definition is:

ENAME..model MNAME = (PNAME1=PVAL1, PNAME2=PVAL2, ...PNAMEX=PVALX)

where

ENAME is the name of the element template

MNAME is the user-specified name of the model being defined

PNAME is a parameter name for the particular model type

PVALs are the corresponding parameter values

The general form of the element statement that calls the device model is:

ENAME.DNAME NNAME1 NNAME2 ...NNAMEN = model = MNAME, DPAR1 = DVAL1, DPAR2 =

DVAL2 ...DPARN = DVALN

Simulation

147

where

ENAME is the element template name

DNAME is the device name

NNAME specifies a node name

MNAME is the name of the model being referenced

DPAR is a predefined DUT parameter name

DVAL is the corresponding DUT parameter value

A sample element statement in the MAST modeling language is:

q.qckt C B E S = model = sabernpn,AREA = 1.0

where

q is the element template name defined in the Saber component library

qckt is the user-specified device name

C, B, E, and S are the node names

sabernpn is the model name. The model corresponding to this model name must
be defined in the circuit description before the reference is made.

AREA is a DUT parameter of this model with an assigned value of 1.0

As in Saber, a line ending with a comma is continued on the next line.

 Template Descriptions

A template is used to characterize a circuit that contains more than 1 device. The syntax
for defining a template is identical to that of the MAST modeling language. A template can
be defined as either an element template or a model template. The general form of the
first line of a template element definition is:

element template TEMPNAME NNAME1 NNAME2 ...NNAMEN = PAR1, PAR2, ...PARN

where

TEMPNAME is the template name

NNAME is a node name of the external node of the template. External nodes are
used to connect the template to another circuit.

PAR is the name of the parameter passed into the template

Simulation

148

The general form of the first line of a template model definition is:

element template TEMPNAME NNAME1 NNAME2 ...NNAMEN = model

where

TEMPNAME is the template name

NNAME is the node name of the external node of the template. External nodes
are used to connect the template to another circuit.

The body of a model definition defines the model parameters. For more information on
writing templates, refer to the Saber MAST Reference manual.

When writing a template for model development within IC-CAP, the recommended
procedure is to define the template in an external file and include this file in the IC-CAP
circuit description using the MAST nomenclature <filename> to include a file. This
minimizes the changes to be made in the IC-CAP Circuit Description and thereby increases
the rate of model development because changes in the external template file will
immediately be recognized in IC-CAP.

 Non-Numeric Parameter Values

Saber allows non-numeric values for a number of parameters in predefined templates. The
MOS model parameter type is one example. This parameter can take on the value of _n
for an nmos device and _p for a pmos device.

When a Saber input parameter is in alpha format, it does not appear in the IC-CAP
Parameters table but is still present in the input deck and passed to the simulator for
analysis.

 Node Names

Saber accepts alphanumeric names as well as numbers to represent nodes. There is no
limit to the number of characters allowed in a node name (the command line has a limit of
1024 characters).

 Test Circuits and Hierarchical Simulations

When characterizing a circuit, it is often necessary to add circuitry around a circuit or
device to model the actual measurement Setup. IC-CAP provides a Test Circuit Editor to
allow modeling of this additional bias circuitry. Select the DUT from the DUT/Setup panel.
Click the Test Circuit tab and enter the test circuit description in the same manner you
would enter a Circuit Description. The test circuit definition should include a call to the
device or template circuit defined in the Circuit Editor, as well as the additional circuitry
needed to model the external parasitics of the measurement Setup.

Simulation

149

Note
When you define a test circuit, the DUT Parameters table contains the values specified in the test circuit
specification. Regardless of the name entered in the TEMPNAME field of the template definition statement,
IC-CAP uses the name of the DUT being simulated when the simulator input deck is built.

Template circuit and device model specifications can be called from inside another Model.
This allows you to perform hierarchical simulations to study a circuit at different levels. For
example, assume you have defined 3 Models, model1, model2, and model3. Model1 has a
circuit model description that is a device definition. The circuit model description for
model2 is a template circuit definition at the gate level that includes a call to model1 in a
device call statement. And, the circuit model description for model3 is a template circuit
definition that includes a call to model2 in a subcircuit call statement. When you simulate
a Setup in model3, IC-CAP traverses the Model hierarchy and uses the circuit model
description defined in model3, which includes calls to model1 and model2. The syntax for
calling a device model is identical to that described in the Device Model Specifications
section above.

The general form of the device call is:

ENAME.DNAME NNAME1 NNAME2 ...NNAMEN = model MNAME, DPAR1 = DPAR1, DPAR2 = DVAL2

...DPARN = DVALN

Calling a template specification allows you to insert an entire template into a circuit as if it
were a single component. The call requires a syntax identical to that used in the MAST
modeling language. The general form of the template element call is:

TEMPNAME.TNAME NNAME1 NNAME2 ...NNAMEN = TPAR1 = TPARVAL1, TPAR2 = TPARVAL2,

...TPARN = TPARVALN

where

TEMPNAME is the name of the template previously described by a template
definition. This template definition could exist in a different Model.

TNAME is the user specified name given to this particular instance of the
template described by TEMPNAME.

NNAMEs represent the node names of the calling circuit that connect to the
external nodes of the template. The calling circuit's node names need not be the
same as the external nodes of the template. The order in which you specify
these nodes is the order in which they are connected. The same number of
nodes as declared in the template definition must be specified.

TPARs are predefined template parameter names. These parameters are defined
in the template definition. TPARVALs are the corresponding values of the
template parameters.

A hierarchical simulation, in which a template in 1 model references a device defined in a
different model, requires the use of a MAST external declaration in the template definition.
For example, assume a MOS device model (Saber template m named nmos2), which is
called in the body of a circuit template called inverter in another model. This inverter

Simulation

150

template must include the following declaration in order for the nmos2 device model to be
recognized.

external m..model nmos2

The complete template for the inverter circuit is:

template inv A B C D E F

electrical A, B, C, D, E, F

{

external m..model nmos2

m.minv A B C D = model = nmos2, l = 10u, w = 10u

m.mload E F A D = model = nmos2, l = 10u, w = 10u

}

The external declaration does not need to be added when a template calls another
template.

Refer to the Saber manuals for complete syntax and rules of the MAST modeling
language.

 Saber Libraries

The Saber library of components and templates includes the SPICE components as well as
the components developed by Analogy, Inc. Refer to the Saber manuals for a list of
supported simulator components, higher level templates and the required specification
formats.

 Saber Input Deck Comments

To indicate comments in the Saber simulator input deck, start an input line with the pound
symbol (#). This denotes a comment in the circuit model description or in the input file of
the Simulation Debugger.

Note
The SABER_DATA_PATH environment variable must be set. This variable contains the directory paths for
the executable files and libraries required by the Saber simulator. Refer to the Saber Reference Manual for
installation procedures.

	 IC-CAP Simulation Overview
	 Simulation Types
	 Simulation Input and Output Requirements
	 Performing a Simulation
	 Using Simulation Debugger
	 Linking a Simulator to IC-CAP
	 Adding a Simulator
	 Remote Simulation
	 Simulators in IC-CAP
	 ADS Simulator
	 SPECTRE Simulator
	 HSPICE Simulator
	 SPICE Simulators
	 Eldo Simulator
	 Saber Simulator

