
PathWave Test Sync Executive
User Manual

This User Manual describes the PathWave Test Sync Executive programming
environment, which is based on Keysight's Hard Virtual Instrument (HVI)
technology. HVI enables you to develop and execute synchronous, real-time
operations across multiple instruments. The real-time sequencing and
synchronization capabilities of PathWave Test Sync Executive make it a
powerful tool for Multi-Input Multi-Output (MIMO) applications that require tight
synchronization and real-time control and feedback.

Find us at www.keysight.com Page 1

USER MANUAL

Notices
Copyright Notice

©Keysight Technologies 2020

No part of this manual may be

reproduced in any form or by any

means (including electronic storage

and retrieval or translation into a foreign

language) without prior agreement and

written consent from Keysight

Technologies, Inc. as governed by

United States and international

copyright laws.

Manual Part Number

PathWave Test Sync Executive User

Manual

Published By

Keysight Technologies

PrintedInAddress_Line1

PrintedInAddress_Line2

PrintedInAddress_Line3

Edition

Edition 1.021, October, 2020

PrintedInCountry

Regulatory Compliance

This product has been designed and

tested in accordance with accepted

industry standards, and has been

supplied in a safe condition. To review

the Declaration of Conformity, go to

http://www.keysight.com/go/conformity.

Warranty

THE MATERIAL CONTAINED IN THIS

DOCUMENT IS PROVIDED “AS IS,” AND

IS SUBJECT TO BEING CHANGED,

WITHOUT NOTICE, IN FUTURE

EDITIONS. FURTHER, TO THE

MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, KEYSIGHT

DISCLAIMS ALL WARRANTIES, EITHER

EXPRESS OR IMPLIED, WITH REGARD

TO THIS MANUAL AND ANY

INFORMATION CONTAINED HEREIN,

INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE. KEYSIGHT

SHALL NOT BE LIABLE FOR ERRORS

OR FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES IN

CONNECTION WITH THE

FURNISHING, USE, OR

PERFORMANCE OF THIS DOCUMENT

OR OF ANY INFORMATION CONTAINED

HEREIN. SHOULD KEYSIGHT AND THE

USER HAVE A SEPARATE WRITTEN

AGREEMENT WITH WARRANTY TERMS

COVERING THE MATERIAL IN THIS

DOCUMENT THAT CONFLICT WITH

THESE TERMS, THE WARRANTY

TERMS IN THE SEPARATE

AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT

WARRANT THIRD-PARTY SYSTEM-

LEVEL (COMBINATION OF CHASSIS,

CONTROLLERS, MODULES, ETC.)

PERFORMANCE, SAFETY, OR

REGULATORY COMPLIANCE, UNLESS

SPECIFICALLY STATED.

Technology Licenses

The hardware and/or software

described in this document are

furnished under a license and may be

used or copied only in accordance with

the terms of such license.

U.S. Government Rights

The Software is “commercial computer

software,” as defined by Federal

Acquisition Regulation (“FAR”) 2.101.

Pursuant to FAR 12.212 and 27.405-3

and Department of Defense FAR

Supplement (“DFARS”) 227.7202, the

U.S. government acquires commercial

computer software under the same

terms by which the software is

customarily provided to the public.

Accordingly, Keysight provides the

Software to U.S. government customers

under its standard commercial license,

which is embodied in its End User

License Agreement (EULA), a copy of

which can be found at

http://www.keysight.com/find/sweula. The

license set forth in the EULA represents

the exclusive authority by which the

U.S. government may use, modify,

distribute, or disclose the Software. The

EULA and the license set forth therein,

does not require or permit, among other

things, that Keysight: (1) Furnish

technical information related to

commercial computer software or

commercial computer software

documentation that is not customarily

provided to the public; or (2) Relinquish

to, or otherwise provide, the

government rights in excess of these

rights customarily provided to the

public to use, modify, reproduce,

release, perform, display, or disclose

commercial computer software or

commercial computer software

documentation. No additional

government requirements beyond

those set forth in the EULA shall apply,

except to the extent that those terms,

rights, or licenses are explicitly required

from all providers of commercial

computer software pursuant to the FAR

and the DFARS and are set forth

specifically in writing elsewhere in the

EULA. Keysight shall be under no

obligation to update, revise or otherwise

modify the Software. With respect to

any technical data as defined by FAR

2.101, pursuant to FAR 12.211 and

27.404.2 and DFARS 227.7102, the U.S.

government acquires no greater than

ii

http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula

Limited Rights as defined in FAR 27.401

or DFAR 227.7103-5 (c), as applicable in

any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It

calls attention to an operating

procedure, practice, or the like that, if

not correctly performed or adhered to,

could result in damage to the product

or loss of important data. Do not

proceed beyond a CAUTION notice until

the indicated conditions are fully

understood and met.

A WARNING notice denotes a hazard. It

calls attention to an operating

procedure, practice, or the like that, if

not correctly performed or adhered to,

could result in personal injury or death.

Do not proceed beyond a WARNING

notice until the indicated conditions are

fully understood and met.

The following safety precautions should

be observed before using this product

and any associated instrumentation.

This product is intended for use by

qualified personnel who recognize

shock hazards and are familiar with the

safety precautions required to avoid

possible injury. Read and follow all

installation, operation, and

maintenance information carefully

before using the product.

If this product is not used as specified,

the protection provided by the

equipment could be impaired. This

product must be used in a normal

condition (in which all means for

protection are intact) only.

The types of product users are:

l Responsible body is the individual or group
responsible for the use and maintenance of
equipment, for ensuring that the equipment is
operated within its specifications and operating
limits, and for ensuring operators are
adequately trained.

l Operators use the product for its intended func-
tion. They must be trained in electrical safety pro-
cedures and proper use of the instrument. They
must be protected from electric shock and con-
tactwith hazardous live circuits.

l Maintenancepersonnel perform routine pro-
cedures on the product to keep it operating
properly (for example, setting the line voltage
or replacing consumablematerials). Main-
tenance procedures are described in the user
documentation. The procedures explicitly state
if the operator may perform them. Otherwise,
they should beperformed only by service per-
sonnel.

l Service personnel are trained to work on live cir-
cuits, perform safe installations, and repair
products. Only properly trained service per-
sonnel may perform installation and service pro-
cedures.

Operator is responsible to maintain safe

operating conditions. To ensure safe

operating conditions, modules should

not be operated beyond the full

temperature range specified in the

Environmental and physical

specification. Exceeding safe operating

conditions can result in shorter

lifespans, improper module

performance and user safety issues.

When the modules are in use and

operation within the specified full

temperature range is not maintained,

module surface temperatures may

exceed safe handling conditions which

can cause discomfort or burns if

touched. In the event of a module

exceeding the full temperature range,

always allow the module to cool before

touching or removing modules from

chassis.

Keysight products are designed for use

with electrical signals that are rated

Measurement Category I and

Measurement Category II, as described

in the International Electrotechnical

Commission (IEC) Standard IEC 60664.

Most measurement, control, and data

I/O signals are Measurement Category I

and must not be directly connected to

mains voltage or to voltage sources with

high transient over-voltages.

Measurement Category II connections

require protection for high transient

over-voltages often associated with

local AC mains connections. Assume all

measurement, control, and data I/O

connections are for connection to

Category I sources unless otherwise

marked or described in the user

documentation.

Exercise extreme caution when a shock

hazard is present. Lethal voltage may

be present on cable connector jacks or

test fixtures. The American National

Standards Institute (ANSI) states that a

shock hazard exists when voltage levels

greater than 30V RMS, 42.4V peak, or

60VDC are present. A good safety

practice is to expect that hazardous

voltage is present in any unknown

circuit before measuring.

Operators of this product must be

protected from electric shock at all

times. The responsible body must

ensure that operators are prevented

access and/or insulated from every

connection point. In some cases,

connections must be exposed to

potential human contact. Product

iii

operators in these circumstances must

be trained to protect themselves from

the risk of electric shock. If the circuit is

capable of operating at or above 1000V,

no conductive part of the circuit may be

exposed.

Do not connect switching cards directly

to unlimited power circuits. They are

intended to be used with impedance-

limited sources. NEVER connect

switching cards directly to AC mains.

When connecting sources to switching

cards, install protective devices to limit

fault current and voltage to the card.

Before operating an instrument, ensure

that the line cord is connected to a

properly-grounded power receptacle.

Inspect the connecting cables, test

leads, and jumpers for possible wear,

cracks, or breaks before each use.

When installing equipment where

access to the main power cord is

restricted, such as rack mounting, a

separate main input power disconnect

device must be provided in close

proximity to the equipment and within

easy reach of the operator.

For maximum safety, do not touch the

product, test cables, or any other

instruments while power is applied to

the circuit under test. ALWAYS remove

power from the entire test system and

discharge any capacitors before:

connecting or disconnecting cables or

jumpers, installing or removing

switching cards, or making internal

changes, such as installing or removing

jumpers.

Do not touch any object that could

provide a current path to the common

side of the circuit under test or power

line (earth) ground. Always make

measurements with dry hands while

standing on a dry, insulated surface

capable of withstanding the voltage

being measured.

The instrument and accessories must

be used in accordance with its

specifications and operating

instructions, or the safety of the

equipment may be impaired.

Do not exceed the maximum signal

levels of the instruments and

accessories, as defined in the

specifications and operating

information, and as shown on the

instrument or test fixture panels, or

switching card.

When fuses are used in a product,

replace with the same type and rating

for continued protection against fire

hazard.

Chassis connections must only be used

as shield connections for measuring

circuits, NOT as safety earth ground

connections.

If you are using a test fixture, keep the

lid closed while power is applied to the

device under test. Safe operation

requires the use of a lid interlock.

Instrumentation and accessories shall

not be connected to humans.

Before performing any maintenance,

disconnect the line cord and all test

cables.

To maintain protection from electric

shock and fire, replacement

components in mains circuits –

including the power transformer, test

leads, and input jacks – must be

purchased from Keysight. Standard

fuses with applicable national safety

approvals may be used if the rating and

type are the same. Other components

that are not safety-related may be

purchased from other suppliers as long

as they are equivalent to the original

component (note that selected parts

should be purchased only through

Keysight to maintain accuracy and

functionality of the product). If you are

unsure about the applicability of a

replacement component, call an

Keysight office for information.

No operator serviceable parts inside.

Refer servicing to qualified personnel.

To prevent electrical shock do not

remove covers. For continued

protection against fire hazard, replace

fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark

of the European Community.

iv

Australian Communication and Media

Authority mark to indicate regulatory

compliance as a registered supplier.

This symbol indicates product

compliance with the Canadian

Interference-Causing Equipment

Standard (ICES-001). It also identifies

the product is an Industrial Scientific

and Medical Group 1 Class A product

(CISPR 11, Clause 4).

South Korean Class A EMC Declaration.

This equipment is Class A suitable for

professional use and is for use in

electromagnetic environments outside

of the home. A 급기기 (업무용방송통신

기자재)이기기는업무용 (A 급)전자파적

합기기로서판매자또는사용자는이점을

주의하시기바라며 ,가정외의지역에서사

용하는것을목적으로합니다.

This product complies with the WEEE

Directive marketing requirement. The

affixed product label (above) indicates

that you must not discard this

electrical/electronic product in

domestic household waste. Product

Category: With reference to the

equipment types in the WEEE directive

Annex 1, this product is classified as

“Monitoring and Control

instrumentation” product. Do not

dispose in domestic household waste.

To return unwanted products, contact

your local Keysight office, or for more

information see

http://about.keysight.com/en/companyinfo/e

nvironment/takeback.shtml.

This symbol indicates the instrument is

sensitive to electrostatic discharge

(ESD). ESD can damage the highly

sensitive components in your

instrument. ESD damage is most likely

to occur as the module is being

installed or when cables are connected

or disconnected. Protect the circuits

from ESD damage by wearing a

grounding strap that provides a high

resistance path to ground. Alternatively,

ground yourself to discharge any built-

up static charge by touching the outer

shell of any grounded instrument

chassis before touching the port

connectors.

This symbol on an instrument means

caution, risk of danger. You should refer

to the operating instructions located in

the user documentation in all cases

where the symbol is marked on the

instrument.

This symbol indicates the time period

during which no hazardous or toxic

substance elements are expected to

leak or deteriorate during normal use.

Forty years is the expected useful life of

the product.

v

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

Contents
KS2201A - PathWave Test Sync Executive User Manual 8

Chapter 1: Introduction 9

Chapter 2: Installing PathWave Test Sync Executive 11

System Requirements 12

Install Main Components 14

Install Additional Components 22

Chapter 3: Installing Licenses 24

Chapter 4: HVI Elements 32

About Instruments 32

About PathWave Test Sync Executive 33

HVI API UseModel 34

HVI Engines 35

HVI Resources 36

HVI Sequences and Statements 38

HVI Sequences 39

HVI Statements 41

HVI Diagrams 50

HVI Timing 53

Chapter 5: The HVI API 68

HVI API Functionality 69

HVI API Organization 71

SystemDefinition 72

Synchronization resources and clocks 73

EngineDefinition 75

Chassis and Interconnect 78

Sequencer 85

HVI SyncSequence and Sequence 87

HVI API Statements 89

InstructionSet 102

FPGA Sandbox View 105

HVI Registers and Scopes 107

HVI Compilation 111

Hvi 113

Load to Hardware and Run 118

Chapter 6: Building an Application with the HVI API 119

Find us at www.keysight.com Page 6

Chapter 7: HVI TimeManagement and Latency 131

Appendix A: Supported instruments 153

Appendix B: Additional Documentation and Examples 155

Find us at www.keysight.com Page 7

KS2201A - PathWave Test Sync Executive User Manual
This User Manual describes the PathWave Test Sync Executive programming environment, which is based on
Keysight's Hard Virtual Instrument (HVI) technology. HVI enables you to develop and execute synchronous,
real-time operations across multiple instruments. The real-time sequencing and synchronization capabilities of
PathWave Test Sync Executivemake it a powerful tool for Multi-Input Multi-Output (MIMO) applications that
require tight synchronization and real-time control and feedback.

NOTE PathWave Test Sync Executive (KS2201A) is not compatiblewith the previous version,
M3601A. You cannot use them together and they cannot run the same Sequences.

Find us at www.keysight.com Page 8

Chapter 1: Introduction

This chapter introduces Keysight KS2201A, PathWave Test Sync Executive and HVI technology.

About Keysight PathWave Test Sync Executive
PathWave Test Sync Executive is a programming environment based on Keysight's Hard Virtual Instrument
(HVI) technology, that enables you to develop and execute synchronous real-time operations across multiple
instruments.

The real-time sequencing and synchronization capabilities of PathWave Test Sync Executive make it a
powerful tool for Multi-Input Multi-Output (MIMO) applications that require tight synchronization and real-time
control and feedback. For example:

l Radar.

l Bit error testing.

l Communication systems.

l Massive-scale quantum physics experiments.

PathWave Test Sync Executive supports:

l Multi-chassis configuration.

l HVI sequence design using an Application Programming Interface (API) for Python.

l Programming of multiple instruments.

l Execution of time-deterministic sequences of operations.

l Precision synchronization and execution.

About HVI Technology
HVI technology enables you to program one or more instruments to execute time-deterministic sequences of
operations with precise synchronization. It achieves this by deploying a code executable onto the hardware of
each instrument. This executes on anHVI Engine, an IP block. or processor, integrated into the instrument. The
code executes on these Engines in parallel, across multiple instruments. The new user-defined hardware
operation of the group of instruments is called a Hard Virtual Instrument or just HVI. The sequences of
operations or instructions executed by the HVI engines are called HVI Sequences. The operations and
instructions that make up sequences are known as HVI Statements.

When creating an HVI, you can include any instrument with HVI support. The Keysight M3xxxA family of PXI
instruments is one product family with HVI support. This user manual includes code examples from the
SD1/M3xxxA API. These snippets complement the code examples that explain functionality of the HVI API.

Find us at www.keysight.com Page 9

HVI Application Programming Interface
The HVI API is the set of programming classes andmethods that enable you to create and program anHVI
instance. The HVI API 2020 release 1 supports the Python language. Support for more programming languages
including C#/.NET are planned for future releases. This document refers to the Python API in explanations.
A complete description of the HVI Python API is provided in the help file with the PathWave Test Sync
Executive installer, available at:

C:\Program Files\Keysight\Pathwave Test Sync Executive 2020\api\python\Help

API Use Model: HVI API versus HVI instrument specific API
Each instrument extends the HVI API functionality with an instrument specific API. The HVI API is common to
all products and only the instrument specific HVI API is different, depending on the instrument. It is important to
differentiate between the HVI-native API features and the instrument-specific extensions, which enable an
heterogeneous array of instruments and resources to coexist in a common framework.

The HVI-native API exposes all HVI functions and is a common API for all products. It defines the base
interfaces and classes that are used to create an HVI, control the hardware execution flow, and operate with
data, triggers, events and actions, but it alone does not include the ability to control instrument-specific
operations. The HVI API defines the hard virtual instrumentation framework, and it is the job of the instrument-
specific HVI API extensions to enable instrument functions in an HVI. These functions are exposed by the
instrument-specific add-on definitions, this is done by an HVI instrument add-on API provided by each
instrument that describes the instrument-specific resources and operations that can be executed or used within
HVI sequences:

For HVI instrument-specific definitions of the Keysight M3xxxA PXI product family, see:

SD1 3.x Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

and

SD1 3.x Software for M310xA / M330xA Digitizers User's Guide.

Find us at www.keysight.com Page 10

Chapter 2: Installing PathWave Test Sync Executive

This chapter explains how to install PathWave Test Sync Executive and related required components.

It contains the following sections:

l System Requirements

l Install Main Components

l Install Additional Components

NOTE PathWave Test Sync Executive (KS2201A) and the previous versionM3601A, are not compatible.
You cannot use them together.

Also, if you useM3601A, the additional components required use different versions, so they must
be reinstalled every time you change between between runningM3601 and KS2201A.

Find us at www.keysight.com Page 11

System Requirements

This section describes the system requirements for PathWave Test Sync Executive.

PathWave Test Sync Executive installation requirements
To install PathWave Test Sync Executive you require the following:

l Python 3.7.x, 64-bit.
l Keysight PathWave Test Sync Executive installer.

To install these, see Install Main Components.

Additional components required
To run PathWave Test Sync Executive with hardware, you require

l One ormore PXIe chassis.
l One ormore PXIe instruments.
l Associated software, libraries, drivers and firmware.

Chassis

PathWave Test Sync Executive is compatible with any PXIe chassis, however Keysight recommends you use
the following Keysight chassis so you canmake use of their capabilities andmulti-instrument andmulti-chassis
scalability:

l M9019A.
l M9018B.
l M9010A.

These chassis include an enhanced PXI trigger bridge that provides the capabilities required by PathWave Test
Sync Executive to provide support for multi-segment/chassis operation. You can use other chassis without
limitation for single segment operation, and you can also use other chassis for multi-segment/multi-chassis
operations, but there are limitations in terms of the complexity of the HVI sequences that you can execute.

For most chassis, the enhanced PXI trigger bridge functionality is delivered by a firmware update, see your
chassis user manual for details. The Pathwave Test Sync Executive programming examples
(www.keysight.com/find/KS2201A-programming-examples) show how to verify the correct firmware version for
specific chassis.

Find us at www.keysight.com Page 12

https://www.keysight.com/find/KS2201A-programming-examples

Instruments

For information about compatibility, software and firmware versions requirements for specific PathWave Test
Sync Executive releases, and firmware update procedures, see your instrument documentation.

For more information see the and PathWave Test Sync ExecutiveRelease Notes and Appendix A: Supported
instruments.

Find us at www.keysight.com Page 13

Install Main Components
This section explains how to install themain components of PathWave Test Sync Executive, it contains the
following sections:

1. Install Python 3.7.x, 64-bit.
2. Install PathWave Test Sync Executive.

1: Install Python 3.7.x, 64-bit
PathWave test Sync Executive requires Python 64-bit version 3.7.x

1. Download the Python installer from the Python web site: python.org.
2. Run the installer.

a. Add Python 3.7.x to the PATH system Variable. To do this, ensure the check-box Add python 3.7 to
PATH is checked. This is shown in the following screenshot:

Find us at www.keysight.com Page 14

https://www.python.org/

2: Install PathWave Test Sync Executive
Use the following procedure to install PathWave Test Sync Executive:

NOTE You must install Python 3.7.x 64-bit before installing PathWave Test Sync Executive.

Execute the installer file:

TheSetup screen is shown:

Find us at www.keysight.com Page 15

The next screen is the License Agreement screen. Youmust accept the license to continue:

Find us at www.keysight.com Page 16

You can change the installation directory on the Installation Directory screen.

By default, PathWave Test Sync Executive is installed to:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020

Find us at www.keysight.com Page 17

TheSelect Components screen enables you to select the components you want to install.

Required components are selected by default and you cannot de-select them.

Find us at www.keysight.com Page 18

When you have selected the components, the next screen is Ready to Install. Select Next to install PathWave
Test Sync Executive.

Find us at www.keysight.com Page 19

The Installer first installs the Keysight Licensemanager. It then installs PathWave Test Sync Executive:

Find us at www.keysight.com Page 20

The following screen is shownwhen the installer has completed installing: Select Finish to close the installer.

Find us at www.keysight.com Page 21

Install Additional Components
To use PathWave Test Sync Executive, you require both hardware and software. Ensure you have all of the
following components and they are up to date:

1. Keysight IO Libraries.

2. Keysight SD1Drivers, Libraries, and Software Front Panel.

3. Keysight Instrument FPGA Firmware.

4. Keysight Chassis Driver and Firmware.

Install Keysight IO Libraries
Install the IO Libraries, these are available on www.keysight.com.

Install Keysight SD1 Drivers, Libraries, and SD1 Software Front Panel
Install the SD1 Libraries and driver, both of these are available on www.keysight.com. When you install the
Keysight SD1Driver, SD1 Software Front Panel (SFP) software is automatically installed.

NOTE Ensure you check the SD1 driver release notes, so that you install a SD1 driver that is compatible
with the version of PathWave Test Sync Executive you have installed.

Update Keysight Instrument FPGAFirmware
You can update the FPGA firmware of your PXI instruments from the HardwareManager window of the SD1
SFP. For information about how to install SW and FPGA firmware for SD1 andM3xxxA Keysight instruments,
see the documents:

l Keysight M3xxxA Product Family Firmware Update Instructions.
l M3xxxA User Guide.

These are available on www.keysight.com.

NOTE Ensure you check theM3xxxA firmware release notes, so that you install a driver that is
compatible with the version of PathWave Test Sync Executive you have installed.

Install Keysight Chassis Family Driver
Install the Chassis Family Driver, this is available on www.keysight.com. When you install the Keysight
Chassis Family Driver, PXIe Chassis Software Front Panel (SFP) software is automatically installed.

Update Keysight Chassis Firmware
In PXIe Chassis Software Front Panel you can:

l Check the chassis firmware version in the help window.
l Update the chassis firmware with the Utilities window of PXIe Chassis SFP.

Find us at www.keysight.com Page 22

http://www.keysight.com/
http://www.keysight.com/
http://www.keysight.com/
http://www.keysight.com/

You can use the Utilities window of PXIe Chassis SFP to update the chassis firmware. For more information
about updating Chassis firmware, see PXIeChassisFirmwareUpdateGuide.pdfon www.keysight.com.

The following screenshot shows an example of the chassis firmware version shown in the help window of the
PXIe Chassis SFP. In this case the chassis is a Keysight Chassis model M9019A.

Find us at www.keysight.com Page 23

http://www.keysight.com/

Chapter 3: Installing Licenses

This chapter explains how to install PathWave Test Sync Executive licenses. It contains the following sections:

l About PathWave Test Sync Executive Licenses.

l Installing Licenses with Keysight LicenseManager.

About PathWave Test Sync Executive Licenses
PathWave Test Sync Executive requires one license per chassis that is used in your HVI implementation. If
you are using one chassis and want to use a second chassis, you are required to purchase and install at least
two licenses to use the second chassis. All HVI instances running in the same process share the same
licenses, but HVI instances running on different processes require different licenses. For example:

Description Licenses required

1 HVI instance using 1 chassis 1

2 HVI instances in the SAME process using 1 chassis each 1

3 HVI instances in the SAME process using 2 chassis each 2

2 HVI instances in 2 DIFFERENT processes using 1 chassis each 2

3 HVI instances in 3 DIFFERENT processes using 2 chassis each 6

Supported licensing modes

The following types of licenses are supported:

Commercial licenses:

l Node-Locked, perpetual and 6, 12, 24, and 36months, time based.
l USB Portable, perpetual and 6, 12, 24, and 36months, time based.
l Floating/Networking, perpetual and 6, 12, 24, and 36months, time based.

Trial licenses:

l 90 days Node-locked.

Installing Licenses with Keysight License Manager
You can install licenses from the Keysight LicenseManager. This is installed when you install Keysight Test
Sync Executive. You can use a local license on your computer, or a floating license from a license server.

The licensing process

Find us at www.keysight.com Page 24

The Keysight licensing process uses the following steps:

1. Purchase and fulfillment

Formost Keysight licensed product options, your entitlement certificate is sent to you as a PDF
attachment via email immediately after your purchase. In some cases, you receive a paper copy of your
certificate with your purchased product. The licensed product options may be software products or
upgraded features of an instrument.

2. Getting a license

Using the entitlement certificate you received when you ordered, you can request your licenses on
the Keysight SoftwareManager web site. To do this, you'll need to choose a host instrument or PC, and
provide its identifying information (the Host ID) when you request your licenses. Once you begin the
process, Keysight SoftwareManager will guide you step by step through requesting your licenses and you
will receive the license files via email.

Youmay need to create amyKeysight login when you first go to the Keysight SoftwareManager site, and
you will need to log in anytime you go to the site.

3. Installing your license

After you receive a license file from Keysight SoftwareManager, youmust install it on your instrument or
computer or on a central licensing server accessible from your instrument or computer, to enable the
licensed software.

To install the license:

1. Install PathWave Test Sync Executive.
2. Update the vendor daemon that is included in Keysight LicenseManager 6:

a. Download Keysight License Server version 2019.05.17 from
https://www.keysight.com/find/licenseserver. This is a .zip file.

b. Extract the file agileesofd.exe from the zip file and save it in C:\Program Files\Common
Files\Keysight\License Manager 6\bin overwriting the version that was installed there. You will be
asked for administrator permissions to do this.

3. Use Keysight LicenseManager to install your license.

For fully comprehensive information on Keysight licensing, including setup and troubleshooting information, see
theKeysight Licensing Administrator's Guide. This is installed with this licensing software at:

C:\Program Files\Common Files\Keysight\License Manager 6.

It is also available at http://www.keysight.com/find/licensingdoc.

Keysight License Manager

Keysight LicenseManager 6 (KLM 6) is installed with PathWave Test Sync Executive.

Find us at www.keysight.com Page 25

http://www.keysight.com/find/softwaremanager
http://www.keysight.com/find/licenseserver
http://www.keysight.com/find/licensingdoc

All the options are explained in the Help file which you can get by selectingHelp.

C:\Program Files\Common Files\Keysight\License Manager 6\bin\help\Content

The following image shows the Keysight LicenseManager home screen:

Find us at www.keysight.com Page 26

Adding a local license

If you have a node-locked license, youmust add the license to themachine that shall be using the license.

If you have a floating license, youmust add the license to the license server machine; this can be themachine
that shall use the license, or it can be a different machine.

To add a license on amachine:

1. Copy the license to a temporary location on themachine.

2. In Keysight LicenseManager 6, select Add/remove a license on your local machine.
A window called License Setup Wizard appears.

3. Select: Select a product to license and use on this machine.

4. Select HVI from the list and press OK.

The following image shows the Keysight LicenseManager home screen with the License Setup Wizard
window.

Find us at www.keysight.com Page 27

After you click OK, a dialog appears to let you add the license from the temporary location in step 1. The license
is copied to a folder managed by KLM 6.

Find us at www.keysight.com Page 28

Adding a license server

If you set up a floating license on a license server machine, follow this procedure to use the license on a different
machine.

To add a license server:

1. Select Specify a remote floating license server.
A window called License Setup Wizard for HVI appears.

2. Enter the server or servers in the field: Enter the host Name of each server machine from which to get
your license.
Thesemust be in the format @hostName or port_number@hostName.

3. To complete the setup, select Next >.

The following image shows the Keysight LicenseManager home screen with the License Setup Wizard for
HVI window:

Find us at www.keysight.com Page 29

Borrowing a floating license

Some floating licenses can be borrowed. Borrowing lets you check out a license for an extended period of time
and use it offline, without a connection to the network license server.

The borrow works in the following steps:

1. Youmust be connected to the network, with access to a license server that has floating licenses for the
product you need to use.

2. Choose the license or licenses you want to borrow and specify a return date. You can typically borrow a
license for up to 365 days, or until it expires, whichever comes first.

3. When you have borrowed the license(s) you require, you can disconnect your local machine from the
network, and use the licensed product offline. No one else can use that specific license count during the
borrow period: The server will report it as being in use and will deny checkout requests for that license count.

4. The borrow ends in one of two ways:
l At any time, you can reconnect your machine to the network and return the license.
l If you do not return the license before the return date, the license will automatically be returned, even if
your machine is not connected to the network. Once the license is returned, you can no longer use the
licensed product/feature, and the license server considers the license count available to be checked out
or borrowed by another client.

The following image shows the Keysight LicenseManagerBorrow License page.

Find us at www.keysight.com Page 30

View licenses

To view your licenses, select View Licenses. This is shown in the following image:

Troubleshooting

By default, KLM 6 saves its log files in C:\ProgramData\Keysight\Licensing\Log.

Find us at www.keysight.com Page 31

Chapter 4: HVI Elements

This chapter describes the elements that make up an HVI.

It contains the following sections:

l About Instruments
l About PathWave Test Sync Executive
l HVI API UseModel
l HVI Engines
l HVI Resources
l HVI Sequences and Statements

l HVI Sequences
l HVI Statements

l HVI Diagrams
l HVI Timing

About Instruments
Instruments aremodules or cards that can capture or generate various kinds of electronic signals. Many kinds of
instruments are available with different kinds of functions.

Different kinds of instruments can perform various functions with electronic signals:

l Measure signals.
l Record signals.
l Perform signal analysis.
l Perform signal conditioning.

Some types of instruments can generate different kinds of outputs:

l Signals.
l Voltages.
l Pulses.
l Arbitrary waveforms.
l Digital outputs.

Instruments can be supplied as modules or cards that fit into a chassis. The chassis enables you to fit multiple
modules together. The instruments in a chassis are synchronized to a common digital clock reference that is
shared by all of the instruments. The chassis also offers shared triggering and communication resources.

For this User Manual, the specific instruments referred to are PXI modular instruments that are inserted into a
PXI chassis.

For a full list of Keysight instruments, see Keysight.com .

Find us at www.keysight.com Page 32

http://keysight.com/

About PathWave Test Sync Executive
PathWave Test Sync Executive enables you to programmultiple instruments together so they can operate
tightly orchestrated together with other instruments, like one instrument.

PathWave Test Sync Executive enhances individual instruments by enabling them to:

l Execute real-time sequences of operations with full time determinism.
l Precisely synchronize instruments operations.
l Fast exchange information and decisions among instruments in real-time by hardware.

You define a new virtual instrument made up of a combination of instruments. This is known as a Hard Virtual
instrument (HVI). Once the HVI resources are defined, you can programmultiple instruments to work together
as they were a single instrument.

To program the HVI you write an application. When you run your application, it generates the HVI instance
and the binary code that executes by hardware on the instruments.

When creating an HVI, you can include any instrument that supports PathWave Test Sync Executive. For
example, Keysight's M3xxxA family of PXI instruments.

Each instrument that supports PathWave Test Sync Executive has specific instructions that enable you to use
its functionalities within HVI. These instructions are documented in the instrument documentation.

Find us at www.keysight.com Page 33

HVI API Use Model
This section describes the HVI API usemodel, and the steps it involves.

HVI uses a program-within-a-program model, that is, HVI can be seen as a real-time hardware program that runs
within a software program.

To use the HVI API, your applicationmust follow a series of steps to define and run an HVI instance. These
steps are broadly defined by three different classes within the HVI API:

1. SystemDefinition
2. HVI sequencer
3. Hvi

SystemDefinition
You use this class to define all the instrument and platform resources that are required to set up the HVI:

You use this class to define:

l Chassis.
l Interconnects.
l Clocks.
l Synchronous signals.
l Trigger routing.

You also use this class to define the resources that are available on the instruments:

l Engines
l Triggers.
l Actions.
l Events.

When you have defined these resources, youmust register them within the relevant collections. Collections are
special classes that associate resources with individual Engines so that you can use the resources on those
Engines.

HVI sequencer
You use this class to program and compile your sequences.

You add instructions and operations known as statements to sequences. These can be synchronized across
instruments or local to a specific instrument.

You also add and use HVI Registers within this class. Registers are small, fast memories on the Engines that
you can use as program Variables.

Find us at www.keysight.com Page 34

Once you have defined all the Sequences that define your HVI, youmust compile it. If successful, the
compilation process returns the HVI instance Hvi.

Hvi
Hvi is the runtime or executable object in HVI technology. With this object, you load the Sequences into the
relevant Engines and execute them.

This class also enables you to interact with the hardware resources assigned to the HVI and initialize all
resources before the actual execution happens.

Execution flow
When you run your application, the HVI instance is generated, compiled, and downloaded into the instruments
and infrastructure. It is executed across all the instruments and the infrastructure resources, and then the HVI
instance takes control of the individual instruments and platform components. The HVI configures the required
resources and downloads the hardware programs that, when executed, run on the instruments and platform
hardware synchronously.

An application can createmultiple HVI instances, but if the resources are shared, only one can be downloaded
and executed in hardware at a time. If the HVI instances do not share any resources, they can be executed in
parallel.

HVI Engines
For HVI to control an instrument, the instrument requires one or more HVI Engines. An HVI Engine is
an Intellectual Property (IP) block that controls the functions of the instrument and the timing of operations. The
HVI Engine is included directly in the instrument hardware or it can be programmed into a Field programmable
Gate Array (FPGA) in the instrument.

HVI works by deploying a binary executable to each hardware instrument to be executed by the HVI Engine.
Different binaries execute on the different HVI Engines in parallel, across multiple instruments.

When you write an application that includes an HVI, you create HVI sequences. These are sequences of HVI
Statements, these are operations that controls the instrument. The HVI Sequences are compiled into the binary
executables that the HVI Engine executes.

Find us at www.keysight.com Page 35

HVI Resources
The HVI Engine executes Sequences that aremade up of Statements. These statements or instructions can
operate on different resources in real-time. HVI can operate on following resources:

l HVI Actions.
l HVI Events.
l HVI Triggers.
l Clock signals.

l HVI registers.
l FPGA sandbox registers andmemory-maps.

Actions

HVI actions are digital electronic pulsed or level signals that are sent from the HVI engine to control instrument
operations. Typically, actions are associated to instrument-specific operations.

For example, in a digitizer module, a StartAcquisition action sends a digital pulse to start an acquisition
operation.

Events

HVI events are digital electronic pulsed or level signals input to the HVI engine that represent state, or an event
in the instrument. HVI events are associated with instrument-specific functions. For example, they can be used
to trigger instrument operations or, control the execution in an HVI application.

For example, a WaitForEvent statement pauses execution until the Event occurs.

Triggers

Triggers are electronic logic signals shared between instruments, you can use these to initiate operations,
communicate states, or communicate information among instruments.

Clock signals

You can use clock signals to synchronize instruments.

HVI Registers

HVI Registers are very fast access physical memories that are located in the HVI Engines in instruments. HVI
Registers can be used as parameters for operations andmodified during the sequence execution. You use them
in the sameway as Variables in a programming language. The number and size of Registers is defined by each
instrument.

FPGA Sandbox Registers and Memory-Maps

Find us at www.keysight.com Page 36

For themodules that contain an FPGA with a user-configurable sandbox, HVI can, if the configuration of the
module allows it, access (read/write) the Registers andmemory-mapped locations that you define in that
sandbox.

To accomplish that, youmust obtain the .k7z file for the FPGA sandbox that was generated by the PathWave
FPGA application. This file contains all the necessary information to allow you to access the Registers and the
memory-mapped locations by Name.

Find us at www.keysight.com Page 37

HVI Sequences and Statements
You control instruments with HVI Statements. Statements operate on resources such as Actions, Events, and
Triggers. There are different types of statements that perform different types of operations. HVI Statements are
the building blocks of HVI Sequences. These sequences are compiled in your application and are executed in
real-time on the HVI engines.

The following sections describe the different types of sequences and statements.

l HVI Sequences

l HVI Statements

Find us at www.keysight.com Page 38

HVI Sequences

AnHVI instance consists of HVI sequences, these are the foundations of HVI technology. An HVI sequence is
an ordered list of HVI statements with associated timing information. A sequence is executed in a time-
deterministic manner by the HVI hardware engine located within an instrument.An HVI instance is made up of
one or more sequences that run in parallel and synchronously.

There are two types of sequences:

l Sync sequence
l Local sequences

Sync Sequences
HVI sequences are organized in a hierarchy. A Sync sequence contains commands known as Sync statements
that execute across multiple instruments:

Local Sequences
The Local sequences >are executed by each individual HVI engine in an instrument.

Local sequences are contained within Sync Multi-Sequence Blocks. A Sync multi-sequence block is a type of
Sync statement that is contained in a Sync sequence.

The following diagram shows the relationship between the Sync sequence, Sync multi-sequence block, and
Local sequences:

Find us at www.keysight.com Page 39

Find us at www.keysight.com Page 40

HVI Statements

HVI statements are the commands or operations that make up an HVI sequence. HVI sequences are the
ordered lists of HVI statements that are executed with precise timing. If you think of an HVI sequence as a
poem, the HVI statements are the possible words you can use to write the poem and the HVI API is the
language you use to write it. HVI statements are general-purpose FPGA-level operations that can be executed
by the HVI engines.

HVI statements are broadly divided into two groups:

HVI Sync statements

These are used to execute operations or control the flow of execution across all HVI hardware engines.
Sync statements are executed synchronously among all HVI engines.

HVI Local statements

These are the commands or operations you put in the Local sequences to be executed on a specific HVI
engine in a specific hardware instrument.

The following diagram shows the different kinds of statements and how they relate to Sync sequences and
Local sequences:

Find us at www.keysight.com Page 41

Find us at www.keysight.com Page 42

HVI Sync Statements
These are used to execute operations or control the flow of execution across all HVI hardware engines. Sync
statements are executed synchronously among all HVI engines. For example: Sync While, Sync Register-
sharing and Sync Multi-Sequence Block.

All HVI Local Sequences operate within HVI Sync statements. The HVI Sync statements determine global or
synchronized operations, or synchronization points.

HVI Sync Statements are contained in a Sync sequence. HVI Sync statements execute across all instruments.

The Sync Sequence enables multiple engines to execute statements in lockstep.

The following HVI Sync statements are available:

Type Description

SyncWhile Enables aWhile loop to execute synchronously on all engines.

Sync Multi-Sequence
Block

Enables the execution of multiple, simultaneous, engine-specific sequences. Sync
multi-sequence blocks are a type of Sync statement that contain a set of Local
sequences. The Local sequences execute on individual HVI Engines within the
instruments. All Local sequences contained in a Sync multi-sequence block start and
end at the same time.

Sync Register-Sharing Enables you to share data from a source Register to a destination Register in any other
HVI Engine.

The following diagram shows how the HVI Sync statements fit in the Sync sequence:

Find us at www.keysight.com Page 43

Sync While

The Sync while flow-control enables you to execute a Sync sequence in a loop while a condition is met. The
condition is evaluated each time before starting the Sync sequence execution. When the condition is false and
the Sync Sequence reaches the end, the Sync while jumps out of the loop and the Sync Sequence containing
the Sync while continue the execution with the next Sync statement.

Sync Multi-Sequence Block

Sync multi-sequence blocks are a type of Sync statement that contain a set of Local sequences. Each Local
sequence executes on an individual HVI engine within a specific instrument.

The Sync multi-sequence block enables you to run different sequences on each engine concurrently. It ensures
that the execution of all Local sequences starts exactly at the same time and that the Sync sequence remains
synchronous afterwards. It serves as a boundary between sections and a container where each engine operates
individually.

Find us at www.keysight.com Page 44

Sync Register-Sharing

The Sync Register-sharing statement enables you to share the contents of N adjacent bits from a
source Register and write it to a destination Register in another HVI Engine in your HVI.

Find us at www.keysight.com Page 45

HVI Local Statements
HVI Local statements are the commands or operations that make up Local sequences. These are the
commands or operations you put in the Local sequences to be executed on a specific HVI engine in an specific
HW instrument. There are two types of Local statements:

l Local Instruction Statements.
l Local Flow-Control Statements.

Local Instruction Statements

These are operations that are executed by the HVI engine and do not impact the execution flow. They are used
to execute HVI-native or instrument-specific instructions. There are two types of Local instruction statements:

HVI-Native Instructions

HVI-native instructions are present on all instruments for example math operations, writing triggers or
executing actions.

Instrument-Specific Instructions

These are instructions that are specific to an instrument. You can use these when you program anHVI
with the specific instrument. For example, changing amplitude, queuing waveforms for playback, etc.

Local Flow-Control Statements

Local flow-control statements are used to locally control the execution flow within each Local sequence

These are used to control the execution flow of a specific HVI engine, such as loops and waits. They are divided
into two types:

Wait statements:

l Wait for time.
l Wait for event.

Conditional flow-control statements:

Find us at www.keysight.com Page 46

l While.
l If-Elseif-Else.

The following diagram shows the different types of Local statements and their relationship to the Local
sequences:

Find us at www.keysight.com Page 47

Instruction Statements

Instruction statements are operations that are executed by an HVI engine in the instrument hardware.

There are two types of instructions:

l HVI-native instructions.

l Instrument-specific instructions.

General purpose HVI-native instructions are defined by the HVI API. These are instrument independent, and
general purpose.

Instrument-specific instructions are defined by the HVI instrument add-on API and exposed in each instrument
driver, as instrument-specific HVI definitions. Instrument specific instructions can change instrument settings
such as amplitude, frequency, or trigger a instrument function such as output a waveform or trigger a data
acquisition.

The User Guides for the M320xA PXI AWGs andM310xA PXI DIgitizers describe all the HVI instructions
available for each of theM3xxxA PXI instruments.

Local Flow-Control Statements

Local flow-control is executed within each Local sequence, includingWait statements, loops such as While, and
conditional execution like If-Elseif-Else.

This category includes the following types of statements:

l Wait-for-time statements: Wait for an amount of time specified by an HVI Register.
l Wait-for-event statements: Wait for a condition, currently an event.
l While statement.
l If-Elseif-Else statement.

These statements are depicted with yellow boxs in the flow charts displayed in this User Manual.

All Local flow-control statements except for theWait statements expose one or more Local Sequences, for
instance, While statements have a single sequence, but the If-Elseif-Else statement can havemultiple
sequences. These statements have the following common characteristics:

l Sequences in flow-control statements can contain any statement including Local flow-control sequences.

l Only Local statements can be added inside Local sequences and consequently inside Local flow-control
statements. No Sync statements can be added within Local flow-control statements.

Wait-For-Time statement

Find us at www.keysight.com Page 48

TheWait-time flow control statement causes the sequence to wait for a certain time specified by an HVI
Register. Once the time has elapsed, the sequence will continue.

Wait-For-Event statement

TheWait flow control statement causes the sequence to stop and wait for a condition to evaluate true.
Once the condition is true, for example, the selected event occurs, the next instruction is executed. In
future releases, this will be extended tomore complex conditions.

While statement

While flow-control is defined by executing the same sequence in a loop while the condition is met.

If-Elseif-Else statement

The If-Elseif-Else flow control statement is a flow-control statement that conditionally executes different
possible Local sequences according to the value of a defined condition.

Find us at www.keysight.com Page 49

HVI Diagrams
This section shows HVI diagrams. These are used to illustrate HVI sequences.

In the HVI diagrams, colors are used to indicate different kinds of statements:

The following diagram shows a single Sync Statement with flow and time for the block:

The diagrams can show nesting of Statements within Statements. For example, the following diagram shows a
Sync Statement that is within another Sync Statement:

Find us at www.keysight.com Page 50

Local Sequences are placed within their Engines in Sync multi-sequence blocks. The following diagram shows a
pair of Local Sequences with an instruction each inside a Sync multi-sequence block:

Dotted lines indicate that time is not known at compile time. This is often the case with flow-control statements.
In this case theWait-for-event statement shall not release until the event occurs. It is not known at compile time
when this is, so the time cannot be calculated at compile time.

Find us at www.keysight.com Page 51

The following diagram shows a Local flow-control statement that encloses a pair of Local instruction
statements. The color yellow indicates this is a Local flow-control statement.

The circular symbol is a loop indicator that shows that the block iterates.

The following diagram shows amore complex example. The Sync multi-sequence block contains two Local
sequences, one per HVI Engine. The Local sequences execute operations on their associated HVI engines in
parallel.

Find us at www.keysight.com Page 52

HVI Timing
This section describes the timing of HVI operations.

About HVI Statement Timing
When you are programming an HVI, you have precise control over the execution timing. To understand the HVI
statement execution timing, there are several time definitions that youmust understand:

l Start time.
l End time.
l Fetch time.
l Execution time.
l Start delay.

Start time

This is the instant of time when HVI starts the execution of a statement. Start time is specified by the user
during sequence creation, with the start delay. HVI exactly meets the specified time or generates an error
if it is not possible.

End time

This is the instant of time when the statement execution is completed and the result is available, or the
operation took place (update Registers, trigger value changing, ...). In the case of operations that have a
long execution time, for instance Arb play, the execution time indicates when the first sample of the Arb
data starts flowing out.

Fetch time

This is the time interval required by the HVI engine to fetch and dispatch a statement for the actual
execution. Depending on the statement or instruction characteristics, for instance, the number of
parameters, a statement may take several HVI engine cycles to complete the fetch before the actual
execution can start.

Execution time

This is the time interval from theStart time until theEnd time of the statement. This interval is determined
by product constraints and inherent limits, such as propagation delays and resource availability.

Start delay

Start delay is controlled by the user and defines a waiting period between the execution of consecutive
statements. The start delay is a parameter in the add_statement() methods. This ensures there is enough
time for correct execution and allows you to have full control of timing of the operations. If the start delay is
not accounted for properly, the HVI sequences misbehave.

Find us at www.keysight.com Page 53

The following diagram shows these definitions:

Find us at www.keysight.com Page 54

Sync Statement timing
For Sync statements, the Start delay is measured from the end of one Sync statement to the start of the
following Sync statement.

The following diagram shows the timing between Sync statements. The diagram shows two Sync statements,
A and B. Sync statement B is a container for two further Sync statements, B-1 and B-2. The times indicated are
Start Delay A, Start Delay B, Start Delay C, T1, and T2.

The time between the end of Sync statement A and the start of Sync statement B-1 is Start Delay A+ Start
Delay B.

The time between the end of Sync statement B-1 and the start of Sync statement B-2 is Start Delay C.

Sync-Statement timing

Sync Register-Sharing and Sync Multi-Sequence Block Timing

For the timing of the Sync statement types Sync Register-sharing and Sync multi-sequence block is the same
as most Sync statements. The Start delay is measured from the end of one Sync statement to the start of the
next Sync statement.

The following diagram shows the timing between a number of Sync Statements including Sync Register-
sharing andSync multi-sequence block.

Find us at www.keysight.com Page 55

The diagram shows two Sync Statements A and B. Sync Statement B is a container for 2 further Sync
Statements Sync Register-sharing andSync multi-sequence block. The times indicated areStart Delay
A, Start Delay B, Start Delay C, T1, T2, and T3.

The time between the end of Sync Statement A and the start of Sync multi-sequence block is Start Delay A +
Start Delay B.

The time between the end of Sync Register-sharing and the start of Sync multi-sequence block is Start Delay
C.

Sync Register-sharing and Sync multi-sequence block timing

Sync While

For the Sync flow-control Statement Sync while, the timing is different compared to other Sync statements. The
Sync while statement continues operation while a condition is met. It stops executing when the condition is no
longer met.

The following diagram shows a Sync while statement with other Sync statements. The time for an iteration of
Sync while is T2 x N, where T2 is the time per iteration andN is the number of iterations. The time cannot be
indicated exactly on a diagram or in code, because the number of iterations is not known until runtime.

The time for the containing statement Sync statement A cannot be indicated if it contains a flow-control
statement. This is indicated by the dotted line and the time indicated as T min.

The time between the end of the Sync multi-sequence block B and the end of Sync statement A is 0 ns.

Find us at www.keysight.com Page 56

Sync While

Find us at www.keysight.com Page 57

Local Statement Timing
This section describes the timing of local statements.

Local Instruction Timing

The following diagram shows the timing of Local instructions.

For instructions, the following Start Delay is measured from the start of the instruction. This is possible because
once the instruction fetch cycles are completed, the HVI engine is free to fetch and execute another instruction.

The following diagram shows two instructions and their timing.

local Instruction timing

Find us at www.keysight.com Page 58

Overlapping Instruction timing

The execution of instructions can overlap. This is shown in the following diagram.

Instruction B starts execution, then after a delay of T3, instruction C starts execution while instruction B is still
executing. Instruction B is still executing when instruction C finishes.

The overlap of instructions is possible when there is no overlapping fetch. It is important to consider the effects
of overlapping instructions execution, because the result of the first instruction is not effective or available when
the overlapping instruction finishes its fetch cycles and starts execution.

Overlapping Instructions

Find us at www.keysight.com Page 59

Local Flow-Control Timing

For Local flow-control operations, the Start delay of the next statement is measured from the end of the flow-
control statement. As with Sync flow-control statements, the HVI engine is busy during the execution of the
flow-control statement. No overlapping is possible between flow-control statements and any other
statements. The following diagram shows the difference betweenmeasuring timing of instructions and Local
flow-control operations.

For instructions, the Start delay of the next statement is measured from the start of the instruction, while for the
local flow-control statements, Start delay D is measured from the end of the flow-control block.

The dotted line indicates that the execution time of the Local flow-control block T1 is not known at compile time.

Local flow-control timing

Find us at www.keysight.com Page 60

Local While

The Local while statement continues execution while a condition is met and finishes execution when the
condition is no longer met. This is the same as timing of Sync while statements.

The following diagram show a Local while statement with other instructions.

The time for an iteration of Local while is T1 x N, where T1 is the iteration time and N is the number of times it
iterates. The time cannot be indicated exactly on a diagram or in code because the number of iterations is not
known until runtime.

For Local while statements, the following Start delay is measured from the end of the Local while statement. In
the following diagram, Start delay D is measured from the end of the Local while statement.

The dotted line indicates that the execution time of the Local while block T1 is not known at compile time.

Local While

Find us at www.keysight.com Page 61

Local If

For Local if statements, the following Start delay is measured from the end of the Local If statement. As with
Sync while statements, the time taken is only known at runtime, so it is not possible to indicate them on a
diagram or in code.

This following diagram shows the timing of Local if statements. The Start delay D is measured from the end of
the Local if statement.

The Local If has two branching options with times TI 1 and TI 2. These times can be different. Since the choice
of branch is not known at compile time, the time for the Local If block cannot be known.

The line for the Local if block is dotted. This indicates that the execution time of the Local If block Tx is
unknown. The time of the containing block is also therefore unknown, and it is also dotted. The time of the Sync
multi-sequence block is indicated as T min.

Matched Branches

Unlike other flow-control options, the Local if statements can have different execution paths each with different
times. Thematched branches option enables you to control how the HVI deals with them.

Find us at www.keysight.com Page 62

Enablingmatched branches ensures the HVI synchronizes the times of the branches, so they are the same. The
shorter branches get an additional delay added when they are finished so that the duration of all branches is
equal. If the matched branches option is not enabled, the branches can end at different times, that is, they
are de-synchronized.

In the following diagram the branches in the If-else statement arematched. This ensures the Local if ends at the
same time irrespective of the branch taken.

The total branch time is marked with the time TM, this represents thematched time. The choice of branch is not
known at compile time, but since the times arematched the time TM is known.

The times are known at compile time so the timelines of the local If block and and the containing Sync multi-
sequence block are both solid.

Find us at www.keysight.com Page 63

Local Wait (event or time in Register)

For Local wait statements, the following Start delay is measured from the end of the Local wait statement. As
with Sync while statements, the time taken is only known at runtime, so it is not possible to indicate them on a
diagram or in code.

The following diagram shows the timing of a Local wait statement. The following Start delay D is measured from
the end of the Local wait statement.

The execution time of the Local wait statement T1 is not known at compile time, this is indicated by the dotted
line.

The time of the Sync multi-sequence block is indicated as T min. The dotted line indicates an unknown time.

Local Wait

Find us at www.keysight.com Page 64

HVI time matching for Sync Statements

Sync Multi-Sequence Block Time Matching

In a synchronizedmulti-sequence block, you can define the statements that the HVI engines on instruments,
execute in parallel with the other engines.

Local sequences start and end their execution within the Sync multi-sequence block synchronously. You can
define the exact start time of each Local statement after the previous one.

HVI automatically calculates the execution time of each local sequence and adjusts the execution of all local
sequences within the Sync multi-sequence block. This is so that the sequences within the Sync multi-sequence
block can all end together deterministically. The final time is calculated automatically.

There are two cases that are treated in a different way by HVI:

l Execution time is known at HVI compilation time for all Local Sequences within the Sync multi-sequence
block.

l Execution time is unknown at HVI compilation time for one or more local Sequences within the Sync multi-
sequence block.

Known time (Sync execution)

When all Local sequences contain instructions or flow-control statements with an execution time that is known
at HVI compilation time, the HVI accounts for the different execution time of all local sequences during
compilation and adjust the final times so each Local sequence reaches the end of the Sync multi-sequence
block at the same time.

Sync multi-sequence block with minimum execution time

In the following diagram, the time of the Sync multi-sequence block is not specified, so the compiler will adjust
the total execution time of all Local sequences to the longest one. The times of the instructions and the delays
between them are known, so the timing between them and the timing of the entire block can be calculated. The
Sync multi-sequence block execution time is set to theminimum possible time given by the longest Local
sequence.

The total time for Engine A is 400 ns and HVI calculates the times required for the other engines to finish at the
same time. For Engine B this is 390 ns, for Engine K this is 90 ns.

Find us at www.keysight.com Page 65

Sync multi-sequence block with a specific execution Time

In the following diagram, the times of the instructions and the delays between them are known, so the timing
between them and for the entire block can be calculated. In this case the total time is specified at 750 ns. The
HVI calculates the times required for all the other engines to finish at the same time. For Engine A this is 350 ns,
For Engine B this is 740 ns, for Engine K this is 440 ns.

Find us at www.keysight.com Page 66

Unknown time (re-synchronization)

In some cases, one or more of the local sequences within the Sync multi-sequence block include a local flow-
control statement that has an execution time that is unknown at HVI compilation time. At the point in the Local
sequence where the unknown execution time is encountered, the Local sequence becomes de-synchronized.
Since HVI ensures that all the Local sequences in a Sync multi-sequence block end at the same time when
there is such a Local flow-control statement, HVI implements a special re-synchronization procedure at the end
of the Sync multi-sequence block.

In the following diagram, the time of the instructions and the delays between them are known except for the
execution time of theWait event. This means the execution time of the complete Sync multi-sequence
block cannot be specified. HVI still enforces all Local sequences to end at the same time, but in this case the
time required at the end of each sequence is not known since it cannot be calculated during the HVI compilation,
this is indicated by the dotted lines. The time of the full Sync multi-sequence block is also unknown so this is
indicated as T min with a dotted line. To enforce that all Local sequences synchronize again at the end of
the Sync multi-sequence block, special re-synchronization instructions are added at the end of each local
sequence in the Sync multi-sequence block. This re-synchronization procedure relies on triggering resources to
re-synchronize the execution of the Local sequences on all the HVI engines.

Find us at www.keysight.com Page 67

Chapter 5: The HVI API

This chapter describes the HVI API. It describes themain classes required to understand the key programming
concepts youmust understand when you are defining an HVI implementation.

The HVI API is a class-based API, it is a combination of the HVI API and the HVI instrument add-on API:

l The HVI API is the common API used by any instrument that supports HVI.

l The HVI Instrument add-on API is an instrument-specific API that complements the HVI API.

The HVI API functions are not sufficient to fully execute HVI sequences on an instrument. To successfully run
an HVI, both APIs must be used.

This chapter contains the following sections:

l HVI API Functionality
l HVI API Organization
l SystemDefinition
l Sequencer
l Hvi

Find us at www.keysight.com Page 68

HVI API Functionality
This section describes the functionality that is common across the HVI API. It contains the following sections:

l HVI API capabilities.
l HVI Collections.
l HVI API Error Management.

HVI API Capabilities
The HVI API provides many capabilities. The capabilities that are available through the HVI API include:

l Chassis/PXI backplane resource configuration.

l Interconnect configuration, for example, with M9031A modules.

l Access to HVI memory resources in the FPGA user Sandbox.

l Real-time sequencing:

l Synchronized flow-control, for example, While loops.

l Synchronizedmulti-sequence block statements that provide access to local instructions and flow control.

l Local flow-control, such as While loops and If statements.

l Local Instructions and operations. These include HVI-native instructions and instrument-specific
instructions.

HVI Collections
Resources in HVI are grouped into Collections. Collections group items of the same type, such as:

l Engines.
l Triggers.
l Actions.
l Registers.
l FpgaSandboxes.

Class collections are particularly useful because amember instance can be accessed by index or string.
Collections are found within the sequence hierarchy with their corresponding local or synchronized functions.

The concept of collections is fundamental in the HVI API usemodel because every component used within
the HVI must be registered with a collection. If the component is not registered, it cannot be used. To register
components, add them to the collection of items of that function, for example, youmust add triggers to a trigger
collection.

Find us at www.keysight.com Page 69

When you are defining an HVI instance, youmust define several resources and add them to the corresponding
collections. You can then use them inside an HVI sequence. You cannot use Engines, Actions, Triggers,
Events, or Registers before they are defined and added to their corresponding collections.

Enhanced access properties

Collections are groups of objects that have additional access properties beyond those of vectors or lists:

You add new collection items by calling the add() method. This takes an Name as its first parameter and
returns the new item. For example, the following code declares and returns a new register with the Name my_
register_A:

regA = instrument.registers.add('my_register_A', RegisterSize.SHORT)

NOTE Each Name in a collection must be unique in that collection.

Random access by string or by numerical index

You access collection items with the [] operator. You can index items with their Name, or by a number referring
to the order of the items inside the collection.

You define the Namewhen you add the item to the collection. For example, the following code returns
an Engine object Named myEngine:

instrument.engines["myEngine"]

To find the number of items in a collection, use either count or the built-in len() function. For example, the
following code returns the number of Engines the instrument has:

Len(instrument.engines)

Managing objects in a collection

The collection is a grouping and has no insight of its member's parameters or attributes. Definition and
management of the instances within a collection are not managed within the collection class. They aremanaged
in their own class, that is, youmanage an Engine with the Engine class, not the EngineCollection class.
Once an instance is defined, it is then added to the collection using themethods above.

HVI API Error Management
Error handling in HVI API is based on exceptions. If an error occurs during an HVI execution, the code
execution is stopped, and amessage is returned that includes an error code and a relevant error message. Error
management is done through the Error class that is part of the HVI API.

Find us at www.keysight.com Page 70

HVI API Organization
PathWave Test Sync Executive has three primary classes that you use in order:

l SystemDefinition.
l Sequencer.
l Hvi.

SystemDefinition
You define hardware and resources in the SystemDefinition class by adding each one of them to the relevant
collection. SystemDefinition contains classes for:

l Engines.
l Chassis.
l Interconnects.
l HVI system clocks.
l Non-HVI core clocks.
l Sync resources.
l FpgaSandboxes.

Sequencer
You define and program sequences with the Sequencer object. The hardware resources become view
collections. You can use the hardware resources in Sequence programming, but you cannot modify them.
The Sequencer object contains classes for:

l SyncSequences and Sequences.
l Compilation.

The SyncSequences in turn contains Instruction set, Register Scope, and Registers.

Hvi
At this stage, previous collections become runtime collections that you use for executing the sequences on the
hardware. You can only control execution of the HVI at this stage. Hvi contains classes for:

l SyncSequenceRuntime.
l EngineRuntimeCollection.
l ScopesRuntimeCollection.

Detailed explanations of all themain classes and their functions are provided in the help file provided with
the KS2201A PathWave Test Sync Executive installer. This is located at:

C:\ProgramFiles\Keysight\HVI\api\python\doc\keysight_pathwave_hvi.htm

Find us at www.keysight.com Page 71

SystemDefinition
This section describes the SystemDefinition class, it contains the following sections:

l Synchronization resources and clocks

l EngineDefinition

l Chassis and Interconnect

You use SystemDefinition to configure the physical hardware resources available to the HVI. This class has
interfaces to the Chassis, Engines, and the InterconnectedM9031A board pairs.

The following diagram shows the classes:

Find us at www.keysight.com Page 72

Synchronization resources and clocks

HVI provides transparent multi-instrument synchronization and synchronized conditional execution, for
example, Sync while. To use this, youmust assign to HVI synchronization resources and specify clock
frequencies for aDevices-Under-Test (DUTs), or instruments that do not integrate HVI technology.

HVI Synchronization resources
For synchronization, synchronized execution and data sharing across instruments to work, youmust specify the
sync resources available for HVI to use in the System Definition. The sync resources consist of PXI triggers
and are defined by the keysight_hvi.TriggerResourceId enumeration. the list must be specified in the
SyncResources property of the SystemDefintion object:

Add sync resources
sys_def.sync_resources = [keysight_hvi.TriggerResourceId.PXI_TRIGGER0,

keysight_hvi.TriggerResourceId.PXI_TRIGGER1,
keysight_hvi.TriggerResourceId.PXI_TRIGGER2]

The triggers assigned as sync resources are used internally by the HVI to implement the following cross-
instrument operations, transparently to the user:

l Triggered synchronization, for more information, see Chapter 7: HVI TimeManagement and Latency.
l Sync Register-sharing.
l Sync while.

As a guideline, Triggered synchronization requires 1 or 2 triggers, Sync Register-sharing as many triggers as
bits shared, and Sync while requires 1 trigger. The HVI optimizes the use of triggers as much as possible and
reuses the same triggers when possible for different operations, providing they are executed with sufficient time
separation.

Synchronize the HVI instrument's engines
To correctly manage timing without jitter, the HVI needs information about all of the clocks in the instrument. For
instruments that support HVI technology and are included in the HVI, the clocking information is already
available and handled transparently. For instruments that do not support HVI technology, youmust specify the
instrument clocking constraints.

HVI supports the definition of the following types of clocks:

l Non-HVI system clocks.
l Non-HVI core clocks.

Non-HVI system clocks

Find us at www.keysight.com Page 73

System clocks are those clocks used by the instrument that do not directly impact the operation of the specific
feature that must be triggered from the HVI. System clocks are used by the HVI to determine the Sync-Base
period.

Non-HVI core clocks

Core clocks are clocks that directly impact the operation of the specific feature that must be triggered from the
HVI. Core clocks are used by the HVI to determine all but the Sync-Base period, that is Sync_CDC, Sync_Fast,
Sync_User<K>, etc.

HVI Synchronization signals and modes
HVI uses different periodic digital signals for synchronization purposes: Sync_Base, Sync_CDC, Sync_Fast and
Sync_User<K>. The definition of those digital signals depends on platform and instruments signals. Platform
signals are the CLK100 and CLK10 signals in a PXI platform such as a PXI chassis. Instruments have different
clock signals inside that are classified as core clocks or system clocks. Platform and instrument clock signals
contribute to define the HVI Sync signals according to definitions listed below:

l Sync_Base= functionOf(CLK100, CLK10, all core clocks, all system clocks)

l Sync_CDC= functionOf(CLK100, CLK10, all core clocks)

l Sync = functionOf(all core clocks)

Sync_User<K> signals (where K = 0, 1, 2,.. N) , provide you some degree of freedom to define their frequency or
phase so you can deploy them for synchronization purposes that you can define. The only constraint is that the
frequency of Sync_User<K> signals must be an integer multiple of the frequency of the Sync_Base signal.

Find us at www.keysight.com Page 74

EngineDefinition

The Engine class provides access to the HVI Engine in the instrument.

You create instrument objects where each object represents a physical PXI instruments placed into a specific
chassis and slot. You can the obtain its Engine object using the instrument-specific API and then add it to the
list of HVI engines in the HVI engine collection. This collection is managed by the SystemDefinition object.

When a SystemDefinition object instance is created, an HVI engine collection is automatically created as
well. This is managed through the EngineCollection class. HVI Engines are added to the collection by using
the API method add() that is common to all collection classes. Each HVI enginemanages its own Trigger,
FpgaSandbox, Event, and Action collections.

Trigger Definition

Find us at www.keysight.com Page 75

The TriggerDefinitionCollection is a class used to list andmanage all the trigger signal lines to be used by
each HVI engine for triggering purposes. Trigger signal lines include PXI triggers, Front Panel (FP) triggers, and
any other trigger lines enabled within the instrument.

TriggerDefinition provides an interface control and configure the hardware trigger controlled by
HVI. The TriggerConfig class holds all parameters that a trigger can be configured with. It serves both to hold
the current configuration of the trigger hardware and for you to get and set the desired configuration.

The class can be used to:

l Turn a trigger ON or OFF.
l Write to a trigger line.
l Get the hardware Name or ID of a trigger resource.
l Configure settings for a given trigger.

To configure the trigger settings, youmust set up the following parameters:

Parameter Description Variable
hw_routing_delay Get or set the delay of the

trigger in nanoseconds
Int

direction Get or set the direction of the
trigger

Direction enum: INPUT, OUTPUT

drive_mode Get or set the drivemode DriveMode enum: OPEN_DRAIN, PUSH_PULL

pulse_length Get or set the pulse length of
the trigger in nanoseconds

Int

sync_mode Get or set the synchronization
mode of the trigger

SyncMode enum: IMMEDIATE, SYNC, SYNC_BASE,

SYNC_CDC, SYNC_FAST, SYNC_USERx

trigger_mode Get or set the trigger mode TriggerMode enum: LEVEL, PULSE

polarity Get or set the polarity of the
output trigger

TriggerPolarity enum: ACTIVE_HIGH, ACTIVE_

LOW

Action Definition
Use the ActionDefinition class to define Actions in the HVI API. Before an action can be used youmust
register it to the ActionDefinitionCollection class that is within the Engine class. The registration locks the
resource for use by the HVI instance when it is loaded to hardware.

Event Definition
The EventDefinition class is used to define Events in the HVI API. Before an event can be set up or used, it
must be registered in the EventDefinitionCollection class within the Engine class that will use this event.
Registration locks the resource for the HVI instance when it is loaded to hardware.

FPGASandbox Definition

Find us at www.keysight.com Page 76

An FPGA Sandbox is a user-configurable region in the FPGA. For themodules that support it, an HVI interface
is provided into the sandbox. Through this interface, HVI can access read/write Registers andmemory inside
the sandbox.

To take advantage of this feature, the user needs to use PathWave FPGA to create his design into the sandbox.
When the design is completed and built, PathWave FPGA generates a k7z file. This file is then used by HVI to
get all the information needed about the Names, addresses, ranges of the Registers andmemory-mapped
locations that are connected to the HVI interface.

FPGA Sandbox Definition Class

For themodules that support user-configurable sandboxes, the sandboxes can be found in the engine's
collection property fpga_sandboxes, where each sandbox can be accessed by its Name. This will return an
FPGA Sandbox Definition object with which the user can load the k7z file, exported from PathWaveFPGA, to
load the information related to this sandbox.

SANDBOX_0_NAME = "sandbox0"sandbox = engine.fpga_sandboxes[SANDBOX_0_NAME]
project_file = "c:/fpga/Hvi2SandboxTest.k7z"sandbox.load_from_k7z(project_file)

Once the sandbox project is loaded, you can access the contents of the FPGA sandbox, that is the Register and
Memory-Map definitions.

FPGA Register Definition Class

Using an FPGA Sandbox Definition object that has already loaded a k7z file, the user can access the list of
Registers (FpgaRegisterDefinition objects) defined in the sandbox. The FpgaRegisterDefinition objects
have one property, the Name of the Register.

FpgaRegisterDefinition can be set as a parameter in InstructionFpgaRegisterRead.fpga_
register and InstructionFpgaRegisterWrite.fpga_register.

fpga_register = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_registers[0]
fpga_register.Name

FPGA Memory Map Definition Class

Using an FPGA Sandbox Definition object that has already loaded a k7z file, the user can access the list of
memory-mapped locations (FpgaMemoryMapDefinition objects) defined in the
sandbox. The FpgaMemoryMapDefinition objects has two properties, the Name and the size of thememory-
mapped location.

FpgaMemoryMapDefinition can be set as a parameter in InstructionFpgaArrayRead.fpga_memory_
map and InstructionFpgaArrayWrite.fpga_memory_map.

fpga_memory_map = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps[0]

Find us at www.keysight.com Page 77

http://www.keysight.com/us/en/products/software/pathwave-test-software/pathwave-fgpa-software.htm

Chassis and Interconnect

This sections describes the Chassis and Interconnect classes.

Chassis
The Chassis class represents a chassis inside the platform topology, and enables you to query basic
information such as which slots are available, model and vendor.

Properties

l number: Get the chassis number.
l first_slot: Get the first slot number in the chassis.
l last_slot:Get the last slot number in the chassis.
l model: Get the chassis model.
l vendor:Get the chassis vendor.

Interconnects
This class represents hardwareM9031A boards that are inserted in slots of different chassis to connect them
together.

Properties:

l chassis: Get the chassis number where the interconnect is located
l slot: Get the slot number where the interconnect is located.

Multi-Chassis Setup
The reference examples provided with this document can be executed on amultiple-chassis setup with only the
few modifications explained below. In amulti-chassis setup, it is necessary to interconnect the PXI triggers and
clocking of themultiple chassis.

With the currently available infrastructure to interconnect PXIe backplane triggers a pair of M9031A boards must
be placed in a specific segment in each chassis to be interconnected.

Find us at www.keysight.com Page 78

NOTE Ensure the SMB cables used to connect theM9031A modules are as short as possible. The
chassis should be stacked in the same rack, on top of each other, and as close as possible to each
other to enable the SMB cables that connect them to be as short as possible

On the twoM9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There aremainly three rules to consider when choosing the chassis slot where to place aM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each
pair of M9031A connects two chassis together and shares info through their PXI lines

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length

3. A PXI module included in the HVI application needs to be placed in the same chassis segment where the
first M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair
of boards.

The picture above illustrates in green the PXI modules that must be placed in the same segment as theM9031A
modules in blue:

Find us at www.keysight.com Page 79

l The 1st chassis must include aM9031A together with a PXI module with HVI in segment 2

l All Middle chassis must have aM9031A in the segment 2, and aM9031A together with a PXI Module with
HVI support in Segment 3

l The last chassis must include aM9031A in segment 2.

All the chassis that are part of themulti-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A aremade to share the PXI lines that are used as sync resources. PXI trigger lines are
shared usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all themiddle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Additionally, a very clean 10MHz source should be used to provide the same reference signal to all chassis.
One option is to use amulti-output 10MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

Adding Chassis

Each chassis included in themulti-chassis setup can be added using any of the HVI API methods below. You
can either add themmanually, or call the add_auto_detect()method once to automatically detect and add all
the chassis connected to the system.

Example Python code:

To add chassis resources use:
sys_def.chassis.add(chassis_number)
Add a chassis and set options
sys_def.chassis.add_with_options(chassis_number, options).
Automatically detect and add chassis:
sys_def.chassis.add_auto_detect()

Opening a chassis in simulation mode

You can use PathWave Test Sync Executive in simulationmode. This enables you to test your sequences
without using real hardware.

To enable simulationmode, use themethod: add_with_options(chassis_number, options).

l chassis_number is the number of the chassis you want to simulate.
l options is a string that contains a list of comma separated options. You use these options to enable
simulationmode and specify themodel of chassis and other characteristics of the simulated chassis.

Find us at www.keysight.com Page 80

To enable simulationmode set Simulate=True and set the options you require after DriverSetup.

Simulate=True starts the chassis in simulationmode. If simulation is enabled, the chassis does not perform
instrument I/O. For output parameters that represent instrument data, the chassis driver functions return
simulated values.

DriverSetup specifies custom chassis options that are not standard for all instruments. HVI specifies the
following options:

Option values Comment Default Notes

model - Specifies the model of the chassis you
want to simulate.

-

NoDriver True/False Specifies if a hardware driver is used or
not. If set to True, HVI uses a simulated
driver.

False -

EnhancedPxiTrigger True/False Enables more then one writer module in
a chassis. If set to True, the triggers in
the chassis have active and idle
values.

l True for
chassis model
M9018B,
M9019A or
M9010A.

l False for
others.

This option is
ignored if
NoDriver is set
as False.

For example, the following code is an example of a command to start chassis number 2 in Simulationmode:

sys_def.chassis.add_with_options(2, "Simulate=True,DriverSetup=model=M9018B,NoDriver=True")

Adding M9031A Boards

In the HVI API eachM9031A board pair needs to be declared using the following softwaremethod:

Python

To add each interconnected pair of M9031 modules use:
interconnects.add_M9031_modules(1st_M9031_chassis_number, 1st_M9031_chassis_slot,

2nd_M9031_chassis_number, 2nd_M9031_chassis_slot)

The above-mentioned code lines are part of this application code example and they can be used to adapt the
code example to run on amulti-chassis setup.

Find us at www.keysight.com Page 81

10 MHz Clock Reference Source

One option is to use as a 10MHz Reference source the PXI module Keysight M9300A PXIe Frequency
Reference. Place this module in one of the chassis and use splitters to divide the 10MHz clock output into N
cables to be connected to the 10MHz REF IN connector on the back panel of each of the chassis, including the
chassis where theM9300A module is placed. Each time the system is restarted open theM9300A SFP
software to check the box 10 MHz Out Enabled and uncheck the box Drive BP 10 MHz Reference. See the
following screenshot clarification. For more details on the Keysight M9300A PXIe Frequency Reference
see: www.keysight.com.

Once the common 10MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from theReference
Clock window shown in the screenshot below. Once you open the window please clear any Alarm that possibly
occurred during the 10MHz reference setup. After clearingAlarm occurred icon should stay idle (white color).
Clock source shall set toRear 10 MHz Ref In.

Find us at www.keysight.com Page 82

http://www.keysight.com/

Additionally, in the case of using a remote controller card, like theM9023A PXI SystemModule used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis, backplane REF and LOCK LED lights are lit in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED
lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 83

Formore details on the Keysight PXIe Chassis Family see: www.keysight.com.

Find us at www.keysight.com Page 84

http://www.keysight.com/

Sequencer
This section describes the Sequencer class, it contains the following sections:

l HVI SyncSequence and Sequence
l HVI API Statements
l InstructionSet
l FPGA Sandbox View
l HVI Registers and Scopes
l HVI Compilation

You use this class to program and compile your sequences.

l Use the SyncSequence class to program your sequences.
l The SystemDefinitionView class enables you to see the system definition you have set up, but you
cannot modify it.

l The HVI instance Hvi, is generated once the sequencer is compiled.

The following diagram shows the Sequencer classes:

Find us at www.keysight.com Page 85

Find us at www.keysight.com Page 86

HVI SyncSequence and Sequence

There are two types of HVI sequence classes: SyncSequence and Sequence. The
SyncSequence and Sequence classes enable HVI sequence programming and usage. HVI uses the
SyncStatement class tomanage all of the Engine sequences simultaneously. The class exposes the add
statement methods such as SyncSequence.add_sync_while(). All of the statements that are added are
collected in the SyncStatement class.

All synchronization and timing are added within each synchronized statement so all sequences across the HVI
are coordinated precisely. The SyncMultiSequenceBlockStatement exposes local flow control and instruction
statements that are sent by the Sequence object. The other instructions are all synchronized across all the
sequences in the HVI.

An HVI sequence contains the list of HVI Local statements and instructions to be executed by the HVI engine.

The Sequence class exposes the add statement methods such as add_while(), etc. Local flow control (If,
While) are added directly to the sequence. All local instructions are added using add_instruction(). The list of
available statements for the add_instruction() statement are shown by the arrow.

The sequence stores a collection of all the statements added to it, along with the scope Variables and Registers
needed for this sequence. These are sent to a SyncMultiSequenceBlockStatement. This class exposes
access and execution of Local statements.

Find us at www.keysight.com Page 87

The following diagram shows the SyncMultiSequenceBlockStatement class:

Find us at www.keysight.com Page 88

HVI API Statements

This section describes the HVI Statements in the HVI API that you use to program HVI Sequences. The
functions of each statement are explained in detail together with Python code examples showing how to
program the statements with the HVI Python API. The execution of each statement within a sequence is
explained by means of a corresponding HVI diagram.

Sync Statements
Sync statements are the building blocks used to program Sync sequences. The following types of Sync
statement are available:

l Sync while.
l Sync multi-sequence block.
l Sync Register-sharing.

Sync While

The Sync while statement is a type of Sync statement that is defined by the API class SyncWhileStatement. A
Sync while enables you to synchronously executemultiple local sequences while a condition you specify is
met. The Sync while condition is evaluated each time at the beginning of the statement execution. If the
condition is true, an iteration of the Sync while statement is executed. If the condition is false, the HVI execution
jumps to the statement following the Sync while.

You can add other Sync statements inside a Sync while. To define local sequences within the Sync while, you
must use a Sync multi-sequence block.

Sync while is shown in the following diagram:

If you are using a Sync while across multiple engines, during the Sync while statement execution, one of the
engines is set to the role of Primary, the remaining engines have the role of Secondary.

Find us at www.keysight.com Page 89

l Primary

The condition of the Sync while statement is evaluated in this engine and the result is propagated to the
other engines through hardware resources, for example, PXI triggers in a PXI platform.

l Secondary

A Secondary enginemonitors the result of the condition and acts on this following the Primary.

The condition expression assigned to the Sync while must use resources that belong to the sameHVI engine.
The Primary engine of the Sync while is selected automatically by the HVI compiler from the condition
expression.

The following code example shows how to add a Sync while statement and access the Sync sequence in the
Sync while.

Configure Sync While Condition
sync_while_condition = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.GREATER_THAN, 10)
#
Add Sync While to a sync-sequence
sync_while = my_sync_seq.add_sync_while("sync_while", 10, sync_while_condition)
#
Access the sync sequence in the Sync-While and add Sync-Statements inside
sync_block = sync_while.sync_sequence.add_sync_multi_sequence_block("exec_block",10)

Sync Multi-Sequence Block

Sync Multi-Sequence Blocks are a type of Sync statement that contains a set of local sequences. It serves as a
container and boundary between sections, where each local sequence executes on an individual engine within a
specific instrument.

The Sync multi-sequence block enables you to program each engine to do specific operations and run them on
each engine concurrently. The Sync multi-sequence block synchronizes all the engines so that all Local
sequences start exactly at the same time and that the sync sequence remains synchronous afterwards. You
can define which Local statements each engine is going to execute and the exact time each Local statement
starts to execute with respect to the previous one.

The following diagram shows a Sync multi-sequence block:

Find us at www.keysight.com Page 90

The following code snippet shows a Sync multi-sequence block being added with the call add_sync_multi_
sequence_block(). The second line of code shows how a Local sequence is obtained and an instruction is
added to it:

Add Sync Multi-Sequence Block
sync_block = keysight_hvi.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs")
Add instruction to a local sequence in the block
sequence = sync_block.sequences["Main Engine"]
inst = sequence.add_instruction("Add Instruction", 10, seq.instruction_set.add_
instruction.id)

Sync Register-Sharing

Sync Register-sharing enables you to share data from a source Register to a destination Register in any engine
in your HVI. Specifically, you share the contents of N adjacent bits from a source Register to a destination
register.

Sync Register-sharing is defined in and programmed using the class SyncRegisterSharingStatement.

In the following code example, Sync Register-sharing is used to share the content of the digitizer
Register feedback and write into the AWGRegister wfm_id:

Find us at www.keysight.com Page 91

Digitizer registers
feedback = keysight_hvi.sync_sequence.scopes["Dig Engine"].registers.add("Feedback Reg",

keysight_hvi.RegisterSize.SHORT)
feedback.initial_value = 0
#
AWG registers
wfm_id = keysight_hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID",

keysight_hvi.RegisterSize.SHORT)
wfm_id.initial_value = 0
#
Add sync register sharing
bits_to_share = 3
sync_while_2.sync_sequence.add_sync_register_sharing("Share feedback->wfm_id", 10, steps,

wfm_id, bits_to_share)

Local Statements

Programming Local Sequences

Local sequences can be programmedwithin a Sync multi-sequence block or within a Local while or Local If,
Local flow-control statements. The following code shows an example of Local sequence programming within a
Sync multi-sequence block.

Add statements to each local sequence within the Sync multi-sequence block
HVI Local sequence collection is automatically created form the
user-defined HVI Engine Collection
Each HVI Local sequence can be retrieved using the Name of the corresponding HVI Engine
sequence = sync_block.sequences[engine_Name]
#
Add FP Trigger ON to all instruments
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id,

instr_trigger_write.sync_mode.IMMEDIATE)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.ON)

Instruction Statements

Instruction statements are operations that can be executed by the instrument hardware within an HVI
sequence. There are two types of instruction statements:

l Instrument-specific HVI instructions
l HVI-native instructions

Instrument-Specific HVI Instructions

Instrument-specific HVI instructions are specific to individual instruments. They are defined by the instrument
add-on API and exposed in each instrument driver as instrument specific HVI definitions. Instrument specific

Find us at www.keysight.com Page 92

HVI instructions can change instrument settings such as amplitude, frequency, or trigger an instrument function
such as output a waveform or trigger a data acquisition. For example, theM3xxxA documentation describes all
the HVI instructions available for each of theM3xxxA PXI instruments.

The following code is an example of using the awgQueueWaveform custom instruction that is part of the HVI
instruction set of the Keysight M320xA AWG instrument. The example shows how to add an instrument specific
HVI instruction to a Local sequence using the add_instruction() API method. The code also shows how to
set the instruction parameters using the set_parameter() API method:

Retrieve engine sequence
seq = sync_block.sequences["engine_0"]
Add and program AWG Queue Waveform instruction
instr_queue_wfm = module.hvi.instruction_set.queue_waveform
instruction0 = seq.add_instruction("awgQueueWaveform", 10, .id)
instruction0.set_parameter(instr_queue_wfm.waveform_number.id,

seq.registers[waveformNumberRegisterName])
instruction0.set_parameter(instr_queue_wfm.channel.id, nAWG)
instruction0.set_parameter(instr_queue_wfm.trigger_mode.id,

keysightSD1.SD_TriggerModes.SWHVITRIG)
instruction0.set_parameter(instr_queue_wfm.start_delay.id, startDelay)
instruction0.set_parameter(instr_queue_wfm.cycles.id, nCycles)
instruction0.set_parameter(instr_queue_wfm.prescaler.id, prescaler)

HVI-native instructions

HVI-native instructions are available on all Keysight instruments. These are general purpose and
instrument independent. They include Local instructions and Local flow-control statements. The HVI-native
instructions and parameters are defined in the interface hvi.instruction_set.

The set of HVI-native instructions include:

l Action Execute: AWG trigger, DAQ trigger.
l FPGA Register Read.
l FPGA RegisterWrite.
l FPGA Memory MapWrite.
l FPGA Memory MapRead.
l Register Increment.
l Front Panel Trigger ON/OFF.
l Register Assign.

Action Execute: AWG trigger, DAQ trigger

To add actions to an HVI sequence, youmust add them to the instrument's HVI engine with the API add
() method of the ActionCollection class.

Once the required actions are added to the list of the HVI engine actions for the instruments, an instruction to
execute them can be added to the instrument's sequence using the HVI API

Find us at www.keysight.com Page 93

class InstructionsActionExecute. One or multiple actions can be executed at the same time within the same
Action Execute instruction.

The following code example shows an Action Execute instruction:

Previously defined actions to be executed within the experiment
awg_trigger_12 = [hvi.sync_sequence.engines["engine_Name"].actions["previously_defined_
action_1"],

hvi.sync_sequence.engines["engine_Name"].actions["previously_defined_action_2"]]
#
AWG trigger CH1, CH2 - Generates first pulse
sequence = sync_block_2.sequences["engine_Name"]
inst_awg_trigger = sequence.add_instruction("AwgTrigger(CH1, CH2)",

10, sequence.instruction_set.action_execute.id)
inst_awg_trigger.set_parameter(hvi.instruction_set.action_execute.action.id,

awg_trigger_12)

FPGA Register Read

Instruction fpga_register_read is an HVI-native instruction that enables you read from anHVI Port Register.
The value read from the HVI Port Register is written to a destination HVI Register.

The following code example shows an FPGA Register Read instruction:

Read FPGA Register Register_Bank_HviAction4Cnt
sequence = sync_block_1.sequences["engine_Name"]
register_destination= hvi.sync_sequence.scopes["engine_Name"].registers.add("register_
destination", keysight_hvi.RegisterSize.SHORT)
hvi_register = hvi.sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_registers["hvi_register"]
readFpgaReg0 = sequence.add_instruction("Read FPGA Register_Bank_HviAction4Cnt", 10,

sequence.instruction_set.fpga_register_read.id)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.destination.id,

register_destination)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.fpga_register.id,

hvi_register)

FPGA Register Write

Instruction fpga_register_write is an HVI-native instruction that enables you to write an HVI Port Register
placed in an FPGA sandbox. The value to be written to the HVI Port Register is taken from anHVI Register or
from a literal.

The following code example shows an FPGA RegisterWrite instruction:

Find us at www.keysight.com Page 94

Write FPGA Register Register_Bank_HviPxiTrigOut
NOTE: Please allow at least 50 ns between these instructions to ensure the HVI register
action4_cnt is updated before writing its content to PXI lines
register_value= hvi.sync_sequence.scopes["engine_Name"].registers.add("register_value",

keysight_hvi.RegisterSize.SHORT)
hvi_register = hvi.sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_registers["hvi_register"]
seq = sync_block_1.sequences["engine_Name"]
writeFpgaReg0 = seq.add_instruction("Write FPGA Register_Bank_HviPxiTrigOut",

50, hvi.instruction_set.fpga_register_write.id)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.fpga_register.id,

hvi_register)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.value.id,

register_value)

FPGA Memory Map Write

Instruction fpga_array_write is a HVI-native instruction that enables you to write to an HVI Port Memory Map
that is located in an FPGA sandbox. The value to be written to the HVI Port Memory Map is taken from anHVI
register or from a literal.

The following code example shows an FPGA Memory MapWrite instruction:

Register, Memory map objects
register = sync_sequence.scopes["engine_Name"].registers.add("register_value",

keysight_hvi.RegisterSize.SHORT)
hvi_memory_map = sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_memory_maps["memory_map_Name"]
#
Write Memory Map
seq = sync_block_1.sequences["engine_Name"]
writeMemoryMap = sync_block_1.sequences["engine_Name"]

.add_instruction("Write FPGA Memory Map", 10,
seq.instruction_set.fpga_array_write.id)

writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map.id,
hvi_memory_map)

writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.value.id, register)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write

.fpga_memory_map_offset.id, 0)

FPGA Memory Map Read

Instruction fpga_array_read is an HVI-native instruction that enables you to read from anHVI Port Memory
Map. The value read from the HVI Port Memory Map is written to a destination HVI Register.

The following code example shows an FPGA Memory MapRead instruction:

Find us at www.keysight.com Page 95

Register, Memory map objects
register = sync_sequence.scopes["engine_Name"].registers.add("register_value",

keysight_hvi.RegisterSize.SHORT)
hvi_memory_map = sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_memory_maps["memory_map_Name"]
#
Read Memory Map
seq = sync_block_1.sequences["engine_Name"]
readMemoryMap = sync_block_1.sequences["engine_Name"].add_instruction

("Read FPGA Memory Map", 20, hvi.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map.id,

hvi_memory_map)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.destination.id, register)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map_offset.id,

0)

Register Increment

You can implement a Register Increment within a sequence with the class InstructionsAdd. The same
instruction can be used to add Registers and constant values (operands) and put the result in another Register
(result). To increment the Register, it must have been added previously to the scope of the corresponding HVI
Engine.

The following code shows an example of Register Increment:

Previously defined
counter = sync_sequence.scopes["AWG Engine"].registers.add("Counter Reg",

keysight_hvi.RegisterSize.SHORT)
#
Increment counter register
instruction = awg_sequence.add_instruction("Increment counter", 10,

awg_sequence.instruction_set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

Front Panel Trigger ON/OFF

The following code example shows a Front Panel Trigger ON/OFF instruction. The instruction is added to the
sequence with the method add_instruction(). Instruction parameters are set using the API method set_
parameter(). All HVI-native instructions and parameters are defined in the hvi.InstructionSet interface.

Add FP Trigger ON to all instruments
sequence = sync_block.sequences[engine_Name]
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id,

instr_trigger_write.sync_mode.IMMEDIATE)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.ON)

Find us at www.keysight.com Page 96

Register Assign

A Register assign statement can be used to initialize a Register to an initial value using the instruction
class InstructionsAssign from the Python HVI API. The same instruction can be used to assign a Register
value (source) to another Register (destination). Each Register can also be initialized outside an HVI sequence,
before its execution, by using the API property Register.initial_value.

The following code shows an example of Register Assign:

Previously defined registers
wfm_id = hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID",

keysight_hvi.RegisterSize.SHORT)
#
Initialize Waveform ID
seq = sync_block_1.sequences["AWG Engine"]
instruction = seq.add_instruction("Initialize Wfm ID", 10, seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.assign.destination.id, wfm_id)
instruction.set_parameter(seq.instruction_set.assign.source.id, 0)

Local Flow-Control Statements

Local flow-control statements execute within Local sequences. These includeWait statements, loops such as
While, and conditional execution like If-Elseif-Else. Local flow-control statements include:

Local If-Elseif-Else statement

These statements are depicted with a yellow box in the flow charts displayed in this User Manual.

Local While statement

Executes while a condition is true.

Local Wait-for-Event statements

Waits for a condition which can be determined by an HVI Event, an HVI Trigger or any logical combination
of any of these types of conditions.

Local Wait-for-Time statements

Waits for an amount of time specified in a Register.

All Local flow-control statements except Wait statements include one or more Local sequences. For instance,
Local while statements have a single sequence and the Local If-Elseif-Else Statement can havemultiple
sequences. These statements have the following common characteristics:

l Sequences in flow-control statements can contain any statement including Local flow-control statements.

l Only Local statements can be added inside Local sequences and consequently inside Local flow-control

Find us at www.keysight.com Page 97

statements. You cannot add Sync statements inside Local flow-control statements.

Local If-Elseif-Else Statement

The If-Elseif-Else Local flow-control statement conditionally executes different possible Local sequences
according to the value of a defined condition.

The conditions are evaluated in the order they are inserted. The possible sequences are:

l At least one sequence that is conditionally executed. This is themain If branch.
l Optional conditional sequences where their conditions are evaluated in order. The first sequence with a true
condition is executed if the conditions in previous branches evaluated false. These are the Elseif branches.

l One optional Else sequence, which is executed if all above previous conditions evaluate to false. This is the
Else branch.

The Local If-Elseif-Else flow-control statement is graphically represented by the following diagram:

The class IfStatement enables you to add an If-Elseif-Else loop within themain HVI sequence of any HVI
Engine. The If-Elseif-Else statement contains one or more If branches and an Else branch. The instructions and
statements contained in each If or Else branch are executed if the condition of each branch is met. The condition
of each branch can be defined using the API class ConditionalExpression. The branch sequences can be
programmed using the same API methods and classes used to program themain HVI sequence, using the
classes IfBranch and ElseBranch.

The following code is an example of an If-Elseif-Else statement:

Find us at www.keysight.com Page 98

Configure IF condition
if_condition = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.SMALLER_THAN, 10);
#
Set flag that enables to match the execution time of all the IF branches
enable_matching_branches = True
if_statement = my_sync_multi_seq_block.add_if("MyIfBlock", 10, if_condition,

enable_matching_branches)
#
Program IF branch
if_sequence = if_statement.if_branch.sequence
#
Add statements in if-sequence
instruction = ifSequence.add_instruction("ExecuteAction0", 10,

if_sequence.instruction_set.action_execute.id)
instruction.set_parameter(...) ...
#
Program Else-If branches
Else-If Condition
else_if_condition_1 = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.SMALLER_THAN, 15)
else_if_branch_1 = if_statement.else_if_branches.add(else_if_condition_1)
#
Program Else-If branch
else_if_sequence_1 = else_if_branch_1.sequence
#
Add statements in Else-If-sequence
instruction = else_if_sequence_1.add_instruction("SetFrequency", 10,

module.HVI.instruction_set.set_frequency.id)
instruction.set_parameter(...) ...
#
Eventually add more Else-If-branches
else_if_condition_2 = ... else_if_branch_1 =
#
Else-branch
Program Else branch
else_sequence = else_branch.sequence
#
Add statements in Else-sequence
instruction = else_sequence.add_instruction(...) ...

Local While Statement

The Local While flow-control statement is defined by executing the same sequence in a loop while the condition
is met.

The following diagram shows how a Local while is represented graphically:

Find us at www.keysight.com Page 99

The following code is an example of a Local while statement:

Configure while condition
while_condition = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.NOT_EQUAL, 1)
#
Add WHILE sequence within the sequence of "engine_0"seq = sync_block.sequences["engine_
0"]
while_loop = seq.add_while("While Loop", 10, while_condition)
#
Program local while sequence
instruction = while_loop.sequence.add_instruction("Initialize Pulse Counter",

10, seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(seq.instruction_set.add.source.id, 0)

Local Wait-for-event Statement

The Local Wait-for-event statement causes the HVI sequence to stop and wait for a condition to evaluate
true. Once the condition is true, for example the selected event occurs, the next instruction is executed.

The Local Wait statement is implemented with the API class WaitStatement. This sequence block statement
sets an instrument to wait for a condition. The condition can be defined by a trigger, an event, or a combination of
them using logical operators.

In the following example, the wait is used to set a digitizer instrument to wait for an external front panel trigger.
TheWait statement is set to wait for a trigger falling edge using the .waitmode keysight_
hvi.WaitMode.TRANSITION combined with a trigger configuration as ACTIVE_LOW. The sync mode keysight_
hvi.SyncMode.IMMEDIATE sets the wait event to let the execution continue immediately, that is, as soon as the
trigger event is received:

Find us at www.keysight.com Page 100

Trigger resource to be used as a wait condition
fp_trigger_id = module_list[0].hvi.triggers.front_panel_1
fp_trigger = sync_sequence.engines[digitizer_engine_Name].triggers.add(fp_trigger_id,

"FP Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured
as keysight_hvi.Direction.INPUT
fp_trigger.configuration.direction = keysight_hvi.Direction.INPUT
fp_trigger.configuration.drive_mode = keysight_hvi.DriveMode.PUSH_PULL
fp_trigger.configuration.polarity = keysight_hvi.TriggerPolarity.ACTIVE_LOW
fp_trigger.configuration.hw_routing_delay = 0
fp_trigger.configuration.trigger_mode = keysight_hvi.TriggerMode.LEVEL
#
Define the condition for the wait statement
wait_condition = keysight_hvi.Condition.trigger(hvi.sync_sequence.engines[digitizer_engine_
Name].triggers["FP Trigger"])
#
Add a Wait For Event
wait_event = sync_block_1.sequences[digitizer_engine_Name].add_wait("Wait for FP Trigger",

100, wait_condition)
wait_event.set_mode(keysight_hvi.WaitMode.TRANSITION, keysight_hvi.SyncMode.IMMEDIATE)

Local Wait for Time

TheWait for Time statement causes the sequence to wait for a certain time specified by an HVI Register. Once
the time is elapsed, the sequence will continue.

The following code is an example of aWait-time statement:

Wait Time makes the HVI sequence wait for an amount of time specified by
a register (register 'tau' in this example)
#
waitTau = sync_block.sequences["digitizer_engine"].add_wait_time("WaitTau", 10, tau)

Local Delay Statement

The Local Delay statement delays the sequence for a time you specify. The delay is specified in nanoseconds.

The following code is an example of a Local Delay statement:

Delay makes the HVI sequence wait for an amount of time specified by a constant
#
wait = sync_block.sequences["digitizer_engine"].add_delay("Delay", 30)

Find us at www.keysight.com Page 101

InstructionSet

HVI instructions can be of two types: HVI-native instructions or instrument specific instructions.

l Instrument-specific instructions are documented in the instrument user guides.

l HVI-native instructions are part of the InstructionSet class shown in the following diagram.

The InstructionSet class contains the set of available HVI-native instructions that can be executed within an
HVI statement. These include instructions for:

l Register arithmetic.

l Reading and writing I/O trigger ports.

l Executing actions.

l Communicating with the instrument sandbox using an HVI Host Interface, previously called an HVI Port.

HVI-native instructions are executed within an instruction execute statement, this is the sameway the
instrument-specific HVI Instructions are executed.

The following diagram shows the InstructionSet classes:

Find us at www.keysight.com Page 102

Using the instruction set
You program HVI instructions into local sequences with the add_instruction() API method. You can set
instruction parameters with the set_parameter() API method and set each parameter with its parameter.id
property. Some instruction parameters must be set to literal values or to an HVI register, for example, the source
and destination parameters in the InstructionAssign from the native InstructionSet.

You can set other instruction parameters such as the SyncMode and TriggerValue of the TriggerWrite
instruction to one value of a pre-defined set of possible values. In this case, the possible values available are
stored in properties contained within the parameter object.

Pseudo-code explaining the HVI instruction programming concept
hvi_instr = sequence.instruction_set.hvi_instruction_X
instr = sequence.add_instruction("My HVI Instruction", 10, hvi_instr.id)
instr.set_parameter(hvi_instr.parameter_A.id, hvi_instr.parameter_A.VALUE_1)
instr.set_parameter(hvi_instr.parameter_B.id, hvi_instr.parameter_B.VALUE_XY)

Trigger write instruction example
The following example shows an example of the trigger_write native instruction. For themeaning of each
parameter value, see the HVI Python API help that is installed with PathWave Test Sync Executive. It is
located at: file:///C:/Program_Files/Keysight/PathWave_Test_Sync_Executive_
2020/api/python/Help/index.htm

Parameters for the HVI-native instruction: sequence.instruction_set.trigger_write

Parameter ID Parameter Value

trigger.id Trigger object taken from
the TriggerCollection
class

sync_mode.id sync_mode.IMMEDIATE

sync_mode.SYNC

value.id value.ON

value.OFF

The following example code shows a trigger_write instruction.:

Write FP Trigger to ON value
fp_trigger = awg_engine.triggers["FP Trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id,

trigger_write_instr.sync_mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.ON)

Instrument-specific HVI instructions

Find us at www.keysight.com Page 103

You program instrument-specific instructions into your HVI sequences using the samemethod as HVI-native
instructions, that is, you add Instrument-specific instructions to local sequences with the add_instruction()
API method. Parameters of instrument-specific instructions are also set with the set_parameter() API
method. For documentation on instrument-specific instructions and their parameters, see the user manual of
your specific instruments. For M3xxxA PXI instruments, the information is located in the SD1 3.x Software for
M320xA / M330xA Arbitrary Waveform Generators User's Guide available on www.keysight.com.

Find us at www.keysight.com Page 104

https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
http://www.keysight.com./

FPGA Sandbox View

This section describes the FPGA Sandbox View.

The following diagram shows the classes:

FPGASandbox and MemoryMaps
The FpgaSandboxView object provides access to FPGA memory maps by providing handles to FPGA Registers
andmemory maps defined in the FPGA memory. You can use FpgaRegisterView and FpgaMemoryMapView as

Find us at www.keysight.com Page 105

parameters for HVI instructions for reading or writing FPGA memory. The FpgaSandboxView object can be used
in the sequencer after the PathWaveFPGA project has been loaded as part of the system definition.

FpgaRegisterView
Once the sandbox project is loaded, you can access the contents of the FPGA sandbox and use them as
parameters for HVI instructions. The FPGA write operation can accept Registers and literal values as
parameters. The following example shows writing FPGA Registers:

Retrieve FPGA register object from FPGA registers collection
All sandbox object collections are populated when loading a bit file generated by
PathWave FPGA
fpga_register_view = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_
NAME].fpga_registers[FGPA_REGISTER_NAME]
Write FPGA register
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write",

10, fpga_regw_instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id,

fpga_register_view)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)

FpgaMemoryMapView
Like FPGA Registers, the FpgaMemoryMapView can be used after the PathWaveFPGA project has been
loaded. The destination of FPGA read operationmust be a Register. The following example shows how you use
it to read from an FPGA memory map:

Retrieve memory map object from memory maps collection
All sandbox object collections are populated when loading a bit file generated by
PathWave FPGA
memory_map = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_
maps[FGPA_MEMORY_MAP_NAME]
Read Memory Map
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns,

fpga_arrayr_instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, 1)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

Find us at www.keysight.com Page 106

HVI Registers and Scopes

HVI Registers
HVI Registers are the hardware Registers provided by HVI engines. Like Variables in a programming language,
Registers can be used as parameters for instructions and statements and aremodified in real-time during the
sequence execution. The number of HVI Registers available is defined by the instrument (see HVI engine
settings HviRegCount). Since HVI Registers belong to specific HVI engines, they cannot be accessed by other
HVI engines. Explicit HVI Register sharing instructions are required to transfer data between HVI Registers.
HVI Registers are defined by adding them to the HVI Register collection bound to HVI scopes.

HVI Scope
HVI Sync sequences and HVI Local sequences both include the concept of scope for Registers, similar to
programming languages such as C. The concept of scope is necessary to define what HVI Registers, or
memory resources can be used within each HVI Sequence, and when they can be used.

A specific scope is associated with a specific sequence and HVI engine. HVI Registers can be created only
within the Global Sync sequence scope but they can be retrieved from any child sequence scope. The Registers
created within the scope of a parent sequence are visible to its children sequences and can be accessed using
their scope. HVI Registers are always defined with a clear connection to a specific engine and their visibility
propagates only into child sequences that execute on the same engine. HVI engines do not have visibility of,
and cannot access Registers that are in scopes of other engines.

NOTE Registers can only be added to the HVI top Sync sequence scopes. This means that you
can only add global Registers that are visible in all child sequences.

NOTE Registers are created using the sequencer class, but to read/write Registers during HVI
execution, you must use the RegisterRunTime class within the Hvi class. For more
information see Hvi.

The following diagram shows the scope concepts. The eye icon is used to represent the visibility in child
sequences of the Register belonging to the scope of parent sequences.

Find us at www.keysight.com Page 107

Find us at www.keysight.com Page 108

The scope of each HVI sequence is managed through the Scope class. Each HVI Local sequence is an
instance of the Sequence class and it is associated to a specific HVI engine and has its own Scope
object. SyncSequences are associated tomultiple HVI engines and consequently have an HVI Scope collection
that contains a Scope for each associated HVI Engine. The HVI Scope collection is an instance of the
ScopeCollection class and contains objects instance of the Scope class, one Scope object for each HVI
Engine. Each HVI Scope object can be accessed from the Scope collection using the sameName as the
corresponding HVI engine. HVI Scope objects are used to define the HVI Registers within a sequence.

To use Registers in HVI sequences, youmust define them beforehand in the Register collection within the
scope of the corresponding HVI sequence. You can do this using the RegisterCollection class that is within the
Scope object corresponding to each sequence.

The following diagram shows the Scope classes and their relationship to the Sequence and SyncSequence
classes:

Find us at www.keysight.com Page 109

Find us at www.keysight.com Page 110

HVI Compilation

Once you have programmed all of your HVI Sequences, the next step is to compile them. The
compilation process returns the Hvi object that is used to run the created sequences on hardware. Call
the compile() method in the Sequencer object to perform the compilation operation. If successful,
this method returns an Hvi object, if the compilation fails, it throws an exception.

The compilation process translates the programmed sequence into binary instructions to be loaded into the
hardware. During this process, the compiler applies the compilation rules, evaluates the specified constraints,
and determines if the number of resources required (PXI triggers, actions, events, Registers) is available in
hardware and can be acquired. The compiler returns an error if any of the HVI statements was not programmed
properly inside the HVI sequence or if any of the HVI resources aremissing or not registered properly.

Information returned
The value returned from the compilation procedure is an Hvi object. This object can be used to:

l Load and execute the binary instructions by each engine.
l Retrieve the CompileStatus object.

Errors returned
If the compilation fails, the object keysight_hvi.CompilationFailed is thrown. This contains
the CompileStatus object.

In the following Python snippet, the CompileStatus object is retrieved from the exception object thrown:

try: hvi = sequencer.compile() print('Compilation completed successfully!') except
kthvi.CompilationFailed as err: print('Compilation failed!') compile_status = err.compile_
status print(compile_status.to_string()) # This line will print all the errors and warnings
collected during compilation raise err

Compile Status
The CompileStatus object contains the following information:

l The warning and error messages generated by the compilation.
l Information about the PXI sync resources that must be reserved.
l The elapsed time of the compilation process.

The following diagram shows the CompileStatus classes and the information they contain:

Find us at www.keysight.com Page 111

Find us at www.keysight.com Page 112

Hvi

This section describes the Hvi class, it contains the following sections:

l Load to Hardware and Run

The Hvi object is the actual HVI instance. This is ready to be loaded to hardware and executed. It contains the
runtime versions of the objects you set up with the SystemDefinition and Sequencer classes. The runtime
objects are the instances of the objects that operate while the HVI is running. You cannot modify these objects
at runtime, but you can access resources such as HVI Registers or an FPGA memory map.

NOTE The Hvi is the runtime object. once you have compiled it, you can no longer change
resources or sequences.

The following diagram shows the classes:

Find us at www.keysight.com Page 113

The following diagram shows the classes from EngineRuntime:

Find us at www.keysight.com Page 114

ActionRuntime
Represents an action which can be passed to InstructionStatement.set_parameter as input parameters.

TriggerRuntime
Trigger provides an interface control and configure the hardware trigger controlled by HVI. This Instance can be
passed to InstructionStatement.set_parameter as input.

EventRuntime

Find us at www.keysight.com Page 115

The EventRuntime class is used to represent hardware events which are defined by the product and can be
used by HVI, for example, to activate TriggerRuntime.

RegisterRuntime
Represents instrument-defined hardware Registers that can be used like Variables in HVI sequences as
parameters for statements.
These Registers can be accessed andmodified by both HVI instructions in real-time during the sequence
execution and HVI software calls.
Registers can be treated as signed or unsigned.
The range of the value of a Register depends on the Register size andmust be within the signed or unsigned
range.

FpgaSandboxRuntime
This section describes the FPGA sandbox runtime.

FPGASandboxRuntime contains all the FPGA Registers andmemory maps available at runtime. The following
diagram shows the classes:

The FPGASandboxRuntime object can be obtained from the Hvi object:

Find us at www.keysight.com Page 116

SANDBOX_0_NAME = "sandbox0" sandbox = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_
0_NAME]

NOTE Hvi resources can only be read or written between load_to_hw() and release_hw() calls. Any
attempt to read or write resources without having the instrument loaded to hardware results in an
exception being thrown.

FPGA Registers

Once the Sequencer has been compiled and the HVI has been loaded to hardware, the Register can be read and
written. If the HVI is not loaded, an exception is thrown.

fpga_register = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_registers
[0]
hvi.load_to_hw()
fpga_register.write(1) # ok
hvi.release_hw()
fpga_register.write(1) # exception is thrown

FPGA Memory Maps

As with registers, FPGA Memory maps can be used after HVI has been loaded to hardware. They can only be
accessed, read, or written while the HVI is loaded to hardware.

fpga_memory_map = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_
maps[0]
hvi.load_to_hw()
fpga_memory_map.write(0x10, 0x1245) # ok
hvi.release_hw()
fpga_memory_map.write(0x10, 0x1245) # exception is thrown

Find us at www.keysight.com Page 117

Load to Hardware and Run

After the Hvi object is compiled, you retrieve it from the compilation output. To execute it, youmust load it to
hardware and run it. These operations are performed using the following API methods that are within the Hvi API
object:

To load the HVI to hardware call themethod hvi.load_to_hw().

The hvi.load_to_hw() method deploys HVI to hardware and does all of the resource configuration including:

l Synchronization resources.
l Trigger resources.
l Clocks.

The hvi.load_to_hw() method also loads the binaries containing information to execute the HVI sequences, to
the relevant HVI engines.

Once the HVI has been loaded to hardware, you can execute your sequences by calling hvi.run(). The HVI
execution in Hardware finishes when the HVI sequence reaches the end. The Stop()method can be used to
stop or cancel the HVI execution.

When the HVI has finished execution and it is not needed to run the HVI again, call themethod ReleaseHw() to
release or free all resources used by the HVI.

Find us at www.keysight.com Page 118

Chapter 6: Building an Application with the HVI API
This chapter describes the steps youmust follow to use the HVI API. If you do not follow these steps your
application shall not work correctly.

HVI uses program-within-a-program model. That is, the HVI enables you to define a program that runs on the
instrument's hardware while the software programs runs in parallel and can interact with the instruments. HVI is
also responsible for all the setup, compilation, and hardware executionmanagement. When you run your
application, it generates an HVI instance and the sequences within it are executed on the instruments.

Planning an HVI
Programming an HVI requires some planning. Youmust assign and set up resources before you can use them in
sequences. The resources you can use depend on your hardware set up, what instruments you have, what
capabilities they have, and how they are arranged. You set these up first and then you can assign the
capabilities as resources in your application.

Once the hardware is set up and resources assigned, you can write your sequences and set initialization
values. You create Sync sequences for globally synchronized operations, and you create Local sequences for
operations in the HVI engines in individual instruments.

When you have written your sequences, you call a compile command. After this, you upload the binaries to
hardware and execute your sequences. Before running the HVI, you can redefine the initial values and
configurations of the resources that are included in the HVI, such as HVI Registers for different Engines.

HVI API steps
To program anHVI youmust use the following steps:

1. Set up the HVI.
2. Write HVI sequences.
3. Compile your sequences.
4. Load to hardware.
5. Optionally modify Register's initial values.
6. Execute sequences.
7. Release.

1 Set up the HVI

Youmust first create an instance of a SystemDefinition object.

Create SystemDefinition instance
my_system = keysight_hvi.system_definition("Multi-chassis Setup")

When you have done this, specify the hardware and hardware resources that you require in your HVI:

Find us at www.keysight.com Page 119

l Define the hardware in your HVI.
l Define the HVI resources.
l Register the resources with relevant collections
l Initialize HVI hardware resources for the HVI

Define the hardware in your HVI

Add the hardware resources in your system to the SystemDefinition object, including:

l Chassis.
l Chassis interconnections.
l PXI trigger synchronization resources.
l Synchronization clocks.

Define the chassis

Add chassis with number or options
my_system.chassis.add(chassis_number)
my_system.chassis.add_with_options(chassis_number,
"DriverSetup=model=M9018B,NoDriver=True")

Define the chassis interconnects

Add interconnects
my_system.interconnects.add_M9031_modules(1, 1, 2, 1)

Define the synchronization resources

Add sync resources
my_system.sync_resources = [keysight_hvi.TriggerResourceId.PXI_TRIGGER0,

keysight_hvi.TriggerResourceId.PXI_TRIGGER1,
keysight_hvi.TriggerResourceId.PXI_TRIGGER2]

Define the clocks

This is only required when dealing with instruments that do not support HVI technology, or DUTs that have
specific clocking requirements. This is an advanced feature that most users do not require. If you think you
require it, please contact your application or support engineers.

clocks configuration
my_system.non_hvi_core_clocks = [100MHz]
my_system.non_hvi_system_clocks = [500MHz]

Find us at www.keysight.com Page 120

Define and configure HVI resources

Triggers, Actions, and Events are all HVI resources that can be used by the HVI engine and the HVI sequence
to interact with the outside world, that is, with other instruments, the instrument sandbox or any other external
entities.

Youmust define the resources you are going to use, and register them with collections from the engines you
want to use them with. Youmust do this for the following types of resources:

l HVI Engines
l Triggers
l Actions
l Events
l FPGA Sandbox resources

Define HVI Engines

First, youmust define the engines you want to use and add them to an engine collection. Themethod add_
engine returns an engine.

Add engines
engine0 = my_system.engines.add_engine(module.hvi.engines.main_engine, "Receiver")
engine1 = my_system.engines.add_engine(module.hvi.engines.main_engine, "Transmitter")

The procedure for defining and registering the other HVI resources follows the same pattern. As a first step, the
resourcemust be added to the corresponding collection using themethod add()within the classes
TriggerCollection, ActionColletion, EventCollection, etc.

For example, to define and register an event, do the following; There is an event collection for each engine. Get
the event collection with the property engine.events. This returns the EventCollection object. Add the
events you want to use to the to event collection with the add() method of EventCollection. To add each
event youmust specify both an event id and an event Name:

my_event = engine.events.add(module.HVI.events.PXI0, "My Event")

Actions, Triggers, and FpgaSandboxes all require their own collection classes, for
example ActionCollection is for Actions. Use the same procedure to get collections and add Actions,
Triggers, and FpgaSandboxes to their respective collections. The ID of engines, actions, events and triggers
related to a specific instrument are defined by the instrument API, typically within the instrument.hvi interface
of an instrument object. The code examples below illustrate some example definitions.

Define HVI actions

Find us at www.keysight.com Page 121

The following code example defines all HVI actions necessary to perform AWG trigger operations. The AWG
trigger actions for each AWG channel is defined and registered into the ActionCollection of the AWGengine
that needs to execute them in its local sequence.

Define AWG trigger actions for all AWG channels
for ch_index in range(1, num_channels + 1):

Actions need to be added to the engine's action list so that they can be executed
action_Name = "AWG Trigger CH" + str(ch_index) # arbitrary user-defined Name
instrument_action = "awg{}_trigger".format(ch_index) # Name decided by instrument API
action_id = getattr(instrument.hvi.actions, instrument_action)
my_system.engines[awg_engine_Name].actions.add(action_id, action_Name)

Define HVI events

The code example below adds the AWGCH1Waveform Start event to the event collection of anM320xA
AWG's HVI engine object called awg_engine. For further information onM320xA events see theSD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User’s Guide available on www.keysight.com.

wfm_start_event = awg_engine.events.add(instrument.hvi.events.awg1_waveform_start, "AWG CH1
Wfm Start Event")

Define HVI triggers

The code example below defines a Front Panel (FP) trigger to be used by a digitizer instrument. The
TriggerCollection is accessed through the dig_engine.triggers interface, where dig_engine is an HVI
Engine object.

Defines the FP trigger to be used as a wait condition by the digitizer
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same
instrument
fp_trigger_id = instrument.hvi.triggers.front_panel_1
fp_trigger = dig_engine.triggers.add(fp_trigger_id, "FP Trigger")
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured as
kthvi.Direction.INPUT
DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed by
the user
fp_trigger.config.direction = kthvi.Direction.INPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL

Define FPGA sandbox resources

The SandboxCollection is accessible through the engine.fpga_sandboxes interface of an engine object.
Unlike other HVI collections, this collection is already populated by a number of sandboxes where the number of
sandboxes depends on the instrument being used. Most instrument have a single sandbox region in their FPGA,

Find us at www.keysight.com Page 122

but some instruments may havemultiple. Sandbox objects do not need to be added to the collection, you only
need to access them.

NOTE: The M3xxxA_sandbox Name is not arbitrary and cannot be changed.
The sandbox Name is defined by each instrument. See SD1 3.x M3xxxA documentation for
further info
sandbox_Name = 'sandbox0'
awg_sandbox = awg_engine.fpga_sandboxes[sandbox_Name]

2 Write HVI Sequences

Before you can begin writing sequences, youmust:

Create a Sequencer object and pass the SystemDefinition to the Sequencer object:

sequencer = keysight_hvi.Sequencer("sequencer", my_system)

Define HVI Registers and initialize Register values

Define the Registers resource you require in each engine and use the add() method to add them to the Register
collection for that engine. Define their initial values:

loop_register = sequencer.sync_sequence.scopes["engine_1_Name"].registers.add("loop_
register", keysight_hvi.RegisterSize.SHORT)
loop_register.initial_value = 0

The Registers that you to use in the HVI sequences must be defined beforehand in the Register collection within
the scope of the corresponding HVI Sequence. This can be done using the RegisterCollection class that is
within the Scope object corresponding to each sequence. HVI Registers belong to a specific HVI engine
because they refer to hardware Registers of that specific instrument. Registers from one HVI engine cannot be
used by other engines or outside of their scope. Registers can only be added to the HVI top Sync sequence
scopes. This means that you can only add global Registers that are visible in all child sequences.HVI Registers
correspond to very fast access physical memory Registers in the HVI Engine located in the instrument
hardware. You can use HVI Registers as parameters for operations andmodify them during the sequence
execution, the same as Variables in a programming language. The number and size of Registers is defined by
each instrument.

To reserve a Register resource:

1. Get the Register collection from the engine you want to reserve the Register on.
2. Add the Registers you require. Use the add()method to the Register collection for that engine

Find us at www.keysight.com Page 123

NOTE Register size is defined by the following:

l SHORT = 32 bit
l LONG = 48 bit

After you have got the Sequencer object and set up the Registers you require, you can write the program the
HVI executes, this is composed of:

l Sequences.
l Statements.
l Instructions.
l Time restrictions.

To define your program youmust:

l Create sequences.
l Add statements and instructions.

The Global SyncSequence

WhenHVI starts execution, it starts in a global sequence SyncSequence, this is defined by
the Sequencer object. This is used in the previous example when the Registers were reserved:

engine_1_registers = sequencer.sync_sequence.scopes["engine_1_Name"].registers

Adding Sync Statements and Sync Sequences

You add Sync statements to the SyncSequence class with add_statementmethods such as
SyncSequence.add_sync_while():

Create Sync While statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS):
SYNC_WHILE_LOOP_ITERATIONS = 5
sync_while_condition = keysight_hvi.Condition.register_comparison(engine_1_registers
["loop_register"],

keysight_hvi.ComparisonOperator.LESS_THAN, SYNC_WHILE_LOOP_ITERATIONS)
sync_while = self.sequencer.sync_sequence.add_sync_while("sync_while", 100, sync_while_
condition)

You can also add Sync sequences within the global Sync sequence and add Sync statements within the Sync
sequences.

Adding Local Statements

Find us at www.keysight.com Page 124

To add local instructions or local flow-control operations, youmust add them within a Sync multi-sequence
block. Youmust add this Sync multi-sequence block within a Sync Sequence by using the add_sync_
multi_sequence_block()method:

Add a sync multi sequence block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_
block_1", 210)

To add the local statements, youmust get a Sequence object for each engine in the Sync multi-sequence
block and add them using the corresponding add_XXX() method. Local instructions can be added to a Sync
multi-sequence block using the add_instruction() method. For each instruction parameter, use the set_
parameter() method to set it.

By adding Local statements to the sequences, you define the Local sequence that each local engine executes in
parallel with the other engines.

Using Triggers, Actions, and Events.

The examples below provide an overview about how to use triggers, actions and events within an HVI
sequence.

Using Triggers

There are two typical use cases of trigger objects (previously defined by the user during system definition). The
first one is the usage of the trigger object as a wait condition inside aWait statement:

Add a wait statement that has a FP trigger as a condition
fp_trigger = awg_engine.triggers["fp_trigger"]
wait_condition = keysight_hvi.Condition.trigger(fp_trigger)
wait_event = awg_sequence.add_wait("wait for trigger", 10, wait_condition)

The second use case involves the TriggerWriteHVI Native instruction, where the trigger object can be used to
specify which electrical trigger line can be written from the HVI sequence:

Write FP Trigger to ON value
fp_trigger = awg_engine.triggers["fp_trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id, trigger_write_instr.sync_
mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.ON)

Using Actions

User-defined actions can be executed using the HVI native instruction ActionExecute. A list of actions
action_list, can be executed simultaneously within the same instruction. The action_list object must have
been be previously defined.

Find us at www.keysight.com Page 125

"Action Execute" instruction executes the AWG trigger from HVI
instruction = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

Using Events

The typical use case of events within HVI sequences is as a condition for aWait Statement:

Add a wait statement that waits for AWG CH1 queue to be empty
awg_queue_empty = awg_engine.events["Awg1QueueIsEmpty"]
wait_condition = keysight_hvi.Condition.event(awg_queue_empty)
wait_event = awg_sequence.add_wait("Wait for AWG Queue to be Empty", 10, wait_condition)

Using Sandbox FPGA Resources

To use FPGA Resources, the sandbox must be loaded using the load_from_k7z() method specifying the path
containing the .k7z file produced compiling a project designed using PathWave FPGA, for more information see
the PathWave FPGA UserManual on www.keysight.com. Once the sandbox is loaded, all the HVI registers
andmemory maps that were inserted in the specified PathWave FPGA project file can be accessed to be used
in the FPGA sequence. Please note that the sameNames used in the PathWave FPGA project must be used to
access the FPGA resources. In the following example, the register Name Register_Bank_MyCounter is not
arbitrary but assumed to be taken from the PathWave FPGA project that generated the
file MySandboxProject.k7z:

sandbox = engine.fpga_sandboxes["sandbox0"]
sandbox.load_from_k7z("MySandboxProject.k7z")
counter_register = sandbox.fpga_registers["Register_Bank_MyCounter"]

Types of instructions

There are two types of HVI instructions:

l HVI-native instructions.
l Instrument specific instructions.

HVI-native instructions

To use the HVI-native instructions, youmust use the InstructionSet class. You get this from the
local Sequence class.

Initialize loop_register
loop_reg = multi_seq_block.scope.registers["loop_register"]
awg_sequence = multi_seq_block.sequences["AWG Engine"]
instruction_a = multi_seq_block.add_instruction("loop_register = 0", 10, awg_
sequence.instruction_set.assign.id)

Find us at www.keysight.com Page 126

http://www.keysight.com/

instruction_a.set_parameter(awg_sequence.instruction_set.assign.destination.id, loop_reg)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.source.id, 0)
#
Increment pulse_counter
pulse_counter = multi_seq_block_1.scope.registers["pulse_counter"]
instruction = multi_seq_block_1.add_instruction("Increment Pulse Counter", 10, awg_
sequence.instruction_set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

Write to FPGA resources

The following example shows how to write to an FPGA Register and read an FPGA array. The process in both
cases is very similar:

Write FPGA register
fpga_register = engine.fpga_sandboxes[sandbox_Name].fpga_registers[register_Name]
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_
instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)
#
Read FPGA array
memory_map = engine.fpga_sandboxes[sandbox_Name].fpga_memory_maps[0]
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns, fpga_arrayr_
instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, loop_reg)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

The InstructionSet class contains the set of native instructions that can be executed within an HVI
statement, including:

l Register arithmetic.
l add / subtract.
l assign.

l Read/write I/O trigger ports.
l Communications operations with the instrument sandbox using an HVI Host Interface.

l FPGA Register read/write.
l FPGA array read/write.

l Action execute.
l Trigger write.

Find us at www.keysight.com Page 127

Instrument specific instructions

Instrument specific instructions are described in the documentation for the instrument. For example, the
following code shows how to set a channel amplitude value:

Set CH1 amplitude to 1.0 V:
instruction = multi_seq_block_1.add_instruction("Set CH1 amplitude to 1.0 V", 10,
instrument.hvi.instruction_set.set_amplitude.id)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.channel.id, ch1)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.value.id, 1.0)

3 Compile your sequences

After writing the Sequences, youmust add the command that compiles the HVI. Call the compile()method in
the Sequencer object to perform the compilation operation. The compile()method returns the HVI
instance Hvi.

Compile HVI sequences:
try:

hvi = sequencer.compile()
print('HVI Compiled')

except keysight_hvi.CompilationFailed as err:
print(err.compile_status.to_string())
raise err

NOTE At this point you can no longer modify sequences, actions, events or triggers.

The property hvi.sync_resources provides information about the PXI sync resources youmust reserve.

print("This needs to reserve {} PXI trigger resources to execute".format(len(hvi.sync_
resources)))

If the compilation fails, the object keysight_hvi.CompilationFailed is thrown. This contains compilation
error messages that you can print.

4 Load to hardware

Before your compiled sequences can be executed, they must be uploaded into the HVI engines in the instrument
hardware. To upload the compiled sequences, youmust use the Hvi method load_to_hw().

Load HVI to hardware:
hvi.load_to_hw()
print("HVI Loaded to hardware")

5 Optionally modify Register's initial values

The HVI execution can be parameterized using Registers, the initial value of all Registers are updated when
the run() method in Hvi is called. Tomodify the initial value of Registers in the HVI object, use:

Find us at www.keysight.com Page 128

Modify register initial value
value = 10
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.Name]
register_runtime.initial_value = value

Once the instrument has been loaded to hardware, you can write to the FPGA memory map.

memory_map.write(0, 1)
memory_map.write(1, 2)
memory_map.write(2, 3)

6 Execute sequences

To execute the binaries, call the run() method in Hvi. The HVI can be run in a blocking or non-blockingmode:

Blocking mode

In blockingmode the execution is blocked at the HVI execution code line for a fixed amount of time specified by
the timeout input parameter. If timeout = hvi.no_timeout is used as an input parameter, the execution can
be blocked until the HVI sequences finish their execution.

hvi.run(hvi.no_timeout)

Non-blocking mode

In non-blockingmode, the execution is not blocked. This enables you to initiate a second HVI instance to run in
parallel.

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution:
hvi.run(hvi.no_wait)
print("HVI Running...")

While and after execution is finished, you can read or write Registers and execute the binaries again.

Modify register initial value
value = 20
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.Name]
register_runtime.initial_value = value
hvi.run(hvi.no_timeout)

7 Release

To release all HVI resources and enable other applications or HVI instances to use the hardware, youmust
release the hardware. Your application cannot perform any operation with the hardware resources in the HVI
after this point.

Find us at www.keysight.com Page 129

Unlock and release hardware resources:
hvi.release_hw()
print("Releasing Hardware...")

Find us at www.keysight.com Page 130

Chapter 7: HVI Time Management and Latency

This section describes the timing and latencies of statement execution, how they impact the overall execution
timing of Sequences, and the constraints on the Start delay of statements. It also provides latency information
for the different statements and instructions.

Timing Concepts overview
The following diagram shows a simple timing diagram with two local instruction statements and the timing
when executed by the HVI engine. A complete description of timing concepts is included in the section HVI
Timing.

NOTE Instruction statements can overlap their execution. The Start delay B shown in the
diagram corresponds to the minimum time for the result of Statement A to be available to
the execution of Statement B, that is, the last execution cycle of Statement A overlaps
with the last Fetch cycle of Statement B. If the Start delay B is shorter then the result of
instruction A, it will not be available by the time Instruction B starts execution, for
instance, in the case that instruction A modifies an HVI register, instruction B would use
the previous value of the register.

Fetch time

This is the time interval required by the HVI engine to fetch and dispatch a statement for the actual
execution. Depending on the statement or instruction characteristics, for instance, the number of

Find us at www.keysight.com Page 131

parameters, a statement may take several HVI engine cycles to complete the fetch before the actual
execution can start. The Fetch time consumes HVI engine execution cycles.

Execution Time

This is the time interval from the Start time until the End time of the statement. This interval is determined
by constraints and inherent limits of the instrument, such as propagation delays and resource availability.

Start Delay

This is the user-definedminimum delay value, in nanoseconds, of the start of the current statement with
respect to the previous one. The range of this value is as follows:

l Theminimum boundary can be calculated by adding theStart Latency of the current statement and
the Fetch Time of the previous statement, if the previous statement is a local instruction, or the End
Latency for a sync or a flow-control statement.

l There is nomaximum boundary for the value.

Start Time

This can be distinguished in the following definitions:

l HVI Execution Start Time: This is the time 0 for the HVI execution. It always matches the rising edge of
the Sync Pulse.

l Statement Execution Start Time: The relative time in nanoseconds to the start of the execution of a
statement, with respect to HVI Execution Start Time.

Sequence Timing

Sequence Timing is the sum of all theStart Delay of all the statements in a sequence, plus, theExecution
Time values only for the flow-control or sync statements.

Using instruction latency information
The following examples illustrate how to use the latency information provided in the tables below and in the
instrument documentation. When an instruction requires the result from a previous operation, theminimum
Delay for the dependent, or 2nd instruction with respect to the 1st instruction, is given by this equation:

l MinDelay_Instr1_to_Instr2 = Instr1_ExecutionTime - Instr2_FetchTime

For those statements that include aminimum start delay, theminimum time is themaximum between the value
from the equation above and theminimum start delay.

Find us at www.keysight.com Page 132

NOTE The minimum start delay in the following tables is enforced by the compiler (a
compilation error is thrown if the specified value is not valid). The MinDelay resulting
from the previous calculation using the Fetch time is not enforced by the compiler. This
is because in some cases it is desirable to implement pipelines of operations and exploit
the fact that the next instruction uses the previous value of a register, before the previous
operation is completed.

Example 1: Add instruction followed by a local if statement

In this case there is an Add instruction that writes a register, and the new value of the register must be used for
the if condition.

1. Reg1 = RegN + 10 (Add)
2. If(Reg1 > 10) (the if uses the result of the previous Add instruction)

In this case, theminimal delay between the If and the previous Add using the fetch and execution timing is
calculated with this equation:

l MinDelay_If = Add_ExecutionTime - If_FetchTime = 8 - 4 = 4 cycles

However, for the If, theminimum start delay is 7 cycles (as presented in the tables below), so:

l MinDelay_If = max(4,7) = 7 cycles

Example 2: Add instruction followed by a Local Sync register-sharing statement

In this case there is an Add instruction that writes a register, and the new valuemust be shared to other
modules. Even though, Sync register-sharing statement is not a Local instruction statement, the timing
calculation and fetch time applies in the sameway.

1. Reg1 = RegN + 10 (Add)
2. SyncRegisterShare(Reg1) (sharing the result of the previous Add instruction)

In this case, theminimal delay between the Sync register-sharing and the previous Add is calculated with this
equation:

l MinDelay_SyncRegShare = Add_ExecutionTime - SyncRegShare_FetchTime = 8 - 1 = 7 cycles

The Sync register-sharing has nominimum start delay, so the result of the equation can be used as MinDelay_
SyncRegShare.

Local Instruction Timing Information
The following sub-sections list the Fetch and Execution latency for HVI native instructions and flow-control
statements. Unless stated otherwise, all times are expressed in HVI engine clock cycles. The HVI engine clock
frequency depends on each instrument. See the instrument-specific documentation for information on the HVI
engine clock frequency and instrument-specific instruction latencies.

Find us at www.keysight.com Page 133

HVI Native Local Instructions

Write Trigger

TriggerIOs are organized in groups of 16 triggers and each instruction can write up to 2 of those groups. The
Fetch time of the instruction is equal to the number of different TriggerIO groups included in the instruction
(#TriggerIOGroups) divided by two and then rounded up to the next integer. See the instrument documentation
for information about instrument TriggerIO definitions.

Instruction Execution time (cycles) Fetch time (cycles)

writeTriggerIO 1 + Ceil(#TriggerIOGroups/2) Ceil(#TriggerIOGroups/2)

Write Action

Actions are organized in groups of 16 actions and each instruction can write up to 2 of those groups. The Fetch
time of the instruction is equal to the number of different Actions groups included in the instruction
(#ActionGroups) divided by two and then rounded up to the next integer . See
the instrument documentation for information about instrument action definitions.

Instruction Execution time (cycles) Fetch time (cycles)

writeAction 2 + Ceil(#ActionGroups /2) Ceil(#ActionGroups /2)

ALU

ALU operations are defined as the register add, subtract or assign operations that are available in the HVI-native
instruction set.

Instruction Execution time (cycles) Fetch time (cycles)
Add 8 1

Subtract 8 1

Assign 5 1

FPGA User Sandbox

The FPGA registers andMemory map access latency from HVI depends on the instrument specific
implementation. The table below summarizes the latency for all FPGA read/write instructions, see the
instrument documentation for the specific value of HVI_FPGA_ProductDelay :

NOTE If an FPGA instruction that uses an HviRegister is issued after an FPGA instruction that
does not, the delay between both instructions has to be at least 3 cycles.

Consecutive FPGA read instructions must be issued with 1 cycle of delay in between.

Find us at www.keysight.com Page 134

Instruction Execution time (cycles) Fetch time (cycles)
fpga_array_read 2 * HVI_FPGA_ProductDelay+ 4 1

fpga_array_read (Address
from HviRegister)

2 * HVI_FPGA_ProductDelay+ 6 1

fpga_array_write HVI_FPGA_ProductDelay + 2 1

fpga_array_write (Address or
data from HviRegister)

HVI_FPGA_ProductDelay + 4 1

fpga_register_read 2 * HVI_FPGA_ProductDelay+ 4 1

fpga_register_write HVI_FPGA_ProductDelay + 2 1

fpga_register_write (Address
or data from HviRegister)

HVI_FPGA_ProductDelay + 4 1

Instrument-specific Local Instructions

See the instrument-specific documentation for information on the HVI engine clock frequency and instrument-
specific instruction timing information.

Local-FlowControl and Sync Statements
Local flow-control and Sync statements consumeHVI engine execution time and do not overlap their execution.
When you are calculating the timing of a sequence, youmust consider the execution time of these
statements. A complete description of timing concepts is included in the section HVI Timing.

Find us at www.keysight.com Page 135

Similarly for Sync statements:

Find us at www.keysight.com Page 136

Flow-control and Sync Statements additional timing parameters

When specifying the Start Delay related to flow-control statements, additional timing parameters must be
considered to calculate theminimum value that you can use for the Start delays. Using incorrect values results
in a compilation error. There are two different timing parameters, Latency andOverheads.

Latency parameters

Latency values are accounted for by HVI and included in the start delays and consequently impose aminimum
value to the start delays.

l Start-Latency: This is theminimum number of clock cycles a flow-control statement requires to start the
execution of the internal sequence(s). It is accounted by HVI as part of the Start delay of the statement and
this imposes a limit on its minimum value.

l Entry-Latency: This is theminimum number of cycles for the Start delay of the first statement of the internal
sequence(s).

l End-Latency: This is theminimum number of clock cycles a statement requires to exit the
internal sequence(s) execution before another statement can be executed. It is accounted by HVI as part of
theStart Delayof the next statement and this imposes a limit on its minimum value.

Runtime Overheads

These are extra clock cycles that are added during runtime of some flow-control or Sync statements, under very
specific conditions. These extra clock cycles are not accounted for by the HVI compiler and included in the Start
delays, so you user must account for them when doing calculations of the Execution Timing. The existing
overhead types are the following:

l Iteration-Overhead:Applies only to loop statements: Local-While, Sync-While. This is the number of cycles
added at the end of the statement for every iteration only when the internal sequencemust be repeated (that
is, it is not included in the last execution when exiting the statement).

l Exit-Overhead: Applies only to Sync Multi-Sequence Execution Blocks: This is the number of cycles
added from the last local instruction statement inside the Sync multi-sequence blocks, to the end of the block
where the start delay of the next statement is counted from.

Execution time

Unlike the local instructions statements, flow-control and Sync statement execution does not overlap and
consequently the execution timemust be added to the timing calculation. As illustrated in the timing diagrams
above, the Start delay of the next statement from a flow-control or Sync statement is measured from the end-
time of the statement. The diagram below illustrates how the Exit Latency and overhead impact the Execution
time and Start delay:

Find us at www.keysight.com Page 137

Local Flow-Control Statements

Wait

Wait statements block HVI execution in a Local sequence until an event occurs, or a specific amount of time
passes.

Description
Time (cycles)

Start-Latency

(minimum start-delay for the statement)

2

End-Latency 0

Find us at www.keysight.com Page 138

Instruction Execution time (cycles) Fetch time (cycles)

Wait time (Register) RegisterValue 1

Wait for event 4 + EventArrivalTime 1

Local If-Else

For if statements with multiple If / Else-If / else branches, theEntry delays are the same for all branches.

If thematch-branches attribute is enabled, the HVI ensures that the execution of all branches has the same
overall delay. If match-branches is not enabled, some branches might take less time than others.

The If statement latency depends on the number or register-conditions used, #Register_Conditions:

Find us at www.keysight.com Page 139

Description Minimum time (cycles)

Start-Latency

(minimum start-delay for the
statement)

l 5 + #Register_Conditions_IfBranch

Entry- latency(2)

(minimum start-delay for first
statement in branch #)

l if banch:
l 2

l nth elseif branch:
l 2 + (6 + #Register_Conditions) * n

l else branch:
l 1 + (6 + #Register_Conditions) * #elseif_
Branches

End-Latency (1)

(added in start-delay of next
statement outside the if
statement)

Max of one of the following cases:

l if branch:
l 1 + Fetch-Time => When last statement in
the branch is a local instruction

l 1 + End-Latency => When last statement in
the branch is a local-flow control

l other branches:
l 2 + Fetch-Time =>When last statement
in the branch is a local instruction

l 2 + End-Latency =>When last
statement in the if branch is a local-flow
control

(1) If match-branches attribute is enabled, the exit time is calculated only from the branch that has the longest
execution time.

(2) In the case that the branch is empty, the branch entry time must be accounted for in the total if execution
time when executing the branch.

Find us at www.keysight.com Page 140

Description Execution time (cycles) Fetch time (cycles)

If statement with matched
branches

Timing of the longest
branch sequence

3 + #Register_Conditions
(1)

If statement without matched
branches

Timing of the sequence in
the actual executed
branch (2)

(1)Fetch time for the condition evaluation.

(2)In this case the local-if statement forces a triggered-sync point. See Synchronization points .

Local While

Description Time (cycles)
Start-Latency

(minimum start-delay for the
statement)

5 + #Register_Conditions

Entry- latency

(minimum start-delay for first
statement inside the while loop)

2

End-Latency

(minimum start-delay for the
next instruction outside the
while loop)

[6 + #Register_Conditions + Fetch-Time] =>
when last statement in branch is a local instruction

or

[6 + #Register_Conditions + End-Latency]
=> when last statement in the branch is a local-
flow control

Find us at www.keysight.com Page 141

http://confluence.it.keysight.com/display/HAUD/Chapter_7_HVI_Time_Management_and_Latency#Chapter7:HVITimeManagementandLatency-ExecutionstartandSynchronizationpoints

Description Time (cycles)
Iteration-Overhead
(IterOverhead)

(extra time added to the loop
execution time when iterating,
this time is not enforced by HVI
compilation)

[5 + #Register_Conditions + Fetch-Time] =>
when last statement in branch is a local instruction

or

[5 + #Register_Conditions + End-Latency]
=> when last statement in the branch is a local-
flow control

Exit-Overhead 0

Description Execution time (cycles) Fetch Time (cycles)
Execution of While for N

iterations (N > 0)
SequenceTiming * N +
IterOverhead* (N-1)

2 + #Register_Conditions
(1)

(1) Fetch time for the condition evaluation (for the first evaluation and each iteration).

Sync Statements

Sync Register-Sharing

Register-sharing latency does not depend on the number of bits shared. For more information on this
functionality, see the section HVI Statements.

Instruction Execution time (cycles)
Fetch time (Primary
Module, cycles)

SyncRegShare 6 + Propagation_delay_
cycles (1)

1

(1)Propagation_delay_cycles = 5 * (1 + #chassis).

Timing example for Sync register-sharing statement

The following example shows how the Sync register-sharing statement execution timemust be accounted for
when calculating the sync-sequence timing:

Find us at www.keysight.com Page 142

Sync Multi-Sequence Block

Description Time (cycles)
Start-Latency

(minimum start-delay for statement)

0

Entry- latency

(minimum start-delay for first
statement inside any of the
contained sequences)

timed-sync (1) 0

triggered-sync (1) 1

End-Latency

(minimum start-delay for the next statement)

1

(1) triggered-sync is required if one of the sequences of the Sync multi-sequence block contains at least one
statement with unknown execution time at compile time. See Synchronization points for more details.

Find us at www.keysight.com Page 143

http://confluence.it.keysight.com/display/HAUD/Chapter_7_HVI_Time_Management_and_Latency#Chapter7:HVITimeManagementandLatency-ExecutionstartandSynchronizationpoints

Description Time (cycles)
Exit-Overhead

(The exit_overhead is not
enforced by HVI compilation)

timed-sync (1) See timed-sync Exit-Overhead
calculation below.

triggered-sync (1) See Synchronization points.

(1) triggered-sync is required if one of the sequences of the Sync multi-sequence block contains at least one
statement with unknown execution time at compile time. See Synchronization points for more details.

Description Execution time (cycles) Time (cycles)
Sync Multi-Sequence Block
execution time

SequenceTiming + Exit-
Overhead

N/A

Timed-sync Exit-Overhead calculation

In the case that the compiler can calculate the timing of all local sequences at compile time, the Sync multi-
sequence block statement performs a timed-sync at the end of the execution. This means that it calculates the
execution time of all local sequences andmatches them to be the same, for more information see
Synchronization points . In this case, the Exit Overhead of the Sync multi-sequence block is the time from the
start delay of the last local instruction, to the actual end of the Sync multi-sequence block. From there, the start
delay of the next Sync Statement is measured. Youmust add the Exit Overhead to the Sync multi-sequence
block Execution time.

There are two distinct cases:

l The last statement is a Local Instruction: exit_overhead(cycles) = fetch_cycles(local_

instruction) - 1

l The last statement is a Local-if, with matched branches: exit_overhead (cycles) = end_latency(local_
if) - 1

IMPORTANT To simplify the timing calculation, Keysight recommends that you use a local instruction with
Fetch-Cycles = 1 as the last statement of the sequences in the Sync multi-sequence block. This
way the exit-overheadwill be 0 and there will be no need for manual calculations by the user. The
simplest way to achieve that is by placing a TimeDelay statement with 1 cycle delay as the last
statement.

Find us at www.keysight.com Page 144

http://confluence.it.keysight.com/display/HAUD/Chapter_7_HVI_Time_Management_and_Latency#Chapter7:HVITimeManagementandLatency-ExecutionstartandSynchronizationpoints
http://confluence.it.keysight.com/display/HAUD/Chapter_7_HVI_Time_Management_and_Latency#Chapter7:HVITimeManagementandLatency-ExecutionstartandSynchronizationpoints
http://confluence.it.keysight.com/display/HAUD/Chapter_7_HVI_Time_Management_and_Latency#Chapter7:HVITimeManagementandLatency-ExecutionstartandSynchronizationpoints

Timing example for Sync Multi-Sequence Block for the Timed-sync case

The following examples show how to calculate time when the exit_overhead is 0, or greater than 0:

Example with exit_overhead = 0:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
instA = seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 0, seq.instruction_set.trigger_write.id)

Timing calculations

InstA Execution Start time from HVI-Start (InstA_start):

InstA_start = start_delay(mse1) + start_delay(instA) = 50ns + 20ns = 70ns

Time from InstA to InstB (T_InstA_InstB) :

T_InstA_InstB = exit_overhead (mse1) + start_delay(mse2) + start_delay(instB) = 0ns +

20ns + 0ns = 20ns

Example with exit_overhead > 0:

Find us at www.keysight.com Page 145

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
if1 = seq.add_if('if1', 70, if1_cond, True)
if1_branch_seq = if1.if_branch.sequence
if2 = if1_branch_seq.add_if('if2', 80, if2_cond, True)
if2_branch_seq = if2.if_branch.sequence
instA = if2_branch_seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 0, seq.instruction_set.trigger_write.id)

Timing calculations

InstA execution start time from HVI-Start (InstA_start):

InstA_start = start_delay(mse1) + start_delay(if1) + start_delay(if2) + start_delay

(instA) = 50ns + 70ns + 80ns + 20ns = 220ns

Find us at www.keysight.com Page 146

Time from InstA to InstB (T_InstA_InstB) :

T_InstA_InstB = exit_overhead(mse1) + start_delay(mse2) + start_delay(instB) = {30ns -

10ns} + 20ns + 0ns = 40ns

NOTE The end_latency(mse1) is accounted for in the start_delay(mse2), this imposes a
minimum value.

Sync Flow-Control Statements

Sync While

Description
Time (cycles)

Start-Latency

(minimum start-delay for statement)

5 + #Register_Conditions

Entry- latency

(minimum start-delay for first statement
inside the while loop)

7+ Propagation_delay_cycles (2)

End-Latency

(minimum start-delay for next
statement outside the while loop)

11 + #Register_Conditions + Propagation_
delay_cycles (2)+ [End-Latency of last
statement]

(2)Propagation_delay_cycles = 5 * (1 + #chassis).

Description
Time (cycles)

Iteration-Overhead (IterOverhead)

(extra time added to the loop execution
time when iterating, this time is not
enforced by HVI compilation)

5 + #Register_Conditions + [End-Latency
of last statement]

Exit-Overhead 0

Find us at www.keysight.com Page 147

Description Execution time (cycles)
Fetch time (Primary
Module, cycles)

Execution of Sync While
for N iterations (N > 0)

SequenceTiming * N +
IterOverhead * (N-1)

3 + #Register_Conditions

Timing example for Sync While statement iteration

The following example shows an example of a Sync while that contains a Sync multi-sequence block and a
single instruction:

Corresponding code snippet:

sync_while = sequencer.sync_sequence.add_sync_while('sync_while', 170, sync_while_
condition)
mse1_sequence = sync_while.sync_sequence.add_sync_multi_sequence_block("mse1",
250).sequences['EngineA']
instA = mse1_sequence.add_instruction("InstA", 20, seq.instruction_set.assign.id)
#
mse2_sequence = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2",
230).sequences['EngineA']
instB = mse2_sequence.add_instruction("InstB", 50, seq.instruction_set.assign.id)

Timing calculations

InstA Execution Start time from HVI-Start (InstA_start):

Find us at www.keysight.com Page 148

InstA_start = start_delay(sync_while) + start_delay(mse1) + start_delay(instA) =

170ns + 250ns + 20ns = 440ns

Sync multi-sequence block Execution time (Tmse1):

Tmse1 = SequenceTime + exit_overhead (mse1) = 20ns + 0ns = 20ns

Sync while Execution time for 1 loop when looping (Twhile_loop):

Twhile_loop = Twhile + iter_overhead(sync_while) = {start_delay(mse1) + Tmse1} +

{60ns + end_latency(mse1)} = {250ns + 20ns} + {60ns + 10ns} = 340ns

Time from InstA to InstA in consecutive repetitions (Tloop_InstA):

Tloop_InstA = Twhile_loop

Time from InstA to InstB (last while execution) (T_InstA_InstB):

T_InstA_InstB = exit_overhead(mse1) + exit_overhead(sync_while) + start_delay(mse2) +

start_delay(instB) = 0ns + 0ns + 230ns + 50ns = 280ns

NOTE The end_latency(sync_while) is accounted for in the start_delay(mse2), this imposes a
minimum value.

HVI Start

Description
Time (cycles)

End-Latency

(minimum start-delay for first statement in HVI)

3

Execution start and Synchronization points

Find us at www.keysight.com Page 149

All Sync statements enforce synchronization points across instruments and HVI Engines. The start and the end
of aSync multi-sequence block orSync while statement are examples of Synchronization points. In addition to
Sync statements, the Start of the sequence is also a critical synchronization point, it ensures that all HVI
engines start execution at the same time.

There are two types of synchronization points:

l Timed-Sync points: These points correspond to Sync statements where the timing of execution of all HVI
engines in the HVI can be determined, without ambiguity, at compilation time. In this case, the HVI compiler
adjusts the timing before the Sync Point in each HVI engine to ensure all engines leave the Sync Point at
exactly the same time.

l Triggered-Sync Points: The triggered-Sync points are the points where an active triggering process is
required to re-synchronize the execution of all HVI engines. They are necessary in those cases when the
execution time of one or more HVI engines cannot be determined at compile time. In the documentation
diagram, a dotted arrow is used to indicate these points. This occurs in the following cases:
l At the start of the HVI Sequence (Main Sync Sequence).
l At the end of a Sync multi-sequence block statement, where there is one or more statements with
unknown execution time at compile time, in at least one of the local sequences inside the Sync multi-
sequence block. Possible cases are:
l AWaitTime statement with a Register defining the wait time at runtime.
l AWait statement for an event.
l AWhile loop statement.
l An If statement, with unmatched branches that take different execution times.

Timing with Triggered-Sync Points

Triggered-Sync points require the use of trigger resources assigned in the SyncResources property in the
SystemDefinition instance and themain Sync signal. This is to re-synchronize all HVI engines and
guarantee all continue execution after the Sync Point, at exactly the same point. This execution resumes in all
HVI engines at the same time, aligned with a sub-sequence Sync Pulse, this forces the execution to be aligned
to amultiple of the Sync period.

The Sync-Period uses this equation:

50ns * (1 + #chassis)

Triggered-Sync Delay

The delay that a triggered-sync point adds to the sequence timing has three parts. Two of them are constant and
the other one varies depending on the position of the last statement with respect to the Sync Pulse time. The
formula to calculate it is the following:

triggered_sync_delay = sync_period + sync_overhead + edge_offset

Find us at www.keysight.com Page 150

where:

l sync_period. is constant per configuration and is calculated by the equation defined earlier
l sync_overhead, is constant per module and it's typical value is 5 cycles
l edge_offset , is the time interval from the end of the sync_overhead to the sync-pulse rising edge. This
time can vary depending on the position of the last statement with respect to the Sync Pulse time.

Example of timing management with triggered-sync

The example below is a simple sequence where the triggered-sync points has beenmarked in red. There are two
triggered-sync points, the HVI start which is always present, and a second one at the end of the Sync multi-
sequence block, because there is a wait time with a register inside.

In this example there is 1 chassis, whichmeans based on the previous equation, that the Sync period is 100 ns.

The following diagram shows the execution timeline for the first 3 iterations of the previous sequence:

Find us at www.keysight.com Page 151

Timing management with triggered-sync as a result of a Wait for Event statement

In the case that the re-synchronization process is taking place because of aWait-for-event statement inside a
Sync multi-sequence block statement, there are two scenarios with respect to the previous example:

n The event is in-sync with the Sync Pulse (is happening at a constant offset with respect to the Sync
Pulse): In this scenario, the example above also applies in this case. The user just needs to adjust the
"Triggered-Sync Entry" to the time of the event arrival and the results will be similar.

n The event is out-of-sync with the Sync Pulse: In this scenario, the same time from the execution of the
Actions from one iteration to the other cannot be guaranteed. Depending on the time of the event arrival, the
triggered-sync latency might change in number of cycles from iteration to iteration. In this case, all of the HVI
sequence statements following theWait statement will execute with a jitter equal to 50ns (1+#chassis), the
Sync Period value

Find us at www.keysight.com Page 152

Appendix A: Supported instruments

This Appendix lists the instruments that support PathWave Test Sync Executive release 2020.

PathWave Test Sync Executive is a new generation of Hard Virtual Instrument (HVI) technology and is not
backward compatible with the previous generation. The previous generation of HVI technology is only
programmable by M3601A Hard Virtual Instrument Design Environment and is not forward compatible with the
new generation of HVI technology or PathWave Test Sync Executive.

Both PathWave Test Sync Executive andM3601A work with the M3000 series of PXIe
products. However, PathWave Test Sync Executive requires newer firmware while M3601A requires older
firmware. The following table lists the firmware version requirements for the older M3601A and PathWave Test
Sync Executive.

M3000 Series Firmware Version Requirements

Instrument M3601A PathWave Test Sync Executive
M3100A Digitizer < 2.00 ≥ 2.00

M3102ADigitizer < 2.00 ≥ 2.00

M3201A AWG < 4.00 ≥ 4.00

M3202AAWG < 4.00 ≥ 4.00

M3300A AWG & Digitizer Combination < 4.00 ≥ 4.00

M3302A AWG & Digitizer Combination < 4.00 ≥ 4.00

NOTE Ensure you check the specific product pages on www.keysight.com to obtain the latest firmware
version recommended for use with M3601A or PathWave Test Sync Executive 2020.

M3000 Series Software Version Requirements
TheM3000 series (SD1) software provides drivers, programming libraries and soft front panels for theM3000
series.There are similar version requirements also shown in the table below.

Description M3601A PathWave Test Sync Executive
All M3000 series instruments listed above < 3.00.00 ≥ 3.00.00

NOTE Ensure you check specific product pages on www.keysight.com to obtain the latest firmware
version recommended for use with M3601A or PathWave Test Sync Executive 2020.

Instruments are shipped with the latest versions of firmware and SD1 software. To use an older instrument
with PathWave Test Sync Executive, the firmware and SD1 softwaremust be upgraded to the versions

Find us at www.keysight.com Page 153

http://www.keysight.com/
http://www.keysight.com/

recommended in the product page following the guidelines in the tables above.Firmware and SD1 software are
available on www.keysight.com. They can be found on the Drivers, Firmware & Software tab on the technical
support page for thespecific instrument

Find us at www.keysight.com Page 154

http://www.keysight.com/

Appendix B: Additional Documentation and Examples

This appendix lists the PathWave Test Sync Executive Programming Examples and additional documentation
that you can download from the PathWave Test Sync Executive page on www.keysight.com

Programming Example 1: Multi-Channel Sync Playback using M32xxA Arbitrary Waveform Generators

In programming example 1, PathWave Test Sync Executive is used to programmultiple M3xxxA Arbitrary
Waveform Generators (AWG)s. The AWGs synchronously output a front Ppnel trigger pulse followed by a
previously queued waveform. All instruments run fully synchronized and actions across the instruments can be
controlled at the timing resolution of theM3xxxA AWGs, which is 10ns.

Programming Example 2: Synchronous Signal Generation and Acquisition using M3xxxA PXI
Instruments

In programming example 2, a M3102A digitizer performs sequenced acquisition of heterogeneous signals
generated by multiple M320xA AWGs. The first AWG generates a train of RF pulses and
the other AWGs output a queued arbitrary waveform. By using PathWave Test Sync Executive, each cycle of
the digitizer measurements are precisely synchronized with the AWGoutput signals.

Programming Example 3: PathWave Test Sync Executive Integration with PathWave FPGA

This programming example shows how to use Keysight PathWave Test Sync Executive together with Keysight
PathWave FPGA. A custom FPGA block is designed using Keysight PathWave FPGA and loaded into the
sandbox of twomodular instruments. The two instruments execute HVI sequences that can communicate with
the custom FPGA blocks programmed into the sandbox of themodule FPGA. Using an HVI Port, the HVI
sequence can read/write values in any HVI Port Register inserted among the custom FPGA blocks. This
example also shows how the HVI sequence and FPGA sandbox of an instrument can communicate by using
actions and events. The exchanged information can also be written to PXI lines.

Programming Example 4: Real-Time Pulsed Characterization of a Device-Under-Test

In this programming example, anM3202A AWGand anM3102A digitizer are used to perform a real-time pulsed
characterization experiment on a Device-Under-Test (DUT).

A pool of different waveforms are loaded to the AWGRAM. The digitizer uses the register sharing functionality
to select a real-time the waveform to be played by the AWGat each iteration of the experiment. The selected
waveform is used by AWGCH1 and CH2 to play I-Qmodulated pulses and re-play them after a Variable delay.
In the same iteration, AWGCH3 and CH4 play a second burst of I-Q pulses after another Variable delay.
The second burst pulse length can be increased after each iteration. The experiment can be repeated for a user-

Find us at www.keysight.com Page 155

http://www.keysight.com/

defined number of loops, allowing you to choose the delay between each loop and the delay necessary for
example to let the DUT return to its equilibrium state. Example use cases for this programming example include
power amplifier characterization for 5Gmobile communications and quantum bit characterization experiments
for physics applications. In the physics case, the AWGgenerates the control and readout pulses necessary for
characterization of quantum bits.

Transitioning from M3601A HVI Programming Environment to KS2201A PathWave Test Sync
Executive

This transition guide is intended for M3601A users and explains how to translate anM3601A project into HVI
API Python code programmed using Keysight PathWave Test Sync Executive (KS2201A).

Find us at www.keysight.com Page 156

Find us at www.keysight.com Page 157
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, October 16 2020,PathWave Test Sync Executive User Manual

	KS2201A - PathWave Test Sync Executive User Manual
	Chapter 1: Introduction
	Chapter 2: Installing PathWave Test Sync Executive
	System Requirements
	Install Main Components
	Install Additional Components

	Chapter 3: Installing Licenses
	Chapter 4: HVI Elements
	About Instruments
	About PathWave Test Sync Executive
	HVI API Use Model
	HVI Engines
	HVI Resources
	HVI Sequences and Statements
	HVI Sequences
	HVI Statements

	HVI Diagrams
	HVI Timing

	Chapter 5: The HVI API
	HVI API Functionality
	HVI API Organization
	SystemDefinition
	Synchronization resources and clocks
	EngineDefinition
	Chassis and Interconnect

	Sequencer
	HVI SyncSequence and Sequence
	HVI API Statements
	InstructionSet
	FPGA Sandbox View
	HVI Registers and Scopes
	HVI Compilation

	Hvi
	Load to Hardware and Run

	Chapter 6: Building an Application with the HVI API
	Chapter 7: HVI Time Management and Latency
	Appendix A: Supported instruments
	Appendix B: Additional Documentation and Examples

