
Multi-Channel Sync Playback using
M32xxA ArbitraryWaveformGenerators
In this programming example, PathWave Test Sync Executive is used to
program multiple M3xxxA AWGs to synchronously output first a FP (Front Panel)
trigger pulse and afterwards a previously queued waveform. All modules run fully
synchronized and actions across modules can be controlled with the timing
resolution of the M3xxxA AWGs which is of 10ns.

Find us at www.keysight.com Page 1

PROGRAMMING EXAMPLE 1

Table of Contents

KS2201A - Programming Example 1 - Multi-Channel Sync Playback usingM320xA Arbitrary Waveform
Generators 3

System Setup 3

System Requirements 3

How to install Python 3.7.x 64-bit 4

How to Install Chassis Driver, SFP and Firmware 4

How to Install PathWave Test Sync Executive, SD1 SFP andM3xxxA FPGA Firmware 5

How to run this programming example 6

Multi-Channel Sync Playback usingM320xA Arbitrary Waveform Generators 7

Overview 7

Measurement Results 10

Getting Started with HVI Application Programming Interface (API) 11

System Definition 12

Define Platform Resources: Chassis, PXI triggers, Synchronization 13

Define HVI engines 14

Define HVI actions, events, triggers 14

Program HVI Sequences 15

SynchronizedMulti-Sequence Block (a) 15

HVI Instruction: Front Panel Trigger ON/OFF (b) 17

Action Execute: AWGTrigger (c) 17

Compile, Load, Execute the HVI 17

Compile HVI 18

Load HVI to Hardware 18

Execute HVI 18

Release Hardware 18

Further HVI API Explanations 19

Multi-Chassis Setup Implementation 19

Add Chassis 21

AddM9031A Boards 21

10MHz Clock Reference Source 21

Conclusions 25

Find us at www.keysight.com Page 2

KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320xA
Arbitrary Waveform Generators
In this programming example, PathWave Test Sync Executive is used to programmultiple M3xxxA AWGs to
synchronously output first a FP (Front Panel) trigger pulse and afterwards a previously queued waveform. All
modules run fully synchronized and actions across modules can be controlled with the timing resolution of the
M3xxxA AWGs which is of 10ns.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please
visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements
The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)
l Keysight SD1Drivers, Libraries and SFP (v3.00.95 or later)
l Keysight PathWave Test Sync Executive Update 0.2 (v1.00.18 or later)

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (tested on v2018, v2019EnhTrig)
l Keysight PXIe Chassis Family Driver (tested on v1.7.82.1)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.00.95 or later)
l M3201A AWGFPGA firmware (v4.02.65 or later)

Find us at www.keysight.com Page 3

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

How to install Python 3.7.x 64-bit
This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python webpage. Make sure you add Python 3.7.x to the PATH system Variable.
This can be done at the installation step by checking the right check-boxes as shown in the screenshot below.

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com.

Find us at www.keysight.com Page 4

http://www.keysight.com/
http://www.keysight.com/

How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 5

SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

How to run this programming example
This programming example is setup to execute in simulationmode. To execute the Python code on real HW
instruments you can change the option for simulated hardware to False:

Simulated HW Option
hardware_simulated = True

Afterwards, it is necessary to specify the actual chassis number and slot number where the real PXI
instruments are located. Model number of the used PXI instruments shall be updated, if different than the
instrument model used in this programming example. This example uses PXI instruments from the Keysight
M3xxxA family. The first step to control such instruments is to create an object using the open() method from the
SD1 API. For a complete description of the SD1 API open() method and its options please consult theSD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options. This programming example can be deployed on an arbitrary
number of AWGs to be defined using themodule-descriptor class. Please update the properties in each module-
descriptor object before running the programming example:

Update module descriptors below with your instruments information
module_descriptors = [

config.ModuleDescriptor('M3202A', 2, 10, config.options, ""),
config.ModuleDescriptor('M3202A', 2, 4, config.options, "")]

class ModuleDescriptor:
"Descriptor for module objects" def __init__(self, model_number, chassis_number,

slot_number, options, engine_Name):
self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_Name = engine_Name

The chassis to be used in the programming example need to be also specified and listed by chassis number. In
case of multi-chassis setup, please specify the connection between each pair of M9031modules using
the M9031_descriptor class.

Update list of chassis numbers included in the programming example
chassis_list = [1, 2]

Multi-chassis setup
In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
M9031 module positions need to be defined in the program.
M9031_descriptors = [config.M9031Descriptor(1, 11, 2, 10)]

Find us at www.keysight.com Page 6

http://www.keysight.com/
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00

class M9031Descriptor:
"Describes the interconnection between each pair of M9031A modules" def __init__

(self, first_M9031_chassis_number, first_M9031_slot_number, second_M9031_chassis_number,
second_M9031_slot_number):

self.chassis_1 = first_M9031_chassis_number
self.slot_1 = first_M9031_slot_number
self.chassis_2 = second_M9031_chassis_number
self.slot_2 = second_M9031_slot_number

Please note that in every programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:

Assign triggers to HVI object to be used for HVI-managed synchronization, data sharing,
etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among
each M9031 board pair by means of SMB cable connections
pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. The vector pxi_sync_trigger_resources specified abovemust include at least the necessary number
of PXI lines for the programming example to execute.

Multi-Channel Sync Playback using M320xA Arbitrary Waveform
Generators
Overview
This programming example illustrates how to deploy HVI to synchronously generate electronic signals from
multiple channel across an arbitrary number of different instruments. The example targets MIMO (Multiple Input
Multiple Output) use case scenarios includingMIMO transceiver testing for 5G (5th Generation)
telecommunications andmulti-qBit (quantum bit) experiments for quantum engineering.

This programming example illustrates the following HVI functionalities:

1. How to create an HVI sequence using the HVI API
2. SynchronizedMulti-Sequence Block
3. Module synchronization using SynchronizedMulti-Sequence Blocks
4. HVI Native Instructions
5. Instrument action execution within HVI sequences

The programming example capabilities will be illustrated through some examplemeasurement results obtained
using themeasurement setup depicted below where the Front Panel (FP) connector and CH1 of twoM3202A
AWGs are connected to the four channels of a Keysight Oscilloscope.

Find us at www.keysight.com Page 7

A photograph of themeasurement setup used for themeasurement results reported in this programming
example is also reported below:

Find us at www.keysight.com Page 8

Find us at www.keysight.com Page 9

Measurement Results
This programming example contains a simple HVI global sync sequence that executes a sync multi-sequence
block on an arbitrary number of AWG instruments. All local sequences are synchronously executed by all
instruments' HVI engines to first trigger a pulse from the front panel TRG port and then output a waveform from
all the AWG channels. The screenshot below depicts the expected execution on console window of this
programming example's Python code.

By running the Python code, the examplemeasurements depicted below were obtained. The scope
measurements below show measurement results obtained using two AWGM3202A with -HV1 option. In the
scopemeasurement we can observe the two synchronized FP trigger pulses (yellow and greenwaveforms)
output in a synchronizedmanner by two independent AWG instruments. The FP trigger pulses are followed by
two waveforms (red and bluewaveforms) triggered by the "AWGTrigger" action executed from the HVI
sequence.

Find us at www.keysight.com Page 10

AWGTrigger Delay
Please note that the HVI sequences represented in the HVI diagram contained in the next section specify the
"AWGTrigger" instruction 10 ns after the the "FP Trigger OFF" instruction. However, users must take into
account that the AWG instrument requires time to process the AWG trigger action and propagate the command
through its digital HW before the first waveform sample can appear at the AWGoutput. This processing time
can be called AWGTrigger Delay and it explains why in the previously presented scopemeasurements there is
a delay of about 150-170 ns between the FP trigger falling edge and the first sample of the Gaussian waveform
generated by the AWG. For exact values of AWGTrigger Delay and other AWG specs please consult the
documentation of Keysight M3xxxA AWGs

Getting Started with HVI Application Programming Interface (API)
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming using HVIAPI. The sequence of operations executed by each of the instruments using HVI
technology are explained in the flow charts below: Every HVI statement is presented below with a letter
referencing to the equivalent block in the HVI flowchart, to facilitate users to understand the new model. The
programming is parametrized to run on an arbitrary number of AWGs. All AWGs opened in the programming are
automatically added to the HVI sequence.

Find us at www.keysight.com Page 11

To deploy HVI into an application, three fundamental steps shall be followed:
1. System definition: defines all the necessary HVI resources, including platform resources, engines, triggers,

registers, actions, events, etc.
2. Program HVI sequences: defines all the statements to be executed within each HVI sequence
3. Execute HVI: compiles, loads to HW and executes HVI

The following sub-sections describe in details how these three steps are implemented for this
example. For further explanations about any of the concepts, please refer to the PathWave Test Sync
Executive User Manual.

System Definition
The definition of HVI resources is the first step of an application using HVI. The API
class SystemDefintion allows to define all necessary HVI resources. HVI resources include all the platform
resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are going to use and
execute. Users need to declare them upfront and add them to the corresponding collections. All HVI Engines
included in the programming need to be registered into the EngineCollection class instance. HVI resources are
described in details in the PathWave Test Sync Executive User Manual. The HVI resource definitions are
summarized in the code snippets below.

Python

Find us at www.keysight.com Page 12

Create system definition object
sys_def = kthvi.SystemDefinition("MySystem")

def define_hvi_resources(sys_def, module_dict, chassis_list, M9031_descriptors, pxi_sync_
trigger_resources):

""" Configures all the necessary resources for the HVI application to execute: HW
platform, engines, actions, triggers, etc.

""" # Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources)

Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
Define list of actions to be executed
define_hvi_actions(sys_def, module_dict)
Defines the trigger resources
define_hvi_triggers(sys_def, module_dict)

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. SystemDefinition class also allows you to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section "HVI Core API" of the PathWave Test Sync Executive User Manual.

Python

def define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources):

""" Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

""" config = ApplicationConfig()
Add chassis resources
for chassis_number in chassis_list:

if config.hardware_simulated:
sys_def.chassis.add_with_options(chassis_number,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
else:

sys_def.chassis.add(chassis_number)
Add M9031 modules for multi-chassis setups
if M9031_descriptors:

interconnects = sys_def.interconnects
for descriptor in M9031_descriptors:

interconnects.add_M9031_modules(descriptor.chassis_1, descriptor.slot_1,
descriptor.chassis_2, descriptor.slot_2)

Assign the defined PXI trigger resources
sys_def.sync_resources = pxi_sync_trigger_resources
Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
Use the code line below if you want the application to be in sync with the 10 MHz

Find us at www.keysight.com Page 13

clock
sys_def.non_hvi_core_clocks = [10e6]

Define HVI engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow you to
access the actions, events and triggers that each specific engine will control and use within the HVI.

Python

class HVI_resource_Names:
Defines the Names of HVI engines, actions, triggers used in this programming
def __init__(self):

self.engine_Name = 'AwgEngine'
self.awg_trigger_Name = 'AwgTrigger'
self.fp_trigger_Name = 'FpTrigger'

def define_hvi_engines(sys_def, module_dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
for engine_Name in module_dict.keys():

sys_def.engines.add(module_dict[engine_Name].instrument.hvi.engines.main_engine,
engine_Name)

Define HVI actions, events, triggers

In this programming example each AWGneeds to trigger both a FP pulse and a waveform very precisely. To do
that, the AWG trigger actions are issued from within the HVI execution. In the HVI usemodel, actions need to
be added to the action collection of each HVI engine before they can be executed. FP trigger needs to be added
to the HVI Trigger Collection and configured. This is done in this programming example as explained in the code
snippets below.

Python

class HVI_resource_Names:
Defines the Names of HVI engines, actions, triggers used in this programming example
def __init__(self):

self.engine_Name = 'AwgEngine'
self.awg_trigger_Name = 'AwgTrigger'
self.fp_trigger_Name = 'FpTrigger'

def define_hvi_actions(sys_def, module_dict):
Defines AWG trigger actions for each module, to be executed by the "action execute"

instruction in the HVI sequence
Create a list of AWG trigger actions for each AWG module. The list depends on the

number of channels
Previously defined resource Names
config = ApplicationConfig()
For each AWG, define the list of HVI Actions to be executed and add such list to its

own HVI Action Collection

Find us at www.keysight.com Page 14

for engine_Name in module_dict.keys():
for ch_index in range(1, module_dict[engine_Name].num_channels + 1):

Actions need to be added to the engine's action list so that they can be
executed

action_Name = config.awg_trigger_action_Name + str(ch_index) # arbitrary user-
defined Name

instrument_action = "awg{}_trigger".format(ch_index) # Name decided by
instrument API

action_id = getattr(module_dict[engine_Name].instrument.hvi.actions,
instrument_action)

sys_def.engines[engine_Name].actions.add(action_id, action_Name)

def define_hvi_triggers(sys_def, module_dict):
" Defines and configure the FP trigger output of each AWG " # Previously defined

resources
config = ApplicationConfig()
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that

same instrument
for engine_Name in module_dict.keys():

fp_trigger_id = module_dict[engine_Name].instrument.hvi.triggers.front_panel_1
fp_trigger = sys_def.engines[engine_Name].triggers.add(fp_trigger_id, config.fp_

trigger_Name)
Configure FP trigger in each hvi.engines[index]
fp_trigger.config.direction = kthvi.Direction.OUTPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.sync_mode = kthvi.SyncMode.IMMEDIATE
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL
#NOTE: FP trigger pulse length is defined by the HVI Statements that control FP

Trigger ON/OFF

Program HVI Sequences
HVI sequences can be programmed using theSequencer class. HVI starts the execution through a global
sequence (defined by theSyncSequence class) that takes care of synchronizing and encapsulating the local
sequences corresponding to each HVI engine included in the application. In this programming example the HVI
global sync sequence contains only one sync statement, a synchronizedmulti-sequence block defined by the
API class SyncMultiSequenceBlock.

Python

Create sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)
def program_mimo_trigger_sequence(sequencer, module_dict):

" Programs the MIMO Trigger HVI sync sequence" # Add a Sync Multi-Sequence Block
(SMSB)

sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs", 30)
Program the SMSB to trigger AWGs
program_trigger_awgs(sync_block, module_dict)

SynchronizedMulti-Sequence Block (a)

Find us at www.keysight.com Page 15

This block synchronizes all the HVI engines that are part of the sync sequence and allows to program each HVI
Engine to do specific operations by exposing a local sequence for each engine. By calling the API method add_
multi_sequence_block() a synchronizedmulti-sequence block is added to the Sync (global) Sequence.

Python

Program Sync Multi-Sequence Block
sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs", 30)

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.

Please note that the SyncMulti-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. In future releases, the user will be able to

Find us at www.keysight.com Page 16

specify specific execution time values or allowed ranges. The timing at the end of each local
sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In case of duration "T min" HVI will automatically add no time to the local sequence having
longest duration and adjust the other sequences accordingly, as in the example depicted in the figure
above. The resolution for HVI-defined time adjustment at the end of a syncmulti-sequence block
corresponds to the 10 ns FPGA clock period for an application including instruments that are all
within the Keysight M3xxxA family. For further explanations about the timing of HVI sequence
execution please refer to "HVI Timing" section of the KS2201APathWave Test Sync Executive User
Manual available on www.keysight.com
HVI Instruction: Front Panel Trigger ON/OFF (b)

This block executes a native HVI instruction. Native HVI instructions are common to every Keysight product.
API method add_instruction() allows to add the wanted instruction within the HVI sequence. Instruction
parameters are set using the API method set_parameter(). All HVI Native instructions and parameters are
defined in the hvi.InstructionSet interface.

Python

Write FP Trigger ON
fp_trigger = sequence.engine.triggers[config.fp_trigger_Name]
trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write.id)
instr_trigger_ON.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_
mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write.value.id, trigger_write.value.ON)

Action Execute: AWG Trigger (c)

Actions to be used within an HVI sequence need to be added to the instrument HVI engine using the API "add"
method of theActionCollection class. Once the wanted actions are added within the list of the instruments' HVI
engine actions, an instruction to execute them can be added to the instrument's HVI sequence using the HVI
API class InstructionsActionExecute. One or multiple actions can be executed at the same time within the
same "Action Execute" instruction.

Python

Execute AWG trigger from the HVI sequence of each module
"Action Execute" instruction executes the AWG trigger from HVI
action_list = sequence.engine.actions
instruction1 = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction1.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, users can compile,
load and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Find us at www.keysight.com Page 17

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell to the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences
hvi = sequencer.compile()
print("HVI Compiled")
print("This HVI programming example needs to reserve {} PXI trigger resources to
execute".format(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.
hvi.load_to_hw()

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example the blockingmode is used. In this mode the SW execution is blocked at the HVI
execution code line for a fixed amount of time specified by the timeout input parameter. The SW execution can
be blocked until the HVI sequence finish their execution if timeout = hvi.no_timeout is used as an input
parameter.

Python

Execute HVI in blocking mode: SW waits until HVI sequences ends their execution
Eventually enter a timeout for the HVI execution to be stopped: timeout = timedelta
(seconds=0), hvi.run(timeout)
hvi.run(hvi.no_timeout)
print("HVI Running...")

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Find us at www.keysight.com Page 18

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.

Multi-Chassis Setup Implementation
The reference examples provided with this document can be executed on amultiple-chassis setup with only the
few modifications explained below. In amulti-chassis setup, it is necessary to interconnect the PXI triggers and
clocking of themultiple chassis.

With the currently available infrastructure to interconnect PXIe backplane triggers a pair of M9031A boards must
be placed in a specific segment in each chassis to be interconnected.

NOTE The SMB cables used to connect theM9031A modules need to be as short as possible. The
chassis need to be stack in the same rack, on top of each other, as close as possible to each other
to allow the SMB cables that connect them to be as short as possible.

On the twoM9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There aremainly three rules to consider when choosing the chassis slot where to place aM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each
pair of M9031A connects two chassis together and shares info through their PXI lines.

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length.

3. A PXI module included in the HVI application needs to be placed in the same chassis segment where the
first M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair
of boards.

Find us at www.keysight.com Page 19

The picture above illustrates in green the PXI modules that must be placed in the same segment as theM9031A
modules in blue. Basically:

l The 1st chassis must include aM9031A together with a PXI module with HVI in segment 2

l All Middle chassis must have aM9031A in the segment 2, and aM9031A together with a PXI Module with
HVI support in Segment 3

l The last chassis must include aM9031A in segment 2.

All the chassis that are part of themulti-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A aremade to share the PXI lines that are used as sync resources. PXI trigger lines are
shared usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all themiddle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Find us at www.keysight.com Page 20

Additionally, a very clean 10MHz source should be used to provide the same reference signal to all chassis.
One option is to use amulti-output 10MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

Add Chassis

Each chassis included in themulti-chassis setup can be added using any of the HVI API methods below. The
AddAutoDetect() method shall be called only once to automatically detect and add all the chassis connected to
the system.

Python

To add chassis resources use:
hvi.platform.chassis.add_with_options(1,
'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
hvi.platform.chassis.add(chassis_number)
hvi.platform.chassis.add_auto_detect()

AddM9031A Boards

In the HVI API eachM9031A board pair needs to be declared using the following softwaremethod:

Python

To add each interconnected pair of M9031 modules use:
interconnects.add_M9031_modules(1st_M9031_chassis_number, 1st_M9031_chassis_slot, 2nd_
M9031_chassis_number, 2nd_M9031_chassis_slot)

The above-mentioned code lines are part of this application code example and they can be used to adapt the
code example to run on amulti-chassis setup.

10 MHz Clock Reference Source

One option is to use as a 10MHz Reference source the PXI module Keysight M9300A PXIe Frequency
Reference. Please place this module in one of the chassis and use splitters to divide the 10MHz clock output
into N cables to be connected to the 10MHz REF IN connector on the back panel of each of the chassis,
including the chassis where theM9300A module is placed. Each time the system is restarted please open the
M9300A SFP software to check the box "10MHz Out Enabled and uncheck the box ""Drive BP 10MHz

Find us at www.keysight.com Page 21

Reference". Please see screenshot below for clarifications. For more details on the Keysight M9300A PXIe
Frequency Reference please visit www.keysight.com .

Once the common 10MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from the "Reference Clock"
window shown in the screenshot below. Once you open the window please clear any ¨Alarm¨ that possibly
occurred during the 10MHz reference setup. After clearing ¨Alarm occurred¨ icon should stay idle (white color).
Clock source shall st to "Rear 10MHz Ref In".

Find us at www.keysight.com Page 22

http://www.keysight.com/

Additionally, in the case of using a remote controller card, like theM9023A PXI SystemModule used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis backplane REF and LOCK LED lights are lighted in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED
lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 23

Formore details on the Keysight PXIe Chassis Family please visit www.keysight.com .

Find us at www.keysight.com Page 24

http://www.keysight.com/

Conclusions
This Programming Example explained how to use Pathwave Test Sync Executive and HVI (Hard Virtual
Instrument) technology to synchronizemultiple AWG to concurrently issue first a marker pulse from the Front
Panel (FP) trigger port and then play a previously loaded waveform from all their AWG channels. The application
use case illustrated here can be tested on any AWGof the Keysight M3xxxA PXI family. HVI technology was
deployed using the HVI API (Application Programming Interface). Examplemeasurement results demonstrated
synchronized FP trigger marker output and waveform output frommultiple AWGs.

Find us at www.keysight.com Page 25
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, October 07 2020,KS2201-90001

	KS2201A - Programming Example 1 - Multi-Channel Sync Playback using M320xA Ar...
	System Setup
	System Requirements
	How to install Python 3.7.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	How to run this programming example

	Multi-Channel Sync Playback using M320xA Arbitrary Waveform Generators
	Overview
	Measurement Results

	Getting Started with HVI Application Programming Interface (API)
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI engines
	Define HVI actions, events, triggers

	Program HVI Sequences
	Synchronized Multi-Sequence Block (a)
	HVI Instruction: Front Panel Trigger ON/OFF (b)
	Action Execute: AWG Trigger (c)

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations

	Multi-Chassis Setup Implementation
	Add Chassis
	Add M9031A Boards
	10 MHz Clock Reference Source
	Conclusions

