
Synchronous Mixed-Signal Measurements
usingM3xxxA PXI Instruments
In this programming example a M3102A digitizer performs sequenced
acquisition of mixed signals generated by multiple M320xA Arbitrary Waveform
Generators (AWGs). The first AWG generates a train of RF pulses, and the other
AWGs output previously queued arbitrary waveforms. By using PathWave Test
Sync Executive, each cycle of digitizer measurements is precisely synchronized
with the AWG output signals.

Find us at www.keysight.com Page 1

PROGRAMMING EXAMPLE 2

Table of Contents

KS2201A - Programming Example 2 - Synchronous Mixed-Signal Measurements usingM3xxxA PXI
Instruments 4

System Setup 4

System Requirements 4

How to install Python 3.7.x 64-bit 4

How to Install Chassis Driver, SFP and Firmware 5

How to Install PathWave Test Sync Executive, SD1 SFP andM3xxxA FPGA Firmware 6

How to run this programming example 7

Synchronous Signal Generation & Acquisition usingM3xxxA PXI Instruments 9

Measurement Results 10

Getting Started with HVI Application Programming Interface (API) 15

System Definition 17

Define Platform Resources: Chassis, PXI triggers, Synchronization 17

Define HVI engines 18

Define HVI actions, events, triggers 19

Program HVI Sequences 20

Define HVI Registers 20

SynchronizedWhile 22

SynchronizedMulti-Sequence Block 22

Wait Statement 23

HVI Native Instruction: Register Increment 24

HVI Native Instruction: Register Assign 24

Action Execute: DAQ, AWGTrigger 24

Local While 25

HVI Instrument-Specific Instruction 25

IF-ELSEIF-ELSE Statement 26

Compile, Load, Execute the HVI 26

Compile HVI 26

Load HVI to Hardware 27

Execute HVI 27

Release Hardware 27

Further HVI API Explanations 28

Multi-Chassis Setup Implementation 28

Add Chassis 30

Find us at www.keysight.com Page 2

AddM9031A Boards 30

10MHz Clock Reference Source 30

Conclusions 34

Find us at www.keysight.com Page 3

KS2201A - Programming Example 2 - Synchronous Mixed-Signal Measurements using
M3xxxA PXI Instruments
In this programming example a M3102A digitizer performs sequenced acquisition of heterogeneous signals
generated by multiple M320xA arbitrary waveform generators (AWGs). The first AWG
generates a train of RF pulses, and the other AWGs output a queued arbitrary waveform. By using PathWave
Test Sync Executive, each cycle of digitizer measurements are precisely synchronized with the AWGoutput
signals.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please
visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements
The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)
l Keysight SD1Drivers, Libraries and SFP (v3.00.95 or later)
l Keysight PathWave Test Sync Executive Update 0.2 (v1.00.18 or later)

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (tested on v2018, v2019EnhTrig)
l Keysight PXIe Chassis Family Driver (tested on v1.7.82.1)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.00.95 or later)
l M3102A Digitizer FPGA firmware (v2.01.40 or later)

How to install Python 3.7.x 64-bit

Find us at www.keysight.com Page 4

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python webpage. Make sure you add Python 3.7.x to the PATH system Variable.
This can be done at the installation step by checking the right check-boxes as shown in the screenshot below.

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com.

Find us at www.keysight.com Page 5

http://www.keysight.com/
http://www.keysight.com/

How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 6

SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

How to run this programming example
This programming example is setup to execute in simulationmode. To execute the Python code on real HW
instruments you can change the option for simulated hardware to False:

Simulated HW Option

hardware_simulated = True

Afterwards, it is necessary to specify the actual chassis number and slot number where the real PXI
instruments are located. Model number of the used PXI instruments shall be updated, if different than the
instrument model used in this programming example. This example uses PXI instruments from the Keysight
M3xxxA family. The first step to control such instruments is to create an object using the open() method from the
SD1 API. For a complete description of the SD1 API open() method and its options please consult theSD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options. Please update the properties in each module-
descriptor object before running the programming example:

Define instruments, chassis, interconnects
hvi_eng_Names = HVI_engine_Names()
Update module descriptors below with your instruments information
digitizer_descriptor = module_descriptor('M3102A', 1, 9, options, hvi_eng_Names.dig_engine)
rf_gen_descriptor = module_descriptor('M3202A', 1, 8, options, hvi_eng_Names.rf_gen_engine)
AWG1 to be used as an RF Pulse Gen.
awg_descriptors = [module_descriptor('M3202A', 1, 7, options, hvi_eng_Names.awg_engine)]
Assign AWG engine Names to AWG1-AWGN in case more than 2 AWGs are used
for index in range(len(awg_descriptors)):

awg_descriptors[index].engine_Name = hvi_eng_Names.awg_engine + str(index)

class ModuleDescriptor:
"Descriptor for module objects" def __init__(self, model_number, chassis_number,

slot_number, options, engine_Name):
self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_Name = engine_Name

The chassis to be used in the programming example need to be also specified and listed by chassis number. In
case of multi-chassis setup, please specify the connection between each pair of M9031modules using
the M9031_descriptor class.

Update list of chassis numbers included in the programming example
chassis_list = [1, 2]

Find us at www.keysight.com Page 7

http://www.keysight.com/
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
https://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00

Multi-chassis setup
In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
M9031 module positions need to be defined in the program.
M9031_descriptors = [config.M9031Descriptor(1, 11, 2, 10)]

class M9031Descriptor:
"Describes the interconnection between each pair of M9031A modules" def __init__

(self, first_M9031_chassis_number, first_M9031_slot_number, second_M9031_chassis_number,
second_M9031_slot_number):

self.chassis_1 = first_M9031_chassis_number
self.slot_1 = first_M9031_slot_number
self.chassis_2 = second_M9031_chassis_number
self.slot_2 = second_M9031_slot_number

Please note that in every programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:

Assign triggers to HVI object to be used for HVI-managed synchronization, data sharing,
etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among
each M9031 board pair by means of SMB cable connections
pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. The vector pxi_sync_trigger_resources specified abovemust include at least the necessary number
of PXI lines for the programming example to execute.

Application-specific parameters necessary to configure the digitizer and the AWGs are listed in dedicated
classes. Before running the programming example, users shall update, if necessary, the AWGand digitizer
parameters contained in the code classes listed below. Measurment results reported in this documents were
obtained using the parameters value reported in the following code snippets.

class AWG_parameters:
Configures AWG for waveform generation
def __init__(self):

AWG settings for all channels
self.sync_mode = keysightSD1.SD_SyncModes.SYNC_NONE
self.queue_mode = keysightSD1.SD_QueueMode.ONE_SHOT
self.awg_mode = keysightSD1.SD_Waveshapes.AOU_AWG
self.start_delay = 0 # x10 [ns]
self.prescaler = 0
self.wfm_A_cycles = 3
self.wfm_B_cycles = 2
self.amplitude = 1
self.wfm_A = 0
self.wfm_B = 1

Find us at www.keysight.com Page 8

Trigger settings
self.trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG
Latency value of AWGqueueWfm() [ns]
self.awgtrigger_latency = 2000 # [ns]
self.wfm_length = 100 # [ns]

class RF_pulse_parameters:
Configures RF pulse generator parameters
def __init__(self):

self.all_ch_mask = 0xF # binary mask definig which channels to use
self.offset = 0 # [V]
self.frequency = 10e6 # [Hz]
self.num_loops = 3 # sync while loops
self.num_pulses = 5
self.ON_value = 1 # [V]
self.OFF_value = 0 # [V]
self.n_AWG = 1 # channel number to be used as RF Gen
self.pulse_ontime = 200 # [ns]
self.pulse_offtime = 150 # [ns]
self.pulse_delay = 100 # [ns]

class DIG_parameters:
Configures Digitizer parameters
def __init__(self):

rfgen_params = RF_pulse_parameters()
all_ch_mask = 0xF
sampling_time = 2 # [ns] 1/sample_rate, sample_rate = 500 MSa/s for Digitizer

M3102A
acquisition_points_per_cycle = 1500
self.prescaler = 0
self.fullscale = 2 # [V] enter x Volts to set the full scale to [-x, x] Volts
self.acquisition_points_per_cycle = acquisition_points_per_cycle
self.acquisition_time_per_cycle = acquisition_points_per_cycle*sampling_time
self.num_cycles = rfgen_params.num_loops #insert -1 for infinite cycles
self.acquisition_points = int(acquisition_points_per_cycle*rfgen_params.num_loops)
self.acquisition_delay = 150 # x2 [ns]
self.trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG
self.mask = all_ch_mask

Synchronous Signal Generation & Acquisition using M3xxxA PXI
Instruments
This programming example illustrates the following functionalities:

1. SynchronizedWhile Global Statement
2. Wait-for-event Statement
3. Use of registers and scopes

Find us at www.keysight.com Page 9

4. Local Flow Control Statements: WHILE loop, IF loop
5. HVI Product-specific Instructions

AWG signal generation is controlled using local flow control loops. This way, a train of RF pulses can be
generated and previously loaded arbitrary waveforms can be queued and played. An HVI SynchronizedWhile
Statement controls the digitizer acquisitions and enables synchronization of each acquisition cycle to capture
the AWGoutputs generated within each loop of the HVI SynchronizedWhile Statement.

Measurement Results
This section describes themeasurement results obtained by deploying this programming example on a
setup including two M9019A PXI chassis, anM3102A digitizer and twoM3202A AWGs. A block diagram of the
measurement setup used in this documented is reported below.

Find us at www.keysight.com Page 10

A photograph of themeasurement setup used for themeasurement results reported in this section is also
reported below:

Find us at www.keysight.com Page 11

Find us at www.keysight.com Page 12

The oscilloscopemeasurements below show measurement results obtained using a digitizer M3102A and two
AWGM3202As. All instruments have the -HV1 option enabled that allows to use them to execute HVI
applications. In the scopemeasurement we can observe the external trigger signal sent to the digitizer Front
Panel (FP) TRGPort (blue waveform). The FP trigger provides the condition necessary for the wait statement
to continue the HVI sequence execution and generate a series of RF pulses from the first AWG
(yellow waveform) and queue'N'play an arbitrary waveform from the second AWG (green waveform in the
scopemeasurement screenshot).

The plot below depicts digitizer data acquired over threemultiple cycles. Each acquisition cycle corresponds to
an iteration of the HVI Sync While statement described in the next section. The blue trace represents data
acquired by DAQ1 channel connected to the AWGused as an RF pulse generator. The red trace represents

Find us at www.keysight.com Page 13

DAQ2 channel measurements obtained from the AWGoutput that generates arbitrary waveforms selected by
the user.

The screenshot below depicts the expected execution of this programming example's Python code.

Find us at www.keysight.com Page 14

With this programming example, a provided executable GenExtTrigger_M3xxxA.exe can be used to generate
the FP triggers from any M3xxxA AWGmodule that is external to the HVI application. It is used here to emulate
the external trigger. An example execution on the console terminal of this independent executable for FP trigger
generation is displayed in the screenshot below.

Getting Started with HVI Application Programming Interface (API)
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming example using HVI API. The sequence of operations executed by each of the instruments using

Find us at www.keysight.com Page 15

HVI technology are explained in the diagram below. The diagram depicts the HVI sequences executed within
this programming example and the HVI statements used to program the sequences. Every HVI statement is
described in detail later in this section, referencing with a letter the equivalent block in the HVI diagram. The
programming example is parametrized to run on an arbitrary number of AWGs. Any additional AWGs after the
second one will execute the sameHVI sequence as the ones executed by the "AWGEngine 2" depicted below.
For further explanations about the elements in the diagram below, please refer to thePathWave Test Sync
Executive User Manual.

NOTE The Python Variables pulse_delay and pulse_ontime are used to parametrize the RF pulse
generation. Users can update them before execution using theRF_pulse_parameters class. AWG
queue waveform and AWG trigger operations require aminimum latency to correctly execute
which is specified using Python Variables queue_wfm_latency and awg_trigger_latency. These
Variables can be updated using theAWG_parameters class. AWG latency information are
documented in theM3xxxA AWGdocumentation and in the SD1 documentation.

Find us at www.keysight.com Page 16

To deploy HVI into an application, three fundamental steps shall be followed:

1. System definition: defines all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: defines all the statements to be executed within each HVI sequence
3. Execute HVI: compiles, loads to HW and executes HVI

The following sub-sections describe in details how these three steps are implemented for this example. For
further explanations about any of the concepts, please refer to the PathWave Test Sync Executive User
Manual.

System Definition
The API class SystemDefintion allows to define all necessary HVI resources. The definition of HVI resources is
the first step of an application using HVI. HVI resources include all the platform resources, engines, triggers,
registers, actions, events, etc. that the HVI sequences are going to use and execute. Users need to declare
them upfront and add them to the corresponding collections. All HVI Engines included in the application need to
be registered into the EngineCollection class instance. HVI resources are described in details in the PathWave
Test Sync Executive User Manual. The HVI resource definitions are summarized in the code snippets below.

Python

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")

def define_hvi_resources(sys_def, module_dict, chassis_list, M9031_descriptors, pxi_sync_
trigger_resources):

""" Configures all the necessary resources for the HVI application to execute: HW
platform, engines, actions, triggers, etc.

""" # Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources)

Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
Define list of actions to be executed
define_hvi_actions(sys_def, module_dict)
Defines the trigger resources
define_hvi_triggers(sys_def, module_dict)

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. SystemDefinition class also allows you to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section "HVI Core API" of the PathWave Test Sync Executive User Manual.

Find us at www.keysight.com Page 17

Python

def define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources):

""" Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

""" # Load configuration
config = ApplicationConfig()
Add chassis resources
for chassis_number in chassis_list:

if config.hardware_simulated:
sys_def.chassis.add_with_options(chassis_number,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
else:

sys_def.chassis.add(chassis_number)
Add M9031 modules for multi-chassis setups
if M9031_descriptors:

interconnects = sys_def.interconnects
for descriptor in M9031_descriptors:

interconnects.add_M9031_modules(descriptor.chassis_1, descriptor.slot_1,
descriptor.chassis_2, descriptor.slot_2)

Assign the defined PXI trigger resources
sys_def.sync_resources = pxi_sync_trigger_resources
Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
Use the code line below if you want the application to be in sync with the 10 MHz

clock
sys_def.non_hvi_core_clocks = [10e6]

Define HVI engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow to
access the actions, events and triggers that each specific engine will control and use within the HVI. In this
programming example in particular two HVI engines are used, one for the AWG, the other for the digitiizer.

Python

class HVI_engine_Names:
Defines the Names of HVI engine used in this programming example
def __init__(self):

self.awg_engine = 'AWG Engine'
self.rf_gen_engine = 'RF Generator Engine'
self.dig_engine = 'Digitizer Engine'

def define_hvi_engines(sys_def, module_dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
for engine_Name in module_dict.keys():

sys_def.engines.add(module_dict[engine_Name].instrument.hvi.engines.main_engine,
engine_Name)

Find us at www.keysight.com Page 18

Define HVI actions, events, triggers

In this programming example both the AWGand the digitizer need to trigger waveforms or acquisition very
precisely. To do that the AWG trigger and DAQ trigger actions are issued from within the HVI execution. In the
HVI usemodel, actions need to be added to the action collection of each HVI engine before they can be
executed. This is done in this programming example as explained in the code snippets below.

Python

class HVI_resource_Names:
Defines the HVI action Names to be used by each HVI engine
def __init__(self):

HVI actions
self.awg_trigger = 'AWG_Trigger'
self.daq_trigger = 'DAQ_Trigger'
HVI triggers
self.fp_trigger = 'FP Trigger'

def define_hvi_actions(sys_def, module_dict):
""" Defines AWG trigger actions for each module, to be executed by the "action execute"

instruction in the HVI sequence
Create a list of AWG trigger actions for each AWG module. The list depends on the

number of channels """ # Load configuration
config = ApplicationConfig()
For each AWG, define the list of HVI Actions to be executed and add such list to its

own HVI Action Collection
for engine_Name in module_dict.keys():

for ch_index in range(1, module_dict[engine_Name].num_channels + 1):
Actions need to be added to the engine's action list so that they can be

executed
if engine_Name == config.dig_engine:

action_Name = config.daq_trigger + str(ch_index) # arbitrary user-defined
Name

instrument_action = "daq{}_trigger".format(ch_index) # Name decided by
instrument API

else:
action_Name = config.awg_trigger + str(ch_index) # arbitrary user-defined

Name
instrument_action = "awg{}_trigger".format(ch_index) # Name decided by

instrument API
action_id = getattr(module_dict[engine_Name].instrument.hvi.actions,

instrument_action)
sys_def.engines[engine_Name].actions.add(action_id, action_Name)

def define_hvi_triggers(sys_def, module_dict):
" Defines the FP trigger to be used as a wait condition by the digitizer " # Load

configuration
config = ApplicationConfig()
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that

same instrument
fp_trigger_id = module_dict[config.dig_engine].instrument.hvi.triggers.front_panel_1
fp_trigger = sys_def.engines[config.dig_engine].triggers.add(fp_trigger_id, config.fp_

trigger)
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured as

Find us at www.keysight.com Page 19

kthvi.Direction.INPUT
DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be

changed by the user
fp_trigger.config.direction = kthvi.Direction.INPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL

Program HVI Sequences
Once the HVI resources are defined, users can program the HVI sequence of measurement actions to be
executed by each HVI engine. HVI sequences can be programmed using the Sequencer class. HVI execution
happens through a global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In this
programming example, the HVI global sync sequence consists of a synchronized while statement containing
two synchronizedmulti-sequence blocks.

Python

def program_mixed_sig_meas_sequence(sequencer, module_dict):
""" This method programs the HVI sequence of this application.
Different HVI statements are encapsulated as much as possible in separated SW methods

to help users visualize
the programmed HVI sequences.
The programming example documentation on www.keysight.com contains an HVI diagram that

graphically represents the programmed HVI sequence.
""" # Load configuration
config = ApplicationConfig()
Define registers within the scope of the outmost sync sequence
define_registers(sequencer, module_dict)

#
Define sync while condition
iteration_counter = sequencer.sync_sequence.scopes[config.dig_engine].registers

[config.iteration_counter]
sync_while_condition = kthvi.Condition.register_comparison(iteration_counter,

kthvi.ComparisonOperator.LESS_THAN, config.num_loops)
Add Sync While Statement
sync_while = sequencer.sync_sequence.add_sync_while("Sequenced Acquisition Loop", 90,

sync_while_condition)
Program Sequenced Acquisition Loops
program_sequenced_meas_loop(sync_while.sync_sequence, module_dict)
Add 3rd Sync Multi-Sequence Block
sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("Execution

Completed", 230)
program_execution_completed(sync_block)

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified

Find us at www.keysight.com Page 20

during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Register from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, whichmeans that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.

Python

class HVI_register_Names:
Defines the HVI registers (and their Names) to be used within the scope of each HVI

engine
def __init__(self):

self.iteration_counter = 'Iteration Counter'
self.pulse_counter = 'Pulse Counter'
self.awg1_counter = 'AWG1 Counter'
self.queue_reg = 'Queue Reg'
self.reg_wfm_A = 'Wfm A'
self.reg_wfm_B = 'Wfm B'
self.counter_reg = 'Counter Reg'
self.hvi_done = 'HVI Done'

def define_registers(sequencer, module_dict):
Defines all registers for each HVI engine in the scope af the global sync sequence
Load previously defined register Names
eng_Names = HVI_engine_Names()
register_Names = HVI_register_Names()
awg_params = AWG_parameters()
Digitizer registers
iteration_counter = sequencer.sync_sequence.scopes[eng_Names.dig_engine].registers.add

(register_Names.iteration_counter, kthvi.RegisterSize.SHORT)
iteration_counter.initial_value = 0
hvi_done = sequencer.sync_sequence.scopes[eng_Names.dig_engine].registers.add(register_

Names.hvi_done, kthvi.RegisterSize.SHORT)
hvi_done.initial_value = 0
RF Gen registers
pulse_counter = sequencer.sync_sequence.scopes[eng_Names.rf_gen_engine].registers.add

(register_Names.pulse_counter, kthvi.RegisterSize.SHORT)
pulse_counter.initial_value = 0
AWG 1:N Registers
for engine_Name in module_dict.keys():

if engine_Name!=eng_Names.rf_gen_engine and engine_Name!=eng_Names.dig_engine:
queue_reg = sequencer.sync_sequence.scopes[engine_Name].registers.add(register_

Names.queue_reg, kthvi.RegisterSize.SHORT)
queue_reg.initial_value = 0
reg_wfm_A = sequencer.sync_sequence.scopes[engine_Name].registers.add(register_

Names.reg_wfm_A, kthvi.RegisterSize.SHORT)
reg_wfm_A.initial_value = awg_params.wfm_A

Find us at www.keysight.com Page 21

reg_wfm_B = sequencer.sync_sequence.scopes[engine_Name].registers.add(register_
Names.reg_wfm_B, kthvi.RegisterSize.SHORT)

reg_wfm_B.initial_value = awg_params.wfm_B

SynchronizedWhile

It corresponds to statement (a) in the HVI diagram. SynchronizedWhile (Sync While) statements belongs to the
set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While allows you to
synchronously executemultiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. For local sequences to be defined within the Sync While, it is necessary to use synchronized
multi-sequence blocks.

Python

Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(iteration_counter,
kthvi.ComparisonOperator.LESS_THAN, rf_pulse_params.num_loops)
Add Sync While Statement
sync_while = sequencer.sync_sequence.add_sync_while('Sequenced Acquisition Loop', 60, sync_
while_condition)

SynchronizedMulti-Sequence Block

It corresponds to statements (b, f, p) in the HVI diagram. Synchronizedmulti-sequence blocks are defined by
the API class SyncMultiSequenceBlock. This type of sync statement synchronizes all the HVI engines that are
part of the sync sequence. It allows you to program each HVI Engine to do specific operations by exposing a
local sequence for each engine. By calling the API method add_multi_sequence_block() a synchronizedmulti-
sequence block is added to the Sync (global) Sequence.

Python

Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block_1 = sync_sequence.add_sync_multi_sequence_block("Loop Initialization", 270)

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.

Find us at www.keysight.com Page 22

Please note that the SyncMulti-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. In future releases, the user will be able to
specify specific execution time values or allowed ranges. The timing at the end of each local
sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In case of duration "T min" HVI will automatically add no time to the local sequence having
longest duration and adjust the other sequences accordingly, as in the example depicted in the figure
above. The resolution for HVI-defined time adjustment at the end of a syncmulti-sequence block
corresponds to the 10 ns FPGA clock period for an application including instruments that are all
within the Keysight M3xxxA family. For further explanations about the timing of HVI sequence
execution please refer to "HVI Timing" section of the KS2201APathWave Test Sync Executive User
Manual available on www.keysight.com
Wait Statement

It corresponds to statement (c) in the HVI diagram. The wait statement is a local flow control statement that can
be implemented using the API class WaitStatement. This sequence block sets an instrument to wait for a
condition. The condition ca be defined by a trigger, an event, or any combination of them through the usage of

Find us at www.keysight.com Page 23

logical operators. In this programming example, the wait is used to set the digitizer to wait for an external front
panel trigger. The wait statement is set to wait for a trigger falling edge using the .wait
mode WaitMode.TRANSITION combined with a trigger configuration as ACTIVE_LOW. The sync
mode SyncMode.IMMEDIATE sets the wait event to let the execution continue immediately, i.e. as soon as the
trigger event is received.

Python

Define the condition for the wait statement
trigger_event = dig_sequence.engine.triggers[config.fp_trigger]
wait_condition = kthvi.Condition.trigger(trigger_event)
Add a Wait For Event
wait_event = dig_sequence.add_wait("Wait for FP Trigger", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

HVI Native Instruction: Register Increment

It corresponds to statement (d, i) in the HVI diagram. A register increment can be implemented within an HVI
sequence using an instance of the API instruction class InstructionsAdd. The same instruction can be used to
add registers and constant values (operands) and put the result in another register (result). The register to be
incremented needs to be added previously to the scope of the corresponding HVI engine.

Python

Increment the sync while iteration counter for each external trigger event that is
received
instruction = sequence.add_instruction('Increment Counter', 50, sequence.instruction_
set.add.id)
instruction.set_parameter(sequence.instruction_set.add.destination.id, iteration_counter)
instruction.set_parameter(sequence.instruction_set.add.left_operand.id, iteration_counter)
instruction.set_parameter(sequence.instruction_set.add.right_operand.id, 1)

HVI Native Instruction: Register Assign

It corresponds to statements (e, q) in the HVI diagram. A register assign statement can be used to initialize a
register to an initial value using the instruction class InstructionsAssign from Python HVI API. The same
instruction can be used to assign a register value (source) to another register (destination). Each register can
also be initialized outside an HVI sequence using the API method KtviRegister.set_initial_value.

Python

In sync_block_1 Initialize pulse_counter = 0 in RF Gen Engine
instruction = sequence.add_instruction('Initialize Pulse Counter', 10,
sequence.instruction_set.assign.id)
instruction.set_parameter(sequence.instruction_set.assign.destination.id, pulse_counter)
instruction.set_parameter(sequence.instruction_set.assign.source.id, 0)

Action Execute: DAQ, AWG Trigger

It corresponds to statement (g, o) in the HVI diagram. Actions to be used within an HVI sequence need to be
added to the instrument HVI engine using the API "add" method of the ActionCollection class. Once the wanted
actions are added within the list of the instruments' HVI engine actions, an instruction to execute them can be

Find us at www.keysight.com Page 24

added to the instrument's HVI sequence using the HVI API class InstructionsActionExecute. One or multiple
actions can be executed at the same time within the same "Action Execute" instruction.

Python

List of previously defined DAQ trigger actions
daq_trigger_all = []
for ch_index in range(1, module_dict[hvi_eng_Names.dig_engine].num_channels+1):

daq_trigger_all.append(sys_def.engines[hvi_eng_Names.dig_engine].actions[ch_index-1])

Digitizer sequence: DAQ trigger
inst_daq_trigger = dig_sequence.add_instruction('DAQ Trigger', 10, dig_
sequence.instruction_set.action_execute.id)
inst_daq_trigger.set_parameter(dig_sequence.instruction_set.action_execute.action.id, daq_
trigger_all)

Local While

It corresponds to statement (h) in the HVI diagram. WhileStatement class allows you to add a local WHILE loop
sub-sequence within themain HVI sequence of any instrument engine. TheWHILE sub-sequence runs until the
WHILE condition is met. The condition can be defined using the API class ConditionalExpression. Once the
WHILE loop sub-sequence is created, it can be programmed using the same API methods and classes used to
program themain HVI sequence.

Python

Sequence of RF Gen.
Local WHILE: amplitude ON, amplitude OFF
local_while_condition = kthvi.Condition.register_comparison(pulse_counter,
kthvi.ComparisonOperator.LESS_THAN, rf_pulse_params.num_pulses)
while_loop = rfgen_sequence.add_while('Generate RF pulses', 60, local_while_condition)
while_sequence = while_loop.sequence
#Increment pulse_counter
instruction = while_sequence.add_instruction('Increment Pulse Counter', 10, while_
sequence.instruction_set.add.id)
instruction.set_parameter(while_sequence.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(while_sequence.instruction_set.add.left_operand.id, pulse_
counter)
instruction.set_parameter(while_sequence.instruction_set.add.right_operand.id, 1)

HVI Instrument-Specific Instruction

Instrument-specific instructions are in statements (j, k, m, n) of the HVI diagram. This block executes a product-
specific HVI instruction. Native HVI instructions are common to every Keysight product. API method add_
instruction() allows you to add the wanted instruction within the HVI sequence. Instruction parameters are set
using the API method set_parameter(). All HVI product-specific instructions and parameters are defined in the
hvi.InstructionSet interface of each product. Instructions, actions, events and in general all the HVI definitions
specific of M3xxxA instruments can be found in theM3xxxA User Guide available on www.keysight.com.

Python

Find us at www.keysight.com Page 25

http://www.keysight.com/

Set CH1 amplitude to ON_value
instruction = while_sequence.add_instruction('Set CH1 amplitude to ON_value', 100, module_
dict[hvi_eng_Names.rf_gen_engine].instrument.hvi.instruction_set.set_amplitude.id)
instruction.set_parameter(module_dict[hvi_eng_Names.rf_gen_
engine].instrument.hvi.instruction_set.set_amplitude.channel.id, rf_pulse_params.n_AWG)
instruction.set_parameter(module_dict[hvi_eng_Names.rf_gen_
engine].instrument.hvi.instruction_set.set_amplitude.value.id, rf_pulse_params.ON_value)

IF-ELSEIF-ELSE Statement

It corresponds to statement (l) in the HVI diagram. IfStatement class allows you to add an IF-ELSEIF-ELSE loop
within themain HVI sequence of any instrument engine. The IF-ELSEIF-ELSE loop contains one (or more) IF
branches and an ELSE branch. The instructions and/or statements contained in each IF or ELSE branch are
executed if the condition of each branch is met. The condition of each branch can be defined using the API class
ConditionalExpression. Branch sub-sequence can be programmed using the same API methods and classes
used to program themain HVI sequence, by means of the API classes IfBranch andElseBranch.

Python

Configure IF condition
if_condition = kthvi.KtHviCondition.register_comparison(queue_reg[index],
kthvi.ComparisonOperator.EQUAL_TO, 0)
Set flag that enables to match the execution time of all the IF branches
enable_ifbranches_time_matching = True
Add If statement
if_statement = awg_sequence.add_if('Queue Wfm AWG' + str(index), 10, if_condition, enable_
ifbranches_time_matching)
Program IF branch
if_sequence = if_statement.if_branch.sequence
Add statements in if-sequence
instruction = if_sequence.add_instruction(instrLabel, start_delay, module
[index].hvi.instructions.queue_waveform.id)
instruction.set_parameter(...)
...
Eventually add Else-If-branches (not used in this programming example)
else_if_condition_1 = ...
else_if_branch_1 = ...
...
Else-branch
Program Else branch
else_sequence = else_branch.sequence
Add statements in Else-sequence
instruction = else_sequence.add_instruction(...)
...

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, users can compile,
load and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

Find us at www.keysight.com Page 26

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell to the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences

hvi = sequencer.compile()

print("HVI Compiled")

print("This HVI programming example needs to reserve {} PXI trigger resources to

execute".format(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.

hvi.load_to_hw()

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example the non-blockingmode is used. By using this executionmode, SW execution can interact
through registers read/write with the HVI sequence execution.

Python

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no_wait)
print('HVI Running...')

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Find us at www.keysight.com Page 27

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.

Multi-Chassis Setup Implementation

The reference examples provided with this document can be executed on amultiple-chassis setup with only the
few modifications explained below. In amulti-chassis setup, it is necessary to interconnect the PXI triggers and
clocking of themultiple chassis.

With the currently available infrastructure to interconnect PXIe backplane triggers a pair of M9031A boards must
be placed in a specific segment in each chassis to be interconnected.

NOTE The SMB cables used to connect theM9031A modules need to be as short as possible. The
chassis need to be stack in the same rack, on top of each other, as close as possible to each other
to allow the SMB cables that connect them to be as short as possible.

On the twoM9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There aremainly three rules to consider when choosing the chassis slot where to place aM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each pair
of M9031A connects two chassis together and shares info through their PXI lines.

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length.

3. A PXI module included in the HVI application needs to be placed in the same chassis segment where the first
M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair of
boards.

Find us at www.keysight.com Page 28

The picture above illustrates in green the PXI modules that must be placed in the same segment as theM9031A
modules in blue. Basically:

l The 1st chassis must include aM9031A together with a PXI module with HVI in segment 2

l All Middle chassis must have aM9031A in the segment 2, and aM9031A together with a PXI Module with HVI
support in Segment 3

l The last chassis must include aM9031A in segment 2.

All the chassis that are part of themulti-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A aremade to share the PXI lines that are used as sync resources. PXI trigger lines are
shared usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all themiddle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Additionally, a very clean 10MHz source should be used to provide the same reference signal to all chassis.
One option is to use amulti-output 10MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

Find us at www.keysight.com Page 29

AddChassis

Each chassis included in themulti-chassis setup can be added using any of the HVI API methods below. The
AddAutoDetect() method shall be called only once to automatically detect and add all the chassis connected to
the system.

Python

To add chassis resources use:

hvi.platform.chassis.add_with_options(1,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')

hvi.platform.chassis.add(chassis_number)

hvi.platform.chassis.add_auto_detect()

AddM9031A Boards

In the HVI API eachM9031A board pair needs to be declared using the following softwaremethod:

Python

To add each interconnected pair of M9031 modules use:

interconnects.add_M9031_modules(1st_M9031_chassis_number, 1st_M9031_chassis_slot, 2nd_

M9031_chassis_number, 2nd_M9031_chassis_slot)

The above-mentioned code lines are part of this application code example and they can be used to adapt the
code example to run on amulti-chassis setup.

10MHz Clock Reference Source

One option is to use as a 10MHz Reference source the PXI module Keysight M9300A PXIe Frequency
Reference. Please place this module in one of the chassis and use splitters to divide the 10MHz clock output
into N cables to be connected to the 10MHz REF IN connector on the back panel of each of the chassis,
including the chassis where theM9300A module is placed. Each time the system is restarted please open the
M9300A SFP software to check the box "10MHz Out Enabled and uncheck the box ""Drive BP 10MHz
Reference". Please see screenshot below for clarifications. For more details on the Keysight M9300A PXIe
Frequency Reference please visit www.keysight.com .

Find us at www.keysight.com Page 30

http://www.keysight.com/

Once the common 10MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from the "Reference Clock"
window shown in the screenshot below. Once you open the window please clear any ¨Alarm¨ that possibly
occurred during the 10MHz reference setup. After clearing ¨Alarm occurred¨ icon should stay idle (white color).
Clock source shall st to "Rear 10MHz Ref In".

Find us at www.keysight.com Page 31

Additionally, in the case of using a remote controller card, like theM9023A PXI SystemModule used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis backplane REF and LOCK LED lights are lighted in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED
lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 32

Formore details on the Keysight PXIe Chassis Family please visit www.keysight.com .

Find us at www.keysight.com Page 33

http://www.keysight.com/

Conclusions
This Programming Example explained how to use PathWave Test Sync Executive and HVI (Hard Virtual
Instrument) technology to synchronously execute sequences of measurement actions over multiple M3xxxA
PXI instruments. Validationmeasurements showed how to synchronize anM3102A digitzer and an arbitrary
number of M320xA AWGs to iteratively acquire heterogeneous signals generated over multiple cycles.

Find us at www.keysight.com Page 34
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, October 07 2020,KS2201-90002

	KS2201A - Programming Example 2 - Synchronous Mixed-Signal Measurements using...
	System Setup
	System Requirements
	How to install Python 3.7.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	How to run this programming example

	Synchronous Signal Generation & Acquisition using M3xxxA PXI Instruments
	Measurement Results

	Getting Started with HVI Application Programming Interface (API)
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI engines
	Define HVI actions, events, triggers

	Program HVI Sequences
	Define HVI Registers
	Synchronized While
	Synchronized Multi-Sequence Block
	Wait Statement
	HVI Native Instruction: Register Increment
	HVI Native Instruction: Register Assign
	Action Execute: DAQ, AWG Trigger
	Local While
	HVI Instrument-Specific Instruction
	IF-ELSEIF-ELSE Statement

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations

	Multi-Chassis Setup Implementation
	Add Chassis
	Add M9031A Boards
	10 MHz Clock Reference Source
	Conclusions

