
Real-Time Pulsed Characterization
of a Device-Under-Test
In this programming example an M3202A AWG and an M3102A digitizer are
used to perform a real-time pulsed characterization experiment on a Device-
Under-Test (DUT). This example can be used for power amplifier
characterization for 5G mobile communications and quantum bit characterization
experiments for quantum applications, in which case the AWG generates the
control and readout pulses necessary for characterization of quantum bits.
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KS2201A - Programming Example 4 - Real-Time Pulsed Characterization of a Device-
Under-Test
In this programming example anM3202A AWGand anM3102A digitizer are used to perform a real-time pulsed
characterization experiment on a Device-Under-Test (DUT). A pool of different waveforms is loaded to the AWG
RAM. The digitizer can use the register sharing functionality to select real-time the waveform to be played by the
AWGat each iteration of the experiment steps. The selected waveform is used by AWGCH1 and CH2 to play I-
Qmodulated pulses and re-play them after a Variable delay. In the same iteration AWGCH3 and CH4 play a
second burst of I-Q pulses after another Variable delay. The second burst pulse length can be increased after
each iteration. The experiment can be repeated for a user-defined number of loops, allowing the user to choose
the delay between each loop, delay necessary for example to let the DUT return to its equilibrium
state. Example use cases for this programming example include power amplifier characterization for 5Gmobile
communications and quantum bit characterization experiments for quantum applications, in which case the
AWGgenerates the control and readout pulses necessary for characterization of quantum bits.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please
visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements
The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)
l Keysight SD1Drivers, Libraries and SFP (v3.00.95 or later)
l Keysight PathWave Test Sync Executive 2020 Update 0.2 (v1.00.18 or later)

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (tested on v2018, v2019EnhTrig)
l Keysight PXIe Chassis Family Driver (tested on v1.7.82.1)
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3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.00.95 or later)
l M3102A Digitizer FPGA firmware (v2.01.40 or later)

How to install Python 3.7.x 64-bit
This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python webpage. Make sure you add Python 3.7.x to the PATH system Variable.
This can be done at the installation step by checking the right check-boxes as shown in the screenshot below.

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com. 
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How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for
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SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

How to run this programming example
Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options. This programming example deploys one AWGand one
digitizer, therefore two instances of the themodule_descriptor are used. Please update the properties in each
module-descriptor object before running the programming example:

# Update module descriptors below with your instruments information
digitizer_descriptor = module_descriptor('M3102A', 1, 9, options, hvi_eng_Names.dig_engine)
awg_descriptor = module_descriptor('M3202A', 1, 8, options, hvi_eng_Names.awg_engine)

class module_descriptor:
# Descriptor for module objects
def __init__(self, model_number, chassis_number, slot_number, options, engine_Name):

self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_Name = engine_Name

The chassis to be used in the programming example need to be also specified and listed by chassis number. In
case of multi-chassis setup, please specify the connection between each pair of M9031modules using the
M9031_descriptor class. 

# Update list of chassis numbers included in the programming example
chassis_list = [1, 2]

# Multi-chassis setup
# In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
# M9031 module positions need to be defined in the program.
M9031_descriptors = [M9031_descriptor(1, 11, 2, 11)]

class M9031_descriptor:
# Describes the interconnection between each pair of M9031 modules
def __init__(self, first_M9031_chassis_number, first_M9031_slot_number, second_M9031_

chassis_number, second_M9031_slot_number):
self.chassis_1 = first_M9031_chassis_number
self.slot_1 = first_M9031_slot_number
self.chassis_2 = second_M9031_chassis_number
self.slot_2 = second_M9031_slot_number

Please note that in every HVI programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:
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# Assign triggers to HVI object to be used forsynchronization, data sharing, etc
# NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared
# among each M9031 board pair by means of SMB cable connections
pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3,
kthvi.TriggerResourceId.PXI_TRIGGER4,
kthvi.TriggerResourceId.PXI_TRIGGER5,
kthvi.TriggerResourceId.PXI_TRIGGER6,
kthvi.TriggerResourceId.PXI_TRIGGER7]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. The vector pxi_sync_trigger_resources specified above shall include at least the necessary number
of PXI line for the application to execute. Since this programming example uses the Sync Register Sharing
functionality, the number of reserved PXI lines for HVI needs to be greater than the number of bits shared
between the registers that are used for the Sync Register Sharing.

Users can set the AWGand digitizer parameters using the classes defined in the following code snippets:

class AWG_parameters:
# Configures AWG for waveform generation
def __init__(self):

self.all_ch_mask = 0xF # binary mask defining which channels to use
# AWG settings for all channels
self.sync_mode = keysightSD1.SD_SyncModes.SYNC_NONE
self.queue_mode = keysightSD1.SD_QueueMode.ONE_SHOT
self.awg_mode = keysightSD1.SD_Waveshapes.AOU_SINUSOIDAL
self.start_delay = 0 # x10 [ns]
self.prescaler = 0
self.wfm_cycles = 2 # number of pulsed wfms for the T2 experiment
self.amplitude = 1 # [V]
self.offset = 0 # [V]
# Trigger settings
self.trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG_CYCLE
# Latency values for M3202A AWGqueueWfm() [ns]
# Latencies depend on AWG FPGA FW. Check M3xxxA User Guide for further info
# Minimum start delay necessary to execute an AWGqueueWfm() instruction

self.queuewfm_latency = 50 # [ns]
# Minimum latency necessary between an AWGqueueWfm() instruction and an AWGtrigger

action.
self.awgtrigger_latency = 2300 # [ns]
# Readout pulse parameters
self.rorise_id = 1000 # wfm ID for the rising edge of the readout pulse
self.rofall_id = 1001 # wfm ID for the falling edge of the readout pulse

class DIG_parameters:
# Configures Digitizer parameters
def __init__(self):

exp_params = Experiment_parameters()
awg_params = AWG_parameters()
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all_ch_mask = 0xF
sampling_time = 2 # [ns] 1/sample_rate, sample_rate = 500 MSa/s for Digitizer

M3102A
acquisition_points_per_cycle = int(exp_params.acquisition_window / sampling_time) #

[Sa]
self.prescaler = 0 # Prescaler values are explained in M3xxxA User Guide
self.fullscale = 2 # [V] enter x Volts to set the full scale to [-x, x] Volts
self.acquisition_points_per_cycle = acquisition_points_per_cycle
self.num_cycles = exp_params.num_steps*exp_params.num_loops # insert -1 for

infinite cycles
self.acquisition_points = int(acquisition_points_per_cycle*exp_params.num_

steps*exp_params.num_loops)
self.acquisition_delay = 0 # x2[ns]
self.trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG
self.mask = all_ch_mask

For details on the parameters defined for AWG and digitizer please refer to M3xxxA AWGand digitizer user
guides available on www.keysight.com. Experiment parameters must also be set before running this
programming example. Detailed information to set them are provided in the next section of this programming
example.

Real-Time Pulsed Characterization of a Device-Under-Test
Overview
The DUT characterization experiment implemented in this programming example is represented in the setup
diagram below.

In the general case, this programming example can be deployed onMultiple-Input Multiple-Output (MIMO)
Device-Under-Tests (DUTs). The number of inputs and outputs depends on the DUT. To deploy this
programming example on an NxMMIMODUT, it is necessary to use an AWGwith N channels and a digitizer
with M channels. The example application andmeasurement results carried out in the rest of the document are
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obtained using an AWGM3202A and a digitizer M3102A having four channels each. Hence, the specific use
case addressed by this document applies to DUTs up toMIMO 4x4, or MIMO 2x2 in case the AWGand digitizer
respectively generate andmeasure I-Q (In-phase andQuadrature) signals that need to pass through frequency
converters (i.d. I-Qmodulators/demodulators) before they can be applied to the DUT. This latter use case is
depicted in the figure below.

As an example, Radio Frequency (RF) Power Amplifiers (PAs) used inmobile communications are typically
Single-Input Single-Output (SISO) systems, but the latest advanced transmitter configuration for the 5th
Generation (5G) of mobile communications can includemultiple amplifiers configured together to form an Active
Phased Array (APA) containingmultiple PAs. High-efficiency transmitter architectures including the Envelope
Tracking (ET) configuration can also be addressed by this programming example, as represented in the following
figure.

In particular, to address the ET PA characterization use case, users might prefer to substitute the example
pulsed waveforms used in this programming example with real telecommunication waveform data samples. The
usage of I-Qmodulators/demodulators, I-V probe is not covered in this programming example. This
programming example does not cover either the application of calibration techniques aiming at reconstructing
the true waveforms at the DUT reference planes. This is left to the user as a possible add-on.
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Another interesting use case is the characterization of quantum bits (Qbits) for quantum applications. Such
applications can be covered by this programming example using a setup similar to the one represented in the
figure below.

The arbitrary waveforms loaded to the AWGRAM in this programming example include the pi and pi/2 gaussian
pulses typically used as Qbit excitation signals. Themeasurement results shown in the rest of this section show
I-Q pulses output from the AWG channels to produce the typical saturation and readout pulses to be sent to a
superconductive Qbit and its resonator to perform theQbit coherence time T1 (also known as energy relaxation
time) and theQbit dephasing time T2. The programming example capabilities will be illustrated through some
examplemeasurement results obtained using themeasurement setup depicted below where each of the four
channels of theM3202A AWGare connected to the corresponding channel of theM3102A digitizer and to the
corresponding channel of a Keysight oscilloscope, using an T-connector.
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A photograph of themeasurement setup used for themeasurement results reported in this programming
example is reported below:
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Measurement Results
The first step to run this programming example is to define the experiment parameters. The example
measurement results reported in the rest of this document are obtained with the experiment parameter values
set as follows:

class Experiment_parameters:
# Configures the experiment parameters
def __init__(self):

self.num_wfms = 1 # Number of waveforms to be loaded to the AWG RAM
self.T2_flag = 0 # User can choose to run a T1 or T2 experiment
self.initial_tau = 10 # x10[ns] # The initial time delay between the control and

readout pulse, in ns
self.tau_step = 50 # x10[ns] # Time that is incrementally added to delay between

the control and readout pulse, in ns
self.ro_delay = 10 # [ns] # Delay in ns that is applied after the last control

pulse, but before the readout pulse
self.step_delay = 0 # x10[ns] # Time to wait between each experiment step
self.loop_delay = 100 # x10[ns] # Time to wait between each experiment loop
self.initial_acq_delay = 230 # x10[ns] # Delay before starting to capture waveforms

with digitizer
self.acquisition_window = 1000 # [ns] time window to be acquired by DAQ channel

each time a DAQ trigger is sent out
self.carrier_frequency = 100e6 # [Hz] frequency of the IF carrier modulating the I-

Q pulses at the AWG output
self.initial_pulse_length = 30 # x10[ns] # Initial readout pulse length
self.delta_length = 0 # x10[ns] # Duration increment of the readout pulse length at

each step
self.num_steps = 3 # Number of iterations to increase tau by tau_step
self.num_loops = 2 # Number of experiments to execute

The experiment repeats for a number of iteration steps. At each step parameters such as the delay tau between
the saturation pulse and the readout pulse can be incremented by an incremental quantity defined as an
experiment step (tau_step Python code Variable listed above). Each step iteration is repeated after a step delay
that can be defined by the user to make sure the DUT responses at each experiment steps are uncorrelated. The
oscilloscopemeasurement below displays how the tau delay increments over two experiment steps.
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The experiment is then repeated for a number of experiment loops. Each experiment loop can start after a user-
defined loop delay to allow the DUT to return into its equilibrium state before the next series of experiment steps
can be performed. By increasing the number of experiment loops the user can collect repeated DUT
measurements that can allow to calculate a statistics on the experiment results. Experiment step and loop
iterations are depicted in the oscilloscopemeasurement below representing an example experiment execution
with three steps (num_steps = 3) and two loops (num_loops = 2).
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The oscilloscopemeasurement below represents the experiment parameters tau, readout delay and readout
pulse length, all implemented using HVI registers. More details on the HVI resources and sequences
programmed to implement the programming example functionalities are provided in the next section.
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Thanks to the powerful synchronization capabilities of PathWave Test Sync Executive and HVI technology,
each digitizer acquisition cycle can be precisely triggered synchronously with the time window of the waveform
generated by the AWG. Users can adjust the starting point of the acquisition time window by setting the initial_
acq_delay parameter. The figure below represents an example of a completed series of digitizer acquisition
cycles corresponding to the same experiment steps and loops shown in the previous oscilloscope
measurements. The red and blue waveform represented below correspond respectively to the raw measured
data at DAQ channels CH1 and CH3, which are connected to the AWG channels generating the in-phase
saturation pulse and readout pulse respectively.
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Users can change the experiment parameters to achieve different types of DUT characterization. By setting the
experiment parameter T2_flag = 1, the Python code execution generates at each experiment step two
consecutive I-Q pulses output from AWGCH1 and CH2. The two pulses are separated by a delay tau that
increments at each iterations step, whereas the readout delay with respect to the I-Q readout pulses output by
the AWGCH3 and CH4 stays fixed. 
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The activation of the T2_flag parameters allows to run this programming example to perform an experiment
typically used for the characterization of the the T2 time, i.e. dephasing time of quantum bits. This experiment is
also known as Ramsey experiment. The osciloscopemeasurements below represent three iteration steps of
such Ramsey experiment.
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Finally, two additional features included in the experiment template of this programming example allow to:

1. Change the waveform played by the AWGat each iteration of the experiment steps (real-time fast
branching)

2. Increment the readout pulse length after each experiment step.

The capability of the AWG to be able to switch real-time between a pool of different waveforms is also known as
fast branching. Users can enable this capability by setting the number of waveforms parameter represented by
the Python code Variable num_wfms. The number of waveforms the AWG can quickly switch from depends on
the waveforms previously loaded to the AWGRAM, within the Python codemethod configure_awg(). M3xxxA
AWGRAM allows to load up to 2GB of waveform data and queue up to onemillion different waveforms. For
more details please refer to the M3xxxA AWG User Guide on www.keysight.com. The oscilloscope
measurement reported below depicts three experiment steps where the AWG can switch a different waveform
at each iteration step and the readout pulse length is incremented at each iteration step by a quantity defined by
the Python code Variable delta_length listed among the experiment parameters reported above.
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The functionality to increment both the tau delay and the readout pulse length at each experiment iteration step
are implemented using the HVI statement Wait Time. The selection of a different waveform real-time is
achieved using the Sync Register Sharing functionality. In the general case the digitizer instrument can
communicate the decision on the next wavefrom to be played based on processing on themeasurement data
that contain information on the DUT state. Users canmodify this programming example to add custom
processing in the digitizer sandbox using Keysight PathWave FPGA. For more information please consult the
PathWave FPGA User Guide on www.keysight.com

Getting Started with HVI
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming example using HVI API. The sequence of operations executed by each of the instruments using
HVI technology are explained in the diagram below. The diagram depicts the HVI sequences executed within
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this programming example and the HVI statements used to program the sequences. Every HVI statement is
described in detail later in this section, referencing with a letter the equivalent block in the HVI diagram.

In the HVI diagram below two nested HVI Sync While loops are used to implement the experiment iteration
steps and loops. The functionality to increment both the tau delay and the readout pulse length at each
experiment iteration step are implemented using the HVI statement Wait Time. Delays between waveforms are
implemented using Python code Variables like ro_delay when the delay is fixed and not expected to change
during the HVI execution or using registers like tau, acq_delay, when the delay is updated at each iteration of the
HVI execution. 

HVI instrument-specific instructions are used to queue and play the waveforms form theM3202A AWG. These
instructions are represented by the green boxes labeled 'QueueWfm(...)' and 'AwgTrigger(...)' in the HVI diagram
depicted below. For additional information about theM3202A AWG functionalities and its HVI definitions please
consult theM3xxxA AWG User Guide on www.keysight.com.
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NOTE Python Variable ro_delay is used to parametrize the readout delay parameter in the experiment
described in this programming example. Users can update it before execution using the
Experiment_parameters class. The readout delay is specified using a Python Variable because it
is expected to stay fixed during the HVI execution. Delays to be changed during HVI execution
(e.g. tau, step_delay) are implemented using theWaitTime statement instead. AWG queue
waveform and AWG trigger operations require aminimum latency to correctly execute which is
specified using Python Variables queue_wfm_latency and awg_trigger_latency. These Variables
can be updated using theAWG_parameters class. AWG latency information are documented in
theM3xxxA AWGdocumentation and in the SD1 documentation.

To deploy HVI into an application, three fundamental steps shall be followed:

1. System definition: defines all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc. 

2. Program HVI sequences: defines all the statements to be executed within each HVI sequence
3. Execute HVI: compiles, loads to HW and executes HVI
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The following sub-sections describe in details how these three steps are implemented for this example. For
further explanations about any of the concepts, please refer to the PathWave Test Sync Executive User
Manual.

System Definition
The API class SystemDefintion allows to define all necessary HVI resources.The definition of HVI resources is
the first step of an HVI application. HVI resources include all the platform resources, engines, triggers, registers,
actions, events, etc. that the HVI sequences are going to use and execute. Users need to declare them upfront
and add them to the corresponding collections. All HVI Engines included in the application need to be registered
into the EngineCollection class instance. HVI resources are described in details in the PathWave Test Sync
Executive User Manual. The HVI resource definitions are summarized in the code snippets below.

Python

def define_hvi_resources(module_dict, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources):

# Configures all the necessary resources for the HVI application to execute: HW
platform, engines, actions, triggers, etc.

# Create system definition object
sys_def = kthvi.SystemDefinition('ExperimentSetup')
# Define HW platform: chassis, interconnections, PXI trigger resources,

synchronization, HVI clocks
define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_

resources)
# Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
# Define list of actions to be executed
define_hvi_actions(sys_def, module_dict)
return sys_def

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. The SystemDefinition class also allows to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section 'HVI Core API' of the PathWave Test Sync Executive User Manual.

Python

def define_hw_platform(sys_def, chassis_list, M9031_descriptors, pxi_sync_trigger_
resources):

# Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

# Add chassis resources
for chassis_number in chassis_list:

if hardware_simulated:
sys_def.chassis.add_with_options(chassis_number,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
else:

sys_def.chassis.add(chassis_number)
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#
# Multi-chassis setup
# In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI

modules.
# M9031 module positions need to be defined in the program.
# To add each interconnected pair of M9031 modules use:
# interconnects.add_M9031_modules(1stM9031_chassis_number, 1stM9031_slot_number,

2ndM9031_chassis_number, 2ndM9031_slot_number);
# First and last chassis have only one M9031 module in the middle segment. Middle

chassis have two M9031 modules
# in middle and lateral segments respectively. Adjacent chassis have their M9031

modules connected in diagonal.
# See programming example documentation for more details.

#
# Add M9031 modules for multi-chassis setups
if M9031_descriptors:

interconnects = sys_def.interconnects
for descriptor in M9031_descriptors:

interconnects.add_M9031_modules(descriptor.chassis_1, descriptor.slot_1,
descriptor.chassis_2, descriptor.slot_2)

#
# Assign the defined PXI trigger resources
sys_def.sync_resources = pxi_sync_trigger_resources
#
# Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
# Use the code line below if you want the application to be in sync with the 10 MHz

clock
sys_def.non_hvi_core_clocks = [10e6]
#
return

Define HVI engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow you to
access the actions, events and triggers that each specific engine will control and use within the HVI. In this
programming example in particular, two HVI engines are used, one for the AWG, the other for the digitiizer.

Python

class HVI_engine_Names:
# Defines the Names of HVI engine used in this programming example
def __init__(self):

self.awg_engine = 'AWG Engine'
self.dig_engine = 'Digitizer Engine'

def define_hvi_engines(sys_def, module_dict):
# Define all the HVI engines to be included in the HVI
# For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
for engine_Name, module in zip(module_dict.keys(), module_dict.values()):
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sys_def.engines.add(module.instrument.hvi.engines.main_engine, engine_Name)
#
return

Define HVI actions, events, triggers

In this programming example both the AWGand the digitizer need to trigger waveforms or acquisition very
precisely. To do that the AWG trigger and DAQ trigger actions are issued from within the HVI execution. In the
HVI usemodel, actions need to be added to the action collection of each HVI engine before they can be
executed. This is done in this programming example as explained in the code snippets below.

Python

class HVI_action_Names:
# Defines the HVI action Names to be used by each HVI engine
def __init__(self):

self.awg_trigger = 'AWG_Trigger'
self.daq_trigger = 'DAQ_Trigger'

def define_hvi_actions(sys_def, module_dict):
# define_hvi_actions(hvi, module_dict):

#
# hvi = HVI instance
# module_dict = dictionary containing modular instrument objects previously created
#
# This function defines a list of DAQ/AWG trigger actions for each module,
# to be executed by the 'action-execute' instructions within the HVI sequence.
# The number of actions in each engine's list depends on the intrument's number of

channels.
#

# Load previously defined resources
hvi_eng_Names = HVI_engine_Names()
hvi_act_Names = HVI_action_Names()

#
# For each engine, add each HVI Actions to be executed to its own HVI Action Collection
for engine_Name, module in zip(module_dict.keys(), module_dict.values()):

for ch_index in range(1, module.num_channels + 1):
# Actions need to be added to the engine's action list so that they can be

executed
# Example: hvi.engines[i].actions.add(module_dict[i].hvi.actions.awg1_trigger,

'AWG1_trigger')
if engine_Name == hvi_eng_Names.dig_engine:

action_Name = hvi_act_Names.daq_trigger + str(ch_index) # arbitrary user-
defined Name

instrument_action = 'daq{}_trigger'.format(ch_index) # Name decided by
instrument API

else:
action_Name = hvi_act_Names.awg_trigger + str(ch_index) # arbitrary user-

defined Name
instrument_action = 'awg{}_trigger'.format(ch_index) # Name decided by

instrument API
action_id = getattr(module.instrument.hvi.actions, instrument_action)
sys_def.engines[engine_Name].actions.add(action_id, action_Name)
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#
return

Program HVI Sequence
Once the HVI resources are defined, users can program the HVI sequence of measurement actions to be
executed by each HVI engine. HVI sequences can be programmed using the Sequencer class. HVI execution
happens through a global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In this
programming example, the core of the HVI diagram consist of two nested sync while statements that allow to
implement a cycle of experiment steps nested within a number of experiment loops.

Python

def program_hvi_sequence(sys_def, module_dict):
# This method programs the HVI sequence of this programming example.
# Different HVI statements are encapsulated as much as possible in separated SW methods

to help users visualize
# the programmed HVI sequences.
# The programming example documentation on www.keysight.com contains an HVI diagram

that graphically represents the programmed HVI sequence.
# Create sequencer object
sequencer = kthvi.Sequencer('mySequencer', sys_def)

#
# Define registers within the scope of the outmost sync sequence
define_registers(sequencer)
#
# Add and program a Sync While statement
program_sync_while(sequencer.sync_sequence, module_dict)

#
# Add and program 4th Sync Multi-Sequence Block
program_sync_block_4(sequencer.sync_sequence)

#
return sequencer

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified
during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Register from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, whichmeans that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.
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Python

class HVI_register_Names:
# Defines the HVI registers (and their Names) to be used within the scope of each HVI

engine
def __init__(self):

self.steps = 'Steps'
self.loops = 'Loops'
self.wfm_id = 'Waveform ID'
self.tau = 'Tau'
self.pulse_length = 'Pulse Length'
self.acq_delay = 'Acquisition Delay'
self.step_delay = 'Step Delay'
self.loop_delay = 'Loop Delay'
self.counter_register = 'Counter Register'
self.dig_counter = 'Digitizer Counter'
self.hvi_done = 'HVI Done'

def define_registers(sequencer):
# Defines all registers for each HVI engine in the scope af the global sync sequence
# Load previously defined resources
exp_params = Experiment_parameters()
hvi_eng_Names = HVI_engine_Names()
register_Names = HVI_register_Names()

#
# Digitizer registers
loops = sequencer.sync_sequence.scopes[hvi_eng_Names.dig_engine].registers.add

(register_Names.loops, kthvi.RegisterSize.SHORT)
loops.initial_value = 0
steps = sequencer.sync_sequence.scopes[hvi_eng_Names.dig_engine].registers.add

(register_Names.steps, kthvi.RegisterSize.SHORT)
steps.initial_value = 0
acq_delay = sequencer.sync_sequence.scopes[hvi_eng_Names.dig_engine].registers.add

(register_Names.acq_delay, kthvi.RegisterSize.SHORT)
acq_delay.initial_value = 0
loop_delay = sequencer.sync_sequence.scopes[hvi_eng_Names.dig_engine].registers.add

(register_Names.loop_delay, kthvi.RegisterSize.SHORT)
loop_delay.initial_value = exp_params.loop_delay
hvi_done = sequencer.sync_sequence.scopes[hvi_eng_Names.dig_engine].registers.add

(register_Names.hvi_done, kthvi.RegisterSize.SHORT)
hvi_done.initial_value = 0
dig_counter = sequencer.sync_sequence.scopes[hvi_eng_Names.dig_engine].registers.add

(register_Names.dig_counter, kthvi.RegisterSize.SHORT)
dig_counter.initial_value = 0

#
# AWG registers
awg_counter = sequencer.sync_sequence.scopes[hvi_eng_Names.awg_engine].registers.add

(register_Names.awg_counter, kthvi.RegisterSize.SHORT)
awg_counter.initial_value = 0
tau = sequencer.sync_sequence.scopes[hvi_eng_Names.awg_engine].registers.add(register_

Names.tau, kthvi.RegisterSize.SHORT)
tau.initial_value = 0
wfm_id = sequencer.sync_sequence.scopes[hvi_eng_Names.awg_engine].registers.add

(register_Names.wfm_id, kthvi.RegisterSize.SHORT)
wfm_id.initial_value = 0
pulse_length = sequencer.sync_sequence.scopes[hvi_eng_Names.awg_engine].registers.add
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(register_Names.pulse_length, kthvi.RegisterSize.SHORT)
pulse_length.initial_value = 0
step_delay = sequencer.sync_sequence.scopes[hvi_eng_Names.awg_engine].registers.add

(register_Names.step_delay, kthvi.RegisterSize.SHORT)
step_delay.initial_value = exp_params.step_delay

#
return

SynchronizedWhile

SynchronizedWhile appears in statements (a, h). SynchronizedWhile (Sync While) statements belongs to the
set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While allows you to
synchronously executemultiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. For local sequences to be defined within the Sync While, it is necessary to use synchronized
multi-sequence blocks.

Python

# Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(loops,
kthvi.ComparisonOperator.LESS_THAN, exp_params.num_loops)
# Add Sync While Statement
sync_while = sync_sequence.add_sync_while('Run Experiment Loops', 60, sync_while_condition)

def program_sync_while(sync_sequence, module_dict):
# Adds and programs the outmost Sync While statement of the HVI Sync Sequence
# Load previously defined parameters and resource Names
exp_params = Experiment_parameters()
register_Names = HVI_register_Names()
hvi_eng_Names = HVI_engine_Names()
#
# Previously defined registers
loops = sync_sequence.scopes[hvi_eng_Names.dig_engine].registers[register_Names.loops]

#
# Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(loops,

kthvi.ComparisonOperator.LESS_THAN, exp_params.num_loops)
# Add Sync While Statement
sync_while = sync_sequence.add_sync_while('Run Experiment Loops', 60, sync_while_

condition)
#

# Add and program 1st Sync Multi-Sequence Block: 'Initialize registers'
program_sync_block_1(sync_while.sync_sequence)

#
# Add and program 2nd Sync While: 'Run Experiment Steps'
program_sync_while_2(sync_while.sync_sequence, module_dict)

#
# Add and program 3rd Sync Multi-Sequence Block
program_sync_block_3(sync_while.sync_sequence)

#
return

SynchronizedMulti-Sequence Block 
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It can be found in statements (b, j, 1, 4) of the HVI diagram. Synchronizedmulti-sequence blocks are defined by
the API class SyncMultiSequenceBlock. This type of sync statement synchronizes all the HVI engines that are
part of the sync sequence. It allows you to program each HVI Engine to do specific operations by exposing a
local sequence for each engine. By calling the API method add_multi_sequence_block() a synchronizedmulti-
sequence block is added to the Sync (global) Sequence.

Python

# Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block_1 = sync_sequence.add_sync_multi_sequence_block('Initialize registers', 160)

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.
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Please note that the SyncMulti-Sequence Block has an execution duration time labeled as "T Min" in
the figure above. The "T min" default value for any sync statement corresponds to the minimum time
necessary to complete the operations included inside. In future releases, the user will be able to
specify specific execution time values or allowed ranges. The timing at the end of each local
sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In case of duration "T min" HVI will automatically add no time to the local sequence having
longest duration and adjust the other sequences accordingly, as in the example depicted in the figure
above. The resolution for HVI-defined time adjustment at the end of a syncmulti-sequence block
corresponds to the 10 ns FPGA clock period for an application including instruments that are all
within the Keysight M3xxxA family. For further explanations about the timing of HVI sequence
execution please refer to "HVI Timing" section of the KS2201APathWave Test Sync Executive User
Manual available on www.keysight.com
HVI Native Instruction: Register Assign

Statements (c, d, e, f, g, l, 5) are register assign instructions. A register assign statement can be used to
initialize a register to an initial value using the instruction class InstructionsAssign from Python HVI API. The
same instruction can be used to assign a register value (source) to another register (destination). Each register
can also be initialized before the HVI execution, by using the property initial_value.

Python

# Load previously defined parameters and resources
exp_params = Experiment_parameters()
register_Names = HVI_register_Names()
hvi_eng_Names = HVI_engine_Names()
#
# Previously defined registers
awg_sequence = sync_block_1.sequences[hvi_eng_Names.awg_engine]
tau = awg_sequence.scope.registers[register_Names.tau]

# Initialize tau = initial_tau
instruction = awg_sequence.add_instruction('tau = initial_tau', 10, awg_
sequence.instruction_set.assign.id)
instruction.set_parameter(awg_sequence.instruction_set.assign.destination.id, awg_
sequence.scope.registers[register_Names.tau])
instruction.set_parameter(awg_sequence.instruction_set.assign.source.id, exp_
params.initial_tau)

Sync Register Sharing

It corresponds to statement (i) in the HVI diagram. Register sharing is a functionality defined and programmed
using theRegisterSharing class. Register sharing allows to share the content of N adjacent bits of a source
register and write the information to a destination register in any of the other HVI engines included in the HVI
execution. In this programming example this functionality is used to share the content of the digitizer register
steps and write into the AWG registerwfm_id to use it to select real-time the waveform to be played at each
experiment step. In this programming example the register step is incremented at each iteration of the
experiment inner loop. In amore generic case the feedback loop from the digitizer to the AWG can include a
more complex processing on the acquiredmeasured data so that the AWG can fast branch among the different
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possible waveforms in response to the feedback from the digitizer. Keysight offers PathWave FPGA software
as a design environment to implement complex data processing into the instrument FPGA to be used for
example for such feedback loop. For more information please consult the PathWave FPGA User
Manual on www.keysight.com

Python

# Previously defined registers
steps = sync_sequence.scopes[hvi_eng_Names.dig_engine].registers[register_Names.steps]
wfm_id = sync_sequence.scopes[hvi_eng_Names.awg_engine].registers[register_Names.wfm_id]

# Add sync register sharing
bits_to_share = 2
sync_while_2.sync_sequence.add_sync_register_sharing('Share steps->wfm_id', 10, steps, wfm_
id, bits_to_share)

IF-ELSEIF-ELSE Statement

It corresponds to statement (k) in the HVI diagram. IfStatement class allows you to add an IF-ELSEIF-ELSE
loop within themain HVI sequence of any instrument engine. The IF-ELSEIF-ELSE loop contains one (or more)
IF branches and an ELSE branch. The instructions and/or statements contained in each IF or ELSE branch are
executed if the condition of each branch is met. The condition of each branch can be defined using the API
class ConditionalExpression. Branch sub-sequence can be programmed using the same API methods and
classes used to program themain HVI sequence, by means of the API classes IfBranch and ElseBranch.

Python
# Load previously defined parameters and resources
exp_params = Experiment_parameters()
register_Names = HVI_register_Names()
hvi_eng_Names = HVI_engine_Names()
#
# Previously defined
wfm_id = sync_sequence.scopes[hvi_eng_Names.awg_engine].registers[register_Names.wfm_id]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]

# Define If condition and parameters
if_condition = kthvi.Condition.register_comparison(wfm_id,
kthvi.ComparisonOperator.GREATER_THAN_OR_EQUAL_TO, exp_params.num_wfms)
enable_ifbranches_time_matching = True
# Add If statement
if_statement = awg_sequence.add_if('Check wfm_id', 60, if_condition, enable_ifbranches_
time_matching)
if_branch_seq = if_statement.if_branch.sequence
# Reset wfm_id = 0 within the IF sequence
instruction = if_branch_seq.add_instruction('wfm_id = 0', 20, awg_sequence.instruction_
set.assign.id)
instruction.set_parameter(awg_sequence.instruction_set.assign.destination.id, wfm_id)
instruction.set_parameter(awg_sequence.instruction_set.assign.source.id, 0)
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HVI Instrument-Specific Instruction: Queue AWGWaveform

It corresponds to statements (m, n) in the HVI diagram.This statement executes a product-specific HVI
instruction. API method add_instruction() allows you to add the wanted instruction within the HVI sequence.
Instruction parameters are set using the API method set_parameter(). All HVI product-specific instructions and
parameters are defined in the hvi.InstructionSet interface of each product. Instructions, actions, events and in
general all the HVI definitions specific of M3xxxA instruments can be found in theM3xxxA User Guide
available on www.keysight.com.

Python

# Load previously defined parameters and resources
exp_params = Experiment_parameters()
awg_params = AWG_parameters()
register_Names = HVI_register_Names()
hvi_eng_Names = HVI_engine_Names()
#
# Previously defined
wfm_id = sync_sequence.scopes[hvi_eng_Names.awg_engine].registers[register_Names.wfm_id]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]

# Queue waveform to CH1, CH2
# NOTE: the next instructions needs a start delay of at least 60 ns to make sure wfm_id is
updated
for awg_ch in range(1, 3):

instrLabel = 'QueueWaveform(CH' + str(awg_ch) + ' , wfm_id)'
instruction0 = awg_sequence.add_instruction(instrLabel, 60, awg_module.hvi.instruction_

set.queue_waveform.id)
#Set every parameter of AWGqueueWaveform(awg_ch, waveformNumber, triggerMode,

startDelay, cycles, prescaler);
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.waveform_

number.id, wfm_id)
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.channel.id,

awg_ch)
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.trigger_

mode.id, awg_params.trigger_mode)
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.start_

delay.id, awg_params.start_delay)
if exp_params.T2_flag:

instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.cycles.id,
awg_params.wfm_cycles)

else:
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.cycles.id,

1)
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.prescaler.id,

awg_params.prescaler)

Action Execute: AWG trigger, DAQ trigger

This type of instruction can be found in statements (o, q, r, t, y). Actions to be used within an HVI sequence
need to be added to the instrument HVI engine using the API 'add' method of the ActionCollection class. Once
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the wanted actions are added within the list of the instruments' HVI engine actions, an instruction to execute
them can be added to the instrument's HVI sequence using the HVI API class InstructionsActionExecute. One
or multiple actions can be executed at the same time within the same 'Action Execute' instruction.

Python

# Previously defined parameters and resources
awg_params = AWG_parameters()
hvi_eng_Names = HVI_engine_Names()
hvi_act_Names = HVI_action_Names()
#
# Previously defined actions to be executed within the experiment
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]
awg_trigger_12 = [

awg_sequence.engine.actions[hvi_act_Names.awg_trigger+str(1)],
awg_sequence.engine.actions[hvi_act_Names.awg_trigger+str(2)]]

# AWG trigger CH1, CH2 - Generates first pulse
inst_awg_trigger = awg_sequence.add_instruction('AwgTrigger(CH1, CH2)', awg_
params.awgtrigger_latency, awg_sequence.instruction_set.action_execute.id)
inst_awg_trigger.set_parameter(awg_sequence.instruction_set.action_execute.action.id, awg_
trigger_12)

Wait Time 

This type of statement can be found in statements (p, s, w, x, 3).Inserting an instance of WaitTime instruction
class causes an HVI sequence to wait for an amount of time specified by a register previously added to the
sameHVI sequence. The register used needs to be initialized before its usage. Time unit is expressed as
integer multiple of the instrument clock cycle duration. For example in M3xxxA PXI modules a clock cycle lasts
10 ns.

Python

# Load previously defined parameters and resources
exp_params = Experiment_parameters()
register_Names = HVI_register_Names()
hvi_eng_Names = HVI_engine_Names()
#
# Previously defined
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]
tau = sync_sequence.scopes[hvi_eng_Names.awg_engine].registers[register_Names.tau]

# WaitTime: tau
awg_sequence.add_wait_time('WaitTime: tau', 10, tau)

Register Increment 

This type of instruction can be found in statements (u, v, z, 0, 2). A register increment can be implemented
within an HVI sequence using an instance of the API instruction class InstructionsAdd. The same instruction
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can be used to add registers and constant values (operands) and put the result in another register (result). The
register to be incremented needs to be added previously to the scope of the corresponding HVI engine.

Python

# Load previously defined parameters and resources
exp_params = Experiment_parameters()
register_Names = HVI_register_Names()
hvi_eng_Names = HVI_engine_Names()
#
# Previously defined
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]
tau = sync_sequence.scopes[hvi_eng_Names.awg_engine].registers[register_Names.tau]

# tau += tau_step
instruction = awg_sequence.add_instruction('tau += tau_step', 10, awg_sequence.instruction_
set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, tau)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, tau)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, exp_
params.tau_step)

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, users can compile,
load and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell to the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

# Compile HVI sequences

hvi = sequencer.compile()

print("HVI Compiled")

print("This HVI programming example needs to reserve {} PXI trigger resources to

execute".format(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Find us at www.keysight.com Page 36



# Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.

hvi.load_to_hw()

Execute

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example the non-blockingmode is used. By using this executionmode, SW execution can interact
through registers read/write with the HVI sequence execution.

Python

# Execute HVI in non-blocking mode
# This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no_wait)
print('HVI Running...')

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python

# Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.
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Conclusions
This Programming Example showed how to use anM320xA AWGand anM3102A digitizer to perform a real-
time pulsed characterization experiment on a Device-Under-Test (DUT). Register sharing functionality was
used to establish a feedback loop between the digitizer and the AWG. This way the digitizer can select real-time
the waveform to be played by the AWGat each experiment iteration step. Wait Time functionality of PathWave
Test Sync Executive was used to change real-time the delay between subsequent characterization pulses sent
to the DUT within each experiment step. It was also shown how pulse duration can be increased real-time using
the same functionality. It was shown how users can choose to repeat the experiment for a user-defined number
of loops. Users can also customize the pulse characterization experiment by setting the experiment parameters
as explained in the application note. Examplemeasurement results showed how the application code can
produce the I-Q pulses necessary to perform T1 and T2 characterization experiments on quantum bits for
quantum applications. The same application code can also be used for power amplifier characterization for 5G
mobile communications or other type of DUT characterization.
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