
PathWave Test Sync Executive
Integration with PathWave FPGA
In this programming example we show how to establish a communication
between a sequence of real-time instruction designed using PathWave Test
Sync Executive and a custom FPGA (Field Programmable Gate Array) design
integrated into the sandbox of a Keysight instrument using Keysight PathWave
FPGA software.

Find us at www.keysight.com Page 1

PROGRAMMING EXAMPLE 3

Table of Contents

KS2201A - Programming Example 3 - PathWave Test Sync Executive Integration with PathWave FPGA 4

Introduction 4

System Setup 4

System Requirements 4

How to Install Python 3.7.x 64-bit 5

How to Install Chassis Driver, SFP and Firmware 6

How to Install PathWave Test Sync Executive, SD1 SFP andM3xxxA FPGA Firmware 7

How to Install PathWave FPGA 8

Multi-Chassis Setup Implementation 8

10MHz Clock Reference Source 10

Programming Example Overview 12

How to Run this Programming Example 13

PathWave FPGA Project 14

Measurement Results 15

HVI Application Programming Interface (API): Detailed Explanations 18

System Definition 20

Define Platform Resources: Chassis, PXI triggers, Synchronization 21

Define HVI Engines 21

Define HVI Actions, Events, Triggers 22

Program HVI Sequence 24

Define HVI Registers 24

SynchronizedWhile 25

SynchronizedMulti-Sequence Block 26

FPGA Register Read 27

FPGA RegisterWrite 28

FPGA Memory MapWrite 28

FPGA Memory MapRead 29

Wait Statement 29

Action Execute 30

Register Increment 30

Export the ProgrammedHVI Sequences to File 31

Compile, Load, Execute the HVI 31

Compile HVI 31

Load HVI to Hardware 31

Find us at www.keysight.com Page 2

Release Hardware 32

Further HVI API Explanations 32

Conclusions 33

Find us at www.keysight.com Page 3

KS2201A - Programming Example 3 - PathWave Test Sync Executive Integration with
PathWave FPGA
In this programming example we show how to establish communication between a sequence of real-time
instruction designed using PathWave Test Sync Executive and a custom FPGA (Field Programmable Gate
Array) design integrated into the sandbox of a Keysight instrument using Keysight PathWave FPGA software.

Introduction
This document is organized as follows. First, a "System Setup" section explains all themandatory software and
firmware components to be installed before the programming example can run. Secondly, a "Programming
Example Overview" section describes the application use case of this programming example including expected
measurement results. The next section contains detailed explanations on how to use the HVI (Hard Virtual
Instrument) API (Application Programming Interface) to implement the real-time algorithms of this example.
Finally, the conclusions are outlined.

NOTE Please review in detail the System Requirements outlined in the next section and install all the
necessary software (SW) and firmware (FW) components before executing this programming
example code.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please
visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements
The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Python 3.7.x 64-bit, including Python packages time, numpy, matplotlib
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)
l Keysight SD1Drivers, Libraries and SFP (v3.1.9 or later)
l Keysight PathWave Test Sync Executive Update 1 (v1.4.3 or later)

Find us at www.keysight.com Page 4

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (v2019EnhTrig or later)
l Keysight PXIe Chassis Family Driver (v1.7.402.1 or later)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.1.20 or later)
l M3201A AWGFPGA firmware (v4.2.85 or later)
l M3102A Digitizer FPGA firmware (v2.01.60 or later)

NOTE PathWave Test Sync Executive licensesmust be installed before running the programming
example Python code. To request and install a license please consult thePathWave Test Sync
Executive User Manual available on www.keysight.com.

How to Install Python 3.7.x 64-bit
This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python official webpage https://www.python.org. Make sure you add Python 3.7.x
to the PATH system Variable. This can be done at the installation step by checking the right check-boxes as
shown in the screenshot below.

NOTE PathWave Test Sync Executive programming examples require the Python packages
time, numpy andmatplotlib. These packages can be installed using the Python package installer
pip. For more information about pip and how to use it, please visit https://pypi.org/project/pip/.

Find us at www.keysight.com Page 5

http://www.keysight.com/
http://www.python.org/
http://pypi.org/project/pip/

NOTE Users installing Python through a distribution that is different than the one available from the
Python official webpage https://www.python.org (e.g. Anaconda distribution) need tomake sure
that their PATH environment Variable includes the path to setup the HVI API Python library. This
can be done by adding to the programming example Python code a line that include that path, for
example: sys.path.append(C:\Program Files\Keysight\PathWave Test Sync Executive
2020\api\python)

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com.

Find us at www.keysight.com Page 6

http://www.python.org/
http://www.keysight.com/
http://www.keysight.com/

How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 7

SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

How to Install PathWave FPGA
The project files of the 3rd programming example titled "PathWave Test Sync Executive Integration with
PathWave FPGA" include PathWave FPGA projects designed usingKeysight PathWave FPGA 2020 Update
1.0. To install and obtain a license for Keysight PathWave FPGA 2020 Update 1.0 (or a later version) please
consult the product webpage on www.keysight.com. PathWave FPGA also require Xilinx Vivado software to
run. For further information please consult the PathWave FPGA UserManual on www.keysight.com.

Multi-Chassis Setup Implementation
This section explains how to execute the reference examples provided with this document on amultiple-chassis
setup. In amulti-chassis setup, it is necessary to interconnect the PXI triggers and clocking of themultiple
chassis.

With the currently available infrastructure to interconnect PXIe backplane triggers a pair of M9031A boards must
be placed in a specific segment in each chassis to be interconnected.

NOTE The SMB cables used to connect theM9031A modules need to be as short as possible. The
chassis need to be stack in the same rack, on top of each other, as close as possible to each other
to allow the SMB cables that connect them to be as short as possible.

On the twoM9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There aremainly three rules to consider when choosing the chassis slot where to place aM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each
pair of M9031A connects two chassis together and shares info through their PXI lines.

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length.

3. A PXI module included in the HVI application needs to be placed in the same chassis segment where the
first M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair
of boards.

Find us at www.keysight.com Page 8

http://www.keysight.com/
http://www.keysight.com./
http://www.keysight.com./

The picture above illustrates in green the PXI modules that must be placed in the same segment as theM9031A
modules in blue. Basically:

l The 1st chassis must include aM9031A together with a PXI module with HVI in segment 2

l All Middle chassis must have aM9031A in the segment 2, and aM9031A together with a PXI Module with
HVI support in Segment 3

l The last chassis must include aM9031A in segment 2.

All the chassis that are part of themulti-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A aremade to share the PXI lines that are used as sync resources. PXI trigger lines are
shared usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all themiddle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Find us at www.keysight.com Page 9

Additionally, a very clean 10MHz source should be used to provide the same reference signal to all chassis.
One option is to use amulti-output 10MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

10 MHz Clock Reference Source

One option is to use as a 10MHz Reference source the PXI module Keysight M9300A PXIe Frequency
Reference. Please place this module in one of the chassis and use splitters to divide the 10MHz clock output
into N cables to be connected to the 10MHz REF IN connector on the back panel of each of the chassis,
including the chassis where theM9300A module is placed. Each time the system is restarted please open the
M9300A SFP software to check the box "10MHz Out Enabled and uncheck the box ""Drive BP 10MHz
Reference". Please see screenshot below for clarifications. For more details on the Keysight M9300A PXIe
Frequency Reference please visit www.keysight.com.

Once the common 10MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from the "Reference Clock"
window shown in the screenshot below. Once you open the window please clear any ¨Alarm¨ that possibly
occurred during the 10MHz reference setup. After clearing ¨Alarm occurred¨ icon should stay idle (white color).
Clock source shall st to "Rear 10MHz Ref In".

Find us at www.keysight.com Page 10

http://www.keysight.com/

Additionally, in the case of using a remote controller card, like theM9023A PXI SystemModule used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis backplane REF and LOCK LED lights are lighted in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED
lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 11

Formore details on the Keysight PXIe Chassis Family please visit www.keysight.com.

Programming Example Overview
This programming example illustrates the following functionalities:

1. Read/write data from/to an HVI sequence to/from anHVI Memory Map inserted in an instrument FPGA
sandbox.

2. Read/write data from/to an HVI sequence to/from anHVI Register bank inserted in an instrument FPGA
sandbox.

3. Read/write PXI line values through instrument FPGA sandbox.
4. Usage of HVI Actions and Events to communicate with an instrument FPGA sandbox.

These functionalities are implemented using the combination of Keysight PathWave Test Sync Executive and
Keysight PathWave FPGA software.

Find us at www.keysight.com Page 12

http://www.keysight.com/

How to Run this Programming Example
This programming example is set up to execute in simulationmode. To execute the Python code on real HW
instruments, change the option for simulated hardware to False:

Simulated HW Option

hardware_simulated = True

Afterward, it is necessary to specify the actual chassis number and slot number where the real PXI instruments
are located. Themodel number of the used PXI instruments shall be updated, if different than the instrument
model used in this programming example. This example uses PXI instruments from the Keysight M3xxxA
family. The first step to control such instruments is to create an object using the open() method from the SD1
API. For a complete description of the SD1 API open() method and its options please consult the SD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options. Chassis and slot number in the code snippet below must be
updated before running the programming example:

"""Define HW Platform
"""# Define module descriptors below with your instruments information
self.module_descriptors = [

ModuleDescriptor('M3202A', 2, 4, self.options, self.primary_engine),
ModuleDescriptor('M3202A', 2, 10, self.options, self.secondary_engine)]

class ModuleDescriptor:
"Descriptor for module objects" def __init__(self, model_number, chassis_number,

slot_number, options, engine_Name):
self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_Name = engine_Name

The chassis to be used in the programming examplemust also be specified and listed by chassis number. In the
case of amulti-chassis setup, please specify the connection between each pair of M9031modules using
the M9031_descriptor class.

Define list of chassis numbers included in the programming example
self.chassis_list = [1, 2]

Multi-chassis setup
In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
M9031 module positions need to be defined in the program.
self.M9031_descriptors = [M9031Descriptor(1, 11, 2, 11)]

Find us at www.keysight.com Page 13

http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00

class M9031_descriptor:
Describes the interconnection between each pair of M9031 modules
def __init__(self, first_M9031_chassis_number, first_M9031_slot_number, second_M9031_

chassis_number, second_M9031_slot_number):
self.chassis_1 = first_M9031_chassis_number
self.slot_1 = first_M9031_slot_number
self.chassis_2 = second_M9031_chassis_number
self.slot_2 = second_M9031_slot_number

Please note that in every HVI programming example, PXI trigger resources must be reserved so that the HVI
instance can use them for their execution. PXI lines that you want to assign as trigger resources to HVI can be
selected by updating the code snippet below:

Assign triggers to HVI object to be used for synchronization, data sharing, etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared among
each M9031 board pair by means of SMB cable connections
self.pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. In this programming example, PXI lines 4-7 are used to exchange information between primary and
secondary modules through the instrument FPGA sandbox. Therefore, PXI lines 4-7 cannot be added as HVI
PXI trigger resources in the code snippet above.

PathWave FPGA Project
This programming example is based on the implementation of custom blocks within the FPGA sandbox of both
the primary and secondary modules. The pictures below illustrate the PathWave FPGA projects for the primary
module and secondary module respectively.

Find us at www.keysight.com Page 14

In the pictures above we can distinguish the following blocks:

l HVI Memory Map: This block enables the exchange of data between an HVI sequence and an instrument
FPGA sandbox by using a serial interface based on reading/writing data arrays.

l HVI Register Bank: This block enables the exchange of data between an HVI sequence and an instrument
FPGA sandbox by reading/writing any of the registers in the bank.

l PXI Trigger I/O: These ports enables reading/writing of the PXI line on the chassis backplane from the
FPGA sandbox of anM3xxxA instrument.

l HVI User Action: Actions are signals sent from an instrument HVI engine to the outside (the FPGA sandbox
in this case). They can be associated with a PXI line, an internal/external trigger, or any of the product-
defined actions.

l HVI User Event: Events are signals sent from the outside (the FPGA sandbox in this case) to an instrument
HVI engine. They can be associated with a PXI line, an internal/external trigger, or any of the product-defined
events.

PathWave FPGA project files provided with this programming example are targetingM3202A AWGmodel.
However, projects can be easily adapted to target different M3xxxA PXI instruments. This re-targeting
functionality is explained in thePathWave FPGA User Guide. For a complete overview of Keysight PathWave
FPGA andmore information about all its functionalities please visit www.keysight.com.

Measurement Results
When the Python application code correctly executes, it shows a list of registers andmemory blocks that are
loaded to FPGA sandbox of both primary and secondary engines when loading the .k7z files generated by
compiling the PathWave FPGA projects described in the previous sub-section of this document. Afterward, the
HVI sequence starts to execute and waits for the user to trigger a user event, it executes a user action (user
action 4) each time the user hits the enter key. The executed FPGA sandbox actions are counted at each

Find us at www.keysight.com Page 15

http://www.keysight.com/

iteration. Another counter starting from 1000 is incremented and read back after writing it to a dual port RAM.
The user action counter value is written to PXI lines value so that it can also be read by the secondary module.

User events and actions available in an instrument FPGA sandbox depends on the specific instrument
capability and are documented in the instrument documentation and user guides. In particular, documentation of
user action 4 and user event 4 used in this programming example (represented by blocks "HVI_UserAction4"
and "HVI_UserEvent4" in the primary module PathWave FPGA project) can be found in theM32xxA Arbitrary
Waveform Generators User's Guide.

A more detailed programming example execution is described as follows. Within theSync Multi-Sequence
Block (SMSB) 'FPGA Read/Write Operations', all the four type of possible read/write operation to/from an FPGA
sandbox register or memory map are performed. HVI register and HVI memory maps are part of the PathWave
FPGA blockset "RealTime HVI" and they are described in details in the PathWave FPGA UserManual. The first
statements reads a register in the FPGA sandbox (register 'Register_Bank_HviAction4Cnt' in the PathWave
FPGA project) that is connected to a counter of user action 4 instances. The value is read into an HVI register
Named 'Action4 Counter'. The subsequent FPGA write operation writes the user action 4 counter value into an
FPGA register connected to PXI lines 4-7 outputs. This way the user action 4 counter value is written to PXI
lines with a resolution of 4 bits. The following two statements validate thememory map read/write by first writing
the value of a register counter called 'Memory MapCounter' into thememory map (block "MainEngine_
Memory1" in the PathWave FPGA projects) and then reading it back. The counter starts from 1000 and users
can verify the counter value is written and read back correctly from thememory map during the example
execution.

The next SMSB contains a register read operation in both local HVI sequences of primary and secondary
instruments. Both primary and secondary modules have a register in their sandbox that is connected to PXI lines
4-7 inputs in the sandbox. This way bothmodules can read the PXI line's values through that register, and hence
can read the user action 4 counter value that was previously written in those lines. The HVI sequence then waits
for an user event 4 which can be generated by the user by pressing Enter from the console. Once the user event
4 is received, the HVI sequence triggers an user action 4 instance that is counted by the counter register
connected to the user action 4 input in the sandbox.

Finally in the last SMSB of the HVI sequence, all the HVI register counters are incremented. The registers value
increments are printed out on the console terminal at each iteration of the programming example. See the
screenshot below as an example of the programming example execution on the console terminal.

Find us at www.keysight.com Page 16

The examplemeasurement results shown in the execution screenshot above can bemeasured on an
oscilloscope as well, by using anM9031A module to connect the PXI lines 4-7 to oscilloscope channels and

Find us at www.keysight.com Page 17

visualize their value update at each iteration of the programming example execution. The next section of this
document provides further details about the HVI sequences executed and each HVI statement contained in
them.

HVI Application Programming Interface (API): Detailed Explanations
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming example using HVI API. The sequence of operations executed by each of the instruments using
HVI technology is explained in the diagram below. The diagram depicts the HVI sequences executed within this
programming example and the HVI statements used to program the sequences. Every HVI statement is
described in detail later in this section, referencing with a letter the equivalent block in the HVI diagram and
explaining in detail the corresponding HVI API code block and the HVI functionalities that it implements.

Please note that the start delays of HVI statement inserted in the following HVI diagram are set to very specific
values. Unless differently specified, those values correspond to theminimum latencies that can be used for
those start delays. Please consult Chapter 7 of the he PathWave Test Sync Executive User Manual for
detailed information about the timing constraint and latency of each HVI statement execution.

Find us at www.keysight.com Page 18

Find us at www.keysight.com Page 19

NOTE The duration of each iteration of the Sync While loop used in this example is unknown due to the
unknown execution time of theWait statement used inside the loop. The unknown duration is
represented by the dotted arrows in the HVI diagram. Due to its unknown duration, it is not
possible to use the Sync While duration property to specify how long each loop iteration should
last.

NOTE Fixed delays can be parametrized in HVI sequences by using Python Variables. For example, the
Python Variable pxi_propagation_delay is used to parametrize the start delay between the
synchronizedmulti-sequence blocks "FPGA Read/Write operations" and "Wait for HVI_
UserEvent4 and Execute HVI_UserAction4". Thie pxi_propagation_delay is necessary to allow
enough time for the Action4 counter register to write its value to the PXI lines, before the primary
and secondary modules try to read that same value. This way we ensure the value read is up to
date.

To implement a Variable delay in an HVI sequence, theWaitTime statement shall be used instead.
More information can be found in the KS2201A UserManual.

To include HVI in an application, follow these three fundamental steps:

1. System definition: define all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: define all the statements to be executed within each HVI sequence
3. Execute HVI: compile, load to HW and execute the HVI

The following sub-sections describe in detail how these three steps are implemented for this example. For
further explanations about any of the concepts, please refer to the PathWave Test Sync Executive User
Manual.

System Definition
The definition of HVI resources is the first step of an application using HVI. The API
class SystemDefintion enables you to define all necessary HVI resources. HVI resources include all the
platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are going to use
and execute. Users need to declare them up front and add them to the corresponding collections. All HVI
Engines included in the programming need to be registered into the EngineCollection class instance. HVI
resources are described in detail in the PathWave Test Sync Executive User Manual. The HVI resource
definitions are summarized in the code snippets below.

Python

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")

def define_hvi_resources(sys_def, module_dict, config):
""" Configures all the necessary resources for the HVI application to execute: HW

platform, engines, actions, triggers, etc.

Find us at www.keysight.com Page 20

""" # Define HW platform: chassis, interconnections, PXI trigger resources,
synchronization, HVI clocks

define_hw_platform(sys_def, config)
Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
Define FPGA actions, events and other configurations
define_fpga_resources(sys_def, module_dict, config)

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. SystemDefinition class also allows you to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section "HVI Core API" of the PathWave Test Sync Executive User Manual.

Python

def define_hw_platform(sys_def, config):
""" Define HW platform: chassis, interconnections, PXI trigger resources,

synchronization, HVI clocks
""" # Add chassis resources
For multi-chassis setup details see programming example documentation
for chassis_number in config.chassis_list:

if config.hardware_simulated:
sys_def.chassis.add_with_options(chassis_number,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
else:

sys_def.chassis.add(chassis_number)
Add M9031 modules for multi-chassis setups
if config.M9031_descriptors:

interconnects = sys_def.interconnects
for descriptor in config.M9031_descriptors:

interconnects.add_M9031_modules(descriptor.chassis_1, descriptor.slot_1,
descriptor.chassis_2, descriptor.slot_2)

Assign the defined PXI trigger resources
sys_def.sync_resources = config.pxi_sync_trigger_resources
Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
Use the code line below if you want the application to be in sync with the 10 MHz

clock
sys_def.non_hvi_core_clocks = [10e6]

Define HVI Engines

All the HVI Engines to be included in the HVI instancemust be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that enable you
to access the actions, events and triggers that each specific engine will control and use within the HVI.

Python

"""
Define Names of HVI engines, actions, events, triggers, registers

Find us at www.keysight.com Page 21

"""# HVI engine Names
self.primary_engine = "PrimaryEngine"self.secondary_engine = "SecondaryEngine"

def define_hvi_engines(sys_def, module_dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
for engine_Name, module in zip(module_dict.keys(), module_dict.values()):

sys_def.engines.add(module.instrument.hvi.engines.main_engine, engine_Name)

Define HVI Actions, Events, Triggers

In this programming example, each AWGneeds to trigger both an FP pulse and a waveform very precisely. To
do this, the AWG trigger actions are issued from within the HVI execution. In the HVI usemodel, actions need to
be added to the action collection of each HVI engine before they can be executed. FP trigger needs to be added
to the HVI Trigger Collection and configured. The code snippets below show how this is done in this
programming example.

Python

HVI events and actions
self.hvi_user_event_4 = "FpgaUserEvent4"self.hvi_user_action_4 = "FpgaUserAction4"

"""Define Names of FPGA sandbox resources
"""# Bitstream files generated by compiling PathWave FPGA project files
self.primary_project_file = "../bitfiles/HviPortExamplePrimary.k7z"self.secondary_project_
file = "../bitfiles/HviPortExampleSecondary.k7z"# Sandbox Name defined by each instrument.
See SD1 3.x User Guide for further info
self.M3xxxA_sandbox = "sandbox0" # The M3xxxA_sandbox Name is not arbitrary and cannot be
changed
FPGA Sandbox resource Names
NOTE The FPGA resource Names are not arbitrary. They correspond to the Names defined in
the PathWave FPGA project files
self.num_primary_regs = 6 # number of mem. maps and registers placed in the primary
PathWave FPGA project
self.num_secondary_regs = 3 # number of mem. maps and registers placed in the secondary
PathWave FPGA project
self.memory_map = "MainEngine_Memory_1"self.reg_action4_cnt = "Register_Bank_
HviAction4Cnt"self.reg_event4 = "Register_Bank_HviEvent4"self.reg_pxi_out = "Register_Bank_
HviPxiTrigOut"self.reg_pxi_in = "Register_Bank_HviPxiTrigIn"self.secondary_reg_pxi_in =
"Register_Bank_HviPxiTrigIn"

def define_fpga_resources(sys_def, module_dict, config):
"""
Define FPGA actions, events and other configurations
""" # Primary module, secondary module
primary_module = module_dict[config.primary_engine].instrument
secondary_module = module_dict[config.secondary_engine].instrument
Events: add FpgaUserEvent4 to the list of events of the primary engine
fpga_user_event4 = primary_module.hvi.events.fpga_user_4
sys_def.engines[config.primary_engine].events.add(fpga_user_event4, config.hvi_user_

event_4)

Find us at www.keysight.com Page 22

Actions: add FpgaUserAction4 to the list of actions of the primary engine
fpga_user_action4 = primary_module.hvi.actions.fpga_user_4
sys_def.engines[config.primary_engine].actions.add(fpga_user_action4, config.hvi_user_

action_4)
Get engine sandbox
sandbox_Name = config.M3xxxA_sandbox
primary_sandbox = sys_def.engines[config.primary_engine].fpga_sandboxes[sandbox_Name]
secondary_sandbox = sys_def.engines[config.secondary_engine].fpga_sandboxes[sandbox_

Name]
Load to the sandboxes .k7z project created using Pathwave FPGA
This operation is necessary for HVI to list all the FPGA blocks contrined in the

designed FPGA FW
primary_sandbox.load_from_k7z(config.primary_project_file)
secondary_sandbox.load_from_k7z(config.secondary_project_file)
Enable PXI lines to be written from the FPGA sandbox of primary engine only using

FPGATriggerOutConfig()
NOTE: Only one PXI module per segment shall be allowed to write backplane PXI lines.

It would cause conflicts and misbehavior to configure the PXI lines for the secondary
engine also

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI4, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI5, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI6, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

primary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI7, direction =keysightSD1.SD_FpgaTriggerDirection.INOUT,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI4, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI5, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI6, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

secondary_module.FPGATriggerConfig(externalSource=keysightSD1.SD_
TriggerExternalSources.TRIGGER_PXI7, direction =keysightSD1.SD_FpgaTriggerDirection.IN,
polarity= keysightSD1.SD_TriggerPolarity.ACTIVE_LOW, syncMode = keysightSD1.SD_
SyncModes.SYNC_NONE, delay5Tclk=0)

Find us at www.keysight.com Page 23

Program HVI Sequence
Once the HVI resources are defined, you can program the HVI sequence of measurement actions to be
executed by each HVI engine. HVI sequences can be programmed using the Sequencer class. HVI execution
happens through a global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In this
programming example, the HVI global sync sequence consists of a synchronized while statement containing
three synchronizedmulti-sequence blocks.

Python

Create sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)

def program_fpga_interaction_sequence(sequencer, config):
""" This method programs the HVI sequence of this application.
Different HVI statements are encapsulated as much as possible in separated SW methods

to help users visualize
the programmed HVI sequences.
The programming example documentation on www.keysight.com contains an HVI diagram that

graphically represents the programmed HVI sequence.
""" # Define registers within the scope of the outmost sync sequence
define_registers(sequencer, config)
Define Sync While condition
hvi_quit = sequencer.sync_sequence.scopes[config.primary_engine].registers[config.hvi_

quit]
sync_while_condition = kthvi.Condition.register_comparison(hvi_quit,

kthvi.ComparisonOperator.NOT_EQUAL_TO, 1)
Add Sync While statement
sync_while = sequencer.sync_sequence.add_sync_while("User-controlled sync loop", 90,

sync_while_condition)
Program sync loop
program_sync_loop(sync_while.sync_sequence, config)

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified
during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Registers from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, whichmeans that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.

Python

Find us at www.keysight.com Page 24

HVI register Names
self.hvi_quit = "HVI Quit"self.action4_cnt = "Action4 Counter"self.counter_reg = "Loop
Counter"self.mem_map = "Memory Map Value"self.mem_map_counter = "Memory Map
Counter"self.pxi_values = "PXI Values"self.secondary_pxi_values = "Secondary PXI
Values"self.secondary_counter_reg = "Secondary Counter"

def define_registers(sequencer, config):
""" Defines all registers for each HVI engine in the scope af the global sync

sequence
""" # Define registers for primary engine
primary_engine_register_collection = sequencer.sync_sequence.scopes[config.primary_

engine].registers
hvi_quit = primary_engine_register_collection.add(config.hvi_quit,

kthvi.RegisterSize.SHORT)
hvi_quit.initial_value = 0
action4_cnt = primary_engine_register_collection.add(config.action4_cnt,

kthvi.RegisterSize.SHORT)
action4_cnt.initial_value = 0
counter_reg = primary_engine_register_collection.add(config.counter_reg,

kthvi.RegisterSize.SHORT)
counter_reg.initial_value = 0
mem_map = primary_engine_register_collection.add(config.mem_map,

kthvi.RegisterSize.SHORT)
mem_map.initial_value = 0
mem_map_counter = primary_engine_register_collection.add(config.mem_map_counter,

kthvi.RegisterSize.SHORT)
mem_map_counter.initial_value = 1000
pxi_values = primary_engine_register_collection.add(config.pxi_values,

kthvi.RegisterSize.SHORT)
pxi_values.initial_value = 0
Define registers for primary engine
secondary_engine_register_collection = sequencer.sync_sequence.scopes[config.secondary_

engine].registers
secondary_counter_reg = secondary_engine_register_collection.add(config.secondary_

counter_reg, kthvi.RegisterSize.SHORT)
secondary_counter_reg.initial_value = 0
secondary_pxi_values = secondary_engine_register_collection.add(config.secondary_pxi_

values, kthvi.RegisterSize.SHORT)
secondary_pxi_values.initial_value = 0

SynchronizedWhile

This corresponds to statement (a) in the HVI diagram. SynchronizedWhile (Sync While) statements belongs to
the set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While enables you to
synchronously executemultiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. For local sequences to be defined within the Sync While, it is necessary to use synchronized
multi-sequence blocks.

Python

Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(hvi_quit,

Find us at www.keysight.com Page 25

kthvi.ComparisonOperator.NOT_EQUAL_TO, 1)
Add Sync While Statement
sync_while = sync_sequence.add_sync_while('User-controlled sync loop', 90, sync_while_
condition)

SynchronizedMulti-Sequence Block

This corresponds to statements (b, g, l) in the HVI diagram. Synchronizedmulti-sequence blocks are defined by
the API class SyncMultiSequenceBlock. This type of Sync statement synchronizes all the HVI engines that are
part of the sync sequence. It allows you to program each HVI Engine to do specific operations by exposing a
local sequence for each engine. By calling the API method add_multi_sequence_block(), a synchronizedmulti-
sequence block is added to the Sync (global) Sequence.

Python

Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block_1 = sync_sequence.add_sync_multi_sequence_block('FPGA Read/Write Operations',
210)

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.

Find us at www.keysight.com Page 26

Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min" in the figure
above. The "T Min" default value for any sync statement corresponds to theminimum time necessary to
complete the operations included inside. KS2201A Update 1.0 release provides theDuration property in Sync
Statement objects that allows users to set an arbitrary duration value larger than "T Min". The timing at the end
of each local sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In the case of duration "T min", HVI will automatically add no time to the local sequence with the longest
duration and adjust the other sequences accordingly, as in the example depicted in the figure above. The
resolution for HVI-defined time adjustment at the end of a sync multi-sequence block corresponds to the 10 ns
FPGA clock period for an application including instruments that are all within the Keysight M3xxxA family. For
further explanations about the timing of HVI sequence execution please refer to theKS2201APathWave Test
Sync Executive User Manual available on www.keysight.com

FPGA Register Read

This corresponds to statements (c, h, k) in the HVI diagram. InstructionFpgaRegisterRead is an HVI core
instruction that enables reading an HVI Register Bank placed into an FPGA sandbox design. The value read
from the HVI Port Register will be written into a destination HVI register.

Find us at www.keysight.com Page 27

http://www.keysight.com/

Python

Access the local sequence from the Sync Multi-Sequence Block
primary_sequence = sync_block.sequences[config.primary_engine]
Previously defined registers and FPGA resources
action4_cnt = sync_sequence.scopes[config.primary_engine].registers[register_Names.action4_
cnt]
fpga_reg_action4_cnt = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_registers[config.reg_action4_cnt]

Read FPGA Register Register_Bank_HviAction4Cnt
readFpgaReg0 = primary_sequence.add_instruction('Read FPGA Register_Bank_HviAction4Cnt',
10, primary_sequence.instruction_set.fpga_register_read.id)
readFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_
read.destination.id, action4_cnt)
readFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_read.fpga_
register.id, fpga_reg_action4_cnt)

FPGA RegisterWrite

This corresponds to statement (d) in the HVI diagram. InstructionFpgaRegisterWrite is an HVI core instruction
that enables writing an HVI Register Bank placed into an FPGA sandbox. The value to be written into the HVI
Register Bank is taken from anHVI register or from a literal.

Python

Access the local sequence from the Sync Multi-Sequence Block
primary_sequence = sync_block.sequences[config.primary_engine]
Previously defined registers and FPGA resources
action4_cnt = sync_sequence.scopes[config.primary_engine].registers[register_Names.action4_
cnt]
fpga_reg_pxi_out = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_registers[config.reg_pxi_out]

Write FPGA Register Register_Bank_HviPxiTrigOut
Register_Bank_HviPxiTrigOut is connected to PXI lines Outputs.
The value written to the FPGA register will be written to PXI lines
NOTE: Please allow at least 60 ns between these instructions to ensure
the HVI register action4_cnt is updated before writing its content to PXI lines
writeFpgaReg0 = primary_sequence.add_instruction('Write FPGA Register_Bank_HviPxiTrigOut',
60, primary_sequence.instruction_set.fpga_register_write.id)
writeFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_write.fpga_
register.id, fpga_reg_pxi_out)
writeFpgaReg0.set_parameter(primary_sequence.instruction_set.fpga_register_write.value.id,
action4_cnt)

FPGAMemory MapWrite

This corresponds to statement (e) in the HVI diagram. InstructionFpgaArrayWrite is an HVI core instruction that
allows writing to an HVI Memory Map placed into an FPGA sandbox. The value to be written into the HVI
Memory Map is taken from anHVI register or from a literal.

Find us at www.keysight.com Page 28

Python

Access the local sequence from the Sync Multi-Sequence Block
primary_sequence = sync_block.sequences[config.primary_engine]
Previously defined registers and FPGA resources
mem_map_counter = sync_sequence.scopes[config.primary_engine].registers[register_Names.mem_
map_counter]
fpga_memory_map = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_memory_maps[config.memory_map]

Write Memory Map
At each iteration a different value is written to the memory map
writeMemoryMap = primary_sequence.add_instruction('Write FPGA Memory Map', 10, primary_
sequence.instruction_set.fpga_array_write.id)
writeMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_write.fpga_memory_
map.id, fpga_memory_map)
writeMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_write.value.id,
mem_map_counter)
writeMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_write.fpga_memory_
map_offset.id, 0)

FPGAMemory Map Read

This corresponds to statement (f) in the HVI diagram. InstructionFpgaArrayRead is an HVI core instruction that
enables reading an HVI Memory Map. The value read from the HVI Memory Mapwill be written into a destination
HVI register.

Python

Access the local sequence from the Sync Multi-Sequence Block
primary_sequence = sync_block.sequences[config.primary_engine]
Previously defined registers and FPGA resources
mem_map = sync_sequence.scopes[config.primary_engine].registers[register_Names.mem_map]
fpga_memory_map = primary_sequence.engine.fpga_sandboxes[hvi_res_Names.M3xxxA_
sandbox].fpga_memory_maps[config.memory_map]

Read Memory Map
Reads the value that was written to the block RAM connected to the memory map
NOTE: Please allow at least 30 ns between these instructions to ensure data is written
correctly through the memory map before you read it back
readMemoryMap = primary_sequence.add_instruction('Read FPGA Memory Map', 30, primary_
sequence.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_read.fpga_memory_
map.id, fpga_memory_map)
readMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_
read.destination.id, mem_map)
readMemoryMap.set_parameter(primary_sequence.instruction_set.fpga_array_read.fpga_memory_
map_offset.id, 0)

Wait Statement

Find us at www.keysight.com Page 29

This corresponds to statement (i) in the HVI diagram. The wait statement is a local flow control statement that
can be implemented using the API class WaitStatement. This sequence block sets an instrument to wait for a
condition. The condition can be defined by a trigger, an event, or any combination of them through the usage of
logical operators. In this programming example, the wait statement is used to set the primary engine to wait for
an event generated by the FPGA sandbox, more specifically the event called 'HVI_UserEvent4'. The wait
condition is defined by the wait mode and the sync mode. The wait mode .WaitMode.TRANSITION makes sure
the wait condition is triggered precisely at the time instant when the event is activated. The sync
mode .SyncMode.IMMEDIATE sets the wait event statement to let the execution continue immediately, that is,
as soon as the event is received.

Python

Wait for FPGA_User_Event4
Define the condition for the wait statement
wait_condition = kthvi.Condition.event(hvi.engines[hvi_resources.primary_engine_
Name].events[hvi_resources.hvi_user_event_4])
Add wait statement
primary_sequence = sync_block.sequences[config.primary_engine]
waitEvent = primary_sequence.add_wait('Wait for FPGA_User_Event4', 10, wait_condition)
waitEvent.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

Action Execute

This corresponds to statement (j) in the HVI diagram. Actions to be used within an HVI sequence need to be
added to the instrument HVI engine using the API 'add' method of the ActionCollection class. Once the wanted
actions are added within the list of the instruments' HVI engine actions, an instruction to execute them can be
added to the instrument's HVI sequence using the HVI API class InstructionsActionExecute. One or multiple
actions can be executed at the same time within the same 'Action Execute' instruction.

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block.sequences[config.primary_engine]
Action execute instruction: execute action 4
instAction4 = primary_sequence.add_instruction('Execute Action 4', 20, primary_
sequence.instruction_set.action_execute.id)
instAction4.set_parameter(primary_sequence.instruction_set.action_execute.action.id,
primary_sequence.engine.actions[hvi_res_Names.hvi_user_action_4])

Register Increment

This corresponds to statements (m, n, o) in the HVI diagram. A register increment can be implemented within an
HVI sequence using an instance of the API instruction class InstructionsAdd. The same instruction can be used
to add registers and constant values (operands) and put the result in another register (result). The register to be
incrementedmust have been previously added to the scope of the corresponding HVI engine.

Python

AWG local sequences can be accessed from within the Sync Multi-Sequence Block
primary_sequence = sync_block.sequences[config.primary_engine]
#

Find us at www.keysight.com Page 30

Increment counter register
instr = primary_sequence.add_instruction('Increment counter register', 10, primary_
sequence.instruction_set.add.id)
instr.set_parameter(primary_sequence.instruction_set.add.left_operand.id, counter_reg)
instr.set_parameter(primary_sequence.instruction_set.add.right_operand.id, 1)
instr.set_parameter(primary_sequence.instruction_set.add.destination.id, counter_reg)

Export the ProgrammedHVI Sequences to File

KS2201A provides a feature to export the programmedHVI sequences, which can be used both as a
development and debug tool. The sequences can be exported using the to_string() method of the SyncSequence
class, as illustrated in the code snippet below. An example text file containing the HVI sequences exported from
this programming example is provided together with this example's files.

Generate HVI sequence description text

output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)

print("Programmed HVI sequences exported to file")

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, you can compile, load
and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences

hvi = sequencer.compile()

print(hvi.compile_status.to_string())

print("HVI Compiled")

print("This HVI programming example needs to reserve {} PXI trigger resources to

execute".format(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.

hvi.load_to_hw()

Find us at www.keysight.com Page 31

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example the non-blockingmode is used. By using this executionmode, SW execution can interact
through registers read/write with the HVI sequence execution.

Python

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no_wait)
print('HVI Running...')

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.

Find us at www.keysight.com Page 32

Conclusions
This Programming Example illustrated how to use Keysight PathWave Test Sync Executive together with
Keysight PathWave FPGA. Custom FPGA block are designed using Keysight PathWave FPGA and loaded to
the sandbox of twomodular instrument. The two instruments execute HVI sequences that can communicate
with the custom FPGA blocks programmed into the sandbox of themodule FPGA. Using an HVI Port the HVI
sequence can read/write values to any HVI Port Register inserted among the custom FPGA blocks. This
application note has also shown how HVI sequence and FPGA sandbox of an instrument can communicate by
using actions and events. The exchanged information can also be written to PXI lines.

Find us at www.keysight.com Page 33
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, December 21 2020,KS2201-90003

	KS2201A - Programming Example 3 - PathWave Test Sync Executive Integration wi...
	Introduction
	System Setup
	System Requirements
	How to Install Python 3.7.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	How to Install PathWave FPGA
	Multi-Chassis Setup Implementation
	10 MHz Clock Reference Source

	Programming Example Overview
	How to Run this Programming Example
	PathWave FPGA Project
	Measurement Results

	HVI Application Programming Interface (API): Detailed Explanations
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI Engines
	Define HVI Actions, Events, Triggers

	Program HVI Sequence
	Define HVI Registers
	Synchronized While
	Synchronized Multi-Sequence Block
	FPGA Register Read
	FPGA Register Write
	FPGA Memory Map Write
	FPGA Memory Map Read
	Wait Statement
	Action Execute
	Register Increment
	Export the Programmed HVI Sequences to File

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Release Hardware

	Further HVI API Explanations
	Conclusions

