
Real-Time Pulsed Characterization
of a Device-Under-Test
In this programming example an M3202A AWG and an M3102A digitizer are
used to perform a real-time pulsed characterization experiment on a Device-
Under-Test (DUT). This example can be used for power amplifier
characterization for 5G mobile communications and quantum bit characterization
experiments for quantum applications, in which case the AWG generates the
control and readout pulses necessary for characterization of quantum bits.

Find us at www.keysight.com Page 1

PROGRAMMING EXAMPLE 4

Table of Contents

KS2201A - Programming Example 4 - Real-Time Pulsed Characterization of a Device-Under-Test 4

Introduction 4

System Setup 4

System Requirements 4

How to Install Python 3.7.x 64-bit 5

How to Install Chassis Driver, SFP and Firmware 6

How to Install PathWave Test Sync Executive, SD1 SFP andM3xxxA FPGA Firmware 7

How to Install PathWave FPGA 8

Multi-Chassis Setup Implementation 8

10MHz Clock Reference Source 10

Programming Example Overview 12

How to run this programming example 15

Measurement Results 17

HVI Application Programming Interface (API): Detailed Explanations 28

System Definition 33

Define Platform Resources: Chassis, PXI triggers, Synchronization 34

Define HVI Engines 34

Define HVI Actions, Events, Triggers 35

Program HVI Sequence 35

Define HVI Registers 36

SynchronizedWhile 37

SynchronizedMulti-Sequence Block 38

HVI Native Instruction: Register Assign 39

Sync Register Sharing 40

IF-ELSEIF-ELSE Statement 40

HVI Instrument-Specific Instruction: Queue AWGWaveform 41

Action Execute: AWG trigger, DAQ trigger 42

Wait Time 42

Register Increment 42

Delay Statement 43

Export the ProgrammedHVI Sequences to File 43

Compile, Load, Execute the HVI 43

Compile HVI 43

Load HVI to Hardware 44

Find us at www.keysight.com Page 2

Execute 44

Release Hardware 44

Further HVI API Explanations 45

Conclusions 46

Find us at www.keysight.com Page 3

KS2201A - Programming Example 4 - Real-Time Pulsed Characterization of a Device-
Under-Test
In this programming example, anM3202A AWGand anM3102A digitizer are used to perform a real-time pulsed
characterization experiment on a Device-Under-Test (DUT). A pool of different waveforms is loaded to the AWG
RAM. The digitizer can use the register sharing functionality to select real-time the waveform to be played by the
AWGat each iteration of the experiment steps. The selected waveform is used by AWGCH1 and CH2 to play I-
Qmodulated pulses and re-play them after a Variable delay. In the same iteration, AWGCH3 and CH4 play a
second burst of I-Q pulses after another Variable delay. The second burst pulse length can be increased after
each iteration. The experiment can be repeated for a user-defined number of loops, allowing the user to choose
the delay between each loop, delay necessary for example to let the DUT return to its equilibrium
state. Example use cases for this programming example include power amplifier characterization for 5Gmobile
communications and quantum bit characterization experiments for quantum applications, in which case the
AWGgenerates the control and readout pulses necessary for characterization of quantum bits.

Introduction
This document is organized as follows. First, a "System Setup" section explains all themandatory software and
firmware components to be installed before the programming example can run. Secondly, a "Programming
Example Overview" section describes the application use case of this programming example including expected
measurement results. The next section contains detailed explanations on how to use the HVI (Hard Virtual
Instrument) API (Application Programming Interface) to implement the real-time algorithms of this example.
Finally, the conclusions are outlined.

NOTE Please review in detail the System Requirements outlined in the next section and install all the
necessary software (SW) and firmware (FW) components before executing this programming
example code.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example Python code
and necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the
latest PathWave Test Sync Executive installer and documentation please
visit www.keysight.com/find/KS2201A-downloads. The rest of software installers FPGA firmware, drivers and
other components mentioned in this section can be found on www.keysight.com

System Requirements

Find us at www.keysight.com Page 4

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-downloads
http://www.keysight.com/

The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Python 3.7.x 64-bit, including Python packages time, numpy, matplotlib
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)
l Keysight SD1Drivers, Libraries and SFP (v3.1.9 or later)
l Keysight PathWave Test Sync Executive Update 1 (v1.4.3 or later)

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (v2019EnhTrig or later)
l Keysight PXIe Chassis Family Driver (v1.7.402.1 or later)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.1.20 or later)
l M3201A AWGFPGA firmware (v4.2.85 or later)
l M3102A Digitizer FPGA firmware (v2.01.60 or later)

NOTE PathWave Test Sync Executive licensesmust be installed before running the programming
example Python code. To request and install a license please consult thePathWave Test Sync
Executive User Manual available on www.keysight.com.

How to Install Python 3.7.x 64-bit
This programming example requires you to install Python 64-bit version 3.7.x for all users. The Python installer
can be downloaded from the Python official webpage https://www.python.org. Make sure you add Python 3.7.x
to the PATH system Variable. This can be done at the installation step by checking the right check-boxes as
shown in the screenshot below.

Find us at www.keysight.com Page 5

http://www.keysight.com/
http://www.python.org/

NOTE PathWave Test Sync Executive programming examples require the Python packages
time, numpy andmatplotlib. These packages can be installed using the Python package installer
pip. For more information about pip and how to use it, please visit https://pypi.org/project/pip/.

NOTE Users installing Python through a distribution that is different than the one available from the
Python official webpage https://www.python.org (e.g. Anaconda distribution) need tomake sure
that their PATH environment Variable includes the path to setup the HVI API Python library. This
can be done by adding to the programming example Python code a line that include that path, for
example: sys.path.append(C:\Program Files\Keysight\PathWave Test Sync Executive
2020\api\python)

How to Install Chassis Driver, SFP and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com.

Find us at www.keysight.com Page 6

http://pypi.org/project/pip/
http://www.python.org/
http://www.keysight.com/
http://www.keysight.com/

How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 7

SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

How to Install PathWave FPGA
The project files of the 3rd programming example titled "PathWave Test Sync Executive Integration with
PathWave FPGA" include PathWave FPGA projects designed usingKeysight PathWave FPGA 2020 Update
1.0. To install and obtain a license for Keysight PathWave FPGA 2020 Update 1.0 (or a later version) please
consult the product webpage on www.keysight.com. PathWave FPGA also require Xilinx Vivado software to
run. For further information please consult the PathWave FPGA UserManual on www.keysight.com.

Multi-Chassis Setup Implementation
This section explains how to execute the reference examples provided with this document on amultiple-chassis
setup. In amulti-chassis setup, it is necessary to interconnect the PXI triggers and clocking of themultiple
chassis.

With the currently available infrastructure to interconnect PXIe backplane triggers a pair of M9031A boards must
be placed in a specific segment in each chassis to be interconnected.

NOTE The SMB cables used to connect theM9031A modules need to be as short as possible. The
chassis need to be stack in the same rack, on top of each other, as close as possible to each other
to allow the SMB cables that connect them to be as short as possible.

On the twoM9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There aremainly three rules to consider when choosing the chassis slot where to place aM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each
pair of M9031A connects two chassis together and shares info through their PXI lines.

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length.

3. A PXI module included in the HVI application needs to be placed in the same chassis segment where the
first M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair
of boards.

Find us at www.keysight.com Page 8

http://www.keysight.com/
http://www.keysight.com./
http://www.keysight.com./

The picture above illustrates in green the PXI modules that must be placed in the same segment as theM9031A
modules in blue. Basically:

l The 1st chassis must include aM9031A together with a PXI module with HVI in segment 2

l All Middle chassis must have aM9031A in the segment 2, and aM9031A together with a PXI Module with
HVI support in Segment 3

l The last chassis must include aM9031A in segment 2.

All the chassis that are part of themulti-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A aremade to share the PXI lines that are used as sync resources. PXI trigger lines are
shared usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all themiddle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Find us at www.keysight.com Page 9

Additionally, a very clean 10MHz source should be used to provide the same reference signal to all chassis.
One option is to use amulti-output 10MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

10 MHz Clock Reference Source

One option is to use as a 10MHz Reference source the PXI module Keysight M9300A PXIe Frequency
Reference. Please place this module in one of the chassis and use splitters to divide the 10MHz clock output
into N cables to be connected to the 10MHz REF IN connector on the back panel of each of the chassis,
including the chassis where theM9300A module is placed. Each time the system is restarted please open the
M9300A SFP software to check the box "10MHz Out Enabled and uncheck the box ""Drive BP 10MHz
Reference". Please see screenshot below for clarifications. For more details on the Keysight M9300A PXIe
Frequency Reference please visit www.keysight.com.

Once the common 10MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from the "Reference Clock"
window shown in the screenshot below. Once you open the window please clear any ¨Alarm¨ that possibly
occurred during the 10MHz reference setup. After clearing ¨Alarm occurred¨ icon should stay idle (white color).
Clock source shall st to "Rear 10MHz Ref In".

Find us at www.keysight.com Page 10

http://www.keysight.com/

Additionally, in the case of using a remote controller card, like theM9023A PXI SystemModule used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis backplane REF and LOCK LED lights are lighted in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED
lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 11

Formore details on the Keysight PXIe Chassis Family please visit www.keysight.com.

Programming Example Overview
The DUT characterization experiment implemented in this programming example is represented in the setup
diagram below.

Find us at www.keysight.com Page 12

http://www.keysight.com/

In the general case, this programming example can be deployed onMultiple-Input Multiple-Output (MIMO)
Device-Under-Tests (DUTs). The number of inputs and outputs depends on the DUT. To deploy this
programming example on an NxMMIMODUT, it is necessary to use an AWGwith N channels and a digitizer
with M channels. The example application andmeasurement results carried out in the rest of the document are
obtained using an AWGM3202A and a digitizer M3102A having four channels each. Hence, the specific use
case addressed by this document applies to DUTs up toMIMO 4x4, or MIMO 2x2 in case the AWGand digitizer
respectively generate andmeasure I-Q (In-phase andQuadrature) signals that need to pass through frequency
converters (i.d. I-Qmodulators/demodulators) before they can be applied to the DUT. This latter use case is
depicted in the figure below.

As an example, Radio Frequency (RF) Power Amplifiers (PAs) used inmobile communications are typically
Single-Input Single-Output (SISO) systems, but the latest advanced transmitter configuration for the 5th
Generation (5G) of mobile communications can includemultiple amplifiers configured together to form an Active
Phased Array (APA) containingmultiple PAs. High-efficiency transmitter architectures including the Envelope
Tracking (ET) configuration can also be addressed by this programming example, as represented in the following
figure.

Find us at www.keysight.com Page 13

In particular, to address the ET PA characterization use case, users might prefer to substitute the example
pulsed waveforms used in this programming example with real telecommunication waveform data samples. The
usage of I-Qmodulators/demodulators, I-V probe is not covered in this programming example. This
programming example does not cover either the application of calibration techniques aiming at reconstructing
the true waveforms at the DUT reference planes. This is left to the user as a possible add-on.

Another interesting use case is the characterization of quantum bits (Qbits) for quantum applications. Such
applications can be covered by this programming example using a setup similar to the one represented in the
figure below.

The arbitrary waveforms loaded to the AWGRAM in this programming example include the pi and pi/2 gaussian
pulses typically used as Qbit excitation signals. Themeasurement results included in this document show I-Q
pulses output from the AWG channels to produce the typical saturation and readout pulses to be sent to a
superconductive Qbit and its resonator to perform theQbit coherence time T1 (also known as energy relaxation
time) and theQbit dephasing time T2.

Find us at www.keysight.com Page 14

How to run this programming example
This programming example is set up to execute in simulationmode. To execute the Python code on real HW
instruments, change the option for simulated hardware to False:

Simulated HW Option

hardware_simulated = True

Afterward, it is necessary to specify the actual chassis number and slot number where the real PXI instruments
are located. Themodel number of the used PXI instruments shall be updated, if different than the instrument
model used in this programming example. This example uses PXI instruments from the Keysight M3xxxA
family. The first step to control such instruments is to create an object using the open() method from the SD1
API. For a complete description of the SD1 API open() method and its options please consult the SD1 3.x
Software for M320xA / M330xA Arbitrary Waveform Generators User's Guide.

Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options. This programming example deploys one AWGand one
digitizer, therefore two instances of the module_descriptor are used. Please update the properties in
each module-descriptor object before running the programming example:

Define module descriptors below with your instruments information
self.digitizer_descriptor = ModuleDescriptor('M3102A', 1, 9, self.options, self.dig_engine_
Name)
self.awg_descriptor = ModuleDescriptor('M3202A', 1, 8, self.options, self.awg_engine_Name)

class ModuleDescriptor:
"Descriptor for module objects" def __init__(self, model_number, chassis_number,

slot_number, options, engine_Name):
self.model_number = model_number
self.chassis_number = chassis_number
self.slot_number = slot_number
self.options = options
self.engine_Name = engine_Name

The chassis to be used in the programming examplemust also be specified, and listed by chassis number. In
the case of amulti-chassis setup, please specify the connection between each pair of M9031modules using
the M9031_descriptor class.

Define list of chassis numbers included in the programming example
self.chassis_list = [1, 2]

Multi-chassis setup
In case of multiple chassis, chassis PXI lines need to be shared using M9031 PXI modules.
M9031 module positions need to be defined in the program.
self.M9031_descriptors = [M9031Descriptor(1, 11, 2, 11)]

class M9031Descriptor:
Describes the interconnection between each pair of M9031 modules

Find us at www.keysight.com Page 15

http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00

def __init__(self, first_M9031_chassis_number, first_M9031_slot_number, second_M9031_
chassis_number, second_M9031_slot_number):

self.chassis_1 = first_M9031_chassis_number
self.slot_1 = first_M9031_slot_number
self.chassis_2 = second_M9031_chassis_number
self.slot_2 = second_M9031_slot_number

Please note that in every HVI programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:

Assign triggers to HVI object to be used forsynchronization, data sharing, etc
NOTE: In a multi-chassis setup ALL the PXI lines listed below need to be shared
among each M9031 board pair by means of SMB cable connections
pxi_sync_trigger_resources = [

kthvi.TriggerResourceId.PXI_TRIGGER0,
kthvi.TriggerResourceId.PXI_TRIGGER1,
kthvi.TriggerResourceId.PXI_TRIGGER2,
kthvi.TriggerResourceId.PXI_TRIGGER3,
kthvi.TriggerResourceId.PXI_TRIGGER4,
kthvi.TriggerResourceId.PXI_TRIGGER5,
kthvi.TriggerResourceId.PXI_TRIGGER6,
kthvi.TriggerResourceId.PXI_TRIGGER7]

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. The vector pxi_sync_trigger_resources specified above shall include at least the necessary number
of PXI lines for the application to execute. Since this programming example uses the Sync Register
Sharing functionality, the number of reserved PXI lines for HVI needs to be greater than the number of bits
shared between the registers that are used for the Sync Register Sharing.

Users can set the AWGand digitizer parameters using the classes defined in the following code snippets:

"""AWG parameters
"""self.all_ch_mask = 0xF # binary mask defining which channels to use
AWG settings for all channels
self.sync_mode = keysightSD1.SD_SyncModes.SYNC_NONE
self.queue_mode = keysightSD1.SD_QueueMode.ONE_SHOT
self.awg_mode = keysightSD1.SD_Waveshapes.AOU_SINUSOIDAL
self.start_delay = 0 # x10 [ns]
self.awg_prescaler = 0
self.wfm_cycles = 2 # number of pulsed wfms for the T2 experiment
self.amplitude = 1 # [V]
self.offset = 0 # [V]
Trigger settings
self.awg_trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG_CYCLE
Latency values for M3202A AWGqueueWfm() [ns]
Latencies depend on AWG FPGA FW. Please check the SD1 3.x User Guide for detailed info
self.queue_wfm_latency = 100 # [ns] Minimum start delay necessary to execute an AWGqueueWfm
() instruction
self.awg_trigger_latency = 2300 # [ns] Minimum latency necessary between an AWGqueueWfm()
instruction and an AWGtrigger action.
Readout pulse parameters

Find us at www.keysight.com Page 16

self.rorise_id = 1000 # wfm ID for the rising edge of the readout pulse
self.rofall_id = 1001 # wfm ID for the falling edge of the readout pulse

"""Digitizer parameters
"""self.sampling_time = 2 # [ns] 1/sample_rate, sample_rate = 500 MSa/s for Digitizer
M3102A
self.dig_prescaler = 0 # Prescaler values are explained in M3xxxA User Guide
self.fullscale = 2 # [V] enter x Volts to set the full scale to [-x, x] Volts
self.acquisition_points_per_cycle = int(self.acquisition_window / self.sampling_time) #
[Sa]
self.num_cycles = self.num_steps*self.num_loops # insert -1 for infinite cycles
self.acquisition_points = self.acquisition_points_per_cycle*self.num_cycles
self.acquisition_delay = 0 # x2[ns]
self.dig_trigger_mode = keysightSD1.SD_TriggerModes.SWHVITRIG
self.dig_mask = self.all_ch_mask

For details on the parameters defined for AWG and digitizer please refer to M3xxxA AWGand digitizer user
guides available on www.keysight.com. Experiment parameters must also be set before running this
programming example. Detailed information to set them are provided in the next section of this programming
example.

Measurement Results
The programming example capabilities will be illustrated through some examplemeasurement results obtained
using themeasurement setup depicted below where each of the four channels of theM3202A AWG is
connected to the corresponding channel of theM3102A digitizer and to the corresponding channel of a Keysight
oscilloscope, using a T-connector.

Find us at www.keysight.com Page 17

http://www.keysight.com./

A photograph of themeasurement setup used for themeasurement results reported in this programming
example is reported below:

Find us at www.keysight.com Page 18

Find us at www.keysight.com Page 19

The first step to run this programming example is to define the experiment parameters. The example
measurement results reported in the rest of this document are obtained with the experiment parameter values
set as follows:

"""Defines the experiment parameters
"""
self.num_wfms = 1 # Number of waveforms to be loaded to the AWG RAM
self.T2_flag = 0 # User can choose to run a T1 or T2 experiment
self.initial_tau = 10 # x10[ns] # The initial time delay between the control and readout
pulse, in ns
self.tau_step = 20 # x10[ns] # Time that is incrementally added to delay between the
control and readout pulse, in ns
self.ro_delay = 150 # [ns] # Delay in ns that is applied after the last control pulse, but
before the readout pulse
self.step_delay = 0 # x10[ns] # Time to wait between each experiment step
self.loop_delay = 0 # x10[ns] # Time to wait between each experiment loop
self.initial_acq_delay = 250 # x10[ns] # Delay before starting to capture waveforms with
digitizer
self.acquisition_window = 2000 # [ns] time window to be acquired by DAQ channel each time a
DAQ trigger is sent out
self.carrier_frequency = 100e6 # [Hz] frequency of the IF carrier modulating the I-Q pulses
at the AWG output
self.initial_pulse_length = 30 # x10[ns] # Initial readout pulse length
self.delta_length = 20 # x10[ns] # Duration increment of the readout pulse length at each
step
self.num_steps = 5 # Number of iterations to increase tau by tau_step
self.num_loops = 2 # Number of experiments to execute

The experiment repeats for a number of iteration steps. At each step, parameters such as the delay tau between
the saturation pulse and the readout pulse can be incremented by an incremental quantity defined as an
experiment step (tau_step Python code Variable listed above). Each step iteration is repeated after a step delay
that can be defined by the user to make sure the DUT responses at each experiment steps are uncorrelated. The
oscilloscopemeasurement below displays how the tau delay increments over two experiment steps.

Find us at www.keysight.com Page 20

The experiment is then repeated for a number of experiment loops. Each experiment loop can start after a user-
defined loop delay to allow the DUT to return to its equilibrium state before the next series of experiment steps
can be performed. By increasing the number of experiment loops, the user can collect repeated DUT
measurements that can enable you to calculate statistics on the experiment results. Experiment step and loop
iterations are depicted in the oscilloscopemeasurement below representing an example experiment execution
with three steps (num_steps = 3) and two loops (num_loops = 2).

Find us at www.keysight.com Page 21

An example of a successful execution is represented in the system console below:

Find us at www.keysight.com Page 22

The oscilloscopemeasurement below represents the experiment parameters tau, readout delay and readout
pulse length, all implemented using HVI registers. More details on the HVI resources and sequences
programmed to implement the programming example functionalities are provided in the next section.

Find us at www.keysight.com Page 23

Thanks to the powerful synchronization capabilities of PathWave Test Sync Executive and HVI technology,
each digitizer acquisition cycle can be precisely triggered synchronously with the time window of the waveform
generated by the AWG. Users can adjust the starting point of the acquisition time window by setting the initial_
acq_delay parameter. The figure below represents an example of a completed series of digitizer acquisition
cycles corresponding to the same experiment steps and loops shown in the previous oscilloscope
measurements. The red and blue waveform represented below correspond respectively to the raw measured
data at DAQ channels CH1 and CH3, which are connected to the AWG channels generating the in-phase
saturation pulse and readout pulse respectively.

Find us at www.keysight.com Page 24

Users can change the experiment parameters to achieve different types of DUT characterization. By setting the
experiment parameter T2_flag = 1, the Python code execution generates at each experiment step two
consecutive I-Q pulses output from AWGCH1 and CH2. The two pulses are separated by a delay tau that
increments at each iterations step, whereas the readout delay with respect to the I-Q readout pulses output by
the AWGCH3 and CH4 stays fixed.

Find us at www.keysight.com Page 25

The activation of the T2_flag parameters allows you to run this programming example to perform an experiment
typically used for the characterization of the T2 time, i.e. dephasing time of quantum bits. This experiment is
also known as Ramsey experiment. The oscilloscopemeasurements below represent three iteration steps of
such Ramsey experiment.

Find us at www.keysight.com Page 26

Finally, two additional features included in the experiment template of this programming example allow you to:

1. Change the waveform played by the AWGat each iteration of the experiment steps (real-time fast
branching).

2. Increment the readout pulse length after each experiment step.

The capability of the AWG to be able to switch in real-time between a pool of different waveforms is also known
as fast branching. Users can enable this capability by setting the num_wfms (number of waveforms) parameter
represented by the Python code Variable num_wfms. The number of waveforms the AWG can quickly switch
from depends on the waveforms previously loaded to the AWGRAM, within the Python codemethod configure_
awg(). M3xxxA AWGRAM allows to load up to 2GB of waveform data and queue up to onemillion different
waveforms. For more details please refer to the M3xxxA AWG User Guide on www.keysight.com. The
oscilloscopemeasurement reported below depicts three experiment steps where the AWG can switch a
different waveform at each iteration step and the readout pulse length is incremented at each iteration step by a

Find us at www.keysight.com Page 27

http://www.keysight.com/

quantity defined by the Python code Variable delta_length listed among the experiment parameters reported
above.

The functionality to increment both the tau delay and the readout pulse length at each experiment iteration step
is implemented using the HVI statement Wait Time. The selection of a different waveform in real-time is
achieved using the Sync Register Sharing functionality. In the general case, the digitizer instrument can
communicate the decision on the next waveform to be played based on processing on themeasurement data
that contain information on the DUT state. Users canmodify this programming example to add custom
processing in the digitizer sandbox using Keysight PathWave FPGA. For more information please consult the
PathWave FPGA User Guide on www.keysight.com

HVI Application Programming Interface (API): Detailed Explanations
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this

Find us at www.keysight.com Page 28

programming example using HVI API. The sequence of operations executed by each of the instruments using
HVI technology is explained in the diagram below. The diagram depicts the HVI sequences executed within this
programming example and the HVI statements used to program the sequences. Every HVI statement is
described in detail later in this section, referencing with a letter the equivalent block in the HVI diagram and
explaining in detail the corresponding HVI API code block and the HVI functionalities that it implements.

Please note that the start delays of HVI statement inserted in the following HVI diagram are set to very specific
values. Unless differently specified, those values correspond to theminimum latencies that can be used for
those start delays. Please consult Chapter 7 of the he PathWave Test Sync Executive User Manual for
detailed information about the timing constraint and latency of each HVI statement execution.

In the HVI diagram below two nested HVI Sync While loops are used to implement the experiment iteration
steps and loops. The functionality to increment both the tau delay and the readout pulse length at each
experiment iteration step is implemented using the HVI statement Wait Time. Delays between waveforms are
implemented using Python code Variables like ro_delay when the delay is fixed and not expected to change
during the HVI execution or using registers like tau, acq_delay, when the delay is updated at each iteration of the
HVI execution.

HVI instrument-specific instructions are used to queue and play the waveforms from theM3202A AWG. These
instructions are represented by the green boxes labeled 'QueueWfm(...)' and 'AwgTrigger(...)' in the HVI diagram
depicted below. For additional information about theM3202A AWG functionalities and its HVI definitions please
consult theM3xxxA AWGUser Guide on www.keysight.com.

Find us at www.keysight.com Page 29

http://www.keysight.com./

Find us at www.keysight.com Page 30

Find us at www.keysight.com Page 31

NOTE This example uses two types of parametrized delays: fixed delays andVariable delays.

Fixed delays can be parametrized in HVI sequences by using a Variable as the start delay for an
HVI statement. In this example, this is done using ro_delay, queue_wfm_latency and awg_trigger_
latency properties of theApplicationConfig class. If the fixed dealy needs to be placed after the
last statement inside a Sync Multi-Sequence Block, the Delay statement can be used. See for
example "Step Delay" and "Loop Delay" statements in this example.

Variable delays, i.e., delays expected to change during HVI execution, can be implemented using
theWaitTime statement. In this example, this feature is used to change the pulse delay tau,
digitizer acquisition delay and readout pulse length at each iteration of the experiment.

NOTE The duration of each iteration of the Sync While loops used in this example is unknown due to the
Variable delays implemented usingWaitTime statements inside the loops. This is represented by
the dotted arrows in the HVI diagram. Due to its unknown duration, it is not possible to use the
Sync While duration property to specify how long each experiment step or loop should last.

Find us at www.keysight.com Page 32

NOTE AWGqueue waveform and AWG trigger operations require aminimum latency to correctly
execute which is specified using Python Variables queue_wfm_latency and awg_trigger_latency.
These Variables can be also updated using theApplicationConfigclass. Using lower values than
what specified in this examplemay causemisbehaviors during HVI execution. This may happen
for example because the AWGFPGA FW is not being allowed enough time to real-time queue the
waveforms before the command to reproduce them (AWG trigger) is issued. AWG latency
information is documented in theM3xxxA AWGdocumentation and in the SD1 3.x documentation.

To include HVI in an application, follow these three fundamental steps:

1. System definition: define all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc.

2. Program HVI sequences: define all the statements to be executed within each HVI sequence
3. Execute HVI: compile, load to HW and execute the HVI

The following sub-sections describe in detail how these three steps are implemented for this example. For
further explanations about any of the concepts, please refer to the PathWave Test Sync Executive User
Manual.

System Definition
The definition of HVI resources is the first step of an application using HVI. The API
class SystemDefintion enables you to define all necessary HVI resources. HVI resources include all the
platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are going to use
and execute. Users need to declare them up front and add them to the corresponding collections. All HVI
Engines included in the programming need to be registered into the EngineCollection class instance. HVI
resources are described in detail in the PathWave Test Sync Executive User Manual. The HVI resource
definitions are summarized in the code snippets below.

Python

Create system definition object
my_system = kthvi.SystemDefinition("MySystem")

def define_hvi_resources(sys_def, module_dict, config):
""" Configures all the necessary resources for the HVI application to execute: HW

platform, engines, actions, triggers, etc.
""" # Define HW platform: chassis, interconnections, PXI trigger resources,

synchronization, HVI clocks
define_hw_platform(sys_def, config)
Define all the HVI engines to be included in the HVI
define_hvi_engines(sys_def, module_dict)
Define list of actions to be executed
define_hvi_actions(sys_def, module_dict, config)

Find us at www.keysight.com Page 33

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. SystemDefinition class also allows you to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section "HVI Core API" of the PathWave Test Sync Executive User Manual.

Python

def define_hw_platform(sys_def, config):
""" Define HW platform: chassis, interconnections, PXI trigger resources,

synchronization, HVI clocks
""" # Add chassis resources
For multi-chassis setup details see programming example documentation
for chassis_number in config.chassis_list:

if config.hardware_simulated:
sys_def.chassis.add_with_options(chassis_number,

'Simulate=True,DriverSetup=model=M9018B,NoDriver=True')
else:

sys_def.chassis.add(chassis_number)
Add M9031 modules for multi-chassis setups
if config.M9031_descriptors:

interconnects = sys_def.interconnects
for descriptor in config.M9031_descriptors:

interconnects.add_M9031_modules(descriptor.chassis_1, descriptor.slot_1,
descriptor.chassis_2, descriptor.slot_2)

Assign the defined PXI trigger resources
sys_def.sync_resources = config.pxi_sync_trigger_resources
Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
Use the code line below if you want the application to be in sync with the 10 MHz

clock
sys_def.non_hvi_core_clocks = [10e6]

Define HVI Engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow you to
access the actions, events and triggers that each specific engine will control and use within the HVI. In this
programming example, in particular, two HVI engines are used, one for the AWG, the other for the digitizer.

Python

HVI engine Names to be used in this application
self.awg_engine_Name = "AWG Engine"self.dig_engine_Name = "Digitizer Engine"

def define_hvi_engines(sys_def, module_dict):
Define all the HVI engines to be included in the HVI
For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection

Find us at www.keysight.com Page 34

for engine_Name, module in zip(module_dict.keys(), module_dict.values()):
sys_def.engines.add(module.instrument.hvi.engines.main_engine, engine_Name)

Define HVI Actions, Events, Triggers

In this programming example, both the AWGand the digitizer need to trigger waveforms or acquisition very
precisely. To do that the AWG trigger and DAQ trigger actions are issued from within the HVI execution. In the
HVI usemodel, actions need to be added to the action collection of each HVI engine before they can be
executed. This is done in this programming example as explained in the code snippets below.

Python

HVI action Names to be used by each HVI engine
self.awg_trigger_Name = "AWG_Trigger"self.daq_trigger_Name = "DAQ_Trigger"

def define_hvi_actions(sys_def, module_dict, config):
""" This function defines a list of DAQ/AWG trigger actions for each module,
to be executed by the "action-execute" instructions within the HVI sequence.
The number of actions in each engine's list depends on the intrument's number of

channels.
""" # For each engine, add each HVI Actions to be executed to its own HVI Action

Collection
for engine_Name, module in zip(module_dict.keys(), module_dict.values()):

for ch_index in range(1, module.num_channels + 1):
Actions need to be added to the engine's action list so that they can be

executed
Example: hvi.engines[i].actions.add(module_dict[i].hvi.actions.awg1_trigger,

'AWG1_trigger')
if engine_Name == config.dig_engine_Name:

action_Name = config.daq_trigger_Name+ str(ch_index) # arbitrary user-
defined Name

instrument_action = "daq{}_trigger".format(ch_index) # Name decided by
instrument API

else:
action_Name = config.awg_trigger_Name+ str(ch_index) # arbitrary user-

defined Name
instrument_action = "awg{}_trigger".format(ch_index) # Name decided by

instrument API
action_id = getattr(module.instrument.hvi.actions, instrument_action)
sys_def.engines[engine_Name].actions.add(action_id, action_Name)

Program HVI Sequence
Once the HVI resources are defined, users can program the HVI sequence of measurement actions to be
executed by each HVI engine. HVI sequences can be programmed using the Sequencer class. HVI execution
happens through a global sequence (defined by the SyncSequence class) that takes care of synchronizing and
encapsulating the local sequences corresponding to each HVI engine included in the application. In this
programming example, the core of the HVI diagram consists of two nested Sync while statements that allow
you to implement a cycle of experiment steps nested within a number of experiment loops.

Python

Find us at www.keysight.com Page 35

Create sequencer object
sequencer = kthvi.Sequencer("MySequencer", my_system)

def program_dut_experiment(sequencer, module_dict, config):
""" This method programs the HVI sequence of this application.
Different HVI statements are encapsulated as much as possible in separated SW methods

to help users visualize
the programmed HVI sequences.
The programming example documentation on www.keysight.com contains an HVI diagram that

graphically represents the programmed HVI sequence.
""" # Define registers within the scope of the outmost sync sequence
define_registers(sequencer, config)
Define sync while condition
loops = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers[config.loops_

Name]
sync_while_condition = kthvi.Condition.register_comparison(loops,

kthvi.ComparisonOperator.LESS_THAN, config.num_loops)
Add Sync While Statement
sync_while = sequencer.sync_sequence.add_sync_while("Run Experiment Loops", 90, sync_

while_condition)
Program experiment loops
program_experiment_loops(sync_while.sync_sequence, module_dict, config)
Add SMSB statement
sync_block = sequencer.sync_sequence.add_sync_multi_sequence_block("Execution

Completed", 260)
Program the SMSB to Complete the Execution
program_execution_completed(sync_block, config)

Define HVI Registers

HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified
during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Registers from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, whichmeans that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.

Python

HVI register Names to be used within the scope of each HVI engine
self.steps_Name = "Steps"self.loops_Name = "Loops"self.wfm_id_Name = "Waveform ID"self.tau_
Name = "Tau"self.pulse_length_Name = "Pulse Length"self.acq_delay_Name = "Acquisition

Find us at www.keysight.com Page 36

Delay"self.awg_counter_Name = "AWG Counter"self.dig_counter_Name = "Digitizer
Counter"self.hvi_done_Name = "HVI Done"

def define_registers(sequencer, config):
""" Defines all registers for each HVI engine in the scope af the global sync

sequence
""" # Digitizer registers
loops = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers.add

(config.loops_Name, kthvi.RegisterSize.SHORT)
loops.initial_value = 0
steps = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers.add

(config.steps_Name, kthvi.RegisterSize.SHORT)
steps.initial_value = 0
acq_delay = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers.add

(config.acq_delay_Name, kthvi.RegisterSize.SHORT)
acq_delay.initial_value = 0
loop_delay = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers.add

(config.loop_delay_Name, kthvi.RegisterSize.SHORT)
loop_delay.initial_value = config.loop_delay
hvi_done = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers.add

(config.hvi_done_Name, kthvi.RegisterSize.SHORT)
hvi_done.initial_value = 0
dig_counter = sequencer.sync_sequence.scopes[config.dig_engine_Name].registers.add

(config.dig_counter_Name, kthvi.RegisterSize.SHORT)
dig_counter.initial_value = 0
AWG registers
awg_counter = sequencer.sync_sequence.scopes[config.awg_engine_Name].registers.add

(config.awg_counter_Name, kthvi.RegisterSize.SHORT)
awg_counter.initial_value = 0
tau = sequencer.sync_sequence.scopes[config.awg_engine_Name].registers.add(config.tau_

Name, kthvi.RegisterSize.SHORT)
tau.initial_value = 0
wfm_id = sequencer.sync_sequence.scopes[config.awg_engine_Name].registers.add

(config.wfm_id_Name, kthvi.RegisterSize.SHORT)
wfm_id.initial_value = 0
pulse_length = sequencer.sync_sequence.scopes[config.awg_engine_Name].registers.add

(config.pulse_length_Name, kthvi.RegisterSize.SHORT)
pulse_length.initial_value = 0
step_delay = sequencer.sync_sequence.scopes[config.awg_engine_Name].registers.add

(config.step_delay_Name, kthvi.RegisterSize.SHORT)
step_delay.initial_value = config.step_delay

SynchronizedWhile

SynchronizedWhile appears in statements (a, h). SynchronizedWhile (Sync While) statements belong to the
set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While allows you to
synchronously executemultiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. For local sequences to be defined within the Sync While, it is necessary to use synchronized
multi-sequence blocks.

Python

Define sync while condition
sync_while_condition = kthvi.Condition.register_comparison(loops,

Find us at www.keysight.com Page 37

kthvi.ComparisonOperator.LESS_THAN, exp_params.num_loops)
Add Sync While Statement
sync_while = sync_sequence.add_sync_while('Run Experiment Loops', 90, sync_while_condition)

SynchronizedMulti-Sequence Block

It can be found in statements (b, j, 1, 4) of the HVI diagram. Synchronizedmulti-sequence blocks are defined by
the API class SyncMultiSequenceBlock. This type of sync statement synchronizes all the HVI engines that are
part of the sync sequence. It allows you to program each HVI Engine to do specific operations by exposing a
local sequence for each engine. By calling the API method add_multi_sequence_block() a synchronizedmulti-
sequence block is added to the Sync (global) Sequence.

Python

Add 1st Sync Multi-Sequence Block to the Sync While sequence
sync_block_1 = sync_sequence.add_sync_multi_sequence_block('Initialize registers', 160)

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.

Find us at www.keysight.com Page 38

Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min" in the figure
above. The "T Min" default value for any sync statement corresponds to theminimum time necessary to
complete the operations included inside. KS2201A Update 1.0 release provides theDuration property in Sync
Statement objects that allows users to set an arbitrary duration value larger than "T Min". The timing at the end
of each local sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In the case of duration "T min", HVI will automatically add no time to the local sequence with the longest
duration and adjust the other sequences accordingly, as in the example depicted in the figure above. The
resolution for HVI-defined time adjustment at the end of a sync multi-sequence block corresponds to the 10 ns
FPGA clock period for an application including instruments that are all within the Keysight M3xxxA family. For
further explanations about the timing of HVI sequence execution please refer to theKS2201APathWave Test
Sync Executive User Manual available on www.keysight.com

HVI Native Instruction: Register Assign

Statements (c, d, e, f, g, l, 5) are Register Assign instructions. A register assign statement can be used to
initialize a register to an initial value using the instruction class InstructionsAssign from Python HVI API. The

Find us at www.keysight.com Page 39

http://www.keysight.com/

same instruction can be used to assign a register value (source) to another register (destination). Each register
can also be initialized before the HVI execution, by using the property initial_value.

Python

Load previously defined parameters and resources
awg_sequence = sync_block.sequences[config.awg_engine_Name]
tau = awg_sequence.scope.registers[config.tau_Name]

Initialize tau = initial_tau
instruction = awg_sequence.add_instruction("tau = initial_tau", 10, awg_
sequence.instruction_set.assign.id)
instruction.set_parameter(awg_sequence.instruction_set.assign.destination.id, awg_
sequence.scope.registers[config.tau_Name])
instruction.set_parameter(awg_sequence.instruction_set.assign.source.id, config.initial_
tau)

Sync Register Sharing

This corresponds to statement (i) in the HVI diagram. Register sharing is a functionality defined and
programmed using theRegisterSharing class. Register sharing allows you to share the content of N adjacent
bits of a source register and write the information to a destination register in any of the other HVI engines
included in the HVI execution. In this programming example, this functionality is used to share the content of the
digitizer register steps and write into the AWG registerwfm_id to use it to select real-time the waveform to be
played at each experiment step. In this programming example, the register step is incremented at each iteration
of the experiment inner loop. In amore generic case, the feedback loop from the digitizer to the AWG can include
more complex processing on the acquiredmeasured data so that the AWG can fast branch among the different
possible waveforms in response to the feedback from the digitizer. Keysight offers PathWave FPGA software
as a design environment to implement complex data processing into the instrument FPGA to be used for
example for such feedback loop. For more information please consult the PathWave FPGA User
Manual on www.keysight.com

Python

Previously defined registers
steps = sync_sequence.scopes[config.dig_engine_Name].registers[config.steps_Name]
wfm_id = sync_sequence.scopes[config.awg_engine_Name].registers[config.wfm_id_Name]

Add sync register sharing
bits_to_share = 2
sync_sequence.add_sync_register_sharing("Share steps->wfm_id", 260, steps, wfm_id, bits_to_
share)

IF-ELSEIF-ELSE Statement

This corresponds to the statement (k) in the HVI diagram. IfStatement class allows you to add an IF-ELSEIF-
ELSE statement within themain HVI sequence of any instrument engine. The IF-ELSEIF-ELSE
statement contains one (or more) IF branches and an ELSE branch. The instructions and/or statements
contained in each IF or ELSE branch are executed if the condition of each branch is met. The condition of each

Find us at www.keysight.com Page 40

http://www.keysight.com/

branch can be defined using the API class ConditionalExpression. Branch sub-sequence can be programmed
using the same API methods and classes used to program themain HVI sequence, by means of the API
classes IfBranch and ElseBranch.

Python
Previously defined resources
wfm_id = sync_sequence.scopes[config.awg_engine_Name].registers[config.wfm_id_Name]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]

Define If condition and parameters
if_condition = kthvi.Condition.register_comparison(wfm_id,
kthvi.ComparisonOperator.GREATER_THAN_OR_EQUAL_TO, config.num_wfms)
enable_ifbranches_time_matching = True
Add If statement
if_statement = awg_sequence.add_if("Check wfm_id", 70, if_condition, enable_ifbranches_
time_matching)
if_branch_seq = if_statement.if_branch.sequence
Reset wfm_id = 0 within the IF sequence
instruction = if_branch_seq.add_instruction("wfm_id = 0", 30, awg_sequence.instruction_
set.assign.id)
instruction.set_parameter(awg_sequence.instruction_set.assign.destination.id, wfm_id)
instruction.set_parameter(awg_sequence.instruction_set.assign.source.id, 0)

HVI Instrument-Specific Instruction: Queue AWGWaveform

This corresponds to statements (m, n) in the HVI diagram. This statement executes a product-specific HVI
instruction. The API method add_instruction() allows you to add the required instruction within the HVI
sequence. Instruction parameters are set using the API method set_parameter(). All HVI product-specific
instructions and parameters are defined in the hvi.InstructionSet interface of each product. Instructions, actions,
events and in general all the HVI definitions specific of M3xxxA instruments can be found in theM3xxxA User
Guide available on www.keysight.com.

Python

Previously defined resources
wfm_id = sync_sequence.scopes[config.awg_engine_Name].registers[config.wfm_id_Name]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]

Queue Readout rising edge waveform to CH3, CH4
for awg_ch in range(3, 5):

instrLabel = "Queue ROwaveRise CH" + str(awg_ch)
instruction0 = awg_sequence.add_instruction(instrLabel, config.queue_wfm_latency, awg_

module.hvi.instruction_set.queue_waveform.id)
#Set every parameter of AWGqueueWaveform(awg_ch, waveformNumber, triggerMode,

startDelay, cycles, prescaler);
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.waveform_

number.id, config.rorise_id)
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.channel.id,

awg_ch)

Find us at www.keysight.com Page 41

instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.trigger_
mode.id, config.trigger_mode)

instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.start_
delay.id, config.start_delay)

instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.cycles.id, 1)
instruction0.set_parameter(awg_module.hvi.instruction_set.queue_waveform.prescaler.id,

config.prescaler)

Action Execute: AWG trigger, DAQ trigger

This type of instruction can be found in statements (o, q, r, t, y). Actions to be used within an HVI sequence
need to be added to the instrument HVI engine using the API 'add' method of the ActionCollection class. Once
the wanted actions are added within the list of the instruments' HVI engine actions, an instruction to execute
them can be added to the instrument's HVI sequence using the HVI API class InstructionsActionExecute. One
or multiple actions can be executed at the same time within the same 'Action Execute' instruction.

Python

Previously defined resources
wfm_id = sync_sequence.scopes[config.awg_engine_Name].registers[config.wfm_id_Name]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]
awg_trigger_12 = [

awg_sequence.engine.actions[config.awg_trigger_Name + str(1)],
awg_sequence.engine.actions[config.awg_trigger_Name + str(2)]]

AWG trigger CH1, CH2 - Generates first pulse
inst_awg_trigger = awg_sequence.add_instruction("AwgTrigger(CH1, CH2)", config.awg_trigger_
latency, awg_sequence.instruction_set.action_execute.id)
inst_awg_trigger.set_parameter(awg_sequence.instruction_set.action_execute.action.id, awg_
trigger_12)

Wait Time

This type of statement can be found in statements (p, s, w). Inserting an instance of WaitTime instruction class
causes an HVI sequence to wait for an amount of time specified by a register previously added to the sameHVI
sequence. The register used needs to be initialized before its usage. The time unit is expressed as an integer
multiple of the instrument clock cycle duration. For example, in M3xxxA PXI modules a clock cycle lasts 10 ns.

Python

Previously defined resources
tau = sync_sequence.scopes[config.awg_engine_Name].registers[config.tau_Name]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]

WaitTime: tau
awg_sequence.add_wait_time('WaitTime: tau', 30, tau)

Register Increment

This type of instruction can be found in statements (u, v, z, 0, 2). A register increment can be implemented
within an HVI sequence using an instance of the API instruction class InstructionsAdd. The same instruction

Find us at www.keysight.com Page 42

can be used to add registers and constant values (operands) and put the result in another register (result). The
register to be incremented needs to have been added previously to the scope of the corresponding HVI engine.

Python

Previously defined resources
tau = sync_sequence.scopes[config.awg_engine_Name].registers[config.tau_Name]
awg_sequence = sync_block.sequences[hvi_eng_Names_Names.awg_engine]

tau += tau_step
instruction = awg_sequence.add_instruction('tau += tau_step', 10, awg_sequence.instruction_
set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, tau)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, tau)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, config.tau_
step)

Delay Statement

This type of statement can be found in statements (w, 3). Inserting an instance ofDelayStatementclass causes
an HVI sequence to wait for a fixed amount of time that is known at compilation time and it is not expected to
change during HVI execution. The amount of time is specified in nanoseconds. The Delay Statment functions
like the start delay parameter used in eachmethod that programs a statement into an HVI sequence. Themain
difference is that a start delay allows specifying a delay before a statement, whereas the delay statement allows
to specify it afterward, for example at the end of a Sync Multi-Sequence Block, as it is used in this programming
example. To specify a Variable delay that can change during HVI execution, one shall use theWaitTime
statement instead.

Python

Step delay
awg_sequence.add_delay("Step Delay", config.step_delay)

Export the ProgrammedHVI Sequences to File

KS2201A provides a feature to export the programmedHVI sequences, which can be used both as a
development and debug tool. The sequences can be exported using the to_string() method of the SyncSequence
class, as illustrated in the code snippet below. An example text file containing the HVI sequences exported from
this programming example is provided together with this example's files.

Generate HVI sequence description text

output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)

print("Programmed HVI sequences exported to file")

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, you can compile, load
and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

Find us at www.keysight.com Page 43

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware
instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

Python

Compile HVI sequences

hvi = sequencer.compile()

print(hvi.compile_status.to_string())

print("HVI Compiled")

print("This HVI programming example needs to reserve {} PXI trigger resources to

execute".format(len(hvi.compile_status.sync_resources)))

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

Python

Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.

hvi.load_to_hw()

Execute

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example, the non-blockingmode is used. By using this executionmode, SW execution can
interact through registers read/write with the HVI sequence execution.

Python

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution
hvi.run(hvi.no_wait)
print('HVI Running...')

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

Python

Unlock and release HW resources
hvi.release_hw()
print("Releasing HW...")

Find us at www.keysight.com Page 44

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the Python help file that is provided with the HVI installer, available at: C:\Program
Files\Keysight\PathWave Test Sync Executive 2020\api\python\Help\index.htm.

Find us at www.keysight.com Page 45

Conclusions
This Programming Example showed how to use anM320xA AWGand anM3102A digitizer to perform a real-
time pulsed characterization experiment on a Device-Under-Test (DUT). Register sharing functionality was
used to establish a feedback loop between the digitizer and the AWG. This way the digitizer can select real-time
the waveform to be played by the AWGat each experiment iteration step. Wait Time functionality of PathWave
Test Sync Executive was used to change real-time the delay between subsequent characterization pulses sent
to the DUT within each experiment step. It was also shown how pulse duration can be increased real-time using
the same functionality. It was shown how users can choose to repeat the experiment for a user-defined number
of loops. Users can also customize the pulse characterization experiment by setting the experiment parameters
as explained in the application note. Examplemeasurement results showed how the application code can
produce the I-Q pulses necessary to perform T1 and T2 characterization experiments on quantum bits for
quantum applications. The same application code can also be used for power amplifier characterization for 5G
mobile communications or other type of DUT characterization.

Find us at www.keysight.com Page 46
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, December 21 2020,KS2201-90004

	KS2201A - Programming Example 4 - Real-Time Pulsed Characterization of a Devi...
	Introduction
	System Setup
	System Requirements
	How to Install Python 3.7.x 64-bit
	How to Install Chassis Driver, SFP and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	How to Install PathWave FPGA
	Multi-Chassis Setup Implementation
	10 MHz Clock Reference Source

	Programming Example Overview
	How to run this programming example
	Measurement Results

	HVI Application Programming Interface (API): Detailed Explanations
	System Definition
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI Engines
	Define HVI Actions, Events, Triggers

	Program HVI Sequence
	Define HVI Registers
	Synchronized While
	Synchronized Multi-Sequence Block
	HVI Native Instruction: Register Assign
	Sync Register Sharing
	IF-ELSEIF-ELSE Statement
	HVI Instrument-Specific Instruction: Queue AWG Waveform
	Action Execute: AWG trigger, DAQ trigger
	Wait Time
	Register Increment
	Delay Statement
	Export the Programmed HVI Sequences to File

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Execute
	Release Hardware

	Further HVI API Explanations
	Conclusions

