
SynchronizedMulti-Channel Mixed-Signal
Generation usingM3xxxA PXI Instruments
In this programming example, KS2201A PathWave Test Sync Executive is used
to program multiple M3xxx Arbitrary Waveform Generators (AWGs) to
synchronously generate mixed signals. Each instrument can be programmed to
output either a Front Panel (FP) marker pulse or a previously queued waveform.
All signal channels run fully synchronized and actions across instruments can be
controlled with the timing resolution of the M3xxxA AWGs which is of 10ns.

Find us at www.keysight.com Page 1

PROGRAMMING EXAMPLE 5



Table of Contents

KS2201A - Programming Example 5 - SynchronizedMulti-Channel Mixed-Signal Generation usingM3xxxA
PXI Instruments 3

Introduction 3

System Setup 3

System Requirements 3

How to Install Chassis Driver, SFP, and Firmware 4

How to Install PathWave Test Sync Executive, SD1 SFP andM3xxxA FPGA Firmware 5

Multi-Chassis Setup Implementation 6

10MHz Clock Reference Source 8

Programming Example Overview 10

How to Run this Programming Example 11

Measurement Results 12

HVI Application Programming Interface (API): Detailed Explanations 15

Define Platform Resources: Chassis, PXI triggers, Synchronization 16

Define HVI Engines 17

Program HVI Sequences 19

Define HVI Registers 19

SynchronizedWhile (a) 20

SynchronizedMulti-Sequence Block (b) 20

HVI Instruction: Front Panel Trigger ON/OFF (c) 22

Action Execute: AWGTrigger (d) 22

Register Increment (e) 22

Delay Statement (f) 23

Export the ProgrammedHVI Sequences to File 23

Compile, Load, Execute the HVI 23

Compile HVI 23

Load HVI to Hardware 24

Execute HVI 24

Release Hardware 24

Further HVI API Explanations 24

Conclusions 25

Find us at www.keysight.com Page 2



KS2201A - Programming Example 5 - Synchronized Multi-Channel Mixed-Signal
Generation using M3xxxA PXI Instruments
In this programming example, KS2201A PathWave Test Sync Executive is used to programmultiple M3xxxA
Arbitrary Waveform Generators (AWGs) to synchronously generatemixed signals. Each instrument can be
programmed to output either a Front Panel (FP)marker pulse or a previously queued waveform. All signal
channels run fully synchronized and actions across instruments can be controlled with the timing resolution of
theM3xxxA AWGwhich is 10ns.

Introduction
This document is organized as follows. First, a "System Setup" section explains all themandatory software and
firmware components to be installed before the programming example can run. Secondly, a "Programming
Example Overview" section describes the application use case of this programming example including expected
measurement results. The next section contains detailed explanations on how to use the HVI (Hard Virtual
Instrument)  API (Application Programming Interface) to implement the real-time algorithms of this example.
Finally, the conclusions are outlined.

NOTE Please review in detail the System Requirements outlined in the next section and install all the
necessary software (SW) and firmware (FW) components before executing this programming
example code.

System Setup
Please review the following system requirements and install the software (SW), firmware (FW), and driver
version following the instructions provided in this section. To download the programming example code and
necessary files please visit www.keysight.com/find/KS2201A-programming-examples. To download the latest
PathWave Test Sync Executive installer and documentation please visit www.keysight.com/find/KS2201A-
downloads. The rest of software installers FPGA firmware, drivers and other components mentioned in this
section can be found on www.keysight.com

System Requirements
The versions of software, FPGA firmware, drivers, and other components that are required to run this
programming example are listed below. All pieces of SW and firmware listed below need to be installed on the
external PC or internal chassis controller that is used to control the PXI chassis. FPGA FW of PXI instruments
can be instead programmed using the "HardwareManager" window of SD1 Software Front Panel (SFP).

1. Software versions required:
l Microsoft Visual Studio 2017 (or later)
l Keysight IO Libraries Suite 2020 (v18.1.25310.1 or later)

Find us at www.keysight.com Page 3

https://www.keysight.com/find/KS2201A-programming-examples
https://www.keysight.com/find/KS2201A-downloads
https://www.keysight.com/find/KS2201A-downloads
https://www.keysight.com/


l Keysight SD1Drivers, Libraries and SFP (v3.1.9 or later)
l Keysight PathWave Test Sync Executive Update 1 (v1.4.3 or later)

2. Chassis firmware and driver:
l Keysight Chassis M9019A firmware (v2019EnhTrig or later)
l Keysight PXIe Chassis Family Driver (v1.7.402.1 or later)

3. M3xxxA with -HVx HW option and following FPGA firmware versions (to be installed using Keysight SD1
SFP):
l M3202A AWGFPGA firmware (v4.1.20 or later)
l M3201A AWGFPGA firmware (v4.2.85 or later)
l M3102A Digitizer FPGA firmware (v2.1.60 or later)

How to Install Chassis Driver, SFP, and Firmware
To ensure the system compatibility described above, please install IO Libraries and chassis driver first, both are
available on www.keysight.com. This programming example was tested on chassis model M9019A using the
chassis driver and chassis firmware versions listed above. If you are using another chassis model, we advise
you to install the same firmware version and its compatible chassis driver. When installing the Keysight Chassis
Family Driver, PXIe Chassis SFP (Software Front Panel) software is automatically installed. Chassis firmware
version can be checked and updated using PXIe Chassis SFP. Please see screenshots below referring to
Keysight Chassis model M9019A as an example on how to check the chassis firmware version from the info in
the help window of the PXIe Chassis SFP. Chassis firmware update can be performed using the Utilities
window of PXIe Chassis SFP. For more info please read PXIeChassisFirmwareUpdateGuide.pdf available
on www.keysight.com. 

Find us at www.keysight.com Page 4

http://www.keysight.com/
http://www.keysight.com/


How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA
Firmware
Note: Python 3.7.x 64-bit must be installed before installing Keysight KS2201A PathWave Test Sync
Executive

After installing the chassis, the next step is to install Keysight SD1 SFP and PathWave Test Sync Executive.
After installing all the necessary software, the FPGA firmware of M3xxxA PXI modules can be updated from the
HardwareManager window of the SD1 SFP. For more details on how to install SW and FPGA FW for

Find us at www.keysight.com Page 5



SD1/M3xxxA Keysight instruments, please refer to the document titled "Keysight M3xxxA Product Family
Firmware Update Instructions" and theM3xxxA User Guide available on www.keysight.com

Multi-Chassis Setup Implementation
This section explains how to execute the reference examples provided with this document on amultiple-chassis
setup. In amulti-chassis setup, it is necessary to interconnect the PXI triggers and clocking of themultiple
chassis. 

With the currently available infrastructure to interconnect PXIe backplane triggers a pair of M9031A boards must
be placed in a specific segment in each chassis to be interconnected.

NOTE The SMB cables used to connect theM9031A modules need to be as short as possible. The
chassis need to be stack in the same rack, on top of each other, as close as possible to each other
to allow the SMB cables that connect them to be as short as possible.

On the twoM9031A boards, the connectors corresponding to the same PXI line(s) are connected between each
other. There aremainly three rules to consider when choosing the chassis slot where to place aM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each
pair of M9031A connects two chassis together and shares info through their PXI lines.

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length.

3. A PXI module included in the HVI application needs to be placed in the same chassis segment where the
first M9031A board of each pair is placed, in order to control the exchange of PXI line values through the pair
of boards.

Find us at www.keysight.com Page 6

http://www.keysight.com/


The picture above illustrates in green the PXI modules that must be placed in the same segment as theM9031A
modules in blue. Basically:

l The 1st chassis must include aM9031A together with a PXI module with HVI in segment 2

l All Middle chassis must have aM9031A in the segment 2, and aM9031A together with a PXI Module with
HVI support in Segment 3

l The last chassis must include aM9031A in segment 2.

All the chassis that are part of themulti-chassis setup should be connected in a daisy chain. Chassis
connections with M9031A aremade to share the PXI lines that are used as sync resources. PXI trigger lines are
shared usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards.
The first and last chassis of the daisy chain each require one M9031A board; all themiddle chassis in the daisy
chain require two M9031A boards. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Find us at www.keysight.com Page 7



Additionally, a very clean 10MHz source should be used to provide the same reference signal to all chassis.
One option is to use amulti-output 10MHz source, for best performance probably driven by an atomic clock,
connecting each output to the 10MHz reference input of each chassis using cables that have the same length. It
is extremely important for the correct operation of HVI and in particular for synchronization that all chassis are
running with their CLK10 and CLK100 fully locked and aligned, the skew between these clocks in the different
chassis will result in skew in the instrument operation.

10 MHz Clock Reference Source

One option is to use as a 10MHz Reference source the PXI module Keysight M9300A PXIe Frequency
Reference. Please place this module in one of the chassis and use splitters to divide the 10MHz clock output
into N cables to be connected to the 10MHz REF IN connector on the back panel of each of the chassis,
including the chassis where theM9300A module is placed. Each time the system is restarted please open the
M9300A SFP software to check the box "10MHz Out Enabled and uncheck the box ""Drive BP 10MHz
Reference". Please see screenshot below for clarifications. For more details on the Keysight M9300A PXIe
Frequency Reference please visit www.keysight.com.

Once the common 10MHz reference source is setup, the Chassis SFP can be used to verify that each chassis
is correctly receiving the common external reference signal. This can be done from the "Reference Clock"
window shown in the screenshot below. Once you open the window please clear any ¨Alarm¨ that possibly
occurred during the 10MHz reference setup. After clearing ¨Alarm occurred¨ icon should stay idle (white color).
Clock source shall st to "Rear 10MHz Ref In".

Find us at www.keysight.com Page 8

http://www.keysight.com/


Additionally, in the case of using a remote controller card, like theM9023A PXI SystemModule used in this
application, it is possible to see the backplane status LEDs that also indicate the correct clocking. On the
chassis backplane REF and LOCK LED lights are lighted in green when the chassis is correctly locked to the
external reference signal. By checking the LED lights on the backplane of each chassis users can ensure the 10
MHz reference is correctly shared among the different chassis. Please see picture below showing the LED
lights on the chassis backplane, visible from the front panel by removing the panel in the chassis slot that is
preceding chassis slot 1.

Find us at www.keysight.com Page 9



Formore details on the Keysight PXIe Chassis Family please visit  www.keysight.com.

Programming Example Overview
In this example, Keysight PXI modular instruments are used to synchronously generatemixed signals across
multiple channels on different instruments. Front Panel (FP)marker pulses can be generated in sync with
arbitrary waveforms previously loaded to the AWG (Arbitrary Waveform Generator) memory thanks to the off-
shelf synchronization capability provided by the HVI SynchronizedMulti-Sequence Block. Themixed-signal
generation can be iterated for a user-defined number of loops by using an HVI SynchronizedWhile Statement.

The HVI real-time functionalities deployed to implement the use case of this application are:

1. SynchronizedWhile Statement to implement synchronous measurement loops.
2. SynchronizedMulti-Sequence Block to implement off-shelf synchronization capabilities
3. Use of registers and scopes.

Find us at www.keysight.com Page 10

http://www.keysight.com/


4. Multi-channel synchronized action execution.
5. HVI native instructions.

How to Run this Programming Example
The first step to execute this programming example is to review the configuration settings in the
ApplicationConfig.cs file. This programming example is set up to execute in simulationmode. To execute the
C# code on real HW instruments, change the option for simulated hardware to false:

public static bool HardwareSimulated { get; set; } = true;

Afterward, it is necessary to specify the actual chassis number and slot number where the real PXI instruments
are located. Themodel number of the PXI instruments usedmust also be updated, if different than the
instrument model used in this programming example.

This example uses PXI instruments from the Keysight M3xxxA family. The first step to control such instruments
is to create an object using the open() method from the SD1 API. For a complete description of the SD1 API
open() method and its options please consult the SD1 3.x Software for M320xA / M330xA Arbitrary Waveform
Generators User's Guide.

Each PXI instrument is described in the code using amodule description class that contains themodulemodel
number, chassis number, slot number and options.

This programming example can be deployed on an arbitrary number of instruments to be defined using
the module-descriptor class. All instruments included in theModuleDescriptos property execute the
synchronized real-time operations defined by the HVI instance. The ApplicationRole property of the
ModuleDescriptor class can be used to assign to each instrument its role in the application, i.e. if it shall
generate arbitrary waveforms from its AWG channels (AwgEngineName role) or marker pulses from its FP port
(DioEngineName role). Please update the properties in each module-descriptor object before running the
programming example:

public static List<ModuleDescriptor> ModuleDescriptors { get; set; } = new
List<ModuleDescriptor>{

new ModuleDescriptor{ ApplicationRole = DioEngineName, ModelNumber = "M3202A",
ChassisNumber = 2, SlotNumber = 4, Options = Options },

new ModuleDescriptor{ ApplicationRole = AwgEngineName, ModelNumber = "M3201A",
ChassisNumber = 2, SlotNumber = 10, Options = Options },

new ModuleDescriptor{ ApplicationRole = AwgEngineName, ModelNumber = "M3202A",
ChassisNumber = 2, SlotNumber = 15, Options = Options },
};

Please note that in every programming example, PXI trigger resources need to be reserved so that the HVI
instance can use them for their execution. PXI lines to be assigned as trigger resources to HVI can be selected
by updating the code snippet below:

public TriggerResourceId[] PxiSyncTriggerResources { get; set; } = new TriggerResourceId[]
{
TriggerResourceId.PxiTrigger3,
TriggerResourceId.PxiTrigger4,
TriggerResourceId.PxiTrigger5,

Find us at www.keysight.com Page 11

http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00
http://www.keysight.com/main/redirector.jspx?action=refcName=EDITORIALckey=3120777lc=engcc=USnfr=-33321.1193058.00


TriggerResourceId.PxiTrigger6,
TriggerResourceId.PxiTrigger7

};

PXI lines allocated to be used as HVI trigger resources cannot be used by the programming example for other
purposes. The vector pxi_sync_trigger_resources specified abovemust include at least the necessary number
of PXI lines for the programming example to execute. 

Measurement Results
Themeasurement results described in this section were obtained using themeasurement setup depicted below
where the Front Panel (FP) connector and CH1 of twoM3202A AWGs are connected to two channels of a
Keysight Oscilloscope.

A photograph of the setup used for themeasurement results reported in this programming example is shown
below:

Find us at www.keysight.com Page 12



Find us at www.keysight.com Page 13



Themeasurement result below shows themixed signals that are synchronously generated by the different PXI
instruments. The instrument programmed to function as a Digital I/O produces amarker pulse with a pulse width
of 100 ns (yellow waveform). The second instrument is programmed to function as an arbitrary waveform
generator and generates a gaussian waveform that was previously loaded to the instrument memory (red
waveform). Themixed-signal generation is synchronously executed for a number of iterations that can be
defined by the user. In the examplemeasurements reported below, five signal generation loops were executed.

AWGTrigger Delay
Please note, the HVI sequences represented in the HVI diagram contained in the next section specify the "AWG
Trigger" instruction to happen in sync with the "FP Trigger ON" instruction. However, users must take into
account that the AWG instrument requires time to process the AWG trigger action and propagate the command
through its digital HW before the first waveform sample can appear at the AWGoutput. This processing time
can be called AWGTrigger Delay, and it explains why in the previously presented scopemeasurements there is
a delay of about 150-170 ns between the FP trigger falling edge and the first sample of the Gaussian waveform
generated by the AWG. For exact values of AWGTrigger Delay and other AWG specs, please consult the
documentation of Keysight M3xxxA AWGs

Find us at www.keysight.com Page 14



Themixed signals can be synchronously generated by different instruments thanks to the off-shelf
synchronization capabilities offered by HVI. All the details about the HVI implementation are described in the
next section, together with detailed explanations of each HVI API code block.

HVI Application Programming Interface (API): Detailed Explanations
PathWave Test Sync Executive implements the next generation of HVI technology and delivers the HVI
Application Programming Interface (API). This section explains how to implement the use case of this
programming example using HVI API. The sequence of operations executed by each of the instruments using
HVI technology is explained in the diagram below. The diagram depicts the HVI sequences executed within this
programming example and the HVI statements used to program the sequences. Every HVI statement is
described in detail later in this section, referencing with a letter the equivalent block in the HVI diagram and
explaining in detail the corresponding HVI API code block and the HVI functionalities that it implements.

Please note that the start delays of HVI statement inserted in the following HVI diagram are set to very specific
values. Unless differently specified, those values correspond to theminimum latencies that can be used for
those start delays. Please consult Chapter 7 of the he PathWave Test Sync Executive User Manual for
detailed information about the timing constraint and latency of each HVI statement execution.

NOTE The duration of each iteration of the Sync While loop used in this example is set to an arbitrary
value using theDuration property of the SyncWhile object. The default duration of each sync
statement is set to "T Min", which corresponds to theminimum duration to comply with the start
delays specified by the user for each statement programmed into the local sequences contained in
it.

Find us at www.keysight.com Page 15



To includeHVI in an application, follow these three fundamental steps:

1. System definition: define all the necessary HVI resources, including platform resources, engines, triggers,
registers, actions, events, etc. 

2. ProgramHVI sequences: define all the statements to be executedwithin eachHVI sequence

3. Execute HVI: compile, load to HW and execute theHVI

The following sub-sections describe in detail how these three steps are implemented for this example. For further
explanations about any of the concepts, please refer to the PathWave Test Sync Executive User Manual.

SystemDefinition
The definition of HVI resources is the first step of an application using HVI. The API
class SystemDefintion enables you to define all necessary HVI resources. HVI resources include all the
platform resources, engines, triggers, registers, actions, events, etc. that the HVI sequences are going to use
and execute. Users need to declare them upfront and add them to the corresponding collections. All HVI
Engines included in the program need to be registered into the EngineCollection class instance. HVI resources
are described in detail in the PathWave Test Sync Executive User Manual. The HVI resource definitions are
summarized in the code snippets below.

C#

var mySystem =
DefineSystem("mySystem") // Define your system, HW platform, add HVI resources
.AddHwPlatform(appConfig) // Add chassis, interconnections, PXI trigger resources,

synchronization, HVI clocks
.AddHviEngines(moduleList) // Define all the HVI engines to be included in the HVI
.AddHviActions(moduleList, appConfig) // Define list of actions to be executed
.AddHviTriggers(moduleList, appConfig);// Defines the trigger resources

Define Platform Resources: Chassis, PXI triggers, Synchronization

All HVI instances need to define the chassis and eventual chassis interconnections using
the SystemDefinition class. PXI trigger lines to be reserved by HVI for its execution can be assigned using
the sync_resources interface of the SystemDefinition class. SystemDefinition class also allows you to add
additional clock frequencies that the HVI execution can synchronize with. For further information please consult
the section "HVI Core API" of the PathWave Test Sync Executive User Manual .

C#

public static SystemDefinition AddHwPlatform(this SystemDefinition mySystem,
ApplicationConfig appConfig)
{

// Check input parameters
Program.AssertNotNull(mySystem, Nameof(mySystem));
Program.AssertNotNull(appConfig, Nameof(appConfig));
//Add chassis resources
// For multi-chassis setup details see programming example documentation
foreach (int chassisNumber in appConfig.ChassisList)

Find us at www.keysight.com Page 16



{
if (ApplicationConfig.HardwareSimulated)
{

mySystem.Chassis.AddWithOptions(chassisNumber,
"Simulate=True,DriverSetup=model=M9018B,NoDriver=True");

}
else
{

mySystem.Chassis.Add(chassisNumber);
}

}
// Assign the defined PXI trigger resources
mySystem.SyncResources = appConfig.PxiSyncTriggerResources;
// Assign clock frequencies that are outside the set of the clock frequencies of each

HVI engine
// Use the code line below if you want the application to be in sync with the 10 MHz

clock
mySystem.NonHviCoreClocks = new double[] { 10e6 };
return mySystem;

}

Define HVI Engines

All HVI Engines to be included in the HVI instance need to be registered into the EngineCollection class
instance. Each HVI Engine object added to the engine collection contains collections of its own that allow you to
access the actions, events and triggers that each specific engine will control and use within the HVI. 

C#

public static SystemDefinition AddHviEngines(this SystemDefinition mySystem,
List<SD1AwgModule> moduleList)
{

// Check input parameters
Program.AssertNotNull(mySystem, Nameof(mySystem));
Program.AssertNotNull(moduleList, Nameof(moduleList));
// For each instrument to be used in the HVI application add its HVI Engine to the HVI

Engine Collection
foreach (var module in moduleList)
{

mySystem.Engines.Add(module.Instrument.Hvi.Engines.MainEngine,
module.HVIEngineName);

}
return mySystem;

}

Define HVI Actions, Events, Triggers
In this programming example, each instrument is programmed to output either amarker pulse or an arbitrary
waveform at very precise instants. To do this, the FP pulse trigger and AWG trigger actions are issued from
within the HVI execution. In the HVI usemodel, actions need to be added to the action collection of each HVI

Find us at www.keysight.com Page 17



engine before they can be executed. FP trigger needs to be added to the HVI Trigger Collection and configured.
This is done in this programming example as explained in the code snippets below.

C#

public static SystemDefinition AddHviActions(this SystemDefinition mySystem,
List<SD1AwgModule> moduleList, ApplicationConfig appConfig)
{

// Check input parameters
Program.AssertNotNull(mySystem, Nameof(mySystem));
Program.AssertNotNull(moduleList, Nameof(moduleList));
Program.AssertNotNull(appConfig, Nameof(appConfig));
// For each AWG, define the list of HVI Actions to be executed and add such list to its

own HVI Action Collection
foreach (var module in moduleList)
{

for (var chIndex = 1; chIndex <= module.NumChannels; chIndex++)
{

// Actions need to be added to the engine's action list so that they can be
executed

string actionName = string.Format("{0}{1}", appConfig.AwgTriggerName, chIndex);
// arbitrary user-defined Name

int actionId;
switch (chIndex)
{

case 2:
actionId = module.Instrument.Hvi.Actions.Awg2Trigger;
break;

case 3:
actionId = module.Instrument.Hvi.Actions.Awg3Trigger;
break;

case 4:
actionId = module.Instrument.Hvi.Actions.Awg4Trigger;
break;

default:
actionId = module.Instrument.Hvi.Actions.Awg1Trigger;
break;

}
mySystem.Engines[module.HVIEngineName].Actions.Add(actionId, actionName);

}
}
return mySystem;

}

public static SystemDefinition AddHviTriggers(this SystemDefinition mySystem,
List<SD1AwgModule> moduleList)
{

// Check input parameters
AssertNotNull(mySystem, Nameof(mySystem));
AssertNotNull(moduleList, Nameof(moduleList));
// Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that

same instrument
foreach (var module in moduleList)
{

int fpTriggerId = module.Instrument.Hvi.Triggers.FrontPanel1;

Find us at www.keysight.com Page 18



ITriggerDefinition fpTrigger = mySystem.Engines[module.HVIEngineName].Triggers.Add
(fpTriggerId, ApplicationConfig.FpTriggerName);

// Configure FP trigger in each Hvi Engine
fpTrigger.Config.Direction = Direction.Output;
fpTrigger.Config.Polarity = Polarity.ActiveHigh;
fpTrigger.Config.SyncMode = SyncMode.Immediate;
fpTrigger.Config.HwRoutingDelay = 0;
// FP TriggerMode is set to Level, which does not defines a pulse length
// FP trigger pulse length is defined by the HVI Statements that control FP Trigger

ON/OFF
fpTrigger.Config.TriggerMode = TriggerMode.Level;

}
return mySystem;

}
}

}

Program HVI Sequences
HVI sequences can be programmed using theSequencer class. HVI starts the execution through a global
sequence (defined by theSyncSequence class) that takes care of synchronizing and encapsulating the local
sequences corresponding to each HVI engine included in the application. In this programming example, the HVI
global sync sequence contains only one sync statement, a synchronizedmulti-sequence block defined by the
API class SyncMultiSequenceBlock.

C#

public static Sequencer ProgramMixedSignalSequence(this Sequencer sequencer,
List<SD1AwgModule> moduleList, ApplicationConfig appConfig)
{

// Check input parameters
Program.AssertNotNull(sequencer, Nameof(sequencer));
Program.AssertNotNull(moduleList, Nameof(moduleList));
Program.AssertNotNull(appConfig, Nameof(appConfig));
// Add register
IRegister loops = sequencer.SyncSequence.Scopes.First().Registers.Add("Loops",

RegisterSize.Short);
// SyncWhile condition
IConditionTerm syncWhileCondition = Condition.RegisterComparison(loops,

ComparisonOperator.LessThan, appConfig.NumLoops);
// Add a Sync While
ISyncWhileStatement syncWhile = sequencer.SyncSequence.AddSyncWhile("Sync Mixed-Signal

Generation", 90, syncWhileCondition);
// Add a Sync Multi-Sequence Block (SMSB)
ISyncMultiSequenceBlockStatement syncBlock =

syncWhile.SyncSequence.AddSyncMultiSequenceBlock("Trigger Digital I/Os and AWGs", 170);
// Program the SMSB to trigger AWGs and FP pulses
ProgramMimoTrigger(syncBlock, moduleList, appConfig);
return sequencer;

}

Define HVI Registers

Find us at www.keysight.com Page 19



HVI registers correspond to very fast access physical memory registers in the HVI Engine located in the
instrument HW (e.g. FPGA or ASIC). HVI Registers can be used as parameters for operations andmodified
during the sequence execution (same as Variables in any programming language). The number and size of
registers is defined by each instrument. The registers that users want to use in the HVI sequences need to be
defined beforehand into the register collection within the scope of the corresponding HVI Sequence. This can be
done using the RegisterCollection class that is within the Scope object corresponding to each sequence. HVI
Registers belong to a specific HVI Engine because they refer to HW registers of that specific instrument.
Registers from one HVI Engine cannot be used by other engines or outside of their scope. Note that currently,
registers can only be added to the HVI top SyncSequence scopes, whichmeans that only global registers
visible in all child sequences can be added. HVI registers are defined in this programming example by the code
snippet below.

C#

// Add register
IRegister loops = sequencer.SyncSequence.Scopes.First().Registers.Add("Loops",
RegisterSize.Short);

SynchronizedWhile (a)

This corresponds to statement (a) in the HVI diagram. SynchronizedWhile (Sync While) statements belong to
the set of HVI Sync Statements and are defined by the API class SyncWhile. A Sync While allows you to
synchronously executemultiple local HVI sequences until a user-defined condition is met, that is, the sync
while condition. Please note that for local sequences to be defined within the Sync While, it is necessary to use
synchronizedmulti-sequence blocks. The duration of each iteration of the Sync While loop can be set using the
Duration property and the Time class.  Please note that the duration cannot be set to a deterministic quantity if
the Sync While contains any flow control statement, i.e. If, While, Wait orWaitTime statements. Please consult
Chapter 7 of the KS2201A UserManual for further information.

C#

// SyncWhile condition
IConditionTerm syncWhileCondition = Condition.RegisterComparison(loops,
ComparisonOperator.LessThan, appConfig.NumLoops);
// Add a Sync While
ISyncWhileStatement syncWhile = sequencer.SyncSequence.AddSyncWhile("Sync Mixed-Signal
Generation", 90, syncWhileCondition);
// Define Sync While Duration
syncWhile.Duration = new Time.Duration(1, Time.Unit.Microseconds);

SynchronizedMulti-Sequence Block (b)

This block synchronizes all the HVI engines that are part of the sync sequence and enables the user to program
each HVI Engine to do specific operations by exposing a local sequence for each engine. By calling the API
method AddMultiSequenceBlock() a synchronizedmulti-sequence block is added to the Sync (global)
Sequence. The duration of the Sync Multi-Sequence Block (SMSB) can be set using theDuration property and
the Time class. In this example the SMSB duration is set to minimum, whichmeans that the SMSB will last
according to the start delays specified by the user for each statement programed into the local sequences

Find us at www.keysight.com Page 20



contained in it. Please note that the duration cannot be set to a deterministic quantity if the SMSB contains any
flow control statement, i.e. If, While, Wait orWaitTime statements. Please consult Chapter 7 of the KS2201A
UserManual for further information.

C#

// Add a Sync Multi-Sequence Block (SMSB)
ISyncMultiSequenceBlockStatement syncBlock =
syncWhile.SyncSequence.AddSyncMultiSequenceBlock("Trigger Digital I/Os and AWGs", 260);
// Define SMSB Duration
syncBlock.Duration = new Time.Minimum();

Within the SynchronizedMulti-Sequence Block (SMSB), users can define which statement each local engine is
going to execute in parallel with the other engines. Local HVI sequences start and end synchronously their
execution within the sync multi-sequence block. Users can define the exact amount of time each local HVI
statement starts to execute with respect to the previous one. HVI automatically calculates the execution time of
each local sequence and adjusts the execution of all local sequences within themulti-sequence block so that
they can deterministically end altogether within the synchronizedmulti-sequence block. See the general case
example in the figure below for additional details.

Find us at www.keysight.com Page 21



Please note that the Sync Multi-Sequence Block has an execution duration time labeled as "T Min" in the figure
above. The "T Min" default value for any sync statement corresponds to theminimum time necessary to
complete the operations included inside. KS2201A Update 1.0 release provides theDuration property in Sync
Statement objects that allows users to set an arbitrary duration value larger than "T Min". The timing at the end
of each local sequence is automatically adjusted by HVI according to the duration specified by the user for the
SMSB. In the case of duration "T min", HVI will automatically add no time to the local sequence with the longest
duration and adjust the other sequences accordingly, as in the example depicted in the figure above. The
resolution for HVI-defined time adjustment at the end of a sync multi-sequence block corresponds to the 10 ns
FPGA clock period for an application including instruments that are all within the Keysight M3xxxA family. For
further explanations about the timing of HVI sequence execution please refer to theKS2201APathWave Test
Sync Executive User Manual available on www.keysight.com

HVI Instruction: Front Panel Trigger ON/OFF (c)

This block executes a native HVI instruction. Native HVI instructions are common to every Keysight product.
The API method add_instruction() allows you to add the wanted instruction within the HVI sequence. Instruction
parameters are set using the API methodSetParameter(). All HVI Native instructions and parameters are
defined in the hvi.InstructionSet interface.

C#

// Retrieve FP Trigger prefiously defined in the HVI Trigger Collection
ITrigger fpTrigger = sequence.Engine.Triggers[appConfig.FpTriggerName];
// Retrive TriggerWrite instruction from HVI Native InstructionSet
IInstructionTriggerWrite triggerWrite = sequence.InstructionSet.TriggerWrite;
// Write FP Trigger ON
IInstructionStatement instrTriggerOn = sequence.AddInstruction("FP Trigger ON", 10,
triggerWrite.Id);
instrTriggerOn.SetParameter(triggerWrite.Trigger.Id, fpTrigger);
instrTriggerOn.SetParameter(triggerWrite.SyncMode.Id, triggerWrite.SyncMode.IMMEDIATE);
instrTriggerOn.SetParameter(triggerWrite.Value.Id, triggerWrite.Value.ON);

Action Execute: AWG Trigger (d)

Actions to be used within an HVI sequence need to be added to the instrument HVI engine using the API "Add"
method of theActionCollection class. Once the wanted actions are added within the list of the instruments' HVI
engine actions, an instruction to execute them can be added to the instrument's HVI sequence using the HVI
API class InstructionsActionExecute. One or multiple actions can be executed at the same time within the
same "Action Execute" instruction.

C#

// Execute AWG trigger from the HVI sequence of each module
// "Action Execute" instruction executes the AWG trigger from HVI
IInstructionStatement instr = sequence.AddInstruction("AWG trigger", 10,
sequence.InstructionSet.ActionExecute.Id);
instr.SetParameter(sequence.InstructionSet.ActionExecute.Action.Id,
sequence.Engine.Actions.ToArray());

Register Increment (e)

Find us at www.keysight.com Page 22

http://www.keysight.com/


This type of instruction can be found in statements (e). A register increment can be implemented within an HVI
sequence using an instance of the API instruction class InstructionsAdd. The same instruction can be used to
add registers and constant values (operands) and put the result in another register (result). The register to be
incremented was previously defined in the scope of the corresponding HVI engine.

C#

// Retrieve register object
var loops = sequence.Scope.Registers["Loops"];
// Increment loop counter
var instruction = sequence.AddInstruction("Loops++", 10, sequence.InstructionSet.Add.Id);
instruction.SetParameter(sequence.InstructionSet.Add.Destination.Id, loops);
instruction.SetParameter(sequence.InstructionSet.Add.LeftOperand.Id, loops);
instruction.SetParameter(sequence.InstructionSet.Add.RightOperand.Id, 1);

Delay Statement (f)

This type of statement can be found in statements (f). Inserting an instance of DelayStatement class causes an
HVI sequence to wait for a fixed amount of time that is known at compilation time and it is not expected to
change during HVI execution. The amount of time is specified in nanoseconds. The Delay Statment functions
like the start delay parameter used in eachmethod that programs a statement into an HVI sequence. Themain
difference is that a start delay allows specifying a delay before a statement, whereas the delay statement allows
to specify it afterward, for example at the end of a Sync Multi-Sequence Block, as it is used in this programming
example. To specify a Variable delay that can change during HVI execution, one shall use theWaitTime
statement instead.

C#

// Add a delay statement to allow the register increment to complete its execution
var instrDelay = sequence.AddDelay("Delay", 100);

Export the ProgrammedHVI Sequences to File

KS2201A provides a feature to export the programmedHVI sequences, which can be used both as a
development and debug tool. The sequences can be exported using the ToString()method of the SyncSequence
class, as illustrated in the code snippet below. An example text file containing the HVI sequences exported from
this programming example is provided together with this example's files.

// Generate HVI sequence description text
var output = sequencer.SyncSequence.ToString(OutputFormat.Debug);

Compile, Load, Execute the HVI
Once the HVI sequences are programmed by defining all the necessary HVI statements, you can compile, load
and execute the HVI. Compile, load and run functionalities can be accessed from the Hvi class.

Compile HVI

The compilation operation is performed by calling the compile() API method. This operation processes all the
info related to the HVI application, including the necessary HVI resources and the HVI statements included in
the HVI sequences. The compilation generates a binary compiled output that can be loaded to the hardware

Find us at www.keysight.com Page 23



instruments for their HVI engine to execute it. As an output, the compile() API method provides an object that
can tell the user how many PXI sync resources are necessary to be reserved to execute the HVI application.

C#

// Compile HVI sequences
var hvi = sequencer.Compile();
Console.WriteLine("HVI Compiled");
Console.WriteLine("This HVI application needs to reserve {0} PXI trigger resources to
execute", hvi.CompileStatus.SyncResources.Count());

Load HVI to Hardware

The API method load_to_hw() loads to each HVI engine the binary output obtained from the HVI compilation so
that the HVI engine programmed into their digital HW (FPGA or ASIC) can execute it.

C#

// Load HVI to HW: load sequences, configure actions/triggers/events, lock resources, etc.
hvi.LoadToHw();

Execute HVI

HVI execution is controlled by the run() API method. HVI can be run in a blocking or non-blockingmode. In this
programming example, the blockingmode is used. In this mode the SW execution is blocked at the HVI
execution code line for a fixed amount of time specified by the timeout input parameter. The SW execution can
be blocked until the HVI sequences finish their execution if timeout = hvi.no_timeout is used as an input
parameter.

C#

// Execute HVI in blocking mode: SW waits until HVI sequences ends their execution
// Eventually enter a timeout for the HVI execution to be stopped: timeout = timedelta
(seconds=0), hvi.run(timeout)
hvi.Run(IHvi.NoTimeout);

Release Hardware

API method release_hw() shall be called once the HVI execution is finished to release all the HW resources that
were reserved during the HVI execution, including the PXI trigger resources that had been locked by HVI for its
execution.

C#

// Release HW resources once HVI execution is completed
hvi.ReleaseHw();

Further HVI API Explanations
Detailed explanations of each class and functionality of the HVI API can be found in the PathWave Test Sync
Executive User Manual or in the C# help file that is provided with the HVI installer.

Find us at www.keysight.com Page 24



Conclusions
This programming example explained how to use Pathwave Test Sync Executive and HVI (Hard Virtual
Instrument) technology to synchronously generatemixed signals frommultiple PXI instruments. Each
instrument can be configured to generate amarker pulse or a previously loaded arbitrary waveform. The
programming example use case illustrated here can be tested on any AWGof the Keysight M3xxxA PXI family.
HVI technology was deployed using the HVI API (Application Programming Interface). Examplemeasurement
results demonstrated synchronizedmulti-channel mixed-signal generation with sub-ns precision.

Find us at www.keysight.com Page 25
This information is subject to change without notice. © Keysight Technologies, 2020, Published in USA, December 21 2020,KS2201-90007


	KS2201A - Programming Example 5 - Synchronized Multi-Channel Mixed-Signal Gen...
	Introduction
	System Setup
	System Requirements
	How to Install Chassis Driver, SFP, and Firmware
	How to Install PathWave Test Sync Executive, SD1 SFP and M3xxxA FPGA Firmware
	Multi-Chassis Setup Implementation
	10 MHz Clock Reference Source


	Programming Example Overview
	How to Run this Programming Example
	Measurement Results

	HVI Application Programming Interface (API): Detailed Explanations
	Define Platform Resources: Chassis, PXI triggers, Synchronization
	Define HVI Engines
	Program HVI Sequences
	Define HVI Registers
	Synchronized While (a)
	Synchronized Multi-Sequence Block (b)
	HVI Instruction: Front Panel Trigger ON/OFF (c)
	Action Execute: AWG Trigger (d)
	Register Increment (e)
	Delay Statement (f)
	Export the Programmed HVI Sequences to File

	Compile, Load, Execute the HVI
	Compile HVI
	Load HVI to Hardware
	Execute HVI
	Release Hardware

	Further HVI API Explanations
	Conclusions


