
PathWave Test Sync Executive
User Manual

This User Manual describes the PathWave Test Sync Executive programming
environment, which is based on Keysight's Hard Virtual Instrument (HVI)
technology. HVI enables you to develop and execute synchronous, real-time
operations across multiple instruments. The real-time sequencing and
synchronization capabilities of PathWave Test Sync Executive make it a
powerful tool for Multi-Input Multi-Output (MIMO) applications that require tight
synchronization and real-time control and feedback.

Find us at www.keysight.com Page 1

USER MANUAL

Notices
Copyright Notice

© Keysight Technologies 2020-2021

No part of this manual may be

reproduced in any form or by any

means (including electronic storage

and retrieval or translation into a foreign

language) without prior agreement and

written consent from Keysight

Technologies, Inc. as governed by

United States and international

copyright laws.

Manual Part Number

KS2201-90000

Published By

Keysight Technologies

PrintedInAddress_Line1

PrintedInAddress_Line2

PrintedInAddress_Line3

Edition

Edition 1.14, March, 2021

PrintedInCountry

Regulatory Compliance

This product has been designed and

tested in accordance with accepted

industry standards, and has been

supplied in a safe condition. To review

the Declaration of Conformity, go to

http://www.keysight.com/go/conformity.

Warranty

THE MATERIAL CONTAINED IN THIS

DOCUMENT IS PROVIDED “AS IS,” AND

IS SUBJECT TO BEING CHANGED,

WITHOUT NOTICE, IN FUTURE

EDITIONS. FURTHER, TO THE

MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, KEYSIGHT

DISCLAIMS ALL WARRANTIES, EITHER

EXPRESS OR IMPLIED, WITH REGARD

TO THIS MANUAL AND ANY

INFORMATION CONTAINED HEREIN,

INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE. KEYSIGHT

SHALL NOT BE LIABLE FOR ERRORS

OR FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES IN

CONNECTION WITH THE

FURNISHING, USE, OR

PERFORMANCE OF THIS DOCUMENT

OR OF ANY INFORMATION CONTAINED

HEREIN. SHOULD KEYSIGHT AND THE

USER HAVE A SEPARATE WRITTEN

AGREEMENT WITH WARRANTY TERMS

COVERING THE MATERIAL IN THIS

DOCUMENT THAT CONFLICT WITH

THESE TERMS, THE WARRANTY

TERMS IN THE SEPARATE

AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT

WARRANT THIRD-PARTY SYSTEM-

LEVEL (COMBINATION OF CHASSIS,

CONTROLLERS, MODULES, ETC.)

PERFORMANCE, SAFETY, OR

REGULATORY COMPLIANCE, UNLESS

SPECIFICALLY STATED.

Technology Licenses

The hardware and/or software

described in this document are

furnished under a license and may be

used or copied only in accordance with

the terms of such license.

U.S. Government Rights

The Software is “commercial computer

software,” as defined by Federal

Acquisition Regulation (“FAR”) 2.101.

Pursuant to FAR 12.212 and 27.405-3

and Department of Defense FAR

Supplement (“DFARS”) 227.7202, the

U.S. government acquires commercial

computer software under the same

terms by which the software is

customarily provided to the public.

Accordingly, Keysight provides the

Software to U.S. government customers

under its standard commercial license,

which is embodied in its End User

License Agreement (EULA), a copy of

which can be found at

http://www.keysight.com/find/sweula. The

license set forth in the EULA represents

the exclusive authority by which the

U.S. government may use, modify,

distribute, or disclose the Software. The

EULA and the license set forth therein,

does not require or permit, among other

things, that Keysight: (1) Furnish

technical information related to

commercial computer software or

commercial computer software

documentation that is not customarily

provided to the public; or (2) Relinquish

to, or otherwise provide, the

government rights in excess of these

rights customarily provided to the

public to use, modify, reproduce,

release, perform, display, or disclose

commercial computer software or

commercial computer software

documentation. No additional

government requirements beyond

those set forth in the EULA shall apply,

except to the extent that those terms,

rights, or licenses are explicitly required

from all providers of commercial

computer software pursuant to the FAR

and the DFARS and are set forth

specifically in writing elsewhere in the

EULA. Keysight shall be under no

obligation to update, revise or otherwise

modify the Software. With respect to

any technical data as defined by FAR

2.101, pursuant to FAR 12.211 and

27.404.2 and DFARS 227.7102, the U.S.

government acquires no greater than

Limited Rights as defined in FAR 27.401

ii

http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula

or DFAR 227.7103-5 (c), as applicable in

any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It

calls attention to an operating

procedure, practice, or the like that, if

not correctly performed or adhered to,

could result in damage to the product

or loss of important data. Do not

proceed beyond a CAUTION notice until

the indicated conditions are fully

understood and met.

A WARNING notice denotes a hazard. It

calls attention to an operating

procedure, practice, or the like that, if

not correctly performed or adhered to,

could result in personal injury or death.

Do not proceed beyond a WARNING

notice until the indicated conditions are

fully understood and met.

The following safety precautions should

be observed before using this product

and any associated instrumentation.

This product is intended for use by

qualified personnel who recognize

shock hazards and are familiar with the

safety precautions required to avoid

possible injury. Read and follow all

installation, operation, and

maintenance information carefully

before using the product.

If this product is not used as specified,

the protection provided by the

equipment could be impaired. This

product must be used in a normal

condition (in which all means for

protection are intact) only.

The types of product users are:

l Responsible body is the individual or group
responsible for the use and maintenance of
equipment, for ensuring that the equipment is
operated within its specifications and operating
limits, and for ensuring operators are
adequately trained.

l Operators use the product for its intended func-
tion. They must be trained in electrical safety pro-
cedures and proper use of the instrument. They
must be protected from electric shock and con-
tact with hazardous live circuits.

l Maintenance personnel perform routine pro-
cedures on the product to keep it operating
properly (for example, setting the line voltage
or replacing consumable materials). Main-
tenance procedures are described in the user
documentation. The procedures explicitly state
if the operator may perform them. Otherwise,
they should be performed only by service per-
sonnel.

l Service personnel are trained to work on live cir-
cuits, perform safe installations, and repair
products. Only properly trained service per-
sonnel may perform installation and service pro-
cedures.

Operator is responsible to maintain safe

operating conditions. To ensure safe

operating conditions, modules should

not be operated beyond the full

temperature range specified in the

Environmental and physical

specification. Exceeding safe operating

conditions can result in shorter

lifespans, improper module

performance and user safety issues.

When the modules are in use and

operation within the specified full

temperature range is not maintained,

module surface temperatures may

exceed safe handling conditions which

can cause discomfort or burns if

touched. In the event of a module

exceeding the full temperature range,

always allow the module to cool before

touching or removing modules from

chassis.

Keysight products are designed for use

with electrical signals that are rated

Measurement Category I and

Measurement Category II, as described

in the International Electrotechnical

Commission (IEC) Standard IEC 60664.

Most measurement, control, and data

I/O signals are Measurement Category I

and must not be directly connected to

mains voltage or to voltage sources with

high transient over-voltages.

Measurement Category II connections

require protection for high transient

over-voltages often associated with

local AC mains connections. Assume all

measurement, control, and data I/O

connections are for connection to

Category I sources unless otherwise

marked or described in the user

documentation.

Exercise extreme caution when a shock

hazard is present. Lethal voltage may

be present on cable connector jacks or

test fixtures. The American National

Standards Institute (ANSI) states that a

shock hazard exists when voltage levels

greater than 30V RMS, 42.4V peak, or

60VDC are present. A good safety

practice is to expect that hazardous

voltage is present in any unknown

circuit before measuring.

Operators of this product must be

protected from electric shock at all

times. The responsible body must

ensure that operators are prevented

access and/or insulated from every

connection point. In some cases,

connections must be exposed to

potential human contact. Product

iii

operators in these circumstances must

be trained to protect themselves from

the risk of electric shock. If the circuit is

capable of operating at or above 1000V,

no conductive part of the circuit may be

exposed.

Do not connect switching cards directly

to unlimited power circuits. They are

intended to be used with impedance-

limited sources. NEVER connect

switching cards directly to AC mains.

When connecting sources to switching

cards, install protective devices to limit

fault current and voltage to the card.

Before operating an instrument, ensure

that the line cord is connected to a

properly-grounded power receptacle.

Inspect the connecting cables, test

leads, and jumpers for possible wear,

cracks, or breaks before each use.

When installing equipment where

access to the main power cord is

restricted, such as rack mounting, a

separate main input power disconnect

device must be provided in close

proximity to the equipment and within

easy reach of the operator.

For maximum safety, do not touch the

product, test cables, or any other

instruments while power is applied to

the circuit under test. ALWAYS remove

power from the entire test system and

discharge any capacitors before:

connecting or disconnecting cables or

jumpers, installing or removing

switching cards, or making internal

changes, such as installing or removing

jumpers.

Do not touch any object that could

provide a current path to the common

side of the circuit under test or power

line (earth) ground. Always make

measurements with dry hands while

standing on a dry, insulated surface

capable of withstanding the voltage

being measured.

The instrument and accessories must

be used in accordance with its

specifications and operating

instructions, or the safety of the

equipment may be impaired.

Do not exceed the maximum signal

levels of the instruments and

accessories, as defined in the

specifications and operating

information, and as shown on the

instrument or test fixture panels, or

switching card.

When fuses are used in a product,

replace with the same type and rating

for continued protection against fire

hazard.

Chassis connections must only be used

as shield connections for measuring

circuits, NOT as safety earth ground

connections.

If you are using a test fixture, keep the

lid closed while power is applied to the

device under test. Safe operation

requires the use of a lid interlock.

Instrumentation and accessories shall

not be connected to humans.

Before performing any maintenance,

disconnect the line cord and all test

cables.

To maintain protection from electric

shock and fire, replacement

components in mains circuits –

including the power transformer, test

leads, and input jacks – must be

purchased from Keysight. Standard

fuses with applicable national safety

approvals may be used if the rating and

type are the same. Other components

that are not safety-related may be

purchased from other suppliers as long

as they are equivalent to the original

component (note that selected parts

should be purchased only through

Keysight to maintain accuracy and

functionality of the product). If you are

unsure about the applicability of a

replacement component, call an

Keysight office for information.

No operator serviceable parts inside.

Refer servicing to qualified personnel.

To prevent electrical shock do not

remove covers. For continued

protection against fire hazard, replace

fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark

of the European Community.

iv

Australian Communication and Media

Authority mark to indicate regulatory

compliance as a registered supplier.

This symbol indicates product

compliance with the Canadian

Interference-Causing Equipment

Standard (ICES-001). It also identifies

the product is an Industrial Scientific

and Medical Group 1 Class A product

(CISPR 11, Clause 4).

South Korean Class A EMC Declaration.

This equipment is Class A suitable for

professional use and is for use in

electromagnetic environments outside

of the home. A 급기기 (업무용방송통신

기자재)이기기는업무용 (A 급)전자파적

합기기로서판매자또는사용자는이점을

주의하시기바라며 ,가정외의지역에서사

용하는것을목적으로합니다.

This product complies with the WEEE

Directive marketing requirement. The

affixed product label (above) indicates

that you must not discard this

electrical/electronic product in

domestic household waste. Product

Category: With reference to the

equipment types in the WEEE directive

Annex 1, this product is classified as

“Monitoring and Control

instrumentation” product. Do not

dispose in domestic household waste.

To return unwanted products, contact

your local Keysight office, or for more

information see

http://about.keysight.com/en/companyinfo/e

nvironment/takeback.shtml.

This symbol indicates the instrument is

sensitive to electrostatic discharge

(ESD). ESD can damage the highly

sensitive components in your

instrument. ESD damage is most likely

to occur as the module is being

installed or when cables are connected

or disconnected. Protect the circuits

from ESD damage by wearing a

grounding strap that provides a high

resistance path to ground. Alternatively,

ground yourself to discharge any built-

up static charge by touching the outer

shell of any grounded instrument

chassis before touching the port

connectors.

This symbol on an instrument means

caution, risk of danger. You should refer

to the operating instructions located in

the user documentation in all cases

where the symbol is marked on the

instrument.

This symbol indicates the time period

during which no hazardous or toxic

substance elements are expected to

leak or deteriorate during normal use.

Forty years is the expected useful life of

the product.

v

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

Contents
KS2201A - PathWave Test Sync Executive User Manual 8

Chapter 1: Introduction 9

Chapter 2: Installing PathWave Test Sync Executive 11

System Requirements 12

Install Main Components 14

Install Additional Components 19

Chapter 3: Installing Licenses 22

Chapter 4: HVI Elements 28

About Instruments 29

About PathWave Test Sync Executive 30

HVI API Language Support 31

HVI API UseModel 32

HVI Engines 34

HVI Resources 35

HVI Sequences and Statements 36

HVI Sequences 37

HVI Statements 39

HVI Diagrams 46

HVI Timing 50

Chapter 5: The HVI API 60

HVI API Functionality 61

HVI API Organization 63

SystemDefinition 65

Engines 66

Chassis and Interconnects 70

Synchronization Resources and Clocks 79

Sequencer 81

About the Sequencer Class 82

HVI SyncSequence and Sequence 84

HVI API Statements 86

InstructionSet 87

FPGA Sandbox View 90

HVI Registers and Scopes 92

HVI Time API 96

Find us at www.keysight.com Page 6

HVI Compilation 97

Sequence Visualization 99

The Hvi Object 106

EngineRuntime Components 108

Load to Hardware and Run 111

HVI API Sync Statements 112

HVI API Local Statements 117

Chapter 6: Building an Application with the HVI API 130

Planning an HVI 131

1 Set Up The HVI 132

2. Write HVI Sequences 140

3. Compile Your Sequences 151

4. Load To Hardware 152

5. Modify Initial Register Values (Optional) 153

6. Execute Sequences 154

7. Release All Resources 156

Chapter 7: HVI TimeManagement and Latency 157

About TimeManagement and Latency Concepts 158

Duration Property of Statements 164

Local Statement Timing 167

Sync Statement Timing 179

Sync Statement Timing Tables 196

Local Flow-Control Statement Timing Tables 202

Local Instruction Statement Timing Tables 208

Appendix A: Supported Instruments 212

Appendix B: Additional Documentation and Examples 213

Find us at www.keysight.com Page 7

KS2201A - PathWave Test Sync Executive User Manual
This User Manual describes the PathWave Test Sync Executive programming environment, which is based on
Keysight's Hard Virtual Instrument (HVI) technology. HVI enables you to develop and execute synchronous,
real-time operations across multiple instruments. The real-time sequencing and synchronization capabilities of
PathWave Test Sync Executivemake it a powerful tool for Multi-Input Multi-Output (MIMO) applications that
require tight synchronization and real-time control and feedback.

NOTE PathWave Test Sync Executive (KS2201A) is not compatiblewith the previous version,
M3601A. You cannot use them together and they cannot run the same Sequences.

Find us at www.keysight.com Page 8

Chapter 1: Introduction
This chapter introduces Keysight KS2201A, PathWave Test Sync Executive and HVI technology.

Keysight PathWave Test Sync Executive Overview
PathWave Test Sync Executive is a programming environment based on Keysight's Hard Virtual Instrument
(HVI) technology, that enables you to develop and execute synchronous real-time operations across multiple
instruments.

The real-time sequencing and synchronization capabilities of PathWave Test Sync Executive make it a
powerful tool for Multi-Input Multi-Output (MIMO) applications that require tight synchronization and real-time
control and feedback. For example:

l Radar.
l Bit error testing.
l Communication systems.
l Massive-scale quantum physics experiments.

PathWave Test Sync Executive supports:

l Multi-chassis configuration.
l HVI sequence design using an Application Programming Interface (API) for Python.
l Programming of multiple instruments.
l Execution of time-deterministic sequences of operations.
l Precision synchronization and execution.

About HVI Technology
HVI technology enables you to program one or more instruments to execute time-deterministic sequences of
operations with precise synchronization. It achieves this by deploying a code executable onto the hardware of
each instrument. This executes on an HVI Engine, which is an IP block that is integrated into the instrument.
The code executes on these Engines in parallel, across multiple instruments.

The user-defined hardware operation of a group of instruments is called a Hard Virtual Instrument or just HVI.
The sequences of operations or instructions executed by the HVI engines are called HVI Sequences. The
operations and instructions that make up sequences are known as HVI Statements.

When creating an HVI, you can include any instrument that has HVI support. For example, the Keysight
M3xxxA family of PXI instruments is one product family with HVI support, theM5302A instrument also has HVI
support. This User Manual includes code examples of the HVI Instrument-specific API that complement the
code examples that explain the functionality of the HVI-native API.

Find us at www.keysight.com Page 9

HVI Application Programming Interface
The HVI API is the set of programming classes andmethods that enable you to create and program anHVI
instance. HVI API 2020 Update 1.1 supports the Python and C# languages. Unless otherwise noted, this
document refers to the Python API in explanations.

Python Help
A complete description of the HVI Python API is provided in the help file provided with the PathWave Test Sync
Executive installer. It is found inside the installation directory for PathWave Test Sync Executive inside the
api\python\Help subdirectory, by default this is:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\python\Help

Alternatively, you can enterPython API Help into theWindows Search.

C# Help
The HVI API documentation for C# is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\dotNet\Help

API Use Model: The HVI-native API and the HVI Instrument Specific
API
Each instrument extends the HVI API functionality with an instrument specific API. The HVI API is common to
all products and only the instrument specific HVI API is different, depending on the instrument. It is important to
differentiate between the HVI-native API features and the instrument-specific extensions. The extensions
enable a heterogeneous array of instruments and resources to coexist in a common framework.

The HVI-native API exposes all HVI functions and is a common API for all products. It defines the base
interfaces and classes that are used to create an HVI, control the hardware execution flow, and operate with
data, triggers, events and actions, but it alone does not include the ability to control instrument-specific
operations. The HVI API defines the hard virtual instrumentation framework, and it is the job of the instrument-
specific HVI API extensions to enable instrument functions in an HVI. These functions are exposed by the
instrument-specific add-on definitions. This is done by an HVI instrument add-on API provided by each
instrument that describes the instrument-specific resources and operations that can be executed or used within
HVI sequences:

HVI instrument-specific definitions are listed in your Instrument documentation. For a list of supported
instrument see Appendix A: Supported Instruments.

Find us at www.keysight.com Page 10

Chapter 2: Installing PathWave Test Sync Executive
This chapter explains how to install PathWave Test Sync Executive and related required components.

It contains the following sections:

l System Requirements

l Install Main Components

l Install Additional Components

NOTE PathWave Test Sync Executive (KS2201A) and the previous versionM3601A, are not compatible.
You cannot use them together.

If you useM3601A, the additional components required by HVI use different versions, so they
must be reinstalled every time you change between runningM3601 and KS2201A.

Find us at www.keysight.com Page 11

System Requirements
This section describes the system requirements for PathWave Test Sync Executive.

PathWave Test Sync Executive Installation Requirements
To install PathWave Test Sync Executive you require the following:

l Python 3.7.x, 64-bit.
l Keysight PathWave Test Sync Executive installer.

To install these, see Install Main Components.

Additional Components Required
To run PathWave Test Sync Executive with hardware, you require:

l One ormore PXIe chassis.
l One ormore PXIe instruments.
l Associated software, libraries, drivers, and firmware.

Chassis
PathWave Test Sync Executive is compatible with any PXIe chassis, however Keysight recommends the
following Keysight chassis so you canmake use of their capabilities andmulti-instrument andmulti-chassis
scalability:

l M9019A.
l M9018B.
l M9010A.

These chassis include an enhanced PXI trigger bridge that provides the capabilities required by PathWave Test
Sync Executive to provide support for multi-segment/chassis operation. You can use other chassis without
limitation for single segment operation, and you can also use other chassis for multi-segment/multi-chassis
operations, but these impose limitations on the complexity of the HVI sequences that you can execute.

For most chassis, the enhanced PXI trigger bridge functionality is delivered by a firmware update, see your
chassis user manual for details. The PathWave Test Sync Executive programming examples show how to
verify the correct firmware version for specific chassis. The programming examples are described in Appendix
B: Additional Documentation and Examples.

NOTE The Programming Examples are often updated so ensure you check for the latest versions.

Find us at www.keysight.com Page 12

Instruments
For information about compatibility, software and firmware versions requirements for specific PathWave Test
Sync Executive releases, see on-line here Instrument Software and Firmware Requirements for KS2201A.

For more information see thePathWave Test Sync Executive Release Notes and Appendix A: Supported
Instruments.

Firmware And Software Version Requirements
PathWave Test Sync Executive works with a number of PXIe instruments.

Firmware and Software version requirements for these are listed here:Instrument Software and Firmware
Requirements for KS2201A.

Find us at www.keysight.com Page 13

http://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

Install Main Components
This section explains how to install themain components of PathWave Test Sync Executive, it contains the
following sections:

1. Install Python 3.7.x, 64-bit.
2. Install PathWave Test Sync Executive.

NOTE PathWave LicenseManager must not be running when you install PathWave Test Sync
Executive.

If PathWave LicenseManager is running, youmust close it before installing themain components.

1: Install Python 3.7.x, 64-bit
PathWave Test Sync Executive requires Python 64-bit version 3.7.x

1. Download the Python installer from the Python web site: python.org.
2. Run the installer.

a. Add Python 3.7.x to the PATH system Variable. To do this, ensure the check box Add python 3.7 to
PATH is checked. This is shown in the following screenshot:

Find us at www.keysight.com Page 14

http://www.python.org/

2: Install PathWave Test Sync Executive

Use the following procedure to install PathWave Test Sync Executive:

NOTE Youmust install Python 3.7.x 64-bit before installing PathWave Test Sync Executive.

If PathWave LicenseManager is running, youmust close it before installing PathWave Test Sync
Executive.

Execute the installer file:

TheSetup screen is shown:

Find us at www.keysight.com Page 15

The next screen is the License Agreement screen. Youmust accept the license to continue:

You can change the installation directory on the Installation Directory screen.

By default, PathWave Test Sync Executive is installed to:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020

Find us at www.keysight.com Page 16

TheSelect Components screen enables you to select the components you want to install.

Required components are selected by default and you cannot de-select them.

When you have selected the components, the next screen is Ready to Install . Select Next to install PathWave
Test Sync Executive.

Find us at www.keysight.com Page 17

The Installer first installs the Licensemanager. It then installs PathWave Test Sync Executive:

The following screen is shownwhen the installer has completed installing: Select Finish to close the installer.

Find us at www.keysight.com Page 18

Install Additional Components
To use PathWave Test Sync Executive, you require both hardware and software. Ensure you have all of the
following components and they are up to date:

1. Keysight IO Libraries.
2. Keysight Instrument Drivers, Libraries, and Software Front Panel.
3. Keysight Instrument FPGA Firmware.
4. Keysight Chassis Family Driver.
5. Keysight Chassis Driver and Firmware.

Install Keysight IO Libraries
Install the IO Libraries. These are available at Keysight IO Libraries Suite.

Install Keysight Instrument Drivers, Libraries, and Software Front
Panel
To install the instrument drivers and libraries, install the software for your instruments:

l For theM5302A instrument see: M5302A Software.
l For theM3xxxA instruments see: Keysight SD1 Software.

Use the Software Front Panel (SFP) provided to the install drivers and libraries.

NOTE Ensure you check the driver release notes, so that you install drivers that are compatible with the
version of PathWave Test Sync Executive you have installed.

For detail about the specific versions you require for PathWave Test Sync Executive, see:
Appendix A: Supported Instruments.

Update Keysight Instrument FPGA Firmware
You can update the FPGA firmware of your PXI instruments from your Software Front Panel. For information
about how to install SW and FPGA firmware for Keysight instruments, see the instrument documentation:

These are available at Keysight PXI Products.

NOTE Ensure you check the firmware release notes, so that you install a driver that is compatible with
the version of PathWave Test Sync Executive you have installed.

For detail about the specific versions you require for PathWave Test Sync Executive, see:
Appendix A: Supported Instruments.

Find us at www.keysight.com Page 19

http://www.keysight.com/find/iolibraries
http://www.keysight.com/find/M5302A-Driver
http://www.keysight.com/find/sd1software_windows
http://www.keysight.com/find/pxi

Install Keysight Chassis Family Driver
Install the Chassis Family Driver, which is available at Keysight PXI Chassis. When you install the Keysight
Chassis Family Driver, PXIe Chassis Software Front Panel software is automatically installed.

Update Keysight Chassis Firmware
In PXIe Chassis Software Front Panel you can:

l Check the chassis firmware version in the help window.
l Update the chassis firmware with the Utilities window of PXIe Chassis SFP.

You can use the Utilities window of PXIe Chassis SFP to update the chassis firmware. For more information
about updating Chassis firmware, seePXIeChassisFirmwareUpdateGuide.pdf at Keysight PXI Chassis.

The following screenshot shows an example of the chassis firmware version shown in the help window of the
PXIe Chassis SFP. In this case the chassis is a Keysight Chassis model M9019A.

Find us at www.keysight.com Page 20

http://www.keysight.com/find/pxi-chassis
http://www.keysight.com/find/pxi-chassis

The following screenshot shows a breakdown of components of different versions of theM9019A chassis
firmware:

Find us at www.keysight.com Page 21

Chapter 3: Installing Licenses
This chapter provides a brief introduction to PathWave Test Sync Executive licensing. It contains the following
sections:

l About PathWave Test Sync Executive Licenses.
l Installing Licenses with PathWave LicenseManager.
l -HVx Hardware option.

About PathWave Test Sync Executive Licenses
PathWave Test Sync Executive requires one license for each chassis that is used in your HVI implementation.
If you are using one chassis and want to use a second chassis, you are required to have purchased and installed
at least two licenses to use both chassis. All HVI instances running in the same process share the same
licenses, but HVI instances running in different processes require different licenses.

For example:

Supported Licensing Modes
The following types of licenses are supported:

Commercial licenses :

l Node-Locked, perpetual and 6, 12, 24, and 36months, subscription.
l USB Portable, perpetual and 6, 12, 24, and 36months, subscription.
l Floating/Networking, perpetual and 6, 12, 24, and 36months, subscription.
l Transportable, perpetual and 6, 12, 24, and 36months, subscription.

Trial licenses :

l 90 days Node-locked.

Find us at www.keysight.com Page 22

Transportable Licenses
If you want to reconfigure your systems so a different number of chassis are used, you can use a transportable
license. These enable you tomove your licenses between systems, so you don't have to keep buying new
licenses.

For example, say you have two systems: one with three chassis and a second system with two chassis. If you
want to move the third chassis from the first system to the second, the second system will require a third
license. The first system has three licenses, but it shall no longer require all three. A transportable license
enables you tomove the third license from the first system to the second system. You can then use the new
configuration without having to buy a new license.

Find us at www.keysight.com Page 23

The Licensing Process
The Keysight licensing process uses the following steps:

1. Purchase and fulfillment

Formost Keysight licensed product options, your entitlement certificate is sent to you as a PDF
attachment via email immediately after your purchase. In some cases, you receive a paper copy of your
certificate with your purchased product. The licensed product options may be software products or
upgraded features of an instrument.

2. Getting a license

Using the entitlement certificate you received when you ordered, you can request your licenses on the
Keysight SoftwareManager web site. To do this, you'll need to choose a host instrument or PC, and
provide its identifying information (the Host ID) when you request your licenses. Once you begin the
process, Keysight SoftwareManager will guide you step by step through requesting your licenses and you
will receive the license files via email.

Youmight need to create amyKeysight login when you first go to the Keysight SoftwareManager site, and
you will need to log in anytime you go to the site.

3. Installing your license

To enable the licensed software, after you receive a license file from Keysight SoftwareManager, you
must install it on your instrument or computer or on a central licensing server accessible from your
instrument or computer. If you are installing node-locked or transportable licenses on the same local PC
where you execute KS2201A, ensure you place your license files in a public folder, for example,
C:\Users\public\folder_Name .

To install the license:

1. Install PathWave Test Sync Executive.

2. Use PathWave LicenseManager to install your license. The installation process is described in the
email that comes with your license.

More documentation is available at Licensing Quick Start Guide.

Find us at www.keysight.com Page 24

http://www.keysight.com/find/softwaremanager
http://www.keysight.com/find/licensingquickstart

Installing Licenses with PathWave License Manager
You can install licenses from the PathWave LicenseManager 2.3. This is installed when you install Keysight
PathWave Test Sync Executive. You can use a local license on your computer or a floating license from a
license server.

Full details describing how to install licenses are provided by email when you purchase a license.

If you are upgrading without purchasing a new license, have amore complex setup, or did not get a licensing
email see Licensing Quick Start Guide .

NOTE If you are upgrading from a previous version of PathWave Test Sync Executive that used a
different licensemanager, Keysight recommends that you keep the old licensemanager installed.

Find us at www.keysight.com Page 25

http://www.keysight.com/find/licensingquickstart

Potential Conflicts Between License Managers of Different HVI
Software
Previous versions of KS2201A software and the legacy discontinued productM3601A HVI Design Environment
used a different licensemanager. Specifically:

1. M3601A HVI Design Environment uses theEEsof License Manager (also known as Keysight Floating
LicenseManager).

2. KS2201A PathWave Test Sync Executive 2020 Release uses Keysight License Manager 6 .
3. KS2201A Pathwave Test Sync Executive 2020 Update 1 Release or later uses PathWave License

Manager (PLM) .

M3601A and KS2201A are not compatible with each other and have different firmware and software
requirements. Because of this they cannot be used together on the same PC or chassis controller to control the
same instruments.

All three licensemanagers described above are compatible with each other and they can detect and show the
licenses installed using the other licensemanagers. For node-locked or transportable licenses, conflicts can
arise if any licenses were not installed in a a public folder, for example, C:\Users\public\folder_Name. In this
case, the licensemust be reinstalled from scratch using the licensemanager of the product the license belongs
to. For more information, see theLicensing Quick Start Guide.

If you aremoving from one HVI software to another version that uses a different licensemanager, to update the
floating license installation on your license server see the Licensing Quick Start Guide for instructions. If there is
any other compatibility issue regarding the licensing of your software see theLicensing Quick Start Guide.

NOTE l If you need to uninstall any PathWave Test Sync Executive software, always use the provided
software uninstaller. Manually uninstalling a licensemanager can cause corruption to other
licensemanagers.

l If you have licenses located in user-specific locations (such as C:\Users\fred\Desktop), these
licenses may not be accessible to the license service created by PathWave LicenseManager.
Using the licensemanager provided with the appropriate product, remove and reinstall such
licenses in a generally accessible location, such as C:\Users\public

Find us at www.keysight.com Page 26

http://www.keysight.com/find/licensingquickstart
https://www.keysight.com/find/licensingquickstart
https://www.keysight.com/find/licensingquickstart

Troubleshooting the License Installation
If you have difficulties with installing or using your licenses see Licensing Quick Start Guide. If the problem
persists, please contact Keysight Tech Support and share the log files.

Log files are saved by PathWave LicenseManager in:

C:\ProgramData\Keysight\Licensing\Log

-HVx Hardware option
Instruments that support PathWave Test Sync Executive include the -HVx HW option. This must be purchased
to enable the use of the instrument with PathWave Test Sync Executive.

l Keysight M3xxxA PXI Instruments require the -HV1 option
l Keysight M5302A Digital I/O instruments require the -HV2 option

Find us at www.keysight.com Page 27

http://www.keysight.com/find/licensingquickstart

Chapter 4: HVI Elements
This chapter describes the elements that make up an HVI.

It contains the following sections:

l About Instruments
l About PathWave Test Sync Executive
l HVI API Language Support
l HVI API UseModel
l HVI Engines
l HVI Resources
l HVI Sequences and Statements

l HVI Sequences
l HVI Statements

l HVI Diagrams
l HVI Timing

Find us at www.keysight.com Page 28

About Instruments
Instruments aremodules or cards that can capture or generate various kinds of electronic signals. Many kinds of
instruments are available with different kinds of functions.

Different kinds of instruments can perform various functions with electronic signals:

l Measure signals.
l Record signals.
l Perform signal analysis.
l Perform signal conditioning.

Some types of instruments can generate different kinds of outputs:

l Signals.
l Voltages.
l Pulses.
l Arbitrary waveforms.
l Digital outputs.

Instruments can be supplied as modules or cards that fit into a chassis. The chassis enables you to fit multiple
modules together. The instruments in a chassis are synchronized to a common digital clock reference that is
shared by all of the instruments. The chassis also offers shared triggering and communication resources.

For this User Manual, the specific instruments referred to are PXI modular instruments that are inserted into a
PXI chassis.

For a full list of Keysight instruments, see Keysight.com.

Find us at www.keysight.com Page 29

http://keysight.com/

About PathWave Test Sync Executive
PathWave Test Sync Executive enables you to programmultiple instruments together. They operate together,
tightly orchestrated with other instruments, so they behave like a single instrument.

PathWave Test Sync Executive enhances individual instruments by enabling them to:

l Execute real-time sequences of operations with full time determinism.
l Precisely synchronize instrument operations.
l Fast, real-time hardware exchange of information and decisions between instruments.

You define a new virtual instrument made up of a combination of instruments. This is known as a Hard Virtual
instrument (HVI). Once the HVI resources are defined, you can programmultiple instruments to work together
as if they were a single instrument.

To program the HVI, you write an application using the HVI API. When you run your application, it generates the
HVI instance and the binary code that is executed by the hardware in the instruments.

When creating an HVI, you can include any instrument that supports PathWave Test Sync Executive, such as
Keysight's M3xxxA family of PXI instruments.

Each instrument that supports PathWave Test Sync Executive has specific instructions that enable you to use
its functionalities within HVI. These instructions are documented in the instrument documentation.

Find us at www.keysight.com Page 30

HVI API Language Support
The HVI API is the set of programming classes andmethods that enable you to create and program anHVI
instance. PathWave Test Sync Executive 2020 Update 1.1 and above support the Python and C# languages.

The C# API is similar to the Python API except for the following differences:

l Class Names are in camel case, that is, the beginning of individual words are capitalized.
l Variable Names are also in camel case, except the first letter of the first word is not capitalized.
l There are no spaces, underscores, or dashes between words in class Names.
l The first letter of methods and functions is capitalized.

The following table shows examples in Python and C#:

Type Python C#

Type Names SystemDefinition SystemDefinition

Variables multi_seq_block_1 multiSeqBlock1

Methods add_sync_multi_sequence_block() AddSyncMultiSequenceBlock()

The following blocks of Python and C# code are equivalent:

Python code:

Add a sync multi-sequence block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_
block_1", 210)

C# code:

// Add a sync multi-sequence block
var multiSeqBlock1 = syncWhile.SyncSequence.AddSyncMultiSequenceBlock("multiSeqBlock1",

210);

A complete description of the HVI Python API is provided in the help file installed with the PathWave Test Sync
Executive installer.
It is found inside the installation directory for PathWave Test Sync Executive inside the api\python\Help
subdirectory, by default this is:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\python\Help

Alternatively, you can enterPython API Help into theWindows Search.

The HVI API documentation for C# is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\dotNet\Help

Find us at www.keysight.com Page 31

HVI API Use Model
This section describes the HVI API usemodel, and the steps it involves.

HVI uses a program-within-a-programmodel, that is, HVI can be seen as a real-time hardware program that runs
within a software program.

To use the HVI API, your applicationmust follow a series of steps to define and run an HVI instance. These
steps are broadly defined by three different classes within the HVI API:

l SystemDefinition
l HVI sequencer
l Hvi

SystemDefinition
You use this class to define all the instrument and platform resources that are required to set up the HVI.

You use this class to define:

l Chassis.
l Interconnects.
l Clocks.
l Synchronous signals.
l Trigger routing.

You also use this class to define the resources that are available on the instruments:

l Engines.
l Triggers.
l Actions.
l Events.

When you have defined these resources, youmust register them within the relevant collections. Collections are
special classes that associate resources with individual Engines so that you can use the resources on those
Engines.

Find us at www.keysight.com Page 32

HVI sequencer
You use the sequencer class to program and compile your sequences:

l You add instructions and operations known as statements to sequences. These can be synchronized across
instruments or local to a specific instrument.

l You also add and use HVI registers within this class. Registers are small, fast memories on the HVI engines
that you can use as program Variables.

l Once you have defined all the Sequences that define your HVI, youmust compile it. The compilation process
returns the HVI instance Hvi .

Hvi
Hvi is the runtime or executable object. With this object, you load the Sequences into the relevant engines and
execute them.
This class also enables you to interact with the hardware resources assigned to the HVI and initialize all
resources before the actual execution happens.

Execution Flow of the HVI
When you run your application, the HVI instance is generated, compiled, and downloaded into the instruments
and infrastructure. It is executed across all the instruments and the infrastructure resources, and then the HVI
instance takes control of the individual instruments and platform components. The HVI configures the required
resources and downloads the hardware programs that, when executed, run on the instruments and platform
hardware synchronously.

An application can createmultiple HVI instances, but if the resources are shared, only one can be downloaded
and executed in hardware at a time. If the HVI instances do not share any resources, they can be executed in
parallel.

Find us at www.keysight.com Page 33

HVI Engines
For HVI to control an instrument, the instrument requires one or more HVI Engines. An HVI Engine is an
Intellectual Property (IP) block that controls the functions of the instrument and the timing of operations. The
HVI Engine is included directly in the instrument hardware or it can be programmed into a Field Programmable
Gate Array (FPGA) in the instrument.

HVI works by deploying a binary executable to each hardware instrument to be executed by the HVI Engine.
Different binaries execute on the different HVI Engines in parallel, across multiple instruments.

When you write an application that includes an HVI, you create HVI sequences. These are sequences of HVI
Statements, and are operations that control the instrument. The HVI Sequences are compiled into the binary
executables that the HVI Engine executes.

Find us at www.keysight.com Page 34

HVI Resources
The HVI Engine executes Sequences that aremade up of Statements. These statements or instructions can
operate on different resources in real-time. HVI can operate on following resources:

l HVI Actions.
l HVI Events.
l HVI Triggers.
l Clock signals.
l HVI registers.
l FPGA sandbox registers andmemory maps.

Actions

HVI actions are digital electronic pulsed or level signals that are sent from the HVI engine to control
instrument operations. Typically, actions are associated to instrument-specific operations. For example, in
a digitizer module, a StartAcquisition action sends a digital pulse to start an acquisition operation.

Events

HVI events are digital electronic pulsed or level signals input to the HVI engine that represent state, or an
event in the instrument. HVI events are associated with instrument-specific functions. For example, they
can be used to trigger instrument operations or, control the execution in an HVI application. For example,
a WaitForEvent statement pauses execution until an event occurs.

Triggers

Triggers are electronic logic signals shared between instruments, you can use these to initiate operations,
communicate states, or communicate information among instruments.

HVI Registers

HVI registers are very fast access physical memories that are located in the HVI Engines in instruments.
HVI registers can be used for storing parameters for operations and can bemodified during sequence
execution. You use them in the sameway as Variables in a programming language. The number and size
of registers is defined by each instrument.

FPGA Sandbox registers and Memory maps

For instruments that contain an FPGA with a user-configurable sandbox and if the configuration of the
module allows it, the HVI can access the registers andmemory mapped locations that you define in that
sandbox. To accomplish this, youmust obtain the .k7z file for the FPGA sandbox that was generated by
the PathWave FPGA application. This file contains all the necessary information to enable you to access
the registers and thememory mapped locations by Name.

Find us at www.keysight.com Page 35

HVI Sequences and Statements
You control instruments with HVI Statements. Statements operate on resources such as Actions, Events, and
Triggers. There are different types of statements that perform different types of operations. HVI Statements are
the building blocks of HVI Sequences. These sequences are compiled in your application and are executed in
real-time on the HVI engines.

The following sections describe the different types of sequences and statements.

l HVI Sequences

l HVI Statements

Find us at www.keysight.com Page 36

HVI Sequences
AnHVI instance consists of HVI sequences, which are the foundations of HVI technology. An HVI sequence is
an ordered list of HVI statements with associated timing information. A sequence is executed in a time-
deterministic manner by the HVI hardware engine located within an instrument. An HVI instance is made up of
one or more sequences that run in parallel and synchronously.

There are two types of sequences:

l Sync sequence.
l Local sequences.

HVI sequences are organized in a hierarchy with Sync sequences at the top.

Sync sequences
A synchronized sequence (called a Sync sequence) contains commands known as Sync statements that
execute across multiple instruments:

Find us at www.keysight.com Page 37

Local sequences
The Local sequences are executed by each individual HVI engine in an instrument.

Local sequences are contained withinSync Multi-Sequence Blocks . A Sync multi-sequence block is a type of
Sync statement that is contained in a Sync sequence.

The following diagram shows the relationship between a Sync sequence, Sync multi-sequence block, and Local
sequences:

Find us at www.keysight.com Page 38

HVI Statements
HVI statements are the commands or operations that make up an HVI sequence. HVI sequences are the
ordered lists of HVI statements that are executed with precise timing. If you think of an HVI sequence as a
poem, the HVI statements are the possible words you can use to write the poem and the HVI API is the
language you use to write it. HVI statements are FPGA-level operations that are executed by the HVI engines.

HVI statements are broadly divided into two groups:

HVI Sync statements

Synchronized (Sync) statements are used to execute operations or control the flow of execution across all
HVI hardware engines. Sync statements are executed synchronously among all HVI engines.

HVI Local statements

These are the commands or operations you put in the Local sequences to be executed on a specific HVI
engine that is in a specific hardware instrument.

Find us at www.keysight.com Page 39

The following diagram shows the different kinds of statements and how they relate to Sync sequences and
Local sequences:

Find us at www.keysight.com Page 40

HVI Sync statements
These are used to execute operations or control the flow of execution across all HVI hardware engines. Sync
statements are executed synchronously among all HVI engines.

HVI Sync statements are contained in a Sync sequence. HVI Sync statements execute across all instruments.

The Sync sequence enables multiple engines to execute statements in lockstep.

The following HVI Sync statements are available:

l Sync while
l Sync register-sharing
l Sync multi-sequence block

Sync while
Enables a while loop to execute synchronously on all engines.

The Sync while flow-control enables you to execute a Sync sequence in a loop while a condition is met. The
condition is evaluated each time before starting the Sync sequence execution. When the condition is false and
the Sync sequence reaches the end, the Sync while jumps out of the loop and the Sync sequence containing the
Sync while continues execution with the next Sync statement.

Sync register-sharing
The Sync register-sharing statement enables you to share data from a source register to a destination register in
any other HVI Engine.

It enables you to share the contents of N adjacent bits from a source register and write it to a destination register
in another HVI Engine in your HVI.

Find us at www.keysight.com Page 41

Sync multi-sequence block
Enables the execution of multiple, simultaneous, engine-specific sequences.

Sync multi-sequence blocks are a type of Sync statement that contain a set of Local sequences. The Local
sequences execute on individual HVI Engines within the instruments. All Local sequences contained in a Sync
multi-sequence block start and end at the same time.

The Sync multi-sequence block enables you to run different sequences on each engine concurrently. It ensures
that the execution of all the Local sequences starts exactly at the same time and that the Sync sequence
remains synchronous afterwards. It serves as a boundary between sections and a container where each engine
operates individually.

All HVI Local Sequences operate within HVI Sync statements. The HVI Sync statements determine global or
synchronized operations, or synchronization points.

The following diagram shows how the HVI Sync statements fit in the Sync sequence:

Find us at www.keysight.com Page 42

HVI Local statements
HVI Local statements are the commands or operations that make up Local sequences. These are the
commands or operations you put in the Local sequences to be executed on a specific HVI engine in a specific
hardware instrument. There are two types of Local statements:

l Local instruction statements.
l Local flow-control statements.

Local instruction statements
These are operations that are executed by the HVI engine in the instrument hardware and do not impact the
execution flow.

There are two types of Local instruction statements:

HVI-native instructions

HVI-native instructions are instrument independent, general-purpose instructions present on all
instruments, for example, math operations, writing triggers and executing actions. HVI-native instructions
are defined by the HVI API.

Instrument-specific instructions

These are instructions that are specific to instruments. You can use these when you program anHVI with
those specific instruments.

These instructions can change instrument settings such as amplitude and frequency. They can also trigger
instrument functions such as queuing waveforms for playback, outputting a waveform, or triggering a data
acquisition.

Instrument-specific instructions are defined by the HVI instrument add-on API and are exposed in each
instrument driver as instrument-specific HVI definitions.

NOTE The User Guides for theM320xA PXI AWGs andM310xA PXI Digitizers describe all the HVI
instructions available for each of theM3xxxA PXI instruments.

Find us at www.keysight.com Page 43

Local flow-control statements
Local flow-control statements are used to control the execution flow within each Local sequence. These
statements are depicted with yellow boxes in the HVI diagrams displayed in this User Manual.

These are used to control the execution flow of a specific HVI engine. They are divided into two types:

Wait statements:
Local Wait-for-Event

Waits for a condition that can be determined by an HVI Event, an HVI Trigger, or any logical
combination of any of these types of conditions.

Local Wait-for-Time

Waits for an amount of time specified in a register.

Conditional flow-control statements:
Local If

Acts as an If-Eleseif-Else, executes one of a set of possible Local sequences depending on the value
of a defined condition.

Local While

Executes while a condition is true.

Local Delay

Delays a sequence for a time you specify.

Find us at www.keysight.com Page 44

The following diagram shows the different types of Local statements and their relationship to the Local
sequences:

Find us at www.keysight.com Page 45

HVI Diagrams
This section shows HVI diagrams. These are used to illustrate HVI sequences.

In the HVI diagrams, the following colors are used to indicate different kinds of statements:

The following diagram shows a single Sync statement with flow and time for the block:

Find us at www.keysight.com Page 46

The diagrams can show nesting of statements within statements. For example, the following diagram shows a
Sync statement that is within another Sync statement:

Local sequences are placed within their HVI engines in Sync multi-sequence blocks. The following diagram
shows a pair of Local sequences with an instruction each inside a Sync multi-sequence block:

Find us at www.keysight.com Page 47

A dotted line indicates that execution time is not known at compile time. This is often the case with flow-control
statements. In this case theWait-for-event statement shall not release until the event occurs. It is not known at
compile time when this is, so the time cannot be calculated at compile time.

The following diagram shows a Local flow-control statement that encloses a pair of Local instruction
statements. The color yellow indicates a Local flow-control statement.

The circular symbol is a loop indicator that shows that the block iterates.

Find us at www.keysight.com Page 48

The following diagram shows amore complex example. The Sync multi-sequence block contains two Local
sequences, one per HVI engine. The Local sequences execute operations on their associated HVI engines in
parallel.

Find us at www.keysight.com Page 49

HVI Timing
This section introduces the basic HVI timing concepts, including:

l HVI Statement Timing Definitions.
l Timing description for different statement types.
l TimeMatching of Sequences in Sync Multi-Sequence Blocks.

HVI timing is a complex topic that involves you understanding how to calculate the timing between statements.
The calculations required and parameters involved are described in detail in Chapter 7: HVI TimeManagement
and Latency.

HVI Statement Timing Definitions
When you are programming an HVI, you have precise control over the timing of HVI statement execution. To do
this correctly, youmust understand the following time definitions:

l Start time.
l End time.
l Fetch time.
l Execution time.
l Start delay.

Start time

This is the instant of time when the HVI starts the execution of a statement. You set the Start time when
you are programming your sequences by setting a parameter called start delay . HVI either meets the
specified time exactly, or it generates an error if it is not possible.

End time

This is the instant of time when:

The execution of a statement is completed, and the result is available.

An operation is completed, such as a register update or a trigger value change.

For operations that have a long execution time, the End time indicates when the first result is available, or
the operation is complete.

Fetch time

This is the time interval required by the HVI engine hardware to fetch and dispatch a statement for
processing. Depending on their characteristics, some statements can take several HVI engine cycles to
complete the fetch before the processing can start.

Find us at www.keysight.com Page 50

Execution time

This is the time interval from the Start time to the End time of the statement. This interval is determined by
instrument constraints and inherent limits such as propagation delays and resource availability. The
Execution time includes the Fetch time.

Start delay

The Start delay defines the period between the execution of consecutive statements. The Start delay
enables you to have full control of the timing of operations and ensures there is enough time for correct
execution. If the Start delay is not accounted for properly, the HVI sequences shall not behave correctly.
Start delay is a parameter that you set in the add_statement()methods.

The following diagram shows the HVI statement timing definitions:

Find us at www.keysight.com Page 51

Timing Descriptions for Different Statement Types
This section describes statement timing and provides a set of examples. It contains the following subsections:

l Start delay operation for different types of statements.
l Local instruction timing.
l Local flow-control timing.
l Sync statement timing.

Start delay operation for different types of statements
Start delay is always specified between statements, from the previous statement to the current statement.

You define a start delay in one of 2 different ways:

l From the beginning of the previous statement.
l From the end of the previous statement.

The way you define the start delay depends on the type of the previous statement. For example, say you have 2
statements: A followed by B. The Start delay for statement A is already specified and you want to specify the
start delay for statement B.

The current statement is statement B, so the start delay of statement B depends on the type of the previous
statement A:

Instruction statements

If statement A is a Local instruction statement, the start delay of statement B starts at and is measured
from theStart time of the statement A.

Sync statements and Local flow control statements

If statement A is aSync statement or a Local flow-control statement, the start delay of statement B
starts at and is measured from theEnd time of statement A.

Find us at www.keysight.com Page 52

The following diagram shows the different start delay definitions:

Find us at www.keysight.com Page 53

Local instruction timing
The following diagram shows the timing of Local instructions.

For instructions, the Start delay of the following instruction is measured from the start of the previous instruction.
This is possible because once the instruction fetch cycles are completed, the HVI engine is free to fetch and
execute another instruction.

It is important to highlight that the Start delay must be greater than or equal to the fetch time of the previous
instruction.

The following diagram shows two Local instructions and their timing:

Find us at www.keysight.com Page 54

Local flow-control timing
For Local flow-control statements, the Start delay of the next statement is measured from the end of the
previous Local flow-control statement. This is because the HVI engine is busy during the execution of the flow-
control statement and the execution of a flow-control statements cannot be overlapped with any following
statements.

For the Local flow-control statement after instruction A, the Start delay (Start delay C) is measured from the start
of the previous instruction (instruction A).

For instruction B, that follows the Local flow-control statement, the Start delay (Start delay D) is measured from
the end of the flow-control block.

The execution time of local flow-control statements can be known at compile time, or might be unknown, the
dotted line in the diagram below indicates that the execution time of the Local flow-control block T1 is not known
at compile time.

The following diagram shows the difference betweenmeasuring timing of Local instructions and Local flow-
control statements.

Find us at www.keysight.com Page 55

Sync statement timing
For Sync statements, the Start delayis measured from the end of one Sync statement to the start of the
following Sync statement.

The following diagram shows two Sync statements, A and B. Sync statement B is a container for two further
Sync statements, B-1 and B-2. The times indicated are Start Delay A, Start Delay B, Start Delay C, T1, and T2.

The time between the end of Sync statement A and the start of Sync statement B-1 is Start Delay A + Start
Delay B. The time between the end of Sync statement B-1 and the start of Sync statement B-2 is Start Delay C.

The execution time of Sync Statements can be known at compile time, as shown below with a solid line.

The following diagram shows the timing between Sync statements:

Find us at www.keysight.com Page 56

Time Matching of Sequences in Sync Multi-Sequence Blocks
Sync multi-sequence blocks contain multiple Local sequences, each running on a different engine.

At the start of the Sync multi-sequence block, the Local sequences are synchronized so that they all start
simultaneously.

At the end of the Sync multi-sequence block, the sequences are all synchronized to end simultaneously. The
individual sequences can have different execution times, so HVI automatically adjusts the timing of each
individual sequence to ensure that they all end simultaneously.

The HVI ensures the sequences end at the same time in one of the following ways:

l The end times of the sequences are set to match the longest sequence (minimum execution time).
l The end times of the sequences are set to match a specific execution time that you define.
l The end times of the sequences are set to match at runtime, dynamically. This occurs if any of the
sequences includes statements with an execution time that is unknown at compile time.

Find us at www.keysight.com Page 57

End times of sequences set to match the longest sequence (minimum
execution time)
If the execution time of the instructions and flow-control statements in the sequences are known at compile
time, then HVI adjusts the final times so that all of the sequences in the Sync multi-sequence block end at the
same time.

In the following diagram, the time of the Sync multi-sequence block is not specified. In this case the compiler
adjusts the total execution time of all sequences tomatch the longest one. The execution times of the
instructions and the delays between them are known, so the timing between them and the timing of the entire
sequences can be calculated during the HVI sequence compilation. The Sync multi-sequence block execution
time is set to theminimum possible time given by the longest sequence. The different HVI Engine clocking
constraints are also taken into consideration.

The total time for Engine A is 400 ns. The HVI calculates the additional times required for the other engines so
that they finish at the same time. For Engine B the additional time is 390 ns, for Engine K the additional time is
90 ns.

The following diagram shows a Sync multi-sequence block with minimum execution time:

Find us at www.keysight.com Page 58

End times of sequences set to match a specific execution time
You can specify a time for the Sync multi-sequence block using the duration property. If the execution time of
the instructions and flow-control statements in the sequences are known at compile time, HVI adjusts the final
times so that all of the sequences in the Sync multi-sequence block end at the time you specified.

In the following diagram the Sync Multi-Sequence Block duration time is specified at 750 ns. The timing of the
instructions and the delays between them are known at compile time, so the execution time for each sequence
can be calculated. HVI calculates the additional times required for all the engines to finish at the specified time.
For Engine A this is 350 ns, For Engine B this is 740 ns, for Engine K this is 440 ns.

The following diagram shows a Sync multi-sequence block with an execution time specified as 750 ns:

Find us at www.keysight.com Page 59

Chapter 5: The HVI API
This chapter describes the HVI API. It describes themain classes required to understand the key programming
concepts youmust understand when you define your ownHVI implementation.

The HVI API is a class-based API. It is a combination of the HVI-native API and the HVI instrument add-on
API:

l The HVI-native API is the common API used by all instruments that support HVI.
l The HVI Instrument add-on API is an instrument-specific API that complements the HVI-native API.

NOTE The HVI-native API functions alone are not sufficient to fully execute HVI sequences on an
instrument. To successfully run an HVI, youmust use both APIs.

This chapter contains the following sections:

l HVI API Functionality
l HVI API Organization
l SystemDefinition
l Sequencer
l The Hvi Object
l HVI API Sync Statements
l HVI API Local Statements

Find us at www.keysight.com Page 60

HVI API Functionality
This section describes the functionality that is common across the HVI API. It contains the following sections:

l HVI API capabilities.
l HVI Collections.
l HVI API Error Management.

HVI API Capabilities
The HVI API provides many capabilities, including:

l Chassis/PXI backplane resource configuration.
l Interconnect configuration, for example, with M9031A modules.
l Access to HVI memory resources in the FPGA user Sandbox.
l Real-time sequencing:

l Synchronized flow-control statements such as While loops.
l Synchronizedmulti-sequence block statements that provide access to local instructions and flow control.
l Local Instructions and operations. These include HVI-native and instrument-specific instructions.
l Local flow-control such as While loops and If statements.

HVI Collections
Resources in HVI are grouped into Collections. Collections contain items of the same type, such as:

l Engines.
l Triggers.
l Actions.
l Registers.
l FpgaSandboxes.

Collections are particularly useful because themember instances can be accessed by index or string.
Collections are located within the sequence hierarchy with their corresponding Sync or Local functions.

The concept of collections is fundamental in the HVI API usemodel because every component used within the
HVI must be registered with a collection. To register a component, add it to the corresponding collection of items
of that type, for example, youmust add a trigger to a trigger collection. If a component is not registered with a
collection, it cannot be used.

When you are defining an HVI instance, youmust define several resources and add them to the corresponding
collections. You can then use them inside HVI sequences. You cannot use the engines, actions, triggers,
events, or registers before they are defined and added to their corresponding collections.

Find us at www.keysight.com Page 61

Enhanced access properties of collections
Collections have additional access properties beyond those of vectors or lists.

Adding a new collection item
For example, you add new collection items by calling the add()method. This takes a Name as its first
parameter and returns the new item. The following code declares a new register, adds it to a registers collection,
and returns the new register with the Name my_register_A :

regA = instrument.registers.add('my_register_A', RegisterSize.SHORT)

NOTE Each Name in a specific collectionmust be unique in that collection.

Random access by string or by numerical index
You access collection items with the [] operator. You can index items with their Name, or by a number that
indicates their location inside the collection.

You define the Namewhen you add the item to the collection. For example, the following code returns an Engine
object Named myEngine :

instrument.engines["myEngine"]

To find the number of items in a collection, use either count or the built-in len() function. For example, the
following code returns the number of Engines the instrument has:

len(instrument.engines)

Managing objects in a collection
The collection is a grouping of members, but it has no knowledge of the parameters or attributes of its members.

Definition andmanagement of the instances within a collection aremanaged in their own classes, not in the
collection class. For instance, youmanage an Engine with the Engine class, not the EngineCollection class.
Once an instance is defined, you then add it to the collection using themethods shown previously.

HVI API Error Management
Error handling in the HVI API is based on exceptions. If an error occurs during an HVI execution, the code
execution is stopped, and amessage is returned that includes an error code and a relevant error message. Error
management is done through the Error class that is part of the HVI API.

Find us at www.keysight.com Page 62

HVI API Organization
PathWave Test Sync Executive has three primary classes. You use them in this order:

1. SystemDefinition.
2. Sequencer.
3. Hvi.

SystemDefinition
You first define the hardware and resources you have in the SystemDefinition class. You do this by adding each
of the resources to the relevant collection. SystemDefinition contains classes for:

l Engines.
l Chassis.
l Interconnects.
l HVI system clocks.
l Non-HVI core clocks.
l Sync resources.
l FpgaSandboxes.

Sequencer
After defining the SystemDefinition, you define and program HVI Squences with the Sequencer object.

In the Sequencer object, the hardware collections you defined for the SystemDefinition are available as view
collections. View collections enable you to use the hardware resources for Sequence programming, but you
cannot modify them.

The Sequencer object contains classes for:

l SyncSequences and Sequences.
l Compilation.

The SyncSequences object in turn contains Instruction set, Register Scope, and Registers.

After you have programmed your sequences, you use the compilation classes to compile the Hvi object.

Find us at www.keysight.com Page 63

Hvi
The Hvi object is the actual HVI instance that you load to hardware and execute.

Hvi contains runtime versions of the objects you set up with the SystemDefinition and Sequencer classes.
You use the runtime objects for executing the sequences on the hardware, but you cannot modify them.

Hvi contains the classes:

l SyncSequenceRuntime

l EngineRuntimeCollection

l ScopesRuntimeCollection

Detailed explanations of all themain classes and their functions are provided in the help file provided with the
KS2201A PathWave Test Sync Executive installer. This is located at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\python\Help

Find us at www.keysight.com Page 64

SystemDefinition
This section describes the SystemDefinition class, it contains the following sections:

l Engines
l Chassis and Interconnects
l Synchronization Resources and Clocks

You use SystemDefinition to configure the physical hardware resources available to the HVI. This class has
interfaces to the Chassis, Engines, and interconnectedM9031A board pairs.

The following diagram shows the classes:

Find us at www.keysight.com Page 65

Engines
The Engine class provides access to the HVI Engine in the instrument.

You create instrument objects where each object represents a physical PXI instrument placed into a specific
chassis and slot. You can the obtain the Engine object from the instrument object using the instrument-specific
API and then add it to the list of HVI engines in the HVI engine collection. This collection is managed by the
SystemDefinition object.

When a SystemDefinition object instance is created, an HVI engine collection is automatically created as
well. This is managed through theEngineCollection class. You add HVI Engines to the collection by using
the API method add() that is common to all collection classes. Each HVI enginemanages its own Trigger,
Action, Event, and FpgaSandbox collections.

The following diagram shows the classes:

Find us at www.keysight.com Page 66

Trigger definition
The TriggerDefinitionCollection is a class used to list andmanage all the trigger signal lines to be used by each
HVI engine for triggering purposes.

Trigger signal lines include PXI triggers, Front Panel (FP) triggers, and any other trigger lines enabled within the
instrument.

TriggerDefinition provides an interface to control and configure the hardware trigger controlled by HVI. The
TriggerConfig class holds all the parameters that a trigger can be configured with. It serves both to hold the
current configuration of the trigger hardware and for you to get and set the desired configuration.

You can use the TriggerConfig class to:

l Turn a trigger ON or OFF.
l Write to a trigger line.
l Get the hardware Name or ID of a trigger resource.
l Configure settings for a given trigger.

To configure the trigger settings, youmust set up the following parameters:

Parameter Description Variable
hw_routing_delay Get or set the delay of the

trigger in nanoseconds
Int

direction Get or set the direction of the
trigger

Direction enum: INPUT, OUTPUT

drive_mode Get or set the drivemode DriveMode enum: OPEN_DRAIN, PUSH_PULL

pulse_length Get or set the pulse length of
the trigger in nanoseconds

Int

sync_mode Get or set the synchronization
mode of the trigger

SyncMode enum: IMMEDIATE, SYNC, SYNC_BASE,

SYNC_CDC, SYNC_FAST, SYNC_USERx

trigger_mode Get or set the trigger mode TriggerMode enum: LEVEL, PULSE

polarity Get or set the polarity of the
output trigger

TriggerPolarity enum: ACTIVE_HIGH, ACTIVE_

LOW

Action definition
Use the ActionDefinition class to define Actions in the HVI API. Before an action can be used youmust
register it to the ActionDefinitionCollection class that is within the Engine class. The registration locks
the resource to the HVI instance for its use, when it is loaded to hardware.

Find us at www.keysight.com Page 67

Event definition
The EventDefinition class is used to define Events in the HVI API. Before an event can be set up or used, it
must be registered in the EventDefinitionCollection class within the Engine class that shall use this event.
Registration locks the resource to the HVI instance for its use, when it is loaded to hardware.

FPGA sandbox definition
An FPGA sandbox is a user-configurable region in the FPGA. An HVI interface is provided to the sandbox for the
instruments that support it. Through this interface, HVI can access read/write HVI registers andmemory inside
the sandbox.

To take advantage of this feature, youmust use PathWave-FPGA to create your design in the sandbox. When
the design is completed and built, PathWave FPGA generates a k7z file. This file is then used by HVI to get all
the information needed about the Names, addresses, ranges of the registers andmemory-mapped locations that
are connected to the HVI interface.

FPGA sandbox definition class

For the instruments that support user-configurable sandboxes, the sandboxes can be found in the engine's
collection property fpga_sandboxes,where each sandbox can be accessed by its Name. This returns an FPGA
Sandbox Definition object that you then use to load the k7z file that was exported from PathWave FPGA. The
HVI uses the k7z file to load the information related to this sandbox. Once the sandbox project is loaded, you
can access the contents of the FPGA sandbox, that is, the register andmemory map definitions.

SANDBOX_0_NAME = "sandbox0"

sandbox = engine.fpga_sandboxes[SANDBOX_0_NAME]

project_file = "c:/fpga/Hvi2SandboxTest.k7z"

sandbox.load_from_k7z(project_file)

FPGA register definition class
Using an FPGA sandbox definition object that has already loaded a k7z file, you can access the list of HVI
registers (FpgaRegisterDefinition objects) defined in the sandbox. The FpgaRegisterDefinition objects
have one property, the Name of the register.

FpgaRegisterDefinition can be set as a parameter in InstructionFpgaRegisterRead.fpga_register and
InstructionFpgaRegisterWrite.fpga_register .

fpga_register = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_registers[0]
fpga_register.Name

Find us at www.keysight.com Page 68

http://www.keysight.com/find/pathwave-fpga

FPGA memory map definition class
Using an FPGA Sandbox Definition object that has already loaded a k7z file, you can access the list of memory-
mapped locations (FpgaMemoryMapDefinition objects) defined in the sandbox. The
FpgaMemoryMapDefinition objects has two properties, the Name and the size of thememory-mapped location.

FpgaMemoryMapDefinition can be set as a parameter in InstructionFpgaArrayRead .fpga_memory_map and
InstructionFpgaArrayWrite.fpga_memory_map .

fpga_memory_map = engine.fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_maps[0]

Find us at www.keysight.com Page 69

Chassis and Interconnects
This section describes the Chassis and Interconnect classes.

Chassis
The Chassis class represents a chassis inside your hardware platform topology, it enables you to query basic
information such as which slots are available, the chassis model, and chassis vendor.

A Chassis has the following properties:

Property Description
number The chassis number
first_slot The first slot number in the chassis
last_slot The last slot number in the chassis
model The chassis model
vendor The chassis vendor

Interconnects
This class represents hardwareM9031A boards that are inserted in slots of different chassis to connect them
together.

The Interconnects class has the following properties:

Property Description
chassis The chassis number where the interconnect is located
slot The slot number where the interconnect is located

Find us at www.keysight.com Page 70

Multi-chassis setup
The reference programming examples provided with PathWave Test Sync Executive can be executed on a
multiple-chassis setup with only the few modifications explained below. In amulti-chassis setup, it is necessary
to interconnect the PXI triggers and clocking of themultiple chassis.

NOTE Ensure the SMB cables used to connect theM9031A modules are as short as possible. The
chassis should be stacked in the same rack, on top of each other, and as close as possible to each
other. This ensures that the SMB cables that connect theM9031A boards together are as short as
possible

With the currently available infrastructure to interconnect PXIe backplane triggers, a pair of M9031A boards
must be placed in a specific segment in each chassis to be interconnected.

On the twoM9031A boards, the connectors corresponding to the same PXI lines are connected to each other.
There are threemain rules to consider when choosing the chassis slot where to place anM9031A board:

1. Only oneM9031A board can be placed in a chassis segment. M9031A boards are connected in pairs. Each
pair of M9031A connects two chassis together and they share information through their PXI lines.

2. If no other M9031A board is already placed in the central segment, then theM9031A board should be placed
there as a preferred choice, to minimize the signal path length.

3. An SD1M3xxxA PXI module included in the HVI applicationmust be placed in the same chassis segment
where the first M9031A board of each pair is placed. This is to control the exchange of PXI line values
through the pair of boards.

The following image shows the SD1M3xxxA PXI modules in green. Thesemust be placed in the same segment
as the blueM9031A modules:

l The 1st chassis must include anM9031A together with an SD1M3xxxA PXI module with HVI support in
segment 2.

l All themiddle chassis must have anM9031A in segment 2, and anM9031A together with an SD1M3xxxA
PXI Module with HVI support in Segment 3.

l The last chassis must include anM9031A in segment 2.

NOTE The PXI modules to be placed next to theM9031A interconnectingmodules (greenmodules in the
following image) must belong to the Keysight SD1M3xxxA family of PXI modules. AnM5302A
Digital I/O PXI module cannot be used instead.

The following image shows the arrangement required.

Find us at www.keysight.com Page 71

Ensure that all the chassis in themulti-chassis setup are connected in a daisy chain. Chassis connections with
M9031A boards aremade to share the PXI lines that are used as sync resources. PXI trigger lines are shared
usingM9031A boards, connecting the ports corresponding to the same PXI line on bothM9031A boards. The
first and last chassis of the daisy chain each require oneM9031A board. Themiddle chassis in the daisy chain
requires twoM9031A boards each. A multi-chassis including N chassis requires a number of M9031A boards
equal to 2*(N-1).

Youmust use a very clean 10MHz source to provide the same reference signal to all chassis. One option is to
use amulti-output 10MHz source, for best performance probably driven by an atomic clock. Connect each
output to the 10MHz reference input of each chassis with cables that have the same length. It is extremely
important for the correct operation of HVI and in particular for synchronization, that all chassis are running with
their CLK10 and CLK100 fully locked and aligned. Any skew between these clocks in the different chassis
results in skew in the instrument operation.

Find us at www.keysight.com Page 72

Adding chassis
Each chassis included in themulti-chassis setup can be added using any of the HVI API methods below. You
can either add themmanually or call the add_auto_detect()method once to automatically detect and add all
the chassis connected to the system.

For example:

Python code:

To add chassis resources use:
sys_def.chassis.add(chassis_number)
#
Add a chassis and set options
sys_def.chassis.add_with_options(chassis_number, options).
#
Automatically detect and add chassis:
sys_def.chassis.add_auto_detect()

Find us at www.keysight.com Page 73

Opening a chassis in simulation mode
You can use PathWave Test Sync Executive in simulationmode. This enables you to test your sequences
without using real hardware.

To enable simulationmode, use themethod: add_with_options(chassis_number, options) .

l chassis_number is the number of the chassis you want to simulate.

l options is a string that contains a list of comma separated options. You use these options to enable
simulationmode and specify themodel of chassis and other characteristics of the simulated chassis.

To enable simulationmode, set Simulate=True and set the options you require after DriverSetup .

Simulate=True starts the chassis in simulationmode. If simulation is enabled, the chassis does not perform
instrument I/O. For output parameters that represent instrument data, the chassis driver functions return
simulated values.

DriverSetup specifies custom chassis options that are not standard for all instruments. HVI specifies the
following options:

Option values Comment Default Notes
model - Specifies themodel of the chassis

you want to simulate.
-

NoDriver True/False Specifies if a hardware driver is
used or not. If set to True, HVI uses
a simulated driver.

False -

EnhancedPxiTrigger True/False Enables more than one writer
module in a chassis. If set to True,
the triggers in the chassis have
active and idle values.

l True for
chassis
model
M9018B,
M9019A or
M9010A.

l False for
others.

This option is
ignored if
NoDriver is
set as False .

For example, the following code is an example of a command to start chassis number 2 in Simulationmode:

sys_def.chassis.add_with_options(2, "Simulate=True,DriverSetup=model=M9018B,NoDriver=True")

Find us at www.keysight.com Page 74

Adding M9031A boards
In the HVI API, eachM9031A board pair must be declared using the following softwaremethod:

Python code:

To add each interconnected pair of M9031 modules use:
interconnects.add_M9031_modules(1st_M9031_chassis_number, 1st_M9031_chassis_slot,

2nd_M9031_chassis_number, 2nd_M9031_chassis_slot)

10 MHz clock reference source
One option is to use a PXI module Keysight M9300A PXIe Frequency Reference as a 10MHz Reference
source. Place this module in one of the chassis and use splitters to divide the 10MHz clock output into N cables
to be connected to the 10MHz REF IN connector on the back panel of each of the chassis, including the
chassis where theM9300A module is placed. Each time the system is restarted, open theM9300A SFP
software to check the box 10 MHz Out Enabled and uncheck the box Drive BP 10 MHz Reference . This is
shown in the following screenshot:

Find us at www.keysight.com Page 75

Once the common 10MHz reference source is set up, the Chassis Software Front Panel can be used to verify
that each chassis is correctly receiving the common external reference signal. This can be done from the
Reference Clockwindow shown in the following screenshot. When you open the window, clear any Alarm that
possibly occurred during the 10MHz reference setup. After clearing, theAlarm occurred icon should stay idle
(white color). Clock source shall set toRear 10 MHz Ref In .

Find us at www.keysight.com Page 76

In the case of using a remote controller card, such as theM9023A PXI SystemModule, it is possible to see the
backplane status LEDs that also indicate the correct clocking. On the chassis, backplaneREF and LOCK LED
lights are lit in green when the chassis is correctly locked to the external reference signal. By checking the LED
lights on the backplane of each chassis you can ensure the 10MHz reference is correctly shared among the
different chassis.

The following image shows the LED lights on the chassis backplane, visible from the front panel by removing
the panel in the chassis slot that is before chassis slot 1.

For more details about the Keysight PXIe Chassis Family see Keysight PXI Chassis.

For more information about the Keysight M9300A, see Keysight M9300A PXIe Frequency Reference.

Find us at www.keysight.com Page 77

http://www.keysight.com/find/pxi-chassis
http://www.keysight.com/find/m9300a

Additional chassis considerations
This page describes some issues to consider concerning chassis.

Chassis numbering
Ensure your chassis are numbered from 1 upwards.

The PXI standard does not permit chassis to be numbered as 0. If this happens, it indicates there has been an
incorrect installation of the firmware, PXI chassis driver, software, or PXI resourcemanager

Using more than one chassis
If you are usingmore than 1 chassis, youmust use the latest firmware.

Using non-Keysight chassis with PathWave Test Sync Executive
Keysight recommends you use PathWave Test Sync Executive with Keysight chassis. It is It is possible to use
non-Keysight chassis with the following limitations:

For a single-chassis system, PathWave Test Sync Executive has been tested on someNon-Keysight PXI
chassis.

For amulti-chassis system, PathWave Test Sync Executive has not been tested on Non-Keysight PXI multi-
chassis system, so this is not recommended.

A multi-chassis system with non-Keysight chassis might require additional resources to operate correctly, so
ensure you are using the latest firmware.

Check the documentation of each PXI instrument that you are using with KS2201A, to ensure they comply with
the instrument limitations on compatibility with non-Keysight chassis or controllers.

Ensure you are using correct firmware and software components
For PathWave Test Sync Executive to work correctly, the PXI chassis, firmware, driver, software, and PXI
ResourceManager must be all be installed correctly, regardless of the chassis vendor.

Compatibility requirements for PathWave test Sync Executive are listed at Instrument Software and Firmware
Requirements for KS2201A.

Find us at www.keysight.com Page 78

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements

Synchronization Resources and Clocks
HVI provides transparent multi-instrument synchronization and synchronized conditional execution, for
example, Sync while. To use these capabilities, for aDevice Under Test (DUT) or instruments that do not
integrate HVI technology, youmust assign HVI synchronization resources and specify clock frequencies

HVI synchronization resources
For synchronization, synchronized execution, and data sharing across instruments to work, youmust specify
the sync resources available for HVI to use in the System Definition. The sync resources consist of PXI triggers
and are defined by the keysight_hvi.TriggerResourceId enumeration. the resources must be specified in the
SyncResources property of the SystemDefintion object:

Add sync resources
sys_def.sync_resources = [keysight_hvi.TriggerResourceId.PXI_TRIGGER0,

keysight_hvi.TriggerResourceId.PXI_TRIGGER1,
keysight_hvi.TriggerResourceId.PXI_TRIGGER2]

The triggers assigned as sync resources are used internally by the HVI to implement the following cross-
instrument operations, transparently to the user:

l Triggered synchronization.
l Sync register-sharing.
l Sync while.

The HVI optimizes the use of triggers as much as possible and reuses the same triggers when possible for
different operations, providing they are executed with sufficient time separation.

The following table shows a guideline for triggers and trigger resources required:

Type Trigger resources required Notes

Sync while 1 trigger

Sync register-sharing Number of triggers = number of bits
shared

Triggered
synchronization

1 or 2 triggers SeeChapter 7: HVI TimeManagement and
Latency.

Find us at www.keysight.com Page 79

Synchronizing the HVI instrument's engines
To correctly manage timing without jitter, the HVI needs information about all of the clocks in the instrument. For
instruments that support HVI technology and are included in the HVI, the clocking information is already
available and handled transparently. For instruments that do not support HVI technology, youmust specify the
instrument clocking constraints.

HVI supports the definition of the following types of clocks:

Non-HVI system clocks
System clocks are those clocks used by the instrument that do not directly impact the operation of the specific
feature that the HVI must trigger. System clocks are used by the HVI to determine the Sync-Base period.

Non-HVI core clocks
Core clocks are clocks that directly impact the operation of the specific feature that the HVI must trigger. Core
clocks are used by the HVI to determine everything except for the Sync-Base period, including Sync_CDC ,
Sync_Fast , and Sync_User<K > .

HVI synchronization signals and modes
HVI uses different periodic digital signals for synchronization purposes: Sync_Base , Sync_CDC , Sync_Fast and
Sync_User<K > . The definition of those digital signals depends on platform and instruments signals. Platform
signals are the CLK100 and CLK10 signals in a PXI platform such as a PXI chassis. Instruments have different
clock signals inside that are classified as core clocks or system clocks. Platform and instrument clock signals
contribute to define the HVI Sync signals according to definitions listed below:

l Sync_Base= functionOf(CLK100, CLK10, all core clocks, all system clocks)

l Sync_CDC= functionOf(CLK100, CLK10, all core clocks)

l Sync = functionOf(all core clocks)

Sync_User<K > signals (whereK = 0, 1, 2,.. N) , provide you some degree of freedom to define their frequency
or phase so you can deploy them for any synchronization purposes that you can define. The only constraint is
that the frequency of Sync_User<K > signals must be an integer multiple of the frequency of the Sync_Base
signal.

Find us at www.keysight.com Page 80

Sequencer
This section describes the Sequencer class, it contains the following sections:

l About the Sequencer Class
l HVI SyncSequence and Sequence
l HVI API Statements
l InstructionSet
l FPGA Sandbox View
l HVI Registers and Scopes
l HVI Time API
l HVI Compilation
l Sequence Visualization

Find us at www.keysight.com Page 81

About the Sequencer Class
You use the Sequencer class to program and compile your sequences:

l Program your sequences with the SyncSequence class.
l The SystemDefinitionView class enables you to see the system definition you have set up, but you
cannot modify it.

l The HVI instance Hvi , is generated when you compile the sequencer.

Find us at www.keysight.com Page 82

The following diagram shows the Sequencer classes:

Find us at www.keysight.com Page 83

HVI SyncSequence and Sequence
There are two types of HVI sequence classes that enable HVI sequence programming and usage:

l SyncSequence .
l Sequence .

HVI uses the SyncStatement class tomanage all of the engine sequences simultaneously. The class exposes
the add statement methods such as SyncSequence.add_sync_while() . All of the statements added are
collected in the SyncStatement class.

Synchronization and timing information are added within each Sync statement so that all sequences across the
HVI are coordinated precisely. The SyncMultiSequenceBlockStatement exposes local flow control and
instruction statements that are sent by the Sequence object. The other Sync statements are all synchronized
across all the sequences in the HVI.

An HVI sequence contains the list of HVI Local statements and instructions to be executed by the HVI engine.

The Sequence class exposes the add statement methods such as add_while() . You add Local flow control
statements such as If orWhile directly into the sequence. All Local instructions are added using add_
instruction() . The list of available statements for the add_instruction() statement is shown in HVI API
Local Statements.

The sequence stores a collection of all the statements added to it, along with the scope Variables and registers
needed for this sequence. These are sent to a SyncMultiSequenceBlockStatement . This class exposes
access and execution of Local statements.

Find us at www.keysight.com Page 84

The following diagram shows the SyncMultiSequenceBlockStatement class:

Find us at www.keysight.com Page 85

HVI API Statements
HVI API statements are divided into two types:

Sync statements
Sync statements are the building blocks used to program Sync sequences.

The following types of Sync statement are available:

l Sync while.
l Sync multi-sequence block.
l Sync Register-sharing.

For a description of each Sync statement with examples and a description of the statement execution, see HVI
API Sync Statements.

Local statements
Local statements are programmed on engines in individual instruments. They are always programmedwithin a
Sync statement.

Local statements are in the form of Instrument-specific HVI instructions or HVI-native instructions. See your
instrument documentation for instrument-specific HVI instructions.

The following types of HVI-native instructions are available:

l Action Execute: AWG trigger, DAQ trigger.
l FPGA register read.
l FPGA register write.
l FPGA memory mapwrite.
l FPGA memory map read.
l Register increment.
l Front panel trigger ON/OFF.
l Register assign.
l Local if statement.
l Local while statement.
l Local wait-for-event statement.
l Local wait-for-time statement.
l Local delay statement.

For a description of each HVI-native instruction with examples and a description of the statement execution, see
HVI API Local Statements.

For instrument-specific HVI instructions, see your instrument documentation

Find us at www.keysight.com Page 86

InstructionSet
HVI instructions can be one of two types, HVI-native instructions or instrument-specific instructions:

l HVI-native instructions are part of the InstructionSet class.
l Instrument-specific instructions are documented in instrument user guides.

The InstructionSet class contains the set of available HVI-native instructions that can be executed within an
HVI statement. These include instructions for:

l Register arithmetic.
l Reading and writing I/O trigger ports.
l Executing actions.
l Communicating with the instrument sandbox using an HVI Host Interface, previously called an HVI Port.

HVI-native instructions are executed within an instruction execute statement, this is, the sameway the
instrument-specific HVI Instructions are executed.

The following diagram shows the InstructionSet classes:

Find us at www.keysight.com Page 87

Using the instruction set
You program HVI instructions into local sequences with the add_instruction() API method. You can set
instruction parameters with the set_parameter() API method and set each parameter with its parameter.id
property. Some instruction parameters must be set to literal values or to an HVI register, for example, the source
and destination parameters in the InstructionAssign from the native InstructionSet .

You can set other instruction parameters such as the SyncMode and TriggerValue of the TriggerWrite
instruction to one value of a pre-defined set of possible values. In this case, the possible values available are
stored in properties contained within the parameter object.

Pseudo-code explaining the HVI instruction programming concept
hvi_instr = sequence.instruction_set.hvi_instruction_X
instr = sequence.add_instruction("My HVI Instruction", 10, hvi_instr.id)
instr.set_parameter(hvi_instr.parameter_A.id, hvi_instr.parameter_A.VALUE_1)
instr.set_parameter(hvi_instr.parameter_B.id, hvi_instr.parameter_B.VALUE_XY)

Find us at www.keysight.com Page 88

Trigger write instruction example
The following example shows an example of the HVI-native instruction trigger_write . For themeaning of
each parameter value, see the HVI API help that is installed with PathWave Test Sync Executive. It is located
at:

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\python\Help

C:\Program Files\Keysight\PathWave Test Sync Executive 2020 Update 1.1\api\dotNet\Help

The following table show the parameters for the HVI-native instruction: trigger_write

Parameter ID Parameter Values

trigger.id Trigger object taken from the
TriggerCollection class

sync_mode.id sync_mode.immediate

sync_mode.sync

value.id value.on

value.off

The following example code shows a trigger_write instruction.:

Write FP Trigger to ON value
fp_trigger = awg_engine.triggers["FP Trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id,

trigger_write_instr.sync_mode.IMMEDIATE)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.ON)

Instrument-specific HVI instructions
You program instrument-specific instructions into your HVI sequences using the samemethods as HVI-native
instructions, that is, you add Instrument-specific instructions to local sequences with the add_instruction()
API method. Parameters of instrument-specific instructions are also set with the set_parameter() API
method. For documentation on instrument-specific instructions and their parameters, see your instrument
documentation. For M3xxxA PXI instruments, the information is located in theSD1 3.x Software for M320xA /
M330xA Arbitrary Waveform Generators User's Guide available at M3201A PXIe Arbitrary Waveform
Generator.

Find us at www.keysight.com Page 89

http://www.keysight.com/find/m3201a
http://www.keysight.com/find/m3201a

FPGA Sandbox View
This section describes the FPGA Sandbox View.

The following diagram shows the FPGASandboxCollectionView classes:

Find us at www.keysight.com Page 90

FPGA sandbox and memory maps
The FpgaSandboxView object provides access to FPGA memory maps by providing handles to FPGA registers
andmemory maps that are defined in the FPGA memory. You can use FpgaRegisterView and
FpgaMemoryMapView as parameters for HVI instructions for reading or writing FPGA memory. Youmust load the
PathWaveFPGA project as part of the system definition and then you can use the FpgaSandboxView object in
the sequencer.

FpgaRegisterView
Once the sandbox project is loaded, you can access the contents of the FPGA sandbox and use them as
parameters for HVI instructions. The FPGA write operation can accept registers and literal values as
parameters. The following example shows writing FPGA registers:

Retrieve FPGA register object from FPGA registers collection
All sandbox object collections are populated when loading a bit file generated by
PathWave FPGA
fpga_register_view = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_
NAME].fpga_registers[FGPA_REGISTER_NAME]
Write FPGA register
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write",

10, fpga_regw_instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id,

fpga_register_view)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)

FpgaMemoryMapView
Like FPGA registers, the FpgaMemoryMapView can be used after the PathWaveFPGA project has been
loaded. The destination of FPGA read operationmust be a register. The following example shows how you use it
to read from an FPGA memory map:

Retrieve memory map object from memory maps collection
All sandbox object collections are populated when loading a bit file generated by
PathWave FPGA
memory_map = sequencer.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_
maps[FGPA_MEMORY_MAP_NAME]
Read Memory Map
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns,

fpga_arrayr_instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, 1)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

Find us at www.keysight.com Page 91

HVI Registers and Scopes

HVI registers
HVI registers are the hardware registers provided by HVI engines. Like Variables in a programming language,
registers can be used as parameters for instructions and statements and aremodified in real-time during the
sequence execution. The number of registers available is defined by the instrument (see HVI engine settings
HviRegCount). Since registers belong to specific HVI engines, they cannot be accessed by other HVI engines.
Explicit register sharing instructions are required to transfer data between registers. HVI registers are defined by
adding them to the HVI register collection bound to HVI scopes.

HVI scope
HVI Sync sequences and HVI Local sequences both include the concept of scope for registers, similar to
programming languages such as C. The concept of scope is necessary to define what registers, or memory
resources can be used within each HVI Sequence, and when they can be used.

A specific scope is associated with a specific sequence and HVI engine. Registers can be created only within
the Global Sync sequence scope, but they can be retrieved from any child sequence scope. The registers
created within the scope of a parent sequence are visible to its child sequences and can be accessed using their
scope. Registers are always defined with a clear connection to a specific engine and their visibility only
propagates to child sequences that execute on the same engine. HVI engines do not have visibility of, and
cannot access registers that are in the scopes of other engines.

NOTE Registers can only be added to the HVI top Sync sequence scopes. This means that you can only
add global registers that are visible in all child sequences.

NOTE Registers are created using the sequencer class, but to read/write registers during HVI execution,
youmust use the RegisterRunTime class within the Hvi class. For more information see The Hvi
Object.

Find us at www.keysight.com Page 92

The following diagram shows the scope concepts. The eye icon is used to represent the visibility in child
sequences of the register belonging to the scope of parent sequences:

Find us at www.keysight.com Page 93

The scope of each HVI sequence is managed through the Scope class. Each Local sequence is an instance of
the Sequence class and it is associated to a specific HVI engine and has its own Scope object. SyncSequences
are associated tomultiple HVI engines and consequently have an HVI Scope collection that contains a Scope
for each associated HVI Engine. The HVI Scope collection is an instance of the ScopeCollection class and
contains objects that are instances of the Scope class, one Scope object for each HVI Engine. Each HVI Scope
object can be accessed from the Scope collection using the sameName as the corresponding HVI engine. HVI
Scope objects are used to define the registers within a sequence.

To use registers in HVI sequences, youmust define them beforehand in the register collection within the scope
of the corresponding HVI sequence. You can do this using the RegisterCollection class that is within the Scope
object corresponding to each sequence.

Find us at www.keysight.com Page 94

The following diagram shows the Scope classes and their relationship to the Sequence and SyncSequence
classes:

Find us at www.keysight.com Page 95

HVI Time API
This section describes the API related to the Time inside HVI.

Themain time class is the Duration and it lives in the Namespace Time . This class represents a time interval.

The signature of the class is:

Duration(double valueInNanoseconds);
Duration(double value, Time::Unit unit);

This class is also the base for a subclass called the Minimum . Theminimum represents theminimum time
interval possible.

The signature for this class is:

Minimum();

The class to define the unit of the duration is called the Unit . The supported units are the following:

enum class Unit
{

Seconds,
Milliseconds,
Microseconds,
Nanoseconds,
Picoseconds

};

The following is an example of usage:

from keysight_hvi import time
a_duration = time.Duration(35.0)
assert a_duration.type == time.Type.FIXED_DURATION
assert a_duration.value == 35.0
assert a_duration.unit == time.Unit.NANOSECONDS
another_duration = time.Duration(35.78, time.Unit.MICROSECONDS)
assert another_duration.type == time.Type.FIXED_DURATION
assert another_duration.value == 35.78
assert another_duration.unit == time.Unit.MICROSECONDS
a_minimum_duration = time.Minimum()
assert a_minimum_duration.type == time.Type.MINIMUM_DURATION
assert a_minimum_duration.value == 0.0
assert a_minimum_duration.unit == time.Unit.NANOSECONDS

Find us at www.keysight.com Page 96

HVI Compilation
Once you have programmed all of your HVI Sequences, the next step is to compile them. The compilation
process returns the Hvi object that is used to run the created sequences on hardware.

Call the compile()method in the Sequencer object to perform the compilation operation. If successful, this
method returns an Hvi object, if the compilation fails, it throws an exception.

The compilation process translates the programmed sequence into binary instructions to be loaded into the
hardware. During this process, the compiler applies the compilation rules, evaluates the specified constraints,
and determines if the number of resources required (PXI triggers, actions, events, HVI registers) is available in
hardware and can be acquired. The compiler returns an error if any of the HVI statements was not programmed
properly inside the HVI sequence or if any of the HVI resources aremissing or not registered properly.

Information returned
The value returned from the compilation procedure is an Hvi object. This object can be used to:

l Load and execute the binary instructions by each engine.
l Retrieve the CompileStatus object.

Errors returned
If the compilation fails, the object keysight_hvi.CompilationFailed is thrown. This contains the
CompileStatus object.

In the following Python snippet, the CompileStatus object is retrieved from the exception object thrown:

try:
hvi = sequencer.compile()

print('Compilation completed successfully!')
except kthvi.CompilationFailed as err: print('Compilation failed!')

compile_status = err.compile_status
print(compile_status.to_string()) # This line will print all the errors and warnings

collected during compilation raise err

Find us at www.keysight.com Page 97

Compile status
The CompileStatus object contains the following information:

l The warning and error messages generated by the compilation.
l Information about the PXI sync resources that must be reserved.
l The elapsed time of the compilation process.

The following diagram shows the CompileStatus classes and the information they contain:

Find us at www.keysight.com Page 98

Sequence Visualization
PathWave Test Sync Executive enables you to troubleshoot your sequences with sequence visualization.

The sequence visualization displays statements, timing values, and statement parameters. The output is
designed so you can read it and see what your sequences are doing.

NOTE This is only available for Sync sequences in this release.

Using sequence visualization
To activate the output, In Python use the sequencemethod to_string() :

output = sequencer.sync_sequence.to_string(kthvi.OutputFormat.DEBUG)
print(output)

If you are programming with C#, use themethod ToString :

var output = GlobalSequence.ToString(OutputFormat.Debug);
System.Console.WriteLine(output);

Find us at www.keysight.com Page 99

Format of the sequence visualization output
Sequence visualization has a basic structure with variations for different types of statements.

The visualization out format has one statement per line and uses curly braces to begin and end any inner or
Local statements.

The basic format is:

Time-related information => "User-assigned Label" : Statement Name(Parameter List) {

Optional statements

}

For example:

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE,
Value = ON)

For Arithmetic-like and FPGA statements the format is:

Time-related information => "User-assigned Name" : ASIGNEE = EXPRESSION

where:

l ASIGNEE is a Named reference, such as event, trigger, action, reg, or fpgaReg followed by the
label in quotes.

l EXPRESSION is a mathematical expression with binary operators, such as addition, subtraction, and
assignment.

For example:

+10ns => "Increment counter register": reg"PrimaryEngine.Loop Counter" =
reg"PrimaryEngine.Loop Counter" + 1

Time related information
The time information section of the visualization output is in the following format:

+Start_delay <Duration> Absolute_time =>

NOTE There are a number of limitations in this release:

l Duration is shown as Min or ? .
l Absolute time is not shown in this release.

Find us at www.keysight.com Page 100

Indicators
The visualization output uses the following characters to indicate different pieces of information:

Category Indicators Description

Timing-
related
information

+ Appears at the start, the number with this indicates the Start delay.

<> Encloses a Duration if it is set. If the Duration is not set, this defaults to min , which is
the minimum time possible.

Absolute time (not supported in this release).

Separator => Separator. The time information for the statement is on the left of this and
information about the statement is on the right.

Command
label and
Name

" " Encloses labels

: Divides the label and the command description.

Blocks and
parameters

{ ...

}

Encloses blocks of statements:

l Sync multi-sequence block.
l Engine instructions.
l Sync flow-control.
l Local flow-control.

(...

)

Enclose parameters. These can be optional.

[...

]

Enclose lists. For example [element,...], or for Named element lists
[Name"userName", ...]

Register
indicators

reg Indicates a register.

fpgaReg Indicates an FPGA register

Find us at www.keysight.com Page 101

Code blocks
Code blocks are indented and shownwithin curly braces. Code blocks include code in Sync multi-sequence
blocks, Engines, and flow-control statements.

The following example from Programming Example 1 shows a Sync multi-sequence block TriggerAWGs that
contains a pair of engines AwgEngine0 and AwgEngine1.

+30ns<Min> => "TriggerAWGs": SyncMultiSequenceBlock {
Engine "AwgEngine0" {

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode =
IMMEDIATE, Value = ON)

+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode =
IMMEDIATE, Value = OFF)

+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])
}
Engine "AwgEngine1" {

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode =
IMMEDIATE, Value = ON)

+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode =
IMMEDIATE, Value = OFF)

+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])
}

}

If an engine does not execute any statements, the engine is shownwith empty braces. For example, in the
previous example, if the EngineAwgEngine1 didn't have any instructions, it would be shown as:

Engine "AwgEngine1" {}

Find us at www.keysight.com Page 102

Format variations
There are variations of the sequence visualization output format for different types of statement.

Sync statements
The following example shows a Sync register-sharing command that copies the contents of the Steps register in
the Digitizer Engine to the Wavefrom ID register in the AWGEngine:

+190ns<Min> => "Share steps->wfm_id": SyncRegisterSharing {
reg"Digitizer Engine.Steps"[1:0] => [reg"AWG Engine.Waveform ID"]

}

Sync multi-sequence blocks
The output for a Sync multi-sequence block indicates any engines it contains. The sequences and the
statements they contain are shownwithin each engine.

The following example shows the output for a Sync multi-sequence block that contains 2 engines. The first
engine is labelled Digitizer Engine and contains a sequence with a pair of local statements. A second engine
labelled AWGEngine does not contain any sequences. This is indicated with empty braces.

Visualization output for a Sync multi-sequence block:

+260ns<Min> => "Loop Delay": SyncMultiSequenceBlock {
Engine "Digitizer Engine" {

+10ns => "loops++": reg"Digitizer Engine.Loops" = reg"Digitizer Engine.Loops" + 1
+30ns<?> => "WaitTime: loop_delay": WaitTime(reg"Digitizer Engine.Loop Delay")

}
Engine "AWG Engine" {}

}

Find us at www.keysight.com Page 103

Sync flow-control and Local flow-control statements
Flow control statements show the flow-control condition and the statements executed if the condition is met.

The following example shows a Local If. The condition is indicated along with thematching branches parameter
and the statement executed is also shown inside braces.

Visualization output for a Local If statement:

+70ns<?> => "Check wfm_id": If(condition = (reg"AWG Engine.Waveform ID" > = 1),
MatchingBranches = TRUE) {

+30ns => "wfm_id = 0": reg"AWG Engine.Waveform ID" = 0

}

If a flow control instruction contains multiple branches, these are also listed.

The following example contains a Local If with a condition and an Else branch that is executed when the If
condition is not met.

+70ns<?> => "Queue Wfm AWG": If(condition = (reg"AWG Engine0.Queue Reg" == 0),
MatchingBranches = TRUE) {

+100ns => "Queue Waveform A CH1": M30xxA.AwgQueue(Channel = 1, WaveformId = reg"AWG
Engine0.Wfm A", Cycles = 3, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)
}
Else {

+100ns => "Queue Waveform B CH1": M30xxA.AwgQueue(Channel = 1, WaveformId = reg"AWG
Engine0.Wfm B", Cycles = 2, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)

}

Local instructions
Local Instruction statements show the Start delay, the label, instruction and any parameters. For example:

+10ns => "Increment counter register": reg"PrimaryEngine.Loop Counter" =
reg"PrimaryEngine.Loop Counter" + 1

Custom instructions
Custom instructions indicate the product family before the instruction in the form:

ProductFamily.CustomInstructionName

In the following example, the product family KtM360xA is indicated before the custom instruction QueueWaveform
:

+100ns => "QueueWaveform(CH1, wfm_id)": M30xxA.AwgQueue(Channel = 1, WaveformId = reg"AWG
Engine.Waveform ID", Cycles = 1, StartDelay = 0, Prescaler = 0, TriggerMode = AUTOTRIG)

Find us at www.keysight.com Page 104

Examples
The following example is an excerpt from Programming Example 1. It shows the Python code for setting up the
TriggerWrite and ActionExecute instructions and the resulting sequence visualization output that is generated.

Python Code:

Write FP Trigger ON to all instruments
fp_trigger = sequence.engine.triggers[config.fp_trigger_Name]
trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write.id)
instr_trigger_ON.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_
mode.immediate)
instr_trigger_ON.set_parameter(trigger_write.value.id, trigger_write.value.on)
Write FP Trigger OFF to all instruments
instr_trigger_OFF = sequence.add_instruction("FP Trigger OFF", 100, trigger_write.id)
instr_trigger_OFF.set_parameter(trigger_write.trigger.id, fp_trigger)
instr_trigger_OFF.set_parameter(trigger_write.sync_mode.id, trigger_write.sync_
mode.immediate)
instr_trigger_OFF.set_parameter(trigger_write.value.id, trigger_write.value.Off)
Execute AWG trigger from the HVI sequence of each module
"Action Execute" instruction executes the AWG trigger from HVI
action_list = sequence.engine.actions
instruction1 = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction1.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

The Sequence visualization output:

+10ns => "FP Trigger ON": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE,
Value = ON)
+100ns => "FP Trigger OFF": TriggerWrite(Trigger = [trigger"TriggerIO"], Mode = IMMEDIATE,
Value = OFF)
+10ns => "AWG trigger": ActionExecute([action"GenMarker1", action"GenMarker2"])

Find us at www.keysight.com Page 105

The Hvi Object
This section describes the Hvi object, it contains the following sections:

l EngineRuntime Components

l Load to Hardware and Run

The Hvi object is the actual HVI instance. This is ready to be loaded to hardware and executed. It contains the
runtime versions of the objects you set up with the SystemDefinition and Sequencer classes. The runtime
objects are the instances of the objects that operate while the HVI is running. You cannot modify these objects
at runtime, but you can access resources such as HVI registers or an FPGA memory map.

NOTE The Hvi object is the runtime object. once you have compiled it, you can no longer change
resources or sequences.

Find us at www.keysight.com Page 106

The following diagram shows the classes:

Find us at www.keysight.com Page 107

EngineRuntime Components
A number of runtime components are under the EngineRuntime.

The following diagram shows the EngineRuntime and classes:

Find us at www.keysight.com Page 108

ActionRuntime
Represents an action which can be passed to InstructionStatement.set_parameter as an input parameter.

TriggerRuntime
Trigger provides an interface control and configure the hardware trigger controlled by HVI. This Instance can be
passed to InstructionStatement.set_parameter as input.

EventRuntime
The EventRuntime class is used to represent hardware events which are defined by an instrument and can be
used by HVI, for example, to activate TriggerRuntime .

RegisterRuntime
Represents instrument-defined hardware registers that can be used like Variables in HVI sequences as
parameters for statements.
These registers can be accessed andmodified by both HVI instructions in real-time during the sequence
execution and HVI software calls.
Registers can be treated as signed or unsigned.
The range of the value of a register depends on the register size andmust be within the signed or unsigned
range.

Find us at www.keysight.com Page 109

FpgaSandboxRuntime
This section describes the FPGA sandbox runtime.

FPGASandboxRuntime contains all the FPGA registers andmemory maps available at runtime. The following
diagram shows the classes:

The FPGASandboxRuntime object can be obtained from the Hvi object:

SANDBOX_0_NAME = "sandbox0" sandbox = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_

0_NAME]

NOTE Hvi resources can only be read or written loaded, that is, between the load_to_hw() and
release_hw() calls. Any attempt to read or write resources without having the instrument loaded
to hardware results in an exception being thrown.

Find us at www.keysight.com Page 110

FPGA registers
Once the Sequencer has been compiled and the HVI has been loaded to hardware, the register can be read and
written. If the HVI is not loaded, an exception is thrown.

fpga_register = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_registers
[0]
hvi.load_to_hw()
fpga_register.write(1) # ok
hvi.release_hw()
fpga_register.write(1) # exception is thrown

FPGA memory maps
As with registers, FPGA Memory maps can be used after HVI has been loaded to hardware. They can only be
accessed, read, or written while the HVI is loaded to hardware.

fpga_memory_map = hvi.sync_sequence.engines[0].fpga_sandboxes[SANDBOX_0_NAME].fpga_memory_
maps[0]
hvi.load_to_hw()
fpga_memory_map.write(0x10, 0x1245) # ok
hvi.release_hw()
fpga_memory_map.write(0x10, 0x1245) # exception is thrown

Load to Hardware and Run
After the Hvi object is compiled, you retrieve it from the compilation output. To execute it, youmust load it to
hardware and run it.

These operations are performed using the following API methods that are within the Hvi API object.

To load the HVI to hardware call themethod hvi.load_to_hw() .

The hvi.load_to_hw()method deploys HVI to hardware and does all of the resource configuration including:

l Synchronization resources.
l Trigger resources.
l Clocks.

The hvi.load_to_hw()method also loads the binaries containing information to execute the HVI sequences, to
the relevant HVI engines.

Once the HVI has been loaded to hardware, you can execute your sequences by calling hvi.run() . The HVI
execution in Hardware finishes when the HVI sequence reaches the end. The Stop()method can be used to
stop or cancel the HVI execution.

When the HVI has finished execution and it is not needed to run the HVI again, call themethod ReleaseHw() to
release or free all resources used by the HVI.

Find us at www.keysight.com Page 111

HVI API Sync Statements
This section describes the HVI Statements in the HVI API that you use to program HVI Sequences. The
functions of each statement are explained in detail together with Python code examples showing how to
program the statements with the HVI Python API. The execution of each statement within a sequence is
explained and shownwith a corresponding HVI diagram.

Sync statements
Sync statements are the building blocks used to program Sync sequences. The following types of Sync
statement are available:

l Sync while.
l Sync multi-sequence block.
l Sync register-sharing.

Find us at www.keysight.com Page 112

Sync while
The Sync while statement is a type of Sync statement that is defined by the API class SyncWhileStatement . A
Sync while enables you to synchronously executemultiple local sequences while a condition you specify is
met. The Sync while condition is evaluated each time at the beginning of the statement execution. If the
condition is true, an iteration of the Sync while statement is executed. If the condition is false, the HVI execution
jumps to the statement following the Sync while.

You can add other Sync statements inside a Sync while. To define local sequences within the Sync while, you
must use a Sync multi-sequence block.

A Sync while that contains a pair of Sync statements is shown in the following diagram:

If you are using a Sync while statement across multiple engines, during its execution, one of the engines is set
to the role of Primary and the remaining engines have the role of Secondary :

Primary

The condition of the Sync while statement is evaluated in this engine and the result is propagated to
the other engines through hardware resources, for example, PXI triggers in a PXI platform.

Secondary

A Secondary enginemonitors the result of the condition and acts on it, following the Primary.

The condition expression assigned to the Sync while must use resources that belong to the sameHVI engine.
The Primary engine of the Sync while is selected automatically by the HVI compiler from the condition
expression.

The following code example shows how to add a Sync while statement and access the Sync sequence in the
Sync while.

Find us at www.keysight.com Page 113

Configure Sync While Condition
sync_while_condition = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.GREATER_THAN, 10)
#
Add Sync While to a sync-sequence
sync_while = my_sync_seq.add_sync_while("sync_while", 10, sync_while_condition)
#
Access the sync sequence in the Sync-While and add Sync-Statements inside
sync_block = sync_while.sync_sequence.add_sync_multi_sequence_block("exec_block",10)

Find us at www.keysight.com Page 114

Sync multi-sequence block
Sync Multi-Sequence Blocks are a type of Sync statement that contains a set of local sequences. It serves as a
container and boundary between sections, where each local sequence executes on an individual engine within a
specific instrument.

The Sync multi-sequence block enables you to program each engine to do specific operations and run them on
each engine concurrently. The Sync multi-sequence block synchronizes all the engines so that all of the
contained Local sequences start at exactly the same time, and the sync sequence remains synchronous
afterwards. You can define which Local statements each engine is going to execute, and the exact time each
Local statement starts to execute compared to the previous one.

The following diagram shows a Sync multi-sequence block that contains three Local sequences:

The following code snippet shows a Sync multi-sequence block being added with the call add_sync_multi_
sequence_block(), a Local sequence is then obtained and an instruction added to it:

Add Sync Multi-Sequence Block
sync_block = keysight_hvi.sync_sequence.add_sync_multi_sequence_block("TriggerAWGs")
#
Add instruction to a local sequence in the block
sequence = sync_block.sequences["Main Engine"]
inst = sequence.add_instruction("Add Instruction", 10, seq.instruction_set.add_

instruction.id)

Find us at www.keysight.com Page 115

Sync register-sharing
Sync register-sharing enables you to share data from a source register to a destination register in any engine in
your HVI. Specifically, you share the contents of N adjacent bits from a source register to a destination register.

Sync register-sharing is defined in and programmed using the class SyncRegisterSharingStatement .

In the following code example, Sync register-sharing is used to share the content of the digitizer register
feedback and write into the AWG register wfm_id:

Digitizer registers
feedback = keysight_hvi.sync_sequence.scopes["Dig Engine"].registers.add("Feedback Reg",

keysight_hvi.RegisterSize.SHORT)
feedback.initial_value = 0
#
AWG registers
wfm_id = keysight_hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID",

keysight_hvi.RegisterSize.SHORT)
wfm_id.initial_value = 0
#
Add sync register sharing
bits_to_share = 3
sync_while_2.sync_sequence.add_sync_register_sharing("Share feedback->wfm_id", 10, steps,

wfm_id, bits_to_share)

Find us at www.keysight.com Page 116

HVI API Local Statements

This section describes the HVI Local Statements in the HVI API that you use to program HVI Sequences.

The functions of each statement are explained in detail together with Python code examples showing how to
program the statements with the HVI Python API. The execution of each statement within a sequence is
explained and shownwith a corresponding HVI diagram.

Programming local sequences
Local sequences can be programmedwithin a Sync multi-sequence block or within a Local flow-control
statement (Local while or Local If). The following code shows an example of a Local sequence programmed
within a Sync multi-sequence block.

Add statements to each local sequence within the Sync multi-sequence block
HVI Local sequence collection is automatically created form the
user-defined HVI Engine Collection
Each HVI Local sequence can be retrieved using the Name of the corresponding HVI Engine
sequence = sync_block.sequences[engine_Name]
#
Add FP Trigger ON to all instruments
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id,

instr_trigger_write.sync_mode.immediate)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.on)

Find us at www.keysight.com Page 117

Instruction statements
Instruction statements are operations that can be executed by the instrument hardware within an HVI sequence.
There are two types of instruction statements:

l Instrument-specific HVI instructions.
l HVI-native instructions.

Instrument-specific HVI instructions
Instrument-specific HVI instructions are specific to individual instruments. They are defined by the instrument
add-on API and exposed in each instrument driver as instrument specific HVI definitions. Instrument-specific
HVI instructions can change instrument settings such as amplitude, frequency, or trigger an instrument function
such as output a waveform or trigger a data acquisition. For example, theM3xxxA documentation describes all
the HVI instructions available for each of theM3xxxA PXI instruments.

The following code is an example of using the awgQueueWaveform custom instruction that is part of the HVI
instruction set of the Keysight M320xA AWG instrument. This example shows how to add an instrument
specific HVI instruction to a Local sequence using the add_instruction() API method and also how to set the
instruction parameters using the set_parameter() API method:

Retrieve engine sequence:
seq = sync_block.sequences["engine_0"]
#
Add and program AWG Queue Waveform instruction:
instr_queue_wfm = module.hvi.instruction_set.queue_waveform
instruction0 = seq.add_instruction("awgQueueWaveform", 10, .id)
#
Set instruction parameters:
instruction0.set_parameter(instr_queue_wfm.waveform_number.id,

seq.registers[waveformNumberRegisterName])
instruction0.set_parameter(instr_queue_wfm.channel.id, nAWG)
instruction0.set_parameter(instr_queue_wfm.trigger_mode.id,

keysightSD1.SD_TriggerModes.SWHVITRIG)
instruction0.set_parameter(instr_queue_wfm.start_delay.id, startDelay)
instruction0.set_parameter(instr_queue_wfm.cycles.id, nCycles)
instruction0.set_parameter(instr_queue_wfm.prescaler.id, prescaler)

Find us at www.keysight.com Page 118

HVI-native instructions
HVI-native instructions are available on all Keysight instruments. They are general purpose and instrument
independent. They include Local instructions and Local flow-control statements. The HVI-native instructions
and parameters are defined in the interface hvi.instruction_set .

The set of HVI-native instructions include:

l Action Execute: AWG trigger, DAQ trigger.
l FPGA register read.
l FPGA register write.
l FPGA memory mapwrite.
l FPGA memory map read.
l Register increment.
l Front panel trigger ON/OFF.
l Register assign.

Action Execute: AWG trigger, DAQ trigger
To add actions to an HVI sequence, youmust add them to the instrument's HVI engine with the API add()
method of the ActionCollection class.

Once the required actions are added to the list of the HVI engine actions for the instruments, an instruction to
execute them can be added to the instrument's sequence using the HVI API class
InstructionsActionExecute . One or multiple actions can be executed at the same time within the same
Action Execute instruction.

The following code example shows an Action Execute instruction:

Previously defined actions to be executed within the experiment
awg_trigger_12 = [hvi.sync_sequence.engines["engine_Name"].actions["previously_defined_
action_1"],

hvi.sync_sequence.engines["engine_Name"].actions["previously_defined_action_2"]]
#
AWG trigger CH1, CH2 - Generates first pulse
sequence = sync_block_2.sequences["engine_Name"]
inst_awg_trigger = sequence.add_instruction("AwgTrigger(CH1, CH2)",

10, sequence.instruction_set.action_execute.id)
inst_awg_trigger.set_parameter(hvi.instruction_set.action_execute.action.id,

awg_trigger_12)

Find us at www.keysight.com Page 119

FPGA register read
Instruction fpga_register_read is an HVI-native instruction that enables you read from anHVI port register.
The value read from the HVI port register is written to a destination HVI register.

The following code example shows an FPGA register read instruction:

Read FPGA Register Register_Bank_HviAction4Cnt
sequence = sync_block_1.sequences["engine_Name"]
register_destination= hvi.sync_sequence.scopes["engine_Name"].registers.add("register_
destination", keysight_hvi.RegisterSize.SHORT)
hvi_register = hvi.sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_registers["hvi_register"]
readFpgaReg0 = sequence.add_instruction("Read FPGA Register_Bank_HviAction4Cnt", 10,

sequence.instruction_set.fpga_register_read.id)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.destination.id,

register_destination)
readFpgaReg0.set_parameter(sequence.instruction_set.fpga_register_read.fpga_register.id,

hvi_register)

FPGA register write
Instruction fpga_register_write is an HVI-native instruction that enables you to write an HVI port register
placed in an FPGA sandbox. The value to be written to the HVI port register is taken from anHVI register or from
a literal.

The following code example shows an FPGA register write instruction:

Write FPGA Register Register_Bank_HviPxiTrigOut
NOTE: Please allow at least 50 ns between these instructions to ensure the HVI register
action4_cnt is updated before writing its content to PXI lines
register_value= hvi.sync_sequence.scopes["engine_Name"].registers.add("register_value",

keysight_hvi.RegisterSize.SHORT)
hvi_register = hvi.sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_registers["hvi_register"]
seq = sync_block_1.sequences["engine_Name"]
writeFpgaReg0 = seq.add_instruction("Write FPGA Register_Bank_HviPxiTrigOut",

50, hvi.instruction_set.fpga_register_write.id)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.fpga_register.id,

hvi_register)
writeFpgaReg0.set_parameter(seq.instruction_set.fpga_register_write.value.id,

register_value)

Find us at www.keysight.com Page 120

FPGA memory map write
Instruction fpga_array_write is an HVI-native instruction that enables you to write to an HVI port memory
map that is located in an FPGA sandbox. The value to be written to the HVI port memory map is taken from an
HVI register or from a literal.

The following code example shows an FPGA memory mapwrite instruction:

Register, Memory map objects
register = sync_sequence.scopes["engine_Name"].registers.add("register_value",

keysight_hvi.RegisterSize.SHORT)
hvi_memory_map = sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_memory_maps["memory_map_Name"]
#
Write Memory Map
seq = sync_block_1.sequences["engine_Name"]
writeMemoryMap = sync_block_1.sequences["engine_Name"]

.add_instruction("Write FPGA Memory Map", 10,
seq.instruction_set.fpga_array_write.id)

writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.fpga_memory_map.id,
hvi_memory_map)

writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write.value.id, register)
writeMemoryMap.set_parameter(seq.instruction_set.fpga_array_write

.fpga_memory_map_offset.id, 0)

FPGA memory map read
Instruction fpga_array_read is an HVI-native instruction that enables you to read from anHVI port memory
map. The value read from the HVI port memory map is written to a destination HVI register.

The following code example shows an FPGA memory map read instruction:

Register, Memory map objects
register = sync_sequence.scopes["engine_Name"].registers.add("register_value",

keysight_hvi.RegisterSize.SHORT)
hvi_memory_map = sync_sequence.engines["engine_Name"].fpga_sandboxes["sandbox_Name"]

.hvi_memory_maps["memory_map_Name"]
#
Read Memory Map
seq = sync_block_1.sequences["engine_Name"]
readMemoryMap = sync_block_1.sequences["engine_Name"].add_instruction

("Read FPGA Memory Map", 20, hvi.instruction_set.fpga_array_read.id)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map.id,

hvi_memory_map)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.destination.id, register)
readMemoryMap.set_parameter(seq.instruction_set.fpga_array_read.fpga_memory_map_offset.id,

0)

Find us at www.keysight.com Page 121

Register increment
You can implement a register increment within a sequence with the class InstructionsAdd . The same
instruction can be used to add registers and constant values (operands) and put the result in another register
(result). To increment the register, it must have been added previously to the scope of the corresponding HVI
Engine.

The following code shows an example of register increment:

Previously defined
counter = sync_sequence.scopes["AWG Engine"].registers.add("Counter Reg",

keysight_hvi.RegisterSize.SHORT)
#
Increment counter register
instruction = awg_sequence.add_instruction("Increment counter", 10,

awg_sequence.instruction_set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

Front panel trigger ON/OFF
The following code example shows a front panel trigger ON/OFF instruction. The instruction is added to the
sequence with themethod add_instruction() . Instruction parameters are set using the API method set_
parameter() . All HVI-native instructions and parameters are defined in the hvi.InstructionSet interface.

Add FP Trigger ON to all instruments
sequence = sync_block.sequences[engine_Name]
instr_trigger_write = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, instr_trigger_write.id)
instr_trigger_ON.set_parameter(instr_trigger_write.trigger, fp_trigger)
instr_trigger_ON.set_parameter(instr_trigger_write.sync_mode.id,

instr_trigger_write.sync_mode.immediate)
instr_trigger_ON.set_parameter(instr_trigger_write.value.id, instr_trigger_write.value.on)

Find us at www.keysight.com Page 122

Register assign
A register assign statement can be used to initialize a register to an initial value using the instruction class
InstructionsAssign from the Python HVI API. The same instruction can be used to assign a register value
(source) to another register (destination). Each register can also be initialized outside an HVI sequence, before
its execution, by using the API property Register.initial_value .

The following code shows an example of Register Assign:

Previously defined registers
wfm_id = hvi.sync_sequence.scopes["AWG Engine"].registers.add("Wfm ID",

keysight_hvi.RegisterSize.SHORT)
#
Initialize Waveform ID
seq = sync_block_1.sequences["AWG Engine"]
instruction = seq.add_instruction("Initialize Wfm ID", 10, seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.assign.destination.id, wfm_id)
instruction.set_parameter(seq.instruction_set.assign.source.id, 0)

Find us at www.keysight.com Page 123

Local flow-control statements
Local flow-control statements execute within Local sequences. These include wait statements, loops such as
while, and conditional execution like If. Local flow-control statements are depicted with a yellow box in the HVI
diagrams in this User Manual.

Local flow-control statements include:

Local wait-for-time

Causes the sequence to wait for a certain time specified in an HVI register. Once the time has
elapsed, the sequence will continue.

Local wait-for-event

Causes the sequence to stop and wait for a condition to evaluate true. Once the condition is true, for
example, when the selected event occurs, the next instruction is executed. In future releases, this
will be extended tomore complex conditions.

Local while

Executes the same sequence in a loop while the condition is met.

Local delay

Delays the sequence for a time you specify. The delay is specified in nanoseconds.

Local if (if-elseif-else)

Selects and executes a different possible Local sequence according to the value of a defined
condition.

All Local flow-control statements except wait statements, include one or more Local sequences. For instance,
Local while statements have a single sequence and the Local If statement can havemultiple sequences. These
statements have the following common characteristics:

l Sequences in Local flow-control statements can contain any Local statement including Local flow-control
statements.

l Only Local statements can be added inside Local sequences and consequently inside Local flow-control
statements. You cannot add Sync statements inside Local flow-control statements.

Find us at www.keysight.com Page 124

Local if statement
The Local flow-control statement If conditionally executes one of a set of different possible Local sequences (if-
elseif-else) depending on the value of predefined conditions.

The conditions are evaluated in the order they are inserted. The possible sequences are:

l At least one sequence that is conditionally executed. This is themain If branch.
l Optional conditional sequences where their conditions are evaluated in order. The first sequence with a true
condition is executed if the conditions in previous branches evaluated false. These are the Elseif branches.

l One optional Else sequence, which is executed if all above previous conditions evaluate to false. This is the
Else branch.

The following diagram shows a Local If flow-control statement:

The class IfStatement enables you to add an If-Elseif-Else construct within themain HVI sequence of any HVI
engine. The If-Elseif-Else statement contains one or more If branches and an Else branch. The instructions and
statements contained in each If or Else branch are executed if the condition of each branch is met. The condition
of each branch can be defined using the API class ConditionalExpression . The branch sequences can be
programmed using the same API methods and classes used to program themain HVI sequence, using the
classes IfBranch and ElseBranch . The conditions are stored in registers.

Find us at www.keysight.com Page 125

The following code is an example of an If-Elseif-Else statement:

Configure IF condition
if_condition = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.SMALLER_THAN, 10);
#
Set flag that enables to match the execution time of all the IF branches
enable_matching_branches = True
if_statement = my_sync_multi_seq_block.add_if("MyIfBlock", 10, if_condition,

enable_matching_branches)
#
Program IF branch
if_sequence = if_statement.if_branch.sequence
#
Add statements in if-sequence
instruction = ifSequence.add_instruction("ExecuteAction0", 10,

if_sequence.instruction_set.action_execute.id)
instruction.set_parameter(...) ...
#
Program Else-If branches
Else-If Condition
else_if_condition_1 = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.SMALLER_THAN, 15)
else_if_branch_1 = if_statement.else_if_branches.add(else_if_condition_1)
#
Program Else-If branch
else_if_sequence_1 = else_if_branch_1.sequence
#
Add statements in Else-If-sequence
instruction = else_if_sequence_1.add_instruction("SetFrequency", 10,

module.HVI.instruction_set.set_frequency.id)
instruction.set_parameter(...) ...
#
Eventually add more Else-If-branches
else_if_condition_2 = ... else_if_branch_1 =
#
Else-branch
Program Else branch
else_sequence = else_branch.sequence
#
Add statements in Else-sequence
instruction = else_sequence.add_instruction(...) ...

Find us at www.keysight.com Page 126

Local while statement
The Local while flow-control statement executes a same sequence in a loop while the condition is met. The
condition is stored in a register.

The following diagram shows a Local while:

The following code is an example of a Local while statement:

Configure while condition
while_condition = keysight_hvi.Condition.register_comparison(reg,

keysight_hvi.ComparisonOperator.NOT_EQUAL, 1)
#
Add WHILE sequence within the sequence of "engine_0"seq = sync_block.sequences["engine_
0"]
while_loop = seq.add_while("While Loop", 10, while_condition)
#
Program local while sequence
instruction = while_loop.sequence.add_instruction("Initialize Pulse Counter",

10, seq.instruction_set.assign.id)
instruction.set_parameter(seq.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(seq.instruction_set.add.source.id, 0)

Find us at www.keysight.com Page 127

Local wait-for-event statement
The Local wait-for-event statement causes the HVI sequence to stop and wait for a condition to evaluate true.
Once the condition is true, for example the selected event occurs, the next instruction is executed.

The Local wait statement is implemented with the API class WaitStatement . This sequence block statement
sets an instrument to wait for a condition. The condition can be defined by a trigger, an event, or a combination of
them using logical operators. You can only use one event in the condition.

In the following example, the Local wait is used to set a digitizer instrument to wait for an external front panel
trigger. The wait statement is set to wait for a trigger falling edge using the .waitmode keysight_
hvi.WaitMode.TRANSITION combined with a trigger configuration as ACTIVE_LOW . The sync mode keysight_
hvi.SyncMode.IMMEDIATE sets the wait event to let the execution continue immediately, that is, as soon as the
trigger event is received:

Trigger resource to be used as a wait condition
fp_trigger_id = module_list[0].hvi.triggers.front_panel_1
fp_trigger = sync_sequence.engines[digitizer_engine_Name].triggers.add(fp_trigger_id,

"FP Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured
as keysight_hvi.Direction.INPUT
fp_trigger.configuration.direction = keysight_hvi.Direction.INPUT
fp_trigger.configuration.drive_mode = keysight_hvi.DriveMode.PUSH_PULL
fp_trigger.configuration.polarity = keysight_hvi.TriggerPolarity.ACTIVE_LOW
fp_trigger.configuration.hw_routing_delay = 0
fp_trigger.configuration.trigger_mode = keysight_hvi.TriggerMode.LEVEL
#
Define the condition for the wait statement
wait_condition = keysight_hvi.Condition.trigger(hvi.sync_sequence.engines[digitizer_engine_
Name].triggers["FP Trigger"])
#
Add a Wait For Event
wait_event = sync_block_1.sequences[digitizer_engine_Name].add_wait("Wait for FP Trigger",

100, wait_condition)
wait_event.set_mode(keysight_hvi.WaitMode.TRANSITION, keysight_hvi.SyncMode.IMMEDIATE)

Local wait-for-time statement
The wait-for-time statement causes the sequence to wait for a certain time specified in an HVI register. Once
the time is elapsed, the sequence continues.

The following code is an example of a wait-for-time statement:

Wait Time makes the HVI sequence wait for an amount of time specified by
a register (register 'tau' in this example)
#
waitTau = sync_block.sequences["digitizer_engine"].add_wait_time("WaitTau", 10, tau)

Find us at www.keysight.com Page 128

Local delay statement
The Local delay statement delays the execution of the sequence for a time you specify. The delay is specified in
nanoseconds.

The following code is an example of a Local Delay statement:

Delay makes the HVI sequence wait for an amount of time specified by a constant
#
wait = sync_block.sequences["digitizer_engine"].add_delay("Delay", 30)

Find us at www.keysight.com Page 129

Chapter 6: Building an Application with the HVI API
This chapter describes the steps youmust follow to use the HVI API. If you do not follow these steps your
application shall not work correctly.

HVI uses program-within-a-program model. That is, the HVI enables you to define a program that runs on the
instrument's hardware while the software programs run in parallel and can interact with the instruments. HVI is
also responsible for all the setup, compilation, and hardware executionmanagement. When you run your
application, it generates an HVI instance and the sequences within it are executed on the instruments.

This chapter contains the following sections:

l Planning an HVI
l 1 Set Up The HVI
l 2. Write HVI Sequences
l 3. Compile Your Sequences
l 4. Load To Hardware
l 5. Modify Initial Register Values (Optional)
l 6. Execute Sequences
l 7. Release All Resources

NOTE The code examples provided in this chapter are in both Python and C#.

Find us at www.keysight.com Page 130

Planning an HVI
Programming an HVI requires some planning. Youmust assign and set up resources before you can use them in
sequences. The resources you can use depends on your hardware set up, what instruments you have, what
capabilities they have, and how they are arranged. You set these up first and then you can assign the
capabilities as resources in your application.

Once the hardware is set up and resources assigned, you can write your sequences and set initialization values.
You create Sync sequences for globally synchronized operations, and you create Local sequences for
operations in the HVI engines in individual instruments.

When you have written your sequences, you call a compile command. After this, you upload the binaries to
hardware and execute your sequences. Before running the HVI, you can redefine the initial values and
configurations of the resources that are included in the HVI, such as HVI registers for different engines.

The following sections in this chapter describe the steps youmust follow to program anHVI.

Find us at www.keysight.com Page 131

1 Set Up The HVI
Setting up the HVI requires a number of steps:

l Include the HVI library in your application.
l Define the hardware in your HVI.
l Define and configure HVI resources.
l Define FPGA sandbox resources.

Include the HVI Library in your Application
Include the HVI library in your application:

Python code:

import keysight_hvi as kthvi

C# code:

using Keysight.Hvi;

Youmust first create an instance of a SystemDefinition object.

Python code:

Create SystemDefinition instance
my_system = keysight_hvi.SystemDefinition("Multi-chassis Setup")

C# code:

// Create SystemDefinition instance
var sysDef = new SystemDefinition("My System");

When you have done this, specify the hardware and hardware resources that you require in your HVI:

l Define the hardware in your HVI.
l Define the HVI resources.
l Register the resources with relevant collections.
l Initialize HVI hardware resources for the HVI.

Find us at www.keysight.com Page 132

Define the Hardware in your HVI
Add the hardware resources in your system to the SystemDefinition object, including:

l Chassis.
l Chassis interconnections.
l PXI trigger synchronization resources.
l Synchronization clocks.

Define the chassis
Python code:

Add chassis with number or options
my_system.chassis.add(chassis_number)
my_system.chassis.add_with_options(chassis_number,

"DriverSetup=model=M9018B,NoDriver=True")

C# code:

// Add chassis with number or options
sysDef.Chassis.AddWithOptions(1, "Simulate=True,DriverSetup=model=M9018A,NoDriver=True");

Define the chassis interconnects
Python code:

Add interconnects
my_system.interconnects.add_M9031_modules(1, 1, 2, 1)

C# code:

// Add interconnects
sysDef.Interconnects.AddM9031Modules(1, 1, 2, 1);

Find us at www.keysight.com Page 133

Define the synchronization resources
Python code:

Define sync resources
my_system.sync_resources = [keysight_hvi.TriggerResourceId.PXI_TRIGGER0,

keysight_hvi.TriggerResourceId.PXI_TRIGGER1,
keysight_hvi.TriggerResourceId.PXI_TRIGGER2]

C# code:

// Define sync resources
TriggerResourceId[] resources = {

TriggerResourceId.PxiTrigger0,
TriggerResourceId.PxiTrigger1,
TriggerResourceId.PxiTrigger2};

Define the clocks
This is only required when dealing with instruments that do not support HVI technology, orDevices Under Test
that have specific clocking requirements. This is an advanced feature that most users do not require. If you think
you require it, please contact your application or support engineers.

Python code:

clocks configuration
my_system.non_hvi_core_clocks = [100MHz]
my_system.non_hvi_system_clocks = [500MHz]

C# code:

// clocks configuration
sysDef.NonHviCoreClocks = 100;
sysDef.NonHviCoreClocks = 500;

Find us at www.keysight.com Page 134

Define and Configure HVI Resources
Triggers, Actions, and Events are all HVI resources that can be used by the HVI engine and the HVI sequence
to interact with the outside world, that is, with other instruments, the instrument sandbox, or any other external
entities.

Youmust define the resources you are going to use and register them with collections for the engines you want
to use them with. Youmust do this for the following types of resources:

l HVI Engines.
l Triggers.
l Actions.
l Events.
l FPGA Sandbox resources.

Find us at www.keysight.com Page 135

Define HVI Engines
First, youmust define the engines you want to use and add them to an engine collection. Themethod add_

engine() returns an engine.

Python code:

Add engines
engine0 = my_system.engines.add(module.hvi.engines.main_engine, "Receiver")
engine1 = my_system.engines.add(module.hvi.engines.main_engine, "Transmitter")

C# code:

// Add Engines
sysDef.Engines.Add(module.Hvi.Engines.MainEngine, "Receiver");
sysDef.Engines.Add(module.Hvi.Engines.MainEngine, "Transmitter");

The procedure for defining and registering the other HVI resources follows the same pattern. As a first step, the
resourcemust be added to the corresponding collection using themethod add() within the classes
TriggerCollection , ActionColletion , EventCollection , etc.

For example, to define and register an event, do the following:

There is an event collection for each engine. Get the event collection with the property engine.events . This
returns the EventCollection object. Add the events you want to use to the event collection with the add()

method of EventCollection . To add each event youmust specify both an event id and an event Name:

Python code:

my_event = engine.events.add(module.hvi.events.PXI0, "My Event")

C# code:

myEvent = Engine.Events.Add(module.Hvi.Events.Pxi0, "My Event")

Actions, Triggers, and FpgaSandboxes all require their own collection classes, for example ActionCollection

is for Actions.

Use the same procedure to get collections and add Actions, Triggers, and FpgaSandboxes to their respective
collections. The ID of engines, actions, events and triggers related to a specific instrument are defined by the
instrument API, typically within the instrument.hvi interface of an instrument object. The following code
shows some example definitions.

Find us at www.keysight.com Page 136

Define HVI actions
The following code example defines all HVI actions necessary to perform AWG (Arbitrary Waveform Generator)
trigger operations. The AWG trigger actions for each AWG channel is defined and registered into the
ActionCollection of the AWGengine that needs to execute them in its local sequence.

Python code:

Define AWG trigger actions for all AWG channels
for ch_index in range(1, num_channels + 1):

Actions need to be added to the engine's action list so that they can be executed
action_Name = "AWG Trigger CH" + str(ch_index) # arbitrary user-defined Name
instrument_action = "awg{}_trigger".format(ch_index) # Name decided by instrument API
action_id = getattr(instrument.hvi.Actions, instrument_action)
my_system.engines[awg_engine_Name].actions.add(action_id, action_Name)

C# code:

// Define AWG trigger actions for 4 AWG channels
// Actions must be added to the engine's action list so that they can be executed
//
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg0Trigger, "awg0trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg1Trigger, "awg1trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg2Trigger, "awg2trigger")
mySystem.Engines[engineName].Actions.Add(module.Hvi.Actions.Awg3Trigger, "awg3trigger")

Define HVI events
The code example below adds the AWGCH1Waveform Start event to the event collection of anM320xA
AWG's HVI engine object called awg_engine . For further information onM320xA events see SD1 3.x Software
for M320xA / M330xA Arbitrary Waveform Generators User s Guide available at M3201A PXIe Arbitrary
Waveform Generator.

Python code:

wfm_start_event = awg_engine.events.add(instrument.hvi.events.awg1_waveform_start, "AWG CH1
Wfm Start Event")

C# code:

// adding wait for trigger event
wfmStartEvent = awgEngine.Events.Add(instrument.Hvi.Events.Awg1WaveformStart, "AWG CH1 Wfm
Start Event")

Find us at www.keysight.com Page 137

http://www.keysight.com/find/m3201a
http://www.keysight.com/find/m3201a

Define HVI triggers
The code example below defines a Front Panel (FP) trigger to be used by a digitizer instrument. The
TriggerCollection is accessed through the dig_engine.triggers interface, where dig_engine is an HVI
Engine object.

Python code:

Defines the FP trigger to be used as a wait condition by the digitizer
Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same
instrument
#
fp_trigger_id = instrument.hvi.triggers.front_panel_1
fp_trigger = dig_engine.triggers.add(fp_trigger_id, "FP Trigger")
#
Trigger configuration
NOTE: Trigger to be used as WaitEvent conditions must be configured as
kthvi.Direction.INPUT
DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed by
the user
fp_trigger.config.direction = kthvi.Direction.INPUT
fp_trigger.config.polarity = kthvi.Polarity.ACTIVE_HIGH
fp_trigger.config.hw_routing_delay = 0
fp_trigger.config.trigger_mode = kthvi.TriggerMode.LEVEL

C# code:

// Defines the FP trigger to be used as a wait condition by the digitizer
// Add to the HVI Trigger Collection of each HVI Engine the FP Trigger object of that same
instrument
//
fpTriggerId = instrument.Hvi.Triggers.frontPanel1;
fpTrigger = digEngine.Triggers.Add(fpTriggerId, "FP Trigger");
//
// Trigger configuration
// NOTE: Trigger to be used as WaitEvent conditions must be configured as Direction.Input
// DriveMode (e.g. PushPull/OpenDrain) is defined by the instrument and cannot be changed
by the user
fpTrigger.Config.Direction = Direction.Input;
fpTrigger.Config.Polarity = Polarity.ActiveHigh;
fpTrigger.Config.HwRoutingDelay = 0;
fpTrigger.Config.TriggerMode = TriggerMode.Level;

Find us at www.keysight.com Page 138

Define FPGA sandbox resources
The SandboxCollection is accessible through the engine.fpga_sandboxes interface of an engine object.
Unlike other HVI collections, this collection is already populated by a number of sandboxes where the number of
sandboxes depends on the instrument being used. Most instruments have a single sandbox region in their
FPGA, but some instruments might havemultiple sandbox regions. Sandbox objects do not need to be added to
the collection, you only need to access them.

Python code:

NOTE: The M3xxxA_sandbox Name is not arbitrary and cannot be changed.
The sandbox Name is defined by each instrument. See SD1 3.x M3xxxA documentation for
further info
sandbox_Name = 'sandbox0'
awg_sandbox = awg_engine.fpga_sandboxes[sandbox_Name]

C# code:

// NOTE: The M3xxxA_sandbox Name is not arbitrary and cannot be changed.
// The sandbox Name is defined by each instrument. See SD1 3.x M3xxxA documentation for
further info
sandboxName = "sandbox0";
awgSandbox = AwgEngine.FpgaSandboxes[sandboxName];

Find us at www.keysight.com Page 139

2. Write HVI Sequences
Writing HVI sequences requires a number of steps:

l Create a Sequencer object
l Define HVI Registers and initialize register values
l Start with the global SyncSequence
l Adding Sync Statements and Sync Sequences
l Adding Local Statements
l Adding HVI instructions
l Adding Instrument Specific Instructions
l Using Triggers, Actions, and Events
l Using Sandbox FPGA Resources

Create a Sequencer Object
Before you can begin writing sequences, youmust create a Sequencer object and pass the SystemDefinition
to the Sequencer object:

Python code:

sequencer = keysight_hvi.Sequencer("sequencer", my_system)

C# code:

Sequencer seq = new Sequencer("sequencer", sysDef);

Find us at www.keysight.com Page 140

Define HVI Registers and Initialize Register Values
Define the HVI registers resource you require in each engine and use the add() method to add them to the
register collection for that engine. Then define their initial values:

Python code:

loop_register = sequencer.sync_sequence.scopes["Engine 1"].registers.add("Loop Register",
keysight_hvi.RegisterSize.SHORT)
loop_register.initial_value = 0

C# code:

var loopRegister = sequencer.SyncSequence.Scopes["Engine 1"].Registers.Add("Loop Register",
RegisterSize.SHORT);
loopRegister.InitialValue = 0;

The registers that you to use in the HVI sequences must be defined beforehand in the register collection within
the scope of the corresponding HVI Sequence. This can be done using the RegisterCollection class that is
within the Scope object corresponding to each sequence. HVI registers belong to a specific HVI engine because
they refer to hardware registers of that specific instrument. Registers from one HVI engine cannot be used by
other engines or outside of their scope. Registers can only be added to the HVI top Sync sequence scopes. This
means that you can only add global registers that are visible in all child sequences. The number and size of
registers is defined by each instrument.

To reserve a register resource:

1. Get the register collection from the engine you want to reserve the register on.
2. Add the registers you require. Use the add()method to the register collection for that engine

NOTE Register size is defined by the following:

l SHORT = 32 bit
l LONG = 48 bit

After you have got the Sequencer object and set up the registers you require, you can write the program the HVI
executes, this is composed of:

l Sequences.
l Statements.
l Instructions.
l Time restrictions.

To define your program, youmust:

l Create sequences.
l Add statements and instructions.

Find us at www.keysight.com Page 141

Start with the Global SyncSequence
WhenHVI starts execution, it starts in a global sequence SyncSequence , this is defined by the Sequencer
object. This is used in the previous example when the registers were reserved:

Python code:

engine_1_registers = sequencer.sync_sequence.scopes["Engine 1"].registers

C# code:

var engine1Registers = seq.SyncSequence.Scopes[engine1Name].Registers;

Adding Sync Statements and Sync Sequences
You add Sync statements to the SyncSequence class with add_statementmethods such as
SyncSequence.add_sync_while():

Python code:

Create Sync While statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS):
SYNC_WHILE_LOOP_ITERATIONS = 5
sync_while_condition = keysight_hvi.Condition.register_comparison(engine_1_registers
["loop_register"],

keysight_hvi.ComparisonOperator.LESS_THAN, SYNC_WHILE_LOOP_ITERATIONS)
sync_while = self.sequencer.sync_sequence.add_sync_while("sync_while", 100, sync_while_

condition)

C# code:

// create Sync While statement (loop_register < SYNC_WHILE_LOOP_ITERATIONS)
var syncWhileCondition = Condition.RegisterComparison(
engine1Registers["loop_register"], ComparisonOperator.LessThan, SYNC_WHILE_LOOP_
ITERATIONS);
var syncWhile = seq.SyncSequence.AddSyncWhile("sync_while", 100, syncWhileCondition);

You can also add Sync sequences within the global Sync sequence and add Sync statements within the Sync
sequences.

Find us at www.keysight.com Page 142

Adding Local Statements
To add local instructions or local flow-control operations, youmust add them within a Sync multi-sequence
block. Youmust add this Sync multi-sequence block within a Sync Sequence by using the add_sync_multi_
sequence_block()method:

Python code:

Add a sync multi-sequence block:
multi_seq_block_1 = sync_while.sync_sequence.add_sync_multi_sequence_block("multi_seq_
block_1", 210)

C# code:

// Add a sync multi-sequence block
var multiSeqBlock1 = syncWhile.SyncSequence.AddSyncMultiSequenceBlock("multiSeqBlock1",

220);

To add the local statements, youmust get a Sequence object for each engine in the Sync multi-sequence block
and add them using the corresponding add_XXX () method. Local instructions can be added to a Sync multi-
sequence block using the add_instruction()method. For each instruction parameter, use the set_parameter
()method to set it.

By adding Local statements to the sequences, you define the Local sequence that each local engine executes in
parallel with the other engines.

Find us at www.keysight.com Page 143

Adding HVI Instructions
There are two types of HVI instructions:

l HVI-native instructions.
l Instrument specific instructions.

Find us at www.keysight.com Page 144

HVI-native instructions
The InstructionSet class contains the set of native instructions that can be executed within an HVI
statement, including:

l Register arithmetic.
l Add / Subtract.
l Assign.

l Read/write I/O trigger ports.
l Communications operations with the instrument sandbox using an HVI Host Interface.

l FPGA register read/write.
l FPGA array read/write.

l Action execute.
l Trigger write.

To use the HVI-native instructions, youmust use the InstructionSet class. You get this from the local
Sequence class:

Python code:

Initialize loop_register
loop_reg = multi_seq_block.scope.registers["loop_register"]
awg_sequence = multi_seq_block.sequences["AWG Engine"]
instruction_a = multi_seq_block.add_instruction("loop_register = 0", 10, awg_
sequence.instruction_set.assign.id)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.destination.id, loop_reg)
instruction_a.set_parameter(awg_sequence.instruction_set.assign.source.id, 0)
#
Increment pulse_counter
pulse_counter = multi_seq_block_1.scope.registers["pulse_counter"]
instruction = multi_seq_block_1.add_instruction("Increment Pulse Counter", 10, awg_
sequence.instruction_set.add.id)
instruction.set_parameter(awg_sequence.instruction_set.add.destination.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.left_operand.id, pulse_counter)
instruction.set_parameter(awg_sequence.instruction_set.add.right_operand.id, 1)

C# code:

// Initialize loop_register
var reg = sequence.Scope.Registers[registerName];
var instructionA = sequence.AddInstruction(registerName + "_assign", startDelay,
sequence.InstructionSet.Assign.Id);
instructionA.SetParameter(sequence.InstructionSet.Assign.Value.Id, value);
instructionA.SetParameter(sequence.InstructionSet.Assign.Destination.Id, reg);
//
// Increment register by 1
private void incrementRegisterBy1(ISequence sequence, string registerName, int startDelay)
{

var reg = sequence.Scope.Registers[registerName];

Find us at www.keysight.com Page 145

var instructionA = sequence.AddInstruction("Increment Pulse Counter", startDelay,
sequence.InstructionSet.Add.Id);

instructionA.SetParameter(sequence.InstructionSet.Add.LeftOperand.Id, reg);
instructionA.SetParameter(sequence.InstructionSet.Add.RightOperand.Id, 1);
instructionA.SetParameter(sequence.InstructionSet.Add.Destination.Id, reg);

}

Adding instrument specific instructions
Instrument specific instructions are described in the documentation for the instrument. For example, the
following code shows how to set a channel amplitude value:

Python code:

Set CH1 amplitude to 1.0 V:
instruction = multi_seq_block_1.add_instruction("Set CH1 amplitude to 1.0 V", 10,
instrument.hvi.instruction_set.set_amplitude.id)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.channel.id, ch1)
instruction.set_parameter(instrument.hvi.instruction_set.set_amplitude.value.id, 1.0)

C# code:

// Set CH1 amplitude to 1.0 V
instruction = multiSeqBlock1.AddInstruction("Set CH1 amplitude to 1.0 V", 10,
instrument.Hvi.InstructionSet.SetAmplitude.id);
instruction.SetParameter(instrument.Hvi.InstructionSet.SetAmplitude.Channel.id, ch1);
instruction.SetParameter(instrument.Hvi.InstructionSet.SetAmplitude.Value.id, 1.0);

Find us at www.keysight.com Page 146

Using Triggers, Actions, and Events
The examples below provide an overview of how to use triggers, actions and events within an HVI sequence.

Using Triggers
There are two typical use cases of trigger objects (previously defined by the user during system definition). The
first one is the usage of the trigger object as a wait condition inside aWait statement:

Python code:

Add a wait statement that has a FP trigger as a condition
fp_trigger = awg_engine.triggers["fp_trigger"]
wait_condition = keysight_hvi.Condition.trigger(fp_trigger)
wait_event = awg_sequence.add_wait("wait for fp trigger", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

C# code:

// Add a wait statement that has a FP trigger as a condition
fpTrigger = awgEngine.Triggers["fpTrigger"];
waitCondition = Condition.Trigger(fpTrigger);
waitEvent = awgSequence.AddWait("wait for trigger", 10, waitCondition);
waitEvent.SetMode(WaitMode.Transition, SyncMode.Immediate);

The second use case involves the TriggerWriteHVI Native instruction, where the trigger object can be used to
specify which electrical trigger line can be written from the HVI sequence:

Python code:

Write FP Trigger to ON value
fp_trigger = awg_engine.triggers["fp_trigger"]
trigger_write_instr = sequence.instruction_set.trigger_write
instr_trigger_ON = sequence.add_instruction("FP Trigger ON", 10, trigger_write_instr.id)
instr_trigger_ON.set_parameter(trigger_write_instr.sync_mode.id, trigger_write_instr.sync_
mode.immediate)
instr_trigger_ON.set_parameter(trigger_write_instr.trigger.id, fp_trigger)
instr_trigger_ON.set_parameter(trigger_write_instr.value.id, trigger_write_instr.value.on)

C# code:

// Write FP Trigger to ON value
var tw = sequence.InstructionSet.TriggerWrite;
var instOn = sequence.AddInstruction("Trigger On", 20, tw.Id);
instOn.SetParameter(tw.Trigger.Id, trigger);
instOn.SetParameter(tw.SyncMode.Id, tw.SyncMode.Immediate);
instOn.SetParameter(tw.Value.Id, tw.Value.On);

Find us at www.keysight.com Page 147

Using Actions
User-defined actions can be executed using the HVI native instruction ActionExecute . A list of actions
action_list, can be executed simultaneously within the same instruction. The action_list object must have
been be previously defined.

Python code:

"Action Execute" instruction executes the AWG trigger from HVI
instruction = sequence.add_instruction("AWG trigger", 10, sequence.instruction_set.action_
execute.id)
instruction.set_parameter(sequence.instruction_set.action_execute.action.id, action_list)

C# code:

// "ActionExecute" instruction executes the AWG trigger from HVI
var actionArray = sequence.Engine.Actions.ToArray();
instruction = sequence.AddInstruction("AWG trigger", 10,
sequence.InstructionSet.ActionExecute.id);
instruction.SetParameter(sequence.InstructionSet.ActionExecute.Action.id, actionArray);

Using Events
The typical use case of events within HVI sequences is as a condition for aWait Statement:

Python code:

Add a wait statement that waits for AWG CH1 queue to be empty
awg_queue_empty = awg_engine.events["Awg1QueueIsEmpty"]
wait_condition = keysight_hvi.Condition.event(awg_queue_empty)
wait_event = awg_sequence.add_wait("Wait for AWG Queue to be Empty", 10, wait_condition)
wait_event.set_mode(kthvi.WaitMode.TRANSITION, kthvi.SyncMode.IMMEDIATE)

C# code:

// adding wait for trigger
var waitTrigger = sequence.Engine.Triggers["wait_trigger"];
var waitEvent = sequence.AddWait("wait for trigger", 10, Condition.Trigger(waitTrigger));
waitEvent.SetMode(WaitMode.Transition, SyncMode.Immediate);

Find us at www.keysight.com Page 148

Using Sandbox FPGA Resources
To use FPGA Resources, the sandbox must be loaded using the load_from_k7z()method specifying the path
containing the .k7z file produced compiling a project designed using PathWave FPGA, for more information see
the PathWave FPGA UserManual at PathWave FPGA . Once the sandbox is loaded, all the HVI registers and
memory maps that were inserted in the specified PathWave FPGA project file can be accessed to be used in the
FPGA sequence. Please note that the sameNames used in the PathWave FPGA project must be used to
access the FPGA resources. In the following example, the register NameRegister_Bank_MyCounter is not
arbitrary but assumed to be taken from the PathWave FPGA project that generated the file
MySandboxProject.k7z:

Python code:

sandbox = engine.fpga_sandboxes["sandbox0"]
sandbox.load_from_k7z("MySandboxProject.k7z")
counter_register = sandbox.fpga_registers["Register_Bank_MyCounter"]

C# code:

sandbox = Engine.FpgaSandboxes["sandbox0"];
sandbox.LoadFromk7z("MySandboxProject.k7z");
counterRegister = sandbox.FpgaRegisters["registerBankMyCounter"];

Find us at www.keysight.com Page 149

http://www.keysight.com/find/pathwave-fpga

Write to FPGA resources
The following example shows how to write to an FPGA register and read an FPGA array. The process in both
cases is very similar:

Python code:

Write FPGA register
fpga_register = engine.fpga_sandboxes[sandbox_Name].fpga_registers[register_Name]
fpga_regw_instruction = sequence.instruction_set.fpga_register_write
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_
instruction.id)
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register)
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register)
#
Read FPGA array
memory_map = engine.fpga_sandboxes[sandbox_Name].fpga_memory_maps[0]
fpga_arrayr_instr = sequence.instruction_set.fpga_array_read
fpga_array_read = sequence.add_instruction("my_fpga_array_read", time_ns, fpga_arrayr_
instr.id)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map.id, memory_map)
fpga_array_read.set_parameter(fpga_arrayr_instr.fpga_memory_map_offset.id, loop_reg)
fpga_array_read.set_parameter(fpga_arrayr_instr.value.id, value_register))

C# code:

// Write FPGA register
fpga_register = engine.fpga_sandboxes[sandbox_Name].fpga_registers[register_Name];
fpga_regw_instruction = sequence.instruction_set.fpga_register_write;
fpga_register_write = sequence.add_instruction("my_fpga_register_write", 10, fpga_regw_
instruction.id);
fpga_register_write.set_parameter(fpga_regw_instruction.fpga_register.id, fpga_register);
fpga_register_write.set_parameter(fpga_regw_instruction.value.id, value_register);
//
// Read FPGA array
memoryMap = Engine.fpgaSandboxes[sandbox_Name].fpgaMemoryMaps[0];
fpgaArrayrInstr = sequence.InstructionSet.FpgaArrayRead;
fpgaArrayRead = sequence.AddInstruction("myFpgaArrayRead", timeNs, fpgaArrayrInstr.id);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.FpgaMemoryMap.id, memoryMap);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.FpgaMemoryMapOffset.id, loopReg);
fpgaArrayRead.SetParameter(fpgaArrayrInstr.Value.id, valueRegister));

Find us at www.keysight.com Page 150

3. Compile Your Sequences
After writing the Sequences, youmust add the command that compiles the HVI. Call the compile()method in
the Sequencer object to perform the compilation operation. The compile()method returns the HVI instance Hvi
.

Python code:

Compile HVI sequences:
try:

hvi = sequencer.compile()
print('HVI Compiled')

except keysight_hvi.CompilationFailed as err:
print(err.compile_status.to_string())
raise err

C# code:

// Compile HVI sequences:
try
{

hvi = sequencer.Compile();
Console.WriteLine("compile DONE");

}
catch (CompilationFailed err)
{

Console.WriteLine(err.CompileStatus.ToString());
throw err;

}

NOTE At this point you can no longer modify sequences, actions, events or triggers.

The property hvi.sync_resources provides information about the PXI sync resources youmust reserve.

Python code:

print("This needs to reserve {} PXI trigger resources to execute".format(len(hvi.sync_

resources)))

C# code:

Console.WriteLine("This needs to reserve {} PXI trigger resources to execute".Format(len
(Hvi.SyncResources)));

If the compilation fails, the object keysight_hvi.CompilationFailed is thrown. This contains compilation
error messages that you can print.

Find us at www.keysight.com Page 151

4. Load To Hardware
Before your compiled sequences can be executed, they must be uploaded into the HVI engines in the instrument
hardware. To upload the compiled sequences, youmust use the Hvi method load_to_hw() .

Python code:

Load HVI to hardware:
Hvi.load_to_hw()
print("HVI Loaded to hardware")

C# code:

// Load HVI to hardware:
Hvi.LoadToHw();
Console.WriteLine("load DONE");

Find us at www.keysight.com Page 152

5. Modify Initial Register Values (Optional)
The HVI execution can be parameterized using registers, the initial values of all registers are updated when the
run()method in Hvi is called. Tomodify the initial value of the registers in the HVI object, use:

Python code:

Modify register initial value
value = 10
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.Name]
register_runtime.initial_value = value

C# code:

// Modify register initial value
var value = 10;
registerRuntime = Hvi.SyncSequence.Scopes[0].registers[loopRegister.Name];
registerRuntime.initialValue = value;

Once the instrument has been loaded to hardware, you can write to the FPGA memory map.

Python code:

memory_map.write(0, 1)
memory_map.write(1, 2)
memory_map.write(2, 3)

C# code:

memoryMap.Write(0, 1);
memoryMap.Write(1, 2);
memoryMap.Write(2, 3);

Find us at www.keysight.com Page 153

6. Execute Sequences
To execute the binaries, call the run()method in Hvi . The HVI can be run in a blocking or non-blockingmode:

Blocking mode
In blockingmode, the execution is blocked at the HVI execution code line for a fixed amount of time specified by
the timeout input parameter. If timeout = hvi.no_timeout is used as an input parameter, the execution can be
blocked until the HVI sequences finish their execution.

Python code:

hvi.run(hvi.no_timeout)

C# code:

hvi.Run(System.TimeSpan.FromSeconds(10));

Non-blocking mode
In non-blockingmode, the execution is not blocked. This enables you to initiate a second HVI instance to run in
parallel.

Python code:

Execute HVI in non-blocking mode
This mode allows SW execution to interact with HVI execution:
hvi.run(hvi.no_wait)
print("HVI Running...")

C# code:

// Execute HVI in non-blocking mode
// This mode allows SW execution to interact with HVI execution:
hvi.Run(IHvi.no_wait);
Console.WriteLine("HVI Running...");

Find us at www.keysight.com Page 154

While and after execution is finished, you can read or write registers and execute the binaries again.

Python code:

Modify register initial value
value = 20
register_runtime = hvi.sync_sequence.scopes[0].registers[loop_register.Name]
register_runtime.initial_value = value
hvi.run(hvi.no_timeout)

C# code:

// Modify register initial value
ver value = 20;
registerRuntime = hvi.SyncSequence.Scopes[0].Registers[loopRegister.Name];
registerRuntime.initialValue = value;
hvi.Run(IHvi.NoTimeout);

Find us at www.keysight.com Page 155

7. Release All Resources
To release all HVI resources and enable other applications or HVI instances to use the hardware, youmust
release the hardware. Your application cannot perform any operation with the hardware resources in the HVI
after this point.

Python code:

Unlock and release hardware resources:
hvi.release_hw()
print("Releasing Hardware...")

C# code:

// Unlock and release hardware resources:
hvi.ReleaseHw();
Console.WriteLine("Releasing Hardware...");

Find us at www.keysight.com Page 156

Chapter 7: HVI Time Management and Latency
This chapter describes HVI timemanagement and latency. It introduces the concepts involved and describes
the timing and latencies of statement execution, how they impact the overall execution timing of sequences, and
the constraints on the start delay and duration of statements. It also provides latency information for the different
statements and instructions.
This chapter contains the following sections:

l About TimeManagement and Latency Concepts
l Duration Property of Statements
l Local Statement Timing
l Sync Statement Timing
l Sync Statement Timing Tables
l Local Flow-Control Statement Timing Tables
l Local Instruction Statement Timing Tables

Find us at www.keysight.com Page 157

About Time Management and Latency Concepts
This section introduces themain concepts, and additional parameters and values involved in HVI time
management. It includes the following sections:

l Timing Concepts Overview.
l Latency Parameters.

Timing Concepts Overview
The following list describes themain concepts that apply to all statement types:

HVI Engine Cycle

An engine cycle is the timeframe in which the HVI engine can fetch, dispatch or execute instructions. One
engine cycle is equal to the period of the HVI Engine clock. For example, for an engine that runs at 100
MHz, an engine cycle will be equal to 10 ns.

Start Time

This can be distinguished in the following definitions:

HVI Execution Start Time :

This is the time 0 for the HVI execution. It always matches the rising edge of the Sync Pulse.

Statement Execution Start Time :

The relative time in nanoseconds from the HVI Execution Start Time to the start of the execution of a
statement.

Find us at www.keysight.com Page 158

Fetch time

This is the time interval required by the HVI engine to fetch and dispatch a statement for processing. The
Fetch time consumes HVI engine execution cycles. A statement may take several HVI engine cycles to
complete the fetch before processing can start. The number of cycles a fetch takes depends on the
statement or instruction characteristics, for instance, the number of parameters

Start Delay

This is the user-defined delay value from the Start-Time of the previous statement to the Start-Time of the
current statement. This value can be expressed in seconds or one of its fractions, down to picoseconds.
Generally, the valid range is from 0 to +infinity, however the exact range and granularity of this value is
defined by the following:

l The acceptable values of the Start Delay aremultiples of theHVI engine clock period . For a clock rate of
100MHz the clock period is 10 ns, so the acceptable values are themultiples: 0 ns, 10 ns, 20 ns, etc. The
acceptable margin of the value is defined in the Error andWarningMargins section below.

l Theminimum possible value is affected by the Start-Latency of the current statement and the End-Latency of
the previous statement.

l Themaximum possible value is only limited by the actual representation of the value in hardware and
software. While this limit in hardware is instrument-dependent , in software it is defined as: Themaximum
value of the Least CommonMultiple of the clock frequencies of all engines included in the HVI that can be
represented in a signed 64-bit integer value.

Execution Time

This is the time interval from the Start time until the End time of the statement. This interval is determined
by constraints and inherent limits of the instrument, such as propagation delays and resource availability.
Sync and Flow-control statement execution cannot overlap with other statements, so in these cases the
execution timemust be added to the timing calculation. The Start delay of the next statement from a flow-
control or Sync statement is measured from the end-time of the statement.

Sequence Time

Sequence Time is the sum of all the Start Delay of all the statements in a sequence, plus the Execution
time values for any flow-control or Sync statements.

Internal Sequences

Sync statements and some Local statements are broken into internal sequences for execution in HVI
engines.

Duration Property

The Sync statements and Local flow-control statements If andWhile include a duration property that you
can set. The duration property enables you to specify the time interval that a statement takes to execute.

Find us at www.keysight.com Page 159

The following diagram shows these concepts in an HVI diagram:

Additional Timing concepts and limitations
There are a number of additional concepts and parameters youmust be aware of to calculate timing, especially
for specifying Start delays and the Duration of statements.

Even though the knowledge of these concepts can assist you to understand HVI timing and accurately specify
proper values for these timing properties, it is not mandatory to use them at development time. This is because
all limitations are checked by HVI at the time of compilation and any violation is reported with information
provided about how it can be resolved. This enables you to focus on its sequence creation without worrying
about complex timing calculations.

Find us at www.keysight.com Page 160

Latency Parameters
The latency parameters are defined for all Sync and flow-control statements. They impose aminimum value to
the Start delays of the statements used in a sequence:

Start-Latency

This is theminimum number of clock cycles a Sync or flow-control statement requires to start
execution.

Entry-Latency

This is theminimum number of clock cycles a flow-control statement requires to start the execution of
the internal sequence. This imposes aminimum value on the Start delay of the first statement of the
internal sequence.

End-Latency

This is theminimum number of clock cycles a statement requires to exit its execution, before another
statement can be executed.

Iteration Latency (loop statements)

For loop statements only, this is theminimum number of cycles a loop statement requires to start
another execution of the internal sequence after one iteration is completed. This imposes aminimum
value on the start delay of the first statement of the internal sequence.

The exact definitions of Start latency, Entry latency and End latency depend on the type of statement. Latency
values are used in Sync Statement Timingand Local Statement Timing. The Latency values are listed in Sync
Statement Timing Tables, Local Flow-Control Statement Timing Tablesand Local Instruction Statement Timing
Tables.

Find us at www.keysight.com Page 161

The following diagram shows the Start, Entry and End Latencies and how they relate to Start delays:

Find us at www.keysight.com Page 162

Error and Warning Margins
PathWave Test Sync Executive implements a policy for error and warningmargins when you specify the timing
for a Start delay or a duration.

The following table shows example values for an instrument with a 300MHz clock (3.3ns clock period):

Range Type Range Example Description

No Error or
Warning

10ps 3.323ns to 3.343ns If you set a value with 10ps error from the exact clock
period multiplier value, no error or warning is
generated.

Warning 100ps 3.233ns to 3.323ns, or
3.343ns to 3.433ns

If you set a value between 10ps and 100ps of the exact
clock period multiplier value, a warning is generated.

Error >100ps 0.000ns to 3.233ns, or
3.433ns to 6.566ns

If you set a value with more than 100ps error from the
exact clock period multiplier value, an error is
generated.

The following diagram shows an example where the exact clock periodmultiplier value is 3. 3 ns, this is the
same as the example in the table.

To calculate themargins for other periodmultiplier values, warnings are +-10ps from the exact value and errors
are +-100ps away from the exact value.

Find us at www.keysight.com Page 163

Duration Property of Statements
The Sync statements and Local flow-control statements If andWhile include a duration property you can set.
The duration property enables you to specify the time interval a statement takes to execute. Its value can be
expressed in seconds or one of its fractions, down to picoseconds. Generally, the valid range is from 0 to
+infinity however the exact range and granularity of this value is defined by the following:

l The acceptable values of the duration aremultiples of the engine clock period. For a clock rate of 100MHz,
the clock period is 10 ns, so the acceptable values are themultiples: 0 ns, 10 ns, 20 ns, etc. The acceptable
margin of the value is defined in the Error andWarningMargins section in About TimeManagement and
Latency Concepts.

l Theminimum value depends on the internal processes of the statement, the start delays, and executions
times of the included statements.

l Themaximum boundary is only limited by the actual representation of the value in hardware and software.
While this limit in hardware can vary, in software it is defined as: Themaximum value of the Least Common
Multiple of the clock frequencies of all engines included in the HVI that can be represented in a signed 64-bit
integer value.

NOTE For the loop statements Local while and Sync while, the duration property specifies the
execution time of 1 iteration. This means that the overall execution time of a while statement
depends on the number of iterations that are executed. The total execution time is duration
multiplied by the number of iterations.

If the duration is set to a fixed-time interval, then the execution time of the statement shall match the value
specified in the duration property. If this time cannot bematched an error is generated. For example, this can
happen with an if-statement whenmore time is required to complete the statements inside a branch than the
duration specified.

If the duration is set to aminimum-time interval, then the execution time of the statement is theminimum
possible given by the statements inside.

NOTE By default, if not specified, duration property is set tominimum-time .

Find us at www.keysight.com Page 164

The following diagram shows how the duration property is applied to a Sync multi-sequence block:

Python code for the preceding diagram:

fixed_duration_A = time.Duration(xxx)
mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block('mse1', start_delay_A)
mse1.duration = fixed_duration_A
sequence = mse1.sequences['Engine1']
instructionA = sequence.add_instruction("instructionA", start_delay_B,
sequence.instruction_set.action_execute.id)
instructionB = sequence.add_instruction("instructionB", start_delay_C,
sequence.instruction_set.action_execute.id)

Find us at www.keysight.com Page 165

The following diagram shows a while loop that generates an error:

Find us at www.keysight.com Page 166

Local Statement Timing
This section describes Local statement timing. It contains the following sections:

l Local Instruction Timing.
l Local Instruction Statement Parameters.
l Local Flow-Control Statement Timing.
l Calculating Local Instruction Start Delay Requirements.

Find us at www.keysight.com Page 167

Local Instruction Timing
The following section explains with diagrams Local instruction timing.

For Local instructions, the Start delay of the next instruction is measured from the start of the current instruction.

The following diagram shows two instructions and their timing:

Find us at www.keysight.com Page 168

Overlapping Instruction timing
In some cases, Local instruction statements can overlap their execution. This is possible when one instruction
has completed fetching data and a second instruction can then start. The fetch cycles in the different
instructions cannot overlap.

The following diagram shows Instruction B and Instruction E are executed in parallel. This is possible, as long as
the Start delay T3 for instruction E is such that its fetch cycle does not coincide with the fetch cycles of
instruction B. The green dotted line indicates theminimum extent that T3 should have.

Find us at www.keysight.com Page 169

Overlapping instruction execution with dependencies
HVI is capable of processing instructions in parallel. This is a powerful capability, but it can lead to unexpected
results when there are dependencies between the instructions, that is, when one instruction depends on the
result of the other. For example, an instructionmight update the value of an HVI register and the following
instructionmight need to use that updated register value.

The following diagram shows an example with two local instruction statements and the timing when executed by
the HVI engine. Assuming that instruction B is using the result of instruction A, youmust ensure that the value
of Start Delay B is greater or equal to the Processing Time of instruction A, minus the Fetch Time of instruction
B. This way, the execution of instruction B will start after the end of execution of instruction A.

NOTE It is important to consider the effects of overlapping instructions execution, because the result of
the first instruction is not effective or available when the overlapping instruction finishes its fetch
cycles and starts execution.

Find us at www.keysight.com Page 170

Local Instruction Statement Parameters
Local instruction statements have a number of parameters and properties youmust be aware of for calculating
timing:

TriggerIO and Action groups
The following additional parameters are used for calculating timing for some Local instruction statements.

Triggers and actions are organized into groups and the timing can change depending on these:

TriggerIO groups

Trigger Inputs / Outputs are organized together in groups of 16 called TriggerIOs. Any number of
TriggerIOs can be written at the same time.

ActionGroups

HVI actions are organized together in groups of up to 16 called ActionGroups. Any number of actions
can be executed synchronously.

Branch matching
Branchmatching is a concept used in Local If statements. Branches with different instructions can take different
times. Match branches enables you to ensure the branches all take the same time irrespective of which one is
taken.

Find us at www.keysight.com Page 171

Local Flow-Control Statement Timing
Local flow-control statements and Sync statements consumeHVI engine execution time and do not overlap
their execution. When you are calculating the timing of a sequence, youmust consider the execution time of
these statements.

The following diagram shows the timing for a Sync Multi-sequence block that contains a pair of Local instruction
statements and a Local while:

Find us at www.keysight.com Page 172

Local while
The Local while statement continues execution while a condition is met and finishes the execution when the
condition is no longer met. This has the same timing as Sync while statements.

The following diagram shows a Local while statement with other instructions.

The total execution time for a Local while is T1 x N, where T1 is the iteration time and N is the number of times it
iterates. The time cannot be indicated exactly on a diagram or in code because the number of iterations is not
known until runtime.

For statements coming after a Local while statement, the Start delay is measured from the end of the Local
while statement. In the following diagram, Start delay D is measured from the end of the Local while statement.

The dotted line indicates that the execution time of the Local while block T1 is not known at compile time.

Find us at www.keysight.com Page 173

Local if
For Local if statements (if-elseif-else), the following Start delay is measured from the end of the Local if
statement. The time taken is only known at runtime, so it is not possible to indicate them on a diagram or in
code. This is the same as while statements.

This following diagram shows the timing of Local if statements. The Start delay D is measured from the end of
the Local if statement.

The Local If has two branching options with times T1 and T2. These times can be different. Since the choice of
branch is not known at compile time, the time for the Local If block cannot be known.

The line for the Local if block is dotted. This indicates that the execution time of the Local If block Tx is
unknown. The time of the containing block is also therefore unknown, and it is also dotted. The time of the Sync
multi-sequence block is indicated as T min.

Find us at www.keysight.com Page 174

Local If with matched branches
Unlike other flow-control options, the Local if statements can have different execution paths, each with different
times. Thematched branches option enables you to control how the HVI deals with them.

Enablingmatched branches ensures the HVI synchronizes the times of the branches, so they are the same. The
shorter branches get an additional delay added when they are finished so that the durations of all the branches
are equal. If thematched branches option is not enabled, the branches can end at different times, that is, they
are de-synchronized .

In the following diagram the branches in the If and else branches arematched. This ensures the Local if ends at
the same time irrespective of the branch taken.

The total branch time is marked with the time TM, this represents thematched time. The choice of branch is not
known at compile time, but since the times arematched the time TM is known.

The times are known at compile time so the timelines of the local If block and the Sync multi-sequence block
that contains it are both solid.

Find us at www.keysight.com Page 175

Local wait (event or time in register)
For Local wait statements, the following Start delay is measured from the end of the Local wait statement. As
with Sync while statements, the time taken is only known at runtime, so it is not possible to indicate them on a
diagram or in code.

The following diagram shows the timing of a Local wait statement. The following Start delay D is measured from
the end of the Local wait statement.

The execution time of the Local wait statement T1 is not known at compile time, this is indicated by the dotted
line.

The time of the Sync multi-sequence block is indicated as T min. The dotted line indicates an unknown time.

Find us at www.keysight.com Page 176

Calculating Local Instruction Start Delay Requirements
The following examples show how to calculate the latency for Local instruction statements using the latency
information provided in Local Instruction Statement Timing Tables and in the instrument documentation.

When an instruction requires the result from a previous operation, theminimum delay (MinDelay) from the
previous (1st instruction) to the current (2nd instruction) is given by this equation:

MinDelay_Instr1_to_Instr2 = Instr1_ExecutionTime - Instr2_FetchTime

For those statements that include aminimum Start delay, theminimum time is the highest value of theminimum
Start delay or the value calculated in the equation above.

NOTE TheMinDelay resulting from the previous calculation using the Fetch time is not enforced by the
compiler. This is because in some cases it is desirable to implement pipelines of operations and
exploit the fact that the next instruction uses the previous value of a register, before the previous
operation is completed.

Example 1: Add instruction followed by a Local if statement
In this example an Add instruction writes to a register and the new value of the register is used for the if
condition.

1. Reg1 = RegN + 10 (Add).
2. If(Reg1 > 10) (the if uses the result of the previous Add instruction).

In this case, theminimal delay between the If and the previous Add using the fetch and execution timing is
calculated with this equation:

MinDelay_If = Add_ExecutionTime - If_FetchTime = 8 - 4 = 4 cycles

To use this value, youmust add the start-latency of the If , which, for this specific case, is 6 cycles.

Theminimum start-delay that youmust use tomake sure that the result of the Add operation is used by the If
statement is:

MinDelay_If = 4 + 6 = 10 cycles

Find us at www.keysight.com Page 177

Example 2: Add instruction inside a While Statement
In this example there is an Add instruction that writes to a register and the new value of the register is used by
the while condition.

1. Reg1 = 0

2. While(Reg1 < 1) (theWhile uses the result of the internal Add instruction).
3. Reg1 = Reg1 + 1 (Add).

In this case, theminimal delay between the Add inside the While and the condition check for executing one
more iteration is calculated with this equation:

MinDelay_If = Add_ExecutionTime - While_FetchTime = 8 - 4 = 4 cycles

However, since you cannot specify iteration_delay, youmust make sure that this extra time is consumed before
reaching the end of the internal while sequence. This can be done by adding a delay statement with at least 3
cycles of delay. This way the final delay will become 4 cycles (including the fetch time of the Delay statement).

Example 3: Add instruction followed by a Local Sync register-sharing
statement
In this example an Add instruction writes its result to a register and then then new value is shared to other
modules. The Sync register-sharing statement is not a Local instruction statement, but the timing calculation
and fetch time applies in the sameway.

1. Reg1 = RegN + 10 (Add).
2. SyncRegisterShare(Reg1) (sharing the result of the previous Add instruction).

In this case, theminimal delay between the Sync register-sharing and the previous Add is calculated with this
equation:

MinDelay_SyncRegShare = Add_ExecutionTime - SyncRegShare_FetchTime = 8 - 1 = 7 cycles

The Sync register-sharing has nominimum Start delay, so the result of the equation can be used as:

MinDelay_SyncRegShare

Find us at www.keysight.com Page 178

Sync Statement Timing
This section describes Sync statement timing. It contains the following sections:

l About Sync Statement Timing.
l Sync While Timing.
l Sync Register-Sharing
l Basic Local Statement Timing Across Sync Multi-Sequence Blocks
l Sync Multi-Sequence Block Timing and TimeMatching.
l Synchronization Points and Sync Sequence Start.

Find us at www.keysight.com Page 179

About Sync Statement Timing
Sync statements consumeHVI engine execution time and cannot overlap their execution with other statements.
The Start delay of a Sync statement is measured from the end of previous Sync statement to the start of the
current one.

The following diagram shows the timing between a number of Sync Statements including a Sync register-
sharing statement and Sync multi-sequence block statement.

The diagram shows two Sync Statements A and B. Sync Statement B is a container for two further Sync
Statements: Sync register-sharing and Sync multi-sequence block. The times indicated areStart Delay A ,
Start Delay B , Start Delay C , T1, and T2.

The time between the end of Sync Statement A and the start of Sync register-sharing is Start Delay A + Start
Delay B.

The time between the end of Sync register-sharing and the start of Sync multi-sequence block is Start Delay C .

Sync register-sharing and Sync multi-sequence block timing:

Find us at www.keysight.com Page 180

Sync While Timing
For the Sync flow-control Statement Sync while, the timing is different compared to other Sync statements. The
Sync while statement continues operation while a condition is met. It stops executing when the condition is no
longer met.

The following diagram shows a Sync while statement with other Sync statements. The time for an iteration of
Sync while is T2 x N, where T2 is the time per iteration and N is the number of iterations. The time cannot be
indicated exactly on a diagram or in code because the number of iterations is not known until runtime.

The time for the containing statement Sync statement A cannot be indicated because it contains a flow-control
statement. This is indicated by the dotted line and the time indicated as T min.

Find us at www.keysight.com Page 181

Sync Register-Sharing
The Sync register-sharing statement execution timemust be accounted for when calculating the Sync sequence
timing.

The following diagram shows Sync register-sharing statement followed by a Sync multi-sequence block.

For the execution time see Sync Statement Timing Tables.

Find us at www.keysight.com Page 182

Basic Local Statement Timing Across Sync Multi-Sequence Blocks
This section shows basic examples of Local statements within Sync Multi-sequence Blocks and how the timing
is calculated.

It contains the following sections:

l Simple Local instruction timing calculation example.
l Simple Local instruction with Local if timing calculation example.

Find us at www.keysight.com Page 183

Simple Local instruction timing calculation example
This example shows a pair of Sync Multi-sequence blocks each with a Local instruction each. A diagram and the
code and timing calculations are shown.

The following is a diagram of the example:

The code for the example:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
instA = seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 10, seq.instruction_set.trigger_write.id)

The timing calculations for the example:

InstA Execution Start time from HVI-Start (InstA_start):

InstA_start = start_delay(mse1) + start_delay(instA) = 50ns + 20ns = 70ns

Time from InstA to InstB (T_InstA_InstB) :

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 20ns + 10ns = 30ns

Find us at www.keysight.com Page 184

Simple Local instruction with Local if timing calculation example
This example shows cascaded Local if statements within a Sync multi-sequence block followed by a Local
instruction in a Sync multi-sequence block. The code and timing calculations are also shown:

The following is a diagram of the example:

The code for the example:

mse1 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse1", 50)
seq = mse1.sequences['EngineA']
if1 = seq.add_if('if1', 70, if1_cond, True)
if1_branch_seq = if1.if_branch.sequence
if2 = if1_branch_seq.add_if('if2', 80, if2_cond, True)
if2_branch_seq = if2.if_branch.sequence
instA = if2_branch_seq.add_instruction("instA", 20, seq.instruction_set.trigger_write.id)
#
mse2 = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2", 20)
seq = mse2.sequences['EngineA']
instB = seq.add_instruction("instB", 10, seq.instruction_set.trigger_write.id)

Find us at www.keysight.com Page 185

The timing calculations for the example:

The formula to calculate the InstA execution start time from HVI-Start, InstA_start is:

InstA_start = start_delay(mse1) + start_delay(if1) + start_delay(if2) + start_delay

(instA) = 50ns + 70ns + 80ns + 20ns = 220ns

The formula to calculate time from InstA to InstB, T_InstA_InstB is:

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 20ns + 10ns = 30ns

NOTE The end_latency(mse1) is accounted for in the start_delay(mse2) , this imposes a
minimum value.

Find us at www.keysight.com Page 186

Calculating Sync Flow-Control Statement Latency
This example shows how time is calculated for a Sync while statement that contains a Sync multi-sequence
block and a single instruction:

The following diagram shows the example:

The following block shows the example code:

sync_while = sequencer.sync_sequence.add_sync_while('sync_while', 170, sync_while_
condition)
mse1_sequence = sync_while.sync_sequence.add_sync_multi_sequence_block("mse1",
250).sequences['EngineA']
instA = mse1_sequence.add_instruction("InstA", 20, seq.instruction_set.assign.id)
#
mse2_sequence = sequencer.sync_sequence.add_sync_multi_sequence_block("mse2",
230).sequences['EngineA']
instB = mse2_sequence.add_instruction("InstB", 50, seq.instruction_set.assign.id)

The following are the equations used to calculate the timing in the example:

InstA Execution Start time from HVI-Start, InstA_start :

Find us at www.keysight.com Page 187

InstA_start = start_delay(sync_while) + start_delay(mse1) + start_delay(instA) =

170ns + 250ns + 20ns = 440ns

Sync multi-sequence block Execution time, Tmse1 :

Tmse1 = SequenceTime = 20ns

Sync while Execution time for 1 loop when looping, Twhile_loop :

Twhile_loop = Twhile = {start_delay(mse1) + Tmse1} = {250ns + 20ns} = 270ns

Time from InstA to InstA in consecutive repetitions, Tloop_InstA :

Tloop_InstA = Twhile_loop

Time from InstA to InstB (the last Sync while execution), T_InstA_InstB :

T_InstA_InstB = start_delay(mse2) + start_delay(instB) = 230ns + 50ns = 280ns

NOTE The end_latency(sync_while) is accounted for in the start_delay(mse2). This imposes a
minimum value.

Sync Multi-Sequence Block Timing and Time Matching
In a synchronizedmulti-sequence block, you can define the statements that the HVI engines execute in parallel
with other engines.

Local sequences start and end their execution within the Sync multi-sequence block synchronously.

HVI automatically calculates the execution time of each local sequence and adjusts the execution of all local
sequences within the Sync multi-sequence block. This is so that all the sequences within the Sync multi-
sequence block can end together deterministically. The final time is calculated automatically.

There are two cases that are treated in a different way by HVI:

l Execution time is known at HVI compilation time for all Local sequences within the Sync multi-sequence
block.

l Execution time is unknown at HVI compilation time for one or more Local sequences within the Sync multi-
sequence block.

Find us at www.keysight.com Page 188

Sync multi-sequence block containing Local sequences with known total
execution time
A Sync multi-sequence block can contain instructions or flow-control statements with execution times that are
known at HVI compilation time. In this case the HVI accounts for the different sequence execution times during
compilation and then adjusts the final times. This ensures all of the Local sequence reach the end of the Sync
multi-sequence block at the same time.

Sync multi-sequence block with minimum execution time
In the following diagram, the time of the Sync multi-sequence block is not specified, so the compiler adjusts the
total execution time of all Local sequences to the longest one. The times of the instructions and the delays
between them are known, so the timing between them and the timing of the entire block can be calculated. The
Sync multi-sequence block execution time is set to theminimum possible time given by the longest Local
sequence.

The total time for Engine A is 400 ns. HVI calculates the times required for the other engines to finish at the
same time. For Engine B this is 390 ns, for Engine K this is 90 ns.

Find us at www.keysight.com Page 189

Sync multi-sequence block with a specific execution time (duration property)
In the following diagram, the times of the instructions and the delays between them are known, so the timing
between them and for the entire block can be calculated. In this case the total time is specified at 750 ns. The
HVI calculates the times required for all the other engines to finish at the same time. For Engine A this is 350 ns,
for Engine B this is 740 ns, for Engine K this is 440 ns.

Find us at www.keysight.com Page 190

Sync multi-sequence block containing Local sequences with unknown
execution times
In some cases, one or more of the local sequences within the Sync multi-sequence block include a local flow-
control statement that has an execution time that is unknown at HVI compilation time. At the point in the Local
sequence where the unknown execution time is encountered, the Local sequence becomes de-synchronized.
Since HVI ensures that all the Local sequences in a Sync multi-sequence block end at the same time when
there is such a Local flow-control statement, HVI implements a special re-synchronization procedure at the end
of the Sync multi-sequence block.

In the following diagram, the time of the instructions and the delays between them are known, except for the
execution time of theWait event. This means the execution time of the complete Sync multi-sequence block
cannot be specified. HVI still enforces all Local sequences to end at the same time, but in this case the time
required at the end of each sequence is not known since it cannot be calculated during the HVI compilation, this
is indicated by the dotted lines. The time of the full Sync multi-sequence block is also unknown, so this is
indicated as T min with a dotted line. To enforce that all Local sequences synchronize again at the end of the
Sync multi-sequence block, special re-synchronization instructions are added at the end of each local sequence
in the Sync multi-sequence block. This re-synchronization procedure relies on triggering resources to re-
synchronize the execution of the Local sequences on all the HVI engines. This procedure is explained in detail in
the following section.

Find us at www.keysight.com Page 191

Synchronization Points and Sync Sequence Start
All Sync statements enforce synchronization points across instruments and HVI Engines. The start and the end
of a Sync multi-sequence block or Sync while statement are examples of Synchronization points. In addition to
Sync statements, the start of the sequence is also a critical synchronization point, it ensures that all HVI
engines start execution at the same time.

There are two types of synchronization points:

Timed sync points

These points correspond to Sync statements where the timing of execution of all HVI engines in the HVI
can be determined without ambiguity at compilation time. In this case, the HVI compiler adjusts the timing
before the Sync point in each HVI engine to ensure all engines leave the Sync point at exactly the same
time.

Triggered sync points

The triggered sync points are the points where an active triggering process is required to re-synchronize the
execution of all HVI engines. They are necessary in those cases when the execution time of one or more
HVI engines cannot be determined at compile time. In the HVI diagrams in this User Manual, a dotted
arrow is used to indicate this. This occurs in the following cases:

l At the start of the HVI Sequence, that is, the Global Sync sequence.

l At the end of a Sync multi-sequence block statement, where in at least one of the local sequences, there
are one or more statements with an execution time that is unknown at compile time. Possible cases of the
unknown execution time are:

l AWait-for-time statement with a register defining the wait time at runtime.
l AWait-for-event statement.
l AWhile statement.
l An If statement with unmatched branches that take different execution times.

Find us at www.keysight.com Page 192

Timing with triggered-sync points
Triggered-sync points require the use of trigger resources assigned in the SyncResources property in the
SystemDefinition instance and themain Sync signal. This is to re-synchronize all HVI engines, and
guarantees all engines then continue execution after the Sync point at exactly the same point. The execution
resumes in all HVI engines at the same time, aligned with a sub-sequence Sync pulse, this forces the execution
to be aligned to amultiple of the Sync period.

The Sync-period uses this equation:

100ns * #chassis

Triggered sync delay
A triggered-sync point adds a delay to the sequence timing that has four parts. Two of them are constant and the
other two vary depending on the last statement and its position compared to the Sync pulse time. The formula to
calculate the delay is:

triggered_sync_delay = end_latency + sync_overhead + edge_offset + sync_period

where:

l end_latency is the End-latency of the last statement before the resync. If the last statement is a local
instruction, this is equal to its Fetch time.

l sync_overhead is constant per instrument. Its value is 3 cycles.

l edge_offset is the time interval from the end of the sync_overhead to the sync-pulse edge. This time can
vary depending on the position of the last statement compared to the Sync pulse time.

l sync_period is constant per configuration and is calculated by the equation defined previously.

Find us at www.keysight.com Page 193

Example of timing management with triggered-sync
The following diagram shows an example with a simple sequence where the triggered-sync points have been
marked in red. There are two triggered-sync points, the HVI start which is always present, and a second one at
the end of the Sync multi-sequence block. The second sync point is required because there is aWaitTime
statement and the time for this cannot be determined at compile time.

The following table shows the Variables and their execution times:

The following diagrams shows the execution timeline for the first 3 iterations of the sequence shown in the
previous diagram:

Find us at www.keysight.com Page 194

Timing management with triggered-sync as a result of a Wait-for-event
statement
In the case that the re-synchronization process is taking place because of aWait-for-event statement inside a
Sync multi-sequence block statement, there are two possible scenarios:

l The event is in-sync with the Sync pulse, that is, it is happening at a constant offset compared to
the Sync pulse.

In this scenario, the previous example applies to this case. You just need to adjust the Triggered-
Sync Entry to the event arrival time and the result will be similar.

l The event is out-of-sync with the Sync pulse.

In this scenario, the same time from the execution of the actions from one iteration to the other cannot
be guaranteed. Depending on the time of the event arrival, the triggered-sync latency might change in
number of cycles from iteration to iteration. In this case, all of the HVI sequence statements following
theWait statement will execute with a jitter equal to one Sync period.

Find us at www.keysight.com Page 195

Sync Statement Timing Tables
This section provides timing values for Sync statements and Sync flow-control statements, it contains the
following sections:

l HVI Start
l Sync Register-Sharing Statement
l Sync Multi-Sequence Block Statement
l Sync While Statement

HVI Start
This is the time 0 for the HVI execution. It always matches the rising edge of the Sync Pulse.

HVI start basic timing value:

Parameter Time (cycles)

End-Latency 3

Find us at www.keysight.com Page 196

Sync Register-Sharing Statement
Sync register-sharing latency does not depend on the number of bits shared. For more information on this
functionality, see HVI Statements and HVI API Sync Statements.

Timing value for Sync register-sharing statement:

Execution time (cycles) (1) Fetch time (Primary Module, cycles)
5 + Propagation_delay_cycles (2) 1

(1) The value provided here applies if the duration property of the statement is set to Minimum (default). If a
fixed-duration has been set, then the Execution Time is equal to that value.

(2)Propagation_delay_cycles = 100ns * clock_frequency * #chassis

Latency values for Sync register-sharing statement:

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for statement 0

End-Latency Minimum start-delay for the next statement 1

Fixed-Duration - 5 + Propagation_delay_cycles (1)

(1)Propagation_delay_cycles = 100ns * clock_frequency * #chassis

Find us at www.keysight.com Page 197

Sync Multi-Sequence Block Statement
Timing value for Sync multi-sequence blocks:

Execution time (cycles) (1) Fetch time (Primary Module, cycles)
sumfor_all_internal_statements (Start-Delay) +

sumfor_all_internal_flow_control_statements (Duration)

(2)

N/A

(1) The values provided here apply if the duration property of the statement is set to Minimum (default). If a
fixed-duration has been set, then the Execution time is equal to that value.

(2) The values are only calculated for the branch that is being executed, if there aremultiple branches
available.

Find us at www.keysight.com Page 198

Latency values for Sync Multi-Sequence Blocks:

Parameter Description Time(cycles)

Start-Latency Minimum start-delay for statement 0

Entry-latency Minimum start-delay for first statement inside
any of the contained sequences

1

End-Latency
Minimum start-delay
for the next
statement

timed-sync (3)

Minimum Duration

End-LatencyLast-statement-of-
longest-branch (1)

timed-sync (3)

Fixed Duration

1

triggered-sync (3) 1

Fixed-Duration [maxfor_all_Branches [Branch-

Duration] - 1] (2) ,

where Branch-duration is calculated
as follows:

sumfor_all_internal_statements

(Start-Delay) + sumfor_all_

internal_flow_control_statements

(Duration) + End-LatencyLast-

statement

(1) If the sequence is empty, the value is constant 1.

(2) If all branches are empty, then the duration is 0.

(3) Triggered-sync is required if any of the sequences in a Sync multi-sequence block contains a statement
that has unknown execution time at compile time. See section Synchronization Points and Sync
Sequence Start in Sync Statement Timing for more details.

Find us at www.keysight.com Page 199

Sync While Statement
Timing value for Sync while statement:

Execution time (cycles) (1)
Fetch time (Primary
Module, cycles)

#Iterations * [sumfor_all_internal_statements (Start-Delay) + sumfor_

all_internal_flow_control_statements (Duration)]

3 + #Register_Conditions

(1) This value applies if the duration property of the statement is set to Minimum (default). If a fixed-duration
has been set, then the Execution time is equal to that value.

Find us at www.keysight.com Page 200

Latency values for Sync while statement

Parameter Description Time (cycles)

Start-Latency Minimum start-delay for statement 5 + #Register_Conditions

Entry/Iteration
latency

Minimum start-delay for first
statement inside the while
loop

Minimum
Duration

14 + #Register_Conditions +

Propagation_delay_cycles (2)

+ Instrument_SyncResources_

Latency(1) + End-LatencyLast-

statement

Fixed Duration 14 + #Register_Conditions +

Propagation_delay_cycles(2)

+ Instrument_SyncResources_

Latency (1)

End-Latency Minimum start-delay for next
statement outside the while
loop

Minimum
Duration

14 + #Register_Conditions +

Propagation_delay_cycles(2)

+ Instrument_SyncResources_

Latency(1)+ End-LatencyLast-

statement

Fixed Duration 14 + #Register_Conditions +

Propagation_delay_cycles (2)

+ Instrument_SyncResources_

Latency(1)

Fixed-Duration - [sumfor_all_internal_statements

(Start-Delay)

+ sumfor_all_internal_flow_control_

statements (Duration) + End-

LatencyLast-statement](3)

(1) Instrument_SyncResources_Latency is an instrument specific value. For more information see the
instrument documentation.

(2)Propagation_delay_cycles = 100ns * clock_frequency * #chassis

(3) If the branch is empty, then the duration is equal to: 8 + #Register_Conditions

Find us at www.keysight.com Page 201

Local Flow-Control Statement Timing Tables
This section provides timing values for Local Flow-control statements, it contains the following sections:

l Local Wait-For-Time Statement
l Local Wait-For-Event Statement
l Local Delay Statement
l Local If Statement
l Local While Statement

NOTE In the tables below, whenever the end-latency of the last-statement contained in a flow-control
statement is required and that last statement is a Local instruction, the end-latency is calculated
as the fetch-cycles of that instruction.

Local Wait-For-Time Statement
AWait-for-time statement blocks HVI execution in a Local sequence until a specific amount of time passes.
This amount of time is defined in a register that is specified as an argument in theWait-for-time statement. The
value of the register specifies the number of cycles to wait.

Local Wait-for-time statement timing value:

Execution time (cycles) Fetch time (Primary Module, cycles)

RegisterValue 1

Local Wait-for-time statement latency values:

Parameter Time (cycles)
Start-Latency 1

End-Latency 1

Find us at www.keysight.com Page 202

Local Wait-For-Event Statement
A Local Wait-for-event statement blocks HVI execution in a Local sequence until an event occurs. Events
sources can be the Trigger IOs, or internal to the instrument (including FPGA User Sandbox Events).

Local Wait-for-event statement timing values:

Event type Execution time (cycles)
Fetch time
(cycles)

Internal
Event

MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) + 1,
Fetch_Time) + 1

3

Trigger IO MAX(Event_Arrival_Time(1) + Instrument_Event_Latency(2) +
Instrument_Event_Condition_Latency(3), Fetch_Time) + 1

1 + Instrument_
Event_Condition_

Latency
(1) Event_arrival_time is:

l Internal Events
l Event_Arrival_Time = Internal_Event_Generation_Time - WaitForEvent_Start_Time

l External Events
l Event_Arrival_Time = Event_At_Module_Connector_Time – WaitForEvent_Start_Time

l The event time can bemeasured at the front panel or PXIe backplane connector depending on the event.

(2) Instrument_Event_Latency is the delay from the event source until the event state is available inside the
HVI Engine. Events sources can be the Trigger IOs, or internal to the product (including FPGA User Sandbox
Events). It is an instrument and event specific value. Refer to the instrument documentation for more
information.

(3) Instrument_Event_Condition_Latency is the time needed for the condition evaluation to be executed
once the event has settled inside the HVI Engine. It is an instrument specific value. Refer to the instrument
documentation for more information.

NOTE TheEvent_Arrival_Time can be a negative value if the event enters themodule before theWait-
For-Event instruction Start Time. A number of scenarios are shown in the diagrams below.

Local Wait-for-event latency values:

Parameter Time (cycles)
Start-Latency 0

End-Latency 1

The following diagrams shows a number of scenarios where the execution time of aWait-For-Event statement
can vary:

Find us at www.keysight.com Page 203

Local Delay Statement
A Delay statement delays HVI execution in a Local sequence until a specific amount of time passes. This
amount of time is specified in a parameter in the statement.

Local Delay statement timing value:

Parameter Execution time (cycles)
Fetch time (Primary Module,
cycles)

Delay Delay Specified 1

Find us at www.keysight.com Page 204

Local If Statement
For if statements with multiple If / Else-If / Else branches, the Entry delays are the same for all branches.

If thematch-branches attribute is enabled, the HVI ensures that the execution of all of the branches have the
same overall delay. If match-branches is not enabled, some branches might take less time than others.

The If statement latency depends on the number or register-conditions used: #Register_Conditions .

Local If timing value:

Execution time (cycles) (1) (2) Fetch time (Primary Module,
cycles)

sumfor_all_internal_statements (Start-Delay) + sumfor_all_internal_

flow_control_statements (Duration) (3)
3 + #Register_Conditions

(1) The value provided here applies if the duration property of the statement is set to Minimum (default). If a
fixed-duration has been set, then the Execution time is equal to that value.

(2) This value is only calculated for the branch that is executed, if there aremultiple branches available.

(3) If the branch is empty, the execution time becomesEntry-Latencybranch - 1 .

Find us at www.keysight.com Page 205

Local If latency values:

Parameter Description Minimum time (cycles)

Start-
Latency

Contributes to theminimum-
possible start-delay for the
statement

5 + #Register_Conditions_IfBranch

Entry-
latency

Contributes to the minimum-
possible start-delay for first
statement in branch #

3 + (6 + #Register_Conditions) * Indexbranch

where Indexbranch is the branch index starting the count
from 0:

l IndexIF-branch = 0
l Indexith_ELSEIF-branch = i
l IndexELSE-branch = #if&elseif_Branches

End-
Latency

Contributes
to the
minimum-
possible
start-delay of
the next
statement
outside the if
statement

Matching
Branches

disabled

3 + maxfor_all_Branches [End-LatencyLast-statement]

(1)

Matching
Branches

enabled

3 + End-LatencyLast-statement-of-longest-branch (2)

Where longest branchmeans the branch with longer
execution time.

Fixed-Duration 1

Fixed-Duration 2 + m axfor_all_Branches [Branch-Duration](3)

Where Branch-Duration is calculated as follows:

[sumfor_all_internal_statements (Start-Delay) +

sumfor_all_internal_flow_control_statements (Duration)

+ End-LatencyLast-statement] (4)

(1) If themaximum end latency used in this equation corresponds to the if-branch, and the calculated latency is
greater than 4, then theEnd-latency is the calculated valueminus 1.

(2) If the longest branch is the if-branch, then theEnd-latency is the calculated valueminus 1.

(3) If themaximum branch duration used in the equation corresponds to the if-branch, then the duration is the
calculated valueminus 1.

Find us at www.keysight.com Page 206

(4) If a branch is empty, then the branch duration is equal to the Entry-latency of the branch.

Local While Statement

Execution time (cycles) (1)
Fetch time (Primary Module,
cycles)

#Iterations * [sumfor_all_internal_statements (Start-Delay) +

sumfor_all_internal_flow_control_statements (Duration)]

2 + #Register_Conditions

(1) This value applies if duration property of the statement is set to Minimum (default). If a fixed-duration
has been set, then this is the Execution time is equal to that value.

Local While latency values:

Parameter Description Time (cycles)
Start-Latency Minimum start-delay for the statement 5 + #Register_Conditions

Entry/Iteration latency Minimum
start-delay
for first
statement
inside the
while loop

Minimum Duration 8 + #Register_Conditions + End-

LatencyLast-statement

Fixed Duration 8 + #Register_Conditions

End-Latency Minimum
start-delay
for the next
instruction
outside the
while loop

Minimum Duration 8 + #Register_Conditions + End-

LatencyLast-statement

Fixed Duration 8 + #Register_Conditions

Fixed-Duration [sumfor_all_internal_statements

(Start-Delay) + sumfor_all_internal_

flow_control_statements (Duration) +

End-LatencyLast-statement](1)

(1) If the branch is empty, then the duration is equal to the Entry-Latency of the branch.

Find us at www.keysight.com Page 207

Local Instruction Statement Timing Tables
The following sections list the fetch and execution latency for HVI-native Local instruction statements. Unless
stated otherwise, all times are in HVI engine clock cycles. The HVI engine clock frequency is instrument
specific. For information about the HVI engine clock frequency and instrument-specific instruction latencies,
See your instrument documentation.

This section contains the following sections:

l TriggerWrite

l Action Execute

l Arithmetic Logic Unit Instructions

l FPGA User Sandbox Instructions

l Instrument-Specific Local Instruction Statement Timing Values

Find us at www.keysight.com Page 208

Trigger Write
Any number of TriggerIOs can be written at the same time. TriggerIOs are organized in groups of 16 and each
value written can beON or OFF.

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.
l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

The Fetch time of the instruction depends on the number of different TriggerIO groups included in the instruction
for the two possible values (#TriggerIOGroupsON or #TriggerIOGroupsOFF).

The following table provides some examples.

Triggers ON Triggers OFF #TriggerIOGroupsON #TriggerIOGroupsOFF
Execution time
(cycles)

Fetch time
(cycles)

1, 2 1 0 2 1

1, 2, 17, 18 2 0 2 1

1, 2 3, 4 1 1 2 1

1, 2, 17, 18 3, 4 2 1 3 2

1, 2, 17, 18 3, 4, 19, 20 2 2 3 2
See your instrument documentation for information about instrument specific TriggerIO definitions.

NOTE Trigger execution time is instrument specific. For trigger execution timing information, see your
instrument documentation.

Example Trigger write basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

TriggerWrite Instrument_Trigger_Execution +
(#TriggerWriteGroups - 1)

#TriggerWriteGroups

#TriggerWriteGroups = ceil[(TriggerIOGroupsON + TriggerIOGroupsOFF)/2], where

l #TriggerIOGroupsON is the number of TriggerIOGroups that contain values set to ON.
l #TriggerIOGroupsOFF is the number of TriggerIOGroups that contain values set to OFF.

Find us at www.keysight.com Page 209

Action Execute
The action-execute HVI instruction synchronously executes a list of HVI actions defined by the user. HVI
actions are organized in groups that can contain up to 16 actions. Each instrument defines its own groups of
actions. See the instrument documentation for information about instrument action definitions and the way they
are grouped. Any number of HVI actions can be executed synchronously, regardless of the group that each
action user belongs to.

However, the number of action groups included in the action-execute instruction (#ActionGroups) affects both
the Fetch time and the Execution time of the instruction, as shown by the equations in the following table.

NOTE Action execution timing is instrument specific. For action execution timing information, see your
instrument documentation.

Example Action execute basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)

ActionExecute Instrument_Action_Execution + INT[
(#ActionGroups-1) / 2]

1 + INT[(#ActionGroups -1) / 2]

Where INT is the integer part of a decimal number, for instance INT(1.0)=INT(1.5)=1.

Arithmetic Logic Unit Instructions
Arithmetic Logic Unit (ALU) instructions are the register add, subtract or assign operations that are available in
the HVI-native instruction set.

ALU instructions basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)
Add 8 1

Subtract 8 1

Assign 5 1

Find us at www.keysight.com Page 210

FPGA User Sandbox Instructions
The access latency of the FPGA registers andmemory map from HVI depends on the implementation of the
specific instrument. The following table summarizes the latency for all FPGA read/write instructions. For the
specific value of Instrument_HVI_FPGA_Latency, see your instrument documentation.

NOTE FPGA user sandbox timing is instrument specific. For FPGA user sandbox timing information, see
your instrument documentation.

Example FPGA user sandbox operations basic timing values:

Instruction Execution time (cycles) Fetch time (cycles)
FpgaArrayRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaArrayRead (Address
from HviRegister)

2 * Instrument_HVI_FPGA_Latency + 6 1

FpgaArrayWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaArrayWrite (Address or
data from HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterRead 2 * Instrument_HVI_FPGA_Latency + 4 1

FpgaRegisterWrite Instrument_HVI_FPGA_Latency + 2 1

FpgaRegisterWrite (Address
or data from HviRegister)

Instrument_HVI_FPGA_Latency + 4 1

NOTE l Consecutive FPGA read instructions must be issued with at least 1 cycle of delay between
them.

l If an FPGA instruction that uses an HVI register is issued before an FPGA instruction that does
not use an HVI register, the delay between both instructions must be at least 3 cycles.

Instrument-Specific Local Instruction Statement Timing Values
See the instrument-specific documentation for information on the HVI engine clock frequency and instrument-
specific instruction timing information.

Find us at www.keysight.com Page 211

Appendix A: Supported Instruments
PathWave Test Sync Executive is a new generation of Hard Virtual Instrument (HVI) technology and is not
backward compatible with the previous generation. The previous generation of HVI technology is only
programmable by M3601A Hard Virtual Instrument Design Environment and is not forward compatible with the
new generation of HVI technology or PathWave Test Sync Executive.

Both PathWave Test Sync Executive andM3601A work with theM3000 series of PXIe products. However,
PathWave Test Sync Executive requires newer firmware while M3601A requires older firmware.

Firmware requirements are listed on-line here: Instrument Software and Firmware Requirements for KS2201A.

M3000 Series Software And Firmware Version Requirements
TheM3000 series (SD1) software provides drivers, programming libraries and software front panels for the
M3000 series.

Software version requirements are listed on-line here: Instrument Software and Firmware Requirements for
KS2201A.

Instruments are shipped with the latest versions of firmware and SD1 software. To use an older instrument with
PathWave Test Sync Executive, the firmware and SD1 softwaremust be upgraded to the versions
recommended in the product page following the guidelines at the links above. SD1 software is available at
Keysight SD1 Software.

Firmware is available at Keysight PXI Products, on the Technical Support page for your specific instruments,
see theDrivers, Firmware & Software tab.

M5302A Software And Firmware Version Requirements
TheM5302A software provides drivers, programming libraries and software front panels for theM5302A
Instrument.

Software version requirements are listed on-line here:Instrument Software and Firmware Requirements for
KS2201A.

Instruments are shipped with the latest versions of firmware and software. To use an older instrument with
PathWave Test Sync Executive, the firmware and softwaremust be upgraded to the versions recommended in
the product page following the guidelines at the links above.

Firmware is available at Keysight PXI Products, on the Technical Support page for your specific instruments,
see theDrivers, Firmware & Software tab.

Find us at www.keysight.com Page 212

https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/sd1software_windows
http://www.keysight.com/find/pxi
https://www.keysight.com/find/ks2201a-firmware-version-requirements
https://www.keysight.com/find/ks2201a-firmware-version-requirements
http://www.keysight.com/find/pxi

Appendix B: Additional Documentation and Examples
This appendix lists the PathWave Test Sync Executive Programming Examples and additional documentation
that you can download from theKS2201A Programming Examples page.

NOTE The Programming Examples are often updated so ensure you check for the latest versions.

Programming Example 1: Multi-Channel Sync Playback using
M32xxA Arbitrary Waveform Generators
In Programming Example 1, PathWave Test Sync Executive is used to programmultiple M3xxxA Arbitrary
Waveform Generators (AWG)s. The AWGs synchronously output a front panel trigger pulse followed by a
previously queued waveform. All instruments run fully synchronized and actions across the instruments can be
controlled at the timing resolution of theM3xxxA AWGs, which is 10ns.

Programming Example 2: Synchronous Signal Generation and
Acquisition using M3xxxA PXI Instruments
In Programming Example 2, aM3102A digitizer performs sequenced acquisition of heterogeneous signals
generated by multiple M320xA AWGs. The first AWG generates a train of RF pulses and the other AWGs output
a queued arbitrary waveform. By using PathWave Test Sync Executive, each cycle of the digitizer
measurements is precisely synchronized with the AWGoutput signals.

Programming Example 3: PathWave Test Sync Executive
Integration with PathWave FPGA
This Programming Example shows how to use Keysight PathWave Test Sync Executive together with Keysight
PathWave FPGA. A custom FPGA block is designed using Keysight PathWave FPGA and loaded into the
sandbox of twomodular instruments. The two instruments execute HVI sequences that can communicate with
the custom FPGA blocks programmed into the sandbox of themodule FPGA. Using an HVI Port, the HVI
sequence can read/write values in any HVI Port Register inserted among the custom FPGA blocks. This
example also shows how the HVI sequence and FPGA sandbox of an instrument can communicate by using
actions and events. The exchanged information can also be written to PXI lines.

Find us at www.keysight.com Page 213

http://www.keysight.com/find/ks2201a-programming-examples

Programming Example 4: Real-Time Pulsed Characterization of
a Device-Under-Test
In this Programming Example, anM3202A AWGand anM3102A digitizer are used to perform a real-time pulsed
characterization experiment on a Device Under Test.

A pool of different waveforms is loaded to the AWGRAM. The digitizer uses the register-sharing functionality to
select a real-time the waveform to be played by the AWGat each iteration of the experiment. The selected
waveform is used by AWGCH1 and CH2 to play I-Qmodulated pulses and re-play them after a Variable delay.
In the same iteration, AWGCH3 and CH4 play a second burst of I-Q pulses after another Variable delay. The
second burst pulse length can be increased after each iteration. The experiment can be repeated for a user-
defined number of loops, allowing you to choose the delay between each loop and the delay necessary for
example to let the DUT return to its equilibrium state. Example use cases for this programming example include
power amplifier characterization for 5Gmobile communications and quantum bit characterization experiments
for physics applications. In the physics case, the AWGgenerates the control and readout pulses necessary for
characterization of quantum bits.

Programming Example 5 - Synchronized Multi-Channel
Mixed-Signal Generation using M3xxA PXI Instruments
In this Programming Example, KS2201A PathWave Test Sync Executive is used to programmultiple M3xxx
Arbitrary Waveform Generators to synchronously generatemixed signals. Each instrument can be programmed
to output either a front panel marker pulse or a previously queued waveform. All signal channels run fully
synchronized and actions across instruments can be controlled with the timing resolution of theM3xxxA AWGs,
which is 10ns.

Programming Example 6 - Synchronized MIMO Measurements
using M5302A Digital I-O and M3xxxA PXI Instruments
In this programming example, PathWave Test Sync Executive is used to programmultiple M5302A Digital I/O
(DIO) andM3xxxA PXI instruments. By using HVI (Hard Virtual Instrument) capabilities, DIO instruments can
output a pulsed signal from any of their Front Panel (FP) SMB trigger ports andM320xA AWGs can
synchronously play a previously queued waveform. Multiple M3102A Digitizers can also be included in the same
HVI to synchronously capture all the generated analog and digital signals. This way the example can showcase
aMultiple-Input Multiple-Output (MIMO)measurement setup having all his input and output channels fully
synchronized.

Find us at www.keysight.com Page 214

Transitioning from M3601A HVI Programming Environment to
KS2201A PathWave Test Sync Executive
This Transition Guide is intended for M3601A users and explains how to translate anM3601A project into HVI
API Python code programmed using Keysight KS2201A PathWave Test Sync Executive.

Find us at www.keysight.com Page 215

Find us at www.keysight.com Page 216
This information is subject to change without notice. © Keysight Technologies, 2020-2021, Published in USA, March 24 2021,KS2201-90000

	KS2201A - PathWave Test Sync Executive User Manual
	Chapter 1: Introduction
	Chapter 2: Installing PathWave Test Sync Executive
	System Requirements
	Install Main Components
	Install Additional Components

	Chapter 3: Installing Licenses
	Chapter 4: HVI Elements
	About Instruments
	About PathWave Test Sync Executive
	HVI API Language Support
	HVI API Use Model
	HVI Engines
	HVI Resources
	HVI Sequences and Statements
	HVI Sequences
	HVI Statements

	HVI Diagrams
	HVI Timing

	Chapter 5: The HVI API
	HVI API Functionality
	HVI API Organization
	SystemDefinition
	Engines
	Chassis and Interconnects
	Synchronization Resources and Clocks

	Sequencer
	About the Sequencer Class
	HVI SyncSequence and Sequence
	HVI API Statements
	InstructionSet
	FPGA Sandbox View
	HVI Registers and Scopes
	HVI Time API
	HVI Compilation
	Sequence Visualization

	The Hvi Object
	EngineRuntime Components
	Load to Hardware and Run

	HVI API Sync Statements
	HVI API Local Statements

	Chapter 6: Building an Application with the HVI API
	Planning an HVI
	1 Set Up The HVI
	2. Write HVI Sequences
	3. Compile Your Sequences
	4. Load To Hardware
	5. Modify Initial Register Values (Optional)
	6. Execute Sequences
	7. Release All Resources

	Chapter 7: HVI Time Management and Latency
	About Time Management and Latency Concepts
	Duration Property of Statements
	Local Statement Timing
	Sync Statement Timing
	Sync Statement Timing Tables
	Local Flow-Control Statement Timing Tables
	Local Instruction Statement Timing Tables

	Appendix A: Supported Instruments
	Appendix B: Additional Documentation and Examples

