

SystemVue - Simulation

1

SystemVue 2010.01
2010

Simulation

SystemVue - Simulation

2

© Agilent Technologies, Inc. 2000-2010
395 Page Mill Road, Palo Alto, CA 94304 U.S.A.
No part of this manual may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments Mentor Graphics is a trademark of Mentor Graphics Corporation in
the U.S. and other countries. Microsoft®, Windows®, MS Windows®, Windows NT®, and
MS-DOS® are U.S. registered trademarks of Microsoft Corporation. Pentium® is a U.S.
registered trademark of Intel Corporation. PostScript® and Acrobat® are trademarks of
Adobe Systems Incorporated. UNIX® is a registered trademark of the Open Group. Java™
is a U.S. trademark of Sun Microsystems, Inc. SystemC® is a registered trademark of
Open SystemC Initiative, Inc. in the United States and other countries and is used with
permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HiSIM2
source code, and all copyrights, trade secrets or other intellectual property rights in and to
the source code in its entirety, is owned by Hiroshima University and STARC.

Errata The SystemVue product may contain references to "HP" or "HPEESOF" such as in
file names and directory names. The business entity formerly known as "HP EEsof" is now
part of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality
and to maintain backward compatibility for our customers, we did not change all the
names and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this manual and any information contained herein, including but not limited
to the implied warranties of merchantability and fitness for a particular purpose. Agilent
shall not be liable for errors or for incidental or consequential damages in connection with
the furnishing, use, or performance of this document or of any information contained
herein. Should Agilent and the user have a separate written agreement with warranty
terms covering the material in this document that conflict with these terms, the warranty
terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license.

Portions of this product is derivative work based on the University of California Ptolemy
Software System.

In no event shall the University of California be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of this software and its
documentation, even if the University of California has been advised of the possibility of
such damage.

The University of California specifically disclaims any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The
software provided hereunder is on an "as is" basis and the University of California has no
obligation to provide maintenance, support, updates, enhancements, or modifications.

Portions of this product include code developed at the University of Maryland, for these
portions the following notice applies.

In no event shall the University of Maryland be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of this software and its
documentation, even if the University of Maryland has been advised of the possibility of
such damage.

The University of Maryland specifically disclaims any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. the
software provided hereunder is on an "as is" basis, and the University of Maryland has no
obligation to provide maintenance, support, updates, enhancements, or modifications.

Portions of this product include the SystemC software licensed under Open Source terms,
which are available for download at http://systemc.org/ . This software is redistributed by
Agilent. The Contributors of the SystemC software provide this software "as is" and offer
no warranty of any kind, express or implied, including without limitation warranties or
conditions or title and non-infringement, and implied warranties or conditions
merchantability and fitness for a particular purpose. Contributors shall not be liable for
any damages of any kind including without limitation direct, indirect, special, incidental
and consequential damages, such as lost profits. Any provisions that differ from this
disclaimer are offered by Agilent only.
With respect to the portion of the Licensed Materials that describes the software and
provides instructions concerning its operation and related matters, "use" includes the right
to download and print such materials solely for the purpose described above.

Restricted Rights Legend If software is for use in the performance of a U.S.
Government prime contract or subcontract, Software is delivered and licensed as
"Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a
"commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as
defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract
clause. Use, duplication or disclosure of Software is subject to Agilent Technologies´
standard commercial license terms, and non-DOD Departments and Agencies of the U.S.
Government will receive no greater than Restricted Rights as defined in FAR 52.227-
19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited
Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November
1995), as applicable in any technical data.

http://systemc.org/
http://systemc.org/

SystemVue - Simulation

3

 Create Your First Data Flow Simulation
A workspace file in SystemVue is the basic database used to store anything related to a
user design (users), data (users), graphs (users), analysis (users), equations (users) etc.
A Data Flow simulation in SystemVue requires at least two basic components in a
workspace.

A Design (users): This is used to define how the data flow parts connect together to1.
form a complete System. The Schematic is the graphical view of the design. You can
also view the Design as a list of parts (the PartList tab).
A Data Flow Analysis (users): This is the simulation controller that determines2.
sample rate and start time. For more details about data flow technology please read
Introduction to Data Flow Simulation (sim).

In this tutorial, we will create a simple design using a sine generator (algorithm) and a
sink (algorithm), run the simulation, and view the output in a graph (users).

To build a simple simulation, let's start with the Blank workspace containing a Blank
Design and a Data Flow Analysis (users).

 Phase 1: Start SystemVue with a Blank Template
Start SystemVue. If you have any problem in starting SystemVue then consult
Installation (start) documentation to make sure the SystemVue has been installed
properly.
If you see a welcome dialogue as shown below you can also look into the Tutorial
videos. For now, click on the Close button to proceed with this tutorial.

A Getting Started with SystemVue dialogue will appear. Select a Blank template in
this dialogue box as shown below and click OK button. Optionally, you could open
other templates (users), watch tutorial videos, open examples (examples) shipped
with SystemVue, or open a recently used workspace using this dialogue box. If you
don't see this dialogue then you can enable it in Startup of Tools->Options and
then selecting Display the Start Page.

The SystemVue will open the Blank template as shown below. The Blank template
includes an schematic Design (users) with name Design1 (Schematic), a Data Flow
Analysis (users) with name Design1 Analysis, and an Equation (users) with name
Equation1. Although we will not be using Equations (users) in this tutorial, it is
useful to know that the Equations (users) are a powerful tool that enables post
processing of data, control over inputs to simulations, and definition of user-defined
custom models. You may look at Equations documentation (users) for more details
on how to use equations.

SystemVue - Simulation

4

 Phase 2: Create the System Design
To add a Sine Generator to the design.

Click inside of the schematic. The schematic window should highlight and the1.
part selector may display (depending on its last state).
If you have no part selector (usually it's docked on the right of the screen) click2.

the Show Part Selector button in the the Schematic Toolbar (users).
Under Current Library:, switch to the Algorithm Design library. You may have3.
many libraries available.
There are a lot of parts in the Algorithm Design catalog, so type sine into the4.
Filter By: field and press Enter or click the green arrow.
Now, click the SineGen (algorithm) part and then click anywhere in the5.
schematic to place the Sine Generator

To add a Data Sink to the schematic
Change the sine to sink in the Filter By: field and press Enter.1.
Click the Sink (algorithm) part in the selector then click in the schematic to2.
place it. If you click directly on the SineGen output pin the two parts will
connect.
If you didn't connect them automatically, we need to connect the Generator to3.
the Sink. See connecting parts (users).

Connect using a line (connector)
Mouse over the SineGen output pin. The cursor will change to a line-
connector cursor.
Click and drag the line to the Sink pin.
Release the mouse to connect the two parts.

Or, connect by dragging the sink. The connecting node will turn green and
stick to the SineGen pin as you drag the part.

Note that you don't need to use the Part Selector for the most frequently used parts. There are keyboard
shortcuts to place those parts quickly. For instance, to place the SineGen part you could just press Shift-S
and then click on the schematic; or to place the Sink you could press S and click on the schematic. See
Appendix A Keystroke Commands (users) for more information.

To plot the results in a Graph (users) automatically after simulation double click the
Sink to open its Properties as shown below and check Create and Display a Graph
; this will plot the data collected by sink on a graph named in Sink properties, in the
figure below it is S2 Graph.

 Phase 3: Run the Simulation

To run a simulation, click on the Run Analysis Button in the the Schematic
Toolbar (users). This will run the simulation, store the data collected by the Sink
(algorithm) in a Dataset (users) named Design1_Data, and also create a graph

SystemVue - Simulation

5

named S2 Graph as we have set it in Sink (algorithm) properties. For further details
about dataset, read Examining Datasets (users) documentation. After running the
simulation the S2 Graph will be displayed automatically. If you close the window or
it gets covered up you can double click on S2 Graph in the workspace tree to open it
again, just like any other workspace tree item.

Save the workspace by using File -> Save or File -> Save As... and name it My
First Simulation.

Other than using Run Analysis Button to run a simulation, you can also use one
of the following methods to run the simulation

Right-click the analysis and select Calculate Now from the menu

Click the calculator button in the top toolbar (or press F5) (this only updates
out of date items).
Double-click the analysis (opening it to change it) and when done, click the
Calculate Now button in the Analysis dialog.

 Phase 4: Creating Additional Graphs
Once the simulator runs using the settings from the Analysis it creates a dataset. This is a
"bunch" of data variables aggregated into a single container. All of the data variables from
the simulation are stored here. You can create Tables (users) and Graphs (users) using
this data, you can postprocess it, and you can compare data from multiple datasets/runs.

To create a graph do the following:

Click the New Item button () on the Workspace Tree toolbar (1.

).
Select Add Graph..., and the Graph Series Wizard (users) window will appear.2.
Select the series plot type. For instance, select Spectrum to see the spectrum of your3.
signal.
Select the variable that you want plotted (S2 in this example). Some plot types4.
require more than one variable.
Click the OK button and the Graph Properties (users) window will appear.5.
If desired, change the graph Name, and add a title to the Graph Heading.6.
Click OK.7.

SystemVue - Simulation

6

For more details about datasets read Examining Datasets (users) documentation. To learn
about creating tables from data in dataset, read Creating Tables (users).

SystemVue - Simulation

7

 Setting up the Data Flow Analysis
The Data Flow Analysis (users) is the main engine behind the data flow simulation. In the
Blank template (explained in Create Your First Data Flow Simulation (sim) section), it is
added with name Design1 Analysis. You may double click on this Data Flow Analysis to
open its properties. For more details about data flow simulation technology please read
Introduction to Data Flow Simulation (sim).

 Basic settings for the Data Flow Analysis
The General tab view of the Data Flow Analysis dialog box shows the basic settings
available:

The fields are populated with defaults for convenience:
Name: Design1 Analysis (DF1, etc.)
Design: Design1
Dataset: Design1_Data (DF1_Data, etc.) (Note:dataset name does not change
automatically if you change design name.)
Description: (optional)

 Default Source and Sink Parameters for Data
Collection

Similarly, the timing parameter fields are populated with convenient defaults:
Start Time: 0 us
Stop Time: 999 us
System Sample Rate: 1 MHz
Number of Samples: 1000
Time Spacing: 1 us
Frequency Resolution: 1000 Hz

The timing parameters are dependent on each other and will automatically change as
follows:

Start Time: this will stay fixed unless it is explicitly changed.
Stop Time: this will change if either Number of Samples or Frequency
Resolution is modified.
System Sample Rate: will be affected only if its inverse (System Sample Rate)
is modified.
Number of Samples: this will be affected if anything at all is modified.
Time Spacing: will be affected only if its inverse (Time Spacing) is modified.
Frequency Resolution: will be affected by changes in Start and Stop Times or
in Number of Samples.

The Number of Samples can conveniently be set to any power of 2 from the 7th to
the 24th for use in Filters by clicking to button labeled "Pwr of 2".

 Other settings for the Data Flow Analysis
The other settings for the Data Flow Analysis are described here:

Factory Defaults: this will set the timing parameters back to their defaults.
Save as Favorite: the current set of timing parameters will become the default
for a new analysis.
Calculate now: the analysis will now run using the current set of timing
parameters.
Automatic Recalculation: checking this box will cause the analysis to be run
any time it is out of date and data is requested from it (for example, by a graph,
table, or equation that uses data produced by it).

 Options tab for the Data Flow Analysis
Advanced Settings for the Data Flow Analysis are available under the Options tab and
these too are mostly self explanatory:

SystemVue - Simulation

8

Use Multithreaded Simulation: checking this box will allow the analysis to run
using the multithreaded scheduler. The multithreaded scheduler exploits
parallelism that is present in the data flow schematic - examples of parallelism
are parallel paths in a design or a highly multirate design. The multithreaded
scheduler adds overhead during the simulation, in many cases this overhead is
minimal compared to the performance gains achieved. In some cases, where
there is minimal parallelism that can be exploited, the simulation will be slightly
slower. For some fine grain simulations (where the parts on the schematic are
simple parts such as add, multiply and gain) - the overhead can be very large.
By default, the multithreaded scheduler is off. Note, there are few parts that do
not support multithreaded simulations. These include VSA 89600 parts, all fixed-
point parts, the MathLang part and the MATLAB cosimulation part. In these
cases, the multithreaded scheduler will automatically be deactivated.
Deadlock Resolution: checking this box will allow the simulator to attempt to
resolve deadlocks by intelligent insertion of delays. Otherwise, no automatic
insertion of delays will be performed and a deadlock will result in an error. See
Deadlock and Deadlock Resolution (sim)
Data Persistence: checking this box will cause the data produced by instances
of the Sink with the default setting to be saved when the workspace is saved.
Otherwise, data is discarded to save space.
Repeatable Random Sequences: checking this box will result in repeatable
random sequences from models that make use of random numbers, e.g.
RandomBits (algorithm), IID_Uniform (algorithm), IID_Gaussian (algorithm),
etc. Each model that needs to generate random numbers is provided a unique
seed that is the same for all simulation runs. The seed is a function of the Data
Flow Analysis name, the Design name, and the part instance name, so changing
these names will change the random sequences generated by these models. If
the box is not checked then each model that needs to generate random
numbers is provided a unique seed that is different for each simulation run.
Collect Fixed Point Statistics: checking this box enables any fixed point
point models (in the associated design) to collect fixed point statistical analysis
data. The statistical analysis data is shown in the Fixed Point Analysis Table
(sim). If you are writing your own Custom C++ model containing fixed point
inputs and/or outputs then please read Writing a Fixed Point Model for Fixed
Point Analysis (users) for your model to work properly with this option.
Display Data Flow Information: checking this box will collect data flow
related information into a variable "DataFlowInfo" in the dataset associated with
the analysis. A table named "(Dataset)_DataFlowInfo" will be created
automatically to display the collected data flow information. Such information is
useful for diagnostic and understanding data flow operations. Please refer to the
following topic about Reading Data Flow Information Table.

 Reading Data Flow Information Table
The screenshot below illustrates the data flow information table:

The information associated with each part is collected in rows. Distinct parts are separated
by empty rows. Distinct graph regions are separated by "---" lines. Each column
represents an information item:

Part: the name of a part.
Model: the model associated with the part.
Domain: a model can be either Timed or Untimed. See Timing Method (sim).
Repetition: the data flow repetition count of the part after solving the balance
equations of the system. See Synchronous Data Flow (sim).
Port: the name of the port associated with the model. If a model has multiple ports,
there will be multiple rows grouped together under the part. For example, part "G1"
in the above table has ports "input" and "output".
Direction: the direction of a port can either be Input or Output.
DataFlowRate: the data flow production rate associated with the output port or
the data flow consumption rate associated with the input port. It is a positive
integer for most of the models. See Synchronous Data Flow (sim). The only
exceptions are the input port of DynamicPack_M (algorithm) and the output port of

SystemVue - Simulation

9

DynamicUnpack_M (algorithm). Under these two exceptions, the value is "Dynamic"
meaning that the data flow rate can change dynamically. See Introduction to
Dynamic Data Flow Simulation (sim).
Delay: the data flow sample delay associated with the connection of the port. See
Synchronous Data Flow (sim).
Type: the data type for the port. See Using Data Types (sim).
SampleRate: the resolved sampling rate associated with the port for a timed model.
See Timed Synchronous Data Flow (sim). "N/A" if the model is untimed.
TimeStep: the time step (inverse of the sampling rate) associated with the port for a
timed model. See Timed Synchronous Data Flow (sim). "N/A" if the model is untimed.
StartTime: the time stamp of the first incoming sample to the input port or the time
stamp of the first outgoing sample from the output port for a timed model. See
Timing Method for Timed Models (sim). "N/A" if the model is untimed.
SyncSamples: the number of samples inserted for synchronizing the first incoming
time stamps for multiple-input timed model. See Timing Method for Timed Models
(sim). "N/A" if the model is untimed.

The relative data transfer ratio between any two ports A and B in the system can be derived as:
(Repetition of the part of port A * DataFlowRate of port A) / (Repetition of the part of port B *
DataFlowRate of port B).

 Accessing Data Flow Analysis Settings from
Equations
If you have noticed above, the Blank template has added Equation1 to the workspace
tree. The Equations (users) are a powerful tool that enable post processing of data,
control over inputs to simulations, and definition of user-defined custom models. You may
look at Equations documentation (users) for more details on how to use equations.

The values for many of the parameters that you set up for a Data Flow Analysis are
accessible through Equations. The values for these variables are updated under two
circumstances:

You click OK in the Data Flow Analysis dialog box.
At the beginning of a particular Data Flow simulation run.

The following table lists Data Flow Analysis parameters and their corresponding variable
names that can be accessed from equations:

Data Flow Parameter Variable Name

Start Time Start_Time

Stop Time Stop_Time

System Sample Rate Sample_Rate

Number of Samples Num_Samples

Time Spacing Time_Spacing

Frequency Resolution Freq_Resolution

On the Advanced Settings tab, checking or un-checking Data Persistence sets the value of
the variable named Data_Persistence.

SystemVue - Simulation

10

 About the Data Flow Simulator
SystemVue provides the capabilities you need to evaluate and design modern
communication systems and related products. Today's designs call for implementing DSP
algorithms in an increasing number of portions in the total communications system path,
from baseband processing to adaptive equalizers and phase-locked loops in the RF chain.

Using the Data Flow simulator you can:

Find the best design topology using state-of-the-art technology with a large number
of behavioral DSP and communication systems models
Integrate intellectual property from previous designs
Reduce the time-to-market for your products

SystemVue features:

State-of-the-art data flow simulation technology for mixed baseband and RF systems
with dynamic behavior possibly involved
Easy-to-use interface for adding and sharing custom models
Interface to test instruments
Data display with post-processing capability

 Outline
The following pages introduce SystemVue's data flow simulation technology in different
topics:

Introduction to Data Flow Simulation (sim): this page introduces data flow1.
fundamentals, theory, and simulation operations
Timing Method (sim): this page describes how SystemVue simulates time in data flow2.
semantics
Introduction to Dynamic Data Flow Simulation (sim): this page introduces3.
SystemVue's approach to model and simulate dynamic behavior
Using Data Types (sim): this page discusses various data types in SystemVue4.
Envelope Signal (sim): this page introduces SystemVue's envelope simulation5.
technology for analog and RF systems

SystemVue - Simulation

11

 Introduction to Data Flow Simulation
SystemVue simulation environment is built based on data flow models of computation.

 Data Flow Models of Computation
In the data flow modeling paradigm, the computational behavior of a system is
represented as a directed graph

. A vertex (which is called a block or a Part (users) in SystemVue)

represents a computational module or a hierarchically nested subgraph (which is called a
subnetwork in SystemVue). A directed edge (which is called a connection in
SystemVue)

represents a FIFO (first-in-first-out) buffer that carries data samples from its source
block

to its sink block

. An edge

can have a non-negative integer delay

associated with it, and the delay value specifies the number of initial samples that are
buffered on the edge before the graph starts execution.

Data flow graphs operate based on data-driven execution: a block

can execute (fire) only when it has sufficient numbers of data samples on all of its input
edges

. When firing,

consumes a certain number of samples from its input edges, executes its computation,
and produces a certain number of samples on its output edges

.

 Synchronous Data Flow
Synchronous Data Flow (SDF) [1] is the most mature data flow model of computation.
In SDF, the number of samples produced onto an edge

by a firing of

is restricted to a constant positive integer that must be known before simulation; this
integer is referred to as the production rate of

and is denoted as

. Similarly, in SDF, the number of samples consumed from an edge

by a firing of

is restricted to a constant positive integer that must be known before simulation; this
integer is referred to as the consumption rate of

and is denoted as

SystemVue - Simulation

12

. In SystemVue, we say that an edge

represents a multirate connection if

.

The constant integer restriction makes SDF especially suited to modeling multirate
systems and benefits SDF with the compile-time capabilities such as deadlock detection,
bounded memory determination, and static scheduling.

The production and consumption rates of each individual SystemVue model are specified in its
documentation page.

 Scheduling SDF Graphs

Before execution, a schedule of a data flow graph is computed. Here, a schedule means a
sequence of block firings, or in general, refers to any static or dynamic mechanism for
executing blocks in a data flow graph. An SDF graph

has a valid schedule (is consistent) if it is free from deadlock (see Deadlock and
Deadlock Resolution) and it is sample rate consistent — that is, it has a periodic
schedule that fires each block at least once and produces no net change in the number of
samples on each edge [2]. In more precise terms,

is sample rate consistent if there is a positive integer solution to the balance equations:

Let

denote the number of firings of block

in a schedule, and suppose there is a positive integer solution to the vector

. Then the balance equations can be easily interpreted as follows: for each edge, the total
number of samples produced onto the edge is equal to the total number of samples
consumed from the edge in one iteration of a complete schedule. Such balance of data
production and consumption allows the schedule to be executed over and over again,
within bounded memory.

When there exists solutions to the vector

, the minimum positive integer solution is called the repetitions vector of the graph

, and is denoted by

. For each block

,

is referred to as the repetition count of

. A valid minimal periodic schedule (which is abbreviated as a schedule hereafter in
this documentation) is then a sequence of block firings in which each block

is fired

times, and the firing sequence obeys the data-driven restriction imposed by the SDF
graph.

In SystemVue, a schedule is computed before simulation, and during simulation, the
schedule is executed iteratively until certain termination conditions are satisfied (see
Simulation Control).

It is user's responsibility to construct a consistent system that is sample rate consistent and deadlock
free.

When the user's system is sample rate inconsistent, SystemVue will issue error messages to help identify
locations where users can adjust, insert, and/or remove blocks to balance the data flow production and
consumption rates.

SystemVue - Simulation

13

 Deadlock and Deadlock Resolution

In a data flow graph, deadlock occurs when there exist cycles (or in more precise term,
strongly connected components) without sufficient numbers of initial samples (delays).
The following graphs illustrate simple conditions that cause deadlock. Based on data-
driven execution, in graph G1, A cannot fire because one of its inputs is waiting for a data
sample from itself. Similarly, in graph G2, neither B nor C can fire because they are
waiting for data samples from each other.

The way to resolve deadlock is to introduce sufficient numbers of delays (initial samples)
on the proper edges in the cycles. The initial data samples are buffered before a graph
stars execution, and therefore, allow one of the deadlocked blocks to start firing.

SystemVue Delay (algorithm) model inserts initial samples that can be buffered on a
connection before simulation. The number of initial samples is specified as parameter N in
Delay (algorithm), and by default, the initial value is zero. The following graphs illustrate
how to solve deadlock using the Delay (algorithm) model.

To avoid deadlock, all feedback loops (cycles) must have sufficient delays. When user's system is
deadlocked, SystemVue will issue error messages to help identifying locations where users can insert
delays.

If Deadlock Resolution is checked in Data Flow Analysis Options (sim), SystemVue will automatically
insert delays (initial samples), if necessary, to avoid deadlock, and will identify the locations and the
numbers of inserted samples.

Deadlock Resolution may modify system's behavior. It is user's responsibility to make sure the auto-
inserted samples have correct behavior.

In addition to Delay (algorithm), SystemVue provides a number of specialized models that
introduce delays for special needs. InitDelay (algorithm) can specify a specific value for
initial samples. DelayFxp (hardware) can insert delays for fixed-point data type. DelayEnv
(algorithm), in most cases (unless the Delay parameter is 0 and there is no control
signal), inserts one delay to the RF connection, and therefore, can be used to solve
deadlock in unit-rate cycles (where production and consumption rates are all equal to
one).

 Timed Synchronous Data Flow
Timed Synchronous Data Flow (TSDF) [3] operates on top of SDF. In TSDF, the flow of
data samples is viewed as discrete-time signal or sampled version of continuous-time
signal. To represent such time-domain signal in data flow, TSDF introduces the concept of
sampling rate and time. In a TSDF graph

, an edge

can be associated with sampling rate

. With the sampling rate defined for a connection, the data samples flow through the
connection can be timed by associating with time stamps that increase continuously by a
constant time step (i.e., the inverse of the sampling rate).

Given a consistent (see the definition of "consistent" in Scheduling SDF Graphs) TSDF
graph

, there exists a positive constant

such that

The above expression is referred to as the TSDF sampling rate equations and can be
further derived into the following form:
For each block

,

Suppose

SystemVue - Simulation

14

is interpreted as the average rate for executing a complete minimum periodic schedule.
Then

can represent the average execution rate for block

, and

can represent the average rate at which

generates samples, and equivalently, the average rate at which

consumes samples.

Given a TSDF graph

, once

is defined (or equivalently, once the sampling rate for a particular edge is defined), the
sampling rates for all edges can be computed based on the TSDF sampling rate equations.
In SystemVue, sampling rates are further used by the Timing Method (sim) to determine
the timing behavior of the system.

Different connections may have different sampling rates due to multirate properties of the system.

 Sampling Rate Resolution

SytemVue provides a set of models that can be used to set the sampling rates in a
system. The source model (see Sources Category (algorithm)) with SampleRateOption
"Timed from SampleRate" can set the sampling rate at its output connection. In addition,
the SetSampleRate (algorithm) model can set the sampling rate for the incoming samples
at its output connection.

SystemVue uses the following rules to resolve system sampling rates.

If at least one model (e.g., a source (algorithm) model with "Timed from1.
SampleRate" option or a SetSampleRate (algorithm) model) sets the sampling rate
on a particular connection, SystemVue can compute the sampling rates for all other
connections based on the TSDF sampling rate equations.

When there are multiple blocks that set the sampling rates in a system, it is user's responsibility to
make sure the TSDF sampling rate equations have a solution. If not, SystemVue will issue error
messages to help users identify the problematic connections and the required sampling rate values.

Else if there exists at least one model that requires sampling rate (i.e., timed model,2.
see Timing Method (sim)) and there exists at least one source block (i.e., a block
with no input port), SystemVue will set the "System Sample Rate" (defined in the
Data Flow Analysis (sim)) to the output connections of the sources that require the
lowest sampling rate based on the TSDF sampling rate equations. After that,
SystemVue can resolve the sampling rates for all other connections.
Else if there exists at least one model that requires sampling rate (i.e., timed model,3.
see Timing Method (sim)) and there is no source block (e.g., a cycle), SystemVue will
set the "System Sample Rate" (defined in the Data Flow Analysis (sim)) to the
connections that require the lowest sampling rate based on the TSDF sampling rate
equations. After that, SystemVue can resolve the sampling rates for all other
connections.
Else, only models that deal with pure numeric computations (i.e., numeric model, see4.
Timing Method (sim)) exist in a system. In this case, SystemVue treats the system
as a pure SDF graph and does not compute sampling rates.

 Simulation Control
SystemVue uses Sinks Category (algorithm) to control the length of a simulation. Users
can specify the start and stop conditions in each individual sink for data collection. A sink
stops collecting data after its stop condition is met. Once all sinks meet their stop
conditions, SystemVue stops simulation. For simulation efficiency, SystemVue data flow
scheduler may intelligently choose to disable (not execute) a model if there is no sink
demanding data.

For example, an user can choose "Time" option in the Sink (algorithm) model and specify
data collection from TimeStart to TimeStop. Let t0 denote the time stamp associated with
the first incoming sample (t0 may be larger than 0, see Timing Method (sim)). If t0 <
TimeStart, the Sink (algorithm) starts to collect samples when the associated time stamp
is larger than or equal to TimeStart and stops collecting samples when the associated time
stamp is larger than TimeStop. On the other hand, if t0 >= TimeStart, the Sink
(algorithm) collects samples starting from the first one (t0) and stops collecting samples
when the associated time stamp is larger than TimeStop. In addition, an user can also
choose "Samples" option in the Sink (algorithm) model and specify data collection from
SampleStart to SampleStop. In this case, the Sink (algorithm) collects incoming data from
the SampleStart -th sample to the SampleStop -th sample.

 References

E. A. Lee and D. G. Messerschmitt, "Synchronous dataflow," Proceedings of the IEEE,1.

SystemVue - Simulation

15

vol. 75, no. 9, pp. 1235-1245, Sept. 1987.
S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow2.
Graphs. Kluwer Academic Publishers, 1996.
J. L. Pino and K. Kalbasi, "Cosimulating synchronous DSP applications with analog RF3.
circuits," in Proceedings of the IEEE Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 1998.

SystemVue - Simulation

16

 Timing Method
The SystemVue Data Flow simulator operates based on the Synchronous Data Flow (
SDF) model of computation (see Introduction to Data Flow Simulation (sim)). In SDF,
connections represent first in first out (FIFO) buffers for buffering data samples between
models. A model can execute (fire) whenever it has a sufficient number of data samples in
its input buffers. When firing, a model consumes certain number of data samples from its
input buffers and produces a certain number of data samples to its output buffers. The
numbers of samples produced and consumed, in a model firing, are restricted to constant
positive integers throughout a simulation. These numbers are referred to as the
production rate and consumption rate associated with the model. SDF has no notion
of time, and models work purely on flows of data samples.

Timed Synchronous Data Flow (TSDF) operates on top of SDF. It introduces the
concept of time. In TSDF, the flow of data samples on a connection, represents discrete-
time signal or sampled version of continuous-time signal. The data samples (in the
direction of flow) are associated with time stamps that can increase continuously by a
constant time step. The inverse of the time step represents the sampling rate of the
continuous-time signal on the particular connection. TSDF is able to pre-compute the
sampling rates associated with graph connections (see Introduction to Data Flow
Simulation (sim)).

SystemVue data flow simulation technology supports SDF and TSDF simultaneously. The
cooperation of SDF and TSDF gives SystemVue an unique advantage of providing two
domains for models, numeric (untimed) and timed, representing two distinct sets of
timing behaviors. In general, SystemVue models are implemented either in the numeric
(untimed) domain or the in timed domain.

Individual model documentation page specifies the associated domain information of the model.

SystemVue numeric (untimed) models primarily represent pure numeric processing for
algorithm design, for example, mathematical operations (e.g., see Math Scalar Category
(algorithm)), discrete Fourier transform (FFT_Cx (algorithm)), encoders (e.g.,
GrayEncoder (algorithm)) and decoders (e.g., ViterbiDecoder (algorithm)) , Math
Language processing model (MathLang (algorithm)), etc. SystemVue numeric models
decouple pure numeric processing from various implementation approaches that may
impose certain timing constraints based on implementation details.

In contrast, SystemVue timed models generally represent discrete-time sampled version
of analog/RF circuits (e.g., Mixer (algorithm) or see Analog RF Category (algorithm)
library), envelope signal processing (see Envelope Signal (sim) introduction) that operates
on notion of time (e.g., MpyEnv (algorithm)), or digital components that model specific
implementations with timing constraints (e.g., fixed-point models in Hardware Design
Library (hardware)).

Numeric and timed models can be mixed together in SystemVue Data Flow simulation.
The order of model executions is determined by SDF model of computation. Data samples
are timed (associated with time stamps) in such a way that the timing for the overall
system is causal, and the time stamps match numeric semantics for numeric models and
timed semantics for timed models.

 Timing Method for Numeric (Untimed) Models
A numeric (untimed) model represents pure numeric computation and operates on flows
of data samples. However, in order to make numeric and timed models work together,
numeric models must propagate timing information in a causal way without imposing
additional timing constraints. In SystemVue, the time stamps associated with the output
samples of a numeric model should represent the earliest possible time those samples are
available, assuming that the numeric model can only execute after all the input samples
are available, and once the input samples are available, it can immediately produce output
samples. Based on this definition, the timing rules for numeric models are stated as
follow:

The output samples of a numeric model in a particular firing all have the same time1.
stamp equal to the maximum time stamp of the input samples consumed in the same
firing. This rule ensures the causality for numeric models and does not add any
latency.
An untimed (numeric) source (i.e., a source model with "UnTimed" option) always2.
generates data samples with time stamp = 0. In SystemVue, we assume sources
always start at time 0, and because there is no timing requirement for numeric
sources, all the samples generated by an untimed source can be treated available at
time 0.

Since numeric semantics has no concept of time, the data samples from different input
ports of a numeric (untimed) model do not have to align in time. In addition, based on the
definition, if the production rate prd of a numeric model port is larger than 1, then in each
firing, prd output samples all have the same time stamp.

 Timing Method for Timed Models
A timed model represents analog/RF circuit, discrete-time processing, or digital
implementation that involve the notion of time in its behavior. In SystemVue, to meet the
timing requirements for timed models, we define that:

The input time stamps to a timed model must increase continuously by a constant1.
time step (1 / sampling rate) associated with the input port (connection). A
connection to a timed model acts as a special buffer that buffers samples that may
have non-evenly spaced time stamps (e.g., from numeric models). The buffer then
outputs samples at a constant rate that is equal to the sampling rate associated with
the connection.
For a multiple-input timed model, the first time stamps from different input ports2.
must align to the minimum input time stamp causally and within the precision of a
single time step. Such time alignment is done by artificially inserting zero-
valued samples. For example, suppose a timed model has port A and B. Both of the
ports have time step = 1. Suppose the first incoming time stamp of port A is 1, and
the first incoming time stamp of port B is 3. SystemVue will automatically insert 2
samples at port B to make the model start at time = 1 causally. Now suppose the
first incoming time stamp of port A is 1.5, and the first incoming time stamp of port B

SystemVue - Simulation

17

is 4. SystemVue will automatically insert 3 samples at port B to make the models
start at time = 1.5 causally.

Note that in the second case, with 3 samples inserted at port B, the resultant first incoming sample
at port B seems to start at time stamp 1, but the timed model will interpret it as 1.5 to align with
the first time stamp at port A. SystemVue may not be able to align the time stamps at exactly the
same time instance because the difference is less than one time step.

The output time stamps from a timed model must increase continuously by a3.
constant time step associated with the output port (connection). In each firing, the
first output sample from each output port has the time stamp equal to the minimum
input time stamp (before possible alignment) plus the phase and/or latency
of the model. For example, suppose the first incoming time stamp to a timed model
is 1, and the model has latency 5, then the first output time stamp is 6.
DownSampleEnv (algorithm) in timed domain is another example. Suppose the down
sample factor is 4 and the phase is 1, and suppose the first incoming time stamp is
0, then the first output time stamp is 1 instead of the last phase 3 (which is the case
for numeric DownSample (algorithm) regardless of the phase).
A timed source (i.e., a source model with "Timed" option, either "Timed from4.
SampleRate" or "Timed from Schematic") always generates data samples with
continuously increasing time stamps. The time stamps start from 0 and increase
continuously by a constant time step associated with the output port (connection).

Because of the interaction between numeric and timed models, multirate properties and latencies, a signal
to a model may start at time larger than 0.

 Latency

In SystemVue, latency refers to the timing difference between the first input sample and
the first output sample of a timed model. The SystemVue Data Flow timing method
incorporates the latency behavior of a timed model by using Definition #3 stated in Timing
Method for Timed Models. A set of SystemVue timed models incorporates the latency
behavior of the actual implementations, e.g., a fixed point model may incorporate latency
in terms of number of clock cycles. Please refer to individual model documentation for
details.

 Timing Behavior for Mixed Numeric and Timed
Systems
SystemVue allows users to construct designs with both numeric (untimed) and timed
models. For a system containing both numeric and timed models, the overall timing
behavior is determined by the interaction of timing methods in individual models.

As described above, a connection in SystemVue acts as a special buffer that holds the
samples to satisfy different timing requirements for numeric and timed models. The
following table illustrates what time stamps the downstream model will see when different
domains of models are connected. (In this table, time step is 1, and notation "a@0"
represents a data sample with value "a" at time stamp "0".)

Connection Samples from output port Samples to input port

Timed to Timed Output from a timed model --> ... c@2 b@1
a@0

... c@2 b@1 a@0 --> Input to a timed
model

Timed to Numeric Output from a timed model --> ... c@2 b@1
a@0

... c@2 b@1 a@0 --> Input to a numeric
model

Numeric to Timed Output from a numeric model --> ... c@0 b@0
a@0

... c@2 b@1 a@0 --> Input to a timed
model

Numeric to
Numeric

Output from a numeric model --> ... c@0 b@0
a@0

... c@0 b@0 a@0 --> Input to a numeric
model

 Special Models in Timing Method

 Delay (OutputTiming = EqualToInput)

SystemVue Delay (algorithm) represents an untimed sample delay model when its
OutputTiming option is set to EqualToInput. Under this option, a Delay (algorithm) model
with delay size N simply "delays" the incoming signal in samples by N number of zero-
valued samples. The N delay samples are inserted before the incoming signal. When
OutputTiming is EqualToInput, the Delay (algorithm) model retains the first time stamp of
the incoming signal. Suppose the incoming signal starts at time t0. If the downstream is a
timed model, then the Delay (algorithm) will delay the incoming waveform by N time
steps, and the signal still arives at the downstream model at time t0 with initial N zero
values. If the downsteam is a numeric model, then the Delay (algorithm) simply provides N
samples that are available all at time t0 (i.e., the first time stamp of the incoming signal).

The following table illustrates what time stamps the downstream model will see when
different domains of models are connected with a Delay (algorithm) (OutputTiming =
EqualToInput) in between. (In this table, time step is 1, and notation "a@3" represents a
data sample with value "a" at time stamp "3"; and notation "0@3" means a data sample
with value "0" at time stamp "3".)

Connection Samples from output
port

Delay
(algorithm)

Samples to input port

Timed to Delay
(algorithm) to Timed

Output from a timed model -
-> ... c@5 b@4 a@3

--> 3 sample
delay -->

... c@8 b@7 a@6 0@5 0@4 0@3 -
-> Input to a timed model

Timed to Delay
(algorithm) to Numeric

Output from a timed model -
-> ... c@5 b@4 a@3

--> 3 sample
delay -->

... c@5 b@4 a@3 0@3 0@3 0@3 -
-> Input to a numeric model

Numeric to Delay
(algorithm) to Timed

Output from a numeric
model --> ... c@3 b@3 a@3

--> 3 sample
delay -->

... c@8 b@7 a@6 0@5 0@4 0@3 -
-> Input to a timed model

Numeric to Delay
(algorithm) to Numeric

Output from a numeric
model --> ... c@3 b@3 a@3

--> 3 sample
delay -->

... c@3 b@3 a@3 0@3 0@3 0@3 -
-> Input to a numeric model

 Delay (OutputTiming = BeforeInput)

SystemVue Delay (algorithm) represents an untimed initial sample model when its
OutputTiming option is set to BeforeInput. Under this option, a Delay (algorithm) model
simply represents N number of zero-valued samples initially queued in the buffer before
the incoming signal. When OutputTiming option is BeforeInput, the initial N samples are
timed before (if possible) or equal to the first incoming sample. Suppose the incoming
signal starts at time t0 and the time step is dt. If the downstream is a timed model, then
the first initial sample arives at the downstream model at time max(t0 - N*dt, 0),
followed by the remaining N-1 initial samples, then the incoming samples. If the
downsteam is a numeric model, then the N initial samples that are all available at time

SystemVue - Simulation

18

max(t0 - N*dt, 0).

The Delay (algorithm) with BeforeInput option is essential for a timed feedback loop where signal is
delayed in time when propagates through the loop due to multirate properties or latencies of the
components along the loop. For such feedback loop, BeforeInput option helps to solve timing convergence
by using "initial samples" (-N*dt) to compensate the latency along the loop.

The following table illustrates what time stamps the downstream model will see when
different domains of models are connected with a Delay (algorithm) (OutputTiming =
BeforeInput) in between. (In this table, time step is 1, and notation "a@3" represents a
data sample with value "a" at time stamp "3"; and notation "0@3" means a data sample
with value "0" at time stamp "3".)

Connection Samples from output
port

Delay
(algorithm)

Samples to input port

Timed to Delay
(algorithm) to Timed

Output from a timed model
--> ... c@5 b@4 a@3

--> 2 sample
delay -->

... c@5 b@4 a@3 0@2 0@1 -->
Input to a timed model

Timed to Delay
(algorithm) to Timed

Output from a timed model
--> ... c@5 b@4 a@3

--> 4 sample
delay -->

... c@6 b@5 a@4 0@3 0@2 0@1
0@0 --> Input to a timed model

Timed to Delay
(algorithm) to Numeric

Output from a timed model
--> ... c@5 b@4 a@3

--> 2 sample
delay -->

... c@5 b@4 a@3 0@1 0@1 -->
Input to a numeric model

Timed to Delay
(algorithm) to Numeric

Output from a timed model
--> ... c@5 b@4 a@3

--> 4 sample
delay -->

... c@5 b@4 a@3 0@0 0@0 0@0
0@0 --> Input to a numeric model

Numeric to Delay
(algorithm) to Timed

Output from a numeric
model --> ... c@3 b@3 a@3

--> 2 sample
delay -->

... c@5 b@4 a@3 0@2 0@1 -->
Input to a timed model

Numeric to Delay
(algorithm) to Timed

Output from a numeric
model --> ... c@3 b@3 a@3

--> 4 sample
delay -->

... c@6 b@5 a@4 0@3 0@2 0@1
0@0 --> Input to a timed model

Numeric to Delay
(algorithm) to Numeric

Output from a numeric
model --> ... c@3 b@3 a@3

--> 2 sample
delay -->

... c@3 b@3 a@3 0@1 0@1 -->
Input to a numeric model

Numeric to Delay
(algorithm) to Numeric

Output from a numeric
model --> ... c@3 b@3 a@3

--> 3 sample
delay -->

... c@3 b@3 a@3 0@0 0@0 0@0
0@0 --> Input to a numeric model

 Time Delay

SystemVue TimeDelay (algorithm) is a timed model that delays signal in time, in contrast
to an untimed Delay (algorithm) that delays signals in samples. A TimeDelay (algorithm)
model with delay time T simply increases the incoming time stamps by T without inserting
any samples. The net effect is equivalent to delaying the incoming signal by T in time.
Note that because TimeDelay (algorithm) is a timed model, non-evenly spaced incoming
time stamps will be received as evenly spaced time stamps by Definition #1 stated in
Timing Method for Timed Models. In addition, time delay T can be any non-negative
number.

The following table illustrates what time stamps the downstream model will see when
different domains of models are connected with a TimeDelay (algorithm) in between. (In
this table, time step is 1, and notation "a@3" represents a data sample with value "a" at
time stamp "3".)

Connection Samples from output port TimeDelay
(algorithm)

Samples to input port

Timed to TimeDelay
(algorithm) to Timed

Output from a timed model -
-> ... c@5 b@4 a@3

--> 3.6 time delay
-->

... c@8.6 b@7.6 a@6.6 -->
Input to a timed model

Timed to TimeDelay
(algorithm) to Numeric

Output from a timed model -
-> ... c@5 b@4 a@3

--> 3.6 time delay
-->

... c@8.6 b@7.6 a@6.6 -->
Input to a numeric model

Numeric to TimeDelay
(algorithm) to Timed

Output from a numeric model
--> ... c@3 b@3 a@3

--> 3.6 time delay
-->

... c@8.6 b@7.6 a@6.6 -->
Input to a timed model

Numeric to TimeDelay
(algorithm) to Numeric

Output from a numeric model
--> ... c@3 b@3 a@3

--> 3.6 time delay
-->

... c@8.6 b@7.6 a@6.6 -->
Input to a numeric model

 Time Synchronizer

SystemVue TimeSynchronizer (algorithm) is a multi-input/multi-output timed model that
aligns multiple signals with different initial time stamps. It provides two modes for time
alignment: "ZeroPadding" and "TimeDelay". ZeroPadding mode is equivalent to Definition
#2 stated in Timing Method for Timed Models. In other words, zero-valued samples are
inserted to later incoming signals such that all signals are aligned in time to the earliest
incoming signal (earliest first time stamp). In contrast, TimeDelay mode is equivalent to
forcing TimeDelay (algorithm)s for earlier signals such that they are delayed in time to
align with the latest incoming signal (latest first time stamp).

The following table illustrates the operation of the two modes.

Samples to input ports TimeSynchronizer (algorithm)
Mode

Samples from output ports

... c@2 b@1 a@0 --> input
port 0
... f@4 e@3 d@2 --> input
port 1

ZeroPadding output port 0 --> c@2 b@1
a@0
output port 1 --> ... f@4 e@3 d@2 0@1
0@0

... c@2 b@1 a@0 --> input
port 0
... f@4 e@3 d@2 --> input
port 1

TimeDelay output port 0 --> ... c@4 b@3 a@2
output port 1 --> ... f@4 e@3 d@2

 Sources

Many of the SystemVue Sources Category (algorithm) allow users to choose different
"SampleRateOption": "UnTimed", "Timed from SampleRate", and "Timed from Schematic".
As described above, if the SampleRateOption is "UnTimed", the source is treated as a
numeric (untimed) model and always generates 0 time stamps (see Definition #2 in
Timing Method for Numeric (Untimed) Models). On the other hand, if the
SampleRateOption is either "Timed from SampleRate" or "Timed from Schematic", the
source acts as a timed model and generates evenly spaced, continuously increasing time
stamps starting from 0 (see Definition #4 in Timing Method for Timed Models).

 Sink and BER_FER

SystemVue Sink (algorithm) and BER_FER (algorithm) can collect either samples or timed
signals. If "StartStopOption" is set to "Samples" (or "Auto" in untimed system, see Pure
Numeric Simulation), the Sink (algorithm) (or BER_FER (algorithm)) is treated as a
numeric (untimed) model and collect only samples in indices (index always start at 0). In
addition, even if multiple input signals have different incoming times, time alignment will
NOT be performed because it only collect samples in indices. If "StartStopOption" is set to
"Time" (or "Auto" in timed system), the Sink (algorithm) (or BER_FER (algorithm)) is

SystemVue - Simulation

19

treated as a timed model, and time alignment will be performed if necessary.

Non-evenly spaced time stamps are only used for internal timing computation. Sink (algorithm) cannot
collect non-evenly spaced timed samples.

 Pure Numeric Simulation
SystemVue sources are timed by default.

To create a pure numeric simulation, you should use only numeric models and set all the sources to be
"UnTimed".

 Examples
The following examples illustrate systems that are mixed of numeric (untimed) and timed
models.

 Example 1

Suppose the SineGen (algorithm) source "S2" has "SampleRateOption" parameter set to
"Timed from SampleRate", and suppose the "SampleRate" is at 1M hz. In this case, the
source "S2" behaves as a timed source and generates data samples with continuously
increasing time stamps, 0 us, 1 us, 2 us, 3 us, The FFT (algorithm) model "F1" and the
IFFT (algorithm) model "F2" are both numeric (untimed) models with consumption rate =
256 and production rate = 256 (this is because their "FFTSize" and "Size" parameters are
set to 256). The first firing of "F1" consumes 256 samples with time stamps from 0 us to
255 us (see Definition #4 in Timing Method for Timed Models) and produces 256 samples
all with the same time stamp 255 us (see Definition #1 in Timing Method for Numeric
(Untimed) Models). Then the first firing of "F2" consumes 256 samples all with time stamp
255 us and produces 256 samples all with time stamp 255 us (see Definition #1 in Timing
Method for Numeric (Untimed) Models). Finally, suppose the Sink (algorithm) "S3" has
parameter "StartStopOption" to be "Auto" or "Time". In this case, "S3" behaves as a timed
model and collect data samples starting from 255 us, followed by 256 us, 257 us, ... – this
is because the first output sample from "F1" is at 255 us and the following samples are
buffered and re-timed according to the sample rate at the input of "S3" (see Definition #1
in Timing Method for Timed Models). Similarly, suppose the Sink (algorithm) "S1" has
parameter "StartStopOption" to be "Auto" or "Time". In this case, "S1" acts as a timed
model and collect data samples starting from 255 us, followed by 256 us, 257 us, ... – this
is because the first output sample from "F2" is at 255 us and the following samples are
buffered and re-timed according to the sample rate at the input of "S1" (see Definition #1
in Timing Method for Timed Models).

Screenshot of S3 in dataset.

Screenshot of S1 in dataset.

 Example 2

Example 2 continues from Example 1. Here, SineGen (algorithm) and Sink (algorithm)s
are timed models, and FFT (algorithm), IFFT (algorithm), and Subtractor (algorithm) are
numeric (untimed) models. We plot the signals collected by S3, S4, and S5 in the same
graph. As described in Example 1, S3 (red signal) starts at time 255 us due to multirate
behavior of the FFT and IFFT. S4 (blue signal) is directly connected from source SineGen
(algorithm), so it starts at time 0 us. The Subtractor (algorithm) is a pure numeric
(untimed) model, so it performs subtraction sample by sample (without time alignment)
and outputs first sample starting at time 255 us.

SystemVue - Simulation

20

SystemVue - Simulation

21

 Introduction to Dynamic Data Flow
Simulation
 Overview
As introduced in Introduction to Data Flow Simulation (sim), most SystemVue blocks are
modeled based on Synchronous Data Flow (sim) (SDF) semantics. In other words, the
data flow production and consumption rates for these blocks are restricted to be constant
integers and must be known at compile-time (before simulation). With such restriction,
SystemVue is able to perform compile-time optimizations such as deadlock detection,
sample-rate (timing) resolution, buffer allocation, and static scheduling that jointly
minimize runtime overheads.

However, such constant integer restriction also limits the expressive power of SDF. In
fact, real world systems may involve dynamic behavior that cannot be modeled under SDF
semantics. For example, modern wireless communication systems often apply adaptive
modulation to adjust modulation schemes (e.g., QPSK, 16 QAM, 64 QAM [1]) dynamically
based on channel condition. The Mapper (algorithm) block that maps a fixed number of
bits to a symbol based on the pre-specified modulation scheme is definitely not enough to
model such system.

Beyond SDF, dynamic data flow (DDF) is the most general data flow model of
computation. In dynamic data flow, the number of samples consumed and produced for
each execution of a DDF block can change dynamically at runtime. Such flexibility gives
DDF sufficient expressive power to model various dynamic behavior, but at the expense of
losing compile-time scheduling capabilities. In general, dynamic data flow requires
significant amount of runtime overheads to determine execution order, detect deadlock,
and allocate/re-allocate buffers.

 SystemVue's Dynamic Data Flow Approach
Modern wireless communication systems often involve dynamic behavior, e.g., adaptive
modulation [1,3], HARQ (hybrid automatic repeat request) [2, 3], and dynamic resource
allocation. In such systems, even though the number of data to be processed and
transmitted can change dynamically at runtime, standards are defined in such a way that
within a transmission unit (e.g., subframe in LTE [1]), the numbers of data produced and
consumed between adjacent blocks are properly matched.

To efficiently model such dynamic but matched rate changes, SystemVue uses variable-
size vectors (matrices) to encapsulate variable numbers of samples for dynamic data
flow processing. In this approach, blocks process a vector (matrix) of data at a time, and
vector (matrix) size can change dynamically at runtime. Two special blocks (
DynamicPack_M (algorithm) and DynamicUnpack_M (algorithm)) are provided that use
dynamic data flow technology to enable the interactions between variable-size, vector
(matrix)-based blocks and static, sample-based blocks.

The following sections describe the approach in more details.

 Dynamic Data Flow Models

SystemVue provides two dynamic data flow models, DynamicPack_M (algorithm) and
DynamicUnpack_M (algorithm), to dynamically pack and unpack variable numbers of
samples to and from matrices.

Vector (row vector or column vector) in SystemVue is represented as one-dimensional matrix.

 DynamicPack_M

DynamicPack_M (algorithm) packs variable numbers of samples into matrices based on
control signals that control the number-of-rows and number-of-columns of the matrix to
be packed for each execution (see to DynamicPack_M (algorithm) for details). The
following picture shows the data flow rates of DynamicPack_M (algorithm) for a complete
execution. The connection to the input port of DynamicPack_M (algorithm) is a dynamic
connection because the consumption rate can change dynamically at runtime.

 DynamicUnpack_M

DynamicUnpack_M (algorithm) unpacks variable size matrices into samples (see
DynamicUnpack_M (algorithm) for details). The following picture summaries the data flow
rates of DynamicUnpack_M (algorithm) for a complete execution. The connection from the
output port of DynamicUnpack_M (algorithm) is a dynamic connection because the
production rate can change dynamically at runtime.

Whenever there is a dynamic block (currently DynamicPack_M (algorithm) and DynamicUnpack_M
(algorithm)) on schematic, SystemVue will turn on dynamic data flow simulation.

 Variable-Size Matrix Processing

Modeling signal processing blocks in dynamic data flow in order to process variable
numbers of samples and configure rates dynamically at runtime, in general, causes
significant amount of scheduling overheads and results in poor usability when developing
and using such blocks.

SystemVue - Simulation

22

For wireless communication types of applications, it is very efficient to represent variable
numbers of samples into variable-size vectors (matrices) and model such block to process
a matrix at a time. This modeling approach fits well with how DSP algorithm designers
develop the blocks. In addition, because most of the processing blocks remain in SDF
domain (fixed data flow rates at the granularity of matrices), SystemVue is able to apply
various optimization and scheduling techniques that gives much better runtime
performance.

In variable-size matrix-based processing, a block's operation can adjust dynamically to the input matrix
size. If the input matrix size conflicts with block's settings (e.g., parameters, other inputs, or control
signals), the block may error it out, ignore the unused elements, or perform whatever appropriate based
on the defined operation. When inconsistency occurs, SystemVue does not handle individual samples
inside matrices.

 How to Use SystemVue's Dynamic Data Flow
For processing variable numbers of samples, including 0 number of sample that holds
incoming stream, users can use DynamicPack_M (algorithm) coupled with controller(s)
that control the numbers of samples to be packed. The resulting variable-size matrices
can then be processed by matrix (sim)-type blocks, see Math Matrix Category (algorithm)
and 3GPP LTE Baseband Verification Library (ltebasever), or user defined models with
matrix I/O, see C++ Models (users) and MathLang (algorithm). To convert variable-size
matrices back to samples, users can use DynamicUnpack_M (algorithm) for further
sampled-based processing. SystemVue Sink (algorithm) collects variable-size matrices
into DataSet (users) as cell array, and users can choose each individual matrix for
display.

In SystemVue libraries, only the matrix-type blocks in Math Matrix Category (algorithm) and 3GPP LTE
Baseband Verification Library (ltebasever) that handle variable-size matrices can work with SystemVue's
dynamic data flow approach.

 User-Defined Models for Variable-Size Matrix Processing

Users can create custom MathLang (algorithm) block for variable-size matrix processing in
dynamic data flow. When port rates (algorithm) are one, input and output matrices can be
simply accessed in the Equations (algorithm) tab by using the port's "Name in Equations
(algorithm)". The following screenshot shows an example using MathLang (algorithm) to
create a CRC encoder block that computes CRC8 parity bits for input bit vector and
append the parity bits in output vector, regardless of vector size (number of bits).

Users can also create custom C++ Model (users) for variable-size matrix processing. To
access input and output matrices in C++ models, users have to use matrix-type circular
buffer (users) (see
\SystemVue2009.08\ModelBuilder\include\SystemVue\MatrixCircularBuffer.h) and use
SystemVue matrix (users) data type (see
\SystemVue2009.08\ModelBuilder\include\SystemVue\Matrix.h). The following code
shows the C++ model header file for Mapper_M (algorithm) that maps an input bit vector
(boolean matrix) into a complex constellation point. The modulation type is dynamically
determined by the number of bits in the input matrix (see Mapper_M (algorithm)).

class Mapper_M : public AgilentEEsof::DFModel

{

public:

DECLARE_MODEL_INTERFACE (Mapper_M)

bool Run();

bool Initialize();

//input bit vector

AgilentEEsof::CircularBufferE<AgilentEEsof::Matrix<bool>> m_input;

//output complex symbol

AgilentEEsof::CircularBuffer<std::complex<double>> m_output;

//...

};

 Example: Dynamic Mapper

The following screenshot shows the dynamic mapper example in "QPSKTuning" schematic

SystemVue - Simulation

23

in \SystemVue2009.08\Examples\Instruments\VSA89600Sink\VSA89600 Demod
QPSK.wsv. The "ModType" slide bar allows users to control the number of bits to be
packed by the DynamicPack_M (algorithm) "D1" through changing the value of Const
(algorithm) "C2". The matrix-type Mapper_M (algorithm) automatically adjusts the
modulation scheme based on the input vector size.

The following three screenshots capture the QPSK, 16QAM, and 64QAM constellation plots
from VSA_89600_Sink (algorithm) when the "ModType" is 2, 4, and 6 respectively.

SystemVue - Simulation

24

 Example: LTE HARQ

This example illustrates how SystemVue LTE workspaces use DynamicPack_M (algorithm),
matrix-based processing, and dynamic data flow to model various dynamic behavior in
LTE systems. It assumes that the readers are familiar with LTE standards [1,2,3].

The following screenshot captures the top-level schematic for LTE downlink 2x2 MIMO
fading channel throughput measurement. This example can be found in
\SystemVue2009.08\Examples\Baseband
Verification\LTE\3GPP_LTE_DL_MIMO_Throughput.wsv. The upper path feedback loop
represents the feedback for HARQ ACK/NACK information from LTE_DL_MIMO_2Ant_Rcv
(ltebasever) to LTE_DL_MIMO_2Ant_Src (ltebasever).

The following picture shows the LTE_DL_ChannelCoder (ltebasever) sub-network
schematic. The HARQ feedback path in the top-level schematic actually goes into
LTE_HARQ_Controller (ltebasever) inside LTE_DL_ChannelCoder (ltebasever) inside
LTE_DL_MIMO_2Ant_Src (ltebasever). If the HARQ signal is ACK for a particular HARQ
process, LTE_HARQ_Controller (ltebasever) then computes the transport block size (TBS)
(i.e., the number of bits to be transmitted from upper layer) for the particular subframe
based on various LTE settings. Note that the TBS value varies subframe by subframe.
Based on the TBS signal, the DynamicPack_M (algorithm) packs TBS number of bits into
vector (transport block [2]). The transport block is then processed by LTE_CRCEncoder
(ltebasever), LTE_CodeBlkSeg (ltebasever), LTE_TurboCoder (ltebasever), and
LTE_RateMatch (ltebasever) blocks. If the HARQ signal is NACK for a particular HARQ
process, LTE_HARQ_Controller (ltebasever) then sets TBS to 0 to force DynamicPack_M
(algorithm) to hold the incoming bits and output "empty" vector (matrix) that stops the
processings for LTE_CRCEncoder (ltebasever), LTE_CodeBlkSeg (ltebasever), and
LTE_TurboCoder (ltebasever). The retransmission starts from the rate matching buffer
inside the LTE_RateMatch (ltebasever) block. The following block diagram and the
operations match exactly as defined in 3GPP TS 36.212 [2].

SystemVue - Simulation

25

The variable-size vector (matrix)-based processing inside LTE_DL_MIMO_2Ant_Src
(ltebasever) sub-network ends at LTE_DL_MuxOFDMSym (ltebasever). After
LTE_DL_MuxOFDMSym (ltebasever), signal is represented sample by sample again. This is
because LTE_DL_MuxOFDMSym (ltebasever) maps all physical channels and physical
signals into resource elements in one subframe, and the number of resource elements in a
subframe (number of OFDM symbols * number of sub-carriers) is fixed based on the LTE
configuration. Back to the top-level LTE downlink MIMO fading channel schematic,
LTE_DL_MIMO_2Ant_Src (ltebasever) generates 1 ms subframe in samples, which then up
converted to carrier frequency and go through fading and noisy channel using SystemVue
Analog RF Category (algorithm) blocks.

 Limitations
SystemVue currently supports only a single connected graph in dynamic data flow1.
simulation (i.e., there must an undirected path between any pair of blocks). In other
words, when there is a dynamic block on schematic that triggers dynamic data flow
simulation, SystemVue will error it out if there are multiple isolated graphs.

Users can always move an isolated graph to another schematic for simulation.

The only exceptions are:

The range-check blocks (e.g., LTE_DL_Src_RangeCheck (ltebasever),
LTE_UL_Src_RangeCheck (ltebasever)) in 3GPP LTE Baseband Verification
Library (ltebasever) and ControllerFxp (hardware) in Hardware Design Library
(hardware). These blocks have no I/O, thus, do not involve in data flow.
Isolated graphs without sinks that demand the simulation (see simulation
control (sim)).

For dynamic data flow simulation, SystemVue currently requires that any pair of2.
dynamic connections must not lie in any undirected cycle. In other words,
removing any dynamic connection must disconnect the graph. As described in
Dynamic Data Flow Blocks, a dynamic connection only refers to a connection to
DynamicPack_M (algorithm)'s input port or a connection from DynamicUnpack_M
(algorithm)'s output port. The most common scenario to get into this restriction is
illustrated in the following schematic. Here, the upper path represents a common use
model that dynamically packs variable numbers of samples for variable-size, matrix-
based processing and unpacks them. The lower path simply connects the source
signal all the way to the BER analysis. The green circle shows the undirected cycle.

The proper way to construct this type of design is to provide a repeatable signal
source (e.g., pseudo random bit source) feed separately into the BER, as shown in
the following schematic.

SystemVue - Simulation

26

Dynamic connections partition the graph into separated static regions — i.e., by3.
removing dynamic connections, the graph is disconnected into isolated regions, and
each region is in fact an SDF/TSDF graph with only static data flow rates. SystemVue
currently times each static region separately because the constant-sample-rate
requirement in Timing Method (sim) cannot be preserved across dynamic
connections.

Comparing timed signal across different static regions is not recommended.

In dynamic data flow simulation, the Data Flow Information Table (sim) will separate each static
region with a - - - line to help users to identify different static regions.

It is user's responsibility to make sure the system does not deadlock or run forever4.
"by design". The following screenshot shows an example where DynamicPack_M
(algorithm) always packs empty matrices (because the control signal is always 0),
and DynamicUnpack_M (algorithm) has nothing to output (because empty matrices).
This example will run forever until it is forced to stop because the Sink (algorithm)
cannot collect enough samples to stop the simulation (see Simulation Control (sim)).

 References

3GPP TS 36.211 v8.6.0, "Physical Channels and Modulation", March 2009.1.
3GPP TS 36.212 v8.6.0, "Multiplexing and Channel Coding", March 2009.2.
3GPP TS 36.213 v8.6.0, "Physical layer procedures", March 2009.3.

SystemVue - Simulation

27

 Using Data Types
As was discussed in the Nets, Connection Lines and Buses (users) page, the data flow port
colors and thickness represent the data type that is passed between the connected parts.
In addition to port colors and thickness, part and model names are suffixed to indicate the
data type supported. The following table lists that how the different data types are
represented.

Data Type Port Color Port Thickness Model Suffix

Scalar Integer Orange Thin Int

Scalar Floating Point (Real) Blue Thin

Scalar Complex Green Thin Cx

Scalar Fixed Point Magenta Thin Fxp

Integer Matrix Orange Thick Int_M

Floating Point (Real)
Matrix

Blue Thick _M

Complex Matrix Green Thick Cx_M

Envelope Signal Black Thin Env

Any Type Red Thin

Variant Cyan Thin

Note: In the current release of SystemVue, there are no parts that process integer matrices.

To learn more about models and parts refer to Parts, Models, and Symbols (users) page.

 Data Types Defined

 Scalar Data

Scalar data is defined as follows:

integer value (signed value defined with a 32-bit value)
fixed point value
floating point (real) double precision floating-point (real) number
complex pair of double precision floating-point (real) number for real and imaginary
parts

 Fixed Point Data

SystemVue FixedPoint Data Type (users) is similar in computational behavior of SystemC
TM 2.2 fixed point type based on IEEE Std. 1666 TM Language Reference Manual (LRM) .

For detailed description of SystemC TM 2.2 fixed-point type, consult section 7.10 of SystemC TM IEEE Std.
1666 TM Language Reference Manual (LRM)

A fixed-point type is characterized by whether it is signed or unsigned, its word length (

), integer word length (

), quantization mode, overflow mode and the number of saturation bits (only applicable in
certain overflow modes).

The range of values for a signed fixed-point number is

.

The range of values for an unsigned fixed-point number is

.

The available quantization modes are:

RND - rounding to plus infinity
RND_ZERO - rounding to zero
RND_MIN_INF - rounding to minus infinity
RND_INF - rounding to infinity
RND_CONV - convergent rounding
TRN - truncation (default)
TRN_ZERO - truncation to zero

The available overflow modes are:

SAT - saturation
SAT_ZERO - saturation to zero
SAT_SYM - symmetrical saturation
WRAP - wrap-around (default)
WRAP_SM - sign magnitude wrap-around (undefined for unsigned types)

Saturation bits are only applicable in the two wrap-around overflow modes.

For more information please see SystemVue FixedPoint Data Type (users).

 Matrix Data

All matrix data is defined as a two-dimensional array (rows, columns) of either int, fixed,
floating-point (real), or complex values. All matrix data types are indicated by thick lines,
in contrast with the thin lines used for scalar data types.

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html

SystemVue - Simulation

28

 Matrix Data (Thick Lines) and Scalar Data (Thin Lines)

 Envelope Signal

SystemVue uses an efficient envelope signal to represent modulated signals on RF
carriers. In this representation, the sample rate needed to represent the complex
envelope signal is on the order of the information (envelope) bandwidth. This is in
contrast to using a to direct real signal representation where the sample rate needs to be
on the order of the RF carrier. To learn more about this format, refer to the Envelope
Signal (sim) section.

 Data Type Polymorphism
Data type polymorphism enables you to use a part with data types.

 Variant

Variant is a container data type. It holds data together with the tag identifying the data
type. The data can be of any data flow type except fixed-point and envelope signals.

Variant accepts user entry as is, assigning it the tag that best matches the data.

For instance, the MathLang (algorithm) model enables processing of data that can
assigned an integer, real or complex number, or an integer, real or complex matrix and it
will be stored in the variant directly.

Conversions between variant and other data types follow the same rules as for the data
types without the container (see below).

 Any type

An any type port has a type that is resolved during the initialization stage of the
simulation and remains the same through the simulation run.

For instance, the Const (algorithm) source has an any type output. The output data type
is determined by the type of the Value parameter setting.

In other places, such as in Add (algorithm) and Mpy (algorithm), the type is resolved
based on the input data types. For example, if a Add (algorithm) has both integer and a
floating point input data, the output data type will be resolved to floating point. The figure
below summarizes the type resolution in cases such as these.

When the data type is resolved to either envelope signal or fixed point data types, the any
type model will use the default parameter settings of the associated strongly typed model.
For example, for the Mpy (algorithm) part, a MpyFxp (hardware) would be used if the data
type is resolved to fixed point and a MpyEnv (algorithm) if the data type is resolved to
envelope signal. If you want to use non-default parameters in these cases, you should use
the method described below in the Polymorphic Parts section below.

 Polymorphic Parts

A part may have multiple models associated to enable you to switch the data type
processed by the block. An example of this is the Integrator available in the Algorithm
Design library. To switch the data type, double click on the part to edit the part properties.
Then click on the Model menu as shown below:

SystemVue - Simulation

29

As you switch between the models, the port colors change. Here are the different models
available for the Integrator part:

 Polymorphic Models

A model may also natively support multiple types. All of the parts in the Hardware Design
library support a data type override. By default, these models support fixed-point
(TypeOverride=OFF), in addition they support floating-point (TypeOverride=Double) and
integer (TypeOverride=Integer).

Below is an instance of the AddFxp part showing the TypeOverride parameter:

 Conversion of Data Types
Most type conversions do what you expect. If the conversion from A to B requires more
information (integer to floating-point (real), floating-point (real) to complex, etc.) the
obvious happens. For example, conversion from floating-point (real) to complex is done by
setting the imaginary part of the complex number equal to 0.0. If there is loss of
information automatic conversion is not supported, the only exception to this is from
floating or fixed point to integer. For matrix type conversions, the conversions are done
element-by-element following the same rules.

Below is a summary of the conversion rules:

SystemVue - Simulation

30

From To Rule

Scalar Matrix A 1x1 matrix of the scalar is created.

Floating or Fixed Point
Number

Integer The value is rounded to the closest integral value.

Non-complex Complex The real part is set to the value, the imaginary part
is set to 0.

Envelope signal Floating point or variant Real base-band equivalent of the signal is
computed.

Variant All data types except envelope
signal

Converted using rules above.

SystemVue - Simulation

31

 Envelope Signal
 How To Use Envelope Signal
Most SystemVue RF blocks operate on an envelope signal. Please refer to Analog/RF
(algorithm) for the list of RF blocks. In SystemVue, a modulated passband signal is usually
represented as an analytic signal, xa(t) = (xi(t) + j xq(t)) exp(j 2 π fc t), in the

envelope data type. Envelope data carries the characterization frequency fc of the

modulated passband signal, and RF signal processing is performed at the complex
envelope level. You can view it as time varying complex envelope data, xc(t) = xi(t) + j

xq(t), flow through envelope (black pin to black pin) connection.

A user can use a Modulator (algorithm) to modulate a baseband signal into a passband
signal in analytic (envelope) format. The modulated signal can then be processed by the
SystemVue Analog/RF (algorithm) parts. A user can demodulate the RF (passband) signal
by using a Demodulator (algorithm). At any point, a user can use a Sink (algorithm) to
collect envelope data or use a SpectrumAnalyzerEnv (algorithm) to view the spectrum.
The following image illustrates a simple RF design.

The benefit of using SystemVue envelope signal to represent modulated signals compared
to direct real signal representation is that the sample rate needed to fully represent a
complex envelope signal can be in the order of the information bandwidth, which is in
general orders of magnitude smaller than the sample rate required for direct real signal
representation.

Please note that the characterization frequency is not the same as the signal carrier frequency.

Even though the characterization frequency of an envelope-type port remains constant (as
discussed above), a frequency modulated signal can still be represented because the in-
phase xi(t) and quadrature xq(t) components as well as the signal "carrier" frequency can

change over time.

 Definition
Let x(t) represents a real-valued signal. An analytic signal xa(t) is defined as xa(t) = x(t)

+ j xh(t), where xh(t) is the Hilbert transform of x(t).

An analytic signal can be expressed in the form xa(t) = xc(t) exp(j 2 π fc t). In this

representation, xc(t) is defined as the complex envelope of x(t), and fc is the

characterization frequency associated with the complex envelope. Complex envelope xc

(t) is a complex-valued signal. It can be expressed as xc(t) = xi(t) + j xq(t), where xi(t)

and xq(t) are both real-valued signals and are referred to as the in-phase component

the quadrature component of x(t).

Using complex envelope form, the real signal can be expressed as x(t) = Real{xa(t)} = xi

(t) cos(2 π fc t) - xq(t) sin(2 π fc t).

Based on the above equations, an analytic signal xa(t) (as well as the associated real

signal x(t) = Real{xa(t)}) can be characterized equivalently by various different

characterization frequencies fc. Different characterization frequencies result in different

complex envelopes xc(t) = xi(t) + j xq(t). Regardless of different characterization

frequencies, the analytic signal xa(t) (as well as the associated real signal x(t) = Real{xa

(t)}) remains the same. For example, both xa(t) and x(t) below are represented with two

sets of complex envelopes and characterization frequencies:

xa(t) = (xi1(t) + j xq1(t),) exp(j 2 π fc1 t) = (xi2(t) + j xq2(t),) exp(j 2 π fc2 t)

x(t) = xi1(t) cos(2 π fc1 t) - xq1(t) sin(2 π fc1 t) = xi2(t) cos(2 π fc2 t) - xq2(t) sin(2 π fc2
t).

 SystemVue Envelope Data Type
In SystemVue, an envelope signal v(t) represents EITHER a real signal x(t) OR an
analytic signal xa(t) = (xi(t) + j xq(t)) exp(j 2 π fc t) with positive characterization

frequency fc > 0.

As discussed in Using Data Types (sim), SystemVue associates envelope data type with
the color black. A black-colored port operates on envelope signal. SystemVue data flow
technology restricts such an envelope-typed ports to have constant characterization
frequency throughout a simulation. In other words, an envelope-typed port operates on

SystemVue - Simulation

32

EITHER a real signal throughout a simulation, OR an analytic signal with constant
characterization frequency throughout a simulation.

 Delay for Envelope Signal

SystemVue Delay (algorithm) block represents z-N operator, where N is the size of delay.

When a Delay block is placed before an envelope-typed (black-colored) port, SystemVue
data flow technology is able to set the initial delay value for such envelope signal based on
its representation and characterization frequency. If the envelope data sample represents
a real signal, the initial delay value is set to real 0. On the other hand, if the envelope
data sample represents an analytic signal, the initial delay value is then set to 0-valued
complex envelope (xi=0 and xq=0) at the associated characterization frequency.

The alternate envelope signal delay block DelayEnv (algorithm) is also available for
delaying an envelope signal with additional features such as interpolation in the delay
process, characterization frequency phase shift, and it also supports voltage controlled
delay as well. Please refer to DelayEnv (algorithm) for details.

 Collecting Envelope Signal into Dataset
SystemVue Sink (algorithm) block can collects envelope data samples into a dataset.
Suppose "S1" is the name of the Sink, and let i denote the index of samples in the order
of receiving.

When the input envelope data represent a real signal, the Sink block collects real signal
values into the variable "S1" in dataset, along with time stamps into the variable
"S1_Time".

When the input envelope data represents an analytic signal, the Sink block collects
complex envelope values (xi(i), xq(i)) into the complex variable "S1", and also collects

real characterization frequency values fc(i) into the variable "S1_Fc", along with time

stamps into the variable "S1_Time".

The sampled version of the analytic signal can be expressed as xa(S1_Time(i)) = S1(i)

exp(j 2π S1_Fc(i) S1_Time(i)), and the sampled version of the real signal can be
expressed as x(S1_Time(i)) = real(S1(i)) cos(2π S1_Fc(i) S1_Time(i)) - imag(S1(i))
sin(2π S1_Fc(i) S1_Time(i)).

Here is a complex envelope sample in a dataset. To see the complex format, right click on
"S1", choose "Real+Imaginary" in Complex Format.

 Type Conversion
This section introduces type conversion to and from envelope type.

 Floating Point, Integer, and Fixed Point to Envelope

This category of type conversion is performed by SystemVue data flow technology. The
resulting envelope will represent a real signal. The value of the real signal (in double
floating point precision) is converted directly from the value of floating point, integer, or
fixed point.

 Complex to Envelope

SystemVue does NOT support automatic type conversion from complex to envelope, and
will report error message for such conversion.

Users need to explicitly place a CxToEnv (algorithm) block in-between such connections to
specify the characterization frequency of the complex data in order to convert it to an
analytic signal. Please refer to CxToEnv (algorithm) for details.

Let cx(t) = re(t) + j im(t) represents the input complex signal to CxToEnv. Let fc denote

the characterization frequency of the input "fc" pin of CxToEnv, or the value of the "Fc"
parameter when "fc" pin connection does not exist. When fc is 0, the output envelope

represents a real signal re(t). When fc > 0, the output envelope represents an analytic

signal (re(t) + j im(t)) exp(j 2 π fc t).

 Variant to Envelope

SystemVue data flow technology will automatically insert a converter block in between
variant to envelope connections.

If a variant is a scalar type, the resulting envelope will represent a real signal. The value
of the real signal is converted directly from the value of the variant.

If a variant is a complex type, SystemVue will ask users to place a CxToEnv (algorithm)
block for such connection.

If variant is another type other than scalar or complex, SystemVue will not support the

SystemVue - Simulation

33

conversion and will reports error messages.

 Envelope to Floating Point, Integer, and Variant

SystemVue Data Flow technology will automatically insert a converter block in between
these connections.

If an envelope represents a real signal, the converter will converts the real signal value (in
double floating point precision) directly to destination data type (floating point, integer, or
variant). Possible loss of information may occur due to numeric precision.

If an envelope represents an analytic signal, the converter will first convert the analytic
signal to a real signal, x(t) = xi(t) cos(2 π fc t) - xq(t) sin(2 π fc t), then convert the real

signal value to the destination data type.

In analytic to real signal conversion, SystemVue will report warning messages if the sample rate is not
enough (< 4*fc) to characterize the resulting real signal.

 Envelope To Complex

SystemVue does NOT support automatic type conversion from envelope to complex, and
will ask users to explicitly place an EnvToCx (algorithm) block to track the characterization
frequency. Please refer to EnvToCx (algorithm) for details.

If an envelope represents a real signal, the output of EnvToCx (algorithm) is simply a
complex signal with the real part equal to the input real signal and imaginary part equal to
0. The fc output pin will carry the characterization frequency information (fc = 0).

If an envelope represents an analytic signal, the output of EnvToCx (algorithm) is simply
the complex envelope signal, xc(t) = xi(t) + j xq(t). The fc output pin will carry the

characterization frequency information.

The following image illustrates a typical usage of EnvToCx (algorithm) and CxToEnv
(algorithm). The "fc" output of EnvToCx can be used to carry the characterization
frequency of the envelope signal for later conversions, and the "fc" input of CxToEnv can
be used to obtain the characterization frequency from another envelope signal. In the
case, the connection from the "fc" output of EnvToCx "E1" to the "fc" input of CxToEnv
"C1" tracks the characterization frequency of the envelope signal, and users can apply
computations purely on the complex envelope signal in between "E1" and "C1".

 Other Types

Except the data types described above, SystemVue does not support other type
conversions to and from envelope.

 Filtering Envelope Signal
Many SystemVue filter blocks operate on envelope signal. This section introduces the
filtering process for envelope signal. Please refer to IIR Filter Design (users) and FIR Filter
Design (users) for basic filter design methods and refer to Filter Part (algorithm) for
SystemVue filter models that support envelope signal.

 Filtering Real Signal

Suppose an envelope input to a filter block represents a real signal x(t), and suppose h(t)
is the impulse response of the designed filter based on user specification. Then the output
envelope represents a real signal y(t). y(t) is the output of the filter and can be expressed
as x(t) --> h(t) --> y(t) or y(t) = x(t) * h(t), (where * represents convolution operator).
In other words, when an envelope represents a real signal, the conventional filtering
process is applied.

Please note that SystemVue data flow filter blocks are actually implemented as either FIR or IIR digital
filters.

 Bandpass and Bandstop Filtering for Analytic Signals

Suppose an envelope input to a bandpass filter block represents an analytic signal xa(t)

= (xi(t) + j xq(t)) exp(j 2 π fc t). Suppose the bandpass filter is specified by center

frequency FCenter, and/or passband bandwidth PassBandwidth, and/or stopband
bandwidth StopBandwidth, as well as other parameters. Then the SystemVue bandpass
filter block filters the analytic signal in the following steps:

Design a lowpass filter hl(t) with passband frequency PassFrequency =1.

PassBandwidth/2 and/or stopband frequency StopFrequency = StopBandwidth/2,
along with the other parameters.
Convert the input complex envelope xc(t) = xi(t) + j xq(t) with characterization2.

frequency fc to an intermediate complex envelope x'c(t) = x'i(t) + j x'q(t) with

characterization frequency FCenter. This can be done by
x'c(t) = x'i(t) + j x'q(t) = (xi(t) + j xq(t)) exp(j 2 π (fc - FCenter) t)

Filter the intermediate I and Q signals separately by the same lowpass filter hl(t).3.

x'i(t) --> hl(t) --> y'i(t) and x'q(t) --> hl(t) --> y'q(t)

SystemVue - Simulation

34

Convert the intermediate output complex envelope y'c(t) = y'i(t) + j y'q(t) with4.

characterization frequency FCenter back to the output complex envelope yc(t) = yi(t)

+ j yq(t) with the same characterization frequency as input fc. This can be done by

yc(t) = yi(t) + j yq(t) = (y'i(t) + j y'q(t)) exp(j 2 π (FCenter - fc) t)

Finally, the output envelope represents the analytic signal ya(t) = (yi(t) + j yq(t))5.

exp(j 2 π fc t).

The bandstop filter blocks work in the similar way.

Design a highpass filter hh(t) with passband frequency PassFrequency =1.

PassBandwidth/2 and/or stopband frequency StopFrequency = StopBandwidth/2,
along with the other parameters.
Convert the input complex envelope xc(t) = xi(t) + j xq(t) with characterization2.

frequency fc to an intermediate complex envelope x'c(t) = x'i(t) + j x'q(t) with

characterization frequency FCenter. This can be done by
x'c(t) = x'i(t) + j x'q(t) = (xi(t) + j xq(t)) exp(j 2 π (fc - FCenter) t)

Filter the intermediate I and Q signals separately by the same highpass filter hh(t).3.

x'i(t) --> hh(t) --> y'i(t) and x'q(t) --> hh(t) --> y'q(t)

Convert the intermediate output complex envelope y'c(t) = y'i(t) + j y'q(t) with4.

characterization frequency FCenter back to the output complex envelope yc(t) = yi(t)

+ j yq(t) with the same characterization frequency as input fc. This can be done by

yc(t) = yi(t) + j yq(t) = (y'i(t) + j y'q(t)) exp(j 2 π (FCenter - fc) t)

Finally, the output envelope represents the analytic signal ya(t) = (yi(t) + j yq(t))5.

exp(j 2 π fc t).

Let FUpper denote FCenter + PassBandwidth/2 and represent upper passband edge
frequency, and let FLower denote FCenter - PassBandwidth/2 and represent lower
passband edge frequency. The bandpass/bandstop filter block with analytic input signal
has its frequency response linearly symmetrical about FCenter. However, the
bandpass/bandstop filter block with real input signal has its frequency response
geometrically symmetrical about the square root of FUpper*FLower.

The benefit of this envelope filtering technology is that we can use smaller sampling rate
to perform bandpass and bandstop filtering of analytic signals by lowpass and highpass
filtering of complex envelopes.

The following images show the schematic and the spectrum of an impulse source that is
modulated to 2M hz in analytic signal format and then filtered by a bandpass raised cosine
filter centered at 2M hz.

 Lowpass and Highpass Filtering for Analytic Signal

Suppose an envelope input to a lowpass filter block represents an analytic signal xa(t) =

(xi(t) + j xq(t)) exp(j 2 π fc t). Then the SystemVue lowpass filter block filters the

analytic signal in the following steps:

Design a lowpass filter hl(t) based on user specification.1.

Convert the input complex envelope xc(t) = xi(t) + j xq(t) with characterization2.

frequency fc to an intermediate complex envelope x'c(t) = x'i(t) + j x'q(t) with

characterization frequency 0. This can be done by
x'c(t) = x'i(t) + j x'q(t) = (xi(t) + j xq(t)) exp(j 2 π (fc - 0) t)

SystemVue - Simulation

35

Filter the intermediate I and Q signals separately by the same lowpass filter hl(t).3.

x'i(t) --> hl(t) --> y'i(t) and x'q(t) --> hl(t) --> y'q(t)

Convert the intermediate output complex envelope y'c(t) = y'i(t) + j y'q(t) with4.

characterization frequency 0 back to the output complex envelope yc(t) = yi(t) + j yq

(t) with the same characterization frequency as input fc. This can be done by

yc(t) = yi(t) + j yq(t) = (y'i(t) + j y'q(t)) exp(j 2 π (0 - fc) t)

Finally, the output envelope represents the analytic signal ya(t) = (yi(t) + j yq(t))5.

exp(j 2 π fc t).

The highpass filter blocks work in the similar way.

Design a highpass filter hh(t) based on user specification.1.

Convert the input complex envelope xc(t) = xi(t) + j xq(t) with characterization2.

frequency fc to an intermediate complex envelope x'c(t) = x'i(t) + j x'q(t) with

characterization frequency 0. This can be done by
x'c(t) = x'i(t) + j x'q(t) = (xi(t) + j xq(t)) exp(j 2 π (fc - 0) t)

Filter the intermediate I and Q signals separately by the same highpass filter hh(t).3.

x'i(t) --> hh(t) --> y'i(t) and x'q(t) --> hh(t) --> y'q(t)

Convert the intermediate output complex envelope y'c(t) = y'i(t) + j y'q(t) with4.

characterization frequency 0 back to the output complex envelope yc(t) = yi(t) + j yq

(t) with the same characterization frequency as input fc. This can be done by

yc(t) = yi(t) + j yq(t) = (y'i(t) + j y'q(t)) exp(j 2 π (0 - fc) t)

Finally, the output envelope represents the analytic signal ya(t) = (yi(t) + j yq(t))5.

exp(j 2 π fc t).

 Reference
S. Haykin, Communication Systems, 3rd edition, Wiley, 1994.1.

SystemVue - Simulation

36

 Fixed Point Simulation
SystemVue provides an extensive set of Fixed Point parts/models in its Hardware Design
Library (hardware). SystemVue FixedPoint Data Type (users) is similar in computational
behavior of SystemC TM 2.2 fixed point type based on IEEE Std. 1666 TM Language
Reference Manual (LRM) .

For detailed description of SystemC TM 2.2 fixed-point type, consult section 7.10 of SystemC TM IEEE Std.
1666 TM Language Reference Manual (LRM)

Hardware Design Parts in Hardware Design Library (hardware) can be used to build,
simulate and analyze fixed point systems. A range of functions from low level logic
elements to more advanced signal processing parts such as filters (hardware) and fast
Fourier transforms (FFTs) (hardware) are available.

The fixed-to-float and float-to-fixed conversion parts provide a means of interfacing fixed
point components with other SystemVue blocks. Hardware Design parts can also be
configured to automatically collect information on dynamic range, overflows and
underflows and be shown in Fixed Point Analysis Table in order to help with system
optimization.

When used in conjunction with the HDL Code Generation (sim), Verilog/VHDL RTL code
describing the fixed point system can be automatically generated. See HDL Code
Generation, in the Simulation > Data Flow (sim) section for more information.

 Using Fixed-Point Parts

 Conversion between Fixed-Point and Non-Fixed-Point Data

SystemVue does not support automatic conversion from non-fixed-point to fixed-point
data. To convert floating-point to fixed-point data use FloatToFxp (hardware) part. You
could also convert from fixed-point to floating-point data using FxpToFloat (hardware)
part.

 Fixed-Point Precision at the Input Port

SystemVue resolves the fixed-point precision at the input port automatically based on the
output precision of the previous component in the data flow schematic. A user does not
have to specify the precision for the input port.

 Fixed-Point Precision at the Output Port

For most of the parts you need to specify the fixed-point precision at the output port
explicitly. There are cases where output port precision is tightly coupled with fixed-point
precision at the input ports, for example, MuxFxp (hardware), and DelayFxp (hardware),
in such cases it may not be required to specify output precision. The fixed-point models,
which require a user to specify output port precision, share the following common
parameters.

 Wordlength

This parameter is used to specify the total number of bits in the fixed-point, including
fractional and integer bits.

 IntegerWordlength

This parameter is used to specify the number of integer bits in the fixed-point including
the sign bit. Based on the values of Wordlength and IntegerWordlength the fixed point
precision could have one of the following three scenarios

Wordlength < IntegerWordlength: There will be (IntegerWordlength -
Wordlength) zeros added between the Least Significant Bit (LSB) and the binary
point.
0 <= IntegerWordlength <= Wordlength: The fixed point will have
IntegerWordlength integer bits and (Wordlength - IntegerWordlength) fractional bits.
The binary point will be fully containted in the precision specified.
IntegerWordlength < 0: There are (-IntegerWordlength) signed-extended bits
added between binary point and Most Significant Bit (MSB).

Please consult section 7.10.1 of SystemC TM IEEE Std. 1666 TM Language Reference
Manual (LRM) for more details.

 IsSigned

This parameter is used to specify that either the fixed-point is signed or un-signed type.

 Quantization

This method is used to specify the quantization mode for the fixed-point. There are seven
possible modes

RND: Rounding to plus infinity. The corresponding SystemC TM mode is SC_RND.
RND_ZERO: Rounding to zero. The corresponding SystemC TM mode is
SC_RND_ZERO.
RND_MIN_INF: Rounding to minus infinity. The corresponding SystemC TM mode is
SC_RND_MIN_INF.
RND_INF: Rounding to infinity. The corresponding SystemC TM mode is
SC_RND_INF.
RND_CONV: Convergent rounding. The corresponding SystemC TM mode is
SC_RND_CONV.
TRN: Truncation. The corresponding SystemC TM mode is SC_TRN.
TRN_ZERO: Truncation to zero. The corresponding SystemC TM mode is
SC_TRN_ZERO.

Please consult section 7.10.9 of SystemC TM IEEE Std. 1666 TM Language Reference
Manual (LRM) for more details.

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html

SystemVue - Simulation

37

 Overflow

This parameter is used to specify overflow mode. The overflow occurs when specified
precision is not enough to hold the value. There are five possible modes

SAT: Saturation. The corresponding SystemC TM mode is SC_SAT.
SAT_ZERO: Saturation to zero. The corresponding SystemC TM mode is
SC_SAT_ZERO.
SAT_SYM: Symmetrical saturation. The corresponding SystemC TM mode is
SC_SAT_SYM.
WRAP: Wrap-around. The corresponding SystemC TM mode is SC_WRAP.
WRAP_SM: Sign magnitude wrap-around. The corresponding SystemC TM mode is
SC_WRAP_SM.

Please consult section 7.10.9 of SystemC TM IEEE Std. 1666 TM Language Reference
Manual (LRM) for more details about overflow mode.

 SaturationBits

This parameter is used to provide number of saturation bits for WRAP and WRAP_SM
Overflow modes.

Please consult Table 39 and Table 40 in section 7.10.9 of SystemC TM IEEE Std. 1666 TM

Language Reference Manual (LRM) for more details about saturation bits.

 TypeOverride

All fixed point models share a common parameter TypeOverride. This parameter is used
to override the numeric format of fixed point block. There are 3 possible modes.

OFF: The Fixed point model will be simulated with fixed-point precision. This is the
default mode of operation.
Double: The Fixed point model will be simulated with double floating-point precision.
Integer: The Fixed point model will be simulated with integer precision.

Note
SystemVue does not support automatic conversion to fixed-point, you may need to consider this
when switching the TypeOverride parameter.

 HDL Code Generation and Automatic HDL
Cosimulation.
SystemVue allows its users to generate VHDL or Verilog using the synthesizeable parts in
its Hardware Design Library (hardware). Please consult HDL Code Generation (sim)
document for further details. SystemVue also provides its users the ability to
automatically Cosimulate SystemVue generated HDL (sim) with ModelSim TM SE HDL
simulator.

 Cosimulating with User HDL
While simulating fixed-point design, it is possible in SystemVue to cosimulate with user
written HDL using ModelSim TM SE HDL simulator by using HdlCosim (sim) part.
However, HDL Code Generation (sim) cannot synthesize a fixed-point model that includes
user written HDL code, because HdlCosim (sim) part is not synthesizeable. Also automatic
HDL cosimulation is not possible with user written code. Please consult HDL Cosimulation
(sim), and HdlCosim (sim) part document for more details.

 Fixed Point Analysis Table
The fixed point analysis table is created automatically after simulating a design that
contains fixed point parts and when data flow analysis options (sim) are set properly to
collect fixed point analysis data.

The fixed point analysis table contains 8 columns:

Part- the instance name of the design block.1.
Model - the model used in the Part.2.
Signal - the name of the fixed point signal.3.
Precision - the fixed point number representation (± indicates signed, the first4.
number in the angle brackets is the register word length, the second number in the
angle brackets is the length of the integer part).
Overflows - shows the total number and percentage of overflows on the signal.5.
Underflows - shows the total number and percentage of underflows on the signal.6.
Max - the maximum value of the signal.7.
Min - the minimum value of the signal.8.

As overflows and underflows are generally undesirable, they are shown in red.

 Fixed Point Examples
SystemVue is shipped with examples using fixed point analysis with HDL code generation.
These examples are located in the directory <SystemVue installation
directory>\Examples\Hardware Design.

http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://www.model.com
http://www.model.com
http://www.model.com
http://www.model.com
http://www.model.com
http://www.model.com
http://www.model.com
http://www.model.com

SystemVue - Simulation

38

 HDL Code Generation
SystemVue provides its users with an easy path from schematic design to the hardware.
This could be done by using HDL Code Generation capability of SystemVue. A user created
SystemVue sub-network model (users), using only synthesizeable Fixed Point parts from
Hardware Design Library (hardware) can be used to generate VHDL/Verilog for the sub-
network.

In this tutorial we will go through a simple example to understand the design flow to
generate HDL Code. The same design flow can be used for more complex designs. We will
create a Fixed point design for a Complex Adder, generate VHDL for the Complex Adder
and performs functional verification of the generated VHDL.

 Generating Fixed Point Sub-Network Model
If you have note done so then read and understand Sub-Network Models (users)
documentation.
Create a sub-network model as shown below.

Note that ControllerFxp component is included in the design. Also note that the
values of parameters CodeGeneration, LaunchHDLSim and HDLSimulatorGUI are
assigned the model parameter names.
Set the Sub-Network parameters as follows

For the sub-network model (users) parameters, edit the enumeration type for
CodeGeneration to be ControllerFxp_CodeGeneration, for LaunchHDLSim to be
ControllerFxp_LaunchHDLSim and for HDLSimulatorGUI to be
ConstrollerFxp_HDLSimulatorGUI from the library Fxp Enums.

Parameterizing the sub-network model to control ControllerFxp is not required but helps if you
would like to use the same sub-network model for Fixed point simulation and automatic HDL
Cosimulation.

Create a top level design and simulate the sub-network model to make sure its
correct functionality. Make sure that parameter CodeGeneration=OFF. An example
top-level design is shown below

Warning
The fixed point sub-network model used to generate HDL must contains only synthesizeable Fixed
Point parts from Hardware Design Library (hardware). For example FloatToFxp (hardware) part is
not synthesizeable. To ensure that a Fixed Point part is synthesizeable, consult its documentation.

 Generating the HDL and HDL Simulation
Change the value of model parameter CodeGeneration to VHDL. If you have not
parameterized your sub-network model then select CodeGeneration=VHDL for
ControllerFxp component inside the sub-network.
Simulate the top level design, it will perform the fixed point simulation and generates
the corresponding VHDL for the sub-network model instance in the sub-directory
<schematic design name>_<sub-network model instance name>_HDL\hdl
under the same directory where the workspace containing the design is located. The
name of the file containing the top level VHDL will be <sub-network model
name>.vhd.

SystemVue - Simulation

39

If you have installed ModelSim SE and it is configured to run from command line i.e. your
operating system's PATH variable points to ModelSim SE, then you can also invoke HDL
simulation After Simulation using the test vectors generated by SystemVue simulation.
Alternatively you can use automatic HDL Cosimulation (sim) During Simulation to make
sure that generated VHDL is functionally correct. The automatic HDL Cosimulation (sim),
performs inter process communication between SystemVue and ModelSim to process data
by HDL simulator in real time while SystemVue simulation is running. The Hdl simulation
During Simulation first generate the HDL for the sub-network and then runs the HDL
portion of the design in ModelSim and rest in SystemVue using inter process
communication.

Change the value of model parameter LaunchHDLSim=After Simulation and run the
simulation. This will simulate the design in SystemVue and at the end of simulation
starts ModelSim and run ModelSim simulation using the test vectors generated by the
SystemVue simulation.
To perform HDL simulation During Simulation change the value of model parameter
LaunchHDLSim=During Simulation and run the simulation. This will perform the HDL
Cosimulation in the back ground if HDLSimulatorGUI=OFF.
Now change the value of model parameter HDLSimulatorGUI=ON and run the
simulation. This will bring up ModelSim GUI and halts the SystemVue simulation
which is waiting for data from ModelSim. This interactive mode can be used for
debugging HDL code. To resume the simulation, either issue the command run inside
ModelSim to run for a single step or run -all to run the complete simulation.

Currently only VHDL is supported with LaunchHDLSim=During Simulation.
If HDLSimulatorGUI=ON then close the ModelSim before starting simulation again. Otherwise
you will require additional license for new instance of ModelSim.

 Testing for Functional Equivalency
This section covers that how to perform functional equivalency test to prove that
SystemVue generated HDL is functionally equivalent to the fixed point model for which
HDL was generated. You must have ModelSim SE installed properly, see section
Generating the HDL and HDL Simulation for more details.

Create a design using the sub-network model created in section Generating Fixed
Point Sub-Network Model as shown below

This design includes two instances of the sub-network model. One instance is
configured to generate VHDL and LaunchHDLSimulation=During Simulation, the other
instance is configured not to generate HDL and perform only fixed point simulation.
Both instances are fed with the same inputs.
The output of both instances are compared using CompareFxp (hardware) part
with CompareOperation=Equal. The output of CompareFxp (hardware) is '1' to
indicate true and is '0' to indicate false.
Run the simulation, and observe the results. If the output of all CompareFxp
(hardware) instances is always '1' that means the generated HDL is functionally
equivalent to original fixed point model.

Warning
Currently only VHDL can be used with LaunchHDLSimulation=During Simulation therefore it is
not possible to perform functional equivalency test for SystemVue generated Verilog.
If you are using any delay or changing the sample rate in the sub-network model then you
cannot use any downstream component that is backward reachable simultaneous to a sub-
network model instances using LaunchHDLSimulation=During Simulation and sub-network
model instances not using LaunchHDLSimulation=During Simulation. The functional
verification can still be performed by connecting the output of sub-network model instances to
two different sinks and comparing the data in the dataset. In the above example it means not
using the CompareFxp (hardware).

The reason that outputs of sub-network model instances (one with HDL Cosimulation
and the other with fixed-point simulation) cannot be combined at the input of a
downstream component is because sub-network model with
LaunchHDLSimulation=During Simulation is replaced by a single HdlCosim (sim)
model which is a uni-rate model, where as the other instance uses the fixed-point
models in the simulation.

 Understanding the Generated HDL
The generated HDL will be located inside the sub-directory <schematic design
name>_<sub-network model instance name>_HDL\hdl under the same directory
where the workspace containing the design is located. The name of the file containing the
top level HDL will be <sub-network model name>.vhd for VHDL and <sub-network
model name>.v for verilog.
The number of input/output ports will be same if there is no sequential component is
used, for example the Complex Adder design above. However, in case of using sequential
components such as DelayFxp (hardware), RegisterFxp (hardware) etc, the resulting HDL
will have extra CLK and RESET input ports, it may also have a DataInEnable input port
as well, depending upon the design. This DataInEnable control input port must be used
to indicate when the input data is valid ('1') and when it is not ('0'). There may be a
DataOutEnable output port which may be used to detect when the output of the HDL is
valid ('1') and when it is not valid ('1').
Other than the top level HDL file other HDL files are also included. Most of these HDL files
contains HDL for sub-components used to create the top level HDL and must be included
in any synthesis/simulation tool along with the top-level HDL.

 SystemVue Examples

http://www.model.com
http://www.model.com
http://www.model.com
http://www.model.com

SystemVue - Simulation

40

SystemVue ships with hardware design examples which are configured or can be
configured to generate HDL. These examples are installed under <SystemVue install
directory>\Examples\Hardware Design.

SystemVue - Simulation

41

 HDL Cosimulation
 About HDL Cosimulation
With the SystemVue HDL Cosimulation feature you can simulate components represented
in a hardware description language (HDL) in the same schematic with other SystemVue
components. This integrated capability provides complete design flexibility, and
complements other SystemVue features, including HDL generation.

The ability to design all portions of a communications product in one integrated
environment can eliminate design errors resulting from disconnects among design teams.
By cosimulating with HDL designs, you can easily incorporate your existing HDL
intellectual property into new designs, or you could cosimulate with SystemVue generated
HDL.

With HDL cosimulation, you can test hardware defined in HDL with a DSP algorithm, or
use an algorithm written in HDL within an existing SystemVue design. This cosimulation
capability in one design environment makes it easy to test HDL components along with
other SystemVue design components and see the effect on the entire system.

Note

Currently only VHDL is supported with the ModelSim TM HDL simulator from Mentor Graphics as HDL
simulator.

 Requirements for HDL Cosimulation

To run HDL Cosimulation, you must have ModelSim TM SE PLUS 6.3g or later installed on
your system. The ModelSim TM must be setup to run from command line prompt. This
means that your PATH environment settings and ModelSim TM license must be setup
appropriately prior to running HDL Cosimulation in SystemVue. If PATH has not been
setup properly during ModelSim installation, consult help and support of your Operating
System to learn how to setup environment variables.

 Prerequisite

Before continuing with this document please make sure that you have read and
understood the following two sections:

Create Your First Data Flow Simulation (sim)1.
Nets, Connection Lines and Buses (users)2.

 Quick Start Guide
If you have not already done it, please read and understand Create Your First Data
Flow Simulation (sim) first.
Create a New Design with Schematic and name it HDLCosimTest.
Select the library Hardware Design and category HDL Cosimulation, select HDL part
and place its instance in the design.
Double click on HDL Part (hardware) to open its properties as shown below

Click on New File button and browse to the place where you would like to create file.
In the File Name field write myadd.vhd and click Open. A VHDL file editor will open,
write the following VHDL code in the editor.

-- My first VHDL code

-- File Name : myadd.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

entity myadd is

port(

A : in std_logic_vector(7 downto 0);

B : in std_logic_vector(7 downto 0);

S : out std_logic_vector(7 downto 0)

);

end myadd;

architecture behav of myadd is

begin

SystemVue - Simulation

42

S <= A + B;

end behav;

Note the VHDL syntax highlighting and line numbers in the VHDL file editor as shown
below

Click OK to save the file, note the VHDL entity name myadd and VHDL port names A
, B, and S and width of output port (8) before clicking OK.
Click on HDL Settings tab and enter myadd in the Top Level Entity/Module field,
also select Display HDL Simulator Graphical User Interface as shown below

Under I/O tab add two input ports A and B. The port names must match the in type
port names in the above VHDL code.
Under I/O tab add once output port S. The port name must match the out type port
name in the above VHDL code.
Specify the fixed point formatting you like for each output port. For now use Word
Length equals to 8 and for Int Word Length use 4 and select Signed for Is Signed
. The I/O tab should now look like as follows

SystemVue - Simulation

43

Click OK. This will create a custom Symbol for your HDL model with appropriately
named ports matching the port names in VHDL code.
Select the library Algorithm Design and category Sinks, select Sink part and place its
instance in the design. Connect the output of HdlCosim part to Sink input.
Select the library Hardware Design and category Fixed Point, select ConstFxp and
place 2 instances in the design. Connect each instance of ConstFxp to one input port
of your customized HDL instance.

Rename the source labels to A and B.
Create following VHDL code using any text editor of your choice and save it as
myadd.vhd in any directory that you remember.
Since our VHDL code has two inputs of 8-bits each, we need to modify our sources
accordingly to generate proper fixed point values.

For both sources A and B on the schematic select WordLength=8 to match
std_logic_vector(7 down to 0) of VHDL ports A and B respectively.
For both sources A and B on the schematic select IntegerWordLength=4
For source A select value=3.25 and for source B select value=-4.5

The schematic should look like as follows.

Add a Data Flow Analysis, if you don't know how to do it then read section Add the
Data Flow Analysis (sim)
Run Simulation, it will compile the VHDL code and open ModelSim UI for you,
because we have selected Display HDL Simulator Graphical User Interface.
All the signals in your top level entity will also be added to ModelSim Wave as well.
In ModelSim issue the command 'run -all' to start simulating the design.
Watch for the signal values in ModelSim.
Go back to SystemVue and examine the data in SystemVue. If you do not know how
to do it then please follow the instructions in Examine the Data (sim).
Unselect Display HDL Simulator Graphical User Interface and simulate the
design again. This time ModelSim will run in the background. You could examine the
results in SystemVue once the simulation is complete.
Double click on HDL part to open its properties and make sure Compilation Mode is
Auto and simulate the design again. This time your VHDL code will not be re-
compiled, instead already compiled VHDL code in work library from previous
simulation will be used. This is convenient if it takes longer to re-compile your HDL
code.
Now under HDL Files tab select myadd.vhd and click Edit File, slightly modify the file
by adding a space character and then click OK. Make sure Compilation Mode is
Auto and simulate the design again, this time VHDL code will be compiled because we
have modified it. You can choose Compilation Mode to be Auto, Always or Never
based on your need.

 Understanding HDL Cosimulation
With the HDL cosimulation feature, SystemVue has been configured to cosimulate with
ModelSim HDL simulator. In this use model, you first create the HDL design, use HDL
model HDL editor to write your HDL code or use SystemVue to generate HDL design. If
you have written your own HDL design then it must be error free. This means that you

SystemVue - Simulation

44

must be able to compile and simulate the HDL design with ModelSim before cosimulation.

If your HDL code is not compiled, you can use SystemVue to compile the code before
cosimulation. Cosimulation requires information regarding the VHDL entity or Verilog
module that you want to cosimulate with. This is used to generate HDL wrappers that
incorporate your HDL code and SystemVue specific C-interface code to create an inter-
process communication (IPC) link between SystemVue and the HDL simulator.

You can run HDL cosimulation in graphical user interface mode to monitor the HDL
simulation or debug you HDL code in ModelSim environment, please read ModelSim
documentation for HDL debugging. The cosimulation can also be run in the background
processing mode.

HDL cosimulation uses the SystemVue Data Flow Analysis, in which numeric signals are
consumed and produced by the HDL model. There is no timing information communicated
between SystemVue and the HDL simulator. SystemVue sends data into the HDL simulator
and receives data without any knowledge of the HDL timing. Furthermore HDL
cosimulation component is a uni-rate component.

The HDL model is a numeric model. Because the HDL simulation itself is time driven, it is
run for user specified amount of time whenever the HDL model reads data at its input
ports prior to collecting data from HDL simulator. The time scale used by the HDL
simulator is independent of the SystemVue simulation.

Each time the HDL model receives input values from other SystemVue components, it
sends these input values to HDL simulator which uses them to perform the HDL
simulation. Once the HDL simulator is finished with its processing, it passes the simulation
results back to SystemVue. These passed values are then the outputs of the HDL model,
and thus the simulation cycle continues. This cycle repeats as many times as the
SystemVue Data Flow Analysis simulation requires. Each time the HDL model is invoked,
the HDL simulation duration is determined by the value of the IterationTime parameter in
the HDL cosimulation component. You must determine how long the HDL simulator should
run before its outputs are sent back to the HDL model. This timing information should not
be confused with the timing used in other SystemVue models.

From the HDL simulator engine's point of view, the SystemVue input interface is viewed as
forcing values onto the ports. At the output interface of the HDL model, the results are
converted back into SystemVue format and sent to the other connecting SystemVue
components.

Please note that, input ports of the HDL model can only be connected to the output of a
fixed point model. Automatic conversion from other type of ports to fixed point is not
supported.

 Supported HDL Port Types

HDL cosimulation currently supports various bit and bit-vector type HDL ports; they are all
mapped to the SystemVue fixed point data type port.

In the case of Verilog HDL, which supports only bit and bit-vector type ports, HDL
cosimulation will support any type of Verilog port. In the case of VHDL, which has a large
set of data types, HDL cosimulation will only support the ports that are of bit, bit-vector,
signed, unsigned, std_logic, std_logic_vector types described in the IEEE std_logic_1164
library.

 Bidirectional HDL Ports

Bidirectional ports are not supported in HDL model.

 Automatic Clock and Reset Signals

Using HDL Cosimulation it is possible to automatically generate Clock and Reset signals
without connecting those to the input of HDL (hardware) model. This features enable the
user to generate one clock cycle per HDL (hardware) model iteration which is not possible
by connecting a Clock at the input port of HDL (hardware) model because of its unirate
properties.

To generate an automatic Clock set Clock: field under HDL Settings tab to the name of
the Clock port in your HDL code.

To generate an automatic Reset set Reset: field under HDL Settings tab to the name of
the Reset port in your HDL code.

The autogenerated Clock is of a 50% duty cycle and has a period equal to the HDL
iteration time. The positive clock edge occurs at IterationTime/2. The default value for the
Reset during the first iteration is a logic low from time 0 to 1/4 times the HDL iteration
time, a logic high from time 1/4 to 3/4 times the HDL Iteration time, a logic low for
remaining HDL iteration time, and a logic low for iterations after that. This means that
Reset signal is high during first rising edge of the Clock signal and low after.

 Time-Specified Signals in User HDL Code

When HDL code has internal clocks or time-specified signals (for example, wait statements
in VHDL code) the HDL cosimulation may keep running until all the events in the user HDL
code are processed. The number of events generated in user HDL code can be infinite (for
example, when you have an internal clock).

You can avoid using an internal clock and use the SystemVue Clock instead (refer to the
section Automatic Clock and Reset Signals above). If this is not possible, then infinite
event processing can be avoided if you know how long the HDL simulation needs to run to
complete the cosimulation, with all of the SystemVue iterations. Different simulators have
different mechanisms to break a simulation after a certain simulation time. Here is an
example using ModelSim:

Use the ModelSim simulator to create a file called test.do. An example test.do may1.
look like this:

run 11000

quit -f

SystemVue - Simulation

45

Set Command Line Arguments field under HDL Settings to -do test.do. This stops2.
the simulation after 11000 nsec. (Refer to CmdArgs on the HdlCosim component
block.)

The total run time can be calculated as equal to:

The number of SystemVue iterations (depends on the Data Flow Analysis setup
and the different sinks used in the design) multiplied by the IterationTime
specified on the HdlCosim block.

Alternatively, you can also open the ModelSim UI mode and use multiple run 100
commands to see how long it takes before the message VHDL Cosimulation has
completed.. appears in the ModelSim UI. This time can then be used to create the test.do
file.

Do not use the run-all command, which will process all the events in the HDL simulation.

 HDL Part and Model
HDL cosimulation uses HDL Part (hardware) and the corresponding HDL (hardware) model
which is available under Hardware Design under the category HDL Cosimulation. The HDL
(hardware) model provides cosimulation with ModelSim TM SE Plus 6.3g or later. If the
user code has not been compiled, HDL (hardware) model can compile the user code before
cosimulation or use existing compiled HDL (hardware) code depending on the HDL
(hardware) model settings. Please read HDL model documentation (hardware) for more
details about using this model.

SystemVue - Simulation

46

 MATLAB Cosimulation

The MATLAB_Cosim part provides an interface between SystemVue and MATLAB®, a
numeric computation and visualization environment from The MathWorks, Inc.

SystemVue handles the conversion of data to and from MATLAB. Since MATLAB
cosimulation involves multiple environments and associated inter-process communication,
the installation and pre-simulation configuration must be precise and correct for the
infrastructure to work as expected. To ensure proper operation, the instructions provided
in Setting Up MATLAB Cosimulation must be followed.

MATLAB cosimulation using multiple MATLAB_Cosim parts does not work in multithreaded simulations. If
you are using multiple MATLAB_Cosim parts, the multithreaded simulation option will be automatically
overridden and the simulation will run in a single thread.

 Supported MATLAB Versions
MATLAB Cosimulation requires MATLAB and supports MATLAB version 7.7 (Release
2008b).

There is also a good chance that other MATLAB versions would work in SystemVue as well.

 Setting Up MATLAB Cosimulation
MATLAB must be configured correctly before using cosimulation. If MATLAB_Cosim is run
and MATLAB is not configured correctly, SystemVue will report an error.

You should be able to manually launch MATLAB from the Windows Command Prompt. If
MATLAB does not start that way, MATLAB_Cosim will not work either. This may be due to
the fact that your PATH variable exceeds the Windows limitation, in which case you may
want to reduce it or create a batch script with a reduced PATH variable to launch
SystemVue. Alternatively you may want to just copy all of the MATLAB DLLs (libeng.dll,
libut.dll, etc.) from its bin\win32 folder to the SystemVue bin folder (but remember to
replace them after an upgrade).

In addition, MATLAB COM server must be properly registered.

For most Windows users, SystemVue MATLAB cosimulation will work as expected when
MATLAB and SystemVue are installed.
Typically, the MATLAB installer registers the COM components in the Windows registry.

To manually register COM components run

matlab /regserver

This may be necessary if you have multiple versions of MATLAB on your system and
SystemVue MATLAB cosimulation fails with an error "Matlab could not be invoked".

 Simulating with MATLAB
The MATLAB interpreter's working directory is set to the ScriptDirectory parameter, if it is
given. Any custom MATLAB models will be searched there, and any output files will be
written there. If you leave the ScriptDirectory parameter blank, MATLAB_Cosim will use
the SystemVue workspace folder as its working directory.

MATLAB will search for scripts in the folders in your MATLAB path. Normally your MATLAB
scripts should be placed either in the folder with the workspace file using them, or in your
personal MATLAB folder (usually found under My Documents). You can also add more
folders to your MATLAB path using Set Path... dialog in MATLAB.

 Writing Functions for MATLAB_Cosim
There are several ways in which MATLAB commands can be specified in the
MATLAB_Cosim in the MatlabFunction parameter.

If only a MATLAB function name is given for this parameter, the function is applied to the
inputs in order. The function's outputs are sent to the model's outputs.

For example, specifying eig means to perform the eigendecomposition of the input. The
function will be called to produce one or two outputs, according to how many output ports
there are. If there is a mismatch in the number of inputs and outputs between the
MATLAB_Cosim part and the MATLAB function, then an error will be reported by MATLAB.

You may also explicitly specify how the inputs are to be passed to a MATLAB function and
how the outputs are taken from the MATLAB function. For example, consider a two-input,
two-output MATLAB_Cosim part to perform a generalized eigendecomposition. The
command

[output#1, output#2] = eig(input#1, input#2);

says to perform the generalized eigendecomposition on the two input matrices, place the
generalized eigenvectors on output#2, and the eigenvalues (as a diagonal matrix) on
output#1. Before this command is sent to MATLAB, all "#" characters are replaced with
the underscore character "_" because "#" is illegal in a MATLAB variable name.

The MATLAB_Cosim part also allows a sequence of commands to be evaluated. Continuing
with the previous example, we can plot the eigenvalues on a graph after taking the
generalized eigendecomposition:

[output#1, output#2] = eig(input#1, input#2); plot(output#1);

SystemVue - Simulation

47

When entering such a collection of commands in SystemVue, both commands appear on
the same line without a new line after the semicolon. In this way, very complicated
MATLAB commands can be built up.

The MatlabSetup and MatlabWrapUp parameters are called during the model's begin and
wrap-up procedures. During each of these procedures, data is not passed into or out of
the model.

Because the same MATLAB interpreter is used for the entire simulation, variables are
preserved from iteration to iteration. For example, the output of a MATLAB_Cosim part
with settings:

MatlabSetUp = 'x=ones(2,1);

MatlabFunction = 'output#1=x(2)/x(1); x=[x(2),sum(x)];

will converge on the golden mean.

 Using MATLAB_Cosim as a Source or Sink
The input to MATLAB_Cosim is optional, so it can be directly used as a simulation source.

The output is not optional, it must be connected to a simulation sink. If the MATLAB code
produces no output, a dummy output needs to be created. Just add "ouput#1=0" at the
end of your MATLAB command, e.g.

MatlabSetUp = 'hold on;

MatlabFunction = 'plot(input#1,input#2); output#1=0;

MatlabWrapUp = 'pause(20);

 Passing Parameters to MATLAB_Cosim
MATLAB commands are executed in the MATLAB environment and thus are not directly
aware of the parameters existing in your SystemVue workspace. Therefore, something like
MatlabSetUp = 'm_script_param=SystemVue_param; will not work. To pass a parameter
to MATLAB command you need to use equations to create a string containing the
parameter value. For instance, in the Equations tab create

matlab_setup_str = ['m_script_param=' num2str(SystemVue_param)];

and then assign that string variable directly to MatlabSetUp:

MatlabSetUp = matlab_setup_str

See Equations (users) for more information about SystemVue equations.

 Hiding MATLAB Code
If you don't want to share your MATLAB IP with other users, you can generate MATLAB p-
code files from your m-code by using the MATLAB command pcode.

For instance, if your MATLAB code is in the file mycode.m in the directory of your
SystemVue workspace, you need to open MATLAB and in the MATLAB Command Window
use cd command to go to that directory and execute

pcode mycode.m

You will find mycode.p in the same directory. When you run the simulation, mycode.p will
be executed instead of mycode.m, and you can remove mycode.m from your workspace
directory, leaving only mycode.p. The format is a non-readable binary, so your m-code is
not visible to other users.

 HdlCosim

Description: Cosimulates with VHDL Entity using ModelSim SE Simulator
Categories: Hdl Cosimulation

 Model Parameters

SystemVue - Simulation

48

Name Description Default Units Type

HdlSrcFile Top Level HDL Source file; or a text file containing
the list of HDL files, one per line, in the order of
compilation.

 Filename

HdlInputs Input port names in HDL code to communicate with.
It is an String Array.

 None

InputPhases Delay for updating inputs in HDL simulator within
each IterationTime step. It is an integer Array.

 Integer
array

InputWordlengths Number of bits in each HDL input port in the same
order as in the HdlInputs parameter. It is an integer
Array.

 Integer
array

AutoGenerateClock Generate Clock automatically with one complete
cycle per iteration: NO, YES

NO Enumeration

HdlClockName Name of Clock port in HDL Code Text

AutoGenerateReset Generate Reset automatically during first iteration:
NO, YES

NO Enumeration

HdlResetName Name of Reset port in HDL Code Text

HdlOutputs Output port names in HDL code to communicate
with. It is an String Array.

 None

OutputWordlengths Number of bits in each HDL output port in the same
order as in the HdlOutputs parameter. It is an
integer Array.

 Integer
array

OutputIntegerWordlengths Formats the fixed point outputs in the same order as
in the HdlOutputs parameter. It is an integer Array.

 Integer
array

AreOutputsSigned Are outputs signed 's' or unsigned 'u' in the same
order as in the HdlOutputs parameter. It is an String
Array.

 None

HdlModelName VHDL entity[.architecture|+configuration] or Verilog
module name to cosimulate with

 Text

ShowAdvancedParams Show advanced parameters: NO, YES NO Enumeration

HdlLibrary HDL library that user model depends on (to map
them explicitly use name=path syntax), if set to
none then all the code will be compiled in work
library. To avoid recompiling use "work" (remember
that code must be compiled atleast once before
cosimulation).

 Text

HdlSimulatorGUI HDL simulator Graphical User Interface Mode: OFF,
ON

OFF Enumeration

CmdArgs HDL Simulator command invocation arguments, if
any

 Text

IterationTime Time to run the HDL simulator before collecting the
outputs

100 Integer

TimeUnit Time resolution limit to be passed to HDL simulator:
fs, ps, ns, us, ms, sec

ns Enumeration

 Input Ports

Port Name Signal Type Optional

1 Input multiple fix YES

 Output Ports

Port Name Signal Type Optional

2 Output multiple fix YES

Warning

HdlCosim model is obsolete and should not be used anymore in any new design. Please use a better HDL
model (hardware) instead using HDL Part (hardware).

 Prerequisite

Before continuing with this document please make sure that you have read and
understood the following two sections:

Create Your First Data Flow Simulation (sim)1.
Nets, Connection Lines and Buses (users)2.

 Understanding HDL Cosimulation

With the HDL cosimulation feature, SystemVue has been configured to cosimulate with
ModelSim HDL simulator. In this use model, you first create the HDL design or use
SystemVue to generate HDL design. If you have written your own HDL design then it must
be error free. This means that you must be able to compile and simulate the HDL design
with ModelSim before cosimulation.

If your HDL code is not compiled, you can use SystemVue to compile the code before
cosimulation. Cosimulation requires information regarding the VHDL entity or Verilog
module that you want to cosimulate with. This is used to generate HDL wrappers that
incorporate your HDL code and SystemVue specific C-interface code to create an inter-
process communication (IPC) link between SystemVue and the HDL simulator.

You can run HDL cosimulation in graphical user interface mode to monitor the HDL
simulation or debug you HDL code in ModelSim environment, please read ModelSim
documentation for HDL debugging. The cosimulation can also be run in the background
processing mode.

HDL cosimulation uses the SystemVue Data Flow Analysis, in which numeric signals are
consumed and produced by the HDL cosimulation component. There is no timing
information communicated between SystemVue and the HDL simulator. SystemVue sends
data into the HDL simulator and receives data without any knowledge of the HDL timing.
Furthermore HDL cosimulation component is a uni-rate component.

The HDL cosimulation component is a numeric component. Because the HDL simulation
itself is time driven, it is run for user specified amount of time whenever the HDL
cosimulation component reads data at its input ports prior to collecting data from HDL
simulator. The time scale used by the HDL simulator is independent of the SystemVue
simulation.

Each time the HDL cosimulation component receives input values from other SystemVue
components, it sends these input values to HDL simulator which uses them to perform the
HDL simulation. Once the HDL simulator is finished with its processing, it passes the
simulation results back to SystemVue. These passed values are then the outputs of the

SystemVue - Simulation

49

HDL cosimulation component, and thus the simulation cycle continues. This cycle repeats
as many times as the SystemVue Data Flow Analysis simulation requires. Each time the
HDL cosimulation component is invoked, the HDL simulation duration is determined by the
value of the IterationTime parameter in the HDL cosimulation component. You must
determine how long the HDL simulator should run before its outputs are sent back to the
HDL component. This timing information should not be confused with the timing used in
other SystemVue components.

From the HDL simulator engine's point of view, the SystemVue input interface is viewed as
forcing values onto the ports. At the output interface of the HDL cosimulation component,
the results are converted back into SystemVue format and sent to the other connecting
SystemVue components.

Please note that, input ports of the HDL Cosimulation component can only be connected to
the output of a fixed point component. Automatic conversion from other type of ports to
fixed point is not supported.

You can specify the HDL simulation to run until the HDL simulator has no more events to
process by specifying a negative iteration time. Using this method, the outputs are
guaranteed to be stable since there are no more events left in the simulator that might
change them. This method is less efficient than the fixed positive iteration time method,
as the HDL simulator must be monitored to determine when all events have been
processed. Also, it will not work for certain HDL models where some designs never run out
of events, such as those with internal clock signals.

Important

When using negative iteration time, be careful about signals generated internally by your HDL code to
avoid infinite event loop in HDL simulator.

 Supported HDL Port Types

HDL cosimulation currently supports various bit and bit-vector type HDL ports; they are all
mapped to the SystemVue fixed point data type port.

In the case of Verilog HDL, which supports only bit and bit-vector type ports, HDL
cosimulation will support any type of Verilog port. In the case of VHDL, which has a large
set of data types, HDL cosimulation will only support the ports that are of bit, bit-vector,
std_logic, and std_logic_vector types described in the IEEE std_logic_1164 library.

 Bidirectional HDL Ports

For a bidirectional VHDL port, two ports are created on the cosimulation model. One port
is an input port named <VHDL portname>In, while the other port is an output port named
<VHDL portname>Out. The input data on the inout type port is applied by SystemVue for
the first half of the HDL iteration time; the signal value is then changed to a tri-state
condition. You can drive the output data on an inout type port only during the second half
of the HDL iteration time, when the value has been changed to a tri-state condition by
SystemVue. You must set the inout port to a tri-state condition during the first half of the
HDL iteration time period, so that SystemVue can drive the new input data value on the
inout port.

Bidirectional ports are not supported in Verilog cosimulation.

 Automatic Clock and Reset Signals

Using HDL Cosimulation it is possible to automatically generate Clock and Reset signals
without connecting those to the input of HdlCosim component. This features enable the
user to generate one clock cycle per HDLCosim iteration which is not possible by
connecting a Clock at the input port of HdlCosim component because of its unirate
properties.

To generate an automatic Clock select "YES" for the parameter AutoGeneratedClock,
another parameter HdlClockName will be included set it to the name of the Clock port in
your HDL code.

To generate an automatic Clock select "YES" for the parameter AutoGeneratedReset,
another parameter HdlResetName will be included set it to the name of the Reset port in
your HDL code.

The autogenerated Clock is of a 50% duty cycle and has a period equal to the HDL
iteration time. The positive clock edge occurs at IterationTime/2. The default value for
the Reset during the first iteration is a logic low from time 0 to 1/4 times the HDL iteration
time, a logic high from time 1/4 to 3/4 times the HDL Iteration time, a logic low for
remaining HDL iteration time, and a logic low for iterations after that. This means that
Reset signal is high during first rising edge of the Clock signal and low after.

The timing of application of inputs for the HDL code generated for a mixed logic is crucial.
For example consider a multiplexer (non-clocked, or in general any combinational logic)
followed by a latch (clocked, or any sequential logic). The input multiplexer would be
triggered the moment input is applied and would produce results with zero delay. If the
following component is a clocked component (for example, sequential logic like a latch),
then it will be triggered during the same iteration cycle at the positive edge of the clock.
So, in the above example, the multiplexer and the latch will be triggered in the same clock
cycle. In the corresponding fixed-point design, the multiplexer followed by a latch would
fire the multiplexer in one cycle and the latch in the next, producing a delay of one cycle.
The HDL cosimulation results will appear one cycle earlier when compared to the
equivalent Fixed point component simulation results.

To match the results, the inputs to the HDL cosimulation block must be delayed until after
the positive edge of the clock or IterationTime/2. The inputs will be applied to multiplexer
or combinational logic after the positive clock edge. The latch will latch this result only in
the next firing of the HDL cosimulation block or the next positive clock edge (the
automatic clock has one positive clock edge per firing).

The delay for each input ports is specified in the parameter InputPhases.

 Time-Specified Signals in User HDL Code

When HDL code has internal clocks or time-specified signals (for example, wait statements

SystemVue - Simulation

50

in VHDL code) the HDL cosimulation may keep running until all the events in the user HDL
code are processed. The number of events generated in user HDL code can be infinite (for
example, when you have an internal clock).

You can avoid using an internal clock and use the SystemVue Clock instead (refer to the
section Automatic Clock and Reset Signals above). If this is not possible, then infinite
event processing can be avoided if you know how long the HDL simulation needs to run to
complete the cosimulation, with all of the SystemVue iterations. Different simulators have
different mechanisms to break a simulation after a certain simulation time. Here is an
example using ModelSim:

Use the ModelSim simulator to create a file called test.do. An example test.do may1.
look like this:

run 11000

quit -f

Set CmdArgs="-do test.do". This stops the simulation after 11000 nsec. (Refer to
CmdArgs on the HdlCosim component block.)
The total run time can be calculated as equal to:

The number of SystemVue iterations (depends on the Data Flow Analysis setup
and the different sinks used in the design) multiplied by the IterationTime
specified on the HdlCosim block.

Alternatively, you can also open the ModelSim UI mode and use multiple run 100
commands to see how long it takes before the message VHDL Cosimulation has
completed.. appears in the ModelSim UI. This time can then be used to create the test.do
file.

Do not use the run-all command, which will process all the events in the HDL simulation.

 HDL Cosimulation Component and Parameters

HDL cosimulation component HdlCosim is available under Hardware Design under the
category HDL Cosimulation. The HdlCosim provides cosimulation with ModelSim TM SE Plus
6.3g or later. If the user code has not been compiled, HDL cosimulation can compile the
user code before cosimulation or use existing compiled HDL code depending on the
HdlSrcFile and HdlLibrary settings.

The component has one multi-input and one multi-output fixed-data type ports.

 HdlSrcFile

The HdlSrcFile parameter could be specified as follows

If the HDL design is completely contained in one HDL file then Browse to the file. In
case of VHDL this file must contain the top level entity name specified in
HdlModelName parameter. In case of Verilog this file must contain the top level
module name specified in HdlModelName parameter. The space character is allowed
in the path to HDL files.
If the HDL design contains multiple files then you must specify all the HDL files. In
such case HdlSrcFile parameter will point to a file containing list of HDL Files, one per
line, in the order in which these needs to be compiled. Each HDL file in every line
must be specified using complete path to the file. The space character is allowed in
the path to HDL files.

Warning
Do not enclose any HDL file with complete path by double quotes "".
Do not include multiple HDL Files in a single line when HdlSrcFile points to the list of HDL files.

The HdlCosim will automatically detects that if HdlSrcFile points to an HDL file or a
file containing the list of HDL files.

 HdlInputs

The HdlInputs parameter lists the names of the input ports of the HDL entity/module
specified in HdlModelName parameter. In case of multiple input ports, all the HDL input
port names that need to be updated from SystemVue must be specified in the same order
in which these are connected to the multiple-inputs port. To find the order of connection
right click on the HdlCosim component input port and Edit Terminal Mapping to open its
Input Terminal Mapping, the Net connected to Input(1) should correspond to the first
input in the list of HdlInputs and so on. Please see the picture below.

The list must be enclosed in { <list of ports> }, each port name in the list must be
enclosed by single quotes '<port Name>' and separated by space character. For
example to specify input ports Ain, and Bin use the following exact format,

{'Ain' 'Bin' }

This list is used to make the input connections between the SystemVue ports and the HDL
ports. The number of inputs connected to HdlCosim component's multiple-inputs port
must be equal to the number of strings specified in the Inputs string array.

SystemVue - Simulation

51

Note

Even if you have only single input, you must use { } and ' ' to specify it. For example {'A'}
Please read Nets, Connection Lines and Buses (users) to use the Buses to connect multiple inputs to
multi-input port

 InputPhases

The InputPhases parameter delays the application of the input to the HDL model. It is an
array of integers. The time unit is the same as specified by the TimeUnit parameter,
described later. The InputPhases parameter specifies the delay for the application inputs
during an iteration, as explained in the section Automatic Clock and Reset Signals.

The order of the InputPhases specification must be the same as the order of the input
names specified in the HdlInputs parameter. If no InputPhases are specified then all the
input values are assigned to the corresponding HDL input ports at the start of each
iteration without any delay. For example to delay the input Ain and Bin by 2ns each, the
following exact format could be used

[2 2]

 InputWordLengths

The InputWordLengths parameter specifies the number of bits in the corresponding ports
specified in VHDL/Verilog description of the entity/module. The order of the
InputWordLengths specification must be the same as the order of the input names
specified in the Inputs parameter. This parameter must be specified properly to declare
the number of bits in each port specified in Inputs. Use 1 for a single bit port. For
example, if Ain and Bin are of 16 and 8 bits respectively, the following exact format could
be used

[16 8]

If wordlength of input fixed point is larger than what is specified in InputWordLengths
for that port then only n least significant bits are sent to HDL entity/module where n
is the number of bits specified in InputWordLengths.
If the wordlength of input fixed point is less than what is specified in
InputWordLengths for that port then remaining most significant bits are appended
with 0's.

 AutoGenerateClock

Instead of connecting a Clock signal to the input, it is possible to automatically generate a
clock signal for your HDL code using HdlCosim. Selecting YES for this parameter will
generate automatic Clock in HDL simulator for the HDL port whose name is specified in
HdlClockName parameter explained next. The generated clock is of 50% duty cycle with
period equals to the value of parameter IterationTime. The rising edge of the clock will
appear in the middle of each iteration cycle. With this feature it is possible to generate a
complete clock cycle for each iteration cycle of HdlCosim block, which is not possible by
connecting a manual clock signal as one of the input because of unirate nature of
HdlCosim.

 HdlClockName

Name of the port in HDL code for which automatic clock will be generated.

Warning

HdlClockName must not be same as one of the entries in HdlInputs parameter.

 AutoGenerateReset

Instead of connecting a Reset signal to the input, it is possible to automatically generate
a reset signal for your HDL code using HdlCosim. Selecting YES for this parameter will
generate automatic Reset in HDL simulateor for the HDL port whose name is specified in
HdlResetName parameter explained next. The default value for the Reset during the first
iteration is a logic low from time 0 to 1/4 times the HDL iteration time, a logic high from
time 1/4 to 3/4 times the HDL Iteration time, a logic low for remaining HDL iteration time,
and a logic low for iterations after that. This means that Reset signal is high during first
rising edge of the Clock signal if AutoGenerateClock is selected and low after.

 HdlResetName

Name of the port in HDL code for which automatic reset will be generated.

Warning

HdlResetName must not be same as one of the entries in HdlInputs
parameter.

 HdlOutputs

The HdlOutputs parameter lists the names of the output ports of the HDL entity/module
specified in HdlModelName parameter. In case of multiple output ports, all the HDL output
port names that need to be updated in SystemVue must be specified in the same order in
which these are connected to the multiple-outputs port. To find the order of connection
right click on the HdlCosim component output port and select Edit Terminal Mapping to
open its Output Terminal Mapping, the Net connected to Output(1) should correspond to
the first output in the list of Outputs and so on. Please see the picture below:

SystemVue - Simulation

52

The list must be enclosed in { <list of ports> }, each port name in the list must be
enclosed by single quotes '<port Name>' and separated by space character. For
example to specify output ports Aout, and Bout use the following exact format,

{'Aout' 'Bout' }

This list is used to make the output connections between the SystemVue ports and the
HDL ports. The number of outputs connected to HdlCosim component's multiple-outputs
port must be equal to the number of strings specified in the Outputs string array.

Note

Even if you have only single output, you must use { } and ' ' to specify it. For example {'Z'}
Please read Nets, Connection Lines and Buses (users) to use the Buses to connect multiple outputs
to multi-output port

 OutputWordLengths

The OutputWordLengths parameter specifies the number of bits in the corresponding ports
specified in VHDL/Verilog description of the entity/module. The order of the
OutputWordLengths specification must be the same as the order of the output names
specified in the HdlOutputs parameter. This parameter must be specified properly to
declare the number of bits in each port specified in HdlOutputs. Use 1 for a single bit port.
For example, if Aout and Bout are of 16 and 8 bits respectively, the following exact
format could be used

[16 8]

 OutputIntegerWordLengths

The OutputIntegerWordLengths could be used to format the fixed point precision of the
output data to be used with other fixed point components in SystemVue. The SystemVue
obtains raw bits from HDL simulator. You could use this parameter to format those raw
bits to the precision you want at the corresponding output ports. This is a mandatory
parameter and value for each port must be specified. This parameter specified the number
of bits on the left of fixed point (integer bits) for each output port. For example, if Aout
and Bout have 8 and 4 integer bits respectively, the following exact format could be used

[8 4]

 AreOutputsSigned

The AreOutputsSigned can be used to specify that the output of HDL Cosim should be
formatted as either signed or unsigned fixed point data type to be used with other
SystemVue fixed point components. This is a string array type parameter. The 's'
represents signed and 'u' represents unsigned fixed point data type.

The list must be enclosed in {}, each entry in the list must be enclosed by single quotes
'<sign of port>' and separated by space character. For example to specify output port
Aout to be signed port, and Bout to be unsigned use the following exact format,

{'s' 'u' }

 HdlModelName

HdlModelName is the name of the HDL entity or module to cosimulate with.

For a Verilog module, specify the module name to cosimulate with. For a VHDL entity you
can specify this parameter in the following ways:

To select an entity that has only one architecture, the syntax is <entity name> e.g.
myAdder
To select an entity along with a particular architecture when more than one is
available, the syntax is <entity name>.<architecture name> e.g.
myAdder.behavior
To select an entity along with its configuration specification, the syntax is
<entity>+<configuration> e.g. myAdder+myConfig.

 ShowAdvancedParams

Selecting "YES" for this parameters will show non-mandatory advanced parameters
discussed below.

 HdlLibrary

The HdlLibrary parameter specifies the library from which the compiled HDL module or
entity must be loaded. This parameter can control the compilation as follows:

SystemVue - Simulation

53

If the code needs to be compiled, HdlLibrary parameter must be empty. This will
compile the code under work library. For any subsequent re-simulation of the same
design, the HDL code need not be recompiled. To turn off compilation, specify
HdlLibrary=work.
If you have already compiled the code in another library (for example, hdllib) then
only the file that has the entity or module specification needs to be specified for
HdlSrcFile, and HdlLibrary should be set to hdllib.

Before starting SystemVue, the MODELSIM environment variable must be set to
a modelsim.ini file that has the mapping information for hdllib.
If MODELSIM is not set, you can specify the mapping for the library using =, for
example HdlLibrary=hdllib="c:\user\xyz space\hdllib". You can specify
more than one library by separating them using spaces, and can specify
mappings for any of the libraries using =. If path to the library contains spaces
then enclosed that path under double quotes "".

 HdlSimulatorGUI

The HdlSimulatorGUI parameter determines the user interface mode of the HDL simulator.
If the HdlSimulatorGUI is ON, the HDL simulator is started with its graphical user interface
on. You can view the progress of the simulation, graph signals, and edit values while the
simulation is running. You could also debug your HDL design in HDL simulator
environment when HdlSimulatorGUI is ON.

The ModelSim command Restart is not supported during cosimulation. To restart HDL
cosimulation, quit ModelSim and restart the SystemVue simulation.

Note

If the HdlSimulatorGUI is ON and IterationTime is negative, use run -all in ModelSim to perform
cosimulation. The other run commands will only increment the HDL simulation time and may not
cosimulate properly.

If the HdlSimulatorGUI is OFF, the simulator is run in the background. SystemVue will
start the HDL simulator, run the simulation, and close the simulator at the end of
simulation without user interaction and without bringing ModelSim GUI.

 CmdArgs

The CmdArgs parameter specifies special simulator command invocation arguments
required for simulation of the HDL model.

 IterationTime

The IterationTime is the time that the HDL simulation is run during each invocation of the
HDL cosimulation component. If the integer value provided is positive, the HDL simulator
will simulate for the specified number of time units (where the time units are specified by
the parameter TimeUnit) then send data to SystemVue. This does not check to see if there
are any events still to be processed in the simulator. This feature is useful if you are
running a model whose output data is to be sampled periodically at a predetermined time.

Note

The value can never be specified as 0 because the simulation will stop with a range
error.

Negative iteration time is valid only for ModelSim VHDL cosimulation. If the value is
negative, the HDL simulator is run until all the events are processed. The magnitude of
the value specifies the minimum amount of time to run before checking to see if there are
any events still to be processed. The output data is read after the event queue becomes
empty. This facility can slow down the simulation due to the overhead of monitoring the
simulation event queue. The lower the magnitude, the slower the execution because the
event queue must be polled more often. This facility is useful when the time the model
takes to provide stable/correct data output varies. This will not work for certain models
that never run out of events, such as those with internal clock signals.

 TimeUnit

The TimeUnit parameter specifies the HDL simulation time resolution unit: fs, ps, ns, us,
ms or sec.

For VHDL simulation using ModelSim, TimeUnit will control the VHDL simulation time
resolution.

For Verilog simulation, TimeUnit will add timescale directives to the top-level cosimulation
wrapper. Users can have timescale directives for different modules in their code. If any
user module does not have a timescale specified, TimeUnit will be used to generate a
default timescale. The smallest of the different timescale specifications will control the
Verilog simulation time resolution.

SystemVue - Simulation

54

 Spectral Propagation and Root Cause
Analysis (SPARCA)
A new simulation technique has been created to simulate RF architecture. This technique
is called Spectral Propagation and Root Cause Analysis. Every spectrum at each node
propagates both forward and backward to every node in the schematic. Along the way
noise, intermods, harmonics, and phase noise spectrums are created and propagate to
every node in the schematic. These spectrums contain spectral density information so the
effects of bandwidth are automatically accounted for. As spectrums propagate through the
system spectral genealogy is maintained providing users with the ability to identify the
propagation path of every spectrum. Furthermore, this parentage information also
includes coherency identification, desired or undesired status, and the frequency equation
associated with the given spectrum. For more information see spectral identification. This
simulation technique is extremely fast compared to traditional non-linear simulation
techniques such as harmonic balance that requires convergences criteria and
mathematical inversions of large matrices to achieve simulation solutions.

Users specify arbitrary paths through a single block diagram to gather cascaded
information along a given path. Each path contains several types of paths such as desired,
total, noise, phase noise, etc. Each spectrum along the designated path will be placed in
the appropriate path category. Measurements operate on specific path types to create
desired effects. For example, the channel noise power measurement excludes all signal,
intermods and harmonics, and phase noise spectrums from its path spectrums giving the
user only noise within the channel regardless of whether or not a much stronger signal is
located at the same frequency. This is a huge advantage allowing the user to see and
measure true in-channel signal to noise ratio.

SPARCA Simulation advantages:

Fast simulation speed (sim) - This new technique is much faster than traditional non-
linear simulation techniques
Identification of every spectrum - Parentage information is retained for each
spectrum and is displayed in graph tooltips
Signals can be seen underneath other signals - i.e. Harmonics of an amplifier can be
seen underneath the noise floor
True in-channel signal to noise ratio measurements - All spectral components are
retained individually and are segregated according to their type giving users a view of
desired versus spurious signals even at the same frequency
Spectral directionality - Spectrums propagate both forward and backward. Some path
measurements may only operate in the forward direction of the path
Bandwidths for all spectrums - All spectrums have bandwidth and spectral density.
i.e. A 2nd harmonic with had twice the bandwidth of its fundamental
Broadband noise - Noise is simulated from the lowest to highest frequencies
(generally from DC to 5 times the highest signal source frequency)
Phase noise (sim) - Behavioral phase noise is propagated through the system and
measurements can operate on just this type of spectrum
Path VSWR effects - Stage mismatch effects are included in all simulation results
Multiple path analysis for single block diagram - Path analysis is NOT restricted to the
traditional 2 port topologies
Restrictive assumptions from traditional cascaded equations (i.e. noise (sim) and
intermods) are removed - Spectrums are integrated and measurements operate on
these spectrum to determine results
Flexibility for future growth - New spectrum types can be defined and new
propagation methods can be added to support changing needs

 Getting Started with Spectrasys
Spectrasys uses a new simulation technique called SPARCA that brings RF architecture
design to a whole new level. This walk through will help you design a simple RF chain and
measure the architectures noise and gain performance.

The basic steps for analyzing an RF system are:

Create a System Schematic1.
Adding a System Analysis2.
Run the Simulation3.
Add a Graph or Table4.

 Create a System Schematic

Spectrasys supports all linear models and behavioral non-linear models. The behavioral
models can be found on the system toolbar or in the part selector.

Create the following system schematic (default parameters for all models will be used).
For additional help creating a schematic (users) click here.

SystemVue - Simulation

55

Select the 'Amp (2nd & 3rd Order)' from the system toolbar or part selector.1.
Move the cursor and click inside the schematic window to place the part.2.
Use the prior steps to place a fixed Attenuator, Coupler (Single Dir), and3.
Isolator.
Place a Source (Multi) at the input. Now add a carrier by double clicking the source4.
and clicking the Add button. A source user interface will appear. Change the power
level to -20 dBm.
Place a Output Port on the output of the isolator and the coupler.5.

Hint
Press the " O key on the keyboard to place an output port

Make sure each part output is wired to the subsequent part input.6.

Hint
Use the 'F4' key when a part is highlighted to repeatedly move the part text to default locations
around the part.

The node numbers seen on your schematic may vary due to the order of the parts7.
placed on the schematic.
To 'Renumber Nodes..' select the schematic then select 'Renumber Nodes...' from
the 'Schematic' menu. The following dialog box will appear:

Select the desired options and click 'OK'.8.

 Adding a System Analysis

After creating a schematic a system analysis must be created. There a several ways to
accomplish this. Only one way will be shown here. For additional information on adding
analyses (users) click here.

To add a system analysis:

Right click on a folder in the workspace tree where you wan the analysis located.1.

Select 'Add RF System Analysis...' from the selected sub menus as shown above.2.
The following 'System Analysis' dialog box will appear.3.

If path measurements are desired (i.e. cascaded gain or cascaded noise figure) click4.
on the 'Paths' tab.

SystemVue - Simulation

56

Click the 'Add All Paths From All Sources' button.5.

Note
Node numbers may be different than shown above depending on the node numbers in your
schematic. For additional information on specifying paths click here.

Click the dialog 'OK' button.6.

 Run the Simulation

Analysis data must be created before it can be plotted or displayed in tables. The analysis
can be enabled to 'Automatically Recalculate' or may need to be manually calculated. If
the analysis has been set to 'Automatically Recalculate' datasets will appear in the
workspace tree after the analysis. If manual calculation is needed the calculate button
(!red_calculate_button.gif!) will appear red and so will other items on the workspace tree.
Click the calculate button to update the system analysis and create the necessary
datasets.

After calculation the workspace tree should look like:

For more information on datasets (users) click here.

 Add a Graph or Table

There are several ways to display data in Genesys. Only one way will be demonstrated
here. For additional information on graphs (users), click here.

The easiest way to add a spectral power, phase, or voltage plot in Spectrasys is by
right clicking the node to be viewed and selecting 'System1_Data: New Power Plot at
Node x' from the submenu 'Add New Graph/Table'. (The output of the attenuator was
selected in the following figure)

The following graph will appear:

SystemVue - Simulation

57

To add a level diagram (a path number be defined first) right click on the ending
node of the path and selecting 'System1_Data_Path1: New Level Diagram of CGAIN
(Cascaded Gain)' from the 'Add New Graph / Table' submenu.

The following level diagram will appear:

Follow the same process as adding a level diagram to add a predefined table of common
measurements except select 'System1_Data_Path1: New Table of Measurements'
from the 'Add New Graph / Table' submenu. For additional path measurement (sim)
information click here.

The default table will look like:

Hint
Right click on the table data to see additional table options.

 Dialog Box Reference
General Tab (sim)
Paths Tab (sim)
Add/Edit Path (sim)
Calculate Tab (sim)
Composite Spectrum Tab (sim)

SystemVue - Simulation

58

Options Tab (sim)
Output Tab (sim)

SystemVue - Simulation

59

 Intermods
 Non Linear Model Behavior
In the real world components and stages exhibit non linear distortion such as gain
compression and power output saturation. To characterize non linear behavior
compression points, saturation, intercept points, and spurious free dynamic ranges are
defined according to the following diagram.

The above figure illustrates 3rd order intermod and noise performance boundaries. As
shown a higher intercept point yields larger dynamic range. Consequently, intercept points
are commonly used as a performance characteristic of RF systems. In general the higher
the intercept point the more tolerant the system is to interference.

In a cascade of RF behavioral models a diagram similar to that above can be derived to
determine the overall system performance. The cascaded intercept point is generally
referred to the input or output for convenience. Transmitters and amplifiers generally have
their intercept points referred to the output and receivers have them referred to their
input.

 Intermod and Harmonic Basics

This section will help the user understand fundamental relationships between intermods,
harmonics, and intercept points. When 'Calculate Intermods (sim)' and 'Calculate
Harmonics (sim)' are enabled intermods and harmonics will always be created by
nonlinear behavioral models. The 'Maximum Order (sim)' parameter on the 'Calculate' tab
of the system analysis determines the maximum intermod and harmonic order used in the
simulation.

Here is an example of the output spectrum of an amplifier with a two tone input:

The 2 tones are located at 100 and 125 MHz. Notice that the bandwidth of 2nd order
products is twice that of the fundamentals and the 3rd order products are 3 times the
bandwidth of the fundamentals. The amplifier OIP3 is +30 dBm and the OIP2 is +40 dBm.

Note
The channel measurement bandwidth (sim) must be set to at least 3 times the bandwidth of the
fundamental tones in order to view the full intermod power of 3rd order products. This bandwidth must be
increased accordingly for higher order products.

Here is an example of the intermod spectrum due to 5 carriers through the same
amplifier. Spectrum groups are being displayed instead of individual spectrums. Signals
are shown in one color and all intermods are grouped together and shown in another
color.

SystemVue - Simulation

60

Notice the peaking effects of the intermods around 300 and 25 MHz as well as the in-
channel effects associated with carrier triple beats and 2nd order products.

 Reverse Isolation

Intermods can and do appear at the input to a nonlinear stage due to the reverse isolation
of the device as shown in the following figure:

The 5 carriers are displayed in one color and the reverse intermods in another.

 Calculated Products

The following figure shows the nonlinear second and third order products created for two
input signals F1 and F2 where F2 is greater in frequency than F1.

The relative levels of spectral components for the small signal regime and equal
amplitudes of the signal's tones is shown above.

Definitions of symbols

P - Fundamental Tone Power
DC - DC Value
IP n - Nth Order Intercept Point

H 1 - Fundamental Tone

H 2 - 2nd Harmonic

SystemVue - Simulation

61

H 3 - 3rd Harmonic

IM n - Nth Order Intermods

IM n,m - Nth Order Intermods due to M tones

 DC Products

Even order intermods produce DC components. For 2nd order products the DC value is 3
dB higher than the corresponding 2nd harmonic because the DC value is peak power and
the 2nd harmonic is average power.

 2nd Order Intermod Products

The amplitude of the second order intermod products (F 2 - F 1 and F 1 + F 2) are equal to

the tone power level minus IP2 or in other words IM 2 = P tone - IP2.

 2nd Harmonics

The amplitude of the second harmonics are calculated as follows. The amplitude of the
second harmonic is equal to the tone power level minus the difference between IP2
(second order intercept) and the tone power level of the device.

 3rd Order 2 Tone Products

The amplitude of the third order products (2F 1 - F 2, 2F 2 - F 1, 2F 1 + F 2, and 2F 2 + F 1)

are equal to 2 times the quantity of the tone power level minus IP3 below the tone level or
in other words IM3 = P tone - 2 (IP3 - P tone).

 Carrier Triple Beats (3rd Order 3 Tone Products)

When more than two carriers are present in a channel, certain 3rd order intermod
products are created by the multiplication of three carriers. These intermods are called
carrier triple beats. These triple beats have different amplitudes than the more common
2F 1 ± F 2 3rd order intermods. Spectrasys automatically creates triple beats for all

combinations of 3 or more carriers. Working out the math, carrier triple beats will be 6 dB
higher that the 3rd order 2 tone products. This calculation of the triple beat level assumes
that the amplitude of all input signals is the same. The frequency combinations of the
carrier triple beats are as follows:
F 1 - F 2 + F 3
F 1 - F 2 - F 3
F 1 + F 2 + F 3
F 1 + F 2 - F 3

 3rd Harmonics

The amplitude of the third harmonics are 9.542 dB (the non-linear polynomial coefficient
of the harmonic is 1/3 that of the 2 tone intermods or 20 log(1/3))below the 3rd order 2
tone products.

 Higher Orders

The 'Maximum Order (sim)' parameter on the 'Calculate' tab of the system analysis
determines the maximum intermod and harmonic order used in the simulation. The
intermod levels and frequencies are calculated based on a complicated mathematical
process. This process description is beyond the scope of this text. Please see other
resources for additional information.1

 Tone Dissimilar Amplitude

Spectrasys automatically accounts for the amplitude of all input signals that create a given
intermod. This yields accurate intermod results as opposed to cascaded intermod
equations which ignore the effects of unequal amplitudes.

 Number of Intermods

The total number of intermod frequencies is calculated according to the following formula:

Number of Frequencies = (2 x Number of Carriers)^(Harmonic Order + 1)

NOTE: The harmonic order referred to above is the harmonic order of each carrier and not the mixing
order of the intermod.

The Maximum Mixing Order = 2 x Number of Carriers x Harmonic Order.

If the desired mixing order is less than the maximum mixing order then the number of
generated intermods is less.

For example, the number of intermod frequencies for 5th order harmonics of each of the
10 carriers is:

(2 x 10)^(5+1) = 20^6 = 6.4e8 intermods

The maximum mixing order would be = 2 x 10 x 5 = 100.

Each intermod will have a unique amplitude many of these intermods may be below the
thermal noise floor.

 Channel Bandwidth and Intermods

The bandwidth of third order products is greater than the individual bandwidth of the
sources that created them. For example, if two tone, each of 1 Hz bandwidth, were used
to create intermods, the resulting bandwidth would be 3 Hz. The bandwidth follows the
intermod equation that determines the frequency except for the fact that bandwidth
cannot be subtracted. For example, if the third order intermod equation is: Fim3 = F1 -

SystemVue - Simulation

62

2*F2 then the equation for the resulting bandwidth would be: BWim3 = BW1 + 2*BW2. If
BW1 = 30 kHz and BW2 = 1 MHz, then the resulting bandwidth would be 2.03 MHz. The
user needs to make sure that the 'Channel Measurement Bandwidth' is set wide enough to
integrate all of this energy.

Jose Carlos Pedro, Nuno Borges Carvalho, "Intermodulation Distortion in Microwave1.
and Wireless Circuits", Artech House, 2003

 Second-Order Intercept Differences for Mixers and Amplifiers

The definition of the IP2 for mixers and amplifiers may be different. The definition
difference is 6 dB. The relationship between these two methods is as shown in the
following equation:

IP2h = IP2i + 6 dB

Where

IP2h - Is the second-order intercept due to harmonics

IP2i - Is the second-order intercept due to intermods

Standard Amplifier IP2 Definition
Amplifier two tone output spectrum is shown in the following graph.

Two tones are generally used to characterize the non-linear response of an amplifier. The
difference between the second-order intermod products and second harmonics is 6 dB.

IP2 is defined as:

IP2 = Ptone + Deltai

Mixer IP2 Definition
In many cases, second-order products are generally out of band. However, mixer input
spurious products exist at sub harmonics of the IF and can be converted directly to the IF
through harmonics. Second harmonics are dominant since they have larger amplitudes
than third harmonics.

Frequently, the mixer is terminated with a bandpass filter and the second harmonic level
is measured by moving the RF input frequency slightly so its second harmonic will fall at
the desired IF frequency.

IP2 is defined as:

IP2 = Pin + Deltah

Even though the IP2 equations appear to be similar between the amplifiers and mixers the
delta is actually different. In the amplifier case the reference point is intermod amplitude
whereas for a mixer it is a harmonic. The difference between these two references is 6
dB. The IF output frequency can really be thought of as just an intermod (FRF + FLO or FRF

- FLO).

Note
Generally, IP2 of an amplifier is defined at its output. However, IP2 of a mixer is generally defined at its
input.

 Cascaded Intermod Equations

Caution
Cascaded intermod equations are NOT used by Spectrasys. There are serious drawbacks using these
cascaded equations.

 Background

Using basic assumptions the intercept point for a cascade can be determined. Cascaded
equations come in two flavors, coherent and non-coherent. If the intermods throughout
the cascade are assumed to be in phase then coherent addition should be used. This will
yield a worst case intercept point. However, if the intermods are assumed to be out of
phase then non-coherent addition can be used.

 Cascaded Intercept (Coherent Addition)

1 / ITOI cascade = 1 / ITOI 1 + 1 / (ITOI 2 / G 1) + ... + (G 1 G 2 ... G n-1 / ITOI n)

SystemVue - Simulation

63

 Cascaded Intercept (Non-Coherent Addition)

1 / (ITOI cascade)
2 = 1 / (ITOI 1)

2 + 1 / (ITOI 2 / G 1)
2 + ... + (G 1 G 2 ... G n-1 /

ITOI n)
2

Where:

ITOI - Numeric Stage Input Third Order Intercept
G - Number Stage Gain
See McClaning K., and T. Vito (2000). Radio Receiver Design Atlanta, GA: Noble, pp.
605-626 for additional information.

The basic assumptions are:

There is no concept of frequency1.
All stages have been perfectly matched2.
No consideration for filtered tones that generate the intermods3.
Multiple paths are ignored (only valid for two port lineups)4.
Gain is assumed to be independent of power level5.
Intermods never travel backwards (reverse isolation is assumed to be infinite)6.

The calculation of cascaded intermods is generally in a spreadsheet. Note there is no
relationship between these calculations and the physical measurements of the intercept
points in the lab. There is no mention of frequencies and power levels of tones that are
need to make measurements in the lab.

Because of these serious restrictions new intermod measurements were created to
eliminate these issues. See 'Intermod Path Measurement Basics' for additional
information.

 Intercept Measurements in the Lab

Intercept measurements in the lab are broken down into two groups, in-band and out-of-
band. In-band measurements are used when tones are not attenuated by filtering through
the cascade. For example, intercept point for a power amplifier is generally done with 2
tones that exhibit the same power throughout the system. Out-of-band measurements are
used when they are attenuated like filtering in an Intermediate Frequency (IF).

 In-Band Intercept Measurements

For in-band measurements two tones, f1 and f2 are created by two signal generators and
combined before entering the Device Under Test (DUT). Care needs to be taken in the
setup to ensure reverse intermods will not be generated in the signal generators before
appearing at the DUT input. A typical setup is as shown below using two tones.

Figure 1 - In-Band Intermod Measurement Setup

The intercept point is determined from the measured power level of the two tones and the
power level of the intermods themselves on a spectrum analyzer as shown in the following
figure.

Figure 2 - In-Band DUT Output Spectrum

From this information the output third order intercept is determined as follows:
OTOIdBm = Ptone out, dBm + Δp / 2

The input third order intercept is:
ITOIdBm = OTOIdBm - GainDUT

 Out-of-Band Intercept Measurements

Out-of-band measurements are more complicated since the tones have been attenuated
at the IF output. This is illustrated in the following two figures.

SystemVue - Simulation

64

Figure 3 - Third-Order Distortion Inside the Receiver Input Filter

Figure 4 - Out-of-Band Intermod Measurement Setup (Won't Work)

Without knowing what the un-attenuated tone power level is the intercept point cannot be
determined as shown in the following diagram.

Figure 5 - Out-of-Band DUT Output Spectrum (Won't Work)

To remedy this additional steps are needed to determine an out-of-band intercept point.

To solve this problem a virtual tone can be determined which, is the power of the tone at
the DUT input plus the in-channel cascaded gain. Once the virtual tone power and the in-
channel gain are determined then both input and output intercept points can be found.

Figure 6 - Out-of-Band DUT Output Spectrum (Virtual Tone)

In the lab measuring the in-channel cascaded gain and intermod power is a two step
process. First, the in-channel gain is measured using a single signal generator as shown
below.

Figure 7 - Out-of-Band Intermod Measurement Setup - Step #1

Next, the in-channel signal generator is disabled and the two tone generators are enabled
and the in-channel intermod power is measured as shown below.

SystemVue - Simulation

65

Figure 8 - Out-of-Band Intermod Measurement Setup - Step #2

Be aware that it is very difficult in practice to measure intermod power levels near the
noise floor of the receiver. One common technique is to measure the S/N ratio at the
receiver output given a known in-channel signal generator input power level. When the in-
channel signal generator is disabled and two tones are injected into the receiver the power
level of the two tones can be adjusted until the S/N ratio decreases by 3 dB. At this point
we know that the power level of the intermod is equivalent to the power level of the on-
channel signal generator.

 Intercept Measurement Summary

The process of measuring the intercept point is very different than using cascaded
equations. When determining the intercept point in the lab the user must physically create
both tones at the frequencies of interest. The spacing between the tones needs to be such
that the third order intermods will appear at the desired locations. The power level of the
input tones needs to be sufficiently low to keep the DUT in linear operation but large
enough to be seen in the dynamic range of the spectrum analyzer. When measuring the
intermod and tone power levels the user must select the appropriate frequencies on the
spectrum analyzer to place the markers. Out-of-band intermod measurements require an
additional step to measure the in-channel cascaded gain. This is a very different process
than using cascaded intermod equations that remain ignorant of frequencies, impedances,
directions, and power levels.

 Intercept Points Other Than 3rd Order

Thus far only 3rd order intercept points have been addressed. However, for a two tone
source the general intercept equation is:
IPn = (Ptone - Pintermod, n) / (n - 1) + Ptone

Where:

IPn is the nth order intercept point
n is the intercept order
Pintermod, n is the power level of the nth order intermod (created by the two tones)
All power levels are measured in dBm

This equation only applies for intermods created with two tones. Intermods created with
more than two tones have slightly different amplitudes and do not fit the above
relationship directly. However, the measurement technique in the lab follows the same
process except the frequency of the intermod will changed based on the order of the
intermod. For instance, even order products are generally located at twice the frequency
of the two tones or close to DC.

 Intermod Path Measurement Basics

In Spectrasys, intermods are automatically created by all nonlinear behavioral models as
long as intermod and harmonic calculation (sim) has been enabled.

Measuring intermods in Spectrasys is very similar to measuring intermods in the lab.
Cascaded intermod equations are NOT used in Spectrasys because of their serious
limitations. As such new measurements were created to removed these restrictions.

A behavioral model will always conduct intermods from its input to its output. Additionally,
non-linear models will create intermods at the output based on input spectrums.

Intermod measurements can show the generated (sim), conducted (sim), and total (sim)
intermod channel powers along a path. Furthermore, these measurements can also
segregate the data based on intermod order. These channel based measurements should
not be confused with a measurement called 'Total Intermod Power (sim)' which contains
the total intermod power of the entire spectrum at the given node and cannot segregate
its data based on order.

Here is a simple diagram showing how to setup Spectrasys to make intermod path
measurements.

SystemVue - Simulation

66

 Determining the Intercept Point

Intercept point measurements are assumed to be from two interfering tones. The
calculations are based on what would be done in a laboratory as shown in the following
figure. As can be seen two measurements are needed to determine the power of the
intercept point. These measurements are the power level of the intermod and that of the
one of the two tones. If the interfering tones are expected to be attenuated through the
system as in a receiver IF a virtual interfering tone must be created by the simulator to
correctly determine the intercept point. This is done by injecting a small test signal at the
intermod frequency to measure the in-channel gain. Knowing the power level of the two
interfering tones to the system plus the in-channel cascaded gain a virtual tone power can
be determined at the output of the system which will be used to find the intercept point.
In the laboratory this would be done in a two step process since a spectrum analyzer is
unable to separate out the cascaded gain test signal and the intermod. However, in
Spectrasys this presents no problems and both signal can co-exist at the same time.

Remember
Intermod bandwidth is a function of the governing intermod equation. For example, if the intermod
equation is 2F1 - F2 then the intermod bandwidth would be: 2BW1 _ BW2.

Note
Bandwidths never subtract and will always add. The channel bandwidth must be set wide enough to
include the entire bandwidth of the intermod to achieve the expected results. For example, CW signals
have a 1 Hz bandwidth. Therefore, a third order intermod generated from CW signals will have a 3 Hz
bandwidth. If the channel bandwidth is set smaller than 3 Hz not all of the third order intermod energy will
appear in the intermod measurements.

Intercept points can only be determined by measuring and interferer signal in an
interferer channel. The user must set the main channel frequency in Spectrasys to the
frequency where the intermods are to be measured and the interferer channel must be set
to the frequency of the interferer to get the correct interferer channel power.

Intercept points can be determined from an in-band or out-of-band method. Both
techniques will give identical results in-band. However, if an in-band method is used in a
system where the interfering signals are attenuated (like in the IF filter in a receiver)
incorrect intercept points will be reported.

Caution
The method used to determine the intercept point is only valid for 2 tones with equal amplitude.

Remember
Intermods travel BACKWARDS as well as forward. Backward traveling intermods (like those through
reverse isolation paths) will be included in channel measurements and must be considered when making
comparisons to cascade intermod equation results. Please consult the specific intermod measurements of
interest for details.

 Intermod Path Measurement Summary

Add a source that will create an intermod at the path frequency
Set the 'Path Frequency (sim)' to the frequency of the intermod.
Set the 'Channel Measurement Bandwidth (sim)' to the widest order of interest (not

SystemVue - Simulation

67

too wide to include interfering tones).
Set the 'Path (Interferer) Frequency (sim)' in the Edit Path dialog box to the
frequency of the (interfering) tone.
Make sure the 'Maximum Order (sim)' is set high enough to include the intermods of
interest.
Add intermod measurements to a level diagram or table.
Remember: Intermod can and do travel backwards be careful when only expecting
forward traveling results.

 Cascaded Intermod Equations and Spectrasys

Spectrasys doesn't use cascaded intermod equations and is not restricted to their
limitations. Measuring intercept points in Spectrasys is akin to making measurements in
the lab. Spectrasys needs to know both the frequency of the intermod and the frequency
of one of the tones. These values are specified on a path. The path frequency is the
frequency of the intermod being measured and the 'Tone (Interferer) Frequency' is the
frequency of the tone used to determine the intercept point. Unlike a marker on a
spectrum analyzer Spectrasys has the ability to measure the power of a spectrum across a
channel. Care must be given to ensure the channel bandwidth is wide enough to cover the
bandwidth of the intermod yet narrow enough to exclude the power level of any tones
used to create the intermods. Remember, channel measurements use brick wall filtering.
Care must be given to set the frequency and bandwidth of the channel to only include the
signals of interest. For example, if the user is careless about setting the bandwidth
correctly it can be set so wide to include the power of both of the two tones which will
yield inaccurate results.

Because Spectrasys has the ability to differentiate between signals and intermods the two
step out-of-band process can be done in a single step as shown in the following figure.
The out-of-band configuration is the general case and will also work for in-band intercept
measurements.

The user can view measurements showing frequencies and power levels of the tones and
intermods being used in intercept calculations.

The following tables show a mapping of Spectrasys measurements to the intermod test
setup and results:

 Table 1 - Spectrasys Intercept Setup Measurements

Measurement Description Intermod Setup

CF Channel Frequency Intermod Frequency

TIMCP (sim) Total Intermod Channel
Power

Intermod Channel Power for each Order up to the Maximum Order

TIMCPn (sim) Total Intermod Channel
Power for Order n

Only Intermod Channel Power for the given Order n

ICF (sim) Interferer (Tone) Channel
Frequency

Tone Frequency used for Intercept Calculations

ICP (sim) Interferer (Tone) Channel
Power

Power Level of the Tone (Used for In-Band Measurements)

VTCP Virtual Tone Channel
Power

Power Level of the Virtual Tone based on the Desired Channel
Power of the Test Signal (Used for Out-of-Band Measurements)

 Table 2 - Spectrasys Intercept Results Measurements

Measurement Description Intermod Results

In-Band (Uses ICP)

IIP (sim) Input Intercept Point Input Intercept Point for each Order up to the
Maximum Order

IIPn (sim) Input Intercept Point for
Order n

Only Input Intercept Point for the given Order n

OIP (sim) Output Intercept Point Output Intercept Point for each Order up to the
Maximum Order

OIPn (sim) Output Intercept Point for
Order n

Only Output Intercept Point for the given Order n

Out-of-Band (Uses
VTCP)

RX_IIP Input Intercept Point Input Intercept Point for each Order up to the
Maximum Order

RX_IIPn Input Intercept Point for
Order n

Only Input Intercept Point for the given Order n

RX_OIP (sim) Output Intercept Point Output Intercept Point for each Order up to the
Maximum Order

RX_OIPn (sim) Output Intercept Point for
Order n

Only Output Intercept Point for the given Order n

Note
In-Band and Out-of-Band intercept measurements will yield the same results if the tones are not
attenuated.

file:/pages/createpage.action?spaceKey=sv201001&title=Out+of+Band+Intercept+Measurements&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=Out+of+Band+Intercept+Measurements&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=Out+of+Band+Intercept+Measurements&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=channel+frequency&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=channel+frequency&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=Spectrasys+input+intercept+receiver&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=Spectrasys+input+intercept+receiver&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=Spectrasys+input+intercept+receiver&linkCreation=true&fromPageId=105316421
file:/pages/createpage.action?spaceKey=sv201001&title=Spectrasys+input+intercept+receiver&linkCreation=true&fromPageId=105316421

SystemVue - Simulation

68

In-Band Spectrasys Measurements

Out-of-Band Spectrasys Measurements

From the intermod power level and the measured tone power level intercept points for all
orders up to and including the maximum order are calculated. However, only one of them
will be valid since the intermod frequency will be different for each order.

 In-Band Intercept Simulation

Create a two tone source and connect it to the DUT.1.
Create a path and set its frequency to the intermod frequency.2.
Set the "Tone (Interferer) Frequency" of the path to the tones that will be used to3.
calculate the intercept point.
Set the Channel Bandwidth to a value wider than the intermod but narrow enough to4.
exclude any power from the tone.
Add the IIPn or OIPn measurement to a graph or table when n is the intercept order.5.

 Out-of-Band Intercept Simulation

Create a three tone source and connect it to the DUT.1.
Set the frequency of the third test signal to the frequency of the intermod.2.
Create a path and set its frequency to the intermod frequency.3.
Set the 'Tone (Interferer) Frequency' of the path to the tones that will be used to4.
calculate the intercept point.
Set the Channel Bandwidth to a value wider than the intermod but narrow enough to5.
exclude any power from the tone.
Add the RX_IIPn or RX_OIPn measurement to a graph or table when n is the6.
intercept order.

 Troubleshooting Intermod Path Measurements

Here are a couple of key points to remember when troubleshooting and intermod
measurement problems. Using a table is generally much better at troubleshooting than
level diagrams.

Look at the 'Channel Frequency (CF)' measurement in a table. This must be the
frequency of the intermods of interest.
Make sure there are intermods within the channel by looking at the 'Total Intermod
Channel Power (TIMCP)'.
If there are no intermods in the channel look at the spectrum and verify that an
intermod of the order of interest has been created at the 'Channel Frequency' of the
path.
If there are no intermods at the channel frequency make sure 'Calculate Intermods'
has been enabled.
If there are still no intermods make sure the nonlinear models have their nonlinear
parameters set correctly.
If the 'Total Intermod Channel Power' doesn't seem to be correct verify that the
'Channel Measurement Bandwidth' is wider than the intermod order being measured.
i.e. The bandwidth of a third order intermod will 3 times the bandwidth of the two
input tones (assuming equal bandwidth tones).
If the 'Total Intermod Channel Power' still doesn't seem to be correct then verify that
the 'Channel Power (CP)' measurement is showing the approximate expected power.
The 'Channel Measurement Bandwidth' may be set so wide that other interferer
frequencies fall within the channel and the 'Channel Power' measurement will be very
high.
If the 'Total Intermod Channel Power' seems to be too high the intermods may be
traveling backwards from a subsequent stage. The reverse isolation of this stage can
be increased to verify this effect.

SystemVue - Simulation

69

If the 'Input Intercept Point' measurements (IIP, OIP, RX_IIP, RX_OIP) don't seem to
be correct then first verify that the 'Interferer Tone Channel Frequency (ICF)' is set to
the interfering frequency.
If the 'Interferer Channel Frequency' is set correctly then look at the 'Interferer
Channel Power (ICP)' measurement for in-band intermod measurements or 'Virtual
Tone Channel Power (VTCP)' measurement for out-of-band intermod measurements
to verify an expected level of interferer channel power.
If the 'Output Intercept Point' looks correct but the 'Input Intercept Point' doesn't
then verify that the 'Interferer Cascaded Gain (ICGAIN)' measurement is correct for
the in-band intermod measurement case or the 'Cascaded Gain (CGAIN)'
measurement is correct for the out-of-band intermod measurement case.

SystemVue - Simulation

70

 Spectrasys Fundamentals
 General Behavioral Model Overview
Behavioral models are unique in Spectrasys. Because of the unique simulation technique
that is used, Spectral Propagation and Root Cause Analysis (SPARCA), behaviors for
different types of spectrums can be modeled. SPARCA supports the following types of
spectrums:

Signal - These are spectrums create by signal sources and are generally the desired
signals
Intermods and Harmonics - These spectrums are created by signal spectrum and are
generally undesired (expect for cases like frequency multipliers and dividers)
Broadband Noise - These spectrums deal with the thermal noise through the system
Phase Noise (sim) - These spectrums represent the behavioral phase noise through
the system

The SPARCA simulation technique is so flexible that additional spectrum types can be
added to support future needs.

Each model manages its behavior with respect these spectrum types. Furthermore,
SPARCA knows which directions signals are flowing and which signals are desired or not.
Every pin on a behavioral models serves both as an input and output pin. Each pin treats
its input spectrum with the behavior appropriate to that pin and spectrum type.

Linear analysis uses two port (or N-port) analysis to determine the linear network
response. Admittance or Y parameters are the most common types of parameters used for
linear analysis. For a two port the current / voltage / Y parameter relationships are: I1 =
y11V1 + y12V2 and I2 = y21V1 + y22 V2. These Y parameters can be put together in a
matrix form to represent current / voltage relationships of any given model.

Linear models (resistors, capacitors, transmission lines, etc) use a Y-matrix to determine
the input to output transfer function for each spectrum. For linear models the same input
to output transfer function is applied to all spectrum types.

Non-linear models (amplifier, multipliers, mixers, etc) use a Y-matrix that is dependent on
non-linear parameters such as P1dB, PSAT, IP3, and IP2. Non-linear parameters are used
to create the behavior associated with the given model, input pin, output pin, and
spectrum type.

Since a Y-matrix is used for calculations VSWR effects along a path and at the schematic
nodes is automatically accounted for.

 Source Models

Sources must be placed in the schematic and connected to the device under test before a
system analysis can produce any useful data.

Note
Thermal noise is automatically added to the system analysis.

For specific source information in Part Catalog click the following links:

MultiSource

 Channels

All measurements in Spectrasys are based on a channel.

Channels consist of:

Center Frequency1.
Bandwidth2.

h4 Channel Example
The channel center frequency is 1000 MHz with a bandwidth of 1.6 MHz (999.2 to 1000.8
MHz). Only the spectrums located in the yellow region will be integrated by the channel
measurements.

There are several different channels used in Spectrasys:

Main Channel of the Path - Most of the measurements are based on this channel.1.
Each new path can have a new center frequency however the bandwidth for all paths
will be identical.
Offset Channel - This is a user defined channel. This channel is specified as an offset2.

file:/pages/createpage.action?spaceKey=sv201001&title=RF+Source+Multi&linkCreation=true&fromPageId=105316423
file:/pages/createpage.action?spaceKey=sv201001&title=RF+Source+Multi&linkCreation=true&fromPageId=105316423

SystemVue - Simulation

71

relative to the main channel of the path. See the 'Add / Edit (sim)' section of the
dialog box reference for additional information on specifying this channel.
Interferer Channel - This is the channel that contains the tone or interferer used to3.
calculate input and output intercept points. See the 'Add / Edit (sim)' for additional
information on specifying this channel.
Adjacent Channel - This channel is adjacent to the main channel of the path. It is4.
provided as a convenience to the user.
1st Mixer Image Channel - This channel is used to make image measurements of the5.
first mixer of the transmitter or receiver chain. It is this mixer which typically sets up
the main interferer because of relaxed gain / bandwidth tolerances at the beginning
of the system chain.

Note
The bandwidth for ALL channels except the Offset Channel is the 'Channel Measurement Bandwidth
(sim)'.

Note
For measurements that require a channel only spectrum falling within the channel will be integrated. If the
path center frequency is set incorrectly or the bandwidth is set too large or small measurement values
may be different than expected. Mathematical integration is used and is precise. If a spectrum is split by
the channel bandwidth then only that portion of the spectrum that falls within the channel will be
measured. Of course, spectrum plots will show all spectrum regardless of whether they are in the channel
or not.

Caution
When the Channel Frequency is less than 1/2 the Channel Bandwidth the lowest integration frequency
used for measurements will be 0 Hz. This will result in Channel Noise Power measurements being different
than when the full bandwidth is used.

 Specifying Paths

Spectrasys supports multiple paths through arbitrary architectures. Paths are not
restricted to traditional 2 port cascaded lineups.

A path consists of:

Name1.
Beginning Node2.
Ending Node3.
Frequency4.

Spectrasys will find the shortest path between the specified nodes. If the user would like
to select an alternate path then one or more 'thru nodes' can be added to the path to
uniquely identify it. Through nodes can added until the path is uniquely identified.

For example,

The path from node 1 to node 3 could either be through Mixer1 or Mixer2. Since both
paths are the same length the one Spectrasys would use would be the first one that is
found. However if we wanted the path to go through Mixer1 then we could insert either
node 10 or 11 into our path from 1 to 3. The path would then be forced to go through
Mixer1.

See paths for path dialog box information.

 Level Diagrams

Level diagrams give the user a quick visual indication of the performance of the entire
cascade. A level diagram can display measurements of cascaded stages along a user
defined path. Each horizontal division of the X axis of the graph represents a stage along
the path. The first division represents the input to the cascade and the last division
represents the output of the cascade. Each vertical division is at the interface between the
two stages. The value of the measurements are displayed on the vertical axis.

Node numbers are placed on the horizontal axis to show the node sequence of the
path. Furthermore, schematic symbols are extracted from the schematic and placed at the
bottom of the level diagram.

 Sample Level Diagram:

SystemVue - Simulation

72

 Adding a Level Diagram

Instructions on adding common level diagrams.
Manually Adding a Level Diagram:

Click the New Item button () on the Workspace Tree toolbar and select1.
"Add Graph..."

The following 'Graph Series Wizard' dialog box will appear.2.

Click on the 'Level' type of series to select a level diagram. The available data3.
that supports level diagrams will now be shown.

Select all desired measurements from the path data set.4.

SystemVue - Simulation

73

Click the 'Ok' button. The following graph properties will appear.5.

Click the 'Ok' button to see the resulting level diagram.6.

For additional information, see graphs (users).

 Getting the most out of a Level Diagram

Use the right Y axis to examine additional path measurements.
Change stage parameters directly from the level diagram by double clicking the
part at the bottom of the level diagram.
Use the mouse wheel to zoom in an out when the path contains many stages.
The X axis range can be set manually by the user.

Note
Indexes are used in this case NOT node numbers. Index '0' is the first node along the path.

Hint
Use tables not level diagrams when troubleshooting problems. More parameters can be examined at the
same time with tables than level diagrams. Checking channel frequencies and power levels are very
important during the troubleshooting process.

 Spectrum Plots and Tables

Spectrum plots in Spectrasys are unique because of the type of information displayed.
They can display:

Individual pieces of spectrum including signals, intermods and harmonics, thermal
noise, and phase noise
The total spectrum comprised of all individual pieces of spectrum in every direction
through the node
Spectrum analyzer trace for each total spectrum
Spectrum like signals, intermods and harmonics, thermal noise, and phase noise can
be grouped and shown instead of individual spectrums

For additional information see controlling what types of spectrums displayed.

 Easiest Way to Add a Spectrum Plot

The easiest way to add a spectrum plot is to right click the node of interest then select the
desired plot from the 'Add New Graph / Table ' submenu as shown below.

SystemVue - Simulation

74

The spectrum plot will then appear:
Unable to render embedded object: File (added_spectrum_plot.gif) not found.

 Easiest Way to Add a Table

The easiest way to add a path table is to right click THE NODE WHERE THE PATH ENDS
then select the 'System1_Data_Path1: New Table of Measurements' from the 'Add New
Graph / Table ' submenu as shown below.

Note
The path name may be different because this is based on the dataset and path
name.

The following default table will appear:

 Identifying Spectral Origin

Since each spectrum is tracked individually the user can find the origin and path of each
spectrum by placing a marker on the graph or placing the mouse cursor over the
spectrum of interest. When a graph marker is added to a plot, the marker will attach itself
to the closest spectral data point. The mouse flyover text ONLY appears when the mouse
is over the spectrum data point or the marker text on the right side of the graph. These
spectrum data points can be enabled or disabled.

Note
If you are having a difficult time getting the mouse flyover text, then try enabling the spectrum data
points to see the exact data locations for the mouse. The size of the data symbols can also be changed by
right clicking on them and selecting the appropriate menu.

Placing the mouse over the data point on a spectrum yields the following:

The format of the spectral identification is as follows:

 GENERAL FORMAT

Line 1 - Measurement Name
Line 2 - Marker Frequency, Marker Power (Voltage) Level
Line 3 - {Coherency Number} Signal Type [Frequency Equation], Origin Part, Next
Part, ..., Current Part

 Coherency Number

All signals in Spectrasys are grouped according to a coherency number. All signals with
the same coherency number are coherent with each other. For additional information see
coherency (sim).

 Signal Type

SystemVue - Simulation

75

D - Desired Signal. All spectrums are either marked desired or undesired. Desired
spectrums are generally those of main interest in the simulation. Desired spectrums
consist of signal sources, selected multiplication or division values through frequency
multipliers and dividers, and sum or difference products and determined by the user.
None - Undesired Signal. If there is no "D" displayed then the signal is an undesired
signal.

 Frequency Equation

From the frequency equation the user can identify which source frequencies created the
spectrum. This equation is written like a typical mathematical equation. The equation will
contain the name and combination of all the sources that created the spectrum. The
frequency equation will depend on the model interacting with the signals. The following list
of models will show how the frequency equation is modified by them.

Analog to Digital Converter (ADC) - Additional spectrum identification following an analog
to digital converter is provided in the frequency equation. A sign in the frequency equation
indicates whether the spectrum has been mirrored about the vertical axis or not in the
down conversion / aliasing process. The + sign indicates no inversion whereas a - sign
indicates inversion. The next piece of information shows the nyquist zone of the
originating signal. The values in parenthesis is the frequency equation of the output
spectrum. For example, in the following spectrum identification at the output of an analog
to digital converter it shows that a 5 MHz signal is not inverted and it is the fundamental
signal that was present in the 3rd nyquist zone at the ADC input.

SSB to PM (FREQ_MULT, FREQ_DIV, DIG_DIV) - Additional spectrum identification
following an frequency multiplier, frequency divider, or a digital divider is provided in the
frequency equation. When more than one signal appears at the input to a frequency
multiplication device additional spectrum will appear around the harmonics at the output.
These new spectrums are the converted phase modulated spectrums created from the
single sided and main input spectrums. The identification is SSBtoPM('Harmonic' : 'Offset'
), where 'Harmonic' is the identification of the output harmonic and 'Offset' is the
identification of the SSB input spectrum. For example, the following spectrum
identification shows that the given spectrum appears around the 2nd harmonic of the LO.
The LO is the main input as well as another spectrum coming from a source labeled
'Sneak' which is the SSB spectrum. The identification shows that the offset spectrum
appearing around the 2nd harmonic was created from the 'Sneak' input spectrum.
Furthermore, the negative sign shows that the offset spectrum frequency is on the low
side of the 2nd harmonic.
Unable to render embedded object: File (SSB to PM ID.gif) not found.

 Path

The path of the spectral component can be determined by examining the comma delimited
sequence of reference designators which identify the part where the spectrum was created
and the part sequence that the signal took to arrive at the destination node. The first
reference designator after the closing frequency equation bracket shows the reference
designator where the spectrum was created. The subsequent reference designators
indicate the path that the spectral component took to arrive at the node under
investigation.

 Example

This example shows a spectrum at 4000 MHz whose power level is about -67 dBm. It has
a coherency ID of 15 and is a 3rd order intermod between 'Source#2' and 'Source#3'. The
intermod was created in 'RFAmp1' and then followed the path through
'TL1,Attn2,RFAmp2'. The output of 'RFAmp2' is where the spectrum is being viewed.

Note
Spectrum identification information can only be displayed if 'Show Individual Spectrums (sim)' has been
enabled.

 Broadband Noise

The SPARCA simulation technique enables Spectrasys to simulate broadband noise very
quickly. The 'Ignore Frequency (sim)' limits are used to specify the frequency of the
broadband noise along with the frequency range of the simulator. The entire broadband
noise spectrum is simulated with a small number of simulation points. To ensure accurate
noise measurements Spectrasys uses a special technique called smart noise point
insertion to guarantee that noise data is taken at desired spectrum frequencies. This
allows the simulation to run much faster and reduce the number of noise data needed to
make accurate noise measurements.

Broadband noise flows in all directions through a node. For example, if the output port
was being examined then on a spectral plot the user would see the noise power flowing
from the device driving the output port. This noise is obviously flowing toward the output
port. The output port itself will also generate noise which will flow from the output port
back towards the input. Impedances that these spectrums see may be different for every
direction through the node. For this reason each of these total noise spectrum are
displayed on a spectral plot.

Spectrasys uses complicated noise correlations matrices along with other special noise
simulation techniques to be able to be able to propagate noise spectrums especially
through multiport devices. The individual noise spectrums, by default, are not shown on
spectral plots. However, the user can view this information if so desired. There are times,
when debugging noise problems in an RF architecture that this information is extremely
helpful.

The following figure illustrates multi directional noise between an amplifier and output
port. The amplifier has a gain of 20 dB and a noise figure of 3 dB. The measurement
bandwidth is 1 Hz.

SystemVue - Simulation

76

As can be seen from the figure the noise from the output port is thermal noise whereas
the noise power from the amplifier output is thermal noise plus the amplifier gain of 20 dB
plus an additional 3 dB for the amplifier noise figure.

For additional information see noise analysis (sim).

It is not the purpose of this documentation to elaborate on noise correlation matrices and
other noise simulation techniques. For additional information on noise correlation matrices
see, "Computer-Aided Noise Analysis of Linear Multiport Networks of Arbitrary Topology",
Vittorio Rizzoli and Alessandro Lipparini, IEEE Transactions on Microwave Theory and
Techniques, Vol. MTT-33, No. 12, December 1985.

 Two Port Amplifier Noise Analysis

Cascaded noise figure equations assume matched impedance's on the amplifier. Often this
is not the case especially when the amplifier is proceeded with a filter. The noise figure of
an amplifier is very dependent on its source impedance as explained below.

The noise figure of a two-port amplifier is given by:
F = F min + (r n / g s) * (| Y s - Y o |

2)

where r n is the equivalent normalized noise resistance of the two-port

(i.e., r n = R n / Z o), Y s = g s + j * b s represents the source admittance, and Y o = g o
+ j * b o represents that source admittance which results in the minimum noise figure, F

min).

Y s and Y o can be expressed in terms of the reflection coefficients Γ s and Γ o as

Y s = (1 - Γ s) / (1 + Γ s) and Y o = (1 - Γ o) / (1 + Γ o)

For more information, see G Gonzalez, Microwave Transistor Amplifiers, pgs 142-142,
Prentice-Hall Inc, New Jersey, 1984

What this means in layman's terms is that the noise figure of an active device is very
much a function of the source admittance or impedance.

Note
Cascaded noise figure equations make the assumption that noise figure of an active device is independent
of the source impedance, which can clearly lead to erroneous results.

 Propagation Basics

The basic operation of Spectrasys involves the propagation of individual source spectra
and all of their derived products (intermods, harmonics, etc.) to every node in the
system. These spectrums will keep propagating until no additional spectrums are
created. For instance, any new inputs arriving at the input of an amplifier will cause
intermods and harmonics to be created at the amplifier output at that particular time. If
additional signals arrive at the amplifier input at a future time then new intermods,
harmonics, and other spurious products will be created at the amplifier output. This
process continues until no additional spectrums are created. If loops exist in the system,
then the output from one part will feed the input of the next part and spectrum
propagation could continue forever unless special features are placed within the software
to limit spectral creation in this infinite loop. Spectrasys has special features to control
loops and limit the total number of created spectrums.

 Loops

Parts in parallel (parallel amplifiers connected via a 2 way splitter at the input and
combined back together with a 2 way combiner at the output) can cause spectrums to be
created that will propagate around this parallel path (or loop). If the gain of the amplifier
is greater than its reverse isolation the spectrums will keep on growing as they travel
around the path and will never die out (we would have an oscillator). The key point here is
that if there are loops in the system schematic then it is very important to make sure that
the part parameters are entered correctly so that signals don't grow in amplitude as they
traverse around a loop. Once loop spectrums fall below the 'Ignore Spectrum Level Below
(sim)' threshold the spectrum will stop propagating around the loop.

 Frequency Ranges

Since SPARCA is a continuous frequency simulation technique there is no upper frequency
limit. As such, unnecessary simulation time and data may be taken on spectrums adding
no value to the solution of interest. Two parameters are used to control which frequencies

SystemVue - Simulation

77

will be propagated through the simulation engine. These are 'Ignore Spectrum Frequency
Below (sim)' and 'Ignore Spectrum Frequency Above' (sim). By default the lowest
frequency limit is set to 0 Hz and the upper frequency limit is set to 5 times the highest
source frequency.

 Controlling Analysis Data

Spectrasys saves data in 1 or more datasets. There is a main dataset associated with the
system analysis that stores all the node spectral data such as frequencies, voltages,
powers, and voltages. When paths are defined then a dataset is created for each path.
The path dataset contains all measurements for the given path. Powers, voltages, and
impedances for the path can also be saved to the dataset.

Spectrasys is a continuous frequency simulator and as such no frequency is outside the
bounds of the simulator. However, since users work in frequency bands of interest the
simulator can be speeded up by ignoring frequency bands outside a given window.
Furthermore, spectral amplitudes can have large dynamic ranges. These dynamic ranges
can be restricted to ranges of interest. As a general rule, the more data collected the
longer the simulation time is.

Spectrasys supports several different spectrum types. The user can select which types of
spectrum to simulate.

 Controlling Frequency Ranges

There are 2 parameters that control the simulation frequency range. ALL frequencies
outside this window will be ignored by the simulator under any condition. Thermal noise is
automatically generated in this frequency range (as long as 'Calculate Noise (sim)' has
been enabled).

Ignore Frequency Below (sim)
Ignore Frequency Above (sim)

 Controlling Spectrum Amplitude Ranges

There is 1 parameter used to control the simulation amplitude range. ALL spectrums
whose power levels fall below the given amplitude value will be ignored.

Ignore Amplitude Below (sim)

 Controlling Spectrum Types

The following spectrum types can be ignored during simulation

Intermods (sim)
Harmonics (sim)
Thermal Noise (sim)
Phase Noise (sim)

 Controlling Path Data

Every measurement is dependent on one or more types of spectrum. All measurements
whose spectrum types have been enabled are added to the path dataset. Furthermore,
path powers, voltages, and impedances can also be added to the dataset.

 Sweeps of a Path

Sweeps of path measurements can be plotted in one of two ways:

On a Level Diagram
On a rectangular graph showing a Swept Variable vs Measurement at a given node

 Background

The following schematic will be used for the discussion of this topic:

Notice that 3 of the nodes have been manually renamed to help illustrate concepts that
will be shown hereafter. To rename a net right click the net then select 'Net' and then
'Rename...' from the sub menu. In this example the source frequency is swept from 2110
to 2170 MHz. An equation is used to synchronize the LO frequency with the input
frequency to maintain a constant IF frequency throughout the sweep. For additional
information see parameter sweeps (users).

When a sweep is performed on a system analysis the spectrum data is swept and a new
swept main system dataset will be created. If the system analysis contains paths then
each path will be swept and a new swept path dataset will be created for each path.

 Swept Level Diagram

To create a swept level diagram do the following:

Add a rectangular graph
Set the 'Default Dataset or Equations' to the swept path dataset of interest
Type in or select the path measurement

SystemVue - Simulation

78

 Swept Variable versus Measurement at a given node

Many times users need a measurement at an input, output, or some other intermediate
node. For example, the user may want to examine the cascaded noise figure at the output
node versus the input frequency or the channel power at the output node versus a sweep
of the input power.

To create a plot of a swept variable versus a measurement do the following:

Add a rectangular graph
Set the 'Default Dataset or Equations' to the swept path dataset of interest
Add the measurement and then selected the array entry in the measurement for the
node of interest. To do this use the following syntax:

Measurement[NodeNames[@"Name of Node"]
In this example this would be CNF[NodeNames@"Out"] as shown below

The resulting graph is shown below:

NodeNames is a variable placed in the path dataset which is the dependent
variable for every path measurement. Note that the 'NodeNames' variable is
really just an array of strings. The left most column is really just a row number
like a spreadsheet or the i th entry in the array. For example, NodeNames[3] =
"MixIn".

SystemVue - Simulation

79

The [@|equoperators] operator returns the index in the array of the operand.
For example, the index of NodeNames@"MixIn" is 3.
In summary then the measurment CNF[NodeNames@"Out"] will return all the
swept values of CNF at the node named "Out".
By default, the names of the nodes used in the schematic are numbers so the
syntax of CNF[NodeNames@"2"] where "2" is the output node is very
common.
Another way to understand this is to examine the CNF measurement in the
swept path dataset. The dependent data is in the right most column titled CNF.
This variable has two independent variables 1) the swept frequency and 2) the
name of the node. The units of this measurement are show in the header row of
the first column. Or in other words dB. The left most column is simply a row or
index number. For example, CNF[12] of the swept path dataset would be 0.517
dB which is the 12 entry of the CNF array. The @ operator must be used to
extract only the data at the node of interest.

SystemVue - Simulation

80

 Spectral Propagation and Root Cause
Analysis (SPARCA)
A new simulation technique has been created to simulate RF architecture. This technique
is called Spectral Propagation and Root Cause Analysis. Every spectrum at each node
propagates both forward and backward to every node in the schematic. Along the way
noise, intermods, harmonics, and phase noise spectrums are created and propagate to
every node in the schematic. These spectrums contain spectral density information so the
effects of bandwidth are automatically accounted for. As spectrums propagate through the
system spectral genealogy is maintained providing users with the ability to identify the
propagation path of every spectrum. Furthermore, this parentage information also
includes coherency identification, desired or undesired status, and the frequency equation
associated with the given spectrum. For more information see spectral identification. This
simulation technique is extremely fast compared to traditional non-linear simulation
techniques such as harmonic balance that requires convergences criteria and
mathematical inversions of large matrices to achieve simulation solutions.

Users specify arbitrary paths through a single block diagram to gather cascaded
information along a given path. Each path contains several types of paths such as desired,
total, noise, phase noise, etc. Each spectrum along the designated path will be placed in
the appropriate path category. Measurements operate on specific path types to create
desired effects. For example, the channel noise power measurement excludes all signal,
intermods and harmonics, and phase noise spectrums from its path spectrums giving the
user only noise within the channel regardless of whether or not a much stronger signal is
located at the same frequency. This is a huge advantage allowing the user to see and
measure true in-channel signal to noise ratio.

SPARCA Simulation advantages:

Fast simulation speed (sim) - This new technique is much faster than traditional non-
linear simulation techniques
Identification of every spectrum - Parentage information is retained for each
spectrum and is displayed in graph tooltips
Signals can be seen underneath other signals - i.e. Harmonics of an amplifier can be
seen underneath the noise floor
True in-channel signal to noise ratio measurements - All spectral components are
retained individually and are segregated according to their type giving users a view of
desired versus spurious signals even at the same frequency
Spectral directionality - Spectrums propagate both forward and backward. Some path
measurements may only operate in the forward direction of the path
Bandwidths for all spectrums - All spectrums have bandwidth and spectral density.
i.e. A 2nd harmonic with had twice the bandwidth of its fundamental
Broadband noise - Noise is simulated from the lowest to highest frequencies
(generally from DC to 5 times the highest signal source frequency)
Phase noise (sim) - Behavioral phase noise is propagated through the system and
measurements can operate on just this type of spectrum
Path VSWR effects - Stage mismatch effects are included in all simulation results
Multiple path analysis for single block diagram - Path analysis is NOT restricted to the
traditional 2 port topologies
Restrictive assumptions from traditional cascaded equations (i.e. noise (sim) and
intermods) are removed - Spectrums are integrated and measurements operate on
these spectrum to determine results
Flexibility for future growth - New spectrum types can be defined and new
propagation methods can be added to support changing needs

 Getting Started with Spectrasys
Spectrasys uses a new simulation technique called SPARCA that brings RF architecture
design to a whole new level. This walk through will help you design a simple RF chain and
measure the architectures noise and gain performance.

The basic steps for analyzing an RF system are:

Create a System Schematic1.
Adding a System Analysis2.
Run the Simulation3.
Add a Graph or Table4.

 Create a System Schematic

Spectrasys supports all linear models and behavioral non-linear models. The behavioral
models can be found on the system toolbar or in the part selector.

Create the following system schematic (default parameters for all models will be used).
For additional help creating a schematic (users) click here.

SystemVue - Simulation

81

Select the 'Amp (2nd & 3rd Order)' from the system toolbar or part selector.1.
Move the cursor and click inside the schematic window to place the part.2.
Use the prior steps to place a fixed Attenuator, Coupler (Single Dir), and3.
Isolator.
Place a Source (Multi) at the input. Now add a carrier by double clicking the source4.
and clicking the Add button. A source user interface will appear. Change the power
level to -20 dBm.
Place a Output Port on the output of the isolator and the coupler.5.

Hint
Press the " O key on the keyboard to place an output port

Make sure each part output is wired to the subsequent part input.6.

Hint
Use the 'F4' key when a part is highlighted to repeatedly move the part text to default locations
around the part.

The node numbers seen on your schematic may vary due to the order of the parts7.
placed on the schematic.
To 'Renumber Nodes..' select the schematic then select 'Renumber Nodes...' from
the 'Schematic' menu. The following dialog box will appear:

Select the desired options and click 'OK'.8.

 Adding a System Analysis

After creating a schematic a system analysis must be created. There a several ways to
accomplish this. Only one way will be shown here. For additional information on adding
analyses (users) click here.

To add a system analysis:

Right click on a folder in the workspace tree where you wan the analysis located.1.

Select 'Add RF System Analysis...' from the selected sub menus as shown above.2.
The following 'System Analysis' dialog box will appear.3.

If path measurements are desired (i.e. cascaded gain or cascaded noise figure) click4.
on the 'Paths' tab.

SystemVue - Simulation

82

Click the 'Add All Paths From All Sources' button.5.

Note
Node numbers may be different than shown above depending on the node numbers in your
schematic. For additional information on specifying paths click here.

Click the dialog 'OK' button.6.

 Run the Simulation

Analysis data must be created before it can be plotted or displayed in tables. The analysis
can be enabled to 'Automatically Recalculate' or may need to be manually calculated. If
the analysis has been set to 'Automatically Recalculate' datasets will appear in the
workspace tree after the analysis. If manual calculation is needed the calculate button
(!red_calculate_button.gif!) will appear red and so will other items on the workspace tree.
Click the calculate button to update the system analysis and create the necessary
datasets.

After calculation the workspace tree should look like:

For more information on datasets (users) click here.

 Add a Graph or Table

There are several ways to display data in Genesys. Only one way will be demonstrated
here. For additional information on graphs (users), click here.

The easiest way to add a spectral power, phase, or voltage plot in Spectrasys is by
right clicking the node to be viewed and selecting 'System1_Data: New Power Plot at
Node x' from the submenu 'Add New Graph/Table'. (The output of the attenuator was
selected in the following figure)

The following graph will appear:

SystemVue - Simulation

83

To add a level diagram (a path number be defined first) right click on the ending
node of the path and selecting 'System1_Data_Path1: New Level Diagram of CGAIN
(Cascaded Gain)' from the 'Add New Graph / Table' submenu.

The following level diagram will appear:

Follow the same process as adding a level diagram to add a predefined table of common
measurements except select 'System1_Data_Path1: New Table of Measurements'
from the 'Add New Graph / Table' submenu. For additional path measurement (sim)
information click here.

The default table will look like:

Hint
Right click on the table data to see additional table options.

 Dialog Box Reference
General Tab (sim)
Paths Tab (sim)
Add/Edit Path (sim)
Calculate Tab (sim)
Composite Spectrum Tab (sim)

SystemVue - Simulation

84

Options Tab (sim)
Output Tab (sim)

 System Simulation Parameters - Calculate Tab
This page controls calculation of Intermods, Harmonics, Noise, and Phase Noise.

 Harmonincs and Intermods

This section controls calculation parameters for harmonics and intermods. See the
'Calculate Intermods, Harmonics' section for more information on intermods and
harmonics.

 Calculate Harmonics

When checked the system analysis will calculate and save harmonic data to the system
analysis dataset. Calculation time for harmonics is typically very quick.

 Calculate Intermods

When checked the system analysis will calculate and save intermod data to the system
analysis dataset. Intermod simulation time depends on the number of input signals, levels
of the resulting intermods, number of non-linear stages, and how tightly coupled loops
are. Unchecking this option can improve the simulation speed drastically during
troubleshooting of a block diagram.

 Any Secondary Spectrum within X dB of Peak Spectrum

When checked harmonics and intermods will only be created from all secondary signals
appearing at the input to the non-linear part that are within the specified power range of
the peak input spectrum. Secondary spectrum are considered to be any undesired
spectrum like intermods and harmonics. This option typically requires longer simulation
time since more spectral components are being created. However, there are some cases
like the output of mixer where many undesired spectrum exist and only those that fall
within the range of the peak will be used to create intermods and harmonics in
subsequent stages. In this case the simulation speed may actually be faster.

 Odd Order Only

When checked only odd order intermod and harmonics will be created.

 Coherent Addition

When checked intermod, harmonics, and mixed signals will be added coherently.
Generally, cascaded intermod equations assume coherent intermod addition.

Note: Desired signals will always be added coherently regardless of this setting. See the 'Coherency'
section for more information.

 Fast Intermod Shape

When checked undesired intermods and harmonics will be represented by only 2 data
points. In most cases this is adequate. However, if one desires to examine an undesired
intermod or harmonic though a filter then more points may be needed to accurately
represent the shape of the signal. When unchecked the average number of points from all
input signals is used to represent the undesired intermod or harmonic.

Note: Desired intermods and harmonics like the principle signal coming out of a frequency multiplier or
divider will always be represented by the number of points of the input spectrum for a harmonic or the
average number of points from all input signals in the case of an intermod.

 Maximum Order

This parameter is used to limit the maximum order of the spectrums created in the
simulation. This limit applies to all non linear parts. Each model has a limitation on the
maximum order that it can generate. Please refer to the part help to determine the order
limit for each model.

 Calculate Noise

This section controls calculation parameters for thermal noise. When checked noise is
calculated. The option must be enabled for path noise measurements. Every component in
the schematic will create noise. A complex noise correlation matrix is used to determine
the noise power for each part at every node. Unchecking this option can improve the
simulation speed drastically during troubleshooting of a block diagram.

 System Temperature

SystemVue - Simulation

85

This is the global ambient temperature of the entire design under simulation. This is the
temperature needed to determine the thermal noise power level. The actual thermal noise
is shown for convenience.

 Noise Points for Entire Bandwidth

This indicates the number of points used to represent the entire noise spectrum. Noise will
automatically be created beginning at the frequency specified by 'Ignore Frequency Below
(sim)' and ending at the frequency specified by 'Ignore Frequency Above (sim)'. These
noise points will be uniformly distributed across this bandwidth.

Note: The more noise points used in the simulation the longer the simulation time generally takes. Since
each component generates noise the more components in a schematic will also increase the simulation
time. Better speed performance can be achieved for a large number of components by disabling noise
calculations or reducing the number of simulation points.

 Add Extra Noise Points

This is the number of extra noise points that will be inserted across the 'Extra Points
Bandwidth' parameter. These additional noise points will be uniformly distributed across
this bandwidth. The center frequency of these noise points is the center frequency of the
desired signal frequency. These noise points will be added to every created desired
spectrum. However, unused noise points will be removed to improve simulation time. See
'Broadband Noise' and 'Cascaded Noise Analysis' sections for additional information.

 Extra Points Bandwidth

This is the bandwidth where additional noise points can be inserted. The center frequency
of these noise points is the center frequency of each desired signal. This parameter is
used when the user wants greater resolution of the noise like through a narrowband
Intermediate Frequency (IF) filter. This bandwidth defaults to the channel bandwidth.

 Calculate Phase Noise

When checked behavioral phase noise is calculated. By default the phase noise data points
are only created at the user specified frequency offsets. If any measurements are made at
specific phase noise offsets other than the user specified points additional phase noise
points can be inserted so that phase noise passing through narrow band filters can be
measured accurately.

 with Emphasis at Offsets

This is a list of offsets where additional phase noise data points will be inserted. Each
offset in the list is separated by a semicolon. Though only positive offsets are specified
additional phase noise points will be inserted for both sides of the phase noise. At each
offset 3 additional noise points will be inserted. One at the specified offset frequency and
two others at the channel bandwidth edges. Thus ensuring that 3 phase noise points will
appear in the channel of interest. Interpolation of the user entered phase noise is used to
determine the amplitude for each inserted offset point. When this field is empty no
addition phase noise points are inserted.

For example, if 50 was specified (50 kHz) and the channel bandwidth was 10 kHz the
following phase noise points would be inserted: -55, -50, -45, 45, 50, and 55 kHz.

 Add / Edit Path Dialog Box
This dialog box is used to specify the characteristics of a path. A basic path consists of a
beginning and ending location in a schematic and a channel or path frequency. The path
will nominally transverse the least number of stages to arrive at the end. However, there
are options to allow users to determine alternate paths through the architecture. A path
can be characterized in two ways, Normal and a Quick Sweep. For a Normal path
characterization all source schematics will be used and chosen path measurements will be
calculated. For a Quick Sweeep characterization the source at the beginning of the path
will be disabled and the specified path Channel Frequency will be used in the sweep
creation. Equation based measurements are used for amplitude sweeps to determine the
compression point knee to minimize the number of sweep points needed to extract an
accurate compression curve.

 General Parameter Information

All fields can be numeric or a variable. When using a variable the name of the variable is
entered into the field and the variable must be defined in an equations block. For
example, if we wanted to use a variable for the offset channel frequency called MyOffset
then we would type the string MyOffset into the 'Frequency Offset From Channel' field
then define 'MyOffset = 10' in an equation block which is set to use display units or in
other words the units used in the dialog box. If the equation units are changed to MKS
then MyOffset = 10e6 would represent 10 MHz. To make a variable tunable a '?' is placed
in front of the number in the equation block i.e. 'MyOffset = ?10'.

SystemVue - Simulation

86

 Name

This is the name used to identify the path.

 Description

Description of the path. Used for identifying the path to the user. When 'Use auto-
description' is checked the description will automatically be filled based on parameters set
in the remaining fields of the dialog box.

 Use auto-description

Description will automatically be created from specified path parameters.

 Define Path

This section will define the path to be calculated by the system analysis. A path can be
specified with either part names or node names. The path will nominally transverse the
least number of stages to arrive at the end. However, there are options to allow users to
determine alternate paths through the architecture. In the case where loops or parallel
paths exits it may be necessary to specify an intermediate part or node names to force
the path through a direction of interest.

 (Normal Characterization)

 (Quick Sweep Characterization)

 Part Names

When selected informs the system analysis that part names are being used for the
simulation of the path.

 Node Names

When selected informs the system analysis that node names are being used for the
simulation of the path.

 Force path through Switch state

When checked will force the path to follow the state of the any switches along the path.
For example, this allows the path to track the state of a switch bank. When unchecked will
allow the user to force the path direction through the switch.

 Allow path to begin on internal Node

When checked any desired signals within the channel will be used to determine the
desired channel power, gain, and cascaded gain. When unchecked the desired signal at a
source must be locatable or the desired channel power, gain, and cascaded gain cannot be
determined.

NOTE: When a path begins on an internal node the total power of ALL desired signals at the channel
frequency will be used to determine the initial desired channel power and hence the gain and cascaded
gain. When unchecked a single signal at the source is used for these measurements and then Spectrasys
can distinguish this single desired signal from other desired signals at the same frequency.

 Add Part/Node to Path Button

When clicked provides the user with a menu of parts or node names that can be selected
in sequence to determine the path. Each click on the menu will add the selected name to
the path.

 Clear Path Button

When clicked with clear the path list.

 Path

This contains a list of part or node names that define the path. These names are specified
as an array and can be separated either with semicolons or commas. Spectrasys will find
the shortest path containing all the names in the path list. Additional names can be
inserted into the path list to force a path in a given direction.

The path can be defined as a string array in an equation block to dynamically change the
path based on an equation. For example, a string array for the variable 'MyPath' would be
defined:

'MyPath = ["Input Part Name";"...Optional Names";"Output Part Name"]

SystemVue - Simulation

87

Note: This example uses part names but node names work equally as well. However the user must make
the correct selection of 'Part Names' or 'Node Names'. Also, commas are NOT supported as a valid
separator in a string array. A semicolon must be used.

 Channel Frequency (Normal Path Characterization)

Defines the frequency at which path measurements are made. The channel measurement
bandwidth (on the general tab of the system analysis) will be used in conjunction with the
channel frequency to completely specify the channel location in the spectrum and
bandwidth of the spectrum integration. If this field is empty the system analysis can
determine the path frequency if there is a single signal source on the beginning node of
the path. For multiple frequencies the system analysis doesn't know the intent of the user
and will display an error. For intermod measurements this is the frequency of the
intermod to be measured not the frequency of one of the two tones.

The channel frequency will automatically change along the path through frequency
translation devices such as mixer, multipliers, dividers, etc.

If the user would like to force the channel frequency to a particular value at a given node
along the path this can be done by adding an additional frequency to the channel
frequency list by separating each frequency by commas. The channel frequency and path
list are paired beginning at the start of the path. So the second channel frequency in the
list will correspond to the second node or part in the path list. For example, if the user
wanted to track the 2nd harmonic created at the output of the LNA and the path is
specified as '1;5;2' where node 1 is the input, 5 the LNA output, and 2 the system output.
If the input frequency was 1000 MHz then the channel frequency would be specified as
'1000;2000'. What this means is that at node 1 the 1000 MHz frequency will be used.
When the path calculation reaches the next name in the path list, node 5, the next
channel frequency will be used which is 2000 MHz. The channel from this point to the end
of the path at node 2 will follows its normal course including through any frequency
translation devices. NOTE: When using multiple frequencies node names are a better for
path specification since parts generally have more than 1 node and the system analysis
doesn't know which terminal of the part to use.

 Source Frequency (Quick Sweep Characterization)

Since the a Quick Sweep can occur across frequency and amplitude the path frequency
at the input is not limited to fixed frequencies that may appear in the schematic. For this
reason the user must specify this frequency that is used for amplitude sweeps and will be
the center source frequency for frequency sweeps.

 Output (Normal Characterization)

This section determines which measurements are added to the dataset and some
parameters needed by some measurements. Path measurements can be grouped into the
following groups: fundamental, intermod, adjacent channel, receiver image channel, offset
channel, and primitive path components of powers, voltages, and impedances.
Fundamental measurements like Channel Frequency (CF) are always added to the path
dataset.

 Add Power Measurements

When checked power based measurements will be placed in the path dataset.

 Add Voltage Measurements

When checked voltage based measurements will be placed in the path dataset.

 Intermods Along a Path

When checked will calculate intermod measurements and add them to the path dataset.
This is not to be confused with intermods created during a simulation. Those will always
be created as long as calculation of intermods has been selected on the 'Calculate Tab' of
the system analysis.

 Tone (Interferer) Frequency

This is the frequency where the tone or interferer is located that will be used to determine
the intercept point. In order to determine the intercept point the system analysis must
measure the intermod power and the power of the tone or interferer that created the
intermod. The path channel frequency is set to the frequency of the intermod and an
additional tone (interferer) channel must be created at the frequency of the tone or
interferer. The intercept measurement technique used in the system analysis is generally
the same as the one used in the laboratory using signal generators and spectrum
analyzers.

See Intermod and Harmonic Basics, Intermod Path measurement Basics, Cascaded
Intermod Equations, In-Band Intermod Path Measurements, Out-of-Band Intermod Path
Measurements, and Troubleshooting Intermod Path Measurements for additional
information.

 Powers, Voltages, and Impedances

When checked will add path powers, voltages, and impedances to the path. These
spectrums are grouped into various categories which are then integrated by corresponding
measurements.

SystemVue - Simulation

88

 Adjacent Channels

When checked will calculate the specified adjacent channels and place the results in the
path dataset. The bandwidth of the channel is the channel measurement bandwidth
specified on the 'General Tab' of the system analysis.

 Channels

These are the adjacent channels which reside on either the lower or upper side of the
main channel. These values are specified as an integer array where values are separated
by semicolons. Negative numbers represent the channels lower than the main path
frequency and positive values represent channels higher than the main path frequency.
For example, [-2;-1;1;2] means that first and second lower and first and second upper
adjacent channels will be measured.

 Receiver Image Channel

When checked all measurements associated with the receiver image channel will be
calculated and saved to the path dataset. The receiver image channel is defined as the
channel from the input to the first mixer.

 Offset Channel

When checked will calculate the offset channel power and frequency measurements and
add them to the path dataset.

 Frequency Offset from Channel

The is the frequency spacing between the main channel center frequency and the center
frequency of the offset channel.

 Bandwidth

This is the bandwidth of the offset channel power measurement.

 Output (Quick Sweep Characterization)

This section determines which measurements are being swept and added to the dataset
along with the type and fidelity of the sweep.

The following core measurements will always be added to the dataset:

Channel Frequency (CF)
Desired Channel Power (DCP)
Desired Channel Phase (DCPH)

 Add Power Measurements

When checked power based measurements will be placed in the path dataset.

 Add Voltage Measurements

When checked voltage based measurements will be placed in the path dataset.

 Add General Measurements

When checked will add the following measurements: Desired Channel Resistance (DCR),
Stage Gain (SGAIN), Stage Input Impedance (SZIN), Stage Output Impedance (SZOUT
), Stage Compression (COMP), Cascaded Compression (CCOMP).

For Power based measurements the following measurements will be added: Gain (GAIN
), Cascaded Gain (CGAIN), Channel Power (CP), Stage Input P1dB (SIP1DB), Stage
Input Saturation Power (SIPSAT), Stage Output P1dB (SOP1DB), Stage Output
Saturation Power (SOPSAT), Input P1dB (IP1dB), Input Saturation Power (IPSAT),
Output P1dB (OP1DB), Output Saturation Power (OPSAT), Total Node Power (TNP), and
Stage Dynamic Range (SDR).

For Voltage based measurements the following measurements will be added: Channel
Voltage (CV), Voltage Gain (GAINV), and Cascaded Voltage Gain (CGAINV).

 Add Intermod Measurements

A three tone test is used for intermod measurements which allow the out-of-band-
intercept characterization typically required for receivers. See Intermods Section in the
Spectrasys simulation manual for additional information. A low level test signal is created
at the source frequency used to determine the in-channel gain. Two tones are greated 40
dB above the test signal and are positioned according to the 2-Tone Spacing value set by
the user. For example, if the Source Frequency was set to 100 MHz and the 2-Tone
Spacing was set to 10 MHz then three tones would be created: a test tone at 100 MHz
and two tones 40 dB larger in amplitude at 110 and 120 MHz. The 2-Tone spacing can be
negative so the two tones will appear below the test signal.

When checked will add the following measurements: Interferer Channel Frequency (ICF).

For Power based measurements the following measurements will be added: Interferer
Channel Power (ICP), Interferer Gain (IGAIN), Interferer Cascaded Gain (ICGAIN),

file:/pages/createpage.action?spaceKey=sv201001&title=Spectrasys+System&linkCreation=true&fromPageId=96375787
file:/pages/createpage.action?spaceKey=sv201001&title=Spectrasys+System&linkCreation=true&fromPageId=96375787

SystemVue - Simulation

89

Conducted Intermod Channel Power (CIMCP, CIMCP2, and CIMCP3), Generated
Intermod Channel Power (GIMCP, GIMCP2, and GIMCP3), Total Intermod Channel
power (TIMCP, TIMCP2, and TIMCP3), Output Intercept Point (OIP, OIP2, and OIP3),
Receiver Based Output Intercept Point (RX_OIP, RX_OIP2, and RX_OIP3), Input
Intercept Point (IIP, IIP2, and IIP3), Receiver Based Input Intercept Point (RX_IIP,
RX_IIP2, and RX_IIP3), Percent Intermods (PRIM, PRIM2, and PRIM3).

For Voltage based measurements the following measurements will be added: Interferer
Channel Voltage (ICV).

 Add Noise Measurements

When checked will add the following measurements: Image Channel Frequency (IMGF).

For Power based measurements the following measurements will be added: Channel
Noise Power (CNP), Cascaded Noise Figure (CNF), Added Noise (AN), Carrier to Noise
Ratio (CNR), Carrier to Noise and Distortion Ratio (CNDR), Image Channel Power (IMGP
), Image Channel Noise Power (IMGNP), Image Rejection Noise Ratio (IMGNR), Image
Rejection Ratio (IMGR), Minimum Detectable Signal (MDS), Noise and Distortion Channel
Power (NDCP), Phase Noise Channel Power (PNCP), and Percent Noise Figure (PRNF).

For Voltage based measurements the following measurements will be added: Channel
Noise Voltage (CNV), Carrier to Noise Voltage Ratio (CNVR), Node Noise Voltage (NNV),
Phase Noise Channel Voltage(PNCV), and Total Noise Voltage (TNV).

 Sweep Type

There are three types of sweeps:

Amplitude
Frequency
Amplitude and Frequency

 Amplitude

The amplitude is swept from 100 dB below the estimated cascaded 1 dB compression
point (rounded down to the nearest 10 dB) to 20 dB above the estimated cascaded
saturation point (round up to the nearest 10 dB). The amplitude sweep is broken up into 4
regions. Each region has its own fidelity. For example, if the cascaded input intercept point
was +8 dBm and input saturation point was +11 dBm the amplitude sweep would go from
-90 dBm (+8 dBm - 100 dB then rounded down) to +40 dBm (+11 dBm + 20 then
rounded up).

 Frequency

The frequency is swept across 10 channel bandwidths. The center frequency is the
specified Source Frequency. The channel bandwidth is specified on the General Tab of
the System Analysis dialog box. The frequency sweep is broken down into 3 regions. The
optimum power used for this sweep is 50 dB below the estimated 1 dB compression point
(rounded down to the nearest 10 dB). For example, if the estimated 1 dB compression
point is -4 dBm, the source frequency was set to 500 MHz and the Channel Bandwidth set
to 1 MHz then the amplitude would be set to -60 dBm (-4 dBm - 50 then rounded down)
and the frequency would be swept from 495 to 505 MHz.

NOTE: The channel bandwidth value specified on the General Tab is used to determine the frequency
sweep range. Internally this bandwidth is changed to 10 Hz during the simulation. All characterization
values are taken at 10 Hz.

 Amplitude and Frequency

This sweep is a nested sweep that is a combination of a frequency sweep with an
amplitude sweep at each frequency point.

 Fidelity

The Fidelity is broken up into 3 categories:

Low
Medium
High

The fidelity affects both amplitude and frequency sweeps.

 Amplitude Fidelity

The following table shows the power levels of each region of the power in versus power
out curve and the power step size in each specified region. Equation based measurements
of input P1dB (EIP1DB) and saturation power (EIPSAT) are used as estimates to
determine the boundaries between each region.

Fidelity Region1-2 Region2-3 Region3-4 Step 1 Step 2 Step 3 Step 4

 (dBm) (dBm) (dBm) (dB) (dB) (dB) (dB)

Low EIP1DB - 10 EIP1dB - 5 EIPSAT + 5 30 5 2 20

Medium EIP1DB - 15 EIP1dB - 3 EIPSAT + 5 20 4 1 10

High EIP1DB - 15 EIP1dB - 5 EIPSAT + 5 10 2 1 4

 Frequency Fidelity

The following table shows each of the frequency sweep regions and the frequency step
size resolution within each region.

Region 1 - Region in between 10 and 5 channel bandwidths.
Region 2 - Region in between 5 and 1 channel bandwidths.
Region 3 - Center channel of 1 channel bandwidth.

SystemVue - Simulation

90

Fidelity Step 1 Step 2 Step 3

 (dB) (dB) (dB)

Low Chan
BW

Chan BW / 2 Chan BW / 5

Medium Chan
BW

Chan BW / 5 Chan BW / 10

High Chan
BW

Chan BW / 10 Chan BW / 20

 System Simulation Parameters - General Tab
This page sets the general settings for a Spectrasys Simulation.

 Parameter Information

 Design to Simulate

User specified name. This is the source name that will appear in the spectrum
identification.

 Dataset

Name of the dataset where the simulation data is stored.

 Frequency Units

These are the frequency units used for the entire system simulation dialog box.

 Nominal Impedance

Default impedance used for power measurements when no impedance information is
available during the simulation.

 Measurement Bandwidth

Width of the channel used in path measurements. This is analogous to the resolution
bandwidth on a spectrum analyzer.

 Automatic Recalculation

When checked enables Spectrasys to automatically recalculate the simulation every time
the design or system simulation is out of date.

 Calculate Now Button

Closes the dialog and initiates a simulation.

 Save as Favorite Button

When clicked will save all the parameters associated with the system analysis dialog as
the default to be used when the next system analysis is created.

 SCHEMATIC SOURCE SUMMARY

This section summarizes all the sources found in the given design. For example, see the
schematic source summary in the figure above.

 Name

This is the name of the source or part designator.

 Net Name

This is the name of the net where the source is connected.

 Description

This is a summary description of the source.

 Edit Button

When clicked this button will bring up the edit parameters dialog for this part.

 Minimum number of source data points

When checked each source signal is represented by the specified number of data points.

SystemVue - Simulation

91

When unchecked 2 points will be used. This parameter is ignored for all continuous
frequency sources whose amplitude is dependent on several data points. This option is
extremely useful when wideband signals are being simulated through filters since
impedance can vary drastically across its bandwidth . If only 2 data points are used then
spectrum power and noise will only be represented by these 2 points.

 Factory Defaults

Sets all properties to their default values.

 System Simulation Parameters - Options Tab
This page contains miscellaneous Spectrasys options.

 IGNORE SPECTRUM

This group is used to limit or restrict the number of spectrums created by Spectrasys.
These thresholds apply at every calculated node. Consequently, if a signal is heavily
attenuated or outside the given frequency range during a portion of the path and are then
amplified or frequency translated back into the given frequency range then these
thresholds must be set so that the spectrums will not be ignored along the calculation
path. Once an individual spectrum is ignored it will not continue to propagate. However,
all spectrums previously calculated will still be available at the nodes where there were
within the specified limits. For example, If we had a 2 GHz transmitter that had an IF
frequency of 150 MHz and we set the 'Ignore Frequency Below' limit to 200 MHz then the
entire IF signal would not be present and consequently neither would the 2 GHz RF signal.

 Level Below (default = -200 dBm)

All spectrums that are below this threshold will not be created or propagated. This
threshold should be set to the highest acceptable level if faster simulations are important.
Spectrums are not actually ignored unless they are more than about 20 dB below this
threshold since several spectrums can be added together to give a total result that would
be greater than this threshold.

 Simulation Speed-Up

As with any other type of simulation the more spectral components that need to be
processed the longer the simulator time. Setting these limits to only calculate the
frequencies and amplitude ranges of interest can speed up the calculation process
drastically especially when calculating intermods. However, take caution when setting
these limits so that intentional spectrums are not ignored.

 Frequency Below (default = 0 Hz)

All spectral components whose frequency is below this threshold will be
ignored. Spectrums falling below this limit will not continue to propagate. However, there
are several cases where negative frequencies may be calculated at interim steps (i.e.
through a mixer) which will be folded back onto the positive frequency axis. This
parameter will only affect the final folded frequencies and not the interim frequency steps.
Likewise, this is the lower noise frequency limit.

 Frequency Above (default = ['Max Order (sim)' + 1] times the highest source
frequency)

All spectral components whose frequencies are above this threshold will be ignored and
will not be created. Spectrums falling above this limit will not continue to propagate.
Likewise, this is the upper noise frequency limit.

 MAXIMUM NUMBER OF SPECTRUMS TO GENERATE

This group is used to limit or restrict the maximum number of spectrums that will be
created.

 Max Spectrums

Limits the maximum number of spectrums that are created. Once this limit is reached
during a simulation no additional spectrums will be created.

Note: This option must be used with care since a premature limitation of the number of total spectrums
will more than likely affect the accuracy of all the results.

 MIXER LO

This section controls the effects of all mixer LOs in a simulation.

 Strongest Signal Only

SystemVue - Simulation

92

When selected, the frequency of the strongest LO signal is used to determine the output
frequency of all mixed signals regardless of the number of other signals that may be
present on the LO.

 All Signals Within X, dBc of Strongest

When selected, all frequencies of LO signals falling within the specified range of the peak
LO signal will be used to create new mixed output spectrum.

 RANGE WARNING (FOR MIXER, MULTIPLIER, ETC)

This group is used to control range warnings used by some parts.

 Tolerance Range

This threshold range is used by some parts to warn the user when a given power level
falls outside the specified range. This range applies to each part on a case by case
basis. For example the total LO power for the given mixer will be determined by
integrating the LO spectrum and then comparing this power level to the 'LO Drive Level'
for the given mixer. If this power level is outside the 'Tolerance Range' window then a
warning will be issued for this mixer either indicating that the mixer is being starved or
over driven.

 System Simulation Parameters - Output Tab
This page contains miscellaneous Spectrasys options.

 Retain X Levels of Data

Specifies the number of data levels that will be saved to the dataset. For example, 1 level
of data is the data for the top level design only. This parameters only refers to the data
retained in the dataset and not the whether a sub-circuit will be analyzed or not. All sub-
circuits will always be analyzed.

 Remove Redundant Spectral Lines

This section controls the amount of redundant data that will retained and propagated
during the simulation. A significant amount of disk storage and simulation time is spend
processing spectrums whose powers levels don't contribute to the total power level for the
given spectrum type. Signals must be at the same frequency and bandwidth to be
considered candidates for spectrum elimination. For instance, a set of carriers will create
several intermods. Many of these intermods will fall at the same frequency. However,
many of those may be insignificant and don't contribute to the total power of the
spectrum. The status of the spectrum elimination will be shown in the Simulation Log for
the system analysis.

 During Simulation and Propagation

During the simulation redundant spectrum occurs in three places:

input carriers that create intermods in a non-linear device1.
processing of a resultant path spectrum that will be used by measurements2.
during the calculation of the total voltage or power spectrum at each node.3.
When checked, typically, at least a 2 to 1 increase in simulation speed is observed.

 Input Carriers

Input carriers are automatically eliminated due to some amplitude pre-testing that
determines if a resultant intermod will exceed the ignore below threshold or not. If the
worst case potential intermod voltage is lower than the specified threshold the input
carrier will be ignored.

 Path Spectrum

There are several different categories of spectrums used for path measurements. They
are: Desired, Noise, Total, Phase Noise, and various types of Intermod spectrums. When
these resultant path spectrums are being created all spectrums that don't contribute to
these resultant spectrums will be eliminated.

 Total Spectrum

The spectral plots shown to the user in a graph contains a total trace fore every direction
through a node. Only those spectrums that contribute to the total power of voltage of the
trace will be retained. Otherwise, they will be ignored.

 On Output, When X dB Below the Peak Value

SystemVue - Simulation

93

When checked this option will eliminate all spectrums at the same frequency and
bandwidth that are below the specified value of the peak signal at the same frequency and
bandwidth. This has no affect on any path measurements. The sole purpose of this feature
is to reduce the amount of spectrum that graph has to deal with when plotting a power,
voltage, or phase spectral plot at the node.

 Save Data For

This section controls the data that will be saved to the system analysis dataset. Each part
in the schematic is listed and can be checked or unchecked. When checked the data for all
nodes of the specified part will be saved. Several buttons have been added for
convenience is selecting or unselecting parts.

 Check All

When clicked with select all components.

 Uncheck All

When clicked will unselect all components.

 Check Output Ports

When clicked will select only the output ports.

 Check Input Ports

When clicked will select only the input ports.

 System Simulation Parameters - Paths Tab
Many measurements require the definition of a path.

 Add All Paths From All Sources

Automatically adds all possible paths between sources and output ports.

 Add Path

Invokes the Add / Edit Path dialog box.

 Delete All Paths

Deletes all paths in the system analysis.

 Path Summary Table

This table summarizes the aspects of the path.

 Name

User defined name of the path.

 Description

User defined description of the path.

 Enable

When checked will create and add a path dataset to the workspace tree. When unchecked
will remove the existing path dataset from the workspace tree.

 Add / Edit Button

When clicked will invoke the Add / Edit Path dialog box.

 Delete Button

Will delete the path from the system analysis.

SystemVue - Simulation

94

 Spectrasys designs in Data Flow
schematics
 About using Spectrasys designs in Data Flow
schematics
SystemVue supports two types of analyses:

RF System Analysis (see Getting Started with Spectrasys (sim)): In the following, a
design that has been setup for use with RF System Analysis is called a Spectrasys
design.
Data Flow Analysis (see Create Your First Data Flow Simulation (sim)): In the
following, a schematic that has been setup for use with Data Flow Analysis is called a
Data Flow schematic (schematic that contains at least one Data Flow part, that is, a
part from a library other than RF Design or RF Vendor Kits).

A Spectrasys design is created to define an RF system with analysis performed in the
frequency domain. The analysis is broadband and includes the many harmonics and
intermodulation tones associated with nonlinearities and mixers. The analysis inherently
includes signal flows for forward transmissions, reflections due to impedance mismatches,
and reverse transmissions due to non-ideal isolations.

A Data Flow schematic is created to define a Comms system at the algorithmic level with
analysis performed in the time domain for baseband signals and RF signals. The analysis
for an RF signal is bandpass with the signal bandpass information bandwidth centered at
the RF signal carrier frequency (more typically called the RF characterization frequency).
The analysis inherently only deals with signal forward transmission flow for which
impedance is not a relevant concept.

SystemVue supports using Spectrasys designs within Data Flow schematics. This enables
the design and exploration of Comms systems at the algorithmic level and in the time
domain with inclusion of RF systems defined in the frequency domain.

 Requirements
The use of Spectrasys designs in Data Flow schematics requires licenses. The licensing
simply requires that the W1719 RF Design Kit be enabled. The feature name
"sv_rfdesign_kit" can be viewed in the license preference tool as described below:

From the About SystemVue look for "RF Design Kit"

From the License Preference tool, either look for the "RF Design Kit" feature in a
bundle

Or look directly for the feature itself

 Quick Start Guide
The use of Spectrasys designs in Data Flow schematics is achieved by first selecting (left
mouse clicking) a Spectrasys design in the Workspace Tree and then dragging and
dropping it into a Data Flow schematic.

When this is done, a Data Flow RF_Link (algorithm) part (from the Algorithm Design
library, Analog/RF category) appears in the Data Flow schematic and represents the
Spectrasys design. This part has one input port and one output port.

The RF_Link part is automatically setup with its Schematic set to the name of the
Spectrasys design, its Input Part set to one of the available sources/inputs (if more than
one exist the desired one can be selected in the drop down box) and its Output Part to
one of the outputs (if more than one exist the desired one can be selected in the drop
down box). For designs with only one input and one output there is nothing more that
needs to be setup other than optionally enabling the noise analysis (check the Enable
Noise checkbox) and setting the noise temperature.

SystemVue - Simulation

95

With this minimal setup, the RF_Link part is ready for use by a Data Flow analysis. When
run in a Data Flow analysis, it automatically extracts from the Spectrasys design the
frequency domain data associated with the path starting at Input Part and ending at
Output Part. It uses a sophisticated and automated behavioral modeling process that
provides a high fidelity time domain representation of the Spectrasys RF system design
defined by its extracted frequency domain data.

See the RF_Link (algorithm) model documentation for details on all of its parameters.

 Understanding Spectrasys design use in Data Flow
To use a Spectrasys design in a Data Flow schematic (via the RF_Link), an array of
frequency domain data is extracted from the Spectrasys design for the path defined from
Input Part to Output Part and converted to its time domain representation for use in
the Data Flow simulation.

This process is achieved by automatically reviewing the complete path in the Spectrasys
design from Input Part to Output Part to identify where every nonlinearity exists. All
mixers are defined as nonlinearities. The full path is simulated at each analysis frequency
in the frequency domain such that all impedance mismatches are included, all signal
reverse transmissions are included, all harmonic and intermodulation products produced
by the nonlinearities and mixers are included in defining the characteristics for each
nonlinearity, and the small signal noise density is obtain using a full noise wave analysis of
the design. The full path is then divided into RF sections that end at every nonlinearity and
mixer. Each RF section is modeled in the time domain with Data Flow models that include
an FIR filter, additive noise density (if the Enable Noise checkbox is checked), nonlinear
amplifier (if the RF section includes a nonlinearity) and mixer with oscillator LO signal (if
the RF section ends with a mixer).

For example, consider this Spectrasys design with all nonlinearity and RF sections
highlighted.

This specific design is characterized as 4 RF sections and automatically represented with
this Data Flow equivalent:

As can be seen from the above figures, the automatic conversion from the frequency
domain Spectrasys design to its time domain equivalent is "correct by construction" with
proper positioning of linear filtering, additive thermal noise, nonlinearities and up or down
converting mixers. The time domain equivalent is assured to have time causality. Thus, if
a frequency domain characteristic is not time causal, such as a frequency domain
characteristic with zero phase shift at all frequencies, it will have an appropriate amount of
time delay applied to force it to be causal.

Each RF section is replaced with one or more of these Data Flow models:

CustomFIR (algorithm) used to define the RF section small signal gain and phase
response versus frequency.
AddNDensity (algorithm) used to define the RF section thermal noise density
characteristic versus frequency.

SystemVue - Simulation

96

Amplifier (algorithm) used to define the RF section nonlinearity gain and phase
change from small signal condition versus power.
Mixer (algorithm) and Oscillator (algorithm) used to define the RF section frequency
conversion characteristic for upconversion or downconversion.

A Spectrasys design can have any number of input ports and output ports. However, its
use in a Data Flow schematic (via RF_Link) is restricted to one specific path starting at a
MultiSource (rfdesign) or Input (rfdesign) part and ending at an Output Port (rfdesign)
part. The characterization of the path takes into account the full Spectrasys design
characteristics. Thus, the Data Flow equivalent replacement for the Spectrasys design
path has the highest fidelity in its time domain representation.

The Data Flow input to RF_Link must be a complex envelope signal (sim) with a non-zero
characterization frequency. This signal is typically defined by use of an Oscillator
(algorithm), Modulator (algorithm) or CxToEnv (algorithm) model.

However, RF_Link supports mixer conversions to DC (0 Hz) and output baseband signals.
Thus, ZIF (zero-IF) downconverter applications are supported. This includes any non-ideal
isolation from LO to mixer input and mixer input to LO, which results in downconverter
spectral products at 0 Hz.

By default, RF_Link characterizes the Spectrasys design path over a set of input
frequencies in the range [Fc - SR/2, Fc + SR/2] where:

Fc = the input signal complex envelope characterization frequency.
SR = the input signal simulation sample rate.

This input frequency range is divided into 101 equi-distant frequency points. This input
frequency range is automatically converted within the Spectrasys design to the
appropriate frequency range resulting from frequency conversions through mixers.

Alternatively, RF_Link allows the user to specify their preferred frequency range by
unchecking the Use Automatic Frequency Sweep checkbox. See the RF_Link
(algorithm) model documentation for more details.

To enable thermal noise, check the Enable Noise checkbox. When this checkbox is
checked, the Spectrasys design characterization will include thermal noise from all parts
that generate thermal noise. This includes thermal noise from passive parts and noise due
to noise figure from active parts. However, thermal noise from the source model
associated with the Input Part is not included. The RF_Link input noise is presumed to be
already included in the input Data Flow signal. The noise analysis is performed over the
same frequency range defined above. The system temperature can be changed by the
user.

 Limitations
Use of Spectrasys designs in Data Flow schematics has certain limitations. These
limitations include:

The path from Input Part to Output Part must not include any parts from the RF1.
Design library that provide frequency multiplication, frequency division, or analog to
digital conversion. These parts include FREQ_MULT (rfdesign), FREQ_DIV (rfdesign),
DIG_DIV (rfdesign) and ADC_BASIC (rfdesign).
The Doubled Balanced MIXER_DBAL (rfdesign) and Table Mixer MIXER_TBL (rfdesign)2.
models are not currently supported.
Phase noise from the Spectrasys design is ignored.3.
The IR (Image Rejection) parameter for mixers in the Spectrasys design is ignored.4.
Interfering signals in Spectrasys that fall in the channel are currently ignored.5.
However, the compression levels of non linear devices in Spectrasys will be affected
by these other interfering signals. For example if two tones were introduced in
Spectrasys the two tones would determine compression points of non linear devices
however the 3rd order intermod created by these two tones is currently being
ignored even if it falls within the channel.

SystemVue - Simulation

97

 Advanced Spectrasys
 Cascaded Noise Analysis
Cascaded noise figure is an important figure of merit especially for receiver design.
Traditional cascaded noise figure equations are not used in Spectrasys. A more elaborate
technique is used to include the effects of frequency, impedances or VSWR, bandwidth,
image frequencies, and multiple paths in cascaded noise measurements.

NOTE: Because traditional cascaded noise figure equations are not used in the Spectrasys a new
formulation to calculate noise figure was developed. This formulation relies on the cascaded gain (sim)
measurement to accurately determine the cascaded noise figure (sim). The cascaded gain measurement
requires a signal to be present in the channel for this measurement to be made. Only noise or intermods
in the channel are insufficient.

In general, no adjustments in the noise set up is need to obtain accurate noise analysis.
There are a few cases where noise accuracy can be improved:

Signal bandwidths are as wide or wider than the narrowest filter bandwidths in the
simulation

Traditional cascaded noise figure equations assume NO bandwidth and that the
cascaded noise figure is ONLY valid at a single frequency where noise factor and
gain values are taken. In practice bandwidths must be considered. Rarely, do
impedances remain constant across a channel especially when any type of filter
is involved. Consequently, channel signal and noise power may not be constant
across a channel. When using wide channel bandwidths relative to narrow filter
bandwidths channel noise power may appear to decrease through a cascaded.
This is due to bandwidth reduction. Furthermore, power levels due to channel
integration can be less accurate if only a few points are used to represent either
the signal or noise through a device whose impedances vary across the channel.
For more information see additional data points (sim).
As can be seen in the following figure a wideband signal is defined to be slightly
larger than the narrowest filter bandwidth. If only 2 points are used to represent
the signal then the channel power will only be as accurate as those 2 points. If
additional data points are add to the signal a better representation of the signal
and noise will be achieved. Remember, cascaded noise figure is not only
dependent on the channel noise power but also on the cascaded gain.

More accurate noise pedestals would like to be seen on spectrum plots:
By default Spectrasys uses a very small number of noise points to represent the
entire noise spectrum. The following figure shows what noise would look like in
was only represented by 4 points. These 4 noise points are evenly spaced
between 0 and 500 MHz (0, 166.67, 333.33, and 500 MHz). You see additional
noise points around 250 MHz because of smart noise points insertion which is
discussed later. The number of noise points can be changed in 2 ways: 1)
adding more evenly spaced noise points across the entire noise spectrum and/or
2) adding more evenly spaced noise points around a user specified bandwidth of
desired frequencies.

Adding 15 noise points across a 100 MHz bandwidth around the desired signal of

SystemVue - Simulation

98

250 MHz show a more accurate representation of the filter noise pedestal.
NOTE: Improving the noise spectral shape will generally not improve the
accuracy of cascaded noise measurements unless wide measurements are used
in systems with narrow filters.

Smart Noise Point Insertion
Another great benefit of the SPARCA simulation technique is that we know which
spectrums are desired and which are not. Having this knowledge noise points
can be added at the correct frequencies to ensure noise data is collected at the
frequency of interest. Adding these noise points to the simulation is called
'Smart Noise Point Insertion'. Without this technique noise simulation through
filters would assuredly fail as shown in the figure using 4 noise simulation
points. This technique is crucial for all frequency translation models such as
mixers, multipliers, and dividers.

Noise Point Removal
As more and more noise points are added to the simulation the simulation will
become slower and slower. For this reason noise points that add no value are
automatically removed from the spectrum.

NOTE: The 'Calculate Noise (sim)' option must be enabled before noise figure measurements
will be added to the path dataset.

 Cascaded Noise Figure Equations
The traditional cascade noise equation is as follows:
F cascade = F 1 + (F 2 - 1) / G 1 + (F 3 - 1)/(G 1 G 2) + ... + (F n - 1)/(G 1 G 2...G n-1)

where F n is the noise factor of stage n and G n is the linear gain of stage n

Note: This equation contains no information about:

frequency
impedances or VSWR (see Two Port Amplifier Noise (sim))
bandwidth
image frequencies
gain compression
phase noise
or multiple paths

These limitations are very restrictive and lead to additional design spins. For these
reasons traditional cascaded noise figure equations are NOT used in Spectrasys.

The SPARCA (Spectral Propagation and Root Cause Analysis) technique used in Spectrasys
does not suffer from these restrictive assumptions. Occasionally users are troubled if
Spectrasys simulations give different answers than the traditional approach. Using
Spectrasys under the same assumptions as the traditional approach will always yield
identical answers. To use Spectrasys under the same assumptions only frequency
independent blocks like attenuators and amplifiers must be used. Even so, amplifiers must
be used as linear devices with infinite reverse isolation. Filters cannot be used since their
impedance varies with frequency. Mixers cannot be used since noise from the image band
will be converted into the mixer output. Only 2 port devices must be used because of the
single path assumption. Of course the bandwidth must also be very narrow.

A more general formulation is used which will include all the effects of frequency, VSWR,
bandwidth, images, and multiple paths and will reduce to the traditional case under
traditional assumptions.

The general formulation is:
Cascaded Noise Figure[n] = Channel Noise Power[n] + Phase Noise Channel Power[n] -
Channel Noise Power[0] - Cascaded Gain[n] (dB), where n = stage number
Cascaded Gain[n] = Desired Channel Power[n] - Desired Channel Power[0] (dB)

Basically, the way to look at this is the cascaded noise figure is equivalent to the noise
power added between the first and last stage minus the cascaded gain. Channel noise
power includes the amplified noise as well as the noise added by each model. Therefore,
cascaded gain must be subtracted to get just the noise added by the system.

 Coherency
Since all signals in Spectrasys are treated on a individual basis so must coherency for
each of the spectrums created during the simulation. Coherent signals will add in voltage
and phase, whereas non-coherent signals will add in power. For example, if two coherent
voltages had the same amplitude and phase the resulting power would be 6 dB higher. If
they were exactly 180 degrees out of phase having the same amplitude the two signals
would cancel each other. If the two signals where non-coherent then the power would only
increase by 3 dB irrespective of the phase.

SystemVue - Simulation

99

Some of the coherency of Spectrasys can be controlled by the user. The user can
determine whether intermods and harmonics add coherently and whether mixer output
signals consider the LO signal when determining coherency. See the 'Calculate Tab (sim)'
of the System Simulation Dialog Box for more information on this setting.

 How it Works

When a new spectrum is created a coherency number is assigned to each spectrum. These
coherency numbers are used to group spectrums together to determine what the resulting
total spectrum is after a coherent addition. Coherent additions are especially important at
the input to non-linear devices since the total spectrum from coherent signals will yield a
different power than individual spectrums. This total power is needed to correctly
determine the operating point of the non-linear devices. The coherency number can be
viewed by the user when examining the spectrum identification.

The coherency number of a new spectrum will use an existing coherency number if the
two spectrums are coherent. Several rules are followed to determine if a newly created
spectrum is coherent with an existing spectrum.

All of these rules must be followed before any two signals can be considered coherent:

NOTE: If the 'Coherent Addition' option is unchecked then all intermods and harmonics will always be
non-coherent and well as any mixed products out of a mixer regardless of the following comments.

Each source is only coherent with itself OR if the sources have the same1.
reference clock. When no reference clock is specified for the source only signals
created from this source will be coherent assuming the other coherency constraints
are met. When multiple sources have the same reference clock name and the other
coherency constraints are met their signals are considered to be coherent.
Signals must be of the same type. Signals generally have the following2.
categories: Source, Intermod, Harmonic, and Thermal Noise. Coherent signals only
apply to the same category of signals. For example, a source spectrum can never be
coherent with an intermod spectrum and vice versa. A source spectrum can be
coherent with source spectrum and intermod spectrum can be coherent with
intermod spectrum, etc. Coherency of phase noise is determined by the coherency of
the phase noise parent spectrum. If the two parent spectrums that have phase noise
are coherent then the phase noises themselves are coherent.
Signals must have the same center frequency and bandwidth. All coherent3.
signals must have the same center frequency and bandwidth. For example, a 2nd
harmonic cannot be coherent with a 3rd harmonic since both the center frequency
and bandwidths are not the same. However, if we had a cascade of two amplifiers
then the 2nd harmonic generated in 1st amplifier would be coherent with the 2nd
harmonic generated in the 2nd amplifier from the same signal source. In this case
both the center frequency and bandwidth are the same with both harmonics being
created from the same signal source.
Must have the same LO source (mixers only). When a new spectrum is created4.
at the output of a mixer Spectrasys will determine the coherency of the mixer input
signal as well as the LO signal. A new coherency number will be assigned for unique
input and LO signals. If there is more than one mixer in the simulation then
coherency numbers for the second mixer may come from the first mixer if the all of
the above rules are met for the input signal as well as the LO signal. A good example
of this is an image reject mixer. A single input port is split 2 ways that drive the input
to 2 mixers. A single LO signal is also split 2 ways and phase shifted before being
applied to the mixer LO ports. The mixer outputs are combined back together to form
the image reject mixer output. Since both mixers have the same input source as well
as LO source then all signals that have the same type, frequency, and bandwidth will
have the same coherency number.

NOTE: The coherency number is displayed in the spectrum identification information. This will aid
the user in understanding their circuit operation as well debugging any problems. See the
'Spectrum Identification' section for more information.

NOTE: Phase noise uses the coherency of its parent signal spectrum.

 Coherent vs. Non Coherent Addition

"Coherent addition is more conservative than non coherent addition, i.e., the coherent
assumption indicated a less linear system than the non coherent equations indicated. In a
worst-case scenario, coherent addition should be used."

"When designing low-noise receiving systems, it was found that well-designed cascades
usually behave as though the distortion products are adding up non coherently. For the
most part, these system have achieved the equivalent of non coherent summation plus
one or two dB. With wide-band systems, the cascaded SOI [Second Order Intercept] or
TOI [Third Order Intercept] will stay at non coherent levels over most of the frequency
range of the system. However, over narrow frequency ranges, the SOI and TOI will
increase to coherent summation levels."

"In a well-designed system (where the equivalent intercept points of all the devices are
equal), the difference between coherent and non-coherent summation is 4 to 5 dB. When
designing a system, it is best to calculate the numbers for both the coherent and non
coherent cases to assess the variation likely to be expected over time and frequency."
(McClanning, Kevin and Vito, Tom, Radio Receiver Design . Noble Publishing, 2000)

 Comparing Coherency with Harmonic Balance

Harmonic balance is a well established nonlinear circuit simulation technique. Signals used
it this technique have no bandwidth and all spectrums are of the same type. In harmonic
balance it is assumed that two spectrums having the same frequency by definition are
coherent.

 Coherency and SPARCA

One of the great advantages of SPARCA is that not only is the coherent total spectrum
available (which is the only type of spectrum available in harmonic balance) to the user
but so are the individual spectrums that make it up. This aids the user in understanding
how the design is behaving and is also a great help during the architecture debugging
process.

SystemVue - Simulation

100

 Single Sideband to AM and PM Decomposition
This section will help the user understand how single sideband (SSB) signals are
decomposed into AM and PM components. In Spectrasys, non linear devices like digital
dividers, frequency multipliers, and frequency dividers will treat all input spectrums other
than the peak as single sideband input spectrum which can be decomposed into its AM
and PM counterparts. These AM and PM counterparts are then processed as well as the
peak spectrum by the non linear part. Please refer to chapter 3 'Modulation, Sidebands,
and Noise Spectrums' in William F. Egan's book Frequency Synthesis by Phase Lock, 2nd
Ed 1 for more information.

The above illustration shows how the -50 dBm SSB signal located at 1.2 MHz is
decomposed into its AM and PM counterparts. The AM sidebands will drop in power by 6
dB and both have the same phase. Whereas the PM sidebands will also drop in power by 6
dB but the lower sideband will be 180 degrees out of phase with the lower sideband in the
AM spectrum. When the AM and PM spectrums are added together the lower sidebands
cancel out and the -56 dBm upper sidebands add coherently to yield the single upper
sideband of -50 dBm.

 Single Sideband Decomposition Identification

Offset spectral components generated in frequency multipliers and dividers can be broken
down and identified at the output.

In the following graph the main input to a frequency doubler is identified as a 100 MHz
source spectrum labeld 'Source'. A single interfering signal at 90 MHz is also present and
is labeled 'Inter'.

At the output of the doubler the offset spectrum created around the desired 2nd harmonic
can be seen. The identification information for the SSB offset spectrum has the format:

SSBtoPM(Carrier Side, Harmonic x Spectrum ID for Peak Input Signal : Spectrum
ID for Offset Signal)

Carrier Side - This will either be a L or a U standing for Lower or Upper side of the
parent harmonic.
Harmonic - This is the multiplication / division factor of the device. i.e '2' for a
doubler.
Spectrum ID for Peak Input Signal - This is the identification string for the peak
input signal to the multiplier / divider.
Spectrum ID for Offset Signal - This is the identification string for the offset
spectrum at the input that created the resulting output offset spectrum.

 Digital Dividers, Frequency Multipliers and Dividers

Since digital dividers, frequency multipliers and dividers operate in the hard limiting
region, the decomposed AM spectrum is not accounted for, leaving only the PM spectrum.
Every input spectrum other than the peak spectrum is treated as a SSB component. There
may be multiple SSB components along with the peak input spectrum driving one of these
devices. Each SSB component is decomposed into its AM and PM counterparts.
Consequently, each harmonic output signal will contain all of the decomposed PM
components. Obviously, without filtering between multiplier and dividers stages the
number of spectrums grows rapidly due to the multiplication and SSB to AM and PM
decomposition. If input SSB spectrum are within 10 dB of the peak input spectrum a

SystemVue - Simulation

101

warning is given to the user indicating that the decomposition may not be accurate.

The PM component will change in amplitude according to 20 Log(N) where N is the
multiplication ratio. For a divider N = M / D where M is the harmonic of the divider output
and D is the division ratio. For example, in the multiplier output PM spectrum was -56
dBm as shown above before multiplication the 2nd harmonic PM spectrum would be 6 dB
higher (-56 dBm + 20Log(2)) or -50 dBm. Likewise the 4th harmonic PM spectrum would
be -44 dBm (-56 dBm + 20Log(4)). For a divide by 2 device the divide by 2 PM spectrum
would be -62 dBm (-56 dBm + 20Log(1/2)) and the 4th harmonic to the divide by 2
device would have PM spectrum at -50 dBm (-56 dBm + 20Log(4/2)).

The following figures and input and output spectrum from a digital divider whose division
ratio is 2 and the output power is +5 dBm.

William F. Egan (2000), "Frequency Synthesis by Phase Lock", 2nd Ed., John Wiley &1.
Sons, pp. 71-78s

 Behavioral Phase Noise
The SPARCA engine supports behavioral phase noise. Phase noise can be specified on
certain source and oscillator models. Phase noise is an independent type of spectrum and
as such measurements can operate on this spectrum in the presence of others spectrums
of different types. This independence allows phase noise to be modified through mixers,
multipliers, and dividers without affecting the parent spectrum. This is illustrated in the
figure below where the signal spectrum type is shown in one color and the phase noise in
another.

Note
Phase noise must be enabled on the 'Calculate (sim)' tab of the system analysis AND enabled on the
source model.

SystemVue - Simulation

102

 Phase Noise Specification

Phase noise is specified by two lists.

A list of frequency offsets
A list of power levels in dBc/Hz

Phase noise can also be specified single or double sided. If double sided negative offset
frequencies must be used.

Note
There must be the same number of entries in both frequency and amplitudes lists. If not a warning will be
issued and the lists will be truncated to the smaller of the two lists.

The following example shows the single sided specification of an oscillator. In this
example, phase noise is specified for -70, -90, -100, -105, and -110 dBc/Hz for the
respective offset frequencies of 1, 10, 100, 1000, 10000 kHz. The carrier center frequency
is 1530 MHz.

The list data does not need to occur in ascending frequency order, though this is a more
readable format. However, the first frequency entry will be associated with the first phase
noise power level entry, the 2nd frequency entry with the 2nd phase noise power level
entry, etc.

 Enabling Phase Noise

Phase noise must be enabled in two places before phase noise spectrums will propagate
through the analysis.

In the source itself (see the phase noise enable parameter)
In the system analysis (sim) dialog

 Phase Noise Simulation

Each phase noise spectrum is associated with a parent signal spectrum. The phase noise
goes through the same transfer function as its parent. Through all linear models the phase
noise will be transformed as is the signal spectrum. Through nonlinear models the phase
noise may remain the same, increase, or decrease in amplitude relative to its parent
spectrum. For example, through a frequency doubler the phase noise will increase 6 dB
relative to its parent spectrum.

Phase noise is also processed by the mixer. Mixed output spectrum is a combination of the
input and LO spectrum phase noise.

 Phase Noise Coherency

The coherency of the phase noise is the same as the coherency of the parent spectrum.

 Viewing Phase Noise Data

In a graph the phase noise can either be displayed in dBm/Hz or scaled by the channel
measurement bandwidth. When the mouse is placed over the phase noise the tool tip
information will show any bandwidth scaling that should be applied to the phase noise
spectrum. See the 'Composite Spectrum Tab (sim)' tab of the dialog box reference for
additional information.

SystemVue - Simulation

103

The absolute frequency point along with its power is displayed. The phase noise power at
the carrier frequency is displayed in dBc/Hz. The bandwidth scaling factor is also
displayed. The last line shows the spectrum coherency number in braces then the phase
noise equation in square brackets followed by the path that the phase noise took to get to
the view destination.

The phase noise in path measurements are always scaled to the appropriate bandwidth
before the results are used.

 Spectrum Analyzer Display
The spectrum analyzer mode is a display tool to help the user visualize what the
simulation would like on a spectrum analyzer. This mode is extremely useful when out of
phase signals may cause the total spectrum to cancel.

NOTE: This mode is NOT used for any path measurement data and is for display purposes only. The
parameters used in this mode have NO bearing on the accuracy of the real simulation results.

The spectrum analyzer mode performs a convolution of a 5 pole gaussian filter on the
total spectrum trace. A gaussian filter is used because this is the type of filter used in real
spectrum analyzers.

The challenges associated with convolving the spectrum is as follows.

Because of broadband noise frequencies can literally go from DC to daylight
Frequencies are not evenly spaced
Spectrums generally appear in groups with larges spacing between groups

Because of practical issues associated with performing a convolution several parameters
have been added to this mode to decrease the simulation time and restrict the amount of
collected data.

 Filter Shape

The user can use a brick wall filter or the traditional spectrum analyzer gaussian filter. The
variations in gaussian filters are used to determine frequency at which the convolution will
begin and end. These values are specified in terms of channel bandwidths. Obviously, the
wider the filter end frequency is the longer the simulation time will be and the more data
will be collected. The amplitude range of the filter that is associated with the given end
frequency is also given for convenience.

The analyzer modes settings are found on the 'Composite Spectrum' tab of the system
analysis.

 Analyzer Simulation Process

The analyzer goes through the following steps before the analyzer trace is ready to display
in a graph.

The total spectrum trace for the path is created.1.
This spectrum is broken down into bands to find groups of spectrums. Each group will2.
have guard bands equivalent to the stop band of the selected filter.
Before the convolution occurs the group must be discretized. Since some spectrums3.
have bandwidths as small as 1 Hz they can be completely ignored during a standard
discretization process. To eliminate skipped spectrums the discretization process will
keep track of peak spectrum values that may fall in between discretization points.
This process guarantees that peaks will not be missed.
The analyzer noise floor will be added.4.
The discretized spectrum will be convolved with the gaussian filter.5.
Noise randomization is added.6.
Analyzer spectrum will be displayed on a graph.7.

NOTE: Noise floor spectrums between spectrum groups is not shown in the spectrum analyzer
mode.

 Frequency Limits

Frequency limits have been added as a simulation speedup. There is a lot of data and
simulation time required for the analyzer mode especially as the frequency ranges become
very large. The users can specify a frequency band of interest to apply the spectrum
analyzer mode to. These settings require a start, stop, and step frequency. The step
frequency can be set within a given range. Warnings will be given to the user if the step
size becomes so small that maximum number of analyzer simulation points are exceeded.
On the other end of the range, a warning will also be given if the step size becomes so
large that the accuracy has been compromised. In these cases the analyzer will select a
good default.

 Example

The following figure shows a good example of the spectrum analyzer mode. This plot is
taken from an 'Image Rejection Mixer' example where 2 signals at 70 MHz add coherently
to give an increase of 6 dB and where 2 signals at 100 MHz are 180 degrees out of phase
and thus cancel. Using the spectrum analyzer mode we quickly see the peak at 70 MHz
and even though we see the individual spectrums at 100 MHz we know their total must be
equivalent to or lower than the noise floor. Random noise is also shown in the example.

SystemVue - Simulation

104

 Synthesis
Some behavioral models can directly synthesized from Spectrasys. Right clicking on the
behavioral model will bring a context sensitive menu. This menu will list the synthesis
modules available for the given model.

The selected synthesis module will be invoked and the parameters of the behavioral model
will be passed to this synthesis module as shown below.

Once the model has been synthesized the synthesized circuit is substituted back into the
behavioral model.

At this point the parameters for the behavioral model will be disabled.

SystemVue - Simulation

105

See the specific Direct Synthesis from Spectrasys section for more information about
each synthesis tool.

 Directional Energy (Node Voltage and Power)
When three or more connections occur at a node a convention must be established in
order to make sense of the information along path.

NOTE: The path value reported for a node along a path that has more than three or more parts is the
value seen by the series part in the path entering the node.

For example, in the following example we have defined two paths 'Path1_2' which is the
path from node 1 to node 2 and 'Path3_2' which is the path from node 3 to node 2. On a
level diagram or in a table the value reported at node 5 for 'Path1_2' would be the value
of the measurement leaving terminal 2 of the resistor R1 entering node 5. Likewise, the
impedance seen along this path is that seen looking from terminal 2 of the resistor R1 into
node 5. Consequently, the impedance seen by R1 is the L1 to port 3 network in parallel
with the C1 to port 2 network. In a similar manner the value reported at node 5 for the
'Path3_2' would be the value of the measurement leaving terminal 2 of inductor L1
entering node 5. The impedance for the node looking from terminal 2 of inductor L1 is
most likely to be completely different from the impedance seen by R1 or even C1 because
from the inductors perspective, the R1 to port 1 network is in parallel with the C1 to port
2 network.

Spectrasys knows about the direction of all of the paths and will determine the correct
impedance looking along that path. As a result all measurements contain the correct
values as seen looking along the path of interest.

Remember, absolute node impedance and resulting measurements based on that
impedance don't make any sense since they are totally dependent on the which direction
is taken through the node.

 Transmitted Energy
When an incident propagating wave strikes a boundary of changing impedances a
transmitted and reflected wave is created. Obviously, the transmitted wave is only the
energy of the wave flowing in the forward direction. The SPARCA (sim) engine calculates
the transmitted wave ONLY from the incident wave. This transmitted energy is what is
used for all path measurements.

See 'No Attenuation Across a Filter' for an illustration of this principle.

 Circuit Co-Simulation
Improved accuracy can be achieved if specific circuit implementations are known for any
given system or behavioral model. SPARCA (sim) is a dedicated RF architectural / system
simulation engine that is used by Spectrasys.

 Linear Circuit

The SPARCA (sim) simulation technique is tightly coupled with linear simulation. Linear

file:/pages/createpage.action?spaceKey=sv201001&title=Direct+Synthesis+from+Spectrasys&linkCreation=true&fromPageId=96375782
file:/pages/createpage.action?spaceKey=sv201001&title=Direct+Synthesis+from+Spectrasys&linkCreation=true&fromPageId=96375782

SystemVue - Simulation

106

lineup works well. However, when tight linear loops are created accuracy will begin to
decrease. When sub-circuits are create strictly out of linear components the linear
simulator runs on this sub-circuit and feeds this information to Spectrasys to be used in its
simulation.

 Linear Co-Simulation

Spectrasys automatically co-simulates with linear components such as resistors,
capacitors, inductors, transmission lines, etc.

Linear circuits that don't have internal loops can co-simulate directly with the Spectrasys
SPARCA (sim) engine. A good example is the following circuit.

However, a circuit that has a tight loop as shown will reduce the accuracy and slow the
simulation speed if this circuit is run at the same hierarchy level as Spectrasys.

Note
Any type of linear circuits can be placed in a sub-circuit. When in a sub-circuit the linear simulator is called
and the number of spectrums needed to represent the linear response is drastically reduced and the
simulation speed will be increased.

Caution
When a Spectrasys behavioral model is found in a schematic with linear parts the Spectrasys simulation
engine will run on that schematic. Isolation between Spectrasys and linear analysis is achieved by keeping
Spectrasys behavioral models out of linear schematics.

 Linear Co-Simulation Use Model

Linear co-simulation is automatic when linear components are placed in a sub-circuit. The
steps are as follows:

Add a new sub-circuit schematic (design).1.
Place the linear components and ports in the sub-circuit.2.
Drag the sub-circuit schematic from the workspace window onto the schematic of3.
interest.

 Non-Linear Circuit

The SPARCA (sim) technique is not appropriate for non-linear circuit simulation. Harmonic
Balance is a proven non-linear simulation technique that works very well for non-linear
circuits. Harmonic balance is a frequency domain analysis technique for simulating
distortion is nonlinear circuits. Harmonic balance simulation obtains frequency-domain
voltages and currents, directly calculating the steady-state spectral content of voltages or
currents in the circuit.

Caution
In SystemVue the only non-linear circuit component allowed for co-simulation is the X-parameters model.
For complete non-linear circuit simulation the user can use Spectrasys within the Genesys environment.

 Non-Linear Co-Simulation

Non-linear simulation uses a harmonic balance simulation technique that is not used by
linear simulation. Harmonic balance simulation terminates once a predetermined level of
convergence is achieved. For this reason non-linear simulation has additional convergence
parameters not needed for a linear simulation. Linear aspects of non-linear models can
generally simulate in a linear simulator.

 Non-Linear Co-Simulation Use Model

A Circuit Link part is used to point to a non-linear circuit. The Circuit Link part has some
basic parameters needed by the harmonic balance simulation engine that it uses. The
easiest way to create a non-linear co-simulation is as follows:

Add a new sub-circuit schematic (design).1.
Place the linear, non-linear components and ports in the sub-circuit.2.
Drag the sub-circuit schematic from the workspace window onto the schematic of3.
interest. When non-linear circuit components are are detected in a sub-circuit that is
being dragged and dropped onto another schematic the user will be prompted if they
want to create a Circuit Link part for this sub-circuit. When prompted to create a
Circuit Link part say Yes.
A Circuit Link part will be created and the schematic that it will simulate is the one4.
used during the drag and drop operation. When this schematic is set in the Circuit
Link part the number of external ports is auto detected.

 Signal spectrum differences between Harmonic Balance and Spectrasys

In harmonic balance their is no signal bandwidth, voltage and currents exist at a point. In
Spectrasys every spectrum has bandwidth. By definition a CW has a 1 Hz bandwidth.

During co-simulation the average power of Spectrasys sources will be used as sources for
the harmonic balance co-simulation. Obviously, harmonic balance will ignore Spectrasys
sources bandwidths.

Note
When harmonic balance finishes the co-simulation and hands it's calculated spectrum back to Spectrasys
the original bandwidth information contained by Spectrasys will lost.

 Coherency differences between Harmonic Balance and Spectrasys

SystemVue - Simulation

107

In harmonic balance by definition all spectral components at the same frequency are all
phase coherent with each other. In Spectrasys there are several rules that govern
coherency and users have control over source coherency. See the Coherency section for
more information on Spectrasys coherency.

The best way to think of this is to imagine two signal generators on a lab bench and
combined together. If both generators are set at the same carrier frequency, power, level,
and phase these two carriers will be non-coherent since the signal generators are not
locked to the same phase reference and will have random phases compared to each
other. Once the generators are phase locked together by using a common reference
clock (oscillator) these two carriers become phase coherent. When phase coherent the
output power increases by 6 dB (assuming both carriers have the same phase and
amplitude) and when non-coherent only by 3 dB.

In the signal generator example harmonic balance is equivalent to always have the
reference clock connected. In Spectrasys by default the reference clock is not
connected, however reference clocks can be added to Spectrasys sources. Furthermore,
multiple reference clocks are supported in Spectrasys.

Before Spectrasys hands off source spectrum to a harmonic balance co-simulation it will
combine all the spectrum at the same frequency both coherently and non-coherently and
determine a single source voltage for that harmonic balance source frequency.

 Non-Linear Circuit Simulation Background

 Basic Concepts of Harmonic Balance

In harmonic balance the circuit to be simulated is first separated into linear and non-linear
parts. The internal impedances Zi of the voltage sources are associated with the linear
parts. Admittance (Y) matrices are used for the linear part to determine the voltages (V1
... Vn) and currents (I1 ... In) for all the linear / non-linear interface nodes (1 ... n) due to
all the sources (Vs1 ... Vsm). For the non-linear part currents are modeled as a function
of charge. When the currents and voltages at the linear / non-linear interface nodes are
balanced, by Kirchhoff's current law for all specified harmonics we have a converged
solution.

 Harmonic Balance Strengths

Harmonic balance is ideally suited as a non-linear, frequency-domain, steady-state circuit
simulation technique.

 Harmonic Balance Limitations

Harmonic balance is limited in that the signal must be quasi-periodic and representable as
a superposition of a number M of discrete tones. As M becomes large, the amount of
required internal memory becomes excessive since the internal matrix size grows as M 2.

 Increasing Simulation Speed
There are several options available to increase the simulation speed of Spectrasys.

Note
For additional understanding of why these parameters affect the speed of the simulation see 'Propagation
Basics'.

 Loops

The larger the gain around a closed loop the longer it will take for spectrums to fall below
the 'Ignore Spectrum Level Below' threshold. Furthermore, more data is collected each
time spectrums are propagated around a loop.

A quick test to verify if this is the problem with the simulation is to increase the isolation
of one of the main parts in the loop to a very high value, like 200 or 300 dB. This will
force loop spectrum to fall below the 'Ignore Spectrum Level Below' threshold.

 Ignore Spectrum

There are 3 Ignore spectrum parameters that affect the simulation speed and the amount
of data collected. They are 1) 'Ignore Spectrum Level Below', 2) 'Ignore Spectrum
Frequency Below', and 3) 'Ignore Spectrum Frequency Above'. These parameters can be
changed to reduce the frequency range and amplitude dynamic range for which the
simulator is collecting and analyzing the data. The biggest speed improvement usually
comes from raising the 'Ignore Spectrum Level Below' threshold.

 Redundant Spectrum Reduction

A significant amount of simulation time can be used in calculating spectrums that don't
affect the overall accuracy of power levels of the spectrums of interest. The calculation of
these spectrums can be eliminated to increase simulation speed. See the Output Tab of
the system analysis dialog box for more information.

SystemVue - Simulation

108

 Tight Loops

The more nodes and parts in a design, the more spectrums that will be created and
propagated. Linear parts formed in tight loops should be moved to a subcircuit and called
from the parent design. If only linear parts exist in the a subcircuit a linear analysis is
used for the subcircuit instead of the spectral propagation engine. If the system simulator
finds a nonlinear behavioral model on the subcircuit the spectral propagation engine will
be used.

For example, a circuit such as the following should be moved to a LINEAR ONLY
subcircuit.

 Intermods

One of the largest time consuming operations in Spectrasys is the calculation of a large
number of intermods. The number of intermods generated is determined by the 'Maximum
Order' of intermods and the number of carriers used to create the intermods. Besides
reducing the maximum intermod order raising the 'Ignore Spectrum Level Below'
threshold will eliminate all intermods below this threshold.

 Spectrum Analyzer Display Mode

During the system simulation an analyzer trace will be created for every node in the
system. Consequently, for systems with large number of nodes the integrated analyzer
traces alone can be time consuming if the analyzer properties are not optimized. The
simulation speed can be reduced by a careful selection of "Analyzer Mode" settings. If
large frequency ranges are integrated with a small resolution bandwidth then the amount
of data collected will be much larger and the simulation speed will decrease. Furthermore,
enabling the 'Randomize Noise' feature may also slow down the simulation. In order to
increase the simulation speed with the 'Analyzer Mode' enabled the user can disable the
'Randomize Noise' feature, increase the 'Resolution Bandwidth', and/or limit the frequency
range over which a spectrum analyzer trace will be created. See the 'Spectrum Analyzer
Display' section for additional information.

 Paths

The more paths contained in the simulation the longer it will take to simulate and the
more data that will be collected. Delete all unnecessary paths.

 Noise

The more noise points that are simulated, generally the longer it takes the simulation to
run. See 'Broadband Noise' and 'Cascaded Noise Analysis' sections for additional
information on controlling noise.

 Mixers

The more LO Signals used or the higher the 'Maximum Order' to create new mixed
spectrum the longer simulation time and more data that will be collected. The number of
LOs used in the simulation can be reduced to increase the simulation speed. The intermod
'Maximum Order' can be decreased to reduce the number of spectrums created.

 Reducing the File Size
Most of the size of a file is due to simulated data.

The file size can be reduce in one of two ways: 1) completely removing the datasets and
2) only keeping the node data of interest.

 Completely Removing Datasets

Closing all graphs and tables (this will keep these items from complaining when they1.
have no data to show).
Deleting all system analysis and path datasets. Be sure to include all those associated2.
with sweeps. NOTE: Be careful not to delete static data like S parameters and other
data that doesn't change during the simulation.
Save the file.3.

For example, if the workspace tree was:

Then the file size could be reduced by deleting:

System1_Data_Path1
System1_Data_Path2

SystemVue - Simulation

109

System1_Data

 Keeping Node Data of Interest

The node data that the simulator retains is controlled on the 'Output Tab' of the system
analysis.

Only checking the devices of interest will reduce the file size.

NOTE: Even though some devices are not checked all data for these devices are calculated during the
simulation. These output options only affect the data being saved to the system analysis dataset.

 System Simulation Parameters - Composite Spectrum
Tab
This page controls how the data is displayed on a graph.

 Spectrum Plot Options

This information only affects the displayed output and not internal calculations. Spectrums
can be displayed in groups or individually.

 Show Totals

Shows a trace representing the total power traveling in each direction of travel through a
node. This total includes all signals, harmonics, intermods, thermal noise, and phase
noise. For example, if three parts were connected at a particular node then power would
be flowing in three different directions. A unique color would represent each trace.

 Show Noise Totals

Shows a trace representing the total noise power traveling in each direction of travel
through a node.

 Show Individual Spectrums

When checked individual spectrums will be displayed otherwise groups will be shown.

Note: Individual spectrum identification information cannot be shown for a group.

When grouping spectrum, all spectrums in the same group are represented by a single
trace.

 Show Individual Signals (Show Signal Group)

Shows a trace for each fundamental signal spectrum or signal group.

 Show Individual Intermods & Harmonics (Show Intermods & Harmonics Group)

Shows a trace for each intermod and harmonic spectrum or intermod and harmonic group.

 Show Individual PhaseNoise (Show PhaseNoise Group)

Shows a trace for each phase noise spectrum or phase noise spectrum group.

 Show in 1 Hz Bandwidth

SystemVue - Simulation

110

When checked shows phase noise in dBm/Hz. When unchecked the phase noise will be
scaled according to the channel measurement bandwidth.

 Show Individual Noise (Show Noise Group)

Shows a trace for each noise spectrum or noise spectrum group.

 Enable Analyzer Mode

This checkbox enables the analyzer mode and its settings. This mode can help the
engineer visualize what the simulated spectrum would look like on a common spectrum
analyzer. The analyzer mode has been added to allow the user to correlate the simulation
data with spectrum analyzer data measured in the lab.

Note: This mode affects only the display and in no way will affect the integrated measurements.

 Resolution Bandwidth (RBW)

The analyzer mode can be thought of just like a spectrum analyzer that has a sweeping
receiver and peak detects the total power within the resolution bandwidth. The user can
specify the resolution bandwidth of this sweeping receiver. The default resolution
bandwidth is the 'Measurement Channel Bandwidth'.

 Filter Shape

This parameter determines the shape of the resolution bandwidth filter. This filter shape is
analogous to the resolution bandwidth filter shape in a spectrum analyzer which uses a 5
pole Gaussian filter. Likewise in the system analysis this same filter is also used. The user
is able to select three widths for this particular filter which are based on an integer
number of channel bandwidths. No spectrum integration will occur outside the width of
this filter. This filter width is used to reduce the amount of data collected, saved, and
processed. A brickwall filter can be created theoretically and is also included.

 Brickwall (Ideal)

This filter is an ideal rectangular filter whose skirts are infinitely steep.

 Gaussian (to -100 dBc, 30 Chan BW)

Data will be ignored that is farther than 30 channels away from the center
frequency. Attenuation 30 channels from the center will be about -100 dBc.

 Gaussian (to -117 dBc, 60 Chan BW)

Data will be ignored that is farther than 60 channels away from the center
frequency. Attenuation 60 channels from the center will be about -117 dBc.

 Gaussian (to -150 dBc, 200 Chan BW)

Data will be ignored that is farther than 200 channels away from the center
frequency. Attenuation 200 channels from the center will be about -150 dBc.

 Randomize Noise

When enabled, random noise will be added around the resulting analyzer sweep. The
output trace will be more representative of a typical spectrum analyzer, at the expense of
additional computation time.

 Add Analyzer Noise

All spectrum analyzers have a limited dynamic range. They are typically limited on the
upper end by intermods and spurious performance at an internal mixer output. On the
lower end they are limited by noise of the analyzer. This noise is a function of the internal
architecture of the specific spectrum analyzer and internal RF attenuator.

 Analyzer Noise Floor

Specifies the noise floor in dBm/Hz of the spectrum analyzer mode.

 Limit Frequencies

When checked the frequency range of the analyzer mode is limited. By default the entire
spectrum from the 'Ignore Spectrum Frequency Below' lower frequency limit to the
highest frequency limit of 'Ignore Spectrum Frequency Above' will be processed by the
analyzer for every node in the system. In some cases this may be very time
consuming. In order to improve the simulation speed and just process the area of interest,
frequency limits can be enabled to restrict the computation range of the analyzer.

 Start

Beginning frequency of the analyzer.

 Stop

Ending frequency of the analyzer.

 Step

This is the frequency step size between analyzer data points. The step size can be reduced
until the maximum number of simulation points is reached.

 Number of Simulation Points

The number of simulation points used for the graph is determined internally within
Spectrasys. This parameter cannot be changed by the user. Since Spectrasys can deal
with large frequency ranges, the amount of data collected for a single spectrum analyzer
trace could be enormous. Furthermore, the analyzer function is not a post processing
function and the number of simulation points cannot be changed without rerunning the

SystemVue - Simulation

111

simulation. In order to better control the amount of data collected, which is proportional to
the simulation time, Spectrasys internally determines the number of simulation points to
use.

 Simulation Speed-Ups

During the system simulation the analyzer will create an analyzer trace for direction of
travel for every node in the system. Consequently, for systems with large number of
nodes, the convolution routines used to calculate the analyzer traces alone can be time
consuming if the analyzer properties are not optimized. If simulation speed is important
then using the narrowest filter shape will have the best simulation speed.

 File Size

The size of the data file will increase when the analyzer mode is enabled. Furthermore,
the file size can grow rapidly depending on the settings of the analyzer mode. For
example, the smaller the resolution bandwidth the more data points are needed to
represent the data, the larger the data file will be, and most likely the simulation time will
increase.

 Analyzer Troubleshooting

What does it mean when the signal doesn't seem to be lined up with the integrated
spectrum? All this means is the frequency resolution isn't small enough to accurately
represent the signal of interest. If this is the case, there are a few things that can be done
to increase this resolution. First, the resolution bandwidth can be reduced. If this is
inadequate, the 'Limit Frequencies' feature should be enabled and the user can specify the
'Start', 'Stop', and 'Step' frequencies used for the analyzer.

SystemVue - Simulation

112

 Troubleshooting
 Cannot Load a C++ Model Library
This can be because of one of the following causes:

S.No Causes Solution

1. A DLL will not be loaded if it does not contain any C++
model in it or none of the models had defined interface
correctly.

Make sure that you are following the
documentation correctly for creating C++
models.

2. The C++ models built with one version of SystemVue are
not guaranteed to work with future/previous versions of
SystemVue.

Rebuild the DLL against the SystemVue
installation that you are using to load the
DLL.

 Spectrasys Measurement Index

 Path Measurements

 Spectrasys General Measurements

Name Description Syntax Spectrum
Type

Equation

ACF Adjacent Channel
Frequency (sim)

ACF(Side, iChanNo) Side: U or L
Upper / Lower iChanNo: any int > 0

None

CF Channel Frequency
(sim)

CF None

DCR Desired Channel
Resistance (sim)

DCR Desired Average resistance at CF

DCPH Desired Channel Phase
(sim)

DCPH Desired Phase of desired CW
signal in the channel

OCF Channel Frequency
(Offset) (sim)

OCF None

 Group Delay (sim)

ICF Interferer Channel
Frequency (sim)

ICF None

IMGF Image Channel
Frequency (sim)

IMGF None

 Spectrasys Power Measurements

Name Description Syntax Spectrum
Type

Equation

ACP Adjacent Channel
Power (sim)

ACP(Side,
iChanNo)

Total Channel power at ACF(Side, Chan No)

AN Added Noise Power
(sim)

AN Same as CNF AN[i] = CNF[i] - CNF[i-1], Where AN[0] = 0 dB

CCOMP Cascaded
Compression Point
(sim)

CCOMP None CCOMP[i] = Summation(COMP[i]) from 1 to i
dB

CGAIN Cascaded Gain
(sim)

cgain(X) Same as X CGAIN[i] = X[i] X[0]

CIMCP Intermod Channel
Power (Conducted)
(sim) (All Orders)

CIMCP Same as TIMP
& DCP

CIMCP[i] = TIMP[i-1] + gain(DCP)[i], Where
CIMCP[0] = -300 dBm

CIMCP2 2 nd Order
Conducted
Intermod Power

cimcpn(
CIMCP, 2)

Same as
CIMCP

CIMCP for 2 nd Order

CIMCP3 3 rd Order
Conducted
Intermod Power

cimcpn(
CIMCP, 3)

Same as
CIMCP

CIMCP for 3 rd Order

CND Channel Noise
Density (sim)

CNP Same as CNP Same as CNP but in a 1 Hz bandwidth

CNDR Carrier to Noise
and Distortion
Ratio (sim)

cndr(DCP,
NDCP)

Same as DCP
& NADP

CNDR[i] = DCP[i] - NDCP[i]

CNF Cascaded Noise
Figure (sim)

cnf(DCP,
CNP, PNCP)

Same as CNP
& PNCP

CNF[i] = CNP[i] + PNCP[i] - CNP[0] -
cgain(DCP)[i]

CNP Channel Noise
Power (sim)

CNP Noise Noise power at CF

CNR Carrier to Noise
Ratio (sim)

cnr(DCP,
CNP)

Same as DCP
& CNP

CNR[i] = DCP[i] - CNP[i]

COMP Compression Point
(sim)

COMP None Calculated compression of each stage

CP Channel Power
(sim)

CP Total Total power at CF

DCP Channel Power
(Desired) (sim)

DCP Desired Desired power at CF

GAIN Power Gain (sim) gain(X) Same as X GAIN[i] = X[i] X[i-1], Where GAIN[0] = 0 dB

GIMCP Intermod Channel
Power (Generated)
(sim) (All Orders)

GIMCP Generated
Intermod

Generated intermod power at CF for all orders

GIMCP2 2 nd Order
Generated
Intermod Power

gimcpn(
GIMCP, 2)

Same as
GIMCP

GIMCP for 2 nd Order

GIMCP3 3 rd Order
Generated
Intermod Power

gimcpn(
GIMCP, 3)

Same as
GIMCP

GIMCP for 3 rd Order

ICGAIN Interferer
Cascaded Gain
(sim)

cgain(ICP) Same as ICP ICGAIN[i] = ICP[i] ICP[0]

ICP Interferer Channel
Power (sim)

ICP Desired Interferer power at ICF

IGAIN Interferer Gain
(sim)

gain(ICP) Same as ICP IGAIN[i] = ICP[i] ICP[i-1], Where IGAIN[0] = 0
dB

IIP Input Intercept
Point (All Orders)
(sim)

iip(OIP,
ICGAIN)

Same as OIP
& ICGAIN

IIP[i] = OIP[i] - ICGAIN[i], where OIP and IIP
contain all orders

IIP2 2 nd Order Input
Intercept Point

iipn(IIP, 2) Same as IIP IIP for 2 nd Order

IIP3 3 rd Order Input iipn(IIP, 3) Same as IIP IIP for 3 rd Order

SystemVue - Simulation

113

Intercept Point

IP1DB Input 1 dB
Compression Point
(sim)

inref(
SIP1DB,
CGAIN)

Same as
CGAIN

1 / IP1dB = 1 / SIP1DB1 + 1 / (SIP1DB2 -
CGAIN[1]) + 1 / (SIP1DB3 - CGAIN[2]) + ... + 1
/ (SIP1DBX - CGAIN[X-1]), where X is the nth
stage dBm

IPSAT Input Saturation
Point (sim)

inref(
SIPSAT,
CGAIN)

Same as
CGAIN

I1 / IPSAT = 1 / SIPSAT1 + 1 / (SIPSAT2 -
CGAIN[1]) + 1 / (SIPSAT3 - CGAIN[2]) + ... + 1
/ (SIPSATX - CGAIN[X-1]), where X is the nth
stage dBm

IMGNP Image Channel
Noise Power (sim)

IMGNP Noise Noise power at IMGF

IMGP Image Channel
Power (sim)

IMGP Total Total power at IMGF

IMGNR Image Channel
Noise Rejection
(sim)

imgnr(CNP,
IMGNP)

Same as CNP
& IMGNP

IMGNR[i] = CNP[i] - IMGNP[i]

IMGR Image Channel
Rejection (sim)

imgr(DCP,
IMGP)

Same as DCP
& IMGP

IMGR[i] = DCP[i] - IMGP[i]

MDS Minimum
Detectable Signal
(sim)

mds(CNP,
CNF)

Same as CNP
& CNF

MDS[i] = CNP[0] + CNF[i]

MML Source Mismatch
Loss (sim)

 Same as DCP Loss due to source and system input impedance
mismatch

NDCP Noise and
Distortion Channel
Power (sim)

ndcp(CNP,
TIMP, PNCP)

Same as
PNCP, CNP, &
TIMP

NDCP[i] = PNCP[i] + CNP[i] + TIMP[i]

OCP Channel Power
(Offset) (sim)

OCP Total Total power at OCF

OIP Output Intercept
Point (sim) (All
Orders)

oip(ICP,
DELTA)

Same as ICP OIP[i] = ICP[i] + Delta[i] / (Order-1) Delta[i] =
ICP[i] TIMCP[i]

OIP2 2 nd Order Output
Intercept Point

oipn(OIP, 2
)

Same as OIP OIP for 2 nd Order

OIP3 3 rd Order Output
Intercept Point

oipn(OIP, 3
)

Same as OIP OIP for 3 rd Order

OP1DB Output 1 dB
Compression Point
(sim)

outref(
SOP1DB,
GAIN)

Same as GAIN 1 / OP1dB = 1 / (SOP1dB1 + Gain2 ... + GainX)
+ 1 / (SOP1dB2 + Gain3 ... + GainX) + ... + 1 /
SOP1dBX dBm, where X is the nth stage

OPSAT Output Saturation
Point (sim)

outref(
SOPSAT,
GAIN)

Same as GAIN 1 / OPSAT = 1 / (SOPSAT1 + Gain2 ... + GainX)
+ 1 / (SOPSAT2 + Gain3 ... + GainX) + ... + 1 /
SOPSATX dBm, where X is the nth stage

PNCP Phase Noise
Channel Power
(sim)

PNCP Phase Noise Phase noise power at CF

PRNF Percent Noise
Figure (sim)

PRNF Same as AN &
CNF

PRNF[i] = AN[i]/CNF[iLastStage]

PRIM Percent Intermods
(sim) (All Orders)

prim(
GIMCP,
ICGAIN,
TIMCP)

Same as
GIMP, CGAIN,
& TIMP

IMREF = GIMCP[i] + (CGAIN[iLastStage] -
CGAIN[i]) PRIM[i] =
IMREF[i]/TIMP[iLastStage](this is a ratio in
Watts), Where PRIM[0] = 0 %

PRIM2 Percent 2 nd Order
Intermods

primn(PRIM,
2)

Same as PRIM See PRIM

PRIM3 Percent 3 rd Order
Intermods

primn(PRIM,
3)

Same as PRIM See PRIM

RX_IIP Input Intercept
Point (Receiver)
(sim) (All Orders)

rx_iip(
RX_OIP,
CGAIN)

Same as
RX_OIP &
CGAIN

RX_IIP[i] = RX_OIP[i] - CGAIN[i], where RX_OIP
and IIP contain all orders

RX_IIP2 Receiver 2 nd

Order Input
Intercept Point

iipn(RX_IIP,
2)

Same as
RX_IIP

RX_IIP for 2 nd Order

RX_IIP3 Receiver 3 rd Order
Input Intercept
Point

iipn(RX_IIP,
3)

Same as
RX_IIP

RX_IIP for 3 rd Order

RX_SFDR Receiver Spurious
Free Dynamic
Range (sim)

RX_SFDR Same as
RX_IIP3 &
MDS

RX_SFDR[i] = 2/3 [RX_IIP3[i] - MDS[i]]

SFDR Spurious Free
Dynamic Range
(sim)

SFDR Same as IIP3
& MDS

SFDR[i] = 2/3 [IIP3[i] - MDS[i]]

SDR Stage Dynamic
Range (sim)

SDR Same as TNP SDR[i] = SOP1DB[i] - TNP[i]

SGAIN Stage Gain (sim) SGAIN None Stage entered value

SIP1DB Stage Input 1 dB
Compression Point
(sim)

sip1db(
SOP1DB,
SGAIN)

Same as
SOP1DB &
SGAIN

SIP1DB[i] = SOP1DB[i] SGAIN[i]

SIIP Stage Input
Intercept Point
(sim) (All Orders)

siip(SOIP,
SGAIN, SZIN,
SZOUT)

Same as SOIP
& SGAIN

SIIP[i] = SOIP[i] SGAIN[i]

SIIP2 Stage 2 nd Order
Input Intercept
Point

sipn(X, 2) None SIIP for 2 nd Order

SIIP3 Stage 3 rd Order
Input Intercept
Point

sipn(X, 3) None SIIP for 3 rd Order

SIPSAT Stage Input
Saturation Point
(sim)

sipsat(
SOPSAT,
SGAIN, SZIN,
SZOUT)

Same as
SOPSAT &
SGAIN

SIPSAT[i] = SOPSAT[i] SGAIN[i]

SNF Stage Noise Figure
(sim)

SNF None Stage entered value

SOP1dB Stage Output 1 dB
Compression Point
(sim)

SOP1dB None Stage entered value

SOIP Stage Output
Intercept Point
(sim) (All Orders)

SOIP None Stage entered value

SOIP2 Stage 2 nd Order
Output Intercept
Point

SOIP2 None Stage entered value

SOIP3 Stage 3 rd Order
Output Intercept
Point

SOIP3 None Stage entered value

SOPSAT Stage Output SOPSAT None Stage entered value

SystemVue - Simulation

114

Saturation Point
(sim)

SZIN Stage Input
Impedance (sim)

SZIN None Stage entered value

SZOUT Stage Output
Impedance (sim)

SZOUT None Stage entered value

TIMCP Intermod Channel
Power (Total) (sim)
(All Orders)

TIMCP Total
Intermod
Order N

Total intermod power for all orders at CF

TIMCP2 Total 2 nd Order
Intermod Channel
Power

timcpn(
TIMCP, 2)

Same as
TIMCP

TIMCP for 2 nd Order

TIMCP3 Total 3 rd Order
Intermod Channel
Power

timcpn(
TIMCP, 3)

Same as
TIMCP

TIMCP for 3 rd Order

TIMP Total Intermod
Power (sim)

TIMP Total
Intermod

Total intermod power at CF

TNP Total Node Power
(sim)

TNP Total Power of entire spectrum at node i

VTCP Virtual Tone
Channel Power
(sim)

VTCP Same as ICP
and CGAIN

ICP[0] + CGAIN[i]

 Spectrasys Voltage Measurements

Name Description Syntax Spectrum Type Equation

CV Channel Voltage (sim) CV Total Peak voltage at CF

CGAINV Cascaded Voltage Gain (sim) cgain(DCV) Same as DCV CGAINV[i] = DCV[i] DCV[0]

CNRV Carrier to Noise Voltage
Ratio (sim)

cnr(DCV, CNV) Same as DCV and
CNV

CNRV[i] = DCV[i] - CNV[i]

CNV Channel Noise Voltage (sim) CNV Noise Peak noise voltage in the
channel

DCV Channel Voltage (Desired)
(sim)

DCV Desired Desired peak voltage at CF

GAINV Voltage Gain (sim) gain(DCV) Same as DCV GAINV[i] = DCV[i] DCV[i-1],
Where GAINV[0] = 0 dB

ICV Interferer Channel Voltage
(sim)

ICV Desired Peak interferer voltage at
ICF

NNV Node Noise Voltage (sim) NNV Noise Peak average noise voltage
at the node

OCV Offset Channel Voltage (sim) OCV Total Peak voltage at OCF

PNCV Phase Noise Channel Voltage
(sim)

PNCV Phase Noise Peak phase noise voltage at
CF

SIIV Stage Input Voltage
Intercept Point (sim) (All
Orders)

siiv(SOIV, SVGAIN) Same as SOIV
and SVGAIN

SIIV[i] = SOIV[i] -
SVGAIN[i]

SIIV2 Stage 2 nd Order Input
Voltage Intercept Point

sivn(SIIV, 2) None SIIV for 2 nd Order

SIIV3 Stage 3 rd Order Input
Voltage Intercept Point

sivn(SIIV, 2) None SIIV for 3 rd Order

SIV1DB Stage Input 1 dB Voltage
Compression Point (sim)

siv1db(SOV1DB,
SVGAIN)

Same as SOV1DB
and SVGAIN

SIV1DB[i] = SOV1DB[i] -
SVGAIN[i]

SIVSAT Stage Input Voltage
Saturation Point (sim)

sivsat(SOVSAT,
SVGAIN)

Same as SOVSAT
and SVGAIN

SIVSAT[i] = SOVSAT[i] -
SVGAIN[i]

SOIV Stage Output Voltage
Intercept Point (sim) (All
Orders)

SOIV None Stage Entered Intercept
Point

SOIV2 Stage 2 nd Order Output
Voltage Intercept Point

sivn(SOIV, 2) None Stage Entered Intercept
Point

SOIV3 Stage 3 rd Order Input
Voltage Intercept Point

sivn(SOIV, 3) None Stage Entered Intercept
Point

SOV1DB Stage Output 1 dB Voltage
Compression Point (sim)

SOV1dB None Stage Entered Compression
Point

SOVSAT Stage Output Voltage
Saturation Point (sim)

SOVSAT None Stage Entered Output
Saturation Voltage

SVGAIN Stage Voltage Gain (sim) SVGAIN None Stage Entered Voltage Gain

SVNI Equivalent Input Noise
Voltage (sim)

SVNI None Conversion from stage
entered noise figure

TNV Total Node Voltage (sim) TNV Total Peak voltage at the node

VDC DC Voltage (sim) VDC Total DC voltage

VNI Equivalent Input Noise
Voltage (sim)

NFtoVNI(CNF, DCR,
Temperature)

Same as CNF and
DCR

VNI[i] = NFtoVNI(CNF[i],
DCR[i], Temperature)

 Spectrasys Equation Based Measurements

(These measurements use traditional cascaded equations based on user entered data)

SystemVue - Simulation

115

Name Description Syntax Spectrum
Type

Equation

ECGAIN Cascaded Gain (sim) ECGAIN None Traditional cascaded gain equation

ECNF Cascaded Noise Figure (sim) ECNF None Traditional cascaded noise figure equation

EIIP2 2 nd Order Input Intercept Point
(sim)

EIIP2 None Traditional cascaded input 2nd order
intercept

EIIP3 3 rd Order Input Intercept Point
(sim)

EIIP3 None Traditional cascaded input 3rd order
intercept

EIP1DB Input 1 dB Compression Point
(sim)

EIP1DB None Traditional cascaded input compression
point

EIPSAT Cascaded Input Saturation Poin
(sim)t

EIPSAT None Traditional cascaded input saturation point

EMDS Minimum Detectable Signal
(sim)

EMDS None Traditional minimum detectable signal

EOIP2 2 nd Order Output Intercept
Point (sim)

EOIP2 None Traditional cascaded output 2nd order
intercept point

EOIP3 3 rd Order Output Intercept
Point (sim)

EOIP3 None Traditional cascaded output 3rd order
intercept point

EOP1DB Output 1 dB Compression Point
(sim)

EOP1DB None Traditional cascaded output compression
point

EOPSAT Cascaded Output Saturation
Point (sim)

EOPSAT None Traditional cascaded output saturation
point

ESFDR Spurious Free Dynamic Range
(sim)

ESFDR None Traditional cascaded spurious free
dynamic range

Caution: Equation based measurements exclude all frequency, VSWR, and compression effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Node Measurements

Frequency, Voltage, Power, and Identification information is saved for selected output
nodes. See the 'Output Tab (sim)' of the system simulation dialog box reference for
additional information on controlling which nodes to retain the data.

Name Description Units

RFPwrIn Total RF Power Entering a Part (sim) dBm

 Added Noise (AN)

This measurement is the noise contribution of each individual stage in the main channel
along the specified path as shown by:

 AN[n] = CNF (sim)[n] - CNF[n-1] (dB), where AN[0] = 0 dB, n = stage number

This measurement is simply the difference in the 'Cascaded Noise Figure' measurement
between the current node and the previous node. This measurement is very useful and
will help the user identify the contribution to the noise figure by each stage along the
path.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as CNF

Travel Direction: Only spectrum traveling in the forward direction are included in this
measurement
 Adjacent Channel Frequency (ACF[U or L][n])

This measurement is the frequency of the specified adjacent channel. All adjacent channel
frequencies are relative to the main 'Channel Frequency'. Consequently, channels exist
above and below the main reference channel frequency. The user can specify which side of
the main or reference channel that the adjacent channel is located on and also the
channel number. The channel number is relative to the main or reference
channel. Therefore, channel 1 would be the first adjacent channel, channel 2 would be the
second adjacent channel, and so on.

U - Upper Side

L - Lower Side

n - Channel Number (any integer > 0)

For example, ACFU1 if the first adjacent channel above that specified by the 'Channel
Frequency'. If CF was 100 MHz and the channel bandwidth was 1 MHz then the main
channel would be 99.5 to 100.5 MHz. Consequently, then ACFU1 would then be the
channel 100.5 to 101.5 MHz and ACFL1 would be 98.5 to 99.5 MHz.

NOTE: Only the first few adjacent channels on either side of the reference channel are
listed in the 'Measurement Wizard". However, there is no restriction on the Adjacent
Channel Number.
 Adjacent Channel Power (ACP[U or L)[n))

This measurement is the integrated power of the specified adjacent channel. All adjacent
channels are relative to the main channel (identified by the 'Channel Frequency' and
'Channel Measurement Bandwidth'). Consequently, channels exist above and below the
main reference channel frequency. The user can specify which side of the main channel
the adjacent channel is located on along with the channel number. The channel number is
relative to the main channel. Therefore, channel 1 would be the first adjacent channel,
channel 2 would be the second adjacent channel, and so on.

U - Upper Side

L - Lower Side

SystemVue - Simulation

116

n - Channel Number (any integer > 0)

For example, ACPL2 is the power of the second adjacent channel below that specified by
the channel frequency. If CF was 100 MHz and the channel bandwidth was 1 MHz then the
main channel would be 99.5 to 100.5 MHz. Consequently, then ACPL2 would then be the
integrated channel power between 97.5 and 98.5 MHz and ACPL1 would be the integrated
channel power between 98.5 and 99.5 MHz.

Note: Only the first 2 adjacent channels on either side of the reference channel are listed in the
'Measurement Wizard". However, there is no restriction on the Adjacent Channel Number other than it
must be non-negative and greater than or equal to 1.

This measurement is simply a 'Channel Power (sim)' measurement at the 'Adjacent
Channel Frequency (sim)'.

Channel Used: Corresponding Adjacent Channel Frequency and Channel Measurement
Bandwidth

Types of Spectrums Used: Same as CP

Travel Direction: Same as CP
 Calculated Stage Compression (COMP)

This measurement is the calculated compression point of each individual stage. This value
is determined during the simulation process based on the total input power of the stage.

This measurement includes ALL SIGNALS, INTERMODS, HARMONICS, NOISE, and
PHASE NOISE traveling in ALL directions through the node that fall within the main
channel.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: All SIGNALS, INTERMODS, HARMONICS, NOISE, and PHASE
NOISE

Travel Direction: All directions through the node
 Carrier to Noise and Distortion Ratio (CNDR)

This measurement is the ratio of the 'Desired Channel Power' to 'Channel Noise and
Distortion Power' along the specified path as shown by:

 CNR[n] = DCP (sim)[n] - NDCP (sim)[n] (dB), where n = stage number

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCP and NDCP

Travel Direction: Same as DCP and NDCP
 Carrier to Noise Ratio (CNR)

This measurement is the ratio of the 'Desired Channel Power' to 'Channel Noise Power'
along the specified path as shown by:

 CNR[n] = DCP (sim)[n] - CNP (sim)[n] (dB), where n = stage number

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCP and CNP

Travel Direction: Same as DCP and CNP
 Carrier to Noise Voltage Ratio (CNRV)

This measurement is the ratio of the 'Desired Channel Voltage' to 'Channel Noise Voltage'
along the specified path as shown by:

 CNRV[n] = DCV (sim)[n] - CNV (sim)[n] (dB), where n = stage number

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCV and CNV

Travel Direction: Same as DCV and CNV
 Cascaded Compression (CCOMP)

This measurement is the cascaded compression of each stage along the path.

CCOMP[n] = Summation(COMP (sim)[0 to n]) (dB), where n = stage number

For each stage n a summation is performed on the compression point of all previous
stages.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Same as COMP

Types of Spectrums Used: Same as COMP

Travel Direction: Same as COMP
 Cascaded Gain (CGAIN)

This measurement is the cascaded gain of the main channel along the specified path. The
'Cascaded Gain' is the difference between the 'Desired Channel Power' measurement at
the nth stage minus the 'Desired Channel Power' measurement at the input as shown by:

SystemVue - Simulation

117

 CGAIN[n] = DCP (sim)[n] - DCP[0] (dB), where n = stage number

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCP

Travel Direction: Same as DCP

NOTE: Under matched conditions CGAIN and S21 from a linear analysis are the same. As shown in the
above equation the cascaded gain at the first node by definition is 0 dB. This may not be true if there is an
impedance mismatch between the source and the first model in the path. The cascaded gain measurement
does not take into account this initial mismatch because cascaded gain is always assumed to be 0 dB at
the first stage. This mismatch can be accounted for by taking the difference between the power level
specified in the source with the 'Channel Power (CP)' at the first node and adding this value to the
cascaded gain. In this case cascaded gain _ source mismatch will equal S21.

 Cascaded Gain - Equation Based (ECGAIN)

This is the traditional cascaded gain measurement based on the user entered gain
values for the stages (SGAIN (sim)). This measurement can be used to compare with
traditional calculations typically found in spreadsheets.

 ECGAIN[n] = SGAIN[0] + ... + SGAIN[n] (dB), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects.

See CGAIN (sim) as the general cascaded gain measurement that includes all secondary
effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Cascaded Noise Figure (CNF)

This measurement is the cascaded noise figure in the main channel along the specified
path. The 'Cascaded Noise Figure' is equal to the 'Channel Noise Power' measurement at
the output of stage n plus the 'Phase Noise Channel Power' at the output of stage n minus
the 'Channel Noise Power' measurement at the path input minus the 'Cascaded Gain'
measurement at stage n as shown by:

 CNF[n] = CNP (sim)[n] + PNCP (sim)[n] - CNP[0] - cgain(DCP) (sim)[n] (dB), where
n = stage number

Caution: When wide channel bandwidths are used channel noise power and cascaded
gain are affected more by VSWR and frequency effects. In this case is it extremely
important that sufficient noise points are used to represent the noise in the channel of
interest. Furthermore, it is very possible because of these frequency effects that the
channel noise power and the cascaded gain can change in a nonlinear way so that
cascaded noise figure appears to drop from a prior node. Additionally, looking at cascaded
noise figure through a hybrid combining network may also be deceptive since the
cascaded gain used to determine the cascaded noise figure is from the current path and
not all paths in the system.

See the 'Broadband Noise (sim)' and 'Two Port Amplifier Noise (sim)' sections for more
information.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as CNP and CGAIN

Travel Direction: Same as CNP and CGAIN

Traditional Cascaded Noise Figure

NFcascade = F1 + (F2 - 1) / G1 + (F3 - 1) / G1G2 + ... + (Fn - 1) / G1G2...Gn-1

Note: Traditional cascaded noise figure equations are not used. The are very restrictive and suffer from
the following conditions:

Ignore effects of VSWR, frequency, and bandwidth
Assume noise contributions are from a single path
Ignore mixer image noise
Ignores effects of gain compression
Ignores contribution of phase noise

The SPARCA (Spectral Propagation and Root Cause Analysis) technique used in Spectrasys
does not suffer from these restrictive assumptions. Occasionally users are troubled if
Spectrasys simulations give different answers than the traditional approach. Using
Spectrasys under the same assumptions as the traditional approach will always yield
identical answers. To use Spectrasys under the same assumptions only frequency
independent blocks like attenuators and amplifiers must be used. Even so, amplifiers must
be used as linear devices with infinite reverse isolation. Filters cannot be used since their
impedance varies with frequency. Mixers cannot be used since noise from the image band
will be converted into the mixer output. Only 2 port devices must be used because of the
single path assumption. Of course the bandwidth must also be very narrow.
 Cascaded Noise Figure - Equation Based (ECNF)

This is the traditional cascaded noise figure measurement based on the user entered
gain and noise figure values for the stages (SGAIN (sim) and SNF (sim)). This
measurement can be used to compare with traditional calculations typically found in
spreadsheets.

SystemVue - Simulation

118

Traditional Cascaded Noise Figure

NFcascade = F1 + (F2 - 1) / G1 + (F3 - 1) / G1G2 + ... + (Fn - 1) / G1G2...Gn-1

Caution: This measurement (and the traditional cascaded noise figure equation) has the following issues:

Ignore effects of VSWR, frequency, and bandwidth
Assume noise contributions are from a single path
Ignore mixer image noise
Ignores effects of gain compression
Ignores noise contribution due to phase noise

The SPARCA (Spectral Propagation and Root Cause Analysis) technique used in Spectrasys
does not suffer from these restrictive assumptions. Occasionally users are troubled if
Spectrasys simulations give different answers than the traditional approach. Using
Spectrasys under the same assumptions as the traditional approach will always yield
identical answers. To use Spectrasys under the same assumptions only frequency
independent blocks like attenuators and amplifiers must be used. Even so, amplifiers must
be used as linear devices with infinite reverse isolation. Filters cannot be used since their
impedance varies with frequency. Mixers cannot be used since noise from the image band
will be converted into the mixer output. Only 2 port devices must be used because of the
single path assumption. Of course the bandwidth must also be very narrow.

See CNF (sim) as the general cascaded noise figure measurement that includes all
secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Cascaded Voltage Gain (CGAINV)

This measurement is the cascaded voltage gain of the main channel along the specified
path. The 'Cascaded Voltage Gain' is the difference between the 'Desired Channel Voltage'
measurement at the nth stage minus the 'Desired Channel Voltage' measurement at the
input as shown by:

 CGAINV[n] = DCV (sim)[n] - DCV[0] (dB20), where n = stage number

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCV

Travel Direction: Same as DCV
 Channel Noise Density (CND)

This measurement is the integrated noise power in a 1 Hz bandwidth in the main channel
along the specified path.

Note: The power level of the first node is that seen by the internal source not the actual power delivered
to the first stage. As such any impedance mismatch between the source and the system input is
automatically accounted for.

This measurement is the same as the Channel Noise Power (CNP) except a 1 Hz
bandwidth is used.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction

Channel Bandwidth Caution: When the Channel Frequency is less than 1/2 the Channel
Bandwidth the lowest integration frequency used for measurements will be 0 Hz. This will
result is Channel Noise Power measurements potentially being different than when the full
bandwidth is used.
 Channel Noise Power (CNP)

This measurement is the integrated noise power in the main channel along the specified
path.

Note: The power level of the first node is that seen by the internal source not the actual power delivered
to the first stage. As such any impedance mismatch between the source and the system input is
automatically accounted for.

For example, if the 'Channel Measurement Bandwidth' was specified to 100 kHz and the
'Channel Frequency' was 2000 MHz then the CNP is the integrated noise power from
1999.95 to 2000.05 MHz.

See comments in the 'Cascaded Noise Figure' measurement or 'Broadband Noise' section
for additional insights.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction

Channel Bandwidth Caution: When the Channel Frequency is less than 1/2 the Channel

SystemVue - Simulation

119

Bandwidth the lowest integration frequency used for measurements will be 0 Hz. This will
result is Channel Noise Power measurements potentially being different than when the full
bandwidth is used.
 Channel Noise Voltage (CNV)

This measurement is the peak noise voltage in the main channel along the specified path.

For example, if the 'Channel Measurement Bandwidth' was specified to 100 kHz and the
'Channel Frequency' was 2000 MHz then the CNV is the average integrated noise voltage
from 1999.95 to 2000.05 MHz.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Default Unit: dBV

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction
 Channel (or Path) Frequency (CF)

Since each spectrum can contain a large number of spectral components and frequencies
Spectrasys must be able to determine the area of the spectrum to integrate for various
measurements. This integration area is defined by a 'Channel Frequency' and a 'Channel
Measurement Bandwidth' which become the main channel for the specified path.
Spectrasys can automatically identify the desired 'Channel Frequency' in an unambiguous
case where only one frequency is on the 'from node' of the designated path. An error will
appear if more than one frequency is available. For this particular case the user must
specify the intended frequency for this path in the 'System Simulation Dialog Box'.

A 'Channel Frequency' exists for each node along the specified path. Consequently, each
node along the path will have the same 'Channel Frequency' until a frequency translation
part such as a mixer or frequency multiplier is encountered. Spectrasys automatically
deals with frequency translation through these parts. The individual mixer parameters of
'Desired Output (Sum or Difference)' and 'LO Injection (High of Low)' are used to
determine the desired frequency at the output of the mixer.

The 'Channel Frequency' is a critical parameter for Spectrasys since most of the
measurements are based on this parameter. If this frequency is incorrectly specified then
the user may get unexpected results since many measurements are based on this
frequency.

The easiest way to verify the 'Channel Frequency' that Spectrasys is using is to look at
this measurement in a table or the dataset.
 Channel Power (CP)

This measurement is the total integrated power in the main channel along the specified
path.

This measurement includes ALL SIGNALS, INTERMODS, HARMONICS, NOISE, and
PHASE NOISE traveling in ALL directions through the node that fall within the main
channel.

Note: The power level of the first node is that seen by the internal source not the actual power delivered
to the first stage. As such any impedance mismatch between the source and the system input is
automatically accounted for.

For example, if the 'Channel Measurement Bandwidth' was specified to .03 MHz and the
'Channel Frequency' was 220 MHz then the CP is the integrated power from 219.985 to
220.015 MHz.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: All SIGNALS, INTERMODS, HARMONICS, NOISE, and PHASE
NOISE

Travel Direction: All directions through the node
 Channel Voltage (CV)

This measurement is the peak voltage across the main channel along the specified path.

This measurement includes ALL SIGNALS, INTERMODS, HARMONICS, NOISE, and
PHASE NOISE traveling in ALL directions through the node that fall within the main
channel.

For example, if the 'Channel Measurement Bandwidth' was specified to .03 MHz and the
'Channel Frequency' was 220 MHz then the CV is the average voltage from 219.985 to
220.015 MHz.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Default Unit: dBV

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: All SIGNALS, INTERMODS, HARMONICS, NOISE, and PHASE
NOISE

Travel Direction: All directions through the node
 Conducted Intermod Channel Power [All Orders] (CIMCP)

This measurement is the total intermod power in the main channel conducted from the
prior stage. This measurement includes all intermods that are traveling in the forward
path direction. In equation for the conducted third order intermod power is:

 CIMCP[n] = TIMCP (sim)[n-1] + GAIN (sim)[n] (dBm), where CIMCP[0] = 0 dB and
n = stage number

SystemVue - Simulation

120

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as TIMCP and GAIN

Travel Direction: Same as TIMCP and GAIN
 Desired Channel Phase (DCPH)

This measurement is the phase of the desired CW signal in the channel along the
specified path.

This measurement includes ONLY DESIRED SIGNALS on the beginning node of the
path, traveling in FORWARD path direction. All other intermods, harmonics, noise, and
phase noise signals are ignored.

Note: A 'D' is placed next to the equation in the identifying flyover help in a spectrum plot to indicate
desired signals.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY DESIRED SIGNALS

Travel Direction: Only in the FORWARD direction
 Desired Channel Power (DCP)

This measurement is the total integrated power in the main channel along the specified
path.

This measurement includes ONLY DESIRED SIGNALS on the beginning node of the
path, traveling in the FORWARD path direction. All other intermods, harmonics, noise,
and phase noise signals are ignored.

Note: The power level of the first node is that seen by the internal source not the actual power delivered
to the first stage. As such any impedance mismatch between the source and the system input is
automatically accounted for.

Note: A 'D' is placed next to the equation in the identifying flyover help in a spectrum plot to indicate
desired signals.

For example, if the 'Channel Measurement Bandwidth' was specified to .03 MHz and the
'Channel Frequency' was 220 MHz then the DCP is the integrated power from 219.985 to
220.015 MHz. This power measurement will not even be affect by another 220 MHz signal
traveling in the reverse direction even if it is much larger in amplitude.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY DESIRED SIGNALS

Travel Direction: Only in the FORWARD direction
 Desired Channel Resistance (DCR)

This measurement is the desired average resistance across the main channel along the
specified path. This is not the magnitude of the impedance but its real part.

This measurement includes ONLY DESIRED SIGNALS on the beginning node of the
path, traveling in FORWARD path direction. All other intermods, harmonics, noise, and
phase noise signals are ignored.

Note: A 'D' is placed next to the equation in the identifying flyover help in a spectrum plot to indicate
desired signals.

For example, if the 'Channel Measurement Bandwidth' was specified to .03 MHz and the
'Channel Frequency' was 220 MHz then the DCR is the average resistance from 219.985 to
220.015 MHz. This resistance measurement will not even be affect by another 220 MHz
signal traveling in the reverse direction even if it is much larger in amplitude.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY DESIRED SIGNALS

Travel Direction: Only in the FORWARD direction
 Desired Channel Voltage (DCV)

This measurement is the desired peak voltage across the main channel along the specified
path.

This measurement includes ONLY DESIRED SIGNALS on the beginning node of the
path, traveling in FORWARD path direction. All other intermods, harmonics, noise, and
phase noise signals are ignored.

Note: A 'D' is placed next to the equation in the identifying flyover help in a spectrum plot to indicate
desired signals.

For example, if the 'Channel Measurement Bandwidth' was specified to .03 MHz and the
'Channel Frequency' was 220 MHz then the DCV is the average voltage from 219.985 to
220.015 MHz. This voltage measurement will not even be affect by another 220 MHz
signal traveling in the reverse direction even if it is much larger in amplitude.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

SystemVue - Simulation

121

Default Unit: dBV

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY DESIRED SIGNALS

Travel Direction: Only in the FORWARD direction
 Equivalent Input Noise Voltage (VNI)

This measurement is the stage equivalent input noise voltage. Noise figure, source
resistance, and temperature are used to determine equivalent input noise voltage. The
following equation is used to take the noise factor at each stage, the desired channel
resistance at each stage, and the system analysis temperature in Celsius and converts
these parameters to an equivalent input noise voltage.

 VNI[n] = NFtoVNI (CNF (sim)[n], DCR (sim)[n], TempC) (nV / sqrt(Hz)), where
n = stage number

See SVNI (sim) for additional information.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Default Unit: nV / sqrt(Hz)

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Generated Intermod Channel Power [All Orders] (GIMCP)

This measurement is the generated intermod power in the main channel created at the
output of the current stage. In equation form the generated third order intermod power is:

 GIMCP[n] = integration of the intermods generated at stage n across the channel
bandwidth (dBm)

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results. The 'Automatic Intermod Mode' will set the bandwidth
appropriately.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY INTERMODS and HARMONICS (separated according to
their order)

Travel Direction: Only in the FORWARD direction
 Group Delay (System)

This section will demonstrate how to measure group delay in Spectrasys.

 BACKGROUND

"Group Delay measures the differential time delay caused by a filter, i.e., it indicates if
certain frequency components will be delayed more than other components and by how
much" (Radio Receiver Design, Kevin McClaning and Tom Vito, Noble Publishing, pg 174)

Spectrasys has the ability to show group delay results, including across frequency
translations, like mixers and dividers, by using a wide carrier source and the linear
simulator. The group delay measurement function will then be applied to any path voltage
gathered by Spectrasys.

The path voltage in Spectrasys is equivalent to the voltage gain E21. To convert E21 to
S21 for group delay calculation the following equation must be used:

Sij = Eij * (conj(ZPortj) + ZPortj * Sjj) / (ZPorti * sqrt(real(ZPortj) / real(ZPorti))
), where ZPort is the port impedance the circuit sees.

For ZPorti = ZPortj = R + j0

Then

Sij = Eij * (1 + Sjj)

or

S21 = E21 * (1 + S11)

Since Spectrasys doesn't have an S11 measurement the linear simulator must be used. A
frequency vector can be retrieved from the Spectrasys path dataset so that the
frequencies gathered by the linear simulator are the same as those used in Spectrasys.

 STEPS FOR GROUP DELAY MEASUREMENT

Add a wideband signal source. The bandwidth should be wide enough to cover the1.
group delay range of interest. Caution must be exercised when setting the carrier
power since a wideband carrier can easily drive non-linear devices into saturation.
Note: A multisource can be used here and the number of points for the wideband
carrier can be specified per source.
Increase the number of simulation points for the carrier on the 'General' tab of the2.
System Analysis. The default number of simulation points per carrier is 2. Note: This
will increase the number of simulation points used by all spectrums derived from the

file:/pages/createpage.action?spaceKey=sv201001&title=nftovni&linkCreation=true&fromPageId=96375821
file:/pages/createpage.action?spaceKey=sv201001&title=nftovni&linkCreation=true&fromPageId=96375821

SystemVue - Simulation

122

source spectrum and will increase the simulation time and file size.
Add a path to the System Analysis on the 'Path' tab.3.
Include option "Add Powers, Voltages, and Impedances to Path Dataset" located on4.
the 'Edit/Add Path' dialog box of the System Analysis.
Add a linear analysis so the S11 of the system can be determined.5.
Place the Spectrasys path frequency vector (i.e. 'F2_Desired' in the6.
'System1_Data_Path1' dataset) in the 'List of Frequencies' used by the linear analysis
so S11 will be determined at the same frequencies as the Spectrasys path voltages.
S21 for the system will need to derived from the equation relating E21 to S21, where7.
the desired Spectrasys path voltage at the output node is equivalent to E21. Copy
the following equation block code to the equation block in the workspace. This code
assumes the output node is named "2". The path frequency vector in the linear
analysis and the voltage vector in the equation block must be change if the output
node is other than 2 (i.e if the output node was 6 then 'F6_Desired' would be used in
the linear analysis and 'V6_Desired' would be used in the equation block.
Use the group delay function 'gd(SystemS21)' to plot the group delay.8.

 Equation Block Code

using("System1_Data_Path1")

'---------- Convert Spectrasys E21 (V2_Desired) to S21 ----------

SystemS21 = V2_Desired * (1 + [Linear1_Data].S11)

setunits("SystemS21", "dB") ' Set the units to dB

GroupDelay = gd(SystemS21) ' Get the group delay

NOTE: See Spectrasys group delay examples that ship with the product for illustration of this.

 Image Channel Noise Power (IMGNP)

This measurement is the integrated noise power of the image channel from the path input
to the first mixer. After the first mixer the 'Mixer Image Channel Power' measurement will
show the same noise power as the main channel noise power.

For example if we designed a 2 GHz receiver that had an IF frequency of 150 MHz using
low LO side injection then the LO frequency would be 1850 MHz and image frequency for
all stages from the input to the first mixer would be 1700 MHz. If the receiver bandwidth
was 5 MHz then the image channel would be from 1697.5 to 1702.5 MHz.

This measurement is simply a 'Channel Noise Power (sim)' measurement at the 'Image
Frequency (sim)'.

Channel Used: Image Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction
 Image Channel Power (IMGP)

This measurement is the image channel power from the path input to the first mixer. After
the first mixer the this measurement will show the same power as the main channel
power.

For example if we designed a 2 GHz receiver that had an IF frequency of 150 MHz using
low LO side injection then the LO frequency would be 1850 MHz and image frequency for
all stages from the input to the first mixer would be 1700 MHz. If the receiver bandwidth
was 5 MHz then the image channel would be from 1697.5 to 1702.5 MHz. All noise and
interference must be rejected in this channel to maintain the sensitivity and performance
of the receiver.

This measurement is simply a 'Channel Power (sim)' measurement at the 'Image
Frequency (sim)'.

Channel Used: Image Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as CP (sim)

Travel Direction: Same as CP
 Image Frequency (IMGF)

This measurement is the image frequency from the input to the first mixer.

Since Spectrasys knows the 'Channel Frequency' of the specified path it also has the
ability to figure out what the image frequency is up to the 1st mixer. After the 1st mixer
the 'Image Frequency' measurement will show the main channel frequency. This
measurement will show what that frequency is.

For example if we designed a 2 GHz receiver that had an IF frequency of 150 MHz using
low LO side injection then the LO frequency would be 1850 MHz and image frequency for
all stages from the input to the first mixer would be 1700 MHz.
 Image Noise Rejection Ratio (IMGNR)

This measurement is the ratio of the 'Channel Noise Power' to 'Image Channel Noise
Power' along the specified path as shown by:

 IMGNR[n] = CNP (sim)[n] - IMGNP (sim)[n] (dB), where n = stage number

This measurement is very useful in determining the amount of image noise rejection that
the selected path provides.

For this particular measurement basically two channels exist both with the same 'Channel
Measurement Bandwidth' 1) main channel and 2) 1st mixer image channel.

Channel Used: Main Channel Frequency, Image Channel Frequency, and Channel
Measurement Bandwidth

SystemVue - Simulation

123

Types of Spectrums Used: Same as CNP and IMGNP

Travel Direction: Same as CNP and IMGNP
 Image Rejection Ratio (IMGR)

This measurement is the ratio of the 'Channel Power' to 'Image Channel Power' along the
specified path as shown by:

 IMGR[n] = DCP (sim)[n] - IMGP (sim)[n] (dB), where n = stage number

For this particular measurement basically two channels exist both with the same 'Channel
Measurement Bandwidth' 1) main channel and 2) 1st mixer image channel. The only
difference between these two channels are their frequencies, one being at the 'Channel
Frequency' and the other is at the 'Mixer Image Frequency'.

Channel Used: Main Channel Frequency, Image Channel Frequency, and Channel
Measurement Bandwidth

Types of Spectrums Used: Same as DCP and IMGP

Travel Direction: Same as DCP and IMGP
 Input 1 dB Compression - Equation Based (EIP1DB)

This is the traditional cascaded input 1 dB compression measurement based on the user
entered gain and 1 dB compression values for the stages (SGAIN (sim) and SOP1DB
(sim)). This measurement can be used to compare with traditional calculations typically
found in spreadsheets.

 1 / EIP1DB[n] = 1 / (SOP1DB[0] / ECGAIN[0]) + 1 / (SOP1DB[1] / ECGAIN[1]) +
 ... + 1 / (SOP1DB[n] / ECGAIN[n]) (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects.

See IP1DB (sim) as the general cascaded input 1 dB compression measurement that
includes all secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Input 1 dB Compression Point (IP1DB)

This measurement is the system input 1 dB compression point referenced to the path
input. The operating gain is used to refer the input 1 dB compression points of the
individuals stages back to the input. The user specified gain will only equal the operating
gain in a perfectly matched system operating under linear conditions.

1 / IP1dB = 1 / SIP1DB (sim)1 + 1 / (SIP1DB2 - CGAIN (sim)[1]) + 1 / (SIP1DB3 -
CGAIN[2]) + ... + 1 / (SIP1DBX - CGAIN[X-1]), where X is the nth stage dBm

See EIP1DB (sim) for an equation based measurement that uses the user specified gain
instead of the actual operating gain.

Channel Used: Same as CGAIN

Types of Spectrums Used: Same as CGAIN

Travel Direction: Same as CGAIN

NOTE
This measurement is an approximation based on the cascaded gain and the user entered compression
points from each stage based on a single input power. For higher accuracy the Pin vs Pout should be
created.

 Input 2nd Order Intercept - Equation Based (EIIP2)

This is the traditional cascaded input 2nd order intercept measurement based on the user
entered gain and 2nd order intercept values for the stages (SGAIN (sim) and SOIP2
(sim)). This measurement can be used to compare with traditional calculations typically
found in spreadsheets.

 1 / EIIP2[n] = 1 / (SOIP2[0] / ECGAIN[0]) + 1 / (SOIP2[1] / ECGAIN[1]) + ... + 1
/ (SOIP2[n] / ECGAIN[n]) (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects. Also, equation based
cascaded intermod calculations ignore that fact that the two tones used to create the intermod may
actually be attenuated drastically like through and IF filter.

See IIP2 (sim) as the general cascaded input 2nd order intercept measurement that
includes all secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

SystemVue - Simulation

124

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Input 3rd Order Intercept - Equation Based (EIIP3)

This is the traditional cascaded input 3rd order intercept measurement based on the user
entered gain and 3rd order intercept values for the stages (SGAIN (sim) and SOIP3
(sim)). This measurement can be used to compare with traditional calculations typically
found in spreadsheets.

 1 / EIIP3[n] = 1 / (SOIP3[0] / ECGAIN[0]) + 1 / (SOIP3[1] / ECGAIN[1]) + ... + 1
/ (SOIP3[n] / ECGAIN[n]) (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects. Also, equation based
cascaded intermod calculations ignore that fact that the two tones used to create the intermod may
actually be attenuated drastically like through and IF filter.

See IIP3 (sim) as the general cascaded input 3rd order intercept measurement that
includes all secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Input Intercept [All Orders] (IIP)

This measurement is the intercept point referenced to the path input. This is an in-band
type of intermod measurement.

 IIP[n] = OIP (sim)[n] - CGAIN (sim)[n] (dBm), where n = stage number

This measurement simple takes the computed 'Output Intercept' and references it to the
input by subtracting the cascaded gain. The last IIP value for a cascaded chain will always
be the actual input intercept for the entire chain.

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

See the 'Intermods Along a Path' section for information on how to configure these tests.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results. The 'Automatic Intermod Mode' will set the bandwidth
appropriately.

Caution: This method used to determine the intercept point is only valid for 2 tones with
equal amplitude

Channel Used: Main Channel Frequency, Interferer Channel Frequency, and Channel
Measurement Bandwidth

Types of Spectrums Used: Same as OIP and CGAIN

Travel Direction: Same as OIP and CGAIN

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Input Intercept - Receiver [All Orders] (RX_IIP)

This measurement is the receiver input intercept point along the path. This is an out-of-
band type of intermod measurement.

RX_IIP[n] = RX_OIP[n] - CGAIN[n] (dBm), where n = stage number

This measurement simple takes the computed 'Output Intercept' and references it to the
input by subtracting the cascaded gain. The last IIP value for a cascaded chain will always
be the actual input intercept for the entire chain.

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab' of the System Analysis Dialog Box. The column
number is the same as the order starting from the left with order 0.

See the 'Intermods Along a Path' section for information on how to configure these tests.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results. The 'Automatic Intermod Mode' will set the bandwidth
appropriately.

Caution: This method used to determine the intercept point is only valid for 2 tones with equal amplitude

Channel Used: Main Channel Frequency, Interferer Channel Frequency, and Channel
Measurement Bandwidth
Types of Spectrums Used: Same as RX_OIP and CGAIN
Travel Direction: Same as RX_OIP and CGAIN

SystemVue - Simulation

125

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.

 Input Saturation Point (IPSAT)

This measurement is the system input saturation point referenced to the path input. The
operating gain is used to refer the input saturation point of the individuals stages back to
the input. The user specified gain will only equal the operating gain in a perfectly matched
system operating under linear conditions.

1 / IPSAT = 1 / SIPSAT (sim)1 + 1 / (SIPSAT2 - CGAIN (sim)[1]) + 1 / (SIPSAT3 -
CGAIN[2]) + ... + 1 / (SIPSATX - CGAIN[X-1]), where X is the nth stage dBm

See EIPSAT (sim) for an equation based measurement that uses the user specified gain
instead of the actual operating gain.

Channel Used: Same as CGAIN

Types of Spectrums Used: Same as CGAIN

Travel Direction: Same as CGAIN
 Input Saturation Power - Equation Based (EIPSAT)

This is the traditional cascaded input saturation measurement based on the user entered
gain and saturation values for the stages (SGAIN (sim) and SOPSAT (sim)). This
measurement can be used to compare with traditional calculations typically found in
spreadsheets.

 1 / EIPSAT[n] = 1 / (SOPSAT[0] / ECGAIN[0]) + 1 / (SOPSAT[1] / ECGAIN[1]) +
 ... + 1 / (SOPSAT[n] / ECGAIN[n]) (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Interferer Cascaded Gain (ICGAIN)

This measurement is the interferer cascaded gain of the main channel along the specified
path. The 'Interferer Cascaded Gain' is the difference between the 'Interferer Channel
Power' measurement at the nth stage minus the 'Interferer Channel Power' measurement
at the input as shown by:

 ICGAIN[n] = ICP (sim)[n] - ICP[0] (dB), where n = stage number

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as ICP

Travel Direction: Same as ICP

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Interferer Channel Frequency (ICF)

This measurement is the frequency of the interferer used for intermod measurements
such as: IIP, OIP, SFDR, etc.. The 'Interferer Channel Frequency' is determined set on the
'Calculate Tab (sim)' of the System Analysis Dialog Box.

As with other frequency measurements Spectrasys is able to deal with frequency
translation through mixers, frequency multipliers, etc.
 Interferer Channel Power (ICP)

This measurement is the total integrated power in the interferer channel. This power is
used for intermod measurements such as: IIP3, OIP3, SFDR, etc..

This measurement is simply a 'Desired Channel Power (sim)' measurement at the '
Interferer Channel Frequency (sim)'.

Channel Used: Interferer Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCP (sim)

Travel Direction: Same as DCP

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Interferer Channel Voltage (ICV)

This measurement is the peak voltage in the interferer channel.

This measurement is simply a 'Desired Channel Voltage (sim)' measurement at the '
Interferer Channel Frequency (sim)'.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Interferer Channel Frequency and Channel Measurement Bandwidth

SystemVue - Simulation

126

Types of Spectrums Used: Same as DCV (sim)

Travel Direction: Same as DCV
 Interferer Gain (IGAIN)

This measurement is the gain of the interferer (tone) channel along the specified path.
The 'Gain' is the difference between the 'Interferer Channel Power' output of the current
stage minus the 'Interferer Channel Power' output of the prior stage as shown by:

 IGAIN[n] = ICP (sim)[n] - ICP[n-1] (dB), where IGAIN[0] = 0 dB, n = stage number

Channel Used: Interferer (Tone) Channel Frequency and Channel Measurement
Bandwidth

Types of Spectrums Used: Same as ICP

Travel Direction: Same as ICP

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Minimum Detectable Signal (MDS)

This measurement is the minimum detectable (discernable) signal referred to the input
and is equivalent to the input channel noise power plus the cascaded noise figure of the
specified chain as shown by:

 MDS[n] = CNP (sim)[0] + CNF (sim)[n] (dBm), where n = stage number

The MDS value at stage n represents the MDS of the entire system up to and including
stage n. Consequently, the MDS of the entire system is the value indicated at the last
stage in the path or chain. The minimum detectable signal is the equivalent noise power
present on the input to a receiver that sets the limit on the smallest signal the receiver
can detect.

For example, if the thermal noise power input to a receiver is -174 dBm/Hz and the
channel bandwidth is 1 MHz (10 Log (1 MHz) = 60 dB) then the input channel power
would be -114 dBm. For a cascaded noise figure of 5 dB the minimum detectable signal
would be -109 dBm.

See the 'Channel Noise Power (sim)' measurement to determine which types of signals are
included or ignored in this measurement.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as CNP and CNF

Travel Direction: Same as CNP and CNF
 Minimum Detectable Signal - Equation Based (EMDS)

This is the traditional cascaded gain measurement based on the user entered gain
values for the stages (SGAIN (sim)) and the equation based cascaded noise figure (
ECNF (sim)). This measurement can be used to compare with traditional calculations
typically found in spreadsheets.

 EMDS[n] = Input thermal noise power + ECNF (sim)[n] (dBm), where n = stage
number

The input thermal noise power = kTB, where k is Boltzman's constant, T is the
temperature in Kelvin, and B is the channel bandwidth.

Caution: This measurement excludes all frequency, VSWR, and compression effects.

See MDS (sim) as the general minimum detectable signal measurement that includes all
secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Node Noise Voltage (NNV)

This measurement is the peak noise voltage at the node along the specified path. This
includes all noise signals both in and out of the channel.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Default Unit: dBV

Channel Used: No channel is used for this measurement

Types of Spectrums Used: ONLY NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction
 Noise and Distortion Channel Power (NDCP)

This measurement is the integrated noise and distortion channel power in the main
channel along the specified path. The Noise and Distortion Channel Power is the sum of
the 'Channel Noise Power' plus the 'Total Intermod Channel Power' plus the 'Phase Noise

SystemVue - Simulation

127

Channel Power' as shown by:

 NDCP = CNP (sim)[n] + TIMP (sim)[n] + PNCP (sim)[n] (dB), where n = stage
number

See the above measurements to determine which types of signals are included or ignored
in this measurement.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as CNP, TIMP, and PNCP

Travel Direction: Same as CNP, TIMP, and PNCP
 Offset Channel Frequency (OCF)

The 'Offset Channel Frequency' and 'Offset Channel Power' are very useful measurements
in Spectrasys. These measurements give the user the ability to create a user defined
channel relative the main channel. The user specifies both the 'Offset Frequency' relative
to the main 'Channel Frequency' and the 'Offset Channel Bandwidth'. As with the 'Channel
Frequency' measurement Spectrasys automatically deals with the frequency translations
of the 'Offset Channel Frequency' through frequency translations parts such as mixers and
frequency multipliers. Both the 'Offset Frequency' and the 'Offset Channel Bandwidth' can
be tuned by creating a variable for each of these parameters. This measurement simply
returns the 'Offset Channel Frequency' for every node along the specified path.
 Offset Channel Power (OCP)

The Offset Channel is a user defined channel relative to the main channel. The 'Offset
Channel Frequency' and 'Offset Channel Bandwidth' are specified on the 'Options Tab
(sim)' of the System Analysis Dialog Box. As with the 'Channel Frequency' measurement
Spectrasys automatically deals with the frequency translations of the 'Offset Channel
Frequency' through frequency translation devices such as mixer and frequency multipliers.

For example, if the 'Channel Frequency' was 2140 MHz, 'Offset Channel Frequency' was 10
MHz, and the 'Offset Channel Bandwidth" was 1 MHz, then the OCP is the integrated
power from 2149.5 to 2150.5 MHz.

This measurement is simply a 'Channel Power (sim)' measurement at the 'Offset Channel
Frequency (sim)' using the 'Offset Channel Bandwidth (sim)'.

Channel Used: Offset Channel Frequency and Offset Channel Bandwidth

Types of Spectrums Used: Same as CP (sim)

Travel Direction: Same as CP
 Offset Channel Voltage (OCV)

The Offset Channel is a user defined channel relative to the main channel. The 'Offset
Channel Frequency' and 'Offset Channel Bandwidth' are specified on the 'Options Tab
(sim)' of the System Analysis Dialog Box. As with the 'Channel Frequency' measurement
Spectrasys automatically deals with the frequency translations of the 'Offset Channel
Frequency' through frequency translation devices such as mixers and frequency
multipliers.

For example, if the 'Channel Frequency' was 2140 MHz, 'Offset Channel Frequency' was 10
MHz, and the 'Offset Channel Bandwidth" was 1 MHz then the OCV is the average voltage
from 2149.5 to 2150.5 MHz.

This measurement is simply a 'Channel Voltage (sim)' measurement at the 'Offset Channel
Frequency (sim)' using the 'Offset Channel Bandwidth (sim)'.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Offset Channel Frequency and Offset Channel Bandwidth

Types of Spectrums Used: Same as CV (sim)

Travel Direction: Same as CV
 Output 1 dB Compression - Equation Based (EOP1DB)

This is the traditional cascaded output 1 dB compression measurement based on the user
entered gain and 1 dB compression values for the stages (SGAIN (sim) and SOP1DB
(sim)). This measurement can be used to compare with traditional calculations typically
found in spreadsheets.

 1 / EOP1DB[n] = 1 / (SOP1DB[0] * ECGAIN[n] / ECGAIN[0]) + 1 / (SOP1DB[1] *
ECGAIN[n] / ECGAIN[1]) + ... + 1 / SOP1DB[n] (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects.

See IP1DB (sim) as the general cascaded gain measurement that includes all secondary
effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Output 1 dB Compression Point (OP1DB)

This measurement is the output 1 dB compression point along the path. The gain is used

SystemVue - Simulation

128

to refer the output 1 dB compression points of the individuals stages forward to the
output. The user specified gain will only equal the operating gain in a perfectly matched
system operating under linear conditions.

1 / OP1dB = 1 / (SOP1dB1 + Gain2 ... + GainX) + 1 / (SOP1dB2 + Gain3 ... + GainX) +
... + 1 / SOP1dBX dBm, where X is the nth stage

See EOP1DB (sim) for an equation based measurement that uses the user specified gain
instead of the actual operating gain.

Channel Used: Same as CGAIN

Types of Spectrums Used: Same as CGAIN

Travel Direction: Same as CGAIN

NOTE
This measurement is an approximation based on the cascaded gain and the user entered compression
points from each stage based on a single input power. For higher accuracy the Pin vs Pout should be
created.

 Output 2nd Order Intercept - Equation Based (EOIP2)

This is the traditional cascaded output 2nd order intermod measurement based on the
user entered gain and 2nd order intercept values for the stages (SGAIN (sim) and
SOIP2 (sim)). This measurement can be used to compare with traditional calculations
typically found in spreadsheets.

 1 / EOIP2[n] = 1 / (SOIP2[0] * ECGAIN[n] / ECGAIN[0]) + 1 / (SOIP2[1] *
ECGAIN[n] / ECGAIN[1]) + ... + 1 / SOIP2[n] (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects. Also, equation based
cascaded intermod calculations ignore that fact that the two tones used to create the intermod may
actually be attenuated drastically like through and IF filter.

See OIP2 (sim) as the general cascaded output 2nd order intercept measurement that
includes all secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Output 3rd Order Intercept - Equation Based (EOIP3)

This is the traditional cascaded output 3rd order intermod measurement based on the
user entered gain and 3rd order intercept values for the stages (SGAIN (sim) and
SOIP3 (sim)). This measurement can be used to compare with traditional calculations
typically found in spreadsheets.

 1 / EOIP3[n] = 1 / (SOIP3[0] * ECGAIN[n] / ECGAIN[0]) + 1 / (SOIP3[1] *
ECGAIN[n] / ECGAIN[1]) + ... + 1 / SOIP3[n] (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects. Also, equation based
cascaded intermod calculations ignore that fact that the two tones used to create the intermod may
actually be attenuated drastically like through and IF filter.

See OIP3 (sim) as the general cascaded output 3rd order intercept measurement that
includes all secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Output Intercept - All Orders [All Orders] (OIP)

This measurement is the output intercept point along the path. This is an in-band type of
intermod measurement.

 OIP[n] = ICP[n] + Delta[n] (dBm), where n = stage number and Order = order of
the intermod

 Delta[n] = (ICP (sim)[n] - TIMCP (sim)[n]) / (Order - 1) (dB)

Delta is the difference in dB between the 'Total Intermod Channel Power' in the main
channel and the interfering signal present in the 'Interferer Channel' including the effects
of the order.

In order to make this measurement a minimum of two signals (tones) must be present at
the input.

first interfering signal
second interfering signal

SystemVue - Simulation

129

The Channel Frequency must be set to the intermod frequency and the Interferer
frequency must be set the first or second interfering frequency. See the 'Calculate Tab' on
the System Analysis Dialog Box to set the Interfering Frequency. Furthermore, the spacing
of the interfering tones needs to be such that intermods will actually fall into the main
channel. If these conditions are not met then no intermod power will be measured in the
main channel.

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results. The 'Automatic Intermod Mode' will set the bandwidth
appropriately.

Note: Cascaded intermod equations are not used in Spectrasys.

Caution: This method used to determine the intercept point is only valid for 2 tones with equal amplitude

Channel Used: Interferer Channel Frequency, Main Channel Frequency, and Channel
Measurement Bandwidth

Types of Spectrums Used: Same as ICP and TIMCP

Travel Direction: Same as ICP and TIMCP

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Output Intercept - Receiver [All Orders] (RX_OIP)

This measurement is the receiver output intercept point along the path. This is an out-of-
band type of intermod measurement.

RX_OIP[n] = VTCP[n] + RX_Delta[n] (dBm), where n = stage number and Order = order of the intermod

VTCP[n] = ICP[0] + CGAIN[n] (dBm)

RX_Delta[n] = (VTCP[n] - TIMCP[n]) / (Order - 1) (dB)

Delta is the difference in dB between the 'Total Intermod Channel Power' in the main
channel and the interfering signal present in the 'Interferer Channel' including the effects
of the order. In order to correctly calculate OIP due to out-of-band interferers a Virtual
Tone is created whose virtual power is that of an un-attenuated in-band tone. This power
level is simply the 'Interferer Channel Power' at the input plus the 'Cascaded Gain'.

This Virtual Tone Channel Power is different than the 'Interferer Channel Power'
measurement because the Virtual Tone Channel Power is not attenuated by out-of-band
rejection whereas the 'Interferer Channel Power' can be. For in-band interferers the Virtual
Tone Channel Power and the 'Interferer Channel Power' measurement will be identical.

In order to make this measurement a minimum of three signals (tones) must be present
at the input.

main channel signal (used for cascaded gain and total intermod channel power
measurements)
first interfering signal
second interfering signal

The Channel Frequency must be set to the intermod frequency and the Interferer
frequency must be set the first or second interfering frequency. See the 'Calculate Tab' on
the System Analysis Dialog Box to set the Interfering Frequency. Furthermore, the spacing
of the interfering tones needs to be such that intermods will actually fall into the main
channel. If these conditions are not met then no intermod power will be measured in the
main channel.

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab' of the System Analysis Dialog Box. The column
number is the same as the order starting from the left with order 0.

See the 'Intermods Along a Path' section for information on how to configure these tests.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results. The 'Automatic Intermod Mode' will set the bandwidth
appropriately.

Cascaded intermod equations are not used in Spectrasys.

Caution: This method used to determine the intercept point is only valid for 2 tones with equal amplitude

Channel Used: Interferer Channel Frequency, Main Channel Frequency, and Channel
Measurement Bandwidth
Types of Spectrums Used: Same as ICP, CGAIN, and TIMCP
Travel Direction: Same as ICP, CGAIN, and TIMCP

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.

 Output Saturation Point (OPSAT)

This measurement is the output 1 dB compression point along the path. The user specified
gain will only equal the operating gain in a perfectly matched system operating under
linear conditions.

1 / OPSAT = 1 / (SOPSAT1 + Gain2 ... + GainX) + 1 / (SOPSAT2 + Gain3 ... + GainX) +
... + 1 / SOPSATX dBm, where X is the nth stage

See EOPSAT (sim) for an equation based measurement that uses the user specified gain

SystemVue - Simulation

130

instead of the actual operating gain.

Channel Used: Same as CGAIN

Types of Spectrums Used: Same as CGAIN

Travel Direction: Same as CGAIN
 Output Saturation Power - Equation Based (EOPSAT)

This is the traditional cascaded output saturation measurement based on the user
entered gain and saturation values for the stages (SGAIN (sim) and SOPSAT (sim)).
This measurement can be used to compare with traditional calculations typically found in
spreadsheets.

 1 / EOPSAT[n] = 1 / (SOPSAT[0] * ECGAIN[n] / ECGAIN[0]) + 1 / (SOPSAT[1] *
ECGAIN[n] / ECGAIN[1]) + ... + 1 / SOPSAT[n] (Linear), where n = stage number

Caution: This measurement excludes all frequency, VSWR, and compression effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Percent Intermods - All Orders (PRIM)

This routine calculates the Percent Intermod Contribution by each stage to the final Total
Intermod Channel Power of the path.

IMREF - Equivalent Intermod Power Referenced to the Output

IMREF = GIMCP (sim)[n] + (CGAIN[nLastStage] - CGAIN (sim)[n])

PRIM[n] = IMREF[n] / TIMCP (sim)[nLastStage] (this is a ratio in Watts), Where PRIM[0]
= 0, n is the current stage, and nLastStage is the last stage along the designated path

This measurement will help the user pinpoint all stages and their respective contribution
to the total third order intermod power of the selected path.

This measurement is unit-less since the measurement is a percentage. There can cases
where the percentage sum of all the stages in the path does not equal 100%. For
instance, if the architecture contains parallel paths then each path would contribute to the
total third order intermod power but only a single path is considered in this measurement.
Another case would be where there are sufficient VSWR interactions between stages that
effect the intermod levels. Reducing the architecture to the spreadsheet case will always
yield the expected spreadsheet answers with respect to percentages. Sometimes this
measurement can be greater than 100% if the equivalent intermod power referenced to
the output is greater than the actual total intermod channel power. A good example of this
would be an amplifier where intermods are cancelled at the amplifier output. In this case
the generated intermod power alone may be much higher that the total intermod output
power.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as GIMCP, GAIN, and TIMCP

Travel Direction: Same as GIMCP, GAIN, and TIMCP
 Percent Noise Figure (PRNF)

This routine calculates the Percent Noise Figure contribution by each stage to the final
Cascaded Noise Figure of the path.

PRNF[n] = AN (sim)[n] / CNF (sim)[nLastStage] * 100 (this is a ratio of dB values), where
PRNF[0] = 0, n is the current stage, and nLastStage is the last stage along the designated
path.

This measurement will help the user pinpoint all stages and their respective contribution
to the total cascaded noise figure of the selected path.

This measurement is unit-less since the measurement is a percentage. There can be a few
cases where the percentage sum of all the stages in the path does not equal 100%. For
instance, if the architecture contains parallel paths then each path would contribute to the
total cascaded noise figure but only a single path is considered in the measurement.
Another case would be where there is sufficient VSWR interactions between stages that
effect the noise so it does not change linearly with the gain. Reducing the architecture to
the spreadsheet case will always yield the expected spreadsheet answers with respect to
percentages. See the 'Cascaded Noise Figure (sim)' measurement for additional
information.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as AN and CNF

Travel Direction: Same as AN and CNF
 Phase Noise Channel Power (PNCP)

This measurement is the integrated phase noise power in the main channel along the
specified path. Phase noise is displayed on the graphs in dBm/Hz and the channel
bandwidth is ignored while displaying phase noise. However, for channel measurements
like this one the phase noise is scaled by the channel bandwidth before being integrated.

SystemVue - Simulation

131

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY PHASE NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction
 Phase Noise Channel Voltage (PNCV)

This measurement is the peak phase noise voltage in the main channel along the specified
path. Phase noise is displayed on the graphs in V/sqrt(Hz).

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY PHASE NOISE

Travel Direction: Only spectrums traveling in the FORWARD path direction
 Gain (GAIN)

This measurement is the gain of the main channel along the specified path. The 'Gain' is
the difference, in dB, between the 'Desired Channel Power' output of the current stage
minus the 'Desired Channel Power' output of the prior stage as shown by:

 GAIN[n] = DCP (sim)[n] - DCP[n-1] (dB), where GAIN[0] = 0 dB, n = stage number

Note: The DCP measurement includes the source mismatch loss. When the source impedance is
mismatched to the system input impedance this mismatch loss will appear as an additional loss seen by
the first stage.

See the 'Desired Channel Power' measurement to determine which types of signals are
included or ignored in this measurement.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCP

Travel Direction: Same as DCPthis
 Source Mismatch Loss (MML)

This measurement shows the mismatch loss between the internal input source and the
first stage of the path. This loss will be 0 dB when the source impedance is equivalent to
the input impedance of the specified path. This loss will appear as a loss for the GAIN
measurement of the first stage.

This measurement includes ONLY DESIRED SIGNALS on the beginning node of the
path, traveling in the FORWARD path direction. All other intermods, harmonics, noise,
and phase noise signals are ignored.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY DESIRED SIGNALS

Travel Direction: Only in the FORWARD direction
 Spurious Free Dynamic Range (SFDR)

This measurement is the spurious free dynamic range along the specified path as shown
by:

 SFDR[n] = 2/3 [IIP3 (sim)[n] - MDS (sim)[n]] (dB), where n = stage number

The 'Spurious Free Dynamic Range' is the range between the Minimum Detectable
(Discernable) Signal (MDS) and the input power which would cause the third order
intermods to be equal to the MDS. The MDS is the smallest signal that can be detected
and will be equivalent to the receiver noise floor with a signal to noise ratio of 0 dB. In
other words the MDS = -174 dBm/Hz + System Noise Figure + 10 Log(Channel
Bandwidth).

See the 'Input Intercept (sim)' and 'Channel Noise Power (sim)' measurements to
determine which types of signals are included or ignored in this measurement.

Channel Used: Main Channel Frequency, Interferer Channel Frequency, and Channel
Measurement Bandwidth

Types of Spectrums Used: Same as IIP (sim) and MDS

Travel Direction: Same as IIP and MDS
 Spurious Free Dynamic Range - Equation Based (ESFDR)

This is the traditional cascaded spurious free dynamic range measurement based on the
user entered gain, noise, and intercept values for the stages (SGAIN (sim), SNF
(sim), SOIP3 (sim)). This measurement can be used to compare with traditional
calculations typically found in spreadsheets.

 ESFDR[n] = 2/3 [EIIP3 (sim)[n] - EMDS (sim)[n]] (dB), where n = stage number

The 'Spurious Free Dyanmic Range' is the range between the Minimum Detectable
(Discernable) Signal (MDS) and the input power which would cause the third order
intermods to be equal to the MDS. The MDS is the smallest signal that can be detected
and will be equivalent to the receiver noise floor with a signal to noise ratio of 0 dB.

Caution: This measurement excludes all frequency, VSWR, and compression effects.

See SFDR (sim) as the general spurious free dynamic range measurement that includes all
secondary effects.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: None

SystemVue - Simulation

132

Types of Spectrums Used: None

Travel Direction: N/A

S Parameters
Equation based measurements use stage parameters directly entered by the user like gain, noise figure,
intercept point, etc. If the model doesn't allow the user to enter one of these parameters, like the S
parameter model, then equation based measurements will ignore these parameters.

 Spurious Free Dynamic Range - Receiver (RX_SFDR)

This measurement is the spurious free dynamic range along the specified path as shown
by:

 RX_SFDR[n] = 2/3 [RX_IIP3 (sim)[n] - MDS (sim)[n]] (dB), where n = stage
number

The 'Spurious Free Dynamic Range' is the range between the Minimum Detectable
(Discernable) Signal (MDS) and the input power which would cause the third order
intermods to be equal to the MDS. The MDS is the smallest signal that can be detected
and will be equivalent to the receiver noise floor with a signal to noise ratio of 0 dB. In
other words the MDS = -174 dBm/Hz + System Noise Figure + 10 Log(Channel
Bandwidth).

See the 'Input Intercept (Receiver) (sim)' and 'Channel Noise Power (sim)' measurements
to determine which types of signals are included or ignored in this measurement.

Channel Used: Main Channel Frequency, Interferer Channel Frequency, and Channel
Measurement Bandwidth

Types of Spectrums Used: Same as RX_IIP and MDS

Travel Direction: Same as RX_IIP and MDS

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Stage Dynamic Range (SDR)

This measurement along the specified path as shown by:

 SDR[n] = SOP1DB (sim)[n] - TNP[n] (dB), where n = stage number

This simple measurement shows the difference between the 1 dB compression point of the
stage entered by the user and the 'Total Node Power' at the stage output. This
measurement is extremely useful when trying to optimize each stage dynamic range and
determine which stage that will go into compression first.

See the 'Stage Output 1 dB Compression Point (sim)' and "Total Node Power'
measurements to determine which types of signals are included or ignored in this
measurement

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as TNP

Travel Direction: Same as TNP
 Stage Equivalent Input Noise Voltage (SVNI)

This measurement is the stage equivalent input noise voltage entered by the user. Stage
noise figure, source resistance, and temperature can be converted to stage equivalent
input noise voltage using the following equations.

Source Noise Voltage (V/sqrt Hz): ens(Rs) = sqrt(4 k T Rs) for example ens(50) =
0.895 nV

Stage Equivalent Input Noise Voltage: Vni = sqrt(F - 1) * ens

Stage Noise Factor: F = (Vni / ens)^2 + 1

Stage Noise Figure (dB): NF = 10 Log(F)

where Rs is the input source resistance to the stage

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Default Unit: nV / sqrt(Hz)

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Gain (SGAIN)

This measurement is the stage gain entered by the user. For behavioral passive models
the insertion loss parameter is used. When a stage doesn't have either a gain or insertion

SystemVue - Simulation

133

loss parameter 0 dB is used. This measurement is not dependent on the path direction
through the model. For example, if the path was defined through backwards through an
amplifier the forward path gain would be reported not the reverse isolation of the
amplifier.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Input 1 dB Compression Point (SIP1DB)

This measurement is the stage 1 dB compression point calculated by using the Stage
Output 1 dB Compression Point and the Stage Gain. When a stage doesn't have this
parameter +100 dBm is used.

 SIP1DB[n] = SOP1DB (sim)[n] - SGAIN (sim)[n] (dBm), where n = stage number

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A

X-Parameters
This measurement for an X-parameter device will be based on the operating input and output impedance's
found during the simulation.

 Stage Input 1 dB Compression Voltage (SIV1DB)

This measurement is the stage 1 dB compression voltage point calculated by using the
Stage Output 1 dB Compression Voltage Point and the Stage Voltage Gain. When a stage
does not have this parameter 100 kV is used.

 SIV1DB[n] = SOV1DB (sim)[n] - SVGAIN (sim)[n] (dBV), where n = stage number

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Input Impedance (SZIN)

This measurement is the stage input impedance entered by the user. When a stage does
not have this parameter 50 ohms is used.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Input Intercept - All Orders (SIIP)

This measurement is the stage input intercept point calculated by using the Stage Output
Intercept Point and the Stage Gain. When a stage doesn't have this parameter +100 dBm
is used.

 SIIP[n] = SOIP (sim)[n] - SGAIN (sim)[n] (dBm), where n = stage number

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Input Intercept Voltage - All Orders (SIIV)

This measurement is the stage input intercept voltage point calculated by using the Stage
Output Intercept Voltage and the Stage Voltage Gain. When a stage doesn't have this
parameter 100 kV is used.

 SIIV[n] = SOIV (sim)[n] - SVGAIN (sim)[n] (dBV), where n = stage number

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Input Saturation Power (SIPSAT)

This measurement is the stage input saturation power calculated by using the Stage
Output Saturation Power and the Stage Gain. When a stage doesn't have this parameter
+100 dBm is used.

SystemVue - Simulation

134

 SIPSAT[n] = SOPSAT (sim)[n] - SGAIN (sim)[n] (dBm), where n = stage number

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A

X-Parameters
This measurement for an X-parameter device will be based on the operating input and output impedance's
found during the simulation.

 Stage Input Saturation Voltage (SIVSAT)

This measurement is the stage input saturation voltage calculated by using the Stage
Output Saturation Voltage and the Stage Voltage Gain. When a stage does not have this
parameter 100 kV is used.

 SIVSAT[n] = SOVSAT (sim)[n] - SVGAIN (sim)[n] (dBV), where n = stage number

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Noise Figure (SNF)

This measurement is the stage noise figure entered by the user. For behavioral passive
models the insertion loss parameter is used. When a stage doesn't have either a noise
figure or insertion loss parameter 0 dB is used. This measurement is not dependent on the
path direction through the model. For example, if the path was defined through the
coupled port of a coupler the insertion loss of the coupler would be reported and not the
coupled loss.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Output 1 dB Compression Point (SOP1DB)

This measurement is the stage 1 dB compression point entered by the user. When a stage
does not have this parameter +100 dBm is used.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A

X-Parameters
This measurement for an X-parameter device will be based on the operating input and output impedance's
found during the simulation.

 Stage Output 1 dB Voltage Compression Point (SOV1DB)

This measurement is the stage 1 dB voltage compression point entered by the user. When
a stage does not have this parameter 100 kV is used.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Output Impedance (SZOUT)

This measurement is the stage output impedance entered by the user. When a stage does
not have this parameter 50 ohms is used.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Output Intercept - All Orders (SOIP)

This measurement is the stage output intercept point entered by the user. When a stage
does not have this parameter +100 dBm is used.

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Output Intercept Voltage - All Orders (SOIV)

This measurement is the stage output intercept voltage point entered by the user. When a

SystemVue - Simulation

135

stage does not have this parameter 100 kV is used.

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Output Saturation Power (SOPSAT)

This measurement is the stage saturation point entered by the user. When a stage does
not have this parameter +100 dBm is used.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A

X-Parameters
This measurement for an X-parameter device will be based on the operating input and output impedance's
found during the simulation.

 Stage Output Saturation Voltage (SOVSAT)

This measurement is the stage output voltage saturation point entered by the user. When
a stage does not have this parameter 100 kV is used.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Stage Voltage Gain (SVGAIN)

This measurement is the stage voltage gain entered by the user. For behavioral passive
models the insertion loss parameter is used. When a stage doesn't have either a gain or
insertion loss parameter 0 dB20 is used. This measurement is not dependent on the path
direction through the model. For example, if the path was defined through backwards
through an amplifier the forward path gain would be reported not the reverse isolation of
the amplifier.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: None

Travel Direction: N/A
 Total Intermod Channel Power [All Orders] (TIMCP)

This measurement is the integrated total intermod power conducted from the prior stage
plus the intermod power generated by the current stage.

In equation form the conducted third order intermod power is:

 TIMCP[n] = integration of the total intermod spectrum at stage n across the main
channel

Each column in this measurement is for a different intermod order up to the Maximum
Order specified on the 'Calculate Tab (sim)' of the System Analysis Dialog Box. The
column number is the same as the order starting from the left with order 0.

Remember intermod bandwidth is a function of the governing intermod equation. For
example, if the intermod equation is 2F1 - F2 then the intermod bandwidth would be:
2BW1 + BW2. Note: Bandwidths never subtract and will always add. The channel
bandwidth must be set wide enough to include the entire bandwidth of the intermod to
achieve the expected results. The 'Automatic Intermod Mode' will set the bandwidth
appropriately.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY INTERMODS and HARMONICS (separated according to
their order)

Travel Direction: Only in the FORWARD direction
 Total Intermod Power (TIMP)

This measurement is the total integrated power of all intermod orders in the main channel
along the path. This measurement differs from the 'Total Intermod Channel Power' in that
it is a sum of all the orders of intermods whereas the 'Total Intermod Channel Power' is
separated by order.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: ONLY INTERMODS and HARMONICS

Travel Direction: Only in the FORWARD direction
 Total Node Power (TNP)

SystemVue - Simulation

136

This measurement is the total integrated power of all spectrum types at the node. These
spectrum types are: signals, harmonics, intermods, thermal noise, and phase noise.

Channel Used: None

Types of Spectrums Used: All SIGNALS, INTERMODS, HARMONICS, THERMAL NOISE,
and PHASE NOISE

Travel Direction: All directions through the node
 Total Node Voltage (TNV)

This measurement is the peak voltage of the entire spectrum at the node.

This is an extremely useful measurement in determining the total voltage present at the
input of a device. This measurement includes ALL SIGNALS, INTERMODS, HARMONICS,
NOISE, and PHASE NOISE traveling in ALL directions through the node.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Default Unit: dBV

Channel Used: No channel is used for this measurement

Types of Spectrums Used: All SIGNALS, INTERMODS, HARMONICS, NOISE, and PHASE
NOISE

Travel Direction: All directions through the node
 Total RF Power Entering a Part (RFPwrIn)

This measurement is automatically added to the main dataset of the system analysis. This
measurement contains the total RF power entering the given part. All input signals on all
part terminals are summed together to determine the total RF input power.
 Virtual Tone Channel Power (VTCP)

This measurement is the virtual tone channel power. The virtual tone is the power level of
an un-attenuated tone along that cascade of stages. This tone consists of the power level
of one of the tones at the input of a cascade plus the in-channel cascaded gain.

 VTCP[n] = ICP (sim)[0] + CGAIN (sim)[n] (dB), where n = stage number

Channel Used: Same as ICP and CGAIN

Types of Spectrums Used: Same as ICP and CGAIN

Travel Direction: Same as ICP and CGAIN

See the lntercept Measurements in the Lab and Cascaded Intermods and Spectrasys
sections for additional information.
 Voltage DC (VDC)

This measurement is the DC voltage along the specified path.

This measurement includes ALL SIGNALS, INTERMODS, HARMONICS, NOISE, and
PHASE NOISE traveling in ALL directions through the node.

Channel Used: No channel is used for this measurement

Types of Spectrums Used: All SIGNALS, INTERMODS, HARMONICS, NOISE, and PHASE
NOISE

Travel Direction: All directions through the node
 Voltage Gain (GAINV)

This measurement is the voltage gain of the main channel along the specified path. The
'Voltage Gain' is the difference between the 'Desired Channel Voltage' output of the
current stage minus the 'Desired Channel Voltage' output of the prior stage as shown by:

 GAINV[n] = DCV (sim)[n] - DCV[n-1] (dB20), where GAINV[0] = 0 dB20, n = stage
number

See the 'Desired Channel Voltage (sim)' measurement to determine which types of signals
are included or ignored in this measurement.

Note
This measurement is not currently supported for non-linear circuit models such as X parameters, etc.

Channel Used: Main Channel Frequency and Channel Measurement Bandwidth

Types of Spectrums Used: Same as DCV

Travel Direction: Same as DCV

SystemVue - Simulation

137

 WhatIF Frequency Planner
A unique technique has been developed to reduce weeks and days spent doing spurious
searches to hours and minutes. This technique is so powerful that spurious performance of
all Intermediate Frequencies (IF) can be seen on a single graph. Spurious free regions are
identified including multiple frequency band conversions to a common IF frequency. Users
can see performance trade offs between IFs and can identify all spurious offenders giving
them complete control over mixer requirements and specifications. This technique
determines spurious responses and their amplitudes based on the characteristics of the
mixers to be used, system frequencies and bandwidths, and desired IF bandwidths.
Simulation speed is fast since conventional sweep analysis has been eliminated.

The WhatIF synthesis consists of the dialog box, schematic representation of the
conversion process, and output graph.

Note
The schematic is not used in the simulation process. No analysis is run on the mixer(s) in the schematic.
They are present only as a visualization of the selected conversion scheme. The mixer in the schematic is
generic and its parameters do not correspond to values in WhatIF. Only the mixer orientation and number
of mixers are used in the schematic.

 WhatIF Walkthrough
As an example let's suppose that we have a dual band receiver operating in the 869 to
894 and 1930 to 1990 MHz bands. A single IF frequency is desired to minimize cost of
downstream components. An IF should be selected to minimize the potential for self
inflicted interference. Let's also assume that spurs 100 dB below the desired IF output
level is our definition of spurious free. Other important design criteria are IF bandwidth of
1.25 MHz and maximum RF input mixer drive level of -10 dBm with a mixer LO level of +7
dBm for the 800 MHz mixer and 0 dBm input drive level with a mixer LO level of +10 dBm
for the 1900 MHz mixer. It will also be assumed that a double balance mixer will be used
to predict spurious amplitudes. Default values for the double balanced mixer is assumed.

DESIGN STEPS

Create a new frequency planner synthesis by clicking the 'New' button. Find the1.
'Synthesis' submenu and then select the 'Add Frequency Planner' submenu item.
Change the number of parallel mixers to 2.2.

Click the 'Inputs' tab to specify the parameters for the parameters for our conversion1.
scheme.
Click 'Mixer1'.2.

SystemVue - Simulation

138

Select a Difference mixer with Low Side LO.1.
Enter the RF center frequency of 881.5 MHz.2.
Enter the RF bandwidth of 25 MHz (869 - 894 MHz).3.
Enter the IF bandwidth of 1.25 MHz.4.
Enter the Input drive level as -10 dBm.5.
Enter the LO drive level of +7 dBm.6.
Click 'Mixer2'.7.

Select a Difference mixer with High Side LO.1.
Enter the RF center frequency of 1960 MHz.2.
Enter the RF bandwidth of 60 MHz (1990 - 1930 MHz).3.
Enter the IF bandwidth of 1.25 MHz.4.
Enter the Input drive level of 0 dBm.5.
Enter the LO drive level of +10 dBm.6.
Click the 'Apply' button since defaults for all remaining parameters will be used.7.

The figure shows results in an easy to interpret format. The performance of every valid IF
frequency that meets the requirements for both RF bands appears on a single graph.
Mouse fly-over text is used to identify each spur and spur free region. For the first time in
the industry, IF frequency selection is optimized since performance trade offs are quickly
made despite complications from multiband operation. Notice in Figure 1 that the half-IF
spur (2x2 from 0 to 119.375 MHz) is easily identified on the left of the graph and well as
all spurious free regions shaded in green.

To demonstrate the analysis capability of WhatIF a spur free IF frequency of 328 MHz will
be selected and analyzed. This spur free region can be identified in preceding figure.

On the 'Settings' tab:

Select Single Intermediate Frequency
Set IF Center Frequency to 328 MHz

SystemVue - Simulation

139

When this IF frequency is specified an LO for each RF band is created internally. This LO
along with the specified RF bands will be analyzed using the appropriate equation (i.e. FIF
= m x FRF ± n x FLO). The mixer output is as shown.

This display is equivalent to looking at the down converted single IF spectrum output of
the dual band conversion scheme on a spectrum analyzer. If the RF and LO frequencies
where varied across their ranges the respective spurs would trace the given ranges.

Notice that the valid IF region is also shown for convenience.

 Frequency Planning Fundamentals
Frequency planning is one the first steps performed during the RF architecture design
phase. During this phase several frequency schemes are considered to ensure
performance reliability internally as well as externally. External performance is typically
controlled by a regulatory agency (i.e. Federal Communications Commission FCC or
European Telecommunications Standards Institute ETSI) and the designer must comply
with requirements before products are shipped and revenue collected. Spurious integrity
for RF design is an age-old problem. Spurious responses, which occur naturally in the
frequency conversion process, can render a particular design completely useless and non-
compliant.

 Spur Analysis Basics

The frequency conversion equation is:

FIF = m x FRF ± n x FLO or FRF = m x FIF ± n x FLO

m = 0, 1, 2, ...

n = 0, 1, 2, ...

FIF = IF frequency

FRF = any frequency in the RF band

FLO = any frequency in the LO band

From this equation all spurious products can be determined. It's easy to analyze
frequencies that fall in a given IF band. Determining the amplitude of these spurious
products is more challenging. But, selecting the best IF frequency can be difficult at best
because of the time needed to create and analyze the hosts of data sets representing all
of the possible spurious combinations for a single IF frequency. The process is further
complicated for multiple band operation where a common IF is desired for all bands. Also,
locating an input IF frequency while trying to maintain spectral purity across a wide output
band is troublesome.

 Spur (Intermod) Tables

In an ideal world on the sum and difference product would come out of a mixer.
However, in the real world all the products governed by the following equation come out
of the mixer.

FIF = m x FRF ± n x FLO or FRF = m x FIF ± n x FLO

m = 0, 1, 2, …
n = 0, 1, 2, …

FIF = IF frequency

FRF = any frequency in the RF band

FLO = any frequency in the LO band

One way to characterize the spurious performance of a mixer is to use a mixer spur table.
This table shows the amplitude relationships of each harmonic combination of mixer input
(RF/IF) and LO frequencies to the desired mixer output reference level.

The power of the spurious products on the mixer output is a strong function of the power
levels of the RF and LO signals. A spur table example is shown below.

SystemVue - Simulation

140

Table Characterization Parameters:

FRF = 500 MHz at -2 dBm

FLO = 470 MHz at 10 dBm

FIF = 30 MHz, measured to be -10 dBm

 L O H a r m o n i c

 0 1 2 3 4 5 6 7 8 9 10

R 0 X 14 29 23 42 25 43 53 57 65 72

F 1 20 0 29 12 34 25 47 35 42 57 57

 2 52 40 58 40 58 41 50 48 66 53 68

H 3 46 49 50 49 53 49 52 48 58 57 51

a 4 73 73 65 62 66 59 66 55 65 65 70

r 5 77 76 84 63 64 60 59 60 59 68 71

m 6 78 79 78 82 79 79 76 75 75 74 79

o 7 79 78 77 79 82 80 81 80 80 79 78

n 8 79 80 79 78 78 84 84 82 82 81 82

i 9 79 79 80 79 78 79 84 84 82 83 82

c 10 79 79 79 79 80 79 78 84 84 82 83

The table contains the m harmonics of the RF and n harmonics of the LO. All values in the
table are relative to the desired output and are expressed in dBc. The desired output is
the 1 x 1 entry in the table should always be 0 since this is the reference point. Even
though no negative signs are shown all values are assumed to be below the desired
output level of the 1 x 1 product. Some vendors may show a '+' sign next to the number
indicating the value is above the reference level. The first column contains harmonics of
RF (n = 0) and the first row contains harmonics of the LO (m = 0).

 Spur Table Example

For example, the 1 x 3 product (1 x FRF + 3 x FLO) would occur at two frequencies: the

sum at 1910 MHz and the difference at 910 MHz. The 1 x 3 entry in the table is 12. This
means that the absolute power level of these two frequencies is 12 dB below the desired
output at 30 MHz. Since the table was characterized with an output at -10 dBm the
spurious level of the 1 x 3 would be at -22 dBm.

The following figures show the setup use to measure the spur table shown above and the
results for some of the lower orders.

 Input Power Rolloff

Note
Theoretically, the 'm x FRF' or 'm x FIF' products will decrease (m-1) dB for each dB the input power (RF
or IF) is decreased below the RF (IF) characterization level of the spur table.

The following table shows how the relative power changes at the mixer output when the
input power is dropped by 1 dB.

SystemVue - Simulation

141

 L O H a r m o n i c

 0 1 2 3 4 5 6 7 8 9 10

R 0 X 0 0 0 0 0 0 0 0 0 0

F 1 0 0 0 0 0 0 0 0 0 0 0

 2 1 1 1 1 1 1 1 1 1 1 1

H 3 2 2 2 2 2 2 2 2 2 2 2

a 4 3 3 3 3 3 3 3 3 3 3 3

r 5 4 4 4 4 4 4 4 4 4 4 4

m 6 5 5 5 5 5 5 5 5 5 5 5

o 7 6 6 6 6 6 6 6 6 6 6 6

n 8 7 7 7 7 7 7 7 7 7 7 7

i 9 8 8 8 8 8 8 8 8 8 8 8

c 10 9 9 9 9 9 9 9 9 9 9 9

Harmonics of the LO are independent of the RF (IF) drive level. These spurious products will not change as
the RF (IF) drive level changes. However, LO harmonics will drop 1 dB for every dB that the actual LO is
below the LO characterization level.

Tip
When verifying a spur table set LO and RF levels to the same levels used to characterize the spur table.
This will avoid additional calculations dealing with RF and LO power levels that may be different than table
characterization levels.

 Spur Table Example Rolloff

For example, all the 2 x FRF +/- n x FLO products shown in the prior graph will drop their

relative values by 1 dB. All the 3 x FRF +/- n x FLO products will drop by 2 dB.

The following figure shows the output spectrum of the same mixer used in the prior graph
when the input power level has dropped by 1 dB.

Remember
The desired about of the mixer also dropped by 1 dB. The new reference level must be used to determine
spur table entries.

 Orders Outside of Spur Table

In cases where the maximum order is set higher than orders specified in tables a
default suppression value is used. Each spur table has an associated default
suppression value.

 Spur Table Limitations

Spur tables are limited in the following ways:

They do not distinguish between sum or difference frequencies. The frequency
response is assumed to be flat and the part perfect so the amplitudes are the same
regardless of whether the output was a sum or a difference.
They are only valid under the conditions the table was characterized under.
Compression effects are only considered at the characterization state. If mixer input
drive changes it is assumed the spur tables scales accordingly.

Mixer spur levels are affected by the load impedance they see at the mixer output. An accurate spur table
would be characterized with the same load impedances as in the real system.

 Traditional Approaches

Traditional tools include spreadsheets, spur charts, and many other types of custom tools.

The following weaknesses of these tools are readily apparent:

Interpretation of the results can be complicated and confusing1.
Assume the LO band is independent of the RF band2.
Don't account for IF bandwidth3.
Don't account for spurious amplitude4.

Interpretation of Results

Spurious searches typically involve the interpretation of large amounts of data. Charting
techniques typically require normalized data and become very complicated when
bandwidths are taken into account. Custom tools are difficult to use for engineering
groups since many RF engineers have their own sets of custom tools they like to use. This
makes it very difficult to pass the design from one engineer to another.

Dependence of LO and RF Bandwidths

SystemVue - Simulation

142

This is one of the most glaring problems with spur search tools. In order to truly
determine the performance of a given IF the LO band and RF band are always dependent
and cannot be separated. The relationship between the RF, LO, and IF bands are as
follows:

FRFBW = FLOBW + FIFBW

As seen the LO bandwidth must always be smaller than the RF bandwidth by the
bandwidth of the IF. Violation of this rule falsely predicts spurs appearing across wider
frequency ranges. True characterization of every IF frequency can only be obtained by
preserving this bandwidth relationship for every case. However, this becomes tedious and
time consuming with traditional approaches and is generally ignored.

Don't Account for IF Bandwidth

IF bandwidths are constantly increasingly causing additional difficulties during IF selection.
As IF frequencies become wider the chances increase that a spur will fall in-band.
However, as the IF bandwidth increases, the required LO bandwidth decreases yielding
spurious combination's that cover smaller frequency ranges. The designer must account
for these differences to minimize design time and component over or under specification.

Don't Account for Spurious Amplitude

Most spur searches are tedious and time consuming. Accounting for amplitude is yet
another layer of complexity. Depending on the spurious combination and mixer input drive
level, legitimate IF frequencies can be selected even though spurs may appear in-band if
their amplitude is low enough. Knowing spurious amplitudes is very helpful when making
trade-offs during the frequency planning process.

 WhatIF
WhatIF is unique because it is a synthesis technique that accounts for the bandwidth of
the RF, LO, and IF signals. This synthesis technique is fast and shows the entire frequency
performance for every possible IF on a single easy to read graph.

 WhatIF Setup

 Maximum Order

Maximum Order = m + n

The maximum order determines the upper limit of spurious combinations. For certain
mixer configurations the maximum order will affect the maximum IF or spurious response
seen on the display.

If the maximum order is set higher than the orders contained in the spur table a default amplitude value
will be used.

 Amplitude Range

This range determines the limit on which spurious responses get displayed or thrown
away. This range is in dB relative to the desired mixer output of the 1 x 1 product.

This range may also affects the upper limit of the spurious or IF frequencies being display. Generally,
higher order products have lower amplitudes. These may fall outside the given amplitude range and will
not be displayed.

 Mixer Configuration Equations

In order to determine difference between wanted and unwanted IF frequencies the
desired mixer configuration needs to be known. The following configurations can be
selected by selecting the IF location shown in the 'Intermediate Frequency at' group on
the Settings Tab and by selecting parameters in the 'Desired Output Frequency'
group located on the Inputs Tab.

IF at the Mixer Output:

Difference, Low Side LO: IF = RF - LO.

Difference, High Side LO: IF = LO - RF.

Sum: IF = RF + LO.

IF at the Mixer Input:

Difference, IF < LO: RF = IF - LO.

Difference, LO > IF: RF = LO - IF.

Sum: RF = IF + LO.

Note
Some configurations require the user to set an upper limit of the desired output. This limit is use to
restrict the range of spurious calculations.

 Mixer Drive Levels

Mixer input (RF/IF) drive levels are used to determine the amplitude of the spurious
responses. Harmonics of the mixer input (RF/IF) are mixed with the harmonics of the LO
as shown by the following equation.

FIF = m x FRF ± n x FLO or FRF = m x FIF ± n x FLO

m = 0, 1, 2, …
n = 0, 1, 2, …

FIF = IF frequency

FRF = any frequency in the RF band

SystemVue - Simulation

143

FLO = any frequency in the LO band

Note
Theoretically, the 'm x FRF' or 'm x FIF' products will decrease (m-1) dB for each dB the input power (RF
or IF) is decreased. Obviously, the lower the input drive level to the mixer the more linear it will be and
the lower the spurious responses are. See Input Power Rolloff for additional information.

Note
These levels have no effect on the widths (frequency ranges) of the spurious bands that are generated by
WhatIF. The widths of these spurious bands are controlled by the RF Center Frequency, RF Bandwidth, IF
Bandwidth, and mixer configuration (sum, difference low side LO, or difference high side LO).

 Bandwidth Relationships

The RF, IF, and LO bandwidths are all related according to the following figure:

From this figure we see the following equation must be true:

FRFBW = FLOBW + FIFBW

 How it works

WhatIF uses closed form equations to generate all spurious responses. Mixer setup
information is used to provide needed input to the calculation functions and restrict the
output.

Note
The schematic is not used in the simulation process. No analysis is run on the mixer(s) in the schematic.
They are present only as a visualization of the selected conversion scheme. The mixer in the schematic is
generic and its parameters do not correspond to values in WhatIF. Only the mixer orientation and number
of mixers are used in the schematic.

 All Intermediate Frequencies

The mixer configuration information is used to determine the LO center frequency. This LO
center frequency will change for every valid IF frequency. The IF frequency range will
cover every possible IF that produces a valid IF for the given mixer configuration. See
Valid IF Frequencies for additional information. The LO bandwidth remains constant for
each IF frequency and is calculated according to the formula:

FLOBW = FRFBW - FIFBW

The values of m and n are passed to an internal proprietary function which returns the
range of intermediate frequencies over which the given spurious combination will be
present. This range of IF's for the given combination of m and n is displayed on the graph
if the amplitudes fall within the amplitude range.

Note
The upper IF (and LO) limit is a function of the Mixer Configuration, RF Center Frequency and
corresponding Bandwidth, Maximum Order, and Amplitude Range. The Mixer Configuration will
determine the location of the valid IF region. As the RF Center Frequency increases so will the needed
LO. Larger values of the Maximum Order will cause a need for higher LO frequencies. If a spurious
amplitude falls below the amplitude range then this spurious combination of m and n will be ignored.

 Single Intermediate Frequency

When the user specifies the IF Center Frequency the exact LO frequency is determined
from the selected mixer configuration. The LO bandwidth is determined from the RF and IF
bandwidths according to the following equation:

FLOBW = FRFBW - FIFBW

The LO range is displayed in the info window near the bottom of the Inputs Tab. m
combinations of the input (RF / IF) and n combinations of the entire LO range is calculated
and displayed on the graph.

 WhatIF Output

The output of WhatIF is displayed by horizontal bars or bands. The width of the band
corresponds to spur frequency range. The width of these bands is a function of the RF
bandwidth, LO bandwidth, and the combination order. The LO bandwidth is a function of
the IF bandwidth.

Each parallel frequency conversion (or mixer) is represented by a different color on the
graph. The user can change these colors on the graphs properties page.

Flyover Help - The user can place the mouse cursor over any object in the graph to get
information about the given spurious band or region. If you want the fly over help to
become part of the graph it can be converted into an 'Info Balloon' by right clicking on
the trace and selecting the menu option 'Create Info Balloon'.

 All Intermediate Frequencies

The following figure shows and example response for all 3 x 2 spurs (RF x LO). The given

SystemVue - Simulation

144

mixer configuration is a high side LO in a difference configuration. The flyover help show
the particular m and n combination in this case a 3 x 2 spur. The next line show the
equation how the center of the IF band is calculated. The LO center frequency is shown
next. The range of IF frequencies that will have this 3 x 2 spurs is shown by the Start
and Stop frequencies. The predicted amplitude is in dB below the 1 x 1 product is also
shown.

Note
The bandwidth of the LO is not shown in the flyover help. The LO bandwidth is given by the equation: FLO

BW = FRFBW - FIFBW and is easily calculated by the user.

Note
This is not a spectrum analyzer type of graph. The horizontal axis is IF frequency. To determine the
performance of any particular IF simply imagine a vertical line at that IF frequency. The performance can
easily be determined by observing any horizontal spurious products crossing this vertical line.

Spurious free regions across the given mixer dynamic range are shown in their own
color. Spurious free ranges are post processing artifacts of the spurious calculations. IF
frequencies that have no horizontal spur bands crossing them over the specified
amplitude range are identified and shown as spur free regions in the graphs.

Note
Spur free ranges will generally change as the Maximum Order and Amplitude Range are changed.

 Single Intermediate Frequency

The output of the single intermediate frequency mode is much like a spectrum analyzer
type of plot. The user can think of this plot as imaginary spectrum plot where we could
place peak tracing markers on each spurious product as the RF and LO frequencies are
moved across their entire ranges. The spurious products would trace these horizontal
frequency bands.

The valid output region across the given mixer dynamic range is also shown in its own
color. The graph shows a spectrum analyzer view showing the given mixer output
frequency with its bandwidth along with any spurious frequencies that may appear in the
output spectrum. One way to think of the spurious responses for this graph is that if the
mixer input signal is swept across its input range and the LO is swept across its range the
spurious signals would track the shown frequencies ranges.

At the top of the graph a 1x1 spur can be seen.

Remember
The desired output (valid region) will only occur at the single output frequency plus its bandwidth.
However, if the input were to be swept across its entire range and the LO was swept across its entire
range this would produce a 1x1 output, which covers a much larger range than the single IF frequency as
shown on the graph.

In the above figure the RF bandwidth is 25 MHz and the IF bandwidth is 1 MHz. Using
equations given earlier the LO bandwidth is 24 MHz. The 1x1 product always has the
following bandwidth:

1x1BW = FRFBW + FLOBW

The following figure is an example of an output for a 250 MHz IF appearing at the mixer
output.

SystemVue - Simulation

145

Note
THE GRAPHICAL OUTPUT IS ONLY FROM THE SELECTED MIXER CONFIGURATION. i.e. Sum or
Difference. If a difference then only the information for the high or low side LO injection is shown. Since
mixers produce products from all configurations the user should examine all configurations with the
selected LO to determine the final spurious performance.

 Valid IF Frequencies

Valid IF frequencies are based on mixer configuration equations. Valid IF frequencies are
those frequencies whose equations give a positive frequency result. For example, if we
were trying to find an IF for a sum mixer with the IF at the input (RF = IF + LO) then by
definition the IF frequency must be below the RF band. No valid IF frequencies could exist
for a sum output where the IF frequency was greater than the RF frequency. If the user
wants an IF frequency greater than the RF band then a difference mixer must be selected.
In the above example (RF = IF + LO) the maximum IF could be equal to the RF frequency
when the LO is at 0 Hz. The minimum IF frequency is 0 Hz when the LO equals the RF
frequency. Consequently, valid IF frequencies for this configuration would be between 0
Hz and the lowest RF frequency.

A summary of the valid ranges of the IF for given mixer configurations is shown in the
following table.

Mixer Configuration Valid IF Range

IF = LO - RF (High Side
LO)

IF < LO

IF = RF - LO (Low Side LO) IF < RF

IF = RF + LO IF > RF

RF = LO - IF (High Side
LO)

IF < LO

RF = IF - LO (Low Side LO) IF > RF

RF = IF + LO IF < RF

Remember
The LO injection side is determined from the relationship of the LO Frequency to the mixer Input
Frequency not necessarily the RF frequency. When the IF frequency is at the mixer input then the
injection side is determined by whether the LO frequency is higher or lower than the IF frequency.

 Considerations when the IF is at the Mixer Input

The graphical output results when the IF is at the mixer input are not the same as when
the IF is at the mixer output. When the Worst Case Behavior of 'All Intermediate
Frequencies' is being examined for the IF input case the graphical output shows IF
frequencies that appear at the mixer input. Once again this type of graph is showing
what spurious combinations will appear in the RF output band after a given IF is
selected.

The following figures show an example of the IF at the mixer input.

The visual representation:

The mixer configuration:

SystemVue - Simulation

146

Worst case behavior for all IF frequencies:

If a spur free IF is selected at 1250 MHz the graphically output now shows the spurious
performance of the RF band at the mixer output.

This graphs shows users the RF spurious performance at the mixer output without
filtering. This output aids the designer in determining filtering requirements.

 Invalid Ranges (Parallel Mixers Only)

In the parallel mixer case the intersection of valid frequencies for all mixers is shown on
the graph. For example, one mixer could have a sum configuration and another could
have a difference configuration. Only the IF frequencies that satisfy both of these
conditions are valid. Frequencies outside the valid region will be marked as an Invalid
since they don't have overlapping frequencies. Frequencies in this region may satisfy one
or more of the parallel mixers configurations but not all of them.

SystemVue - Simulation

147

In the above figure the gray hatched region shows an invalid range above about 900 MHz.
The blue mixer has an RF center frequency of 881.5 MHz configured as a difference mixer
with low side LO injection with a 25 MHz RF bandwidth. The red mixer has an RF center
frequency of 1960 MHz configured as a difference mixer with high side LO injection
with a 60 MHz RF bandwidth. Both mixers use a 1.25 MHz IF bandwidth. The maximum
order is 10.

Note
The user should quickly recognize how a common IF could not be selected for frequencies higher than
881.5 MHz since valid IF frequencies only exist below the RF frequency for this mixer configuration.

 Degenerate Spurs

A degenerate spurious product is a spur that will be produced regardless of the LO
frequency due to the relationship with the RF carrier frequency and the RF and IF
bandwidths.

Degenerate spurious products occur under the following conditions for the specified
configurations:

 Intermediate Frequency at the Mixer Output

Spurious products will be created for any LO frequency when the following equation is
true and the harmonic of the LO = 1 :

FRF <= |(|M| x BWRF + BWLO + BWIF) / (2 (1 - |M|))|

Where:

FRF - RF Center Frequency

BWRF - RF Bandwidth

BWLO - LO Bandwidth

BWIF - IF Bandwidth

M - Harmonic of the RF

The following figures depict this degenerate case:

SystemVue - Simulation

148

If a 10 GHz IF is picked the 2 x 1 degenerate spur will appear in the IF band as shown
below.

 Intermediate Frequency at the Mixer Input

Spurious products will be created for any LO frequency when the following equation is
true and the harmonic of the LO = harmonic of the IF (M=N) :

FRF <= |(BWRF + |M| x BWLO + |M| x BWIF) / (2 (1 - |M|))|

Where:

FRF - RF Center Frequency

BWRF - RF Bandwidth

BWLO - LO Bandwidth

BWIF - IF Bandwidth

M - Harmonic of the IF

The following figures depict a degenerate case:

SystemVue - Simulation

149

If a 10 GHz IF is picked the 2 x 2 degenerate spur will appear in the IF band as shown
below.

 Limitations

WhatIF only supports the agile conversion stage. However, multiple parallel agile
conversion stages to a single IF frequency is supported. For multiple conversion stages it
is recommended that Spectrasys be used to determine the performance of the entire
system.

 Creating an Intermod Table
To create an intermod table to use with WhatIF follow these steps:

Location
C:\Program Files\SystemVueXXXX.XX\Examples\RF Architecture Design\RF Design Kit\ Simple Table
Mixer.wsv

Load the shipping example 'Simple Table Mixer'.1.
Set the 'Input' and 'LO' frequencies of the sources in the schematic to those desired2.
for characterization.
Set the 'Input' and 'LO' power level of the soureces in the schematic to those
desired for characterization. Set the 'RFTableInPwr' and 'RFTableLOPwr'
parameters of the table mixer to these same power levels.
Set the 'RFTableDefSup' of the table mixer to the desired default suppression3.
value.
Adjust the intermod table values in the equation block associated with the4.
schematic until the desired response is achieved.
Set the 'Designator' of the mixer to the desired name that will appear in the part5.
library.
Copy the table from the equation block and paste it into the 'RFTableData'6.
parameter of the table mixer. i.e. from [to].

Note
WhatIF does not support equations in the intermod table. All variables used in a table need to be
removed before the mixer is added to a part library.

Right click on the table mixer in the schematic and select 'Copy to Library'.7.
Select a new or existing library.8.
Launch WhatIF.9.
Browse to the library where the table mixer was saved.10.

Note
If you copied the mixer to a new library you may have to add this library in the library manager.

Select this new table mixer.11.

Note
If the IF is at the mixer input then all of the 'IFTable...' parameters must be updated.

 Dialog Box Reference

 General

There Reposition, Undo, and Apply buttons that are available on every tab.

Reposition - The Reposition Button ()will cause the graph and
schematic windows to be resized to fit within the Genesys environment.

SystemVue - Simulation

150

Undo - The Undo Button () will revert WhatIF to the state when the 'Apply'
button was last clicked.

Apply - The Apply Button () causes the spurious performance to be calculated
and displayed.

 Settings Tab

This tab is used to specify the type of spurious analysis that will be performed.

Name - Name of the frequency planner (WhatIF) that appears in the workspace tree.

Dataset - Name of the dataset where the WhatIF data will be stored when the apply
button is clicked.

Intermediate Frequency at

Mixer Input - In this configuration WhatIF will determine a spurious
combination of the mixer IF input and LO that will cause spurious signals to
appear in the given RF band.

Mixer Output - In this configuration WhatIF will determine a spurious
combination of the mixer RF input and LO that will cause spurious signals to
appear in the IF band.

Examine Worst Case Behavior of

All Intermediate Frequencies - Shows graphically the performance of every
valid IF for the given configuration. Each frequency conversion (or mixer) is
represented by a different color on the graph.

Single IF Frequency - Specify an IF frequency that will be used to determine
the exact LO frequencies for each mixer. Shows graphically output spectrum like
what would be seen on a spectrum analyzer.

Number of Parallel Mixers - This is the number of RF bands that will be converted to /
from a common IF. The schematic shows this representation when the 'Apply' button has
been clicked. With the IF at the mixer input parallel mixers represent the numbers of RF
bands which a simulcast will occur from a common IF. When the IF is at the mixer output
then parallel mixers represent the number of RF bands being converted to a common IF.

Spurious

Maximum Order - Maximum order used for calculating spurious products

Amplitude Range - Only spurious products falling within this range of the
desired 1x1 IF signal will be retained in the dataset and shown on the graph.
The spurious free range is based on this amplitude range.

Apply - Clicking the button will cause the WhatIF frequency plan to be evaluated, the
schematic to be updated, and the data to be saved in the dataset and displayed on the
graph.

Undo - Clicking this button will undo all changes up to the last 'Apply'.

Factory Defaults - When clicked will reset all parameters on all tabs to their factory
default values.

 Inputs Tab

This tab is used to specify the characteristics of each RF band convert to or from an IF.
 Drive levels can also be specified for each of the mixers used in the conversion process.

The number of parallel mixers is shown in the list at the left. All other information on this
page is based on the selected mixer from this list. Each mixer or conversion block can
have its own parameters. However, only valid outputs will be shown on the graph. It is
possible that the users can configure multiple mixers in such a way to prohibit a common
IF.

SystemVue - Simulation

151

Desired Intermediate Frequency

The user can select either whether they want to find an IF for either a sum or difference
configuration. A difference configuration can be achieved through either a High Side LO
(LO frequency greater than the RF/IF frequency) or a Low Side LO (LO frequency lower
than the RF/IF frequency). For the sum configuration the user can specify how high in
frequency they want to view the results.

RF Center Frequency Center frequency of the RF band.

RF Bandwidth - Bandwidth of the RF band.

IF Bandwidth - Bandwidth of the IF frequency or IF filter. The IF frequency is generally
the bandwidth of the modulated signal. However, since brick wall filters are very difficult
to build, this bandwidth can be increased to account for filtering imperfections. During the
analysis, when examining all IF frequencies any spurious signals outside this bandwidth
are ignored since brick wall filtering is assumed.

Input Drive Level - This is the input drive level to the mixer and has no bearing on the
width of the spurious bands. This level is used in conjunction with the LO drive and the
'Mixer Type' to determine the amplitude of the spurious responses.

LO Drive Level - This is the LO drive level to the mixer and has no bearing on the width
of the spurious bands. This level is used in conjunction with the input drive and 'Mixer
Type' to determine the amplitude of the spurious responses.

Note
The RF Center Frequency, RF Bandwidth, and IF Bandwidth determine the width of the spurious bands.
Internally, during the simulation process an LO center frequency and bandwidth is determined that is used
for spurious calculations. Even though the mixer Input and LO drive levels don't affect the width of the
spurious bands they can affect the spurious free bands since spurious free regions are determined within
the specified amplitude dynamic range. To compensate for spurious amplitude inaccuracies the user can
either specify a larger amplitude range or use the intermod table to specify more accurate mixer
amplitude characteristics.

 Type Tab

This tab is used to specify the amplitude performance of each mixer. The user has the
choice of either a double balanced mixer or a user defined intermod table.

The number of parallel mixers is shown in the list at the left. All other information on this
page is based on the selected mixer from this list. Each mixer or conversion block can
have its own amplitude specifications. There are two types to choose from.

Double Balance - Parameters for the double balanced model can be changed by clicking
the 'Advanced' button. This model is based on the work of Bert Henderson at Watkins
Johnson. The name of the application note discussing this is, "Predicting Intermodulation
Suppression in Double-Balanced Mixers ".

Note
The materials, text and company images in this application note are provided for engineers and the public.
Any commercial use of publication of them without authorization is strictly prohibited. All materials are
copyrighted and are not in the public domain. Copying of materials from these pages is not permitted.

file:/pages/createpage.action?spaceKey=sv201001&title=Double+Balanced+Mixers+App+Note&linkCreation=true&fromPageId=96375896
file:/pages/createpage.action?spaceKey=sv201001&title=Double+Balanced+Mixers+App+Note&linkCreation=true&fromPageId=96375896
file:/pages/createpage.action?spaceKey=sv201001&title=Double+Balanced+Mixers+App+Note&linkCreation=true&fromPageId=96375896

SystemVue - Simulation

152

Parameters Description

VF Forward Diode Voltage

LO Balun Isolation factor
(Alpha)

Isolation of the LO balun where isolation = 20 Log (1 - Alpha) dB. This isolation
will be used for LO to RF and LO to IF.

RF Balun Isolation factor
(Beta)

Isolation of the RF balun where isolation = 20 Log (1 - Beta) dB. This isolation
will be used for RF to IF or IF to RF.

Diode2 Balance Voltage balance between Diodes 2 and 1

Diode3 Balance Voltage balance between Diodes 3 and 1

Diode4 Balance Voltage balance between Diodes 4 and 1

Intermod Table - This is the part name and library of the table mixer. Click the ellipsis
button (!ellipsis_button.gif!) to bring up the part selector. Select the 'Library' and
'Category' of the table mixers. At noted, this field uses actual mixer intermod table parts.
Not just an numerically defined intermod table. Drive levels and directions through the
mixer are read from this model. The corresponding drive levels for those tables will also
be used.

The extracted table parameters will appear in the info window near the bottom of the
tab.

Remember
If the IF is at the mixer output then the RFTable... will be used. If the IF is at the mixer input then the
*IFTable...' will be used.

Note
The default table mixer in SystemVue can be used here.

file:/pages/createpage.action?spaceKey=sv201001&title=Mixer+Intermod+Table&linkCreation=true&fromPageId=96375896
file:/pages/createpage.action?spaceKey=sv201001&title=Mixer+Intermod+Table&linkCreation=true&fromPageId=96375896

	 Create Your First Data Flow Simulation
	 Phase 1: Start SystemVue with a Blank Template
	 Phase 2: Create the System Design
	 Phase 3: Run the Simulation
	 Phase 4: Creating Additional Graphs

	 Setting up the Data Flow Analysis
	 Basic settings for the Data Flow Analysis
	 Default Source and Sink Parameters for Data Collection
	 Other settings for the Data Flow Analysis
	 Options tab for the Data Flow Analysis
	 Reading Data Flow Information Table
	 Accessing Data Flow Analysis Settings from Equations

	 About the Data Flow Simulator
	 Outline

	 Introduction to Data Flow Simulation
	 Data Flow Models of Computation
	 Synchronous Data Flow
	 Timed Synchronous Data Flow
	 Simulation Control

	 Timing Method
	 Timing Method for Numeric (Untimed) Models
	 Timing Method for Timed Models
	 Timing Behavior for Mixed Numeric and Timed Systems
	 Special Models in Timing Method
	 Pure Numeric Simulation
	 Examples

	 Introduction to Dynamic Data Flow Simulation
	 Overview
	 SystemVue's Dynamic Data Flow Approach
	 How to Use SystemVue's Dynamic Data Flow
	 Limitations

	 Using Data Types
	 Data Types Defined
	 Data Type Polymorphism
	 Conversion of Data Types

	 Envelope Signal
	 How To Use Envelope Signal
	 Definition
	 SystemVue Envelope Data Type
	 Delay for Envelope Signal
	 Collecting Envelope Signal into Dataset
	 Type Conversion
	 Filtering Envelope Signal
	 Reference

	 Fixed Point Simulation
	 Using Fixed-Point Parts
	 HDL Code Generation and Automatic HDL Cosimulation.
	 Cosimulating with User HDL
	 Fixed Point Analysis Table
	 Fixed Point Examples

	 HDL Code Generation
	 Generating Fixed Point Sub-Network Model
	 Generating the HDL and HDL Simulation
	 Testing for Functional Equivalency
	 Understanding the Generated HDL
	 SystemVue Examples

	 HDL Cosimulation
	 About HDL Cosimulation
	 Quick Start Guide
	 Understanding HDL Cosimulation
	 HDL Part and Model

	 MATLAB Cosimulation
	 Supported MATLAB Versions
	 Setting Up MATLAB Cosimulation
	 Simulating with MATLAB
	 Writing Functions for MATLAB_Cosim
	 Using MATLAB_Cosim as a Source or Sink
	 Passing Parameters to MATLAB_Cosim
	 Hiding MATLAB Code
	 HdlCosim

	 Spectral Propagation and Root Cause Analysis (SPARCA)
	 Getting Started with Spectrasys
	 Dialog Box Reference

	 Intermods
	 Non Linear Model Behavior

	 Spectrasys Fundamentals
	 General Behavioral Model Overview

	 Spectral Propagation and Root Cause Analysis (SPARCA)
	 Getting Started with Spectrasys
	 Dialog Box Reference
	 System Simulation Parameters - Calculate Tab
	 Add / Edit Path Dialog Box
	 System Simulation Parameters - General Tab
	 System Simulation Parameters - Options Tab
	 System Simulation Parameters - Output Tab
	 System Simulation Parameters - Paths Tab

	 Spectrasys designs in Data Flow schematics
	 About using Spectrasys designs in Data Flow schematics
	 Requirements
	 Quick Start Guide
	 Understanding Spectrasys design use in Data Flow
	 Limitations

	 Advanced Spectrasys
	 Cascaded Noise Analysis
	 Cascaded Noise Figure Equations
	 Coherency
	 Single Sideband to AM and PM Decomposition
	 Behavioral Phase Noise
	 Spectrum Analyzer Display
	 Synthesis
	 Directional Energy (Node Voltage and Power)
	 Transmitted Energy
	 Circuit Co-Simulation
	 Increasing Simulation Speed
	 Reducing the File Size
	 System Simulation Parameters - Composite Spectrum Tab

	 Troubleshooting
	 Cannot Load a C++ Model Library
	 Spectrasys Measurement Index

	 WhatIF Frequency Planner
	 WhatIF Walkthrough
	 Frequency Planning Fundamentals
	 WhatIF
	 Creating an Intermod Table
	 Dialog Box Reference

