

SystemVue - Users Guide

1

SystemVue 2011.03
2011

Users Guide

This is the default Notice page

SystemVue - Users Guide

2

© Agilent Technologies, Inc. 2000-2010
395 Page Mill Road, Palo Alto, CA 94304 U.S.A.
No part of this manual may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments Mentor Graphics is a trademark of Mentor Graphics Corporation in
the U.S. and other countries. Microsoft®, Windows®, MS Windows®, Windows NT®, and
MS-DOS® are U.S. registered trademarks of Microsoft Corporation. Pentium® is a U.S.
registered trademark of Intel Corporation. PostScript® and Acrobat® are trademarks of
Adobe Systems Incorporated. UNIX® is a registered trademark of the Open Group. Java™
is a U.S. trademark of Sun Microsystems, Inc. SystemC® is a registered trademark of
Open SystemC Initiative, Inc. in the United States and other countries and is used with
permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HiSIM2
source code, and all copyrights, trade secrets or other intellectual property rights in and to
the source code in its entirety, is owned by Hiroshima University and STARC.

Errata The SystemVue product may contain references to "HP" or "HPEESOF" such as in
file names and directory names. The business entity formerly known as "HP EEsof" is now
part of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality
and to maintain backward compatibility for our customers, we did not change all the
names and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this manual and any information contained herein, including but not limited
to the implied warranties of merchantability and fitness for a particular purpose. Agilent
shall not be liable for errors or for incidental or consequential damages in connection with
the furnishing, use, or performance of this document or of any information contained
herein. Should Agilent and the user have a separate written agreement with warranty
terms covering the material in this document that conflict with these terms, the warranty
terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license.

Portions of this product is derivative work based on the University of California Ptolemy
Software System.

In no event shall the University of California be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of this software and its
documentation, even if the University of California has been advised of the possibility of
such damage.

The University of California specifically disclaims any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The
software provided hereunder is on an "as is" basis and the University of California has no
obligation to provide maintenance, support, updates, enhancements, or modifications.

Portions of this product include code developed at the University of Maryland, for these
portions the following notice applies.

In no event shall the University of Maryland be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of this software and its
documentation, even if the University of Maryland has been advised of the possibility of
such damage.

The University of Maryland specifically disclaims any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. the
software provided hereunder is on an "as is" basis, and the University of Maryland has no
obligation to provide maintenance, support, updates, enhancements, or modifications.

Portions of this product include the SystemC software licensed under Open Source terms,
which are available for download at http://systemc.org/ . This software is redistributed by
Agilent. The Contributors of the SystemC software provide this software "as is" and offer
no warranty of any kind, express or implied, including without limitation warranties or
conditions or title and non-infringement, and implied warranties or conditions
merchantability and fitness for a particular purpose. Contributors shall not be liable for
any damages of any kind including without limitation direct, indirect, special, incidental
and consequential damages, such as lost profits. Any provisions that differ from this
disclaimer are offered by Agilent only.
With respect to the portion of the Licensed Materials that describes the software and
provides instructions concerning its operation and related matters, "use" includes the right
to download and print such materials solely for the purpose described above.

Restricted Rights Legend If software is for use in the performance of a U.S.
Government prime contract or subcontract, Software is delivered and licensed as
"Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a
"commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as
defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract
clause. Use, duplication or disclosure of Software is subject to Agilent Technologies´
standard commercial license terms, and non-DOD Departments and Agencies of the U.S.
Government will receive no greater than Restricted Rights as defined in FAR 52.227-
19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited
Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November
1995), as applicable in any technical data.

http://systemc.org/
http://systemc.org/

SystemVue - Users Guide

3

 The SystemVue Environment . 8
 Contents . 8
 Starting SystemVue . 8
 SystemVue Design Environment (User Interface) . 9

 Setting Global Options for SystemVue . 16
 To set Global Options . 16
 Appearance Options Tab . 16
 Code Generation Options Tab . 16
 Default Units Options Tab . 16
 Directories Options Tab . 17
 General Options Tab . 17
 Graph Options Tab . 17
 Language Options Tab . 18
 Schematic Options Tab . 18
 Startup Options Tab . 19

 Analysis . 20
 Annotations . 21

 Contents . 21
 Button Annotations (Widgets) . 21
 Creating Annotations . 21
 Line Annotations . 21
 Slider Annotations (Widgets) . 22
 Text Annotations . 22
 Variable Selector . 23

 C++ Code Generation . 24
 Quick Start . 24
 Supported Targets . 26
 Licensing . 33
 Schema . 34
 Writing C++ Models for Code Generation . 34
 Understanding Generated C++ Code . 34
 Parameter Support . 37
 Limitations . 38

 HDL Code Generation . 39
 Generating Fixed Point Sub-Network Model . 39
 Generating the HDL and HDL Simulation . 39
 Testing for Functional Equivalency . 40
 Understanding the Generated HDL . 40
 SystemVue Examples . 40

 IBIS-AMI Model Generation . 41
 Requirements . 41
 Licensing . 41
 Prerequisite . 41
 Creating AMI Sub-Network Models . 41
 Configuring Code Generator for AMI Models Generation . 42
 Generating AMI Models . 44
 Understanding AMI Model Generation . 44
 Sharing Generated AMI Models with Others . 48
 Importing Custom Intellectual Properties . 48

 Designs . 49
 Specific Types of Designs . 49
 Contents . 49
 Creating a Design . 49
 Design Properties . 49
 Modifying a Design . 50

 Filter Designer . 52
 Filter Specification Window . 52
 Coefficients Display Window . 53
 Response Plots . 53
 FIR Filter Design . 54
 IIR Filter Design . 58

 Equations . 62
 Contents . 62
 Automatic Calculation . 62

 Code Completion . 63
 Debugging Equations . 63
 Equations User Interface . 64
 Hierarchy in Equations . 65
 Using Math Language . 66
 Math Language Function Reference . 66
 abs . 68
 acos . 68
 acosd . 68
 acosh . 69
 acot . 69
 acotd . 69
 acoth . 69
 acsc . 69
 acscd . 70
 acsch . 70
 alignsignals . 70
 all . 70
 angle . 70
 any . 71
 asec . 71
 asecd . 71
 asech . 71
 asin . 71
 asind . 71
 asinh . 72
 atan . 72
 atan2 . 72
 atand . 72
 atanh . 72
 awgn . 73
 bartlett . 73
 bi2de . 73
 bilinear . 74
 blackman . 74
 butter . 75
 buttord . 75
 ceil . 76
 cheb1ord . 76
 cheb2ord . 76
 cheby1 . 76
 cheby2 . 77
 class . 77
 conj . 77
 conv . 78
 convdeintrlv . 78
 convenc . 78
 convintrlv . 79
 cos . 79
 cosd . 80
 cosh . 80
 cot . 80
 cotd . 80
 coth . 80
 crcdec . 80
 crcenc . 80
 csc . 81
 cscd . 81
 csch . 81
 dbg_print . 81
 dbg_showvar . 81
 de2bi . 82
 dec2hex . 82
 deconv . 82
 deintrlv . 83

SystemVue - Users Guide

4

 depuncture . 83
 diag . 83
 diff . 83
 downsample . 83
 dpskdemod . 84
 dpskmod . 84
 eig . 84
 ellip . 84
 equalize . 85
 erf . 85
 erfc . 85
 error . 85
 exist . 85
 exp . 86
 eye . 86
 eyediag . 86
 fclose . 86
 fft . 87
 fftfilt . 87
 fgets . 87
 filter . 87
 find . 88
 finddelay . 88
 findstr . 88
 firls . 88
 firrcos . 89
 fix . 89
 floor . 90
 fopen . 90
 fprintf . 90
 fread . 91
 fscanf . 91
 fwrite . 92
 gaussfir . 92
 gausswin . 92
 getindep . 93
 getindepvalue . 93
 getmatlabvariables . 93
 getunits . 93
 getvariable . 94
 grpdelay . 94
 hamming . 94
 hann . 94
 hex2dec . 95
 hilbert . 95
 histc . 96
 ifft . 96
 imag . 96
 impz . 96
 inf . 96
 interp . 97
 interp1 . 97
 ischar . 97
 isempty . 97
 isequal . 98
 isfinite . 98
 isfloat . 98
 isinf . 98
 isinteger . 98
 islogical . 98
 isnan . 99
 isreal . 99
 isscalar . 99
 isstr . 99
 kaiser . 99
 kaiserord . 100
 length . 100
 linspace . 100
 log . 100
 log2 . 100
 log10 . 101
 logspace . 101
 lp2bp . 101
 lp2bs . 101
 lp2hp . 102
 lp2lp . 102
 lu . 102
 matdeintrlv . 102
 matintrlv . 103
 max . 103
 mean . 103
 median . 103
 min . 104
 mkdir . 104
 mod . 104
 mode . 105
 muxdeintrlv . 105
 muxintrlv . 105
 NaN . 106
 false . 106
 noisebw . 106
 num2str . 106
 numel . 106
 oct2dec . 106
 phasedelay . 107
 poly2trellis . 107
 true . 108
 puncture . 108
 qamdemod . 108
 qammod . 108
 qfunc . 108
 qfuncinv . 109
 rand . 109
 randerr . 109
 randint . 109
 randn . 110
 randsrc . 110
 rcosflt . 110
 real . 110
 rectpulse . 111
 rectwin . 111
 rem . 111
 resample . 111
 reshape . 112
 roots . 112
 round . 112
 rsdec . 112
 rsenc . 113
 runanalysis . 113
 sec . 113
 secd . 114
 sech . 114
 setindep . 114
 setmatlabvariables . 114
 setunits . 114
 setvariable . 114
 sftrans . 114
 sign . 115
 sin . 115

SystemVue - Users Guide

5

 sinc . 115
 sind . 115
 sinh . 115
 size . 116
 skewness . 116
 sort . 116
 spline . 116
 sqrt . 117
 square . 117
 ss2tf . 117
 ss2zp . 117
 sscanf . 118
 std . 118
 str2num . 118
 strcmp . 118
 strcmpi . 119
 strncmp . 119
 strncmpi . 119
 struct . 119
 sum . 120
 svd . 120
 symerr . 120
 tan . 121
 tand . 121
 tanh . 121
 tcpip . 121
 tf2ss . 122
 tf2zp . 122
 toeplitz . 122
 triang . 122
 turbodec . 122
 turboenc . 123
 upfirdn . 123
 upsample . 123
 using . 124
 var . 124
 vitdec . 124
 warning . 125
 wgn . 125
 xcorr . 125
 xor . 126
 zp2ss . 126
 zp2tf . 126
 Basic . 126
 Communications . 128
 Signal Processing . 128
 Using Math Language . 128
 Statements . 129
 Operators . 130
 Vectors, Matrices, and Multidimensional Arrays . 131
 Cell Arrays . 132
 Structures . 132
 Network Communication and Instrument Control . 132
 MATLAB Integration . 133
 Using MATLAB Integration . 133
 Performance . 134
 See Also . 135
 Tips for Effective Equation Writing . 135

 Examining Datasets . 136
 Contents . 136
 Creating Datasets . 136
 Creating Variables . 137
 Importing Variables . 137
 Using Dataset Variables . 138
 Using Datasets . 139

 Variable Properties . 140
 Graphs . 141

 Contents . 141
 Annotating Graphs . 141
 Creating Graphs . 141
 Graph Properties . 142
 Advanced Graph Properties . 143

 Graph Series Properties . 144
 Show Every Nth Symbol . 144
 Graph Series Wizard . 144
 Types of Graphs . 146
 Rectangular Graphs . 146
 Polar Charts . 146
 Using Markers on Graphs . 146
 Zooming Graphs . 149

 Importing and Exporting . 150
 Contents . 150
 Exporting Files Using SystemVue . 150
 Importing Data Files Using SystemVue . 150
 To import a file . 150

 Instrument Scripting and Control . 159
 Overview . 159
 A Simple Sequence . 159
 How to Run the Sequence . 159
 Example of a more Advanced Sequence . 159

 LiveReports . 160
 Contents . 160
 Arranging Views . 160
 Creating a LiveReport . 161
 LiveReport Properties . 161
 Supported LiveReport Object Types . 162
 Adding a View Window to a LiveReport . 162
 Removing a Window from a LiveReport . 163

 Managing Libraries . 164
 Contents . 164
 Adding Library Items to Your Workspace . 164
 Creating Custom Libraries . 164
 Using the Library Manager . 165

 Nets, Connection Lines and Buses . 168
 Contents . 168
 Connecting Parts in SystemVue . 168
 Connection Line Net Labels . 169
 Connection Lines and Ports . 169
 Connection Terminology . 170
 Mapping Nets to Ports . 170
 Part Ports (Terminals) . 170

 Parts, Models and Symbols . 171
 Contents . 171
 Finding Symbols and Models during Simulation . 171
 Mapping Symbols to Models in Parts . 171
 Models . 171
 Parts . 172
 Symbols . 175

 Overview . 178
 RF Link Limitations . 179
 Simulation . 180

 Data Flow Specific . 180
 RF Link Specific . 180

 Theory of Operation . 181
 Multiple Input and Output Ports . 181

 Tutorial . 182
 Drag and Drop . 182
 Part Selector . 182
 RF / Data Flow Co-Simulation Walk Through . 182

SystemVue - Users Guide

6

 Schematics . 184
 Contents . 184
 Annotating Schematics . 184
 Changing the Schematic View . 184
 Creating a Simple Schematic . 185
 Manipulating Parts . 185
 Placing Parts on a Schematic . 186
 Title Blocks . 187

 Scripts . 189
 Contents . 189
 Adding a Script . 189
 Using Scripts in Programs . 189
 Creating Script Objects . 194

 Example: Exploring the Workspace Using Visual Basic . 195
 VBBrowser . 195

 Example Running a BER Analysis Controlled From LabVIEW, MATLAB, or C# 197
 Example: Running a Script from Microsoft Excel . 200
 Script Processor . 201
 Script Verbs . 201

 Using S-Parameters in SystemVue (RF Design Kit) . 205
 Contents . 205
 Creating S-Parameter Data . 205
 Displaying S-Parameter Data . 205
 File Based S-Parameters . 205
 Physical S-Parameters . 205
 Touchstone Format . 205

 Sweeps . 208
 Contents . 208
 Parameter Sweep Properties . 208

 Understanding Swept Data . 209
 Getting Started with Parameter Sweeps . 209

 Tables . 211
 Contents . 211
 Creating Tables . 211

 Templates . 212
 Selecting a SystemVue Template . 212
 Reviewing the SystemVue Templates . 212

 Tuning Variables . 213
 Contents . 213
 Checkpoints . 213
 Gang Tuning . 213
 Making a Part Parameter Tunable . 214
 Reverting Tuned Values . 215
 Tuning Options . 215

 UI Customizations . 217
 Contents . 217
 Add Customized UI for Applications . 217
 Add Customized UI for Models . 217
 Introduction . 218

 User Defined Models . 220
 Contents . 220

 Catapult C Flow . 221
 Configuring Catapult to Use SystemVue Flow . 221
 Using SystemVue Flow . 221

 Creating a Custom C++ Model Library . 223
 Contents . 223

 Advanced Topics . 224
 Defining the Model Library Properties . 224
 Supporting standalone use of DFModels . 224
 Writing C++ Models for Code Generation . 225
 Using Third Party Library in C++ Models . 225

 Writing Data Flow C++ Models . 227
 Writing Header file for the C++ Class . 227
 Writing cpp file for the C++ Class . 227
 The Setup() Method . 229
 The Initialize() Method . 229
 The Run() Method . 230
 The Finalize() Method . 230
 Posting Error, Warning or Information Messages . 230
 Reading or Writing Files . 230
 Using Inheritance . 230
 Writing Fixed Point Models . 231
 Writing Timed Data Flow Models . 232
 Using Envelope Signal in Timed Data Flow Model . 233
 Controlling Simulation . 234

 Building Your First Custom C++ Model Library . 235
 Setting Up a New Visual Studio Project . 235
 Adding a new Model to the Project . 235
 Using the Model in SystemVue . 236
 What to Do if the Model Terminates SystemVue Unexpectedly . 237

 Loading and Debugging a C++ Model Library . 238
 Loading a C++ Model Library . 238
 Debugging Data Flow C++ Models . 238
 Making Changes in C++ Model while SystemVue is Running . 239

 Quick start . 240
 Compiling the Example Visual Studio Project . 240
 Loading the Custom Library into SystemVue . 240
 Simulating the Example WorkSpace . 240

 Requirements . 242
 Supported Data Types . 243

 Data Types Used as Parameters . 243
 Data Types Used as Inputs/Outputs . 243
 SystemVue FixedPoint Data Type . 245
 SystemVue Matrix Data Type . 246
 SystemVue Envelope Signal Data Type . 247

 Sub-Network Models . 249
 Contents . 249
 Creating a Parameterized Sub-Network Model . 249
 Roles of Sub-Network Model Attributes . 251
 Run-time Hierarchy - How Parameters get passed . 251

 SystemVue 2007 APG DLL Import . 253
 SystemVue 2007 MetaSystems . 253
 Building a SystemVue 2007 APG DLL . 253
 Importing a SystemVue 2007 APG DLL into SystemVue . 254

 Using X-Parameters in SystemVue (RF Design Kit) . 255
 Contents . 255
 Convergence Issues . 255
 Getting X-Parameters into the Workspace . 255
 Theory of Operation . 255
 Using X-Parameters in a Design . 256
 Using DC Bias Voltage . 258
 Using X-Parameters in the Circuit Link . 258
 Using X-Parameters in the RF Link (RF Design Kit) . 258
 Using X-Parameters in Spectrasys . 258
 Validation Limits . 258
 Performance Limits . 258
 Operational Limits . 259

 Appendix A - Keystroke Commands . 260
 General Keystroke Commands . 260
 Graph Keystroke Commands . 260
 LiveReport Keystroke Commands . 260
 Schematic Keystroke Commands . 260

 Appendix B - Menus . 262
 Action Menu . 262
 Edit Menu . 262
 Equations Menu . 262
 File Menu . 262
 Graph Menu . 263
 See Also . 263

SystemVue - Users Guide

7

 Help Menu . 263
 LiveReport Menu . 264
 Notes Menu . 264
 PartList Menu . 264
 Schematic Menu . 264
 Scripts Menu . 264
 Tools Menu . 264
 View Menu . 265
 Window Menu . 265

 Appendix C - Toolbars . 266
 Annotation Toolbar . 266
 Dataset Toolbar . 266
 Equations Toolbar . 266
 Graph Toolbar . 266
 LiveReport Toolbar . 267
 Main Toolbar . 267
 Notes Toolbar . 267
 Schematic Toolbar . 267
 Script Toolbar . 268
 Spectrasys Toolbar . 268
 Table Toolbar . 268

SystemVue - Users Guide

8

 The SystemVue Environment
This section will familiarize you with the user interface of SystemVue. These sections will
include introductions of various components of the SystemVue software screen. To get
more detailed information about using these features, read Using SystemVue (users)
section.

 Contents
Starting SystemVue (users)
Getting Started Dialog Box (users)
Design Environment (users)

 Starting SystemVue
To start SystemVue:
Click Start > SystemVue. Loading SystemVue screen opens. After a while SystemVue
main window opens launching the welcome dialog:

This window is also called the splash screen.

Note
You might want to view some of the videos listed in the New Users section, even if you're an experienced
user. They are typically short and cover some of the most useful convenience and quick-start topics.

To close the window, click Close. The control automatically shifts to the Getting started
screen with the title - Getting Started with SystemVue - Please Select an Action.

 Getting Started with SystemVue Dialog

The following are the options that you can exercise with your Getting Started dialog box:

Open a recently used workspace1.
You can select a recently used workspace from the list on the right. If the recent
space is not listed, click More Workspaces to locate a workspace on your computer
system.
Create a NEW Workspace from a template2.
You can select a template fr0om the list on the right. Select Default to start withe
the default template or you can select any template and click Make This My Default
Template to make the selected template as default one.
Tutorials and Examples3.
There are two buttons available to access help for videos and examples.

There is "Don't show me again" button on this page as well, but it is recommended not to
select it (for new users).

If you simply close this window, you get to the default workspace.

SystemVue - Users Guide

9

Note
Click the Start Page button , (the first button in the main toolbar) to open this dialog anytime.

 SystemVue Design Environment (User Interface)
The SystemVue design environment consists of menus, windows, toolbars, and standard
editing options. It is easily integrated with other programs, and you can use it to view
multiple projects, schematics, and simulations at the same time.

The environment is versatile. It can look like this...

or like this...

We show you the second environment by default so you know what is available and what
it looks like. In the design area, an un-maximized window can be re-sized by clicking on a
boundary and dragging it. Three buttons on the right of the title bar control a design
window's viewability. Click on to minimize the window. Click on to maximize the
window. Click on to remove the window.

Also, it's easy to switch to a tabbed window view, by using the Window Menu (users).
Note the view window tabs at the top of the graph:

The default SystemVue design environment consists of the following:

Menu (users) – Contains all of the commands used in SystemVue.
Toolbars (users) – Contains buttons that are shortcuts for commonly used
commands.
Workspace Tree (users) – Displays a hierarchical list of items in your project.
Part Selector (users) – Lists the electrical parts in a specific library.
Library Selector (users) – Lists all of the designs in a specific library.
Tune Window (users) – Contains settings that let you modify variables for a circuit
in your design.
Simulation Status Window (users) – Displays the status of the running
simulation.

SystemVue - Users Guide

10

Error Log (users) – Displays error information.
Status Bar (users) – Displays useful information at the bottom of the SystemVue
window.
Design Windows (users) – where all the real work takes place, are placed within
the gray workspace area.
Simulation Log (users) – Information regarding any running simulation.

Click on the page to read more.
 Design Windows

All working windows in the workspace area are called Design Windows.

To show or hide any of the windows:

Click View on the SystemVue menu and select the window.

As you click inside each design window, the toolbar for that window will appear and may
replace toolbars from the previous design window. You can move or dock toolbars
anywhere in SystemVue by grabbing the bar on the left and moving it (if docked) or
grabbing the title bar (if floating). If a design window is active (selected) among several
windows, its title bar becomes dark blue. The above examples show different toolbars to
the left of the main toolbar.

If you re-size or maximize a window, the contents will grow (or shrink) adjusting to the
new window size. Notes will reformat. Graphs print full-page and schematics print
according to their defined physical sizes (using shrink to fit if the page will not fit on the
paper).

Design windows are special in that they can show multiple views of itself, so you can see
the partlist in one tab, the schematic in another and the layout in yet a third tab. Right
click on the window and select the tab option to get another view of the design.

 Workspace Area

The background of this area is gray and it holds any windows that are opened i.e.
schematic window, graph, notes window,smith chart etc.

You can open as many windows as you want in this area. The default schematic menu
icons are listed because that is the default window opened for any new workspace. This
menu icons list is changed with the window that is selected. If you open up a graph
window, the "schematics icons list" will give way to the "graph icons list".

 Special Operations

Several operations that you can work out on the windows in your workspace area:

Tile them vertically or horizontally1.
Close all the open windows2.
Make the windows opened as tabbed3.
Show/Hide all other docking windows (so that only the opened window is visible)4.
Show all output windows5.

 Error Log

The Error Log displays near the bottom of the SystemVue window and alerts you to
potential problems in your design. You can display the Error Log whenever you open
SystemVue. Or, you can have SystemVue display the Errors window only when higher-
level error messages are generated.

click figure to enlarge

To open or close the Error Log:
1. Click View on the SystemVue menu and select Error Log, or
2. If the window is open, click the close button (the x on the upper left) of the Error Log to
close the window, or

3. Click the Errors Button in the main toolbar.

To automatically display the Error Log for higher-level errors:
1. Click the Automatically Display Errors check box.

To clear out the messages in the error window
1. Click the Clear All Errors button.

 Reviewing Error MessagesThe Error Log displays informational, warning, error,
and critical messages. The messages are color-coded by message type.

Informational Message – Green indicate a potential problem in your design.
Warning Message – Yellow indicate a minor problem in your design.
Error Message – Red indicate a problem in your design.
Critical Message – Black indicate a critical problem in your design.

Messages always have a Show button. Click to bring up a schematic showing the
highlighted error or a dialog showing the error line. If you have an undefined error, the
Show button may do nothing.

More than one error message can come from the same part. Look at the last error in the
list (the first to get thrown) to view the root error.

An instantiation error in a model during a simulation usually means that a parameter was
bad (invalid or out of range). It might also imply the model couldn't be found or has
changed since it was last used.

 Using the Errors Window Button

You can also check for messages by viewing the Errors Window button on the SystemVue
toolbar. The color and image on the Errors Window button show the highest-level message
in the Error Log.

SystemVue - Users Guide

11

Button Symbol Meaning

White Indicates there is no message.

Green Indicates an information message.

Yellow Indicates a warning message.

Red Indicates an error message.

Black Indicates a critical message.

 Library Selector

The Library Selector is a toolbar that gives you quick access to libraries of archived
workspace items(datasets, designs, equations, etc.). The light-yellow background of the
Library Selector distinguishes it from the Part Selector and other toolbars. It is used to
display libraries of item types such as datasets, designs, or equations.

A library is a collection of one type of object found in SystemVue. For example, a library of
equations contains a collection of Equation Blocks, and only other Equations Blocks can be
added to this library of equations. Schematic, Models, and Symbols are all considered to
be a design, and so a library of designs can contain all three of these. Libraries of parts
cannot be displayed in the Library Selector and must be viewed in the Part Selector.

The Library Selector operates for other objects much like the Part Selector operates for
parts. The Library Type sets the type of object library you want to view and the Current
Library sets to the particular library you want to display. The Filter By feature can be used
to display a subset of the Current Library. When you select an item, detailed information
about it is displayed in the information window at the bottom.

To edit a workspace item:
1. Double-click an item in the Library Selector list. The object is placed into your
workspace and available for editing. Note that if this is a model or symbol you are
currently using in your workspace then the in-workspace version of the model/symbol will
override the library version.

Hint
This is a great way to send self-contained workspaces to your coworkers, by embedding any custom
models or symbols (or vendor models or symbols) into the workspace itself.

To set the library type:
1. Click the Library Type pulldown and select a library type to find.

To change libraries:
1. Click the Current Library pulldown and select a library to switch to. The Current Library
pulldown only contains libraries of the type set in Library Type.

To search for specific objects:
1. Type the text for the items you want in the Filter By box. For example, in the library
shown above type rand to find the randint functionor any objects whose name or
description contains that text. The filter is applied to the part name and description.

2. Click the Go button () to display the updated list.

To copy an object into a library
1. Right-click the item in the workspace tree and select the Copy To menu to copy the
object to a library.

To change which columns are displayed:
1. Right-click the column heading and check on or off the columns you want to see. Click a
column heading to sort by that column.

To change the way the selector shows parts:
1. Right-click the white area in the selector and select from the View submenu.
 Menus

The SystemVue menus are located on the menu bar at the top of the SystemVue window.
There are several menus that appear automatically whenever SystemVue is started. These
are called default menus.

The other SystemVue menus are called object menus. They are specific to the windows in
a design and appear only when that window is active. For example, the Schematic menu is
visible only when the Schematic window is active.

The top is the main SystemVue menu like the Windows menu. It contains the basic menus
alongwith a Schematic menu which is dedicated to SystemVue schematic.

The schematic menu is used for modifying the schematics in the workspace.

 List of common icons

Most of these are common Windows icons itself.

SystemVue - Users Guide

12

For more information about all of the SystemVue menus, see Appendix B Menus (users).
 Part Selector

The Part Selector is a toolbar that lets you add parts to a design. It displays a list of parts
from the currently selected library. A library is a collection of objects that can be used in
SystemVue. The Part Selector only displays libraries of parts. The Library Selector is used
to display libraries of other types. Algorithm Design is the default library. You can use the
Category and Filter By features to display a subset of parts from the current library. When
you select a part, detailed information about it is displayed in the information window at
the bottom.

SystemVue provides two part selectors: A and B. Part Selector A is the default, but you
can display both part selectors at the same time. The options for viewing either part
selector are found in the View Menu (users). Having both Part Selectors open lets you
work with two libraries at once. Building a custom library of parts is easier with both Part
Selectors open, because you can set one to view the custom library of parts as you build
it.

You can use the Part Selector toolbar to perform the following tasks.

Click this button To do this

Get reference information for the currently selected part.

Select options to change the way parts display in the Part Selector window.

Manage the part libraries. Click this button to open the Library Manager.

Get online Help.

To place a part:
1. Click a part in the Part Selector list. Notice the part details that display in the
information window.
2. Click in the Schematic window to place the part.

To view a subset of a part library:
1. Select a subset of parts to view from the Category list.

Note
The All category displays all available parts in the selected library.

To change part libraries:
1. Click the Current Library pull-down and select a library name to display all of the parts
in that library.

To add a part library:

1. Click the Library Manager button () and select Library Manager to get a dialog
allowing you to add existing libraries.

To search for specific parts:
1. Type the text for the parts you want in the Filter By box. For example, type math to
find the math function part or any parts whose names or descriptions contains that text.

2. Click the Go button () to display the parts in the Part Selector window.

To copy parts to a library:
1. Right-click the part you want to copy, and then select the name of a library from the
Copy To menu. A copy of the part is automatically placed in the new library.

To change which columns are displayed:
1. Right-click the column heading and check on or off the columns you want to see. Click a
column heading to sort by that column.

To change the way the selector shows parts:
1. Right-click the white area in the selector and select from the View sub-menu.
 Simulation Log

By default, the Simulation Log shows near the bottom of the SystemVue window.
However, it is a docking window that can float or be docked in the SystemVue window.

The content of the simulation log will depend on the simulation or evaluation that is run.
Each will show different information that ranges from a date and time run with execution
time to an output for each frequency simulated.

To open or close the Simulation Log:
Click View on the SystemVue menu and select Simulation Log

OR

If the window is open click the close button (the X on the upper left) of the Simulation Log
to close the window.

SystemVue - Users Guide

13

To select the analysis or evaluation you want to view:
1. Click the pull-down and select the desired analysis or evaluation.
 Simulation Status Window

When a simulation is running, various output will be shown in this window, including the
type of simulation being run and the status of the simulation. You can press the Stop
button to stop the calculations at anytime. You can also press the Hide button to hide the
status window, this will hide the status window and continue running the simulation. The
details of the active simulation are shown in the main box of the simulation status
window.

An example sweep

Click the Stop button to stop the simulation run.

Click the Hide button to hide the status window but continue the simulation. There is also
a Global option that always hides the status window. See the global options section.

 Hiding the Simulation Status Window

The Hide button on the Simulation Status Window allows you to hide the currently running
simulation's status window. There is also a global option that can be set to never show the
simulation status window. There are two ways to turn the "Never Show Simulation Status
Window" option on or off:

Use the Global Options Page. See General Global Options (users) for information on
making the setting this way.

Use the toolbar start or stop button drop down.

To set the "Never Show Simulation Status Window" option from the toolbar:

Click the drop down arrow beside the start or stop button on the main1.
toolbar. The stop button will only be visible when a simulation is running.
Toggle the "Never Show Simulation Status Window" menu entry.2.

When toggled on from the toolbar when a simulation is running the status window will
immediately be shown.
 Using the Status Bar

The status bar is located at the bottom of the SystemVue window.

It spans the width of the window and contains useful information or messages regarding
your current task. If there is no information, the default message is Ready. When an
action successfully completes, the default message is Done.

You should read the information in the status bar on a regular basis for assistance in using
the program.
 Toolbars

There are many toolbars in SystemVue. The main SystemVue toolbar is referred to as a
default toolbar (users). The main SystemVue toolbar is shown below:

SystemVue also has a number of other toolbars called object toolbars. They are specific to
the windows in a design and appear only when that window is active. For example, the
Schematic toolbar is visible only when the Schematic window is active.

To reposition a toolbar:

Drag the toolbar to the new location.

To re-size a toolbar:

Drag a corner of the toolbar until it changes to a different size.

To create a floating toolbar:

Drag the toolbar to the desktop.

Note
If you do not want the toolbar to dock to the sides or top of the SystemVue window, hold down the
CTRL key while dragging.

 Using a Default Toolbar

You can use the main SystemVue toolbar to perform basic editing commands, such as
opening, saving, or printing designs.

To show or hide a default toolbar:

Click View on the SystemVue menu and select the toolbar you want to show or hide
from the Toolbars menu.

Note
Toolbars that are currently open have a check mark next to them.

To display the default toolbars on startup:

Click Tools on the SystemVue menu and select Options.1.
Click the Startup tab.2.
Click the Use Default Toolbar Settings on Startup button.3.
Click OK.4.

 Using an Object Toolbar

The object toolbars let you perform actions for specific windows.

To show or hide an object toolbar:

Click View on the SystemVue menu and select either Show All Object Toolbars or

SystemVue - Users Guide

14

Hide All Object Toolbars from the Toolbars menu.

For more information about all of the SystemVue toolbars, see Appendix C Toolbars
(users).
 Tune Window

It is a tool used for Tuning Variables (users). It is one of the most powerful features of
SystemVue. You can use tuned variables(real time) almost anywhere in SystemVue,
including part parameters.

Any numeric parameter in a part can be made tunable. To get more information on how to
tune variables, see Tuning Variables (users).

Tune Window
Component

Purpose

Accept Tuned
Settings

Applies the current Tune settings to the graphs, etc.

Refresh Scans for currently tunable variables

Variable
Options

Sets Tune Window Variable settings

 Hide Name Prefix - Omits the name prefix, so the name is as short as possible
(overrides Long Names too). Duplicate variable names are common in this mode,
which is confusing, so the recommended setting is OFF.

 Long Names - Display the full name of the tunable variables

 Select Variables - Displays a window which allows several variables to be selected
at once.

Graph
Checkpoints

Enables graph checkpoints

Help Brings up help on tuning. (This page of documentation)

Variable Grid Contains the tunable variables

 Variable Tuning Mode (dropdown)

 Normal - tune (increment / decrement) by a percentage value, usually 5 or 10%

 Step Size - tune by adding or subtracting the step size

 Standard - Use Standard part values. (Limits tuning to specified "standard"
values, which is useful for physical "lumped" parts i.e. resistors, capacitors, etc.)

Tuning Value Amount to tune variables by (in conjunction with tuning mode)

 Variable - The name of a tunable variable, with optional info as set by the Item Menu
above.

 Value - The value of a tunable variable. Click grid cell to activate tuning this variable.

Saved Tune States Caches the current variable settings

 Use These Settings - Opens saved settings

 Settings Name - Name of the current settings

 Checkpoint the Graphs - Places checkpoint traces on the graphs

 Remove All Graph Checkpoints - Removes checkpoint traces from all the
graphs (but does not delete named settings)

Analysis To Run
(AutoRecalc)

Provides easy access to the Automatic Recalc settings of all the Analysis in your
workspace

 Check an analysis to enable its AutoRecalc mode, so that the analysis will run
when a variable is tuned

 Uncheck an analysis to disable its AutoRecalc setting, so the analysis will NOT
automatically run

The Tune Window is collapsible so as to reduce screen clutter, the Saved Tune States
and Analysis To Run panels can be hidden, via the "Fold" button on the right of each
panels titlebar. (Click the "Unfold" button to restore the panels to full height.)

The Tune Window also has a horizontal display mode, which is automatically triggered
when the Tune Window is wide:

If you are tuning more than one variable which have the same name, you may notice duplicate names in
the list if you have selected the option to "Hide Variable Prefix" which shows shortened variable names.
The "Hide Variable Prefix" option is available by clicking the Variable Options toolbar button.

 Workspace Tree

The SystemVue Workspace Tree displays a hierarchical list of items in your project such as
designs, analysis, data sets, and graphs. With it, you can add, delete, or rename items. To
use an item right-click the item and select from the menu or click and highlight the item
and then click the item menu button shown below.

You can use the Workspace Tree toolbar to perform the following tasks:

SystemVue - Users Guide

15

Click this
button

To do this

Add a new item such as an analysis, design, or graph. Or, add an item from a library.

Open the currently selected item.

Open the properties window for the currently selected item.

Pull down the menu of the currently selected item.

Pull down the Workspace Tree menu to adjust the Tree appearance by letting you show/hide
datasets, change the sorting order, show additional information, etc.

Get Help.

To add an item to the Workspace Tree:

1. Click the New Item button () and select the item you want to add.
2. Type a name in the Name box.
3. Type a description in the Description box, if any.
4. Enter any other parameters in the properties window.
5. Click OK.

To delete an item from the Workspace Tree:
1. Right-click the item you want to delete and select Delete from the menu.
2. Click Yes.

To rename an item in the Workspace Tree:
1. Right-click the item you want to rename and select Rename from the menu.
2. Delete the current name, and then type a new name in the box.
3. Click OK.
or slow double-click and type then click elsewhere when done

To copy an item to a library:
1. Right-click the item and select the Copy To sub-menu. Pick a library to copy to or use
New Library to create a new library.

SystemVue - Users Guide

16

 Setting Global Options for SystemVue
Customize your working environment to best suit your needs using the global application
options. You can set options for things such as how numbers are formatted for, which
windows to display at startup, and which directories to use. The global options are saved
when the application ends and are restored the next time you run it.

 To set Global Options
Click Tools on the SystemVue menu and select Options.1.
Click any of the following option tabs:2.
General (users)
Startup (users)
Graph (users)
Schematic (users)
Directories (users)
Language (users)
Default Units (users)
Appearance (users)
Code Generation (users)
Select the options you want.3.
Click OK.4.

 Appearance Options Tab
Use the appearance options window to see the default directory paths.

 To change the appearance global options:

Click Tools on the menu and select Options.1.
Click the Appearance tab.2.
Adjust the settings:3.

Tabbed with splitters – Specifies the use of tabbed view windows, with
splitter bars.
Overlapped – Specifies the use of multiple document interface (MDI)
overlapping windows.
Place close button on tabs – When checked, the tab close button will be
placed on the tab button itself (instead of being placed on the right).
Factory Defaults – Restores the original factory values to these settings.

Click OK.4.

 Code Generation Options Tab
Use the Code Generation options behavior of Code Generation paths.

Note
Currently, only Microsoft Visual Studio 2008 and Visual C__ Express 2008 are supported for the features
described here.

 Start IDE:

Checked by default.1.
If checked, after Code Generation (e.g. C++ Code Generation (users), or IBIS AMI2.
Code Generation (users)) is complete, IDE will be started with the Code Generated
content loaded into it.

 Automatically compile after code generation:

Unchecked by default.1.
If checked, the Code Generation generated content will be automatically built into2.
targeted library.

 Load SystemVue library after compilation:

Only active if Automatically compile after code generation is checked.1.
Only applies to Code Generation targeted at SystemVue Model Shell (Refer to C++2.
Code Generation (users) for the choices of targeted shells).
Checked by default.3.
If checked, once SystemVue Model DLL is automatically compiled, it will also be4.
loaded into SystemVue immediately for use.

 Default Units Options Tab
Use the Global Options Units window to make global changes to the default units in a
schematic. Changing the default units has no bearing on any of the parts that are in the
schematic. Only the initial units of parts placed after the default unit changes are affected.

The global default units used are listed in the table below.

Quantity Units

Angle Degrees

Capacitance pF (picofarads)

Conductance mhos (1/ohms or Siemens)

Current Amps

Frequency MHz (Megahertz)

Inductance nH (nanohenries)

Physical Length, Width, Height mm (millimeters), or based on substrate for netlist

Power dBm (referenced to a milliwatt)

Resistance ohms

Temperature C (Celsius)

Time ns (nanoseconds)

Voltage V (volts)

SystemVue - Users Guide

17

 To change the global default units:

Click Tools on the menu and select Options.1.
Click the Units tab.2.
Change the units you want by clicking the Units grid cell next the parameter type3.
and selecting the desired unit from the pop-up combo box.
Click OK.4.

 Directories Options Tab
Use the global options directories window to set the default directory paths.

 To set the global directory paths:

Click Tools on the menu and Select Options.1.
Click the Directories tab.2.
Click on Directory Path or label to see a description of what it's used for.3.

 To change a path:

Click a Directory Path1.
Click Browse2.
Select the correct path3.
Click OK4.

Note
You can edit the path directly.

 General Options Tab
Use the Global Options General window to select general environment options not specific
to any one area of the program.

 To change general global options:

Click Tools on the menu and select Options.1.
Click the General tab.2.
Adjust the settings:3.

Number Formatting – Specifies how the program should display numbers. This
format is used uniformly throughout (tables, graph axes, dataset displays).
Simulation – These settings control the simulation engines.

Disable simulation caching: Turns off caching of simulation data (runs
slower when disabled).

Values – These settings control parameter values
Auto-replace tuned values keeps the tuned values up-to-date.

Warnings – These settings control the display of Errors / Warnings
Automatically show: Instructs the program to show the Errors window
when there are errors in the workspace and to hide the window when there
are no errors remaining.
Disable out of date warnings turns off those warnings.

LiveReport: Scroll on Mouse Wheel – Option to control the mouse wheel
behavior on a Live Report. "Ctrl-Mouse Wheel" will zoom and "Shift-Mouse
Wheel" pans right or left. If this is not checked, it will zoom on scroll wheel.
Allow compact file format – Allows you to save compressed data files.
Allow multiple open workspaces – Allows more that one workspace (at a
time) to be open, so that items may be easily copied from one workspace to
another.
Never show simulation status window – Never show simulation status
window during simulations or evaluations.
Assume 1:1 aspect ratio – Ignores incorrect video device information and
assumes that the video display has square pixels. Enable this setting if Smith
charts are oval, instead of circular.
Factory Defaults – When clicked, this button resets all of the settings on this
page of the dialog box.

Click OK.4.

 Graph Options Tab
Use the Global Options Graph window to set global (shared) options for graphs.

SystemVue - Users Guide

18

 To change the graph global options:

Click Tools on the menu and select Options.1.
Click the Graph tab.2.
Adjust the settings:3.

Item colors – These colors are used whenever a new graph or series is created.
To apply these colors to an existing graph, right-click inside the graph window
and select "Set All Colors To Defaults".
Show value tooltips – Shows the data value in a tool tip window when the
cursor is placed over a trace data point.
Draw Graphs in stages – graphs can draw in stages. A simple graph is drawn
first and details are progressively added. This will help with optimizations and
sweeps where graphs redraw over and over.
Automatically add a title – Places a simple title at the top of each new graph.
Automatically thicken series traces – This setting will widen the lines used to
draw the series (trace) line, when a graph is fairly large.
Default to Logarithmic scale – Switches the X-axis from linear to logarithmic
scale.
Show floating marker text – Enables short marker labels of the form '1a' or
'2'. If not checked, no floating marker text will be shown, when graph markers
are drawn in the margin on the right.
Show vertex symbols – Marks series trace vertices with a dot or other symbol
(to help distinguish traces on a black & white printout).
Restore default graph settings – This option is rarely used, but can recover a
graph from a damaged workspace file.
Autoscale Minumum – The lower auto-scale boundry (prevents scaling all the
way down to -600dB).
Anti-Aliasing – These check-boxes enable a smoothing effect to be used when
drawing graphs. This gets rid of the stair-stepped, jagged edges when graphs
are drawn. When enabled, the graph is drawn with a slightly fuzzy look, which is
actually sub-pixel accurate and can accentuate the slight ripples in a trace.
Factory Defaults – When clicked, this button resets all of the settings on this
page of the dialog box.

Click OK.4.

 Language Options Tab
Use the Global Options Language window to select a different language in which to run.
The default language is pre-selected for your computer and is listed as Automatic in this
window. Other choices include Chinese, Korean, Russian, and Japanese. You must restart
your computer before any language changes can take effect.

 To change the language global options:

Click Tools on the menu and select Options.1.
Click the Language tab.2.
Select a language from the Language list.3.
Click OK.4.

 Schematic Options Tab
Use the Global Options Schematic window to set options for all schematics.

 To change the schematic global options:

Click Tools on the menu and select Options.1.
Click the Schematic tab.2.
Adjust the settings:3.

Show – , Designators, Part Parameter Text, etc. Check to enable the specified
information to be displayed on a schematic.
Place Parts – Multiple parts allows parts to be placed each time you left-click
on the schematic. Press the Esc key to stop dropping parts. Display Part Dialog
will bring up the part dialog each time a part is placed on a schematic, so that
the parameters may be entered.
Grid – Show the background grid and snap the mouse cursor to the grid (if
enabled).
Symbols – Use ISO symbols: When checked, ISO standard symbols will be

SystemVue - Users Guide

19

placed. (The ISO standard resistor is a box, instead of a zigzag.) Use ¼ grid
symbols: When checked, it will place ADS-compatible parts that have terminals
spaced on ¼ of the standard part length (which i the length of a resistor).
 standard parts are on a 1/6th grid spacing. These settings will not take full
effect until you have exited and restarted. Rotation constrain angle: Sets the
F3-key rotation increment (usually 45 or 90 degrees).
Connections – Allow dragging wires enables schematic parts to be easily
connected; just place the mouse cursor over a part terminal, press the left-
button, and drag the newly-created connector to another node. Keep parts
connected ensures that schematic parts retain their electrical connections, by
inserting new wires (as necessary) when dragging parts. The Alt-key acts as a
toggle for the keep connect setting.
Scroll On Mouse Wheel – When checked, the mouse center wheel scrolls the
schematic window; when unchecked, the wheel zooms the window instead.
Factory Defaults – When clicked, this button resets all of the settings on this
page of the dialog box.

Click OK.4.

 Startup Options Tab
Use the Global Options Startup window to customize start up.

 To change the startup global options:

Click Tools on the menu and select Options.1.
Click the Startup tab.2.
Adjust the settings:3.

At Startup – Specifies the action taken each time the program is run.
On File New – Specifies the action taken whenever a File / New action is
initiated.
At startup run this script – Allows a custom startup action.
Ask to visit web site at start-up – Will cause a dialog box to be shown every
30 days asking if the user wants to check the web for updates.
Use default toolbar settings on startup – Forces the program to reinitialize
the toolbars at startup.
Factory Defaults – When clicked, this button resets all of the settings on this
page of the dialog box.

Click OK.4.

SystemVue - Users Guide

20

 Analysis
Circuits and systems can be analyzed in many different ways. When you simulate a circuit,
the settings for the analysis determine how the simulation runs. The analysis creates a
dataset with the simulation results. If an analysis is set to automatically recalculate it will
re-simulate each time you make a change to the schematic design and then click a graph
or table dependent on the analysis.

SystemVue provides the following analysis engines:

Data Flow (sim) - Performs a data driven analysis on data driven models.
RF Design Kit Spectrasys (sim) - Performs a system-block-level non-linear analysis
on the entire system to determine if all system-level requirements are met.

 To add an analysis

Click the New Item button () on the Workspace Tree toolbar and select an1.
analysis from the Analyses menu. A new analysis of the selected type will be created.

Alternatively, right-click the word "Designs" in the Workspace Tree, select "Add", and2.
then select an analysis from the Analyses menu. A new analysis of the selected type
will be created.

Another way, if no DataFlow analysis corresponding to the current schematic exists3.
on the tree, is to click on the green arrow toolbar button to the right of the

calculator.
A dialog box will pop up asking if you'd like to create one and if you click yes, it will
automatically add one to the tree.

Fill in the desired analysis parameters as explained below.4.
When you click OK or Calculate the analysis will run and create a data set.5.

SystemVue - Users Guide

21

 Annotations
Annotations include text boxes, arrows, shapes, and controls (widgets) that can be placed
on a schematic, graph, or LiveReport to help document a workspace, highlight items of
interest, etc.

Tools Purpose

Rectangle Draw a square or rectangle.

Ellipse Draw a circle or ellipse

Polygon Draws a filled polygon or unfilled polyline.

Arrow/Line Draw a line or arrow. Change the arrow style by selecting a line and picking an arrow type from
Arrows button menu.

Arc Draw a circular arc.

Picture Insert a picture. Use this annotation to add a company logo to a graph, for example. Double-
click the new object and select a JPG, GIF, or BMP image file to be displayed. (To allow all users
to see the image, the bitmap file should reside on a network server.)

Text Place text. Text has a number of settings. Double-click a text annotation to set the horizontal
and vertical justification (text alignment). The name of the text item can be changed and shown
on-screen, which simplifies building a schematic title block.

Text
Balloon

Draw a text balloon. This annotation has a "tail" which can be anchored to a data point on a
graph, to the page, or not anchored (using the right-button menu).

Button Draw a user button. This annotation can be "clicked" to run a custom script, which is specified
by double-clicking the outer EDGE of the button control. (The middle of the button runs the
script.)

Slider Draw a slider control. This annotation is linked to a tunable parameter and functions much like
the Tuning Window (users).

Settings Purpose

Fill Color Sets the annotation fill color. Use the 3 color buttons to change the colors of the selected
annotation(s). New annotations will be created using the current colors. The bottom-right color
swatch (with a diagonal slash) is transparent, which specifies an unfilled object.

Line Color Sets the annotation line / border color. The bottom-right color swatch (with a diagonal slash) is
transparent, which specifies a object with no outline.

Text Color Sets the annotation text color.

Line
Thickness

Set the width of borders and lines.

Line Style Set the drawing style of borders and lines (dash pattern, etc.).

Arrows Set the arrow style of lines.

Properties Display the properties window for the selected annotation.

 Contents
Creating Annotations (users)
Line Annotations (users)
Text Annotations (users)
Button Annotations (users)
Slider Annotations (users)
Variable Selector (users)

 Button Annotations (Widgets)
A button annotation is a control which runs a script when clicked. Buttons and other
widgets are initially created using "stock Windows colors"; the controls' colors can easily
be changed using the Annotation toolbar, as can line thickness, etc.

To change the properties of a button:

Double-click the EDGE of any button object.1.
Make the changes you want.2.
Click OK.3.

Property Purpose

Caption The title text displayed on the button.

Script Commands Specifies the script to be run, when the button is clicked.

Font To set the font.

Shape Buttons can be a rectangle, a rounded rectangle, or an ellipse.

Disabled Grays and inactivates the button.

 Creating Annotations

The Annotation button on the Schematic, LiveReport, and Graph toolbars toggles the
display of the Annotation toolbar.

The toolbar provides tools like lines, circles, and text that you can use to point out details
of interest on a schematic, draw a box around a group of components, etc.

To place an annotation:

Click the various settings buttons (colors, line style, etc.) to adjust the settings for1.
newly created annotations
Click an annotation tool button (box, arc, text, etc.) on the Annotation Toolbar.2.
Click in a schematic, LiveReport, or graph window to place the new annotation.3.
Use the annotation setting buttons to change existing, selected annotations. (More4.
than 1 annotation can be adjusted at a time).
To set the Font for annotations with text, right-click the object and pick Font... from5.
the pop-up menu.

 Line Annotations
Lines have many drawing options: Line Thickness, style, color, arrowheads, etc., which
are controlled via the Annotation toolbar and by the object's right button menu. Lines can
have arrowheads and ends. Simply select a line and pick an arrow type:

SystemVue - Users Guide

22

Arrow Heads Arrow Ends

 Slider Annotations (Widgets)
A slider annotation is a control which adjusts a tunable equation variable, part parameter,
etc. Sliders and other widgets are initially created using "stock Windows colors"; the
controls' colors can easily be changed using the Annotation toolbar, as can line thickness,
etc.

To change the properties of a slider:

Double-click the EDGE of any slider object.1.
Make the changes you want.2.
Click OK.3.

Property Purpose

Variable The variable to be tuned.

'...' Button Brings up a selector to pick the variable.

Min and Max Specifies the limits of the tuning range. These can be set to the names of equation
variables, for adjustable limits.

Units Displays the units of the tune variable.

Number of Tics The number of slider division marks.

Orientation Sliders can be horizontal or vertical.

Slider Labels Specifies what text (if any) to display on a slider.

Show / Hide All Check or uncheck all the Show checkboxes.

Run simulations Runs enabled simulations on left-button up.

Display long variable
name

Displays the tune variable's long name (Eg: Project\Sch1\L1.L).

Hide name prefix Omits the part or equtaion name (Eg: L instead of L1.L).

Disabled Grays and inactivates the slider.

Snap to integer
values

Limits the tuning to integer values.

 Text Annotations
A text annotation is a filled rectangular box with text inside.

To change the properties of a text annotation:

Double-click any text object.1.
Make the changes you want.2.
Click OK.3.

Property Purpose

Name The name of the Text object.

Show Name Displays the name of the text item, which simplifies building a adding a title
block or other "labeled text".

Enter Lines of Text Specifies the test to be displayed.

Font Click the button to set the font.

Justification Sets the horizontal justification (alignment) of the text: Left, Right, or Center.

Vertical Justification Sets the vertical alignment of the text: Top, Bottom, or Vertically Centered.

Horizontal and Vertical
Margins

Sets the margins (border gap) of the text. Specified in page coordinates
(1/1000ths of an inch).

 Tips for advanced users

Text annotations can use equations. For example, if your workspace contains an equation
block with a text variable named CompanyName, you can place =CompanyName in the
Text field. (The leading = sign indicates that the text string is actually an expression.)
When the annotation is drawn, the equation will be evaluated and the result displayed.

Text annotations can display model and parameter info when used within a custom
symbol . This is implemented via macro-text-substitution. When symbol text is drawn on
a schematic, the displayed text is modified prior to output. For example, Name=%Model%
would be displayed as "Name=Resistor" on a symbol using a resistor model. The

SystemVue - Users Guide

23

recognized macro strings are:

%Des% - Displays the part's designator.1.
%Model% - Displays the name of the model attached to the part.2.
%MODEL% - Displays the model name in UPPERCASE.3.
%ParameterName% - Displays the value of the specified model parameter4.
attached to the part. E.g. R, C, L, QL, MODE, etc.

 Variable Selector
This is displayed via the '...' button.

Property Purpose

Filter by Limits the variables displayed to only those that include the specified
text.

Variable Displays the variable's name.

Path Displays the full pathname of the variable.

Value Displays the current value of the variable.

Tuned Displays an X, if the variable is tunable.

Part parameters only Limits the variables displayed to only part parameters.

Show tuned variables only Limits the variables displayed to only tunable variables.

SystemVue - Users Guide

24

 C++ Code Generation
SystemVue C++ Code Generator allows users to generate C++ code for a network (or a
sub-network) of a system. The generated code is in SystemVue C++ Model (users) format
but can be wrapped in different targets (e.g. ADS Ptolemy Model) and used in other
simulation environments. The generated C++ Model (users) contains the following
contents to implement the system of the code generation network:

Declaration of models and sub-networks inside the network.
Declaration of interface ports and specifying the interface data flow rates of the
network.
Specifying model parameters.
Allocation (and de-allocation) of buffer memories for transferring data inside the
network.
Setting up models' input and output ports (users) for reading and writing data from
and to circular buffers (users).
Executing pre-scheduled model executions for a complete data flow schedule iteration
(sim) of the network.

The generated C++ Model is also generic enough to be used as standalone C++ code for
other applications.

 Quick Start
In this section code generation flow is used to generate C++ code for a CIC filter. The
similar flow can be used for more complex systems build with code-generation supported
models in SystemVue. All user defined C++ models (users) following the directions in the
section Writing C++ Models for Code Generation support code-generation.

 Creating a Sub-network Model

Create a sub-network model implementing a CIC filter using models in Algorithm Design
library as follows,

 Creating a Design using the Sub-network Model

Create a Design using the CIC filter sub-network model as follows

 Adding a C++ Code Generator Analysis

Right click on the workspace tree and add a C++ Code Generator Analysis as follows

In the C++ Code Generation Options dialog box, edit the Name to CIC_CodeGeneration
and select Top Level Design to be Design1. The dialog should look as shown below:

SystemVue - Users Guide

25

The different fields and buttons of the dialog are explained below:

The Name is the C++ Code Generator name, which identifies it on the workspace
tree.
The Design selects the top level design for code generation.
The Configuration selects the Model Manager configuration of the Design selected.
The default configuration is "Default ..." which will generate the code for the design
as it appears in the schematic (for most cases, this is the value you need to select).
It is an advanced option, please read Modifying a Design (users) section for more
details.
The Add button selects one or more parts for code generation; the generated code
will be for the models associated with the selected parts.
The Delete button removes parts that have been previously added.
The Selected items grid lists the parts for which code will be generated.

Part is the full path to the part selected for code generation; this is a non-
editable field.
Model is the name of the model the part was using when selected for code
generation; this is a non-editable field.
Generated Class Name is the C++ class name that will be used when
generating code for the corresponding part. This is editable and can be modified
if the default auto-generated name is not desired.
You can add multiple parts for code generation at a time.

The Output Directory is the directory where the Visual Studio Solution will be
generated.
If Use default directory is selected then the default directory (a directory with the
same name as the workspace located in the same directory as the workspace) is
used.
The Target drop down menu specifies the target (application) on which the
generated code will run. The available targets are: SystemVue Model, Win32
Standalone DLL, ADS Ptolemy Model. See Supported Targets section for more details.

SystemVue Model will generate code for a SystemVue Model that can then be
imported and run inside SystemVue.
Win32 Standalone DLL will generate code that can be compiled in a
standalone dll for use in other applications. For this target the Use circular
buffers checkbox controls whether the generated C++ model is going to use
CircularBuffer or GenericType input/output interface. Generic-type interface
currently supports only int, double, std::complex<double>, int*, double*, and
std::complex<double>* data-types.

ADS Ptolemy Model will generate code and an associated pl file(s) that can be
compiled in a dll for use in the ADS Ptolemy simulation environment. For this
target the ADS Install Directory needs to be specified in the corresponding
field.

The Global Options opens the global options for Code Generation as shown below.
The same dialog can be opened using Tools->Options and then selecting Code
Generation tab.

SystemVue - Users Guide

26

Selecting Start IDE opens the Visual Studio IDE after code-generation.
Selecting Automatically compile after code generation compiles
corresponding generated visual studio project after code generation.
Selecting Load SystemVue library after compilation loads the dll after
compilation in SystemVue. This option is valid only for SystemVue Model target
only.
As clear from its name, any option set under Global Options are set for all future
use of any code generator and not only for the instance of Code Generator used
to invoke global options.

Clicking on the Add button brings up a dialog box where the sub-networks for which C++
code generation is desired can be selected. For this example, select "Data1 (CIC_filter)"
for code generation as follows

Click Expand sub-folders (if desired). (Note that you can open any individual sub-folder
by clicking the + symbol on its left.)

Automatically opens sub-folders with only a small number of parts.
Always opens all sub-folders.
Never only opens the Top Level Design folder, but leaves all the sub-folders closed.

Click Ok button. The Selected items grid in C++ Code Generation Options dialog box
should look like as follows.

 Generating Code

Clicking on the Generate Now button (or right-clicking on the C++ Code Generation item
on the workspace tree and selecting Generate Now) generates the C++ code plus other
necessary files (e.g. pl files for the ADS Ptolemy Model target) as well as an associated
Visual Studio solution and project(s) that can be used to build the code. The Visual Studio
project for the different targets (SystemVue Model, Win32 Standalone DLL, ADS Ptolemy
Model) is created under a different directory (SystemVue, StandaloneDLL, Ptolemy) in the
top level Visual Studio solution directory. All Visual Studio projects created from the same
C++ Code Generator are included in the same Visual Studio solution. The first time the
Visual Studio solution is created, Visual Studio is launched, the generated solution and
project files are loaded, and Visual Studio comes to the foreground. All that needs to be
done after that is selecting the desired configuration (Release/Debug) and building the
solution. Every time the Visual Studio solution is updated (e.g. new project added to the
solution, more files added to an existing project in the solution) through the code
generator, Visual Studio first saves the solution (this guarantees that changes the user
has made are not overwritten), then closes the solution, then the code generator updates
the necessary files, and finally Visual Studio loads the updated solution.

When selecting a C__ model part (non-subnetwork part) for code generation, SystemVue will generate a
C__ wrapper inherited from the original C__ model. For this reason, the Generated Class Name should
be different than the full class name (including namespace) of the original C__ model. In general, users
just need to take care of user-defined C__ models as SystemVue built-in models are protected within a
namespace.

 Supported Targets
This section describes in more detail the supported target types. Although the generated
files are very similar or identical for all target types the compiler and linker options used
to build the code are different.

 SystemVue Model

The SystemVue Model target generates code that can be built into a DLL for use inside
SystemVue. The DLL can be loaded into SystemVue using the Library Manager (users)
(see section Adding C++ Custom Libraries (users)). The generated library can also be
loaded automatically using "Global Options..." button in "C++ Code Generation Options"
dialog by selecting "Automatically compile after code generation" and "Load SystemVue
library after compilation" options.

If the option "Automatically add generated model to Part model list" is selected for
SystemVue Model target, then the generated model will be added in the managed model

SystemVue - Users Guide

27

list of corresponding part. The instance name will be the Name of code generator, and the
library name is the name of auto-generated library name which is the name of the output
directory by default. If you change the library properties manually after generating the
code then you will have to update the managed model list for corresponding models
manually.

The structure of the auto-generated Visual Studio solution and project is shown below.

The solution name is the same as the workspace name (CodeGenExample) and the project
name is SystemVue.

The Header Files folder contains the header file(s) for the generated classes.
The Source Files folder contains the implementation (.cpp) file(s) for the generated
classes. In addition, the Source Files folder contains the file LibraryProperties.cpp,
which can be used to change the name of the Part, Model, and Enum libraries created
when the DLL is loaded into SystemVue. By default the name of these libraries is the
workspace name.
The XML Files folder contains xml file(s) that describe the model interface, that is, the
names, types, and other properties of the the model's parameters, inputs, outputs,
etc. These xml files are not necessary for building the DLL.

 Win32 Standalone DLL

The Win32 Standalone DLL target generates code can be built into a DLL for use outside of
SystemVue. The structure of the auto-generated Visual Studio solution and project is
shown below.

The solution name is the same as the workspace name (CodeGenExample) and the project
name is StandaloneDLL.

The Header Files folder contains the header file(s) for the generated classes.
The Source Files folder contains the implementation (.cpp) file(s) for the generated
classes.
The XML Files folder contains xml file(s) that describe the model interface, that is, the
names, types, and other properties of the the model's parameters, inputs, outputs,
etc. These xml files are not necessary for building the DLL.

 Exporting symbols from the Standalone DLL

No symbols are exported from the DLL that is built. Symbols are required to be exported if
you wish to reference the functions and classes defined in this DLL from another DLL or an
executable. To export symbols from a DLL, you need to use:

__declspec(dllexport)

To do this, add a new header file to the StandaloneDLL project. A good practice is to call
this header file "<Solution Name>_DLL_Export.h". To add a new file right click on the
Header Files folder and select Add > New Item ...

In the dialog that pops up select Header File (.h), type the name of the new file in the
Name field, and press the Add button.

SystemVue - Users Guide

28

An empty file called CodeGenExample_DLL_Export.h is created and opened in Visual
Studio for editing. Copy the content shown below and paste it in this file. Replace
CODEGENEXAMPLE with the name of your solution.

#pragma once

// The following ifdef block is the standard way of creating macros which make exporting

// from a DLL simpler. All files within this DLL are compiled with the CODEGENEXAMPLE_EXPORTS

// symbol defined on the command line. this symbol should not be defined on any project

// that uses this DLL. This way any other project whose source files include this file see

// CODEGENEXAMPLE_API functions as being imported from a DLL, whereas this DLL sees symbols

// defined with this macro as being exported.

#if defined DISABLE_CODEGENEXAMPLE_EXPORTS || !defined _MSC_VER

#define CODEGENEXAMPLE_API

#elif defined CODEGENEXAMPLE_EXPORTS

#define CODEGENEXAMPLE_API __declspec(dllexport)

#else

#define CODEGENEXAMPLE_API __declspec(dllimport)

#endif

Now, you can modify the generated code to export the classes and functions you wish to
reference from other DLLs or executables. For example, to export the generated CIC_Filter
class, modify "CIC_Filter.h" by adding an include statement for the header file you just
added and adding the API preprocessor definition (CODEGENEXAMPLE_API) to the
declaration of the class.

If you generate code from SystemVue again, the file CIC_Filter.h will be regenerated and the edits you
have made above will be lost. In this case, a window with a warning that certain files will be overwritten
pops up and you can choose to overwrite the files or not.

Now the CIC_Filter class/model can be instantiated and used in other applications. An
example on how to use a model from a standalone DLL in a standalone executable is
described in the next section.

 Using a model defined in a Standalone DLL in an executable

Make sure you have exported the classes/models you want to use in your executable1.
(see previous section).
Add a new project to the solution. Right click on the solution and select Add > New2.
Project ...

SystemVue - Users Guide

29

2.

In the dialog that pops up select Win32 under Visual C++ in the Project types area,3.
then select Win32 Console Application in the Templates area, type the name of
the new project in the Name field, and press the OK button.

In the new dialog that pops up just press the Next and then the Finish button.4.
The new project is created and added to the solution. The CIC.cpp file, which5.
contains the _tmain function, is automatically opened for editing.

Edit this file to implement the application you want. The code shown below (this code6.
is also provide as a code snippet below so that you can copy/paste it and try it out
yourself)

instantiates the CIC_Filter class (line 12) that was generated by SystemVue
initializes it (lines 14 and 15)
passes random data to it (line 21)
runs it (line 22)
writes the filtered output to a file (line 23)
calls the finalize method of the filter (line 25) to do clean up (e.g. free allocated
memory) before exiting the program

// CIC.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include "../StandaloneDLL/CIC_Filter.h"

SystemVue - Users Guide

30

#include <iostream>

#include <fstream>

#include <stdlib.h>

int _tmain(int argc, _TCHAR* argv[])

{

CIC_Filter filter;

filter.Setup();

filter.Initialize();

std::ofstream outputFile("noise.txt");

for (int i = 0; i < 1000; i++)

{

// Set input

filter.dp1 = double(rand())/(1000. * double(RAND_MAX));

filter.Run();

outputFile << filter.dp2 << std::endl;

}

filter.Finalize();

return 0;

}

Add a dependency between the CIC and the StandaloneDLL projects.7.
From the Project menu select Project Dependencies....
In the Project Dependencies dialog that pops up, go to the Dependencies tab,
select CIC in the Projects drop down menu, check the checkbox next to
StandaloneDLL in the Depends on area, and press the OK button.

Add the appropriate Property Sheets.8.
From the View menu select Property Manager. The Property Manager tab
appears net to the Solution Explorer tab.

Add the "Model Builder Standalone DLL" property sheet to the CIC project. To do
this right click on the CIC project and select Add Existing Property Sheet....

Navigate to the Modelbuilder directory of your SystemVue installation, select
"Model Builder Standalone DLL.vsprops", and press the open button.

SystemVue - Users Guide

31

Repeat the above step to add the "StandaloneDLL" property sheet to the CIC
project. This property sheet is under the StandaloneDLL directory of your
solution directory (c:\work\Examples\CodeGenExample for the example
discussed here).

Change the Output Directory for the CIC project so that the executable is built in the9.
same directory as the standalone DLL.

Right click on the CIC project and select Properties.

In the dialog that pops up, select All Configurations in the Configuration drop
down menu, go to the General section under the Configuration Properties, set
the Output Directory to "$(SolutionDir)$(ConfigurationName)StandAloneDLL"
(the default value is "$(SolutionDir)$(ConfigurationName)"), and press the OK
button.

Build the solution by right clicking on the solution name and selecting Build Solution.10.

SystemVue - Users Guide

32

10.

The CIC.exe executable is created under the
DebugStandAloneDLL/ReleaseStandAloneDLL directory of your solution directory
(c:\work\Examples\CodeGenExample for the example discussed here) depending on
whether you chose to build Debug or Release code. You can navigate to this directory
(in Windows Explorer) and run it by double clicking on it. You will see the noise.txt
file being created. You can also place breakpoints and debug it inside Visual Studio.

 ADS Ptolemy Model

The ADS Ptolemy Model target generates code and all other necessary files that can be
built into a DLL for use inside the ADS Ptolemy simulation environment. The structure of
the auto-generated Visual Studio solution and project is shown below.

The solution name is the same as the workspace name (CodeGenExample) and the project
name is Ptolemy. The solution includes two more projects: Ptolemy-SystemVueMatrix and
Ptolemy-SystemVueModelbuilder. These projects are not copied into the solution
directory. They exist under the directory My Documents\SystemVue\<SystemVue
version>\<ADS version> (without the Ptolemy- prefix) and they are included in the
solution from the above directory. These projects are built as part of the solution and the
DLLs they create are needed so that the DLL built from the Ptolemy project works
properly. Do not make any changes to the files of these two projects. The structure of the
Ptolemy projects is described below:

The Header Files folder contains the header file(s) for the generated classes. In
addition, the Header Files folder contains the file <WorkspaceName>Dll.h., where
<WorkspaceName> is the name of the workspace, which is required for compiling.
Do not delete or modify this file.
The Source Files folder contains the implementation (.cpp) file(s) for the generated
classes.
The Stars folder contains the Ptolemy Language (.pl) file(s), which wrap the
generated classes with an ADS Ptolemy model.
The XML Files folder contains xml file(s) that describe the model interface, that is, the
names, types, and other properties of the the model's parameters, inputs, outputs,
etc. These xml files are not necessary for building the DLL.
The Generated Header Files folder contains the header file(s) for the ADS Ptolemy
model(s).
The Generated Sources folder contains the implementation (.cc) file(s) for the ADS
Ptolemy model(s).

The header files under the Generated Header Files folder and the .cc files under the
Generated Sources folder are auto-generated from the pl files and do not exist during the
creation of the project. They are generated the first time the project is built. Do not delete
of modify these files.

When the Ptolemy project is built it creates a DLL (under the lib.win32 directory) as well
as the ael, symbols, and bitmaps needed for the model to be used in ADS. The resultant
directory structure is shown below.

To use these models in ADS just set the ADSPTOLEMY_MODEL_PATH environment
variable to the directory where the lib.win32, ael, symbols, bitmaps directories are located
(for the example shown above ADSPTOLEMY_MODEL_PATH should be set to
c:\work\Examples\CodeGenExample) and start ADS. The models will be located under the
SystemVue Imports library.

 Use of SystemVue matrix models in ADS

If a model with an output of SystemVue matrix is connected to a NumericSink it is
required that a Gain_M, GainInt_M, or GainCx_M component with Gain=1 is inserted
between the model and the sink.

SystemVue - Users Guide

33

 Supported ADS versions

The ADS Ptolemy Model target is compatible with the following ADS versions: ADS 2009
Update 1, ADS 2010.

 Creating ADS Ptolemy models for an entire SystemVue Modelbuilder library

If you have a SystemVue library (dll) of custom models and want to use these models in
ADS you can follow the process described here to generate the associated pl files and
build a dll with the corresponding Ptolemy models. The alternative is to use the Code
Generator, where you add each one of the models in your library. This may not be
practical if your library contains a lot of models.

First create a simple subnetwork model (you can use the CIC_Filter example under1.
Examples\Model Building) and use the Code Generator to generate code using the
ADS Ptolemy Model target. This step will create the proper Visual Studio solution
and project structure with the correct settings. Once this is done you can actually
remove the files created by the Code Generator (CIC_Filter.h, CIC_Filter.cpp,
CIC_Filter.xml, SDFSVUCIC_Filter.pl, SDFSVUCIC_Filter.h, and SDFSVUCIC_Filter.cc)
from the Ptolemy project. Do not remove the <SolutionName>Dll.h header file under
the Header Files folder. To simplify the description of the next steps we will assume
that:

the SystemVue installation is under c:\Program Files\SystemVue2011.03
the Visual Studio solution directory is c:\work\Examples\CodeGenMyModels
the SystemVue custom model library is MyModels.dll

Open a DOS window and go to the Ptolemy directory of your Visual Studio solution2.
cd c:\work\Examples\CodeGenMyModels\Ptolemy
Run the command (make sure the directory where MyModels.dll is located is in your3.
PATH variable)
c:\Program Files\SystemVue2011.03\bin\SystemVue.exe -XML MyModels.dll
This command will create the xml file MyModels.xml, which fully describes the
interface of your SystemVue custom models.
Run the command4.
c:\Program Files\SystemVue2011.03\bin\SystemVueModelShell.exe -list -o
c:\work\Examples\CodeGenMyModels\Ptolemy -ptolemy MyModels.xml
This command will create a pl file wrapper for all the models in the MyModels.dll
library. The names of the created pl files are SDFSVU<ModelName>.pl.
In the Visual Studio Solution Explorer window, right click on the Stars folder of the5.
Ptolemy project and select Add > Existing Item.... In the dialog that pops up,
select all the SDFSVU<ModelName>.pl files and press the Add button. This will add
the selected pl files under the Stars folder.
In the Visual Studio Solution Explorer window, select all the pl files under the Stars6.
folder (you can do this by left mouse clicking on the first pl file and then holding
down the Shift key and left mouse clicking on the last pl file), then right click and
choose Compile. This will generate the corresponding SDFSVU<ModelName>.h and
SDFSVU<ModelName>.cc files.
Add the .h files under the Generated Headers folder and the .cc files under the7.
Generated Sources folder by right clicking on the folder and selecting Add >
Existing Item....
Update the Ptolemy project properties so that the C++ compiler has access to the8.
header files of your SystemVue custom models and the linker has access to the
associated lib file (make sure the classes representing your models have been
exported properly so that they can be referenced from another dll; you can follow a
process similar to the one described in Exporting symbols from the Standalone DLL).
Build the solution.9.

 Limitations

When writing fixed point C++ models for SystemVue, users can simply override
AgilentEEsof::DFFixedPointInterface::SetOutputFixedPointParameters() method to let
SystemVue automatically set fixed point parameters (including word length, integer word
length, sign bit, etc) for each AgilentEEsof::FixedPoint object in
AgilentEEsof::FixedPointCircularBuffer. See Writing Fixed Point Models (users) for details.
However, such automation process is not available in ADS Ptolemy, so users have to
modify the source code. If the output fixed point parameters can be derived from model
parameters, users can set the fixed point parameters for each AgilentEEsof::FixedPoint
object in AgilentEEsof::FixedPointCircularBuffer in the Initialize() method. If the output
fixed point parameters depend on the input fixed point parameters, users can set the
output fixed point parameters for each output data in the Run() method.

In addition, because ADS Ptolemy and SystemVue use different fixed point data types,
conversions between two data types are performed in the generated Ptolemy Language
(.pl) model. The conversion functions are coded in
\ModelBuilder\include\SystemVue\ADSPtolemy\FixedPointHelper.h under SystemVue
installation directory.

 Licensing
Using the generated C++ code requires certain SystemVue licenses. The license features
required are based on what is included in the design used to generate C++ code and how
the generated code is being used (target type).

 SystemVue Model Target

If the generated C++ code is used as SystemVue model inside SystemVue then license
requirements will be same as running the original design used to generate C++ code. For
example if original design contained LTE models then LTE license will be needed.

 ADS Ptolemy Model Target

If the generated code is used inside ADS Ptolemy, then SystemVue Core license will not be
required, instead ADS Ptolemy license will be used in place of SystemVue Core license.
However, if your design to generate C++ code requires any extra license other then
SystemVue core then exactly the same license will be needed to use generated code in
ADS Ptolemy. For example, if you have used any LTE license in SystemVue design to
generate C++ code then you will need exactly the same license to run the design in ADS
Ptolemy as well. To use SystemVue specific LTE (or any other non SystemVue Core
license) in ADS Ptolemy, please append the SystemVue license path to ADS license
environment variable AGILEESOFD_LICENSE_FILE along with original ADS license.

 Win32 Standalone DLL Target

To use generated code outside SystemVue and ADS Ptolmey, you will need exactly the
same licenses as you need for the SystemVue design used to generate C++ code. The
SystemVue Core license will always be pulled.

 W1718 License

If you have W1718 license available then the first time you run SystemVue C++ code
generation using your user account, the source code and corresponding Visual Studio
project for SystemVue core models will be copied to "\SystemVue{version}\W1718" under
"My Documents" directory for your user account. You can read / modify the code and use
it in anyway you want. If you use the libraries created by W1718 source code, and link
with the generated C++ code, then you will not need SystemVue core license to use the
generated code outside SystemVue, provided that design to generate C++ code contains
ONLY SystemVue core model. If the design contains both core models and LTE then both
SystemVue Core license and LTE license will be required to use the code outside
SystemVue/ADS.

 LTE Specific License Requirements

If you have LTE Baseband Verification License then the first time your will generate C++
code, LTE C++ header files will be copied to "\SystemVue{version}\LTE_8.9" under "My
Documents" directory for your user account, where LTE_8.9 represents LTE version 8.9.
To build any C++ code generated using LTE models in your design requires these headers
to be presented in that directory. You will also require LTE license to run use the

SystemVue - Users Guide

34

generated code. If you have purchased LTE Basebad Exploration library then you will have
access to complete LTE source code and you can use it in a similar way as W1718 source
code.

 Schema
Along with C++ code generation, SystemVue generates XML file that describes the
interface of the generated C++ model. The XML format is based on the schema provided
in \ModelBuilder\Schema\systemvue_model.xsd under SystemVue installation directory.
In the same folder, systemvue_model.pdf and systemvue_model.mht are also provided
that describe the schema content.

 Writing C++ Models for Code Generation
In general, SystemVue C++ code generator supports any C++ model that is created and
loaded based on Creating a Custom C++ Model Library (users), including user-defined
C++ models. However, in order to successfully compile generated code, additional
information needs to be provided in DEFINE_MODEL_INTERFACE (users) of C++ models
that are going to be used in code generation.

If the class name (say classname) of a C++ model is different than the name of the
header file that declares the model, then use ADD_MODEL_HEADER_FILE(
header_file) macro to specify the header file. See
\ModelBuilder\include\ModelBuilder.h in SystemVue installation directory for macro
definition. In this case, header_file.h will be included in the generated code.
Otherwise, classname.h will be automatically included by default.
If there are headers necessary for the generated code to use a model, and those
headers are not included in the model's header file, then use
ADD_MODEL_HEADER_FILE(header_file) macro to specify the additional
headers to be included in the generated code and also the model class header.

Once ADD_MODEL_HEADER_FILE(header_file) macro is used, C__ code generator will not
generate classname.h.

If a C++ model is declared within a namespace, then use
SET_MODEL_NAMESPACE(model_namespace) macro to specify the
namespace. See \ModelBuilder\include\ModelBuilder.h in SystemVue installation
directory for macro definition.
The C++ code generator relies on the names specified through the DFInterface to
use model's member variables in the generated code. Therefore, model member
variables for inputs, outputs, parameters, and array parameter sizes must be in
public scope, and the names of the member variables must be specified exactly the
same as declared in the model class. The macros, e.g., ADD_MODEL_INPUT(
user_variable), ADD_MODEL_OUTPUT(user_variable),
ADD_MODEL_PARAM(user_param_variable), ADD_MODEL_ENUM_PARAM(
user_param_variable, enum_type_name),
ADD_MODEL_ARRAY_PARAM(user_param_variable,
user_array_size_variable), help users to add inputs, outputs, and parameters
while preserving naming consistency. For advanced users, see pcCodeGenName,
pcSizeName, and pcEnumType in \ModelBuilder\include\DFInterface.h and see
\ModelBuilder\include\ModelBuilder.h in SystemVue installation directory.
For enum parameters, the enum types must be declared in public scope. The names
of enum types must be specified exactly the same as declaration and must include
class scope if the enum types are declared within classes. See
ADD_MODEL_ENUM_PARAM(user_param_variable, enum_type_name)
macro in \ModelBuilder\include\ModelBuilder.h in SystemVue installation directory.

Model's inputs, outputs, parameters, array parameter sizes, and enum types must be declared in
public scope, and the names and enum types must be specified properly.

After code generation, the Visual Studio solution and projects (see Generating Code
and Supported Targets) that are automatically created by SystemVue will have the
proper include and library directories for the built-in SystemVue models. Regarding to
custom (user-defined) C++ models, users have to manually include them in the
Visual Studio projects. The following steps provide a general guideline to build the
custom C++ models along with the generated code.

Copy the custom .h and .cpp files to the generated Visual Studio project1.
directory.
In Visual Studio Solution Explorer, right click the project, use Add > Existing2.
Files to add the custom .h and .cpp files to the project Header and Source Files.
In the project property page (right click the project in Solution Explorer, then3.
choose Properties), set the include directories (Configuration Properties >
C/C++ > General > Additional Include Directories), library directories
(Configuration Properties > Linker > General > Additional Library Directories),
and .lib files (Configuration Properties > Linker > Input > Additional
Dependencies) that are necessary to build the custom C++ models. See Using
Third Party Library in C++ Models (users) for information about how to setup
Visual Studio project for using third party libraries in C++ models.
If the custom C++ models depend on dynamic link libraries, remember to set4.
windows PATH environment variable to include the directory where the .dll files
are located.

 Understanding Generated C++ Code

 Example

The following figure shows a sub-network example for C++ code generation. The sub-
network contains an Add (algorithm) block A1, a "GainSubnet" sub-network model Data1,
and a custom "DownSample" C++ model D1.

The "GainSubnet" sub-network contains only a Gain (algorithm) block as shown in the
figure below:

The blocks Add (algorithm) and Gain (algorithm) use circular buffers (users) as inputs and
outputs. The header files can be found in \ModelBuilder\include under SystemVue
installation directory.

The custom C++ model (users) "DownSample" implements a simple down sampler. The
implementation is shown in the following "DownSample.h" and "DownSample.cpp" for the
purpose of illustrating scalar port (double Out) and array port (double *In).

// DownSample.h

SystemVue - Users Guide

35

#pragma once

#include "ModelBuilder.h"

class DownSample : public AgilentEEsof::DFModel

{

public:

DECLARE_MODEL_INTERFACE(DownSample)

virtual bool Run(); // down sampling

virtual bool Setup(); // Setup rate

double *In; // array input

double Out; // scalar output

int Factor; // down sample factor

unsigned Rate; // input rate = down sample factor

};

// DownSample.cpp

#include "stdafx.h"

#include "DownSample.h"

DEFINE_MODEL_INTERFACE(DownSample)

{

AgilentEEsof::DFParam cFactor = ADD_MODEL_PARAM(Factor);

cFactor.SetDefaultValue("2");

AgilentEEsof::DFPort cIn = ADD_MODEL_INPUT(In);

cIn.AddRateVariable(Rate);

ADD_MODEL_OUTPUT(Out);

return true;

}

bool DownSample::Setup()

{

if (Factor > 0)

Rate = Factor;

else

POST_ERROR("Factor should be > 0");

return true;

}

bool DownSample::Run()

{

Out = In[0];

return true;

}

 Generated Header and C++ Files

The following "MyModel.h" shows the generated C++ model header file for the above code
generation sub-network.

The top of the header file documents the file name and copyright notice.
It includes the header files that declare the models inside the code generation sub-
network.
The class name of the generated C++ model is specified by the Generated Class
Name field in C++ Code Generation Options dialogue box.
For each sub-network interface port or bus-port, e.g., dp1, dp2, and dp3 in Fig:
GainSubnet, there is a corresponding circular buffer (users) port or circular buffer bus
(users) port declared in the generated C++ model for data input and output.
The hierarchical sub-networks are preserved in the generated model in a way that
the models are declared in nested classes that imitate the hierarchical structures. For
example, block G1 in sub-network Data1 is invoked in the generated code as
Data1.G1. For example, block A1 in the top-level code generation network is invoked
simply as A1.
If a model has any scalar port or array port, a circular buffer (users) will be declared
with the model for accessing data in a circular buffer fashion. For example, circular
buffers D1_In and D1_Out are declared for "DownSample" D1.In and D1.Out.
For each connection in the code generation network, there is a corresponding buffer
memory declared to store data for the connection. For example, double*
m_pBuffer_Data1_G1_output_To_dp2 for connection from Data1.G1.output to dp2.

/*

* MyModel.h

* Created by SystemVue C++ Code Generator

* Copyright © Agilent Technologies, Inc. 2000-2010

*/

#pragma once

#include "ModelBuilder.h"

#include "DownSample.h"

#include "SystemVue/Models/Gain.h"

#include "SystemVue/Models/Add.h"

#include "SystemVue/Models/Fork.h"

class MyModel : public AgilentEEsof::DFModel

{

public:

DECLARE_MODEL_INTERFACE(MyModel)

MyModel();

~MyModel();

bool Setup();

bool Initialize();

bool Run();

bool Finalize();

// input, size=2, rate=2 2

AgilentEEsof::CircularBufferBusT<AgilentEEsof::CircularBuffer<double > > dp1;

// output, rate=1

AgilentEEsof::CircularBuffer<double > dp3;

// output, rate=2

AgilentEEsof::CircularBuffer<double > dp2;

private:

// subnetwork Data1

class Subnetwork_Data1

{

public:

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G1;

} Data1;

// delete buffer memory

void DeleteBuffers();

// DownSample

DownSample D1;

// circular buffer for D1.In

AgilentEEsof::CircularBuffer<double > D1_In;

// circular buffer for D1.Out

AgilentEEsof::CircularBuffer<double > D1_Out;

// AgilentEEsof::Add< double > double Add

AgilentEEsof::Add< double > A1;

// AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > double Fork

AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > A1_output;

// buffer from dp1[0] to A1.input[0]

double* m_pBuffer_dp1_0__To_A1_input_0_;

// circular buffer for dp1[0]

AgilentEEsof::CircularBuffer<double > dp1_0__CirBuf;

// buffer from dp1[1] to A1.input[1]

double* m_pBuffer_dp1_1__To_A1_input_1_;

// circular buffer for dp1[1]

AgilentEEsof::CircularBuffer<double > dp1_1__CirBuf;

// buffer from D1_Out to dp3

double* m_pBuffer_D1_Out_To_dp3;

// circular buffer for dp3

AgilentEEsof::CircularBuffer<double > dp3_CirBuf;

// buffer from Data1.G1.output to dp2

double* m_pBuffer_Data1_G1_output_To_dp2;

// circular buffer for dp2

AgilentEEsof::CircularBuffer<double > dp2_CirBuf;

// buffer from A1.output to A1_output.input

double* m_pBuffer_A1_output_To_A1_output_input;

// buffer from A1_output.output[0] to D1_In

double* m_pBuffer_A1_output_output_0__To_D1_In;

// buffer from A1_output.output[1] to Data1.G1.input

double* m_pBuffer_A1_output_output_1__To_Data1_G1_input;

};

The following "MyModel.cpp" shows the generated C++ model cpp file for the above code
generation sub-network.

Input and output circular buffers and circular buffer buses are added automatically in
DEFINE_MODEL_INTERFACE (users) such that it can be easily brought back to
SystemVue. The DEFINE_MODEL_INTERFACE (users) is surrounded by
SV_CODE_GEN such that it can be easily compiled out for standalone usage.
Constructor, destructor, and DeleteBuffers() methods take care of initialization and

SystemVue - Users Guide

36

de-allocation of buffer memories.
Setup() method is overridden to set model's parameters (if any), initialize model's
bus-port width (if any), declare contiguous memory for model's array port (if any),
set optional connectivity for model's circular buffer port (if any), and call each
model's Setup() methods. It also initialize the interface circular buffer bus width and
set the input and output data flow rates of the generated model.
Initialize() method is overridden to allocate buffer memories based on the computed
schedule and set circular buffers for both ends of the connections. It also calls each
model's Initialize() methods.
Run() method is overridden to read data from input circular buffer (bus) ports,
execute the pre-computed schedule for a complete data flow iteration, and write data
to output circular buffer (bus) ports. Before and after each model's Run() method,
data access and circular buffer adjustment are taken care properly.
Finalize() method is overridden to call each model's Finalize() method and to de-
allocate buffer memories.

/*

* MyModel.cpp

* Created by SystemVue C++ Code Generator

* Copyright © Agilent Technologies, Inc. 2000-2010

*/

#include "MyModel.h"

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(MyModel)

{

ADD_MODEL_INPUT(dp1);

ADD_MODEL_OUTPUT(dp3);

ADD_MODEL_OUTPUT(dp2);

return true;

}

#endif

MyModel::MyModel()

{

m_pBuffer_dp1_0__To_A1_input_0_ = NULL;

m_pBuffer_dp1_1__To_A1_input_1_ = NULL;

m_pBuffer_D1_Out_To_dp3 = NULL;

m_pBuffer_Data1_G1_output_To_dp2 = NULL;

m_pBuffer_A1_output_To_A1_output_input = NULL;

m_pBuffer_A1_output_output_0__To_D1_In = NULL;

m_pBuffer_A1_output_output_1__To_Data1_G1_input = NULL;

}

MyModel::~MyModel()

{

DeleteBuffers();

}

void MyModel::DeleteBuffers()

{

delete[] m_pBuffer_dp1_0__To_A1_input_0_;

m_pBuffer_dp1_0__To_A1_input_0_ = NULL;

delete[] m_pBuffer_dp1_1__To_A1_input_1_;

m_pBuffer_dp1_1__To_A1_input_1_ = NULL;

delete[] m_pBuffer_D1_Out_To_dp3;

m_pBuffer_D1_Out_To_dp3 = NULL;

delete[] m_pBuffer_Data1_G1_output_To_dp2;

m_pBuffer_Data1_G1_output_To_dp2 = NULL;

delete[] m_pBuffer_A1_output_To_A1_output_input;

m_pBuffer_A1_output_To_A1_output_input = NULL;

delete[] m_pBuffer_A1_output_output_0__To_D1_In;

m_pBuffer_A1_output_output_0__To_D1_In = NULL;

delete[] m_pBuffer_A1_output_output_1__To_Data1_G1_input;

m_pBuffer_A1_output_output_1__To_Data1_G1_input = NULL;

}

bool MyModel::Setup()

{

bool bStatus = true;

//setup models

//DownSample D1

D1.Factor = 2;

D1.Phase = 0;

D1_In.SetContiguousProperty();

bStatus &= D1.Setup();

//AgilentEEsof::Gain< double > Data1.G1

Data1.G1.m_Gain = 2;

bStatus &= Data1.G1.Setup();

//AgilentEEsof::Add< double > A1

A1.input.Initialize(2);

bStatus &= A1.Setup();

//AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > A1_output

A1_output.output.Initialize(2);

bStatus &= A1_output.Setup();

//setup circular buffer buses

dp1.Initialize(2);

//setup input and output dataflow rates

dp1[0].SetRate(2);

dp1[1].SetRate(2);

dp3.SetRate(1);

dp2.SetRate(2);

return bStatus;

}

bool MyModel::Initialize()

{

bool bStatus = true;

DeleteBuffers();

//allocate buffer from dp1[0] to A1.input[0]

m_pBuffer_dp1_0__To_A1_input_0_ = new double[2];

dp1_0__CirBuf.SetBuffer(m_pBuffer_dp1_0__To_A1_input_0_, 2, 2, 0);

A1.input[0].SetBuffer(m_pBuffer_dp1_0__To_A1_input_0_, 2, 1, 0);

//allocate buffer from dp1[1] to A1.input[1]

m_pBuffer_dp1_1__To_A1_input_1_ = new double[2];

dp1_1__CirBuf.SetBuffer(m_pBuffer_dp1_1__To_A1_input_1_, 2, 2, 0);

A1.input[1].SetBuffer(m_pBuffer_dp1_1__To_A1_input_1_, 2, 1, 0);

//allocate buffer from D1_Out to dp3

m_pBuffer_D1_Out_To_dp3 = new double[1];

dp3_CirBuf.SetBuffer(m_pBuffer_D1_Out_To_dp3, 1, 1, 0);

D1_Out.SetBuffer(m_pBuffer_D1_Out_To_dp3, 1, 1, 0);

//allocate buffer from Data1.G1.output to dp2

m_pBuffer_Data1_G1_output_To_dp2 = new double[2];

dp2_CirBuf.SetBuffer(m_pBuffer_Data1_G1_output_To_dp2, 2, 2, 0);

Data1.G1.output.SetBuffer(m_pBuffer_Data1_G1_output_To_dp2, 2, 1, 0);

//allocate buffer from A1.output to A1_output.input

m_pBuffer_A1_output_To_A1_output_input = new double[1];

A1.output.SetBuffer(m_pBuffer_A1_output_To_A1_output_input, 1, 1, 0);

A1_output.input.SetBuffer(m_pBuffer_A1_output_To_A1_output_input, 1, 1, 0);

//allocate buffer from A1_output.output[0] to D1_In

m_pBuffer_A1_output_output_0__To_D1_In = new double[2];

A1_output.output[0].SetBuffer(m_pBuffer_A1_output_output_0__To_D1_In, 2, 1, 0);

D1_In.SetBuffer(m_pBuffer_A1_output_output_0__To_D1_In, 2, 2, 0);

//allocate buffer from A1_output.output[1] to Data1.G1.input

m_pBuffer_A1_output_output_1__To_Data1_G1_input = new double[1];

A1_output.output[1].SetBuffer(m_pBuffer_A1_output_output_1__To_Data1_G1_input, 1, 1, 0);

Data1.G1.input.SetBuffer(m_pBuffer_A1_output_output_1__To_Data1_G1_input, 1, 1, 0);

//initialize models

bStatus &= D1.Initialize();

bStatus &= Data1.G1.Initialize();

bStatus &= A1.Initialize();

bStatus &= A1_output.Initialize();

return bStatus;

}

bool MyModel::Run()

{

bool bStatus = true;

//copy samples from inputs

dp1[0].Copy(0, &dp1_0__CirBuf, 0, 2);

dp1[1].Copy(0, &dp1_1__CirBuf, 0, 2);

//loop indices

int index1;

//execute schedule

for (index1=0; index1<2; index1++) {

//AgilentEEsof::Add< double > A1

bStatus &= A1.Run();

A1.input[0].Advance();

A1.input[1].Advance();

//AgilentEEsof::Fork< AgilentEEsof::CircularBuffer< double > > A1_output

bStatus &= A1_output.Run();

A1_output.output[0].Advance();

//AgilentEEsof::Gain< double > Data1.G1

bStatus &= Data1.G1.Run();

Data1.G1.output.Advance();

}

SystemVue - Users Guide

37

//DownSample D1

D1.In = (double*)D1_In.GetReadPtr();

bStatus &= D1.Run();

D1_Out[0] = D1.Out;

//copy samples to outputs

dp3_CirBuf.Copy(0, &dp3, 0, 1);

dp2_CirBuf.Copy(0, &dp2, 0, 2);

return bStatus;

}

bool MyModel::Finalize()

{

bool bStatus = true;

//finalize models

bStatus &= D1.Finalize();

bStatus &= Data1.G1.Finalize();

bStatus &= A1.Finalize();

bStatus &= A1_output.Finalize();

DeleteBuffers();

return bStatus;

}

 Generated Code and SystemVue Sub-network Differences

In most cases the generated code will behave exactly the same as the SystemVue sub-
network it was generated from. This section lists some exceptions:

All anytype models (models with red ports) are replaced (in the generated code) by1.
specific type models. In the example described in this section, the anytype gain and
add models are being replaced by gain and add models that operate on double
numbers, since double was the resolved type for these models. If the resolved type
for these models were complex, then they would be replaced by gain and add models
that operate on complex numbers. The generated code can only operate on specific
data types and once generated the data type cannot be changed when the generated
code is being used (run). Of course, the data type can be changed if the code is
generated again with a different set of input signals or parameters, which result in a
different resolved type for the anytype models.
For improved performance, certain models are being replaced by simpler more2.
efficient versions and therefore the generated code does not have the full
functionality of the SystemVue sub-network it was generated from. For example, the
Math model is replaced by a model that performs only the specific function selected
during code generation, e.g. Sqrt. Therefore, if the FunctionType parameter of the
Math model was controlled by a parameter of the top level sub-network, the model
that replaces the Math model in the generated code would not respond to changes of
this top level sub-network parameter. The following table lists all the models for
which the generated code will not have the full functionality of the original model.
Original Model Generated Model

Math (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

MathCx (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

Trig (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

TrigCx (algorithm) performs only the function selected during code generation (FunctionType
parameter is removed)

Logic (algorithm) performs only the function selected during code generation (Logic parameter is
removed)

RandomBits
(algorithm)

does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

PRBS (algorithm) does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

DataPattern
(algorithm)

does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

WaveForm
(algorithm)

does not have bust capability if BurstMode was set to OFF (all Burst related
parameters are removed)

See next section on Parameter Support for other cases where the generated code3.
may not behave the same as the SystemVue sub-network it was generated from.

 Parameter Support
When a sub-network is selected for code generation and the sub-network has parameters,
the C++ code generator will create corresponding public members in the generated class,
which can be used to parametrize and control the model. To enable parametrization in the
generated code, at least one of the parts inside the sub-network must make use of the
sub-network parameters to set its own parameters.

The following figure shows a CIC filter sub-network, where the Gain parameters of the
Gain (algorithm) parts are set by the sub-network parameters Gain1, Gain2, and Gain3.

The generated model, MyCICPS, for the above CIC filter sub-network is partially shown in
the following code. In the class declaration three parameters Gain1, Gain2, and Gain3 are
declared as double (this depends on the Validation flag in the sub-network Parameters
tab) variables. In DEFINE_MODEL_INTERFACE, Gain1, Gain2, and Gain3 are added as
parameters of the generated model. In Setup, the m_Gain members of the
AgilentEEsof::Gain< double > models G2, G3, and G4 are set using Gain1, Gain2, and
Gain3.

/*MyCICPS.h*/

class MyCICPS : public AgilentEEsof::DFModel

{

public:

//sub-network parameters

double Gain1;

double Gain2;

double Gain3;

//...

private:

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G2;

SystemVue - Users Guide

38

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G3;

// AgilentEEsof::Gain< double > double Gain

AgilentEEsof::Gain< double > G4;

//...

};

/*MyCICPS.cpp*/

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(MyCICPS)

{

ADD_MODEL_PARAM(Gain1);

ADD_MODEL_PARAM(Gain2);

ADD_MODEL_PARAM(Gain3);

//...

}

#endif

bool MyCICPS::Setup()

{

//...

//AgilentEEsof::Gain< double > G2

G2.m_Gain = Gain1;

bStatus &= G2.Setup();

//AgilentEEsof::Gain< double > G3

G3.m_Gain = Gain2;

bStatus &= G3.Setup();

//AgilentEEsof::Gain< double > G4

G4.m_Gain = Gain3;

bStatus &= G4.Setup();

//...

}

The mapping between the Validation flag of a sub-network parameter and the type of the
C++ variable created is shown in the table below:

Validation Flag C++ variable type

Boolean bool

Integer int

Positive Integer int

Floating point number double

Warn if negative double

Warn if non-positive double

Error if negative double

Error if non-positive double

Complex number std::complex<double>

Integer array AgilentEEsof::Matrix<int>

Floating point array AgilentEEsof::Matrix<double>

Complex array AgilentEEsof::Matrix< std::complex<double>
>

Enumeration int

Text char*

Filename char*

Warning NOT SUPPORTED

Error NOT SUPPORTED

<None> NOT SUPPORTED

For code generation purposes, users MUST properly set the Validation flag for each sub-network
parameter in the sub-network Parameter tab.

In the SystemVue 2010.07 release the parameter support is limited to direct assignments (e.g.
Gain=Gain1) of the sub-network parameters to the parameters of its parts (see CIC filter examples
described earlier in this section). If a part is using a sub-network model then again the parts inside that
sub-network can only use the sub-network's parameters in direct assignments to set their parameters.
There is no limit to the number of hierarchy levels supported. For example, let A be the top level sub-
network that is selected for code generation and a be a parameter of A. Let B be a sub-network inside A
and b be a parameter of B set to a. Let C be a part (not using a sub-network model) inside B and c be a
parameter of C set to b. Then in the generated code, B.C.c is set to a and so changes to the top level sub-
network parameter a are properly propagated to the lower hierarchy levels.

If a part's parameter is set using an expression or equation, then in the generated code the parameter will
be set to the expression's resolved value and changing the values of the top level sub-network's
parameters will have no effect on the behavior of the part. For example, in the CIC filter example shown
earlier in this section, if the Gain parameter of part G2 is set to 2*Gain1-0.3, the generated code will set
G2.m_Gain to 2*1-0.3=1.7 and changing Gain1 will not affect the Gain of part G2.

When a sub-network parameter is used in a direct assignment to set the parameter of one of its parts and
it is also used in an expression to set the parameter of another one of its parts, users must be aware of
the inconsistency in the behavior of the generated model. For example, let p be a top level sub-network
parameter. Let X be a part inside the top level sub-network whose parameter x is set to p. Let Y be a part
inside the top level sub-network whose parameter y is set to 1_p. Then in the generated code, X.x is set
to p and thus controlled by it, whereas Y.y is set to the resolved value of the 1_p and cannot be controlled
by p. In this case, the generated model will not behave the same as the original sub-network model when
the value of the parameter p is changed.

If a part's parameter can change the data flow rate or buffer size or fixed point parameters of the part's
input/output, setting the part's parameter by the sub-network parameter may introduce incorrect behavior
in the generated model. This is because the schedule, the buffer size, and the fixed point parameters in
the generated model are pre-computed and hard-coded based on the parameter values during code
generation. In this case, when such parameter is changed from its default value, incorrect behavior may
occur in the generated model.

In certain cases, model parameters are removed from the generated code (see section Generated Code
and SystemVue Sub-network Differences). Trying to control these parameters with a sub-network
parameter is going to result in inconsistent behavior between the original SystemVue sub-network and the
generated code.

 Limitations
The data flow graph inside the code generation network (sub-network) must be
connected. The C++ code generator does not support multiple isolated graphs
because the relative execution rates depend on outside systems.
The C++ code generator currently does not support timed (sim) blocks, envelope
(sim) blocks, nor dynamic (sim) blocks.

SystemVue - Users Guide

39

 HDL Code Generation
SystemVue provides its users with an easy path from schematic design to the hardware.
This could be done by using HDL Code Generation capability of SystemVue. A user created
SystemVue sub-network model (users), using only synthesizeable Fixed Point parts from
Hardware Design Library (hardware) can be used to generate VHDL/Verilog for the sub-
network.

In this tutorial we will go through a simple example to understand the design flow to
generate HDL Code. The same design flow can be used for more complex designs. We will
create a Fixed point design for a Complex Adder, generate VHDL for the Complex Adder
and performs functional verification of the generated VHDL.

 Generating Fixed Point Sub-Network Model
If you have note done so then read and understand Sub-Network Models (users)
documentation.
Create a sub-network model as shown below.

Note that ControllerFxp component is included in the design. Also note that the
values of parameters CodeGeneration, LaunchHDLSim and HDLSimulatorGUI are
assigned the model parameter names.
Set the Sub-Network parameters as follows

For the sub-network model (users) parameters, edit the enumeration type for
CodeGeneration to be ControllerFxp_CodeGeneration, for LaunchHDLSim to be
ControllerFxp_LaunchHDLSim and for HDLSimulatorGUI to be
ConstrollerFxp_HDLSimulatorGUI from the library Fxp Enums.

Parameterizing the sub-network model to control ControllerFxp is not required but helps if you
would like to use the same sub-network model for Fixed point simulation and automatic HDL
Cosimulation.

Create a top level design and simulate the sub-network model to make sure its
correct functionality. Make sure that parameter CodeGeneration=OFF. An example
top-level design is shown below

Warning
The fixed point sub-network model used to generate HDL must contains only synthesizeable Fixed
Point parts from Hardware Design Library (hardware). For example FloatToFxp (hardware) part is
not synthesizeable. To ensure that a Fixed Point part is synthesizeable, consult its documentation.

 Generating the HDL and HDL Simulation
Change the value of model parameter CodeGeneration to VHDL. If you have not
parameterized your sub-network model then select CodeGeneration=VHDL for
ControllerFxp component inside the sub-network.
Simulate the top level design, it will perform the fixed point simulation and generates
the corresponding VHDL for the sub-network model instance in the sub-directory
<schematic design name>_<sub-network model instance name>_HDL\hdl
under the same directory where the workspace containing the design is located. The
name of the file containing the top level VHDL will be <sub-network model
name>.vhd.

If you have installed ModelSim SE and it is configured to run from command line i.e. your
operating system's PATH variable points to ModelSim SE, then you can also invoke HDL
simulation After Simulation using the test vectors generated by SystemVue simulation.
Alternatively you can use automatic HDL Cosimulation (sim) During Simulation to make
sure that generated VHDL is functionally correct. The automatic HDL Cosimulation (sim),
performs inter process communication between SystemVue and ModelSim to process data
by HDL simulator in real time while SystemVue simulation is running. The Hdl simulation
During Simulation first generate the HDL for the sub-network and then runs the HDL
portion of the design in ModelSim and rest in SystemVue using inter process
communication.

Change the value of model parameter LaunchHDLSim=After Simulation and run the
simulation. This will simulate the design in SystemVue and at the end of simulation
starts ModelSim and run ModelSim simulation using the test vectors generated by the
SystemVue simulation.
To perform HDL simulation During Simulation change the value of model parameter
LaunchHDLSim=During Simulation and run the simulation. This will perform the HDL
Cosimulation in the back ground if HDLSimulatorGUI=OFF.
Now change the value of model parameter HDLSimulatorGUI=ON and run the
simulation. This will bring up ModelSim GUI and halts the SystemVue simulation
which is waiting for data from ModelSim. This interactive mode can be used for
debugging HDL code. To resume the simulation, either issue the command run inside
ModelSim to run for a single step or run -all to run the complete simulation.

Currently only VHDL is supported with LaunchHDLSim=During Simulation.
If HDLSimulatorGUI=ON then close the ModelSim before starting simulation again. Otherwise
you will require additional license for new instance of ModelSim.

 Testing for Functional Equivalency

http://www.model.com
http://www.model.com

SystemVue - Users Guide

40

This section covers that how to perform functional equivalency test to prove that
SystemVue generated HDL is functionally equivalent to the fixed point model for which
HDL was generated. You must have ModelSim SE installed properly, see section
Generating the HDL and HDL Simulation for more details.

Create a design using the sub-network model created in section Generating Fixed
Point Sub-Network Model as shown below

This design includes two instances of the sub-network model. One instance is
configured to generate VHDL and LaunchHDLSimulation=During Simulation, the other
instance is configured not to generate HDL and perform only fixed point simulation.
Both instances are fed with the same inputs.
The output of both instances are compared using CompareFxp (hardware) part
with CompareOperation=Equal. The output of CompareFxp (hardware) is '1' to
indicate true and is '0' to indicate false.
Run the simulation, and observe the results. If the output of all CompareFxp
(hardware) instances is always '1' that means the generated HDL is functionally
equivalent to original fixed point model.

Warning
Currently only VHDL can be used with LaunchHDLSimulation=During Simulation therefore it is
not possible to perform functional equivalency test for SystemVue generated Verilog.
If you are using any delay or changing the sample rate in the sub-network model then you
cannot use any downstream component that is backward reachable simultaneous to a sub-
network model instances using LaunchHDLSimulation=During Simulation and sub-network
model instances not using LaunchHDLSimulation=During Simulation. The functional
verification can still be performed by connecting the output of sub-network model instances to
two different sinks and comparing the data in the dataset. In the above example it means not
using the CompareFxp (hardware).

The reason that outputs of sub-network model instances (one with HDL Cosimulation
and the other with fixed-point simulation) cannot be combined at the input of a
downstream component is because sub-network model with
LaunchHDLSimulation=During Simulation is replaced by a single HdlCosim (sim)
model which is a uni-rate model, where as the other instance uses the fixed-point
models in the simulation.

 Understanding the Generated HDL
The generated HDL will be located inside the sub-directory <schematic design
name>_<sub-network model instance name>_HDL\hdl under the same directory
where the workspace containing the design is located. The name of the file containing the
top level HDL will be <sub-network model name>.vhd for VHDL and <sub-network
model name>.v for verilog.
The number of input/output ports will be same if there is no sequential component is
used, for example the Complex Adder design above. However, in case of using sequential
components such as DelayFxp (hardware), RegisterFxp (hardware) etc, the resulting HDL
will have extra CLK and RESET input ports, it may also have a DataInEnable input port
as well, depending upon the design. This DataInEnable control input port must be used
to indicate when the input data is valid ('1') and when it is not ('0'). There may be a
DataOutEnable output port which may be used to detect when the output of the HDL is
valid ('1') and when it is not valid ('1').
Other than the top level HDL file other HDL files are also included. Most of these HDL files
contains HDL for sub-components used to create the top level HDL and must be included
in any synthesis/simulation tool along with the top-level HDL.

 SystemVue Examples
SystemVue ships with hardware design examples which are configured or can be
configured to generate HDL. These examples are installed under <SystemVue install
directory>\Examples\Hardware Design.

http://www.model.com
http://www.model.com

SystemVue - Users Guide

41

 IBIS-AMI Model Generation
SystemVue IBIS Algorithmic Model Interface (IBIS-AMI) Generation allows users to
generate IBIS-AMI models for a sub-network of a system. The generated code conforms
to IBIS Version 5.0 and can be used with EDA Platforms (channel simulators) which
supports IBIS-AMI models simulation. A Visual Studio project is automatically created for
generating AMI models dll on Microsoft Windows platform. The IBIS-AMI Model is created
as a target configuration in C++ Code Generation (users).

The automatically generated Visual Studio project for Microsoft Windows supports building AMI model
DLL's for both 32 bit and 64 bit platforms.

 Requirements
SystemVue must be installed on the machine where you will be building the IBIS-AMI
Model on Windows platform.
Building IBIS-AMI Models on Windows platform also requires either:

Microsoft Visual C++ 2008 Express Edition (under the Visual Studio
2008 Express tab)
Microsoft Visual Studio 2008 with SP1 or Microsoft Visual Studio C++
2008 with SP1

You MUST have a FULL installation of Microsoft Visual Studio 2008 in order to compile for
64 bit target platform.

The following screen capture of Microsoft Visual Studio shows how to choose 64 bit
platform as compilation target:

 Licensing
If you have W1714F, the demo version of IBIS-AMI model generation:

You will be able to simulate models in IBIS-AMI Transceiver (algorithm)
category under "Algorithmic Design" library, and any other model for which you
are licensed.
You will be able to generate "IBIS-AMI" models and use those in a EDA platform.
The generated "IBIS-AMI" models can only be used on a machine where
SystemVue is installed and all licenses are available which are required to
simulate the original sub-network in SystemVue.

If you have W1714, the full version of IBIS-AMI model generation:
You will be able to simulate models in IBIS-AMI Transceiver (algorithm)
category under "Algorithmic Design" library, and any other model for which you
are licensed.
You will be able to generate "IBIS-AMI" models and use those in a EDA platform.
The generated "IBIS-AMI" models will not require a license if the original sub-
network is designed only with models in IBIS-AMI Transceiver and C++ Code
Generation categories under "Algorithmic Design" library and with the models
available with W1718 license. These generated AMI model can be used
anywhere in any EDA platform without needing a license during run time.

 Prerequisite
Make sure that you have read and understood the documentation for C++ Code
Generation (users), at least the Quick Start (users) section. You must be familiar with
how to create a sub-network and to add that to C++ Code Generator (users) dialogue
box. You must also know that how to select a Target in C++ Code Generator (users) as
IBIS-Model generation uses an specific target IBIS Algorithmic Modeling Interface.

Also make sure that you have read and understood Section 6c and Section 10 of IBIS (I/O
Buffer Information Specification) Version 5.0 explaining Algorithmic Model Interface
specification.

 Creating AMI Sub-Network Models
The first step in generating IBIS-AMI model is to create a transmitter or receiver sub-
network. An example transmitter sub-network is shown below

Please note that TimeResponseFIR (algorithm) filter model shown in the above sub-
network is very useful in AMI modeling as it allows to use measured step or impulse
response either using H-spice or a measurement instrument and re-characterize it to an
specific TimeStep.

An example receiver sub-network is shown below

You can assign parameters to the sub-network and those will be available as either
Model_Specific parameters or can be mapped to some of the input parameters of
AMI_Init as defined in IBIS-AMI standard and can be accessed inside EDA platform.

Each of the above sub-network will be exported as a separate AMI model to be used in an
EDA platform.

http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://www.microsoft.com/express/Downloads/
http://www.microsoft.com/express/Downloads/
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf

SystemVue - Users Guide

42

 Testing Sub-Network Models

Create a top level design to test your sub-network models. Simulate and make sure that
you are satisfied with the functionality of the models.

 Configuring Code Generator for AMI Models
Generation

Add a C++ Code Generator (users).
Add the AMI sub-network models for code generation.
Select Target in the C++ Code Generator to be IBIS Algorithmic Modeling
Interface. After selecting the target the C++ Code Generations Options dialogue will
be as shown below

Each field in this configuration windows is explained below

 Generated AMI Model Name

This will be the model name of the generated AMI model for a particular sub-network.

 AMI Model

This combo box contains all the Models which are added using Add button.You can select
the AMI model whose export configuration needs to be specified. You can configure all
models by selecting them one by one from this combo box.

 AMI Configuration

In the AMI Configuration tab you can specify following options

 Model Type

An exported model can be either Linear Time Invariant (LTI) or a Non-linear or Time
Variant (NLTV) system. You can specify what kind of system your original sub-network
implements. This is an important option because for an LTI model AMI_Getwave function
is not implemented and the overall impulse response of the model is computed in the
generated AMI_Init function. This means that for an AMI model, whose original sub-
network model is an LTI system, the EDA platform will perform fast statistical computation
by operating on the computed impulse response of the model. For an NLTV model,
AMI_Getwave function is implemented and overall impulse response is not computed,
instead sample by sample computation is performed by EDA platform by calling
AMI_Getwave function.

 Serdes Tx/Rx

Selects that the model is a transmitter (Tx) or receiver (Rx) model.

 Output Port Mapping

You can have multiple output ports but you can select only two of these ports as output of
your AMI model as explained below

Waveform: Choose the output port which generates output wave samples of your
AMI Model.
Clock Times: Choose the output port which generates clock times. This mapping is
available only if you are exporting an NLTV Rx model.

For AMI generation, the sub-network must have one and only one input port.

 AMI_Init Arguments

As specified in Section 10 of IBIS Version 5.0 the AMI_Init function has the following
function signature.

long AMI_Init (

double *impulse_matrix,

long row_size,

long aggressors,

double sample_interval,

double bit_time,

char *AMI_parameters_in,

char **AMI_parameters_out,

void **AMI_memory_handle, char **msg)

You can map selected arguments (impulse_matrix, sample_interval, bit_time) to your
sub-network parameters. A EDA platform passes these arguments to AMI_Init, and if you
map these to your corresponding sub-network parameters, the generated AMI_Init will
map these arguments to the corresponding sub-network parameters. For convenience a
short description of these arguments is given below

Impulse Matrix (impulse_matrix argument) is the channel impulse response matrix,
the impulse values are in volts and are uniformly spaced in time; the time spacing is
given by Sample Interval explained next. The first column is the impulse response
for the primary channel. The rest of the columns are the impulse responses from
aggressor drivers to the victim receiver.

The generated AMI_Init will only pass the first column, i.e., the primary channel impulse response,
to the corresponding sub-network parameter.

Sample Interval (sample_interval argument) is the sampling interval of the channel
impulse response.
Bit Time (bit_time argument) is the unit interval (UI) of the current bit stream.
Samples Per Bit is a parameter automatically calculated inside AMI_Init by

http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf

SystemVue - Users Guide

43

bit_time / sample_interval.

 AMI Reserved Parameters

In the AMI Reserved Parameters as shown below you can specify which of the following
AMI reserved parameters are exported as part of your AMI model (in the generated ami
file).

Transmitter reserved parameters

Receiver reserved parameters

To export a parameter select the Export check box and then click inside the Properties
column for that parameter. This will open a dialogue box as shown below.

Make sure to select the Format that applies to the Type of the parameter as specified in IBIS
specification.

Based on the Format type you can enter the values in this dialogue box and click Ok. This
will generate an AMI formatted string and will be shown in Properties column for that
parameter. This string will be included in the generated ami file.

Currently following selected reserved parameters are supported, and they are optional
reserved parameters. The detailed description of these parameters is available in Section
6c of IBIS Version 5.0 . A short description is given below for convenience.

 Ignore Bits

Ignore Bits tell the EDA platform that how long the time variable (NLTV) model takes to
complete initialization. This parameter should be exported only if you have selected
sv2011:Model Type to be NLTV.

 Tx_Jitter

Tells the EDA platform how much jitter exists at the input to the transmitter's analog
output buffer.

 TX_DCD

Tells the EDA platform the maximum percentage deviation of the duration of a transmitted
pulse from the nominal pulse width.

 RX_Clock_PDF

Tells the EDA platform the probability density function of the recovered clock.

 Rx_Receiver_Sensitivity

Tells the EDA platform the voltage needed at the receiver data decision point to ensure
proper sampling of the equalized signal.

 AMI Model Specific Parameters

Model specific parameters are extracted from the parameters in the underlying model. To
export a parameter, similar to AMI Reserved Parameters, select the Export check box
and then click inside the Properties column for that parameter. This will open the
parameter editor dialogue box.

Transmitter model specific parameters

Receiver model specific parameters

 Editing AMI Parameter of "Tap" Type

Most of the content in the AMI parameter editor dialog maps directly to the IBIS AMI
specification. We will explain a few items related to Tap type here.
Taps specifies the number of taps required.
Main Tap specifies which tap (start from 1) is the main tap, such that any taps before it
will be "Precursor" taps with negative indexing, while any taps following it will be "Post
Cursor" taps with positive indexing as described in IBIS AMI specification.
In the example here, there are 5 taps total and the main tap is the 3rd tap, hence the
indexing is: -2, -1, 0, 1 and 2.

http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf

SystemVue - Users Guide

44

If you accidentally type in a"Main Tap:" value that is greater than the "Taps:" value, the "Main Tap:" value
will be set to the same as "Tap:" value, which means the last tap will be the main tap, while all others are
precursors.

 Generating AMI Models
After sv2011:Configuring Code Generator for AMI Models Generation, click on Generate
Now button to generate IBIS-AMI models. This will generate IBIS-AMI models in the AMI
sub-directory of Output Directory or Default Directory as you have specified in Code
Generator settings. A Visual Studio solution will be created with one project per AMI
model.

The following picture shows the generated Visual Studio solution and projects for the "IBIS
AMI Modeling" example workspace, using the "AMI CPP 10 Gbps" code generator in the
workspace. This example can be found in \Examples\Model Building\IBIS-AMI Modeling
under SystemVue installation directory.

As shown in the picture, for each AMI model, there is a corresponding Visual Studio
project (with the same name as the AMI model) in the Visual Studio solution. Inside the
project, "Header Files" and "Source Files" folders contain .h and .cpp files for the
generated C++ data flow sub-network model (users) (e.g., sv_ami_rx.h and
sv_ami_rx.cpp) and also contain the .h and .cpp files for the AMI interface functions,
AMI_Init, AMI_GetWave, and AMI_Close (e.g., sv_ami_rx_AMI.h and
sv_ami_rx_AMI.cpp). "IBIS-AMI Files" folder contains the generated AMI file (e.g.,
sv_ami_rx.ami) and a text file that contains the Algorithmic Model strings to be copied to
the IBIS file (e.g., sv_ami_rx_ibis.txt).

You can build the whole solution either in Release or Debug mode and a <ami_model>.dll
will be created per project. The generated <ami_model>.dll along with corresponding
<ami_model>.ami file can be used inside EDA platform (channel simulator) to use this
model, where <model_name> is the name of the AMI model specified in code generator
dialogue box. Please note that <ami_model>.dll may or may not require corresponding
SystemVue licensing when run inside the channel simulator based on what license you
have when generating AMI model as explained in sv2011:Licensing section above.

 Understanding AMI Model Generation
To understand the generated C++ data flow model for an AMI sub-network, please refer
to C++ Code Generation (users).

The generated AMI (.ami) file conforms with Section 6.c in the IBIS Version 5.0
specification, and the generated AMI interface functions conform with Section 10 in the
IBIS Version 5.0 specification.

For each generated AMI model (Visual Studio project), there is an IBIS-related text file
(e.g., sv_ami_rx_ibis.txt) specifying compiler information, the name of the AMI model DLL
(dynamic-link library), and the name of the AMI file. See "sv_ami_rx_ibis.txt" below as an
example. The content should be copied to the Algorithmic Model section in the
corresponding IBIS file.

|===

| This file contains the information for Algorithmic Model per

| IBIS Version 5.0 specification.

|

| Copy the content into the AMI Model Section in the corresponding ibis file.

|

| Note: This information is auto-generated by Agilent SystemVue software

| based on the configuration of the PC workstation on which SystemVue runs.

| If you use a compiler different from what is specified in the this file,

| make sure to replace the compiler information when you transfer the

| content here into the ibis file.

|

|===

[Algorithmic Model]

Executable Windows_VisualStudio9.0.30729_32 sv_ami_rx.dll sv_ami_rx.ami

Executable Windows_VisualStudio9.0.30729_64 sv_ami_rx_x64.dll sv_ami_rx.ami

[End Algorithmic Model]

 Linear Time-Invariant System

If the AMI sub-network is an LTI (linear time-invariant) system, the AMI reserved
parameter Init_Returns_Impulse is set to True, GetWave_Exists is set to False, and
Use_Init_Output is set to True. In other words, the generated AMI_Init convolves the

http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf
http://eda.org/pub/ibis/ver5.0/ver5_0.pdf

SystemVue - Users Guide

45

input channel impulse response with the impulse response of the AMI sub-network. The
convolved response represents the modified channel impulse response including the AMI
model behavior. The convolved response is returned in the first column of the
impulse_matrix. Since the system is LTI, the convolution is equivalent to filtering the input
channel impulse response samples using the AMI sub-network model. The same
convolution process is also performed for each crosstalk channel, i.e., the rest of the
columns in the input channel impulse response matrix are filtered using the AMI sub-
network model and the convolved results are returned in place. AMI_GetWave function is
not presented in the LTI case.

Use the "AMI_Tx_10" sub-network in the "IBIS AMI Modeling" workspace as an example.
This workspace can be found in \Examples\Model Building\IBIS-AMI Modeling under
SystemVue installation directory. The "AMI_Tx_10" sub-network is an LTI system, which is
used in "SERDES_Tx_Rx_Schematic_10" schematic as an AMI transmitter and is
associated with "AMI CPP 10 Gbps" code generator. The generated "sv_tx_10_ghz.ami" is
shown below. Since the generated AMI_Init can handle arbitrary number of crosstalk
channels, the Max_Init_Aggressors in the reserved parameters is set to the maximum
possible value.

(sv_tx_10_ghz

(Reserved_Parameters

 (Init_Returns_Impulse (Usage Info) (Type Boolean) (Default True) (Description

"Init_Returns_Impulse True"))

 (GetWave_Exists (Usage Info) (Type Boolean) (Default False) (Description "GetWave_Exists False"))

 (Use_Init_Output (Usage Info) (Type Boolean) (Default True) (Description "Use_Init_Output True"))

 (Max_Init_Aggressors (Usage Info) (Type Integer) (Default 2147483646) (Description

"Max_Init_Aggressors 2147483646"))

)

(Model_Specific

 (Taps

 (0 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "Taps 0"))

 (1 (Usage In) (Type Tap) (Format Value 1) (Default 1) (Description "Taps 1"))

 (2 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "Taps 2"))

)

 (Gain (Usage In) (Type Float) (Format Value 0) (Default 0) (Description "Gain"))

)

)

The generated "sv_tx_10_ghz_AMI.h" and "sv_tx_10_ghz_AMI.cpp" contains only
AMI_init and AMI_Close. The header file is shown below.

/*

* sv_tx_10_ghz_AMI.h"

* Created by SystemVue C++ Code Generator

* Copyright © 2000-2011, Agilent Technologies, Inc.

*/

#pragma once

extern "C" __declspec(dllexport) long AMI_Init(double *impulse_matrix, long row_size, long aggress

ors, double sample_interval, double bit_time, char *AMI_parameters_in, char **AMI_parameters_out, v

oid **AMI_memory_handle, char **msg);

extern "C" __declspec(dllexport) long AMI_Close(void *AMI_memory);

The source file, "sv_tx_10_ghz_AMI.cpp", is presented in the following section of code.

/*

* sv_tx_10_ghz_AMI.cpp"

* Created by SystemVue C++ Code Generator

* Copyright © 2000-2011, Agilent Technologies, Inc.

*/

#include "sv_tx_10_ghz_AMI.h"

#include "sv_tx_10_ghz.h"

#include "SystemVue/Models/AMI/AmiParamParser.h"

#include <string>

#include <math.h>

class AMIContainer

{

public:

sv_tx_10_ghz cSystemVueModel;

std::string sMessage;

};

long AMI_Init(double *impulse_matrix, long row_size, long aggressors, double sample_interval, dou

ble bit_time, char *AMI_parameters_in, char **AMI_parameters_out, void **AMI_memory_handle, char

**msg)

{

//Instantiate AMIContainer that manages AMI memory

AMIContainer* pContainer = new AMIContainer;

//SystemVue code generation model

sv_tx_10_ghz* pSystemVueModel = &pContainer->cSystemVueModel;

//AMI parameter parser

AgilentEEsof::AMI::ParamParser parser(AMI_parameters_in);

//samples per bit = bit_time / sample_interval, assume divisible

int iSamplesPerBit = (int)(bit_time / sample_interval + 0.5);

//set model parameters

pSystemVueModel->SampleInterval = sample_interval;

pSystemVueModel->SamplesPerBit = iSamplesPerBit;

pSystemVueModel->Taps.Resize(3,1);

if (!parser.GetValue(pSystemVueModel->Taps(0), "sv_tx_10_ghz.Taps.0"))

pContainer->sMessage += "The IBIS-AMI model, sv_tx_10_ghz, is unable to initialize the parameter

Taps.0 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->Taps(1), "sv_tx_10_ghz.Taps.1"))

pContainer->sMessage += "The IBIS-AMI model, sv_tx_10_ghz, is unable to initialize the parameter

Taps.1 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->Taps(2), "sv_tx_10_ghz.Taps.2"))

pContainer->sMessage += "The IBIS-AMI model, sv_tx_10_ghz, is unable to initialize the parameter

Taps.2 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->Gain, "sv_tx_10_ghz.Gain"))

pContainer->sMessage += "The IBIS-AMI model, sv_tx_10_ghz, is unable to initialize the parameter

Gain from the AMI_Init arguments. The model will use the default setting. ";

pSystemVueModel->Gain = pow(10.0, pSystemVueModel->Gain / 20.0); //convert dB20 to MKS

//allocate I/O buffers

double* p_input_buffer = new double[1];

pSystemVueModel->input.SetBuffer(p_input_buffer, 1, 1, 0);

double* p_output_buffer = new double[1];

pSystemVueModel->output.SetBuffer(p_output_buffer, 1, 1, 0);

bool bStatus = true;

//iterate through primary channel and aggressors

long j;

for (j=0; j<=aggressors && bStatus; j++)

{

//Setup

if (!pSystemVueModel->Setup())

{

pContainer->sMessage += "Error occurred in sv_tx_10_ghz::Setup(). ";

bStatus = false;

}

//Initialize

if (bStatus)

{

if (!pSystemVueModel->Initialize())

{

pContainer->sMessage += "Error occurred in sv_tx_10_ghz::Initialize(). ";

bStatus = false;

}

}

//modify impulse matrix

if (bStatus)

{

long i;

for (i=0; i<row_size; i++)

{

pSystemVueModel->input[0] = impulse_matrix[j*row_size + i];

//Run

if (!pSystemVueModel->Run())

{

pContainer->sMessage += "Error occurred in sv_tx_10_ghz::Run(). ";

bStatus = false;

break;

}

impulse_matrix[j*row_size + i] = pSystemVueModel->output[0];

}

}

//Finalize

if (!pSystemVueModel->Finalize())

{

pContainer->sMessage += "Error occurred in sv_tx_10_ghz::Finalize(). ";

SystemVue - Users Guide

46

bStatus = false;

}

}

//delete I/O buffers

delete[] &pSystemVueModel->input[0];

delete[] &pSystemVueModel->output[0];

//set AMI_memory_handle

AMI_memory_handle = (void)pContainer;

//set msg

if (!pContainer->sMessage.empty())

msg = (char)pContainer->sMessage.c_str();

return bStatus;

}

long AMI_Close(void *AMI_memory)

{

//delete AMIContainer

delete (AMIContainer*)AMI_memory;

return 1;

}

As mentioned earlier, the actual execution routine for LTI system modifies the channel
impulse response by filtering (processing) the input channel response samples using the
generated sub-network model. See the section of codes commented as "//modify impulse
matrix".

In "sv_tx_10_ghz.cpp", a container class, AMIContainer, is automatically created that
contains the generated C++ sub-network model and provides additional messaging
capabilities in AMI functions. AMI_Init uses AgilentEEsof::AMI::ParamParser to parse the
given AMI_parameters_in string for setting the model specific parameters. If the parser
is unable to parse or set a model specific parameter, a warning message will be generated
and the particular parameter will be using the default value specified in the generated
sub-network model.

For convenient parameter setting purpose, variable iSamplesPerBit is automatically
computed in AMI_Init, which represents number of samples per bit (unit interval). The
number of samples per bit is computed using bit_time / sample_interval, and is assumed
to be an integer (divisible). This variable is commonly used in many AMI signal processing
models (e.g., BlindFFE (algorithm)), and can be mapped to a sub-network parameter in
AMI configuration tab.

SystemVue AMI code generator also provides a convenient feature for decibel unit
conversion. If an AMI sub-network parameter is set to decibel-related unit using Relative
or Relative Power unit category, the generated AMI_Init will automatically convert the
parameter value back to MKS (absolute) unit. For example, the "Gain" parameter in
"AMI_Tx_10" sub-network is set to dB unit using Relative unit category. As shown above,
the code

pSystemVueModel->Gain = pow(10.0, pSystemVueModel->Gain / 20.0);

is inserted in AMI_Init to convert the value from dB to MKS.

The container class, parameter parser, messaging, samples-per-bit variable, and decibel
unit conversion apply for both LTI and NLTV systems.

 Non-Linear or Time-Variant System

If the AMI sub-network is an NLTV (non-linear or time-variant) system, the AMI reserved
parameter Init_Returns_Impulse is set to False, GetWave_Exists is set to True, and
Use_Init_Output is set to False. The input channel impulse response will not be
modified. Instead, AMI_GetWave function is presented to filter input wave samples (
wave argument) using the generated AMI sub-network model. The resulting wave
samples are returned in-place using the same wave argument. NLTV AMI receivers can
implement clock recovery algorithm and output recovered clock times using the
clock_times argument. The clock_times is mapped to the Clock Times output port in
AMI configuration tab.

Use the "AMI_Rx" sub-network in the "IBIS AMI Modeling" workspace as an example. This
workspace can be found in \Examples\Model Building\IBIS-AMI Modeling under
SystemVue installation directory. The "AMI_Rx" sub-network is a NLTV system, which is
used in "SERDES_Tx_Rx_Schematic_10" schematic as an AMI receiver and is associated
with "AMI CPP 10 Gbps" code generator. The generated "sv_ami_rx.ami" is shown below.

(sv_ami_rx

(Reserved_Parameters

 (Init_Returns_Impulse (Usage Info) (Type Boolean) (Default False) (Description

"Init_Returns_Impulse False"))

 (GetWave_Exists (Usage Info) (Type Boolean) (Default True) (Description "GetWave_Exists True"))

 (Use_Init_Output (Usage Info) (Type Boolean) (Default False) (Description "Use_Init_Output

False"))

 (Max_Init_Aggressors (Usage Info) (Type Integer) (Default 2147483646) (Description

"Max_Init_Aggressors 2147483646"))

)

(Model_Specific

 (LogicLevel (Usage In) (Type Float) (Format Value 5.0e-001) (Default 5.0e-001) (Description

"LogicLevel"))

 (NumberPrecursors (Usage In) (Type Integer) (Format Value 3) (Default 3) (Description

"NumberPrecursors"))

 (NumberPostcursors (Usage In) (Type Integer) (Format Value 3) (Default 3) (Description

"NumberPostcursors"))

 (DFETaps

 (0 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "DFETaps 0"))

 (1 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "DFETaps 1"))

 (2 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "DFETaps 2"))

 (3 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "DFETaps 3"))

 (4 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "DFETaps 4"))

 (5 (Usage In) (Type Tap) (Format Value 0) (Default 0) (Description "DFETaps 5"))

)

 (Alpha (Usage In) (Type Float) (Format Value 1.0e-003) (Default 1.0e-003) (Description "Alpha"))

)

)

The generated "sv_ami_rx_AMI.h" and "sv_ami_rx_AMI.cpp" are presented as follows.

/*

* sv_ami_rx_AMI.h"

* Created by SystemVue C++ Code Generator

* Copyright © 2000-2011, Agilent Technologies, Inc.

*/

#pragma once

extern "C" __declspec(dllexport) long AMI_Init(double *impulse_matrix, long row_size, long aggress

ors, double sample_interval, double bit_time, char *AMI_parameters_in, char **AMI_parameters_out, v

oid **AMI_memory_handle, char **msg);

extern "C" __declspec(dllexport) long AMI_GetWave(double *wave, long wave_size, double *

clock_times, char **AMI_parameters_out, void *AMI_memory);

extern "C" __declspec(dllexport) long AMI_Close(void *AMI_memory);

/*

* sv_ami_rx_AMI.cpp"

* Created by SystemVue C++ Code Generator

* Copyright © 2000-2011, Agilent Technologies, Inc.

*/

#include "sv_ami_rx_AMI.h"

#include "sv_ami_rx.h"

#include "SystemVue/Models/AMI/AmiParamParser.h"

#include <string>

#include <math.h>

class AMIContainer

{

public:

sv_ami_rx cSystemVueModel;

std::string sMessage;

std::vector<double> vClockTimes;

int iSamplesPerBit;

};

long AMI_Init(double *impulse_matrix, long row_size, long aggressors, double sample_interval, dou

ble bit_time, char *AMI_parameters_in, char **AMI_parameters_out, void **AMI_memory_handle, char

**msg)

{

//Instantiate AMIContainer that manages AMI memory

SystemVue - Users Guide

47

AMIContainer* pContainer = new AMIContainer;

//SystemVue code generation model

sv_ami_rx* pSystemVueModel = &pContainer->cSystemVueModel;

//AMI parameter parser

AgilentEEsof::AMI::ParamParser parser(AMI_parameters_in);

//samples per bit = bit_time / sample_interval, assume divisible

int iSamplesPerBit = (int)(bit_time / sample_interval + 0.5);

pContainer->iSamplesPerBit = iSamplesPerBit;

//set model parameters

pSystemVueModel->SampleInterval = sample_interval;

pSystemVueModel->SamplesPerBit = iSamplesPerBit;

//pass only the impulse response of the primary channel

pSystemVueModel->ImpulseMatrix.Resize(row_size, 1);

pSystemVueModel->ImpulseMatrix.CopyFrom(impulse_matrix, row_size);

if (!parser.GetValue(pSystemVueModel->LogicLevel, "sv_ami_rx.LogicLevel"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

LogicLevel from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->NumberPrecursors, "sv_ami_rx.NumberPrecursors"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

NumberPrecursors from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->NumberPostcursors, "sv_ami_rx.NumberPostcursors"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

NumberPostcursors from the AMI_Init arguments. The model will use the default setting. ";

pSystemVueModel->DFETaps.Resize(6,1);

if (!parser.GetValue(pSystemVueModel->DFETaps(0), "sv_ami_rx.DFETaps.0"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

DFETaps.0 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->DFETaps(1), "sv_ami_rx.DFETaps.1"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

DFETaps.1 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->DFETaps(2), "sv_ami_rx.DFETaps.2"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

DFETaps.2 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->DFETaps(3), "sv_ami_rx.DFETaps.3"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

DFETaps.3 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->DFETaps(4), "sv_ami_rx.DFETaps.4"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

DFETaps.4 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->DFETaps(5), "sv_ami_rx.DFETaps.5"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

DFETaps.5 from the AMI_Init arguments. The model will use the default setting. ";

if (!parser.GetValue(pSystemVueModel->Alpha, "sv_ami_rx.Alpha"))

pContainer->sMessage += "The IBIS-AMI model, sv_ami_rx, is unable to initialize the parameter

Alpha from the AMI_Init arguments. The model will use the default setting. ";

pSystemVueModel->BitTime = bit_time;

//allocate I/O buffers

double* p_input_buffer = new double[1];

pSystemVueModel->input.SetBuffer(p_input_buffer, 1, 1, 0);

double* p_clockTimes_buffer = new double[1];

pSystemVueModel->clockTimes.SetBuffer(p_clockTimes_buffer, 1, 1, 0);

int* p_bit_buffer = new int[1];

pSystemVueModel->bit.SetBuffer(p_bit_buffer, 1, 1, 0);

double* p_output_buffer = new double[1];

pSystemVueModel->output.SetBuffer(p_output_buffer, 1, 1, 0);

bool bStatus = true;

//Setup

if (!pSystemVueModel->Setup())

{

pContainer->sMessage += "Error occurred in sv_ami_rx::Setup(). ";

bStatus = false;

}

//Initialize

if (bStatus)

{

if (!pSystemVueModel->Initialize())

{

pContainer->sMessage += "Error occurred in sv_ami_rx::Initialize(). ";

bStatus = false;

}

}

//set AMI_memory_handle

AMI_memory_handle = (void)pContainer;

//set msg

if (!pContainer->sMessage.empty())

msg = (char)pContainer->sMessage.c_str();

return bStatus;

}

long AMI_GetWave(double *wave, long wave_size, double *clock_times, char **AMI_parameters_out,

void *AMI_memory)

{

AMIContainer* pContainer = (AMIContainer*)AMI_memory;

sv_ami_rx* pSystemVueModel = &pContainer->cSystemVueModel;

bool bStatus = true;

long i, k = 0;

//the upper bound for the possible number of clock times is wave_size + 1

pContainer->vClockTimes.resize(wave_size + 1);

//filter wave and get clock times

for (i=0; i<wave_size; i++)

{

//input wave sample

pSystemVueModel->input[0] = wave[i];

//Run

if (! pSystemVueModel->Run())

{

pContainer->sMessage += "Error occurred in sv_ami_rx::Run(). ";

bStatus = false;

break;

}

//output wave sample

wave[i] = pSystemVueModel->output[0];

//clock time

if (pSystemVueModel->clockTimes[0] >= 0)

{

pContainer->vClockTimes[k++] = pSystemVueModel->clockTimes[0];

}

}

//end clock_times

pContainer->vClockTimes[k++] = -1;

//From IBIS version 5.0 section 10, "The clock_time vector is allocated by the EDA platform and

is guaranteed to be greater than the number of clocks expected during the AMI_GetWave call."

//However, the standard does not specify the size of clock_times array nor provide an argument in

AMI_GetWave for the size of clock_times array.

//To prevent accessing clock_times array out of bounds, SystemVue AMI generator imposes a limit,

wave_size / samples_per_bit + 1 (including the last -1 element).

//Users are free to modify this limit based on the EDA platform they use.

long iClockTimesLimit = (long)floor((double)wave_size / (double)pContainer->iSamplesPerBit) + 1;

if (k <= iClockTimesLimit) //k is the number of clock times

{

memcpy(clock_times, &pContainer->vClockTimes[0], sizeof(double)*k);

}

else

{

//if the number of clock times is larger than the limit, only return the last iClockTimesLimit

elements

memcpy(clock_times, &pContainer->vClockTimes[k - iClockTimesLimit], sizeof(double)*iClockTimesL

imit);

}

return bStatus;

}

long AMI_Close(void *AMI_memory)

{

AMIContainer* pContainer = (AMIContainer*)AMI_memory;

sv_ami_rx* pSystemVueModel = &pContainer->cSystemVueModel;

bool bStatus = true;

//Finalize

if (!pSystemVueModel->Finalize())

{

pContainer->sMessage += "Error occurred in sv_ami_rx::Finalize(). ";

bStatus = false;

}

//delete I/O buffers

delete[] &pSystemVueModel->input[0];

delete[] &pSystemVueModel->clockTimes[0];

delete[] &pSystemVueModel->bit[0];

delete[] &pSystemVueModel->output[0];

//delete AMIContainer

delete pContainer;

return bStatus;

}

In "sv_ami_rx_AMI.cpp", the input channel impulse response is not modified. However,

SystemVue - Users Guide

48

signal processing models inside AMI sub-network can use the given channel impulse
response to perform advanced operations, such as computing optimal FFE and DFE taps
(See FFE (algorithm) and DFE (algorithm) models). The code

pSystemVueModel->ImpulseMatrix.CopyFrom(impulse_matrix, row_size);

passes the first column of the input impulse_matrix, i.e., the impulse response of the
primary channel, into the AMI sub-network model.

The generated AMI_Init will only pass the first column, i.e., the primary channel impulse response, to the
corresponding sub-network parameter.

Other AMI_Init input arguments are also passed into the AMI sub-network model for
model setup and initialization.

pSystemVueModel->SampleInterval = sample_interval;

pSystemVueModel->SamplesPerBit = iSamplesPerBit;

pSystemVueModel->BitTime = bit_time;

AMI_GetWave filters the input wave samples using the Run() method of the generated
AMI sub-network model. For each AMI_GetWave call, wave_size number of samples are
processed, and the same number of output samples are returned using the same wave
argument. To prevent data flow multirate mismatch, each execution (run) of the AMI sub-
network model should consume one sample from the input port and produce one sample
to each of the output port.

For AMI code generation, AMI sub-networks (including both LTI and NLTV systems) must preserve unit
data flow production and consumption rates at the sub-network boundary for a complete sub-network
execution. Please refer to Introduction to Data Flow Simulation (sim) for information about data flow
production and consumption rates and scheduling.

Each invocation of pSystemVueModel->Run() consumes one input sample and produces
one output wave sample and one clock time sample. However, on average, there is only
one valid clock time for every Samples Per Bit number of samples. For samples that do
not belong to valid clock time instances, the convention is to output negative numbers
(see ClockTimes (algorithm) model).

//clock time

if (pSystemVueModel->clockTimes[0] >= 0)

{

clock_times[k++] = pSystemVueModel->clockTimes[0];

}

AMI_GetWave will ignore negative clock time values and only return non-negative clock times.

 Sharing Generated AMI Models with Others
The IBIS-AMI models that you generate can be copied onto other computers and shared
with others. There are no dependencies on SystemVue or Visual Studio installations on the
other computer. You must ship:

The 32-bit and/or 64-bit DLLs compiled using Visual Studio. You should only ship the
DLLs created using the Release Visual Studio configuration (as the debug libraries
depend on the Visual Studio compiler being installed).
The .ami file generated by SystemVue
The .ibis file manually updated with the sv2011:Algorithmic Model definitions

Additionally, on the other computer you will have to install the MS Visual C++
Redistributable Packages:

To support 32-bit AMI models, install: Microsoft Visual C++ 2008 SP1 Redistributable
Package (x86)
To support 64-bit AMI models, install: Microsoft Visual C++ 2008 SP1 Redistributable
Package (x64)

For more details on redistributing MS Visual C++ run-time libraries, see: Redistributing
Visual C++ Files

 Importing Custom Intellectual Properties
Users can bring existing IPs (e.g., circuit designs, algorithms) from other environments
into SystemVue through various ways. This section provides a general guideline to import
custom IPs from HSPICE, Matlab, and C++.

 HSPICE

For linear circuit in HSPICE, e.g., transmitter driver, users can obtain step response or
impulse response from HSPICE and copy the response data into an equation page in
SystemVue. For example, the following Mathlang code computes StepResponse and
StepResponseTimeStamps from differential step response data, step_n and step_p
obtained from HSPICE.

% Step response of negative level of differential circuit. Each row is a pair of time stamp and

step response value.

step_n = \[

0 1.1

2.5E-12 1.12

5.1E-12 1.13

...

\];

% Step response of positive level of differential circuit. Each row is a pair of time stamp and

step response value.

step_p = \[

0 0.9

2.5E-12 0.92

5.1E-12 0.93

...

\];

% Single-ended representation of step response to be used in simulation

StepResponse = step_p(:,2) - step_n(:,2);

% Time stamps for step response

StepResponseTimeStamps = step_p(:,1);

In SystemVue schematic, users can then use TimeResponseFIR (algorithm) model to
represent such circuit. In this example, users can set the ResponseType option of
TimeResponseFIR (algorithm) to Step Response; Response and ResponseTimeStamps
parameters to StepResponse and StepResponseTimeStamps in the equation page, and set
the TimeStep parameter to the simulation time step. For TimeResponseFIR (algorithm),
the ResponseTimeStamps can have non-evenly spaced time stamps.
TimeResponseFIR (algorithm) will interpolate and compute evenly spaced impulse
response as FIR coefficients.

 Matlab

Users can manually convert existing Matlab code into SystemVue C++ Model. Please refer
to Creating Custom C++ Model (users) for detailed description.

Users can also use Matlab compiler to compile existing Matlab functions into C++ library,
and then create SystemVue C++ models to wrap the library functions. Please refer to
Using Matlab Compiled Libraries in C++ Models (users) for detailed description.

 C++

Users can easily wrap existing C++ functions in SystemVue C++ models. Please refer to
Creating Custom C++ Model (users) and Using Third Party Library in C++ Models (users)
for detailed description.

http://www.microsoft.com/downloads/en/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=BA9257CA-337F-4B40-8C14-157CFDFFEE4E
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=BA9257CA-337F-4B40-8C14-157CFDFFEE4E
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=BA9257CA-337F-4B40-8C14-157CFDFFEE4E
http://msdn.microsoft.com/en-us/library/ms235299(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms235299(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms235299(v=VS.90).aspx

SystemVue - Users Guide

49

 Designs
A design is an abstract term used to define a collection of related items that fully
characterize a simulatable circuit. A design generally contains a schematic and parts list.
However, notes, equations, scripts, and user defined parameters can also be added to any
given design. The schematic is a visual representation of the parts being simulated and
their connectivity with each other. The schematic is generally the heart of the design.
Each tab at the bottom of the design window contains its characteristics that complement
and influence the design. Many of these tabs and their added affects are optional. A
design is the generic simulatable object.

A schematic is a design, but a design/schematic can also represent a schematic symbol,
model, user model, sub-circuit, etc. Designs are often contained within designs (as a
subcircuit). The most common names for a design are schematics, models, or parts.
Throughout the documentation the term Schematic will be generally synonymous with
Design.

Designs contain the following characteristics:

Parts List (this is required)
Schematic (optional but is generally the preferred method of entering part
connectivity)
Notes (optional)
Equations (optional)
Scripts (optional)
Parameters (optional)
Configurations (optional)

The following figure has all attributes available to a design:

 Specific Types of Designs
A design is an abstract term used to define a collection of related items that fully
characterize a simulatable circuit. Specific types of designs contain a specific set of these
related items. All of the following items are specific types of designs:

Schematic
Schematic Symbol
User Model

 Contents
Creating a Design (users)
Modifying a Design (users)
Design Properties (users)

 Creating a Design
There are two different ways to to create a design in SystemVue. One is the by clicking on

the New Item button () on the Workspace Tree toolbar or by right clicking on a
folder in the workspace tree.

Method 1 - Clicking on the New Item Button

Click the New Item button () on the1.

Workspace Tree toolbar
Select the 'Designs >' submenu2.
Now select the design of interest3.
The design will added under the folder that4.
last selected in the workspace tree

Method 2 - Right
Clicking on a Workspace
Folder

Right click on a1.
folder in the
workspace tree to
bring up the right
click menu.
Select the 'Add >'2.
submenu.
Select the 'Designs3.
>' submenu
Now select the4.
design of interest
The design will5.
added under the
folder that was
initially right clicked

Note
If you create the new design in the wrong folder, simply drag it to the folder of interest.

 Design Properties

 General Tab

Use the General Properties tab page to change the general properties of a Design.

SystemVue - Users Guide

50

Name - The name of the Design.
Description - The Design description (optional).
Intended Use - What kind of Design is it? This setting controls the Design's icon on
the workspace tree and SystemVue' interpretation of how the design is intended to
be used. (If it's a symbol, you can select it for a schematic part's symbol, if it's a
model, you will be able to select it as a model, etc.)

 Modifying a Design
The following attributes can be added to a design:

Notes
Equations
Scripts
Parameters
Configurations

Here is a brief overview of these attributes:

 Notes

A note can be added to help document different aspects of the design.

 Equations

An equation block can be added to a design so that variables can be based on equations.
These variables can be used for various design parameters. An equation block is generally
the link between the parameters a user would see and the parameters used in models.

Note
These equations are local to the design. Other parts of your workspace cannot access the variables in this
equation set.

For more information see Equations (users).

 Scripts

Scripts control SystemVue operations. Add a script to your design to load files, save files,
save data sets, and change object parameters.

Note
To run this script, copy the text and paste it into the Script Processor, then select Run.

For more information see Scripts (users).

 Parameters

Parameters are added to a design when the implementation details are generally hidden
from the user as is the case of a user model. When a design contains parameters this
design can be used as a user model and these parameters will be exposed as model
parameters in the part that uses this design as its model.

For more information see User Defined Parameters (users).

 Configurations

A configuration tells an Analysis or a Code Generator to use specific model for a part
which is already included in the manage model list of that part. You can add multiple
configurations in a Configurations tab and select one specific configuration inside the
Analysis or the Code Generator.

In the following example, the configuration DFE will use specific model for the 4 parts
which are added, including 2 inside sub networks (Data3\B2 and Data3\G1). For all the
other parts, the currently selected model will be used for this configuration

Configuration – A configuration is a set of Part/Model pair which will be used during
simulation and code generation if that configuration is selected in the corresponding
Analysis or Code Generator. You only need to add those parts in a configuration for
which you would like to use a model which is not currently set as the active model for
the part in the schematic. All the parts in a design which are not added to a
configuration will use their current active model as shown in the schematic.

Note
Only the configuration from Model Manager of the top level designs are available for selection in
Analysis and Code Generators.

Adding a Configuration – When you add the Model Manager tab for the first time,
it will prompt you to add the name of the first configuration and add it automatically.
If you need to add another configuration for the design use "+ Add Configuration"
button.

Removing Configuration(s) – To remove configuration(s) from Model Manager tab
click on the button "Remove Configuration", it will open a dialog box, as shown
below, select the configuration(s) to be deleted and click on "Delete Selected"
button.

Adding Parts to Configuration" – Select the configuration, for which you would
like to add a part and click "+AddPart" button to open the following dialog box

SystemVue - Users Guide

51

Note
It is advisable that you should not select a part which is in the hierarchy of a part that you have
already selected. If you do that and change the model for top level part, then the configuration will
not be valid.

Removing a Part From Configuration" – Select the part to be removed and click
"Remove Part".

Selecting a Model To Use – Click a part's Model To Use field to select models from
the manage model list for that part. When a part's Model To Use field is blue, it
means that there is only 1 available model for that part. Bring up the part in Part
Properties and use the Model Manager to add additional models to the part.

 Using a Configuration

Configurations to a top level design can be used inside Data Flow Analysis (sim) (please
read Setting up the Data Flow Analysis (sim)), and/or inside C++ Code Generation
Analysis (Please read Adding a C++ Code Generator Analysis) to select a particular
configuration during simulation or code generation.

This feature is extremely useful and powerful when you have different flavor of an
algorithm implemented with different models added to manage model list of a part. For
example, you may have several implementation of FIR as C++ model, as VHDL/Verilog
(using HDL model in SystemVue), as a Math Language model, and a built in SystemVue
FIR. By using this feature you can setup configurations, and then in your Data Flow
Analysis or a Code Generator, you can select a particular configuration without manually
going to each part and manually switching the model.

 Adding a Design Attribute

To add one of these attributes to a design right click on one of the tabs at the bottom of
the design and select the desired attribute.

 Deleting a Design Attribute

A tab can also be deleted from a design my right clicking on it and selecting the 'Delete'
menu entry.

file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477250
file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477250
file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477250
file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477250
file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477250

SystemVue - Users Guide

52

 Filter Designer
SystemVue Filter Designer is a filter design tool that helps users to design digital IIR
(infinite impulse response) and FIR (finite impulse response) filters based on the specified
frequency response, design method, and other relevant parameters.

SystemVue integrates Filter Designer with the Filter Part (algorithm). To launch the Filter
Designer, place a Filter part on a schematic and double click the Filter part. For the
associated filter models, you can also right click the part and select "Filter Designer...".

Please refer to Filter Part (algorithm) for further details. Especially refer to Filter Designer and Filter Part
(algorithm) about the integration with the Filter Part and the associated filter models.

The Filter Designer is implemented as a "live" dialog box — as specifications are changed,
the plots and coefficients are updated automatically. With this feature, users can easily
experiment with different design methods and parameters, and verify the responses as
well as review the coefficients in almost real time.

Certain filter specifications may require large filter order and cost noticeable amount of time to design the
filter and to compute the responses. For example, Sample Rate is too large comparing to the frequency
specifications, or the specified transition band is too small to be accomplished, etc. Under these
conditions, the Filter Designer may be busy in designing the filter and computing the responses and may
not respond to user's action.

 Filter Specification Window

Response - Lowpass, Highpass, Bandpass, Bandstop, or Custom (user specified
coefficients/responses).
Shape (Design Method) - IIR design methods include Bessel, Butterworth,
Chebyshev I, Chebyshev II, Elliptic, Synchronously Tuned, S-domain poles-zeros,
etc. FIR design methods include Parks-McClellan, Raised Cosine, Gaussian, Window,
EDGE pulse shaping, frequency response specification, etc. The available design
methods may vary depending on different response selection. Please refer to IIR
Filter Design (users) and FIR Filter Design (users) for introduction.
Sample Rate - The sampling rate that is used to design the digital filter. All the
frequency specifications are relative to the specified Sample Rate.

For Envelope data type, this Sample Rate is used in Filter Designer ONLY. During simulation, the
filter model will re-design the filter based on the resolved input sampling rate.

For Floating Point, Fixed Point, and Complex data types, the sampling rate of the incoming
signal, no matter what the value is, is always mapped to 2 of the numeric filter.

If the Sample Rate is too small to represent a bandpass or a bandstop filter, the Filter Designer will
then try to design the filter for analytic signal (see Bandpass and Bandstop Filtering for Analytic
Signals (sim)) and inform the user in the calculation log. This additional design process is for Filter
Designer ONLY. During simulation, the filter model will re-design the filter based on the actual input
signal (real or analytic).

Parameters - The parameter grid is filled with the specific parameters of the
selected filter. After entering a parameter value in the Value column, press Enter to
accept the value and move to the next row.

Please refer to individual filter model documentation (algorithm) for parameter details.

Data Type - Specify the data type of the simulation model. After closing the filter
designer, a particular simulation model will be instantiated based on the design
specification and data type.

Floating Point - If the filter specification is IIR, either IIR (algorithm) or
BiquadCascade (algorithm) will be instantiated depending on whether the IIR
coefficients can fit into the cascade-biquad structure. If the filter specification is
FIR, FIR (algorithm) will be instantiated as the simulation model. The resulting
coefficients (taps) of the current filter design will be used as IIR or FIR
coefficients (taps).
Fixed Point - If the filter specification is FIR, FIR_Fxp (hardware) will be
instantiated as the simulation model. The resulting coefficients of the current
filter design will be used as the coefficients of FIR_Fxp (hardware) before
quantization. See Fixed Point Filter Design for additional fixed point
specification.
Complex - Filter designer will instantiate IIR_Cx (algorithm) if the filter
specification is IIR or FIR_Cx (algorithm) if the filter specification is FIR. The
resulting coefficients (taps) of the current filter design, in most cases, real-
valued coefficients, will be used directly as the coefficients (taps) of IIR_Cx
(algorithm) (or FIR_Cx (algorithm)) even though the input and output signals
are in complex format.
Envelope - Filter designer will instantiate a particular black pin filter model,
based on the response and shape selection, for filtering Envelope Signal (sim).
See Associated Filter Models (algorithm) for a list of the associated envelope
filter models. See also Filtering Envelope Signal (sim) for technical details about
how SystemVue filter models filter real and analytic signal.

Graph - Check the boxes to display the designated plots (magnitude response, phase
response, group delay, impulse response, step response, and pole-zero plot).
Reposition Windows - Click to restore the enabled graph windows to their default
arrangement.

SystemVue - Users Guide

53

Undo - Undoes all setting changes (restores settings to original values when the
Filter Designer popped up). This is like a Cancel operation, but the dialog box
remains open.
Help - Displays THIS help topic.
Close - Closes the Filter Designer window, instantiates the proper filter model (as
well as the proper symbol) based on the design specification and data type under the
Filter part, and retains the current parameter values for the filter model.

 Fixed Point Filter Design

When the filter specification is FIR and the data type is Fixed Point, additional fixed point
properties will be displayed in the filter designer.

Word Length - Specify the word length of fixed point filter taps. The specified value
will be copied to the WeightsWordlength parameter of FIR_Fxp (hardware).
Integer Word Length - Specify the integer word length of fixed point filter taps.
The specified value will be copied to the WeightsIntegerWordlength parameter of
FIR_Fxp (hardware).
Quantization - Specify the quantization mode of fixed point filter taps. The selection
will be copied to the WeightsQuantization parameter of FIR_Fxp (hardware).

RND - Rounding to Plus infinity.
RND_ZERO - Rounding to Zero.
RND_MIN_INF - Rounding to Minus infinity.
RND_INF - Rounding to infinity.
RND_CONV - Convergent rounding.
TRN - Truncation.
TRN_ZERO - Truncation to zero.

Overflow - Specify the overflow mode of the fixed point filter taps. The specified
value will be copied to the WeightsOverflow parameter of FIR_Fxp (hardware).

SAT - Saturation.
SAT_ZERO - Saturation to Zero.
SAT_SYM - Symmetrical saturation.
WRAP - Wrap-around.
WRAP_SM - Sign magnitude wrap-around.

Users can modify the fixed point properties and see the quantized responses in the fixed
point response plot.

 Coefficients Display Window
To see the filter coefficients, click on the "Coefficients" tab to display the Coefficients
page.

Save - Saves the filter coefficients file; the file format is compatible with SystemVue
Classic.

Most of the other settings are only available when using a Custom Z-Domain filter
(CustomIIR or CustomFIR / Taps).

Load - Loads a filter coefficients file; the file format is compatible with SystemVue
Classic.
Structure - Determines the IIR filter structure which can be either cascade form or
parallel form. This setting is ignored for FIR filters.
Coefficients - The coefficients grid is filled with the filter's coefficients. After
entering a setting, press Enter to accept the value and move to the next row. IIR
filters are implemented as sections.
Clear Numerator / Denominator - Sets the number of coefficients to 1 and sets its
value to "1.0".
Add Coefficient - Inserts a new coefficient after the current selection and sets its
value to "1.0".
Add Section - Inserts a new section after the currently selected section. The new
section will have one coefficient set to "1.0".
Remove - Removes the currently selected coefficient or section. The section is
removed from both numerator and denominator.
Reposition Windows - Click to restore the enabled graph windows to their default
arrangement.
Undo - Undoes all setting changes (restores settings to original values when the
Filter Designer popped up). This is like a Cancel operation, but the dialog box
remains open.
Help - Displays THIS help topic.
Close - Closes the window, retaining the current settings.

For FIR filters, the coefficients shown in the "Coefficients" tab do not include decimation process.

 Response Plots
In the right-lower corner of the specification window, users can choose to display:

SystemVue - Users Guide

54

Magnitude Response - Magnitude response of the filter is displayed in the
Frequency Response window. Frequency (X axis) is from 0 to half the sampling
rate (Sample Rate / 2) in Hz. Magnitude (left Y axis) is in dB by default and is
switchable to absolute unit.
Phase Response - Phase response of the filter is displayed in the Frequency
Response window. Frequency (X axis) is from 0 to half the sampling rate (Sample
Rate / 2)in Hz. Phase (right Y axis) is in radius.
Group Delay - Group delay of the filter is displayed in the Group Delay window.
Frequency (X axis) is from 0 to half the sampling rate (Sample Rate / 2) in Hz. Group
delay is in second. If the magnitude at certain frequency is too small to give good
fidelity in group delay computation, the group delay at that particular frequency is 0
by default.

When the Filter Designer designs a bandpass or bandstop filter for analytic signal (see Sample Rate in
Filter Specification Window and also see Bandpass and Bandstop Filtering for Analytic Signals (sim)), the
frequency axis is adjusted to the range from FCenter - Sample Rate / 2 to FCenter _ Sample Rate / 2.

Impulse Response - Impulse response of the filter is displayed in the Time
Response window. Time (X axis) is in second. Time step is 1 / sampling rate.
Impulse response is in left Y axis.
Step Response - Step response of the filter is displayed in the Time Response
window. Time (X axis) is in second. Time step is 1 / sampling rate. Step response is
in right Y axis.
Pole Zero Plot - Poles and zeros of the IIR filter or zeros of the FIR filter are
displayed in the Pole-Zero plot.

It is users' responsibility to make sure the Sample Rate and the Interpolation and Decimation
factors (for FIR only) are properly set. The frequency response and group delay plots cannot display
imaging effects and may not display aliasing effects properly.

 Response Plots for Fixed Point Data Type

When Fixed Point data type is selected, there will be two traces in each plot, one for
floating point and the other for fixed point based on the specified fixed point properties.
Refer to FIR_Fxp (hardware) for more details on Fixed Point FIR.

 FIR Filter Design
The following sections introduce the technical basics and various design methods for FIR

SystemVue - Users Guide

55

filters. Please refer to the references and other textbooks or documents for detailed
description.

Causal, Linear Phase FIR Filter Basic (users)
Window Method (users)
Parks-McClellan Method (users)
Gaussian Filter (users)
Raised Cosine Filter (users)
EDGE Pulse Shaping Filter (users)
Custom FIR Design (users)
Multirate Polyphase FIR Filter Implementation (users)

 References

S. Haykin, Communication Systems, 4th ed. John Wiley and Sons, Inc, 2000.1.
A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing,2.
2nd ed. Prentice Hall, 1999.
B. Sklar, Digital Communications: Fundamentals and Applications. Prentice Hall,3.
1988.
P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993.4.

 Causal, Linear Phase FIR Filter Basic

According to [2], for a causal and linear phase FIR system, if the impulse response is
symmetric, i.e.,

then the frequency response is
,

where is a real, even, and periodic function of .

On the other hand, for a causal and linear phase FIR system, if the impulse response is
antisymmetric, i.e.,

then the frequency response is
,

where is a real, odd, and periodic function of .

Four types of causal, linear-phase FIR filters are defined in [2], and the four types are
listed in the following table.

According to the table, Type II is not suitable for highpass nor bandstop filters; Type III is
only acceptable for bandpass filter; and Type IV is not suitable for lowpass nor bandstop
filters.
 Custom FIR Design

In custom FIR design, users specify the desired frequency response of the FIR filter. In
general, the frequency response is specified in terms of

a finite set of frequency points (in Hz), , where
a magnitude response (in dB)
a phase response (in degrees) .

There are several methods to compute FIR coefficients based on the given frequency
response. The SystemVue CustomFIR (algorithm) and SData (algorithm) models use a
method that involves the FFT.

The data provided is first interpolated as needed to obtain a power of two number of data
points that are evenly spaced in frequency.

When the input signal is real, the first frequency point must be at 0 Hz and the data
is interpolated in the range [0, (Sample Rate) / 2].
When the input signal is a complex envelope one with non-zero characterization
frequency, fc, the first frequency point can be greater than zero and the data is
interpolated in the range [fc - (Sample Rate) / 2, fc + (Sample Rate) / 2].

Any frequency response data supplied that is outside the above ranges is not used.

If the supplied frequency response data does not extend to the limits of the ranges
defined above, data extrapolation is performed to achieve data to these limits. The
extrapolation method used, as specified in the model ExtrapolationOption parameter, can
be

Constant: the value at the lowest/highest frequency specified is held constant until
the limits of the ranges defined above are reached.
versus freq: linear extrapolation is performed.

An additional extrapolation roll-off, as specified in the model ExtrapolationRollOff
parameter in terms of dB/octave, can also be applied.

From the interpolated frequency data, the inverse FFT is applied to obtain a set of FIR
coefficients. For a complex envelope input signal, the interpolated frequency data is
decomposed into I and Q frequency responses, which are used to generate the I and Q
FIR filters that will independently filter the complex envelope input signal I and Q
envelopes.

When the magnitude tolerance, as specified in the model MagTolerance parameter (in dB),
is greater than zero, the FIR coefficients obtained from the inverse FFT are further
processed to possibly reduce the total number of coefficients needed to represent the
frequency response data as an FIR filter. This is done by successively reducing the number
of FIR coefficients, observing the resultant frequency response, and stopping the
coefficient number reduction when the specified magnitude tolerance is reached.
Oftentimes, a 1 dB magnitude tolerance can result in a sizable reduction in the number of
FIR coefficients. During this process, the magnitude tolerance is calculated only over the
tolerance frequency range [LowerFitFreq, UpperFitFreq], as specified in corresponding
model parameters.
 EDGE Pulse Shaping Filter

EDGE pulse shaping filter is the modulation pulse shaping filter; it is used to control the
power of the spectrum outband and decrease the peak-to-average ratio. The impulse
response of this filter is , which is the main component in the Laurent expansion of the
GMSK modulation. In his paper, Laurent introduces a method to express any constant-
amplitude binary phase modulation as a sum of a finite number of time-limited amplitude-
modulated pulses (AMP decomposition). Using this method in GMSK, which is a constant-
amplitude phase modulation, the GMSK signals can be transformed into the sum of

, where is derived from the length of the impulse response of the
Gaussian filter. And, compared to , other components are all negligible.

Given the symbol rate hz, the impulse response of the EDGE pulse shaping filter is
defined as follows.

SystemVue - Users Guide

56

where

and

where is the rectangular pulse response of the Gaussian filter in GMSK modulation.

and

 EDGE References

P. A. Laurent, "Exact and Approximate Construction of Digital Phase Modulations by
Superposition of Amplitude Modulated Pulses (AMP)," IEEE Trans. Commun., vol.
COM-34, NO. 2, pp. 150-160, Feb. 1986.
P. Qinhua, G. Yong and L. Weidong, "Synchronization Design Theory of Demodulation
for Digital Land Mobile Radio System," Journal of Beijing University of Posts and
Telecommunications, Vol. 18, No. 2, pp. 14-21, Jun. 1995.
ETSI Tdoc SMG2 WPB 108/98, Ericsson, EDGE Evaluation of 8-PSK.

 Gaussian Filter

Gaussian filters have the special pulse filtering property, that is, they provide the fastest
pulse rise time with no overshoot or ringing in time domain.

Lowpass Gaussian Filter, see [1 (users)], is defined as

,
and the corresponding impulse response is

.
Here, .

The discrete-time FIR lowpass Gaussian filter is designed by introducing delay in and
then sampling the delayed version starting from up to filter order .

where is the sampling period.

In SystemVue, bandpass Gaussian filter with 3dB bandwidth and center frequency is
defined as

,
where is the lowpass Gaussian filter defined above with .
 Multirate Polyphase FIR Filter Implementation

Most of the SystemVue FIR filter blocks are integrated with multirate (rational sampling
rate change) capability. Users can specify Interpolation factor, Decimation factor, and
DecimationPhase for the desired multirate characteristics. By default (Interpolation = 1,
Decimation = 1, and DecimationPhase = 0), the filter blocks do not perform any rate
change. When the Decimation factor is > 1, the FIR filter behaves exactly as if it were in
default mode and were followed by a DownSample (algorithm) block with Factor
parameter equal to the Decimation factor of the filter and Phase parameter equal to the
DecimationPhase of the filter. Similarly, when the Interpolation factor is > 1, the filter
behaves as if it were in default mode and were preceded by an UpSample (algorithm)
block with Factor parameter equal to the Interpolation factor of the filter, Mode parameter
is "Insert zeros" (zero insertion), and Phase parameter equal to 0 (interpolation phase is
0). The following figure illustrate the equivalence of SystemVue multirate FIR filters.

A subset of multirate filter models provide additional InterpolationScaling parameter to
specify whether the output signal should be multiplied by the Interpolation value when
Interpolation factor is larger than 1. The purpose of InterpolationScaling is to adjust the
magnitude of the output signal to compensate the zero insertion during up-sampling. By
default, InterpolationScaling is YES.

The equivalence in the above figure holds when InterpolationScaling is NO.

The benefit of multirate polyphase filters is that the multirate implementation integrated
inside the filter models is much more efficient than it would be using UpSample
(algorithm) and DownSample (algorithm). A polyphase structure is used internally,
avoiding unnecessary use of memory and unnecessary multiplication of zeros. Arbitrary
sample-rate conversions by rational factors can be accomplished this way.

It is users' responsibility to make sure the decimation and interpolation factors do not cause aliasing and
imaging effect. The Filter Designer (users) frequency response plot cannot display imaging effect and may
not properly display aliasing effect.

 Parks-McClellan Method

The Parks-McClellan design method uses the Remez exchange algorithm to design linear
phase FIR filters such that a filter has minimum weighted Chebyshev error in
approximating a desired ideal frequency response. For further details, please refer to
Chapter 7.4.3 The Parks-McClellan Algorithm in Discrete-Time Signal Processing, 2nd ed. [2
(users)].

The Parks-McClellan design method in SystemVue uses a modified version of the remez
program from Jake Janovetz under GNU Library General Public License. The source of the
modified remez program and the GNU Library General Public License are located in
PublicSource\remez under the SystemVue installation directory.
 Raised Cosine Filter

Raised-cosine filters are used for shaping pulses for transmission through digital channels
to prevent intersymbol interference (ISI). The background for intersymbol interference
and raised cosine filter can be found in [1], [3], and other communication textbooks. The
following discussion is based on [3].

The minimum system bandwidth to detect symbols/sec without ISI is hz.
However, in practical, we need to provide some "excess bandwidth" beyond the theoretical
minimum. One frequently used system transfer function is the raised cosine filter.

The lowpass raised cosine filter has transfer function

SystemVue - Users Guide

57

where is the roll-off factor between 0 and 1, and is the excess bandwidth over

the ideal Nyquist bandwidth .
The impulse response of the raised cosine filter is

.

The transfer function of the square root raised cosine filter or root raised cosine
filter is defined as

.
The corresponding impulse response is

.

The above raised cosine filter and root raised cosine filter are defined in continuous-time
domain, and the impulse responses are not causal. The discrete-time raised cosine and
root raised cosine FIR filters are obtained by introducing delay in and and then
sampling the delayed versions starting from up to the filter order .

The transfer function of the raised cosine filter with pulse equalization is

,
and the transfer function of the root raised cosine filter with pulse equalization is

.

In SystemVue, the impulse response of the discrete-time pulse equalization raised cosine
 (or root raised cosine) filter is computed by first sampling (or) in

equally spaced frequency points, next performing inverse discrete Fourier transform
(IDFT), and then take the real parts.

Window functions can be applied to raised cosine and root raised cosine filters to smooth
the possible discontinuities at the both ends of the impulse response.

In SystemVue, bandpass raised cosine filter with center frequency is defined as
,

where is a particular lowpass raised cosine filter defined above.
 Window Method

Designing FIR filters using window method generally begins with an ideal desired
frequency response . After that, the ideal impulse response can be obtained by
inverse discrete-time Fourier transform

.
The ideal impulse response may be noncausal and infinitely long. The window method
obtains a -order causal FIR approximation of the ideal system by truncating (and
smoothing) the ideal impulse response by a given window .

 Ideal Linear Phase Impulse Response for Window Method

 Lowpass Linear Phase Impulse Response for Window Method

Suppose a lowpass FIR filter is specified with cutoff frequency (), symmetric,
and order (even or odd). Then the desired frequency response is

By inverse discrete-time Fourier transform, the desired impulse response is

.

 Highpass Linear Phase Impulse Response for Window Method

Suppose a highpass FIR filter is specified with cutoff frequency (), symmetric,
and even order . Then the desired frequency response is

By inverse discrete-time Fourier transform, the desired impulse response is

.

On the other hand, suppose a highpass FIR filter is specified with cutoff frequency (
), antisymmetric, and odd order . Then the desired frequency response is

By inverse discrete-time Fourier transform, the desired impulse response is

.

 Bandpass Linear Phase Impulse Response for Window Method

Suppose a bandpass FIR filter is specified with lower cutoff frequency , upper cutoff
frequency , (), symmetric, and order (even or odd). Then the desired
frequency response is

By inverse discrete-time Fourier transform, the desired impulse response is

.

Suppose a bandpass FIR filter is specified with lower cutoff frequency , upper cutoff
frequency , (), antisymmetric, and order (even or odd). Then the desired
frequency response is

By inverse discrete-time Fourier transform, the desired impulse response is

.

 Bandstop Linear Phase Impulse Response for Window Method

Suppose a bandstop FIR filter is specified with lower cutoff frequency , upper cutoff
frequency , (), symmetric, and even order . Then the desired frequency
response is

SystemVue - Users Guide

58

By inverse discrete-time Fourier transform, the desired impulse response is

.

 Window Functions

For common Rectangular, Bartlett, Hann, Hamming, Blackman, Kaiser windows, please
refer to [2].

 Rectangular

 Bartlett (Triangular)

 Hann

 Hamming

 Blackman

 Blackman Harris

 Flat Top

 Generalized Cosine

The generalized cosine windows are combinations of sinusoidal sequences with
frequencies 0, , , and so on. Hann, Hamming, Blackman, and Flat Top windows
are special cases of the generalized cosine windows.

Given parameters , , , , , ..., a generalized cosine window is formulated as

 Ready

The parameter is specified by user and should be .

 Kaiser

The kaiser window is defined as

 represents the zeroth-order modified Bessel function of the first kind

.

Based on [2], let denote the passband and stopband ripple (if passband and stopband
ripples are different, choose the smaller one); let denote the passband cutoff frequency
(in radius), i.e., the highest frequency such that ; let denote the stopband
cutoff frequency (in radius), i.e., the lowest frequency such that ; and let

 denote the transition width. Defining , Kaiser determined
empirically that the value of is given by

Furthermore, Kaiser found that to achieve prescribed values of and , must satisfy

.

 IIR Filter Design
SystemVue uses digital (discrete-time) IIR filters to implement analog (continuous-time)
filters.
In general, SystemVue IIR filters are designed in the following steps:

A specific combination of frequency response {lowpass, highpass, bandpass,1.
bandstop} and design method {Bessel, Butterworth, Chebyshev I, Chebyshev II,
Elliptic, Synchronously Tuned} is chosen.
The parameters of the chosen filter are specified based on users' requirements.2.
The filter specification is translated into lowpass prototype filter specification.3.
A lowpass prototype analog filter is designed. See Lowpass Analog Filters (users) for4.
{Bessel, Butterworth, Chebyshev I, Chebyshev II, Elliptic, Synchronously Tuned}
analog filters.
The lowpass prototype analog filter is transformed into another lowpass, highpass,5.
bandpass, or bandstop analog filter based on one of the Analog Frequency
Transformation (users) techniques to meet the specified edge frequency (or
bandwidth) requirements.
The analog filter is converted into a digital IIR filter based on one of the Analog to6.
Digital Transformation (users) techniques.

Lowpass Analog Filters (users)
Analog Frequency Transformation (users)
Analog to Digital Transformation (users)
S-Domain Design (users)

SystemVue - Users Guide

59

 Reference

A. Antoniou, Digital Filters: Analysis and Design. McGraw Hill, 1979.1.
L. B. Jackson, Digital Filters and Signal Processing, 3rd ed. Kluwer Academic2.
Publishers, 1995.
L. B. Jackson, "A correction to impulse invariance", Signal Processing Letters, IEEE,3.
vol. 7, no. 10, pp. 273-275, Oct. 2000.
A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing,4.
2nd ed. Prentice Hall, 1999.
J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms5.
and Applications, 3rd ed. Prentice Hall, 1995.
L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing.6.
Prentice Hall, 1975.

 Analog Frequency Transformation

A lowpass filter can be transformed into another lowpass, highpass, bandpass, or
bandstop filters based on the following analog frequency transformation techniques.

 Lowpass to Lowpass

Suppose we have a lowpass prototype filter with passband frequency , and we wish
to transform it to another lowpass filter with passband frequency . This
transformation can be accomplished by

.

The resulting lowpass filter has transfer function .

 Lowpass to Highpass

Suppose we have a lowpass prototype filter with passband frequency , and we wish
to transform it to a highpass filter with passband frequency . This transformation
can be accomplished by

.
The resulting highpass filter has transfer function

.

 Lowpass to Bandpass

Suppose we have a lowpass prototype filter with passband frequency , and we wish
to transform it to a bandpass filter with lower passband edge frequency and upper
passband edge frequency . This transformation can be accomplished by

.
The resulting bandpass filter has transfer function

.

Note that the order of the bandpass filter will be doubled after this lowpass to bandpass frequency
transformation. In bandpass filter design specification, the "order" refers to the order of the prototype
lowpass filter.

 Lowpass to Bandstop

Suppose we have a lowpass prototype filter with passband frequency , and we wish
to transform
it to a bandstop filter with lower passband edge frequency and upper passband
edge frequency . This transformation can be accomplished by

.
The resulting bandstop filter has transfer function

.

Note that the order of the bandstop filter will be doubled after this lowpass to bandstop frequency
transformation. In bandstop filter design specification, the "order" refers to the order of the prototype
lowpass filter.

 Analog to Digital Transformation

Analog (continuous-time) filters can be converted into digital (discrete-time) IIR filters by
the following techniques.

 Impulse Invariance

In impulse invariance, a discrete-time system is defined by sampling the impulse response
 of a continuous-time system. Under certain conditions (discussed below), the resulting

impulse response of the discrete-time system is "invariant" with respect to the
sampled version of the impulse response of the continuous-time system.

Suppose a continuous-time system is causal and stable. Based on the discussion
found in [1] and [3], if is band limited and the sampling rate () is high enough
(such that the aliasing effect is minimal)

,
we can approximate the continuous-time system in discrete-time domain

by setting the impulse response of the discrete-time system to

.

Let

denote the transfer function of an analog filter, where are zeros and
 are poles.

Suppose is causal, stable, bandlimited, and , and are single-order
poles, the digital IIR filter can be obtained by impulse invariance as follows:

Due to the band limited restriction and the fact that the impulse invariance technique is
only practical for , currently only certain lowpass IIR filter blocks in SystemVue
provides impulse invariance option.

 Bilinear Transformation

Bilinear transformation maps the entire -axis () in the S-plain to one
revolution of the unit circle () in the Z-plain. Bilinear transformation avoids the
aliasing problem, but the transformation from S-domain frequency to Z-domain frequency
is nonlinear.

Bilinear transformation converts S-domain (continuous-time) transfer function into Z-

SystemVue - Users Guide

60

domain (discrete-time) transfer function by replacing in with

,
where is the sampling period of the discrete-time system. The resulting Z-domain
transfer function is therefore

.

The mapping between S-domain frequency and Z-domain frequency can be expressed
in the following relations:

,
.

Due to the nonlinearity of bilinear transformation, SystemVue IIR filter blocks prewarp
the critical frequencies, such as passband frequency and stopband frequency, based on
the above equation before designing analog filters. With prewarping, the resulting digital
filters will meet the desired specification at the critical frequencies.

Bilinear transformation is used as default in SystemVue to convert analog filters to digital
filters.
 Lowpass Analog Filters

 Bessel

Bessel filters are all-pole filters that are characterized by the S-domain transfer function

,
where is the th-order Bessel polynomial, and is the 0th-order coefficient of .

The bessel polynomials can be derived recursively from the relation

with and as initial conditions.

 Butterworth

Lowpass Butterworth filters are all-pole filters characterized by the magnitude-squared

frequency response ,
where is the order of the filter, and is the -3dB cutoff frequency in radian.

The poles of the lowpass Butterworth filter are , where .

 Chebyshev I

Chebyshev type I filters are all-pole filters that have equiripple behavior in the passband
and monotonic behavior in the stopband. The magnitude-squared frequency response of a
Chebyshev type I filter is

,
where is the filter order, is the passband frequency, is a parameter related to the
passband ripple by

,
and is the th-order Chebyshev polynomial defined as

The poles of a Chebyshev type I filter lie on an ellipse in the S-plain with major axis

and minor axis

,
where

.
The poles are located in the S-plain at points

,
where

.

 Chebyshev II

Chebyshev type II filters have both poles and zeros and exhibit monotonic behavior in the
passband and equiripple behavior in the stopband. The magnitude-squared frequency
response of a Chebyshev type II filter is

,
where is the filter order, is the passband frequency,
is the stopband frequency, is a parameter related to the passband attenuation as

,
and is the th-order Chebyshev polynomial as described above.

The poles of a Chebyshev type II filter are located in the S-plain at points

,
where

,

,
and the parameter is related to the stopband ripple by

.
The zeros of a Chebyshev type II filter are located on the imaginary axis at points

.
In the above equations,

.

 Elliptic

Elliptic filters have equiripple behavior in both the passband and stopband. This class of
filters have both poles and zeros and is characterized by the magnitude-squared
frequency response

,
where is the Jacobian elliptic function of order , and is a parameter related to the
ripple.

Interested users may find more information on this topic in Reference 1 (users), where
the author provides detailed derivations.

 Synchronously Tuned

Synchronously Tuned filters are all-pole filters with all the poles are located at the same
point on the negative real axis in the S-plain. A Synchronously Tuned filter is
characterized by the S-domain transfer function

,
where is the pole, and is the order of the filter.

Given passband frequency and passband attenuation , the pole of the Synchronously

SystemVue - Users Guide

61

Tuned filter can be derived as

.
 S-Domain Design

S-Domain design is a different IIR filter design approach. In S-Domain design, users
specify the S-Domain poles and zeros of the system. To ensure the
resulting IIR transfer function is causal, stable, and real coefficients,

all poles must lie in the left-half of the s-plane,
the number of zeros must be less than or equal to the number of poles, and
complex poles must occur in complex conjugate pairs, and complex zeros must occur
in complex conjugate pairs.

The S-domain pole-zero system is then transformed into Z-domain transfer function by
either bilinear transformation or impulse invariance. Bilinear transformation will result in a
Z-domain transfer function that is not a linear mapping of the S-domain pole-zero
system, see Bilinear Transformation (users). On the other hand, impulse invariance
restricts the S-domain pole-zero system to be bandlimited, see Impulse Invariance
(users), and may suffer from implementation difficulty in multiple-order poles.

SystemVue - Users Guide

62

 Equations
Equations are a powerful tool that enable post processing of data, control over inputs to
simulations, and definition of user-defined custom models.

 Contents
Equations User Interface (users)
Languages (users)
Using Math Language (users)
Math Language Function Reference (users)
Hierarchy in Equations (users)
Automatic Calculation (users)
Debugging Equations (users)
Code Completion (users)
MATLAB Integration (users)
Tips for Effective Equation Writing (users)

 Automatic Calculation
If an Equation object is set to Auto-Calculate, the equations are always kept up to date
whenever a value is requested from them. This is desirable when the equation block
defines variables that you use in part parameters on a schematic: when you change these
values, you want the part parameters that use them to update. However, sometimes
this is undesirable. If, for example, you are using an Equation block to import data from
a file or to transfer data to and from an instrument, you do not want the Equations to
calculate unless you specifically tell them to. In these cases, you should disable Auto-
Calculate. The Auto-Calculate toolbar button located on the Equation Toolbar (users)
toggles automatic calculation on and off.

There are some cases where you probably want to DISABLE automatic recalculation of an equation block:
equations which do file I/O or TCP/IP communications, equations which run simulations via the runanalysis
function, equations that do time-consuming processing.

If you disable Automatic Calculation , the only way to recalculate the equation is manually
with the calculate button, or with the F5 or Ctrl+G keyboard shortcuts. Equations that
have Automatic Calculation turned off will not update during simulations. As mentioned
before, you would normally disable Automatic Calculation for Math Language equations
that control hardware, for example, so the hardware doesn't get re-controlled every time
a variable changes.

If you disable Auto-Calculate in an equation that is a function definition, the function won't exist until you
manually calculate the equation.

SystemVue - Users Guide

63

 Code Completion
Code Completion provides quick access to valid keywords, variables, functions or structure
members via the Code Completion Window (as shown below).

 To trigger Code Completion widow

Automatically trigger Code Completion
Code Completion window will appear automatically listing all available choices and their
brief descriptions while you are typing in the Script Editor.

Available choices for Code Completion include

Keywords1.
Built-in variables (available outside Matlab region)2.
User defined variables (available outside Matlab region)3.
Built-in functions (available outside Matlab region)4.
User defined functions (available outside Matlab region)5.
Structure members (available outside Matlab region)6.
Matlab functions (available inside Matlab region)7.

When a "." is typed after the name of an structure variable, a Code Completion window
appears automatically listing all members for that variable. For example "structureVar" is
a structure variable contains two members named "a" and "b", when typed "." after
"structureVar", its members will be listed in the Code Completion window.

Manually trigger Code Completion
With the edit cursor in the Script Editor field, pressing "Ctrl + SPACE" will trigger the Code
Completion window. All available choices will be listed in the Code Completion window.
Please be noticed that Matlab functions do not support manually trigger for performance
consideration.

 To complete code

With the Code Completion window displaying, double clicking a choice, or hitting the Enter
key with that choice selected will choose the choice to complete the expression. You can
also type in the choice manually. In this case, the closest matching choice will be
highlighted while you are typing. In the following figure, when con is typed, conj is
highlighted.

 Note

Code Completion is enabled by default. You can disable it by selecting "Enable
IntelliPrompt" in the context menu of Script Editor.

 Debugging Equations
A fully featured and intuitive debugger is built-in to the equation editing user interface.

 Using Breakpoints and Single-Stepping

You can use the Equation Toolbar (users) or its associated keyboard shortcuts in the
equation script editor to set breakpoints and to step through your code one line at a time.
Breakpoints can be set both in equations contained in the workspace and in a model's
equations (eg. sub-circuits). In all cases, evaluation of equations will be halted when a
breakpoint is hit. The user may then execute statements line by line using single-stepping,
abort execution, or continue execution until the next breakpoint is hit.

Workspace Equations: to run the equations click the Go button in the Equation
Toolbar (users). If a workspace equation is set to Auto-Calculate, they will calculate
whenever something they are dependent on triggers a calculation. If any breakpoints
are set, the evaluation of the equations is halted and the user interface is brought to
the front, clearly marking what line of code the equation processor is currently halted
at.

It is important to keep in mind that an equation block may be calculated may times due to
various factors, such as a simulator changing a variable. The evaluation of the equations
will halt whenever the breakpoint is hit. Typical scenarios include:

Equations in sub-circuit models: the breakpoint will be hit once per run of the
simulator except when the equation is dependent on the simulator independent
variable.

SystemVue - Users Guide

64

Equations in a Math Language block: the breakpoint will be hit at each 'tic' of the
simulator as data is delivered to the block.

 Setting Breakpoints

Click the Breakpoint Margin at the line you wish to set a breakpoint at in the script editor
window to toggle a breakpoint on/off. A red dot will appear when the breakpoint is on. The
Breakpoint margin is located between the Line Number and Folding margins. You may also
set a breakpoint at the current line by using the Ctrl+B keyboard shortcut or clicking the
Add/Remove Breakpoint toolbar button.

When the equation processor hits a breakpoint, the current line it is halted at will display a
yellow arrow in the breakpoint margin as can be seen in the picture below. At this point
you may single-step, step-into functions, continue, or abort execution. If you step-into a
function, a green arrow marks the line that the function was called from.

 Using Debug Print functions

The debug print functions shown below produce lines of debug text in the Equation Debug
docking window.
Please note that debug lines will only appear in the window after the simulator runs, due
to current multi-threading locks.

 Equation Debug docking window

The Equation Debug docking window can be shown/hidden using the Edit/View/Docking
Windows/Equation Debug menu path or using the show/hide dockers button on the main
toolbar. This window has a list of debug lines that your equations generate using functions
described below. A sample Equation Debug Window is shown here.

 Debug Functions

There are two functions available (in both Engineering Language and Mathematics
Language) for writing to the Equation Debug docking window. Both functions add lines to
the Equation Debug Docking Window so you can trace progress as the program runs. The
code samples are written in Mathematics Language.

dbg_print('Message')

dbg_print('Message', 'Equation')

dbg_print('Message', 'Equation', Line)

1.

prints the Message in the Equation Debug window. The Equation and Line parameters
may be omitted, in which case the equation engine will attempt to auto-detect which
equation set and line number called the function.

dbg_showvar('Message', Variable)

prints Message=VariableValue in formatted output

 Equations User Interface
The following image shows a typical Equations window:

The Equations window has three subwindows:

The Variable Viewer, located on the left.
The Script Editor, located on the upper right.
The Command Window, located on the lower right.

The Equations window also has an associated toolbar, see Equation Toolbar (users).

Among the simplest application of equations is to define a variable in the Script Editor area (upper right),
such as myvar=123 (then press "Go")
Then myvar can be entered into component properties on the schematic, to drive component values.
Entering myvar=?123 (ie. adding the question mark) makes the value myvar tunable in the tune window.
After pressing "Go", the variable value should appear in the Variable Viewer (left side). If nothing appears
in the Variable Viewer after pressing "Go", this usually indicates some problem with equation syntax.
Typically the error messages window will provide some clues.

 Variable Viewer

The Variable Viewer displays any variables that currently exist in the Equations object. If
the variable is a scalar, the value is displayed. If the variable is an array, the type and
dimensions of the array are displayed.

If you right-click on any variable displayed in the Variable Viewer, you will be presented
with a menu containing options to plot the variable on a graph or display it in a table. If
you wish to see the variable's value without creating a table, you can do so in the

SystemVue - Users Guide

65

Command Window, as discussed below.

The following buttons are located at the top of the Variable Viewer window: Units and Go.

The Units button allows you to define how the values of the variables defined in the
Equations page are to be interpreted when used elsewhere, such as part parameters. If
Units is set to "Use MKS", then the values of the variables will be treated as if they were in
MKS units. Any unit specified when the variable is used (e.g. in a part parameter) will only
be used for schematic display purposes and will not further scale the value. If, on the
other hand, Units is set to "Use Display", then the units will be defined where the value is
actually used. In this case any unit specified when the variable is used (e.g. in a part
parameter) will be used to scale the variable value as well as for schematic display
purposes.

For example, assume a variable F=10000 is defined in an Equations page that has Units
set to Use MKS. If this variable is used to set the F3dB parameter of a part and the unit of
the F3dB parameter is set to KHz, then the F3dB parameter is set to 10000 (unit is
ignored in setting the actual value of the parameter and is only used for schematic display
purposes) and it will show (on the schematic) as 10 KHz. If the same variable is defined in
an Equations page that has Units set to Use Display and used to set the F3dB parameter
as described above, then the F3dB parameter will be set to 10000000 (the last three zeros
is because of the scaling provided by the KHz unit) and it will show (on the schematic) as
10000 KHz.

Set Units to Use Display only when you want a unit to be attached wherever the
variable is used.
Set Units to Use MKS in the Equation pages of models to ensure their portability
regardless of an end user's unit preferences. If the Units for the Equations page of a
model are not set to Use MKS, the model will not function properly when the units of
its parameters are changed from their default setting.

The Go button provides an easy way to force execution of the equations. Its function is
equivalent to the Go button on the Equation Toolbar (users).

If you want the variable block to be cleared each time the equations are executed, the first line of your
equations should be the clear statement.

 Script Editor

The Script Editor is used to type in a sets of equation statements to be executed. More
specifically, the Script Editor window is used to:

Post-Process data, or define variables as inputs to be used elsewhere.
Create user-defined functions.
Define equations inside a Model.

The Script Editor includes Find and Replace support, accessible from the Edit menu or with
the Ctrl+F or Ctrl+H keys, respectively.

New If you want context sensitive help on a function, select the keyword and press F1
in the Script Editor.

New Use Ctrl_MouseWheel to zoom in and out on the equations Script Editor.

 Command Window

The Command Window is used to execute statements line-by-line. It interacts with the
same variables that are visible to the Script Editor. It is a useful debugging tool since the
contents of a variable can be displayed here.

If an assignment statement does not end in a semicolon, the results of that assignment
are outputted in the Command Window, as can be seen in the above figure. If an
assignment statement does end in a semicolon, then the dump of the contents of the
result is suppressed.

Any errors or warnings caused by executing a line in the Command Window are outputted
to the Command Window.

 Hierarchy in Equations
Equations obey hierarchy as defined by their place in the Workspace Tree. Note that this is
true for Equation objects as well as equations that are embedded inside a Design object
(ie. an Equation tab in a Design).

Equation BottomEquation contains:

x=3

if x==3 then

 y = 4*x + cos(z)

else

 y = 4*x + sin(z)

endif

In the example above, the value of z will be coming from another equation set
(NextEquations or TopEquations) to execute without errors. The Equations engines look up
the workspace hierarchy until the value of z is found, otherwise an error is reported.

In other words, in this example, if z is defined in NextEquations, then z will come from
there. If NextEquations does not define z then the Equations engine looks up another
folder level to TopEquations for z .\

Equations on the same level of hierarchy should all be visible to each other.

 Design-time vs. Run-time hierarchy

The above discussion of hierarchy is called design-time hierarchy, because while you are
not simulating, the workspace tree defines the scoping of variables. However, when you
run a simulation, the situation can be different.

Suppose, for example, that we have 2 designs as shown in the below picture. Both
designs have an Equation tab (and possibly a Parameters tab, which is equivalent, since
Parameters get passed into the design's Equations at run-time).

In the situation shown in the above picture, when you are NOT running a simulation (ie.
you are in design-time), the design called SubNetwork will be able to see variables that
are defined in the Equations tab of the design called TopLevel, simply because
SubNetwork is located in a folder beneath the level of hierarchy that TopLevel is in.
However, suppose that, as shown, SubNetwork defines a subnetwork model. Also suppose

SystemVue - Users Guide

66

that the schematic in TopLevel defines an instance of SubNetwork (ie. it has a part that
references the SubNetwork model). When you run a simulation (ie. during run-time), a
Model hierarchy is defined in which SubNetwork is a child of TopLevel, since an instance of
a SubNetwork model is instantiated inside of TopLevel. Because of this, SubNetwork can
see all of TopLevel's variables. This is what makes the passing of parameters from
TopLevel to SubNetwork possible.

It is important to note that when you are editing a design (ie. you are in design-time), the
values of parameters you see in your design are those calculated using the design-time
hierarchy. For example, if you define a Design that contains Parameters, and you use one
of those parameters inside your Design, you will see the value of that parameter
correspond to the "Default" value of the Parameter that you defined in the Parameters
tab. This is, of course, not necessarily the value that will be seen at run-time when you
run a simulation, since that depends on the run-time hierarchy defined by the topology of
the network you are simulating.

 Using Math Language
Math Language, along with most of its built-in functions, was designed to be compatible
with m-file script syntax.

For a full description see Using Math Language (users).
For a complete function reference see Math Language Function Reference (users)

 Math Language Function Reference
To go directly to entries that belong to a category, select one of the following: Basic
(users), Communications (users), Signal Processing (users)
To go directly to entries that start with a specific letter, select one of the following: A, B, C
, D, E, F, G, H, I, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Z.

Function Name Description

 abs (users) absolute value or magnitude

acos (users) inverse cosine, in radians

acosd (users) inverse cosine, in degrees

acosh (users) inverse hyperbolic cosine

acot (users) inverse cotangent

acotd (users) inverse cotangent, in degrees

acoth (users) inverse hyperbolic cotangent

acsc (users) inverse cosecant

acscd (users) inverse cosecant, in degrees

acsch (users) inverse hyperbolic cosecant

all (users) true if all parts in a vector are nonzero

angle (users) phase of a complex number, in radians

any (users) true if any part in a vector is nonzero

asec (users) inverse secant, in radians

asecd (users) inverse secant, in degrees

asech (users) inverse hyperbolic secant

asin (users) inverse sine, in radians

asind (users) inverse sine, in degrees

asinh (users) inverse hyperbolic sine

atan (users) inverse tangent, in radians

atan2 (users) 4-quadrant inverse tangent, in radians

atand (users) inverse tangent, in degrees

atanh (users) inverse hyperbolic tangent

alignsignals (users) align two signals by delaying earliest signal

awgn (users) add white Gaussian noise to signal

 bartlett (users) Bartlett Window

blackman (users) Blackman Window

butter (users) Butterworth filter designer

bi2de (users) convert binary vectors to decimal

bilinear (users) parameter transformation from analog filter to digital
filter

buttord (users) butterworth filter order and cutoff frequency calculation

 ceil (users) smallest integer greater than or equal to argument

cheby1 (users) Chebyshev type 1 filter designer

cheby2 (users) Chebyshev type 2 filter designer

class (users) data-type (class name) of argument

conj (users) complex conjugate

conv (users) linear convolution (or polynomial multiplication)

cos (users) cosine of a radian-valued argument

cosd (users) cosine of a degree-valued argument

cosh (users) hyperbolic cosine

cot (users) cotangent of a radian-valued argument

cotd (users) cotangent of a degree-valued argument

coth (users) hyperbolic cotangent

csc (users) cosecant of a radian-valued argument

cscd (users) cosecant of a degree-valued argument

csch (users) hyperbolic cosecant

convdeintrlv (users) permute data with specified shift register group

convenc (users) convolutionally encode binary data

convintrlv (users) permute data with specified shift register group

crcdec (users) cyclic redundancy check decoder

crcenc (users) cyclic redundancy check encoder

cheb1ord (users) minimum order calculation for Chebyshev Type I filter

cheb2ord (users) minimum order calculation for Chebyshev Type II filter

 dbg_print (users) output to equation debug window

dbg_showvar (users) output contents of a variable to equation debug window

deconv (users) deconvolution (or polynomial division)

dec2hex (users) decimal to hexadecimal conversion

diag (users) create diagonal matrix or extract diagonal of a matrix

diff (users) difference (or approximate derivative)

de2bi (users) decimal numbers to binary vectors

deintrlv (users) reorder data back with specified permutation table

depuncture (users) restores erasures based on puncture pattern

downsample (users) downsample input signal

dpskdemod (users) differential phase-shift keying demodulation

dpskmod (users) differential phase-shift keying modulation

 eig (users) eigenvalues and eigenvectors of a matrix

ellip (users) elliptic or cauer filter designer

equalize (users) equalize signal using Equalizer

erf (users) error function

erfc (users) complementary error function

error (users) posts to error log or output error to command window

exist (users) check the existance of a variable or a builtin function

exp (users) exponential

eye (users) construct identity matrix

eyediag (users) build an eye diagram from time data

 false (users) logical false

fclose (users) close a file or stream

fft (users) Discrete Fourier Transform (DFT)

fgets (users) read a line from a file, keep newline

filter (users) one dimensional digital filtering

find (users) indices of nonzero parts

findstr (users) find a string within another string

SystemVue - Users Guide

67

firls (users) multiband least square FIR filter design

firrcos (users) raised cosine FIR Filter design

fix (users) round toward zero

floor (users) largest integer less than or equal to argument

fopen (users) open file or stream

fread (users) read binary data from a file or stream

fprintf (users) write formatted text to a file or stream

fscanf (users) read formatted text from a file or stream

fwrite (users) write binary data to a file or stream

finddelay (users) estimate delay(s) between signals

fftfilt (users) FFT-based FIR filtering using overlap-add method

 gausswin (users) Gaussian Window

getindep (users) returns the string property containing the path to the independent value of a variable
x. (ie. the reference to the independent
variable)

getindepvalue (users) returns the single independent value of a variable x.

getmatlabvariables
(users)

get the value of a variable list from MATLAB

getunits (users) Returns an integer corresponding to the units of a variable x. This integer may be
used by setunits.

getvariable (users) get the value of a variable from a dataset

gaussfir (users) Gaussian FIR Pulse-Shaping Filter Design

grpdelay (users) group delay of IIR filter

 hamming (users) Hamming Window

hann (users) Hann Window

hex2dec (users) hexadecimal to decimal conversion

hilbert (users) compute the analytic signal from a real data vector

histc (users) histogram count

 ifft (users) Inverse Discrete Fourier Transform (IDFT)

imag (users) imaginary part of a complex number

impz (users) Impulse response of IIR digital filter

inf (users) infinity

interp1 (users) one dimensional interpolation

ischar (users) true if argument is of type character array

isempty (users) true if argument is empty or array with a dimension of length 0

isequal (users) true if arrays contain equal values, ignoring NaNs

isfinite (users) true for finite parts

isfloat (users) true if argument is a floating point scalar or array

isinf (users) true for infinite parts

isinteger (users) true if argument is an integer scalar or array

islogical (users) true if argument is a logical scalar or array

isnan (users) true for NaN parts

isreal (users) true if argument is a real-valued scalar or array

isscalar (users) true if argument is a scalar

isstr (users) true if argument is a character array

interp (users) resample input at a higher rate with lowpass filter

 kaiser (users) kaiser window

kaiserord (users) Parameters that specify a kaiser window

 length (users) length of a vector

linspace (users) construct linearly spaced vector

log (users) natural logarithm

log2 (users) Base-2 logarithm

log10 (users) Base-10 logarithm

logspace (users) construct logarithmically spaced vector

lu (users) LU matrix factorization

lp2bp (users) transform lowpass filter to bandpass filter

lp2bs (users) transform lowpass filter to bandstop filter

lp2hp (users) transform lowpass filter to highpass filter

lp2lp (users) lowpass filter with normalized frequency to desired frequency

 max (users) largest value of a vector

mean (users) arithmetic mean of a vector

median (users) median of a vector

min (users) smallest value of a vector

mkdir (users) make directory

mod (users) modulus after division

mode (users) mode (most frequent value) of a vector

matdeintrlv (users) reorder data by filling matrix by columns and emptying it by
rows

matintrlv (users) reorder data by filling matrix by rows and emptying it by
columns

muxdeintrlv (users) restore ordering of data with specified shift register group

muxintrlv (users) reorder data with specified shift register group

 nan (users) Not-a-Number

num2str (users) convert number to a character array

numel (users) total number of parts in an array

noisebwlv (users) equivalent two-sided noise bandwidth of lowpass filter

 oct2dec (users) convert octal to decimal numbers

 poly2trellis (users) convert convolutional code polynomials to trellis description

puncture (users) Erase specified symbols based on puncture pattern

phasedelay (users) return phase delay vector for digital filter

 qamdemod (users) Quadrature amplitude demodulation

qammod (users) Quadrature amplitude modulation

qfunc (users) Q function

qfuncinv (users) inverse Q function

 rand (users) uniformly distributed random numbers between 0 and 1

randn (users) Normally (Gaussian) distributed random numbers

rcosflt (users) Filter input signal with (sqrt) raised cosine filter

real (users) real part of a complex number

rectwin (users) Rectangular Window

rem (users) remainder after division

resample (users) Change sampling rate by rational factor

reshape (users) change dimensions of an array

roots (users) roots of a polynomial

SystemVue - Users Guide

68

round (users) round towards nearest integer

runanalysis (users) Run an analysis in the workspace tree. Useful for scripting simulations.

randerr (users) generate bit error patterns

randint (users) generate uniformly distributed random integers

randsrc (users) generate random matrix using prescribed alphabet

rectpulse (users) rectangular pulse shaping

rsdec (users) reed-Solomon decoder

rsenc (users) reed-Solomon encoder

 sec (users) secant of a radian-valued argument

secd (users) secant of a degree-valued argument

sech (users) hyperbolic secant

setindep (users) set the independent reference for a swept dependent variable to indepvar(s). A
minimum of two arguments is required.
This function can be used to remove all independent values of a variable by passing in a
blank string for the second argument.

setmatlabvariables
(users)

define MATLAB variables and set SystemVue variables' value to MATLAB

setvariable (users) write a value to a variable in a dataset

setunits (users) sets a variable to have units specified by unit. The unit may be an integer or a string.
Integer units correspond to the units returned by the getunits function. Units do not
change the underlying value of a variable, but rather, just change how the value is
displayed. Example: setunits('freqaxis', 'MHz')

sign (users) signum

sin (users) sine of a radian-valued argument

sinc (users) sinc function (sin(pi*x) / (pi*x))

sind (users) sine of a degree-valued argument

sinh (users) hyperbolic sine

size (users) dimensions of an array

skewness (users) skewness of a vector

sort (users) sort a vector in ascending or descending order

spline (users) cubic spline interpolation

sqrt (users) square root

sscanf (users) read formatted text from a string

ss2tf (users) Convert state-space filter parameters to transfer function form

ss2zp (users) Convert state-space filter parameters to zero-pole-gain form

std (users) standard deviation of a vector

str2num (users) convert a string to a number

strcmp (users) case-sensitive string comparison

strcmpi (users) case-insensitive string comparison

strncmp (users) compare first N characters of a string (case-sensitive)

strncmpi (users) compare first N characters of a string (case-insensitive)

struct (users) construct a structure array

sum (users) sum of the parts of a vector

svd (users) matrix singular value decomposition

symerr (users) compute number of symbol errors and symbol error rate

sftrans (users) transform of lowpass filter to other type filter

square (users) Square wave generation

 tan (users) tangent of a radian-valued argument

tand (users) tangent of a degree-valued argument

tanh (users) hyperbolic tangent

tcpip (users) construct tcpip stream object for TCP/IP communications

tf2ss (users) Convert transfer function filter parameters to state-space form

tf2zp (users) convert transfer function filter parameters to zero-pole-gain form

toeplitz (users) construct Toeplitz matrix

true (users) logical true

turbodec (users) compute number of symbol errors and symbol error rate

turboenc (users) inverse Q function

triang (users) coefficients of a triangular window

 using (users) sets the current context in an equation block to the dataset called Dataset

upfirdn (users) Upsample by zero inserting, filtering and downsampling a signal

upsample (users) Upsample input signal by inserting R-1 zeros between elements

 var (users) variance of a vector

vitdec (users) convolutionally decodes binary stream using Viterbi algorithm

 warning (users) posts a warning to error log or output warning to command window

wgn (users) generates white Gaussian noise

 xcorr (users) cross correlation

xor (users) logical exclusive-OR

 zp2ss (users) Convert zero-pole-gain filter parameters to state-space form

zp2tf (users) Convert zero-pole-gain filter parameters to transfer function form

 abs
Syntax
y = abs(x)

Definition
This function takes the absolute value of a real variable or the magnitude of a complex
variable. It operates on an part-by-part basis on arrays.

Examples:

Formula Result

abs(-1.5) 1.5

abs(complex(1,1)
)

1.414

abs([-1;-2;3]) [1;2;3]

Compatibility
scalars, vectors, arrays

 acos
Syntax
y = acos(x)

Definition
This function returns the inverse cosine of the angular value x, in radians expressed in the
MKS range [0, PI]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Examples:

Formula Result or

acos(0) 1.571 PI/2

acos(1) 0 0

acos(-1) 3.141 PI

acos(.707) 0.786 PI/4

acos([-.707 0 1]) [2.356 1.571
0]

[3*PI/4 PI/2
0]

Compatibility
Real valued scalars, vectors, arrays

See Also
acosd (users)
acosh (users)
cos (users)
cosd (users)
cosh (users)

 acosd

SystemVue - Users Guide

69

Syntax
y = acosd(x)

Definition
This function returns the inverse cosine of the angular value x, in radians expressed in the
range [0, 180]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Examples:

Formula Result

acosd(0) 90

acosd(1) 0

acosd(-1) 180

acosd(.707) 45

acosd([-.707 0 1]) [135 90 0]

Compatibility
Real valued scalars, vectors, arrays

See Also
acos (users)
acosh (users)
cos (users)
cosd (users)
cosh (users)

 acosh
Syntax
y = acosh(x)

Definition
This function returns the inverse of the hyperbolic cosine of the number x. It operates on
an part-by-part basis on arrays. It cannot accept a complex valued variable.

cosh(x) = log(x + sqrt(x^2 - 1))

Examples:

Formula Result

acosh(1) 0

acosh(10) 2.993

acosh(0) NaN

Compatibility
Real valued scalars, vectors, arrays

See Also

acos (users)
acosd (users)
cos (users)
cosd (users)
cosh (users)

 acot
Syntax
y = acot(x)

Definition
This function returns the inverse co-tangent of the angular value x, in radians expressed
in the MKS range [0, PI]. It operates on an part-by-part basis on arrays. It cannot accept
a complex valued variable.

Formula Result or

acot(1.732) 0.5236 PI/6

acot(0.577) 1.0472 PI/3

Compatibility
Real valued scalars, vectors, arrays

See Also:

acotd (users)
acoth (users)
cot (users)
cotd (users)
coth (users)

 acotd
Syntax
y = acotd(x)

Definition
This function returns the inverse co-tangent of the angular value x, in radians expressed
in the range [0, 180]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Formula Result

acotd(1.732) 30

acotd(0.577) 60

Compatibility
Numeric scalars, vectors, arrays

See Also:
acot (users)
acoth (users)
cot (users)
cotd (users)
coth (users)

 acoth
Syntax
y = acoth(x)

Definition
This function returns the inverse of the hyperbolic co-tangent of the number x. It operates
on an part-by-part basis on arrays. It cannot accept a complex valued variable.

Compatibility
Real valued scalars, vectors, arrays

See Also:

acot (users)
acotd (users)
cot (users)
cotd (users)
coth (users)

 acsc
Syntax
y = acsc(x)

Definition
This function returns the inverse co-secant of the angular value x, in radians expressed in

SystemVue - Users Guide

70

the MKS range [0, PI]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Compatibility
Real valued scalars, Vectors, Arrays

See Also:
acscd (users)
acsch (users)
csc (users)
cscd (users)
csch (users)

 acscd
Syntax
y = acscd(x)

Definition
This function returns the inverse co-secant of the angular value x, in degrees expressed in
the range [0, 180]. It operates on an part-by-part basis on arrays. It cannot accept a
complex valued variable.

Compatibility
Real valued scalars, Vectors, Arrays

See Also:
acsc (users)
acsch (users)
csc (users)
cscd (users)
csch (users)

 acsch
Syntax
y = acsch(x)

Definition
This function returns the inverse of the hyperbolic co-secant of the number x. It operates
on an part-by-part basis on arrays. It cannot accept a complex valued variable.

Compatibility
Numeric scalars, Vectors, Arrays

See Also:
acsc (users)
acscd (users)
csc (users)
cscd (users)
csch (users)

 alignsignals
align two signals by delaying earliest signal

Syntax

[Xa,Ya] = alignsignals(X,Y)

[Xa,Ya] = alignsignals(X,Y,MAXLAG)

[Xa,Ya] = alignsignals(...,'truncate')

[Xa,Ya,D] = alignsignals(...)

Definition

[Xa Ya] = alignsignals(X,Y), X and Y should be vectors and the return Xa and Ya
are both column vectors. This function estimates the delay between X and Y via
finddelay function and then delay the earlier signal by inserting zeros to align
these two signals.

[Xa Ya] = alignsignals(X,Y,MAXLAG), MAXLAG should be a integer scalar ranging
from 0 to the larger length of X and Y minus 1. The search range should fall in
the range of [-MAXLAG MAXLAG].

[Xa Ya] = alignsignals(...,'truncate'), if X or Y are delayed by inserting some
zeros, 'truncate' will cut some tail elements to remain its original length.

Examples

Compatibility

See also
finddelay (users)

 all
Syntax
all(data)
all(data, dim)

Definition
This function returns true if all values in a vector are non-zero or logical true, otherwise it
returns false. If data is a matrix, then this function operates on the columns of data.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result

all([1 0 0 1 0]) 0

all([1 1 1]) 1

For A = [1 1 0; 1 0 1; 1 1 1];

Formula Result Comments

all(A) [1 0 0] Returns dim=1 column wise
results

all(A, 1) [1 0 0] Returns column wise results

all(A, 2) [0; 0; 1] Returns row wise results

Compatibility
vectors, arrays

See Also
any (users)

 angle
Syntax
y = angle(x)

Definition
This function returns the phase of a complex number, in radians.
This function operates on an part-by-part basis on arrays.

Compatibility
Complex valued scalars, vectors, arrays

SystemVue - Users Guide

71

Real valued variables are treated as vectors with angular value of zero.

 any
Syntax
any(data)
any(data, dim)

Definition
This function returns true if any of the values in a vector are non-zero or logical true,
otherwise it returns false. If data is a matrix, then this function operates on the columns
of data.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result

all([1 0 0 1 0]) 1

all([0 0 0]) 0

For A = [0 0 1; 0 1 0; 0 0 0];

Formula Result Comments

all(A) [0 1 1] Returns dim=1 column wise
results

all(A, 1) [0 1 1] Returns column wise results

all(A, 2) [1; 1; 0] Returns row wise results

Compatibility
vectors, arrays

See Also
all (users)

 asec
Syntax
y = asec(x)

Definition
This function is the inverse secant, in radians in the range [0, PI].
This function operates on an part-by-part basis on arrays.

Compatibility
Real valued scalars, vectors, arrays

See Also
asecd (users)
asech (users)
sec (users)
secd (users)
sech (users)

 asecd
Syntax
y = asecd(x)

Definition
This function is the inverse secant, in degrees.
This function operates on an part-by-part basis on arrays.

Compatibility
Real valued scalars, vectors, arrays

See Also
asec (users)
asech (users)
sec (users)
secd (users)
sech (users)

 asech
Syntax
y = asech(x)

Definition
This function returns the inverse hyperbolic secant of the argument.
This function operates on an part-by-part basis on arrays.

Compatibility
Real valued scalars, vectors, arrays

See Also
asecd (users)
sec (users)
secd (users)
sech (users)

 asin
Syntax
y = asin(x)

Definition
asin returns the inverse sine of the argument, in radians, between -PI / 2 <= r <= PI / 2.
This function operates on an part-by-part basis on arrays.

Examples:

Formula Result or

asin (0) 0 0

asin (1) 1.571 PI/2

asin(-1) -1.571 -PI/2

asin (.707) 0.786 PI/4

asin (-.707) -0.786 -PI/4

Compatibility
Real valued scalars, vectors, arrays

See Also
asind (users)
asinh (users)
sin (users)
sind (users)
sinh (users)

 asind
Syntax
y = asind(x)

Definition
asind returns the inverse sine of the argument, in degrees, in a range of [-180, 180]. This
function operates on an part-by-part basis on arrays.

Examples:

SystemVue - Users Guide

72

Formula Result in Radians

asin (0) 0 0

asin (1) 180 PI/2

asin(-1) -180 -PI/2

asin (.707) 45 PI/4

asin (-.707) -45 -PI/4

Compatibility
Real valued scalars, vectors, arrays

See Also:
asin (users)
asinh (users)
sin (users)
sind (users)
sinh (users)

 asinh
Syntax
y = asinh(x)

Definition
This function returns the inverse hyperbolic sine of the argument, equal to log(x + sqrt(
x^2 + 1)). This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

asinh(1) 0.881

asinh(10) 2.998

asinh([0 1 10]) [0 0.881 2.998]

Compatibility
Real valued scalars, vectors, arrays

See Also:
asind (users)
asin (users)
sin (users)
sind (users)
sinh (users)

 atan
Syntax
y = atan(x)

Definition
This function returns the inverse tangent of the argument, in radians between -PI/2 < r <
PI/2. This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

atan(0) 0

atan(1) 0.785

atan([-1 .5 -.5]) [-0.785 0.464 -0.464]

Compatibility
Real valued scalars, vectors, arrays

See Also:
tanh (users)
atan2 (users)
atand (users)
atanh (users)
tan (users)
tand (users)

 atan2
Syntax
y = atan2(y, x)

Definition
atan2 returns the 4-quadrant inverse tangent of the argument, in radians. The return
value is the same size as the input arrays y and x, and is computed on an part-by-part
basis. Either argument may be a scalar, in which case that argument is expanded to be
the same size as the other argument. For complex inputs, imaginary parts are ignored.

Examples:

Formula Result or

atan2(1, 0) 1.571 pi/2

atan2(1, 1) 0.785 pi/4

atan2([1; 0; -1], -1) [2.356; 3.142; -2.356] [3*pi/4; pi; -3*pi/4]

Compatibility
Real valued scalars, vectors, arrays

See Also
atan (users)
tan (users)

 atand
Syntax
y = atand(x)

Definition
This function returns the inverse tangent of the argument, in degrees.
This function operates on an part-by-part basis on arrays.

Examples:

Formula Result in Radians

atan(0) 0

atan(1) 45 PI/4

atan(-1) -45 -PI/4

Compatibility
Real valued scalars, vectors, arrays

See Also:
atan (users)
tan (users)
tand (users)
atanh (users)
tand (users)

 atanh
Syntax
y = atanh(x)

Definition
This function returns the inverse hyperbolic tangent of the argument, which is equivalent
to 0.5 * log((1 + x) / (1 - x)). This function operates on an part-by-part basis on arrays.

Examples:

SystemVue - Users Guide

73

Formula Result

atanh(1) undefined

atanh(.5) 0.549

atanh(-.5) -0.549

atanh(0) 0

Compatibility
Real valued scalars, vectors, arrays

See Also:
atan (users)
tan (users)
atand (users)
tanh (users)
tand (users)

 awgn
 add white Gaussian noise to signal

Syntax

Y = AWGN(X,SNR)

Y = AWGN(X,SNR,SIGPWR)

Y = AWGN(X,SNR,'measured')

Y = AWGN(X,SNR,SIGPWR,STATE)

Y = AWGN(X,SNR,'measured',STATE)

Y = AWGN(...,POWERTYPE)

Definition

Y = AWGN(X,SNR) adds white Gaussian noise to signal x. The snr is in dB. If x is
complex, awgn adds complex noise. The power of X is 0 dBW by default.

Y = AWGN(X,SNR,SIGPWR) specifies the the X power to SIGPWR dBW

Y = AWGN(X,SNR,'measured') measures the power of input signal before adding
noise.

Y = AWGN(X,SNR,SIGPWR,STATE) specifies the state of the random number
generator.

Y = AWGN(..., POWERTYPE) is the same as the previous syntaxes with
powertype specified. Choices for powertype are 'dBW', 'dBm', and 'linear'.

Examples

Compatibility

See also
wgn (users), randn (users)

 bartlett
Bartlett window

Syntax

W = bartlett(N)

Definition

This function returns a column vector containing a Bartlett window with N
points, N being a positive integer greater than 2. The Bartlett window is
characteristically triangular in shape with a base value of 0 and an apex value of
1. When N is odd, the apex is explicitly an part of the window function. When N
is even, the apex is not explicitly sampled but rather the two sample points
which flank the apex are represented in the returned vector.

Note
bartlett(2), a redundant usage of this function returns [0 0] whereas bartlett(1) returns [1].

Examples:

Formula Result Comment

bartlett(13) [0,1,2,3,4,5,6,5,4,3,2,1,0]/6 (13-1)/2=6 is common divisor

bartlett(14) [0,1,2,3,4,5,6,6,5,4,3,2,1,0]/6.5 (14-1)/2=6.5 is common
divisor

The graph shows how bartlett(14) does not sample the peak value of 1 at 6.5 explicitly
but bartlett(13) does.

Compatibility
scalar

See Also
blackman (users), gausswin (users), hamming (users), hann (users), rectwin (users)

 bi2de
Convert binary vectors to decimal numbers

Syntax

d = bi2de(b)

d = bi2de(b,flg)

d = bi2de(b,p)

d = bi2de(b,p,flg)

SystemVue - Users Guide

74

Definition

D = bi2de(B) converts binary row vector to positive decimal integer. If B is MB-
NB matrix,D should be a MB-1 vector.

D = bi2de(B,FLG), FLG can be 'left-msb' or 'right-msb'. default is 'right-msb'.

D = bi2de(B,P) converts base-P row vector to positive decimal integer.

Examples

Compatibility

See also
de2bi (users)

 bilinear
Bilinear parameter transformation from analog filter to digital filter

Syntax

[Zd,Pd,Kd] = bilinear(Za,Pa,Ka,Fs)

[Zd,Pd,Kd] = bilinear(Za,Pa,Ka,Fs,Fp)

[NUMd,DENd] = bilinear(NUMa,DENa,Fs)

[NUMd,DENd] = bilinear(NUMa,DENa,Fs,Fp)

[Ad,Bd,Cd,Dd] = bilinear(Aa,Ba,Ca,Da,Fs)

[Ad,Bd,Cd,Dd] = bilinear(Aa,Ba,Ca,Da,Fs,Fp)

Definition

Bilinear transforms analog filter parameters (s-domain) to digital filter equivalent (in1.
z-domain) with equation (without frequency prewarping):

H(z) = H(s) | 2 z-1

 | s = - * ---

 | Ts z+1

or (with frequency prewarping)

H(z) = H(s) | 2*pi*Fp z-1

 | s = ------------- * ---

 | tan(pi*Fp*Ts) z+1

where Ts is sample period in second (the reciprocal of sample frequency). Prewarping
indicates frequency responses match exactly at frequency point Fp (in Hz) before and
after mapping.

[Zd,Pd,Kd] = bilinear(Za,Pa,Ka,Fs), where column vectors Za, Pa and scalar Ka are s-
domain zeros, poles and gain, column vectors Zd, Pd and scalar Kd are z-domain zeros,
poles and gain. H(s) and H(z) are represented as:

 Za(s) [s-Za(1)] * [s-Za(2)] * ... * [s-Za(n)]

H(s) = ----- = ---------------------------------------

 Pa(s) [s-Pa(1)] * [s-Pa(2)] * ... * [s-Pa(n)]

 Zd(z) [z-Zd(1)] * [z-Zd(2)] * ... * [z-Zd(n)]

H(z) = ----- = ---------------------------------------

 Pd(z) [z-Pd(1)] * [z-Pd(2)] * ... * [z-Pd(n)]

[NUMd,DENd] = bilinear(NUMa,DENa,Fs), converts s-domain transfer function given by
NUMa and DENa to z-domain equivalent. Row vectors NUMa and DENa specify the s-
domain coefficients of numerator and denominator, in descending powers of s. Row
vectors NUMd and DENd specify the z-domain coefficients of the numerator and
denominator, in descending powers of z. H(s) and H(z) are represented as:

 NUMa(s) [NUMa(1) NUMa(2) ... NUMa(n+1)] * s^[n n-1 ... 0].'

H(s) = ------- = ---

 DENa(s) [DENa(1) DENa(2) ... DENa(n+1)] * s^[n n-1 ... 0].'

 NUMd(z) [NUMd(1) NUMd(2) ... NUMd(n+1)] * z^[0 -1 ... -n].'

H(z) = ------- = ---

 DENd(z) [DENd(1) DENd(2) ... DENd(n+1)] * z^[0 -1 ... -n].'

[Ad,Bd,Cd,Dd] = bilinear(Aa,Ba,Ca,Da,Fs) convert the continuous-time state-space
system in matrices Aa, Ba, Ca, and Da:

.

x(t) = Aa*x(t) + Ba*u(t)

y(t) = Ca*x(t) + Da*u(t)

to the discrete-time state-space system:

x(n+1) = Ad*x(n) + Bd*u(n)

y(n) = Cd*x(n) + Dd*u(n)

Output arguments should NOT be omitted, becuase they are used for input argument type differentiation.

Examples

Compatibility

See also

 blackman
Blackman window

Syntax

W = blackman(N)

Definition

This function returns a column vector containing a Blackman window with N
points, N being a positive integer greater than 2. The Blackman window is
composed of raised cosine windows scaled to have a base value of 0 and an
apex value of 1 as follows:

_blackman_value_at_n_of_N_ = 0.42 - 0.5 * cos(2*pi*n/N) + 0.08 * cos(4*pi*n/N), 0 <= n <= N

When N is odd, the apex is explicitly an part of the window function. When N is even, the
apex is not explicitly sampled but rather the two sample points which flank the apex are
represented in the returned vector.

Note
blackman(2), a redundant usage of this function returns [0 0] whereas blackman(1) returns [1].

Examples:

SystemVue - Users Guide

75

Compatibility
scalar

See Also
bartlett (users), gausswin (users), hamming (users), hann (users), rectwin (users)

 butter
Butterworth digital and analog filter design

Syntax

 [B,A] = butter(N,Wc)

 [B,A] = butter(N,Wc,'ftype')

 [B,A] = butter(N,Wc,'s')

 [B,A] = butter(N,Wc,'ftype','s')

 [Z,P,K] = butter(N,Wc ...)

[A,B,C,D] = butter(N,Wc ...)

 [...] = butter(N,Wc,'ftype','fdomain')

Parameters

Name Definition Compatibility Usage Default Example

order(N) order of Butterworth filter positive integer >= 3 required 5

normfreq(Wc) normalized frequency or range of
frequencies defining filter

normalized scalar or 2-part
vector

required 0.3

ftype type of filter enumerated as
'low','high','pass' or 'stop'

optional 'low' 'pass'

fdomain digital (Z-domain) or analog (S-
domain) filter

'z' or 's' optional 'z' 's'

Definition

Depending on the list out output arguments, this function delivers a numerator-
denominator or a pole-zero-gain definition of a maximally-flat Butterworth filter
response. Input arguments consist of order, normalized frequency range and the
optional enumerated choice of filter type.

Full syntax: [...] = butter(N,Wc,'ftype','fdomain'). N is filter order, Wc is the 3'dB
cutoff frequency. 'ftype', which is
 'low' --low pass,
 'high' --high pass,
 'pass' --band pass, or
 'stop' --band stop,
specifying the filter type, 'low' by default. 'fdomain', which is
 's' – s-domain or analog, or
 'z' – z-domain or digital,
specifying the filter domain, 'z' by default.

If Wc is a scalar, the filter type may be 'low' or 'high'. For digital filter, Wc should be
0<Wc<1, where 1 corresponds to half the sample rate. For analog filter, Wc should
be 0<Wc<Inf rad/s.

If Wc is a two-element vector, Wc=[Wl,Wh] and Wl<Wh, the filter type may be 'pass'
or 'stop' which shall be 2N order.

[B,A] = BUTTER(...) returns the filter coefficients in vectors B (numerator) and A
(denominator). The coefficients are in descending powers of z or s.

[Z,P,K] = BUTTER(...) returns the zeros, poles and gain.

[A,B,C,D] = BUTTER(...) is the state-space version.

Output arguments should NOT be omitted, becuase they are used for input argument type differentiation

Examples:

Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed
as a real valued scalar variable.

Formula zeros poles gain num denom

butter(3, 0.5) [-1+j4.714e-6; -1-
j4.714e-6; -1]

[j/√3; -j/√3;0] 1/6 [1/6, 1/2,
1/2, 1/6]

[1, 0, 1/3,
0]

butter(3, 0.5,
'high')

[1+j4.714e-6; 1-
j4.714e-6; 0]

[j/√3; -j/√3;0] 1/6 [1/6, -1/2,
1/2, -1/6]

[1, 0, 1/3,
0]

butter(3,
[0.25,0.75],
'pass')

[1; 1+j2.597e-6; 1-
j2.597e-6; -1; -
1+3.772e-6; -1-
j3.772e-6]

[-0.537+j0.537; -0.537-j0.537;
0.537+j0.537; 0.537+j0.537;
j7.451e-9; -j7.451e-9]

1/6 [1/6, 0, -
1/2, 0,
1/2, 0, -
1/6]

[1, 0, 0, 0,
1/3, 0, 0]

butter(3,
[0.25,0.75],
'stop')

[-3.055e-6+j; -3.055e-
6-j; 3.055e6+j; 3.055e-
6-j; j; -j]

[-0.537+j0.537; -0.537-
j0.537;0.537+j0.537; 0.537-j0.537;
9.125e-9; 9.125e-9]

1/6 [1/6, 0,
1/2, 0,
1/2, 0,
1/6]

[1, 0, 0, 0,
1/3, 0, 0]

See Also
buttord (users),cheby1 (users), cheby2 (users), ellip (users), filter (users)

 buttord
Butterworth filter order and cutoff frequency calculation

Syntax

[N,Wc] = buttord(Wp,Ws,Rp,Rs)

[N,Wc] = buttord(Wp,Ws,Rp,Rs,'s')

Definition

[N,Wc] = buttord(Wp,Ws,Rp,Rs) returns the minimum order N of a butterworth filter1.
whose passband attenuation is less than Rs dB and stopband attenuation is at the
most Rp dB. Wc, the Butterworth natural frequency (the 3'dB cutoff frequency) is
also returned. Wp and Ws are passband and stopband edge frequencies, normalized
by half sample frequency to (0,1) (1 corresponds to pi radians/sample). For example,

SystemVue - Users Guide

76

Lowpass: Wp = .2, Ws = .3

Highpass: Wp = .4, Ws = .3

Bandpass: Wp = [.3 .6], Ws = [.1 .7]

Bandstop: Wp = [.2 .8], Ws = [.3 .7]

[N,Wc] = buttord(Wp,Ws,Rp,Rs,'s') is the analog filter version, where Wp and Ws are in
radians/second.
buttord(Wp, Ws, Rp, Rs, 'z') is the same as buttord(Wp, Ws, Rp, Rs).
Examples

Compatibility

See also
butter (users), cheb1ord (users), cheb2ord (users)

 ceil
Syntax
y = ceil(x)

Definition
ceil returns the smallest integer greater than or equal to the argument. If x is complex,
only the real part is used. This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

ceil(10) 10

ceil(complex (1.5 , 6)) 2

ceil([-0.5, 0.5]) [0 , 1]

Compatibility
Numeric scalars, vectors, arrays

See Also
floor (users)

 cheb1ord
Minimum order calculation for Chebyshev Type I filter

Syntax

[N,WN] = cheb1ord(WP,WS,DBP,DBS)

[N,WN] = cheb1ord(WP,WS,DBP,DBS,'s')

Definition

This function calculates the minimum order for Chebyshev Type I filter.

[N,WN] = cheb1ord(WP,WS,DBP,DBS) returns the order N for digital Chebyshev filter
that has no more than DBP loss in passband and at least DBS attenuation in the stop
band. WP is also returned in WN.

[N,WN] = cheb1ord(WP,WS,DBP,DBS,'s') returns the order N for analog Chebyshev
filter that has no more than DBP loss in passband and at least DBS attenuation in the
stop band. WP is also returned in WN.

Output arguments should NOT be omitted

Examples

Compatibility

See also
cheb2ord (users)

 cheb2ord
Minimum order calculation for Chebyshev Type II filter

Syntax

[N,WN] = cheb2ord(WP,WS,DBP,DBS)

[N,WN] = cheb2ord(WP,WS,DBP,DBS,'s')

Definition

This function calculates the minimum order for Chebyshev Type I filter.1.
[N,WN] = cheb2ord(WP,WS,DBP,DBS) returns the order N for digital Chebyshev filter2.
that has no more than DBP loss in passband and at least DBS attenuation in the stop
band. WP is also returned in WN.
[N,WN] = cheb2ord(WP,WS,DBP,DBS,'s') returns the order N for analog Chebyshev3.
filter that has no more than DBP loss in passband and at least DBS attenuation in the
stop band. WP is also returned in WN.

Output arguments should NOT be omitted

Examples

Compatibility

See also
buttord (users), cheb1ord (users), cheby2 (users)

 cheby1
Chebyshev Type I filter desgin

Syntax

[num, denom] = cheby1(order, normripple, normfreq, ftype, domain)

[zeros, poles, gain] = cheby1(order, normripple, normfreq, ftype, domain)

Parameters

Name Definition Compatibility Usage Default Example

order order of Butterworth filter positive integer >= 3 required 5

normripple normalized ripple in passband positive real required 0.1

normfreq normalized frequency or range of
frequencies defining filter

normalized scalar or 2-part
vector

required 0.3

ftype type of filter enumerated as
'low','high','pass' or 'stop'

optional 'low' 'pass'

domain digital (Z-domain) or analog (S-
domain) filter

'z' or 's' optional 'z' 's'

Definition

Depending on the list out output arguments, this function delivers a numerator-
denominator or a pole-zero-gain definition of a Chebyshev filter response of
Type 1, which allows ripples in the passband and creates a maximally flat
stopband. Input arguments consist of order, normalized in-band ripple,
normalized frequency range and the optional enumerated choice of filter type.

Examples:

SystemVue - Users Guide

77

Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed
as a real valued scalar variable.

Formula zeros poles gain num denom

cheby1(3, 0.1,
0.5)

[-1; -1; -
1]

[-0.1885+j0.659; 0.0155; -
0.1885+j0.659]

0.227 [0.227, 0.682,
0.682, 0.227]

[1, 0.361,
0.464, -0.007]

cheby1(3, 0.1,
0.5, 'high')

[1 1 1] [0.1885+j0.659; -0.0155; 0.1885-
j0.659]

0.227 [0.227, -0.682,
0.682, -0.227]

[1, -0.361,
0.464, 0.007]

cheby1(3, 0.1,
[0.25,0.75],
'pass')

[1; 1; 1; -
1; -1; -1]

[0.661+j0.499; j0.125; 0.661-
j0.499; -0.661=j0.499; -j0.125; -
0.661+j0.499]

0.227 [0.227, 0, -
0.682, 0, 0.682,
0, -0.227]

[1, 0, -0.361,
0, 0.464, 0
0.007]

cheby1(3, 0.1,
[0.25,0.75], 'stop')

[-j; j; -j;
j; -j; j]

[0.499-j0.661; 0.125;
0.499+j0.661; -0.499+j0.661; -
0.125; -0.499-j0.661]

0.227 [0.227, 0, 0.682,
0, 0.682, 0,
0.227]

[1, 0, 0.361, 0,
0.464, 0, -
0.007]

See Also
butter (users), cheb1ord (users), cheby2 (users), ellip (users)

 cheby2
Chebyshev Type II filter desgin

Syntax

[num, denom] = cheby2(order, normripple, normfreq, ftype, domain)

[zeros, poles, gain] = cheby2(order, normripple, normfreq, ftype, domain)

Parameters

Name Definition Compatibility Usage Default Example

order order of Butterworth filter positive integer >= 3 required 5

normripple normalized ripple in stopband positive real required 0.1

normfreq normalized frequency or range of
frequencies defining filter

normalized scalar or 2-part
vector

required 0.3

ftype type of filter enumerated as
'low','high','pass' or 'stop'

optional 'low' 'pass'

domain digital (Z-domain) or analog (S-
domain) filter

'z' or 's' optional 'z' 's'

Definition

Depending on the list out output arguments, this function delivers a numerator-
denominator or a pole-zero-gain definition of a Chebyshev filter response of
Type 2, which allows ripples in the stopband and creates a maximally flat
passband. Input arguments consist of order, normalized out-of-band ripple,
normalized frequency range and the optional enumerated choice of filter type.

Examples:

Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed
as a real valued scalar variable.

Formula zeros poles gain num denom

cheby2(3, 0.1,
0.5)

[-0.143+j0.990; -0.143-
j0.990; -1]

[-0.138-j0.962; -0.903; -
0.137+j0.962]

0.924 [0.924,
1.188, 1.188,
0.924]

[1, 1.178,
1.192,
0.853]

cheby2(3, 0.1,
0.5, 'high')

[0.143-j0.990;
0.143+j0.990; 1]

[0.137+j0.962; 0.903;
0.137-j0.962]

0.924 [0.924, -
1.188, 1.188,
-0.924]

[1, -1.178,
1.192, -
0.853]

cheby2(3, 0.1,
[0.25,0.75],
'pass')

[-0.756+j0.655;
0.756+j0.655; 0.756-
j0.655; -0.756-0.655; 1; -
1]

[0.745+j0.646; 0.951;
0.745-j0.646; -0.745-
j0.646; -0.951; -
0.745+j0.646]

0.924 [0.924, 0, -
1.188, 0,
1.188, 0, -
0.924]

[1, 0, -
1.178, 0,
1,192, 0, -
0.853]

cheby2(3, 0.1,
[0.25,0.75],
'stop')

[0.655+j0.756; -
0.655+j0.756; -0.655-
j0.756; 0.655-j0.756; -j;
j]

[0.646-j0.745;-j0.951;
0.646+j0.745; -
0.646+j0.745; j0.951; -
0.646-j0.745]

0.924 [0.924, 0,
1.188, 0,
1.188, 0,
0.924]

[1, 0, 1.178,
0, 1.192, 0,
0.853]

See Also
butter (users), cheb1ord (users), cheby1 (users), ellip (users)

 class
Syntax
type = class(object)

Definition
This function returns the type of class of the supplied object as a string type. The input
argument is evaluated as an expression so a combination of existing objects can be
applied to this parameter.

Example

char

c1 = class(['This','is','a','char','class','vector'])

% This is a vector of strings or an array of characters

% c1 = 'char'

cell

c2 = class({'This','is','a','char','class','vector'})

% This is a cell array of characters

% c2 = 'cell'

double

c3a = class([1 2 3; 4.5 5 6])

% This is an array of double precision floating point numbers

% c3a = 'double'

% Note real-valued integers and floating point assigned the 'double'

% whereas,

c3b = class(4+5i)

% complex-valued numbers are assigned 'complex double'

% c3a = 'complex double'

logical

c4 = class([3<=4, length('were') < size([2,1])])

% The 1st expression is evaluating whether or not 3<=4.

% The 2nd expression is evaluating wthere the length of

% the string 'were' is greater than the length of the supplied

% numeric vector [2,1]. Both are logical expressions, making

% the supplied vector of logical class.

% c4 = 'logical'

struct

c5 = class(struct('Name',{'FirstName','LastName'},'Date Of Birth', [23 04 1999]))

% The expression defines a structure, thus

% c5 = 'struct'

Compatibility
all

See Also
struct (users)

 conj

SystemVue - Users Guide

78

Syntax
y = conj(x)

Definition
conj returns the complex conjugate of the argument. The conjugate of a complex number
x + jy is x - jy. This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

conj(1+2j) 1 - 2j

conj([1 + 2j, 3 - 4j]) [1 - 2j, 3 + 4j]

Compatibility
Numeric Scalars, Arrays, Vectors

 conv
Convolution of u and v

Syntax

y = conv(x1, x2)

Definition

This function performs the algebraic convolution between the two vector valued
inputs x1 and x2. Given the lengths of the vectors to be lN = length(xN), N =
{1, 2}, the result is of length equal to sum of all lengths minus 1.

Examples:

a = [2, 3]

b = [5, 6, 7]

c = conv(a, b)

% c = [10 27 32 21] because

% c(1) = a(1)*b(1) = 10

% c(2) = a(1)*b(2) + a(2)*b(1) = 12 + 15 = 27

% c(3) = a(1)*b(3) + a(2)*b(2) = 14 + 18 = 32

% c(4) = a(2)*b(3) = 21

Compatibility
Real and complex valued scalars and vectors. Multi-dimensional arrays are not supported.

See Also
filter (users), fft (users), ifft (users)

 convdeintrlv
Permute data with specified shift register group

Syntax

Y = convdeintrlv(X,FIFONum,Delta)

Y = convdeintrlv(X,FIFONum,Delta,InitState)

[Y,FinalState] = convdeintrlv(X,FIFONum,Delta,...)

Definition

Y = convdeintrlv(X,FIFONum,Delta) restores ordering the data in X with
shiftregister (FIFO) group. The i'th FIFO can hold (FIFONum-i)*Delta
data,i=1,2,...,FIFONum. FIFONum and Delta should be the same as that in
convintrlv.

Y = convdeintrlv(X,FIFONum,Delta,InitState) initialize the shift registersspecified
in InitState instead of all zeros.

[Y,FinalState] = convdeintrlv(X,FIFONum,Delta,...) returns final state ofshift
registers in FinalState which may be used as initial state of the nextprocess
when dealing with consecutive data.

convdeintrlv is implemented by calling function muxintrlv (users).

Examples

Compatibility

See also
convintrlv (users), muxdeintrlv (users).

 convenc
Convolutionally encode binary data

Syntax

cBits = convenc(uBits,TRELLIS)

cBits = convenc(uBits,TRELLIS,puncPat)

cBits = convenc(uBits,TRELLIS,puncPat,initState)

[cBits, finalState] = convenc(...)

Definition

cBits = convenc(uBits,TRELLIS) encodes the binary vector uBits(uncoded bits)
with the struct TRELLIS generated with function poly2trellis (users). The output
cBitsis the coded bits with the length of
length(uBits)*log2(trellis.numOutputSymbols)*log2(trellis.numInputSymbols).

cBits = convenc(uBits,TRELLIS,puncPat) use puncture pattern vector puncPatto
delete specified bits after trellis encoding to get a higher coding raterelative to
the mother code (before puncturing). puncPat is a vectorconsists of 1's and 0's,
where 1 means reserve a bit and 0 meansdelete a bit. puncPat may be set [] or
a vector with more than 2 elements,which means a scalar is illegal.

cBits = convenc(uBits,TRELLIS,puncPat,initState) allows the encoder to use
initState scalar, defaults to 0, as initial state of inner registers.initState must be
the last argument and in the range of[0,TRELLIS.numStates-1]. puncPat here
may be omitted or set [].

[cBits, finalState] = convenc(...) regurns the final state of innerregisters inside
the encoder, which is useful for consecutive processingin case uBits is very long.

Examples
Encoding for the (2,1,3) code shown below,

SystemVue - Users Guide

79

ConsLen = [4]; % there're 3 registers in the encoder

CodeGen = [13,17]; % octal [1 0 1 1] and [1 1 1 1];

trellis = poly2trellis(ConsLen, CodeGen);

uBits = [1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0]; % 3 tail 0's for return coder state to zero,

length is 20

cBits = convenc(uBits,trellis); % encoding, output length is 40

% puncture the code to 2/3 code rate

puncPat = [1 1 1 0];

cBits_punc = convenc(uBits,trellis,puncPat); % encoding and puncture, output length is 30

% same as

% cBits_punc = reshape(cBits,4,10);

% cBits_punc = cBits_punc(find(puncPat==1),:);

% cBits_punc = cBits_punc(:)';

% continuous encoding

initState = 0;

cBits_Cont = zeros(1,numel(uBits)*2);

blkSize = 5;

blkNum = numel(uBits)/blkSize;

for blk = 0:blkNum-1

 [cBitsBlk,initState] = convenc(uBits(blkSize*blk+(1:blkSize)),trellis,[],initState);

 cBits_Cont(blkSize*2*blk+(1:blkSize*2)) = cBitsBlk;

end

results

cBits =

 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1

cBits_punc =

 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1

cBits_Cont =

 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1

Compatibility

See also
vitdec (users), poly2trellis (users)

 convintrlv
Permute data with specified shift register group

Syntax

Y = convintrlv(X,FIFONum,Delta)

Y = convintrlv(X,FIFONum,Delta,InitState)

[Y,FinalState] = convintrlv(X,FIFONum,Delta,...)

Definition

Y = convintrlv(X,FIFONum,Delta) rearranges the data in X with shift
register(FIFO) group. The i'th FIFO can hold (i-1)*Delta data,
i=1,2,...,FIFONum.The input data is fed into the shift registers, from the first to
the last,in sequence and periodicly. Assuming X={x1,x2,x3,...}, x1 is fed
intobranch 1, x2 is fed into branch 2, The output picks up data from outputof
each shift register, from the first to the last, in sequence andperiodicly. Note
that the data feeding to each shift register and datapicking up from each shift
register are synchronou. If X is a matrix, eachcolumn is treated as an
independent signal. All shift registers areinitialized with zeros before process
begins.

Y = convintrlv(X,FIFONum,Delta,InitState) initialize the shift registersspecified in
InitState instead of all zeros. InitState is a structurecomposed of variables
InitState.value and InitState.index. InitState.valuehas the same number of
columns as X, each stores the initial state of shiftregisters (from first to last).
FinalState.index represents the index of theshift register into which the first
symbol shall be fed. Assuming FIFONum is4, InitState.value=[1 2 3 4 5 6].',
InitState.index=2, then we haveinitial state:

[] --FIFO 1
[1] --FIFO 2
[2 3] --FIFO 3
[4 5 6], --FIFO 4

and shall start processing from the FIFO 2.

[Y,FinalState] = convintrlv(X,FIFONum,Delta,...) returns final state of
shiftregisters in FinalState which may be used as initial state of the nextprocess
when dealing with consecutive data. FinalState is a struct composedof variables
FinalState.value and FinalState.index. FinalState.value has thesame number of
columns as X, each stores the final state of shift registers(from first to last) after
processing the corresponding column of X.FinalState.index represents the index
of the shift register from which thenext consecutive processing shall begin.

convintrlv is implemented by calling function muxintrlv (users).

Examples

Compatibility

See also
convdeintrlv (users), muxintrlv (users)

 cos
Syntax
y = cos(x)

Definition
cos returns the cosine of a radian-valued argument. This function operates on an part-by-
part basis on arrays.

Examples:

Formula Result

cos(0) 1

cos(pi) -1

cos(pi / 2) 0

cos(pi / 4) 0.707

cos([2*pi/3; pi/2]) [-0.5; 0]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
cosd (users)

SystemVue - Users Guide

80

sin (users)
tan (users)

 cosd
Syntax
y = cosd(x)

Definition
cosd returns the cosine of a degree-valued argument. This function operates on an part-
by-part basis on arrays.

Examples:

Formula Result

cosd(0) 1

cosd(180) -1

cosd(90) 0

cosd(45) 0.707

cosd([60; 90]) [-0.5; 0]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
cos (users)

 cosh
Syntax
y = cosh(x)

Definition
cosh returns the hyperbolic cosine of the argument, equivalent to (exp(x) + exp(-x)) / 2.
This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

cosh(1) 1.543

cosh(pi / 3) 1.6

cosh([pi/6; 0]) [1.14; 1]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
acosh (users)

 cot
Syntax
y = cot(x)

Definition
cot returns the cotangent of a radian-valued argument, which is equivalent to 1 / tan(x).
This function operates on an part-by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 cotd
Syntax
y = cotd(x)

Definition
cotd returns the cotangent of a degree-valued argument. This function operates on an
part-by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 coth
Syntax
y = coth(x)

Definition
coth returns the hyperbolic cotangent of the argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 crcdec
Cyclic redundancy check decoder

Syntax

[msg, errFlag, syndrome] = crcdec(code, genPoly, initState)

Definition

code: input message to be decoded (checked)
genPoly: generation polynomial of CRC code, binary vector, highest degree first. If
g(x)=x^3+x+1, then genPoly=[1 0 1 1]
initState: initial state of registers in CRC decoder, highest degree first i.e.
initState=[D(N-K-1), D(N-K-2), ..., D(1), D(0)], where N and K are codeword length
and message length. Default value is all zeros.
msg: output message (discarding parity from code, no error correction)
errFlag: error flag, 1 means there are errors in code
syndrome: checksum of code, equals to the CRC parity of first K bits of code XOR
the last N-K bits of code

Examples

Cyclic (7,4) Hamming code, g(x)=x^3+x+1, i.e. genPoly=[1 0 1 1]

code -----> + <--D(2)<-------D(1)<-- + <--D(0)<--

code(1) | ^ |

first | | |

 | | |

 --->--------------------------------

msg = code(1:K);

Compatibility

See also
crcenc (users)

 crcenc
Cyclic redundancy check encoder

Syntax

[code, parity] = crcenc(msg, genPoly, initState)

Definition

SystemVue - Users Guide

81

msg : input message to be encoded
genPoly : generation polynomial of CRC code, binary vector, highest degree first. If
g(x)=x^3+x+1, then genPoly=[1 0 1 1]
initState : initial state of registers in CRC code, highest degree first
i.e. initState=[D(N-K-1), D(N-K-2), ..., D(1), D(0)], where N and K are codeword
length and message length. Default value is all zeros.
code : msg appended by parity
parity : checksum of input message

Examples

Cyclic (7,4) Hamming code, g(x)=x^3+x+1, i.e. genPoly=[1 0 1 1]

msg -----> + <--D(2)<-------D(1)<-- + <--D(0)<--

msg(1) | ^ |

first | | |

 | | |

 --->--------------------------------

parity = [D(2), D(1), D(0)]

code = [msg, parity]

Compatibility

See also
crcdec (users)

 csc
Syntax
y = csc(x)

Definition
csc returns the cosecant of a radian-valued argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 cscd
Syntax
y = cscd(x)

Definition
cscd returns the cosecant of a degree-valued argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 csch
Syntax
y = csch(x)

Definition
csch returns the hyperbolic cosecant of the argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 dbg_print
Syntax
dbg_print('message')

Definition
This function can be invoked from within a set of equations on an equations page in order
to report execution status to the Equation Debug window. Note that the window for
debugging equations is not the same as the Error Log. The debug window can be invoked
by selecting View > Advanced Windows > Equation Debug.

Examples:
Note the difference between the reporting windows and formats for debug and non-debug
messages.

Compatibility
string

See Also
error (users)
dbg_showvar (users)
warning (users)

 dbg_showvar
Syntax
dbg_showvar(name, variable)

Definition
This function can be invoked from within a set of equations on an equations page in order
to report the current value of a variable to the Equation Debug window by the supplied
name. Note that the window for debugging equations is not the same as the Error Log.
The debug window can be invoked by selecting View > Advanced Windows > Equation
Debug.

Examples:
In the following example the use model of dbg_showvar() is shown along side that of
other relevant Mathematical Language functions.

SystemVue - Users Guide

82

Formula Message in Equation Debug

dbg_showvar('Expression', 2+3); 'Expression = 8-byte Real: 5'

string1 = 'hello world';
dbg_showvar('Greeting', string1);

'Greeting = Array[1x11] of type Char: hello world'

vector1 = [1 2 3];
dbg_showvar('Vector', vector1);

'Vector = Array[1x3] of type 8-Byte Real: 1 2 3'

array1 = [1 2; 3+2j, 9];
dbg_showvar('Array', array1);

'Array = Array[2x2] of type 16-Byte Complex: 1 2 3+2i, 9'

cell1 = {'This','is','a','sentence','.'};
dbg_showvar('Cell', cell1);

'Cell = Array[1x5] of type Variant: [1x4 char] [1x2 char] ['a']
[1x8 char] ['.']'

struct1 = struct('name',{'Jane','Doe'},'AgE',
37);
dbg_showvar('Struct', struct1);

'Struct = Array[1x2] of type Object:[1x2\ struct] with fields:
name AgE'

Compatibility
name - string
variable - any pre-defined variable or expression

See Also
error (users)
dbg_print (users)
warning (users)

 de2bi
Convert decimal numbers to binary vectors

Syntax

b = de2bi(d)

b = de2bi(d,n)

b = de2bi(d,n,p)

b = de2bi(d,[],p)

b = de2bi(d,flg)

b = de2bi(d,n,flg)

b = de2bi(d,n,p,flg)

b = de2bi(d,[],p,flg)

Definition

B = de2bi(D) converts positive decimal integer to binary row vector. If D isMB-
NB matrix,B should be a MB*NB-N matrix where N is specified either by paramN
or P

B = de2bi(D,N), N specifies the column of B. if N is smaller than the elementsin
D actually need, there is an error.

B = de2bi(D,FLG), FLG can be 'left-msb' or 'right-msb'. default is 'right-msb'.

B = de2bi(D,N,P) converts positive decimal integer to base-P row vector. If N
issmaller than elements in B actually need, there is an error.

B = bi2de(D,[],P) means the column of B is specified by P.

Examples

Compatibility

See also
bi2de (users)

 dec2hex
Decimal to hexadecimal number string conversion

Syntax:
dec2hex(number[,places])

Definition:
dec2hex function converts a decimal number to a hexadecimal number string. Places is an
optional field, specifying to zero pad to that number of spaces. If places is too small or
negative #NUM! error is returned.

Examples:
dec2hex(42) equals 2A.

See Also:
hex2dec (users)

 deconv
Syntax
[a,b] = deconv(c,d)

Definition
[a,b] = deconv(c,d) deconvolves a vector d out of a vector c and returns it in vector a,
and the remainder in b so that c = conv(d,a) + b.

If vectors c and d contain the coefficients of a polynomial, then convolving them is
equivalent to mutiplying the polynomials, and deconvolving is equivalent to dividing the
polynomials.

Examples:

Formula Result

b = [1 2 3 4]
a = [10 20 30]
[q,r] = deconv(a,b)

q = [10 20 30]
r = [0 0 0 0 0 0]

Compatibility
vector

See Also

SystemVue - Users Guide

83

conv (users)

 deintrlv
Reorder data back with specified permutation table

Syntax

Y = deintrlv(X,PermTab)

Definition

Y = deintrlv(X,PermTab) rearranges the data in X with indices given in PermTab
as a inverse process of INTRLV. If X is a vector of length N, length of PermTab
must be a factor of N, i.e. mod(N,length(PermTab))==0. If X is a matrix,
PermTab must be a factor of the number of rows of X, and each column of X is
treated as an independent signal.

Examples

b = deintrlv([10 40 20 50 30 60; 70 100 80 110 90 120].', [1 4 2 5 3 6])

b =

10 70

20 80

30 90

40 100

50 110

60 120

Compatibility

 depuncture
Restores erasures based on puncture pattern

Syntax

Y = depuncture(X, puncPat)

Y = depuncture(X, puncPat, stuffVal)

Definition

puncPat : a vector of 1's and 0's, such as [1 0 1 1]
stuffVal : stuff values to be filled in restored position, 0 by default.

Examples

x = [1 3 4 5 7 8 9];

puncPat = [1 0 1 1];

y = puncture(x,puncPat),

y =

 1 0 3 4 5 0 7 8 9 0

Compatibility

See also
puncture (users)

 diag
Syntax
V = diag(x [, a])
v = diag(X)

Definition
If x is a vector, diag(x) gives a matrices V with x on main diagonal. diag(x, a) returns an
abs(a)+n (if there are n parts in x) square matrix with the parts of a on the a-th diagonal,
main diagonal when a = 0, upper diagonal when a>0, and lower diagonal when a<0.
If X is a matrix, diag(X) returns its main diagonals to a column vector v.

Examples:

Formula Result

diag([2,3]) [2, 0; 0, 3]

diag([1,5], 1) [0, 1, 0; 0, 0, 5; 0, 0, 0]

diag([1 2 3; 4 5 6; 7 8 9]) [1; 5; 9]

Compatibility
Numeric vectors, Vectors, Matrices

 diff
Syntax
A = diff(B)
A = diff(B,r)
A = diff(B,r,dim)

Definition
text here
A = diff(B) returns, in the vector A, the difference between each part in B.
A = diff(B,r) recurses the diff function r times, to find the rth difference.
A = diff(B,r,dim) recurses the diff function r times, to find the rth difference in the scalar
dimension dim. If r>= dim, then an empty array is returned.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result

B = [1 5 15 35]
A = diff(B)

[4 10 20]

N = diff(A) [6 10]

Z = diff(A,2) [4]

Compatibility
scalar, vector, array

See Also

sum (users)

 downsample
Downsample input signal

Syntax

Y = downsample(X,R)

Y = downsample(X,R,OFFSET)

Definition

Y = downsample(X,R) downsamples input signal X by keeping the first of every R1.
continuous samples. X may be a vector or a matrix (one signal per column). For
matrix, downsampling is applied on each column respectively.
Y = downsample(X,R,OFFSET) specifies an optional sample offset. OFFSET should be2.
an integer within [0,R-1] and is 0 by default.

SystemVue - Users Guide

84

Examples

x = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20].';

y = downsample(x, 4);

z = upsample(x, 4, 1);

p = [1 5 9 13 17].'; % y equals to p

q = [2 6 10 14 18].'; % z equals to q

Compatibility

See also
upsample (users), upfirdn (users), interp (users), resample (users)

 dpskdemod
Differential phase-shift keying demodulation

Syntax

Definition

Examples

Compatibility

No

See also
dpskmod (users)

 dpskmod
Differential phase-shift keying modulation

Syntax

Definition

Examples

Compatibility

No

See also
dpskdemod (users)

 eig
Syntax
X = eig(Y)
X = eig(Y,Z)
[U,X] = eig(Y)
[U,X] = eig(Y,Z)
[U,X] = eig(Y,Z,flag)

Definition
X = eig(Y) returns, in vector X, the eigenvalues of the matrix Y.

X = eig(Y,Z) returns, in vector X, the generalized eigenvalues, as long as Y and Z are
square matrices.

[U,X] = eig(Y) produces matrices containing the eigenvalues in X, and eigenvectors in U,
so: Y*U = U*X

[U,X] = eig(Y,Z) produces a diagonal matrix, X, that contains the generalized eigenvalues,
and a full matrix, U, containing the eigenvectors in columns, so: Y*U = Z*U*X

[U,X] = eig(Y,Z,flag) produces the eigenvalues and eigenvectors using a specified
algorithm, flag:
'chol' - Computes using Cholesky factorization of Z.
'qz' - Computes using QZ algorithm.

Examples:

Formula Result

Z =[3 -2 -.9 2*eps;
-2 4 1 -eps;
-eps/4 eps/2 -1 0;
-.5 -.5 .1 1]
[VZ,DZ] = eig(Z)
[VY,DY] = eig(Z,'nobalance')

Z*VZ - VZ*DZ
Z*VY - VY*DY

 ellip
Syntax
[num, denom] = ellip(order, passnormripple, stopnormripple, normfreq, ftype, domain)
or
[zeros, poles, gain] = ellip(order, passnormripple, stopnormripple, normfreq, ftype,
domain)

Parameters

Name Definition Compatibility Usage Default Example

order order of Butterworth filter positive integer >= 3 required 5

passnormripple normalized ripple in passband positive real required 0.1

stopnormripple normalized ripple in stopband positive real required 0.1

normfreq normalized frequency or range of
frequencies defining filter

normalized scalar or 2-part
vector

required 0.3

ftype type of filter enumerated as
'low','high','pass' or 'stop'

optional 'low' 'pass'

domain digital (Z-domain) or analog (S-
domain) filter

'z' or 's' optional 'z' 's'

Definition
Depending on the list out output arguments, this function delivers a numerator-
denominator or a pole-zero-gain definition of an elliptic filter response, which allows
controlled amounts of ripples both in the pass and stop bands. Input arguments consist of
order, normalized in- and out-of-band ripples, normalized frequency range and the
optional enumerated choice of filter type.

Examples:
Note that while zeros and poles are expressed as column vector, numerator and
denominator coefficients are expressed as row vectors. Gain is always expressed as a real
valued scalar variable.

Formula zeros poles gain num denom

ellip(3, 0.1, 0.1,
0.5)

[j; -j; -1] [j; -j; -0.040] 0.520 [0.520, 0.520,
0.520, 0.520]

[1, 0.040, 1,
0.040]

ellip(3, 0.1, 0.1,
0.5, 'high')

[-j; j; 1] [-j; j; 0.040] 0.520 [0.520, -0.520,
0.520, -0.520]

[1, -0.040, 1,
-0.040]

ellip(3, 0.1, 0.1,
[0.25,0.75],
'pass')

[-1/√2+j/√2;
1/√2+j/√2; 1/√2-j/√2;
-1/√2-j/√2; 1; -1]

[1/√2+j/√2; 1/√2+j/√2;
0.2; -1/√2+j/√2; -1/√2-
j/√2; -0.2]

0.520 [0.520, 0, -
0.520, 0,
0.520, 0, -
0.520]

[1, 0, -0.040,
0, 1, 0, -
0.040]

ellip(3, 0.1, 0.1,
[0.25,0.75],
'stop')

[1/√2+j/√2; -
1/√2+j/√2; -1/√2-j/√2;
1/√2-j/√2; -j; j]

[1/√2+j/√2; 1/√2-j/√2;
j0.2; -1/√2-j/√2; -
1/√2+j/√2; -j0.2]

0.520 [0.520, 0,
0.520, 0,
0.520, 0,
0.520]

[1, 0, 0.040,
0, 1, 0,
0.040]

See Also
cheby1 (users)
butter (users)

SystemVue - Users Guide

85

cheby2 (users)

 equalize
Equalize signal using Equalizer

Syntax

Definition

Examples

Compatibility

No

See also

 erf
Syntax
y = erf(x)

Definition
This function computes the error function of each part of x.
The parts of x must be real.

Examples:

Formula Result

erf(-1.5) -0.9661

erf(2) 0.9953

erf([-1; -2; 1.1]) [-0.8427; -0.9953;
0.8802]

Compatibility
Real valued scalars, vectors, arrays

See Also
erfc (users)

 erfc
Syntax
y = erfc(x)

Definition
This function computes the complementary error function of each part of x.
The parts of x must be real.

Examples:

Formula Result

erfc(-1.5) 1.9661

erfc(2) 0.0047

erfc([-1; -2; 1.1]
)

[1.8427; 1.9953;
0.1198]

Compatibility
Real valued scalars, vectors, arrays

See Also
erf (users)

 error
Syntax
error('message')

Definition
Posts the error message to the error log and also places the red error symbol on the menu
button.

Examples:

Formula Result

error('out of range') the message "out of range" is posted to the Error Log as an error

Compatibility
Strings

See Also
warning (users)

 exist
Syntax
y = exist(Name, Kind, Scope)

Definition
This function checks the existence of a variable or a built-in function. The Name, Kind, and
Scope arguments must be strings. Kind and Scope are optional arguments, whereas Name
is mandatory. The value of Name must be the name of a variable or built-in function. The
exist functions returns 1 if Name is a variable in the Scope, and 5 if it is builtin function,
and 0 if the specified Name is not found in the Scope.

If Kind is specified then only that kind is searched for existence. The supported values for
Kind are 'var' and 'builtin'.

Default value for an Scope is 'global', a Scope argument can only be specified if Kind =
'var'. The Scope can be either a 'global', a 'local' or the name of a dataset.

Examples:

SystemVue - Users Guide

86

Formula Result

iCode = exist('x') set the variable iCode to 1 if 'x' is a variable name in global scope

iCode = exist('sin') set the variable iCode to 5 because 'sin' is a built-in function

iCode = exist('sin','var') set the variable iCode to 0 because 'sin' is a built-in function but it is not
of Kind 'var'

iCode = exist('x','builtin') set the variable iCode to 0 even if the variable named 'x' exist as it is
not a built-in function

iCode = exist(
'S1','var','Design1_Data')

set the variable iCode to 1 if S1 is a variable present in dataset
'Desing1_Data'

Compatibility
Name, Kind, and Scope are strings.

See Also
getvariable (users)
setvariable (users)

 exp
Syntax
y = exp(x)

Definition
This function returns the exponential of the argument. The exponential function calculates
e to the power of x, where e = 2.7182817... This function operates on an part-by-part
basis on arrays.

Examples:

Formula Result

exp(1) 2.718

exp([0 , 1.5]) [1 , 4.482]

exp([-0.5 , 0.5 ; -2 , 2]) [0.607 , 1.649 ; 0.135 , 7.389]

Compatibility
Numeric scalars, Vectors, Arrays. Real and Complex.

 eye
Syntax
y = eye(n)
y = eye(m, n)
y = eye(size(A))

Definition
Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m, n) or eye([m n]) returns an m-by-n matrix with 1's on the diagonal and 0's
elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

Examples
X = eye(4, 5);

 eyediag
Syntax
y = eyediag(x, symbolRate, numCycles, startupDelay)

Definition
This function builds an eye diagram from a time sequence x.

Parameter Comment Unit Requirement Compatibility Default

x one-dimensional time sequence waveform V required real-valued

symbolRate rate of input sequence Hz required real > 0.0

numCycles number of unit intervals to be plotted >= 1 optional integer >=1 1

startupDelay number of samples that will be removed from
beginning of time sequence before plotting >= 0

 optional integer > 0 0

Examples:
y = eyediag(x, 2*5e3, 1, 23)

Note that the following eye diagram was derived from a sinusoid at 5 kHz, so the unit
interval was half of the 200 usec period, or just 100 usec. The data-rate or symbol-rate of
this simple waveform is therefore 1/unit interval or 10 kHz. The eye-diagram itself was
delayed by 23 samples to demonstrate the time-shift propert of this function.

 fclose
Syntax
fclose(fileP)

Definition
This function closes the file stream referenced by fileP and returns a 0 if the operation is
successful.

Examples:

fileP = fopen('MyFile.txt','r');

%

% Access first 200 contiguously located floating point numbers

a = fscanf(fileP, '%f', 200);

%

% Close file

fclose(fileP);

%

See Also

fgets (users)
fopen (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

SystemVue - Users Guide

87

 fft
Syntax
V = fft(X)
V = fft(X,n)
V = fft(X,[],c)
V = fft(X,n,c)

Definition
Discrete Fourier Transform (DFT) of data. Computed with FFT algorithm when possible.
The parameter len is the FFT length and is optional.
fft(X) gives the discrete Fourier transform of vector X.
fft(X,n) returns the n-point DFT. X adds zeros if n>length of X, X is truncated if n<length
of X.
fft(X, [], c) gives the FFT on the dimension c.

Examples:

The following example generates a signal consisting of the sum of two sinusoids: one at
400 Hz, and one at 1500 Hz. The fft function is then used to compute the spectrum of the
signal.

fft_len = 1024 % length of the FFT

fs = 8000 % 8000 Hz sampling rate

T = 1/fs % sample time

L = 1000 % length of signal

t = (0:(L-1))*T % time vector

% x will be the sum of two sinusoids:

% one at 400 Hz and one at 1500 Hz

x = 0.5*cos(2*pi*400*t) + cos(2*pi*1500*t)

X = fft(x, fft_len) % spectrum of x

X = X(1:(fft_len/2)) % we only care about single side\-band (the rest is

redundant)

f = fs/2 * (0:(2/fft_len):1)

The following graph displays the magnitude of X, the spectrum of x.

Compatibility
Vectors, Arrays, Dataset

See Also
ifft (users)

 fftfilt
FFT-based FIR filtering using overlap-add method

Syntax

Y = fftfilt(B,X)

Y = fftfilt(B,X,N)

Definition

Y = fftfilt(B,X) filters X with the FIR filter B where FFT size is1.
automatically selected.
Y = fftfilt(B,X,N) uses a FFT of at least N points.2.
If X is a matrix and B is a vector, FFTFILT filters each column of X with B and returns3.
a matrix with the same number of columns as X.
If X is a matrix and B is a matrix, FFTFILT filters each column of X with the
corresponding column of B.
If X is a vector and B is a matrix, FFTFILT filters X with each column of B
respectively, the result is the same as that when X is a matrix with the same number
of columns as B and all columns are the same.
FILTER performs length(B) points of multiplications for each sample. FFTFILT4.
performs N*log2(N)/2 + N + N*log2(N)/2 or N*(1+log2(N) points of complex
multiplication for every N-length(B)+1 samples. For complex X and complex B, the
cost ratio of FFTFILT to FILTER is approximately (1+log2(N))*N/(N-
length(B)+1)/length(B). By default, N is selected a value that minimize the ratio.

Examples

Compatibility

See also
conv (users), filter (users)

 fgets
Syntax
y = fgets(fileP)
y = fgets(fileP, maxChars)

Definition
This function gets the next line from an open file and presents it in a string, including the
newline character.

Use the argument maxChars to specify the maximum number of character to read. At
most_maxChars_ characters will be returned.

Compatibility
fileP - pointer to an open file that is ready for reading
maxChars - maximum number of characters to be read from the next line

See Also
fclose (users)
fopen (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

 filter
Filter data with recursive (IIR) or nonrecursive (FIR) filter

Syntax

y = filter(b,a,X)

[y,zf] = filter(b,a,X)

Definition

y = filter(b,a,X)filters the data in vector/matrix X with the filter described by1.
numerator coefficient vector b and denominator coefficient vector a.
[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays. If X is a row2.
or column vector, output zf is a column vector of max(length(a),length(b))-1.

Examples:

X = [1:0.4:6]';

windowSize = 4;

Y = filter(ones(1,windowSize)/windowSize,1,X),

results

SystemVue - Users Guide

88

Y =

 0.25

 0.6

 1.05

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

 4.4

 4.8

 5.2

Compatibility
Vectors, Matrices

See Also

 find
Syntax
i = find(A)
I = find(A, n)
I = find(A, n, 'first')
I = find(A, n, 'last')
[r,c] = find(A, ...)
[r,c,x] = find(A, ...)

Definition
i = find(A) returns the indices of all the nonzero parts in array A and places them in vector
i.
I = find(A n) returns an n number of indices of all the nonzero parts in an array A and
places them in vector i. adding a 'first' argument means that it returns the first n indices
of all the nonzero parts, and adding a 'last' argument means that it returns the last n
indices.

[r,c] = find(A, ...) finds all the nonzero parts in array A and returns the row location, in r,
and column location, in c.
[r,c,x] = find(A, ...) finds all the nonzero parts in array A and returns the row location, in
r, and column location, in c, as well as returning the nonzero parts in a vector, x.

Examples:

Formula Result

find([1, 0, 2, 0, 3, 5]) [1, 3, 5, 6]

find([1, 0, 2; 0, 3, 5], 3) [1, 4, 5]

find([1, 0, 2; 0, 3, 5], 2, 'last') [5,6]

Compatibility
Numeric arrays

 finddelay
Estimate delay(s) between signals

Syntax

D = finddelay(X,Y)

D = finddelay(X,Y,MAXLAG)

Definition

D = finddelay(X,Y) returns delay D between X and Y, where X is used as
reference signal. X and Y should have the same columns or at least one should
be column vector. For example, If X is MX-NX matrix and Y is MY-NX matrix, D
is 1-NX vector.If X is MX-NX matrix and Y is MY-1 vector, or X is MX-1 vector
and Y is MY-NY matrix, D is 1-NX or 1-NY vector. The delay is estimated via
normalized corrValueelation between X and Y. The result can be positive or
negative. If MAXLAG is not specified, the delay should fall in the range of [-
max(MX,MY)+1, max(MX,MY)-1]. when there are several delays are possible,
the smallest positive delay is returned.

D = finddelay(X,Y,MAXLAG), the delay should fall in the range of [-MAXLAG(j),
MAXLAG(j)] for the jth column of X or Y. MAXLAG should be row vector and the
length should equal to the larger column of X and Y. MAXLAG should fall in the
range of 0 to the larger row number of X and Y minus 1.

Examples

Compatibility

See also
alignsignals (users), xcorr (users)

 findstr
Find a string within another, longer string

Syntax:
k = findstr(str1,str2)

Definition:
k = findstr(str1,str2) searches the longer of the two input strings for any occurrences of
the shorter string, returning the starting index of each such occurrence in the double
array, k. If no occurrences are found, then findstr returns the empty array, [].

The search performed by findstr is case sensitive. Any leading and trailing blanks in either
input string are explicitly included in the comparison

Examples:

Formula Result

s = 'Find the starting indices of the shorter string.';

findstr(s,'the') 6 30

findstr('the',s) 6 30

Compatibility:
String, array

 firls
Multiband least square FIR filter design

Syntax

H = firls(N,F,M)

H = firls(N,F,M,W)

Definition

H=firls(N,F,M,W) calculates an odd length-N+1 FIR filter which is a weighted least1.
squares approximataion to an desired ideal response given by the band edges in the
even length vector F with constant values given in the even length vectorm in each
band. Each band may be weighted by values given in the vector W.
Please refer to:2.
1) I. Selesnick, "Linear-Phase FIR Filter Design by Least Squares,"
http://cnx.org/content/m10577

2) "multiband least squares filter design" by

http://cnx.org/content/m10577
http://cnx.org/content/m10577

SystemVue - Users Guide

89

C.Sidney Burrus in IEEE Transactions on Signal Processing
Vol.43,NO.2 1995

Examples

Compatibility

See also

 firrcos
Raised cosine FIR Filter design

Syntax

H = FIRRCOS(N,Fc,DF)

H = FIRRCOS(N,Fc,DF,Fs)

H = FIRRCOS(N,Fc,R,Fs,R_OPTION)

H = FIRRCOS(N,Fc,R,Fs,R_OPTION,DESIGNTYPE)

H = FIRRCOS(N,Fc,R,Fs,R_OPTION,DESIGNTYPE,DELAY)

H = FIRRCOS(N,Fc,R,Fs,R_OPTION,DESIGNTYPE,DELAY,WINDOW)

Definition

Parameter definition1.

N: an EVEN integer, the returned filter shall have N+1 taps.

Fc: Cutoff frequency in Hz. When designing pulse shaping filter, Fc refers to
the original symbol rate.

DF: Transition bandwidth in Hz. When designing pulse shaping filter, DF
refers to RolloffFactor*2*Fc.

R: Rolling off factor whose relationship with DF is DF=R*Fc*2.

Fs: The filter's operating rate in Hz.

R_OPTION: 'rolloff' or 'bandwidth'.

DESIGNTYPE: 'normal' or 'sqrt'.

DELAY: an integer in the range of [0,N+1]. Normally it's set to N/2.

WINDOW: N+1 long column vector.
B = FIRRCOS(N,Fc,R,Fs,R_OPTION,DESIGNTYPE,DELAY,WINDOW) returns an order N2.
low pass linear phase FIR filter with a raised cosine transition band or rolling factor R.
The filter has cutoff frequency Fc, sampling frequency Fs and transition bandwidth DF
(all in Hz). The order of the filter, N, must be even. R must be in the range [0,1]. If
R_OPTION is set to 'rolloff', then R represents the rolling facor, otherwise it
represents transition bandwidth. If DESIGNTYPE is set to 'sqrt', then it will be the
square raised cosine filter, otherwise, it's the normal raised cosine filter design.
DELAY must be an integer in the range [0, N+1], if not specified Delay will be N/2.
WINDOW must be a N+1 long column vector. The time domain raised cosine filter
can be implemented in frequency domain as an alternative way.
H = FIRRCOS(N,Fc,DF) performs as H =3.
FIRRCOS(N,Fc,DF,2,'bandwidth','normal',N/2,ones(N+1,1)).
H = FIRRCOS(N,Fc,DF,Fs) performs as H =4.
FIRRCOS(N,Fc,DF,Fs,'bandwidth','normal',N/2,ones(N+1,1)).
H = FIRRCOS(N,Fc,R,Fs,R_OPTION) performs as H =5.
FIRRCOS(N,Fc,DF,Fs,R_OPTION,'normal',N/2,ones(N+1,1)). If
R_OPTION='bandwidth', R refers to the transition bandwidth. If R_OPTION='rolloff', R
refers to the rolling off factor within [0,1].
H = FIRRCOS(N,Fc,R,Fs,R_OPTION,DESIGNTYPE) performs as H =6.
FIRRCOS(N,Fc,DF,Fs,R_OPTION,DESIGNTYPE,N/2,ones(N+1,1)). If
DESIGNTYPE='normal', the filter will be raised cosine type. If DESIGNTYPE='sqrt',
then the filter will be square root raised cosine type. In communication systems, in
general, two square root raised cosine filters are used , one in the transmitter side
and the other in the receiver side. The convolution of two square root raised cosine
filter equals to one normal raised cosine filter plus a delay.

Examples

% example for communication baseband pulse shaping with upsampling ratio of 2

x = randint(100,1,[0,1])*2-1;

Ratio = 2; % upsampling ratio

N = 20*Ratio; % filter taps size, 20 is the number of input symbols used for interpolation

filtering

Fc = 3.84e6; % cutoff frequency, i.e. input symbol rate for communication modulation pulse

shaping.

DF = 0.22*2*Fc; % WCDMA uses 0.22 as rolling off factor

Fs = Fc*2*Ratio; % output sampling rate, *2 means Fs>=2*Fc according to Nyquist theory,

% *Ratio refers to oversampling

R_OPTION = 'bandwidth';

DESIGNTYPE = 'sqrt';

H = Ratio*firrcos(N,Fc,DF,Fs,R_OPTION,DESIGNTYPE);

% symmetric raised cosine filter with rectangular window,

% Ratio* is to make output power near that of input

x_up = upsample(x,Ratio);

y = filter(H,1,x_up);

The frequency response of the designed filter (DESIGNTYPE='normal') is shown
below

Compatibility

See also
firls (users)

 fix
Syntax
y = fix(x)

Definition
fix rounds the argument toward zero, producing integer. This function operates on an
part-by-part basis on arrays.

Examples:

SystemVue - Users Guide

90

Formula Result

fix(2.2) 2

fix(2.2 + 3.3j) 2 + 3j

fix(-2.3 - 3.9j) -2 - 3j

Compatibility
Numeric scalars, Vectors, Arrays

See Also
floor (users)

 floor
Syntax
y = floor(x)

Definition
floor returns the largest integer less than or equal to the argument. This function operates
on an part-by-part basis on arrays.

Examples:

Formula Result

floor(10) 10

floor(1.5 + 6.2j)) 1

floor([-0.5, 0.5]) [-1 , 0]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
ceil (users)

 fopen
Opens a file to read, write or append.

Syntax

fileP = fopen(filename)

fileP = fopen(fileName, operationFormat)

fileP, mess = fopen(filename, operationFormat)

Definition

This function performs file access and returns a handle fileP to the beginning of a file
whose name is filename enclosed in single quotes. The file name can be an absolute path
or a relative path. An extension for the file name is optional. The operationFormat is
specified in operationFormat. Supported operations are:

'r' Open for reading.

'a' Open or create a file for writing. Append data the end of the file if content exists.

'w' Open or create a file for writing. Truncate the file if content exists.

'r+' Open for reading and writing.

'a+' Open or create a file for reading and writing. Append data the end of the file if content
exists.

'w+' Open or create a file for reading and writing. Truncate the file if content exists.

If the fopen fails, fileP is -1 in contrast to a positive value if the operation was successful.

If two outputs are expected, the first one will be the handle fileP and the second one will
be an appropriate message indicating whether the file was successfully opened or not.

Note that for binary files, the functions fread (users) and fwrite (users) should be used for
file access.

Example

fileP = fopen('C:\TEMP\test.txt') will open the existing test.txt file for reading.

fileP = fopen('C:\TEMP\test.txt', 'w') will create the test.txt file and open it for writing.

See Also

fclose (users)
fgets (users)
fread (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)

 fprintf
Syntax
count = fprintf(fid, format, A, ...)

Definition
Formats data from a matrix A or set of matrices ... and writes results to a file fid. count is
the number of elements that were written to the file.

Compatibility
The first argument is a file handle which is returned from a call to fopen, followed by a
format string and then by one or more matrix arguments.

The format string is of the form (only the leading % and conversionChar are required):
%{Flags}{FieldWidth}{.Precision}ConversionChar

Flags are used to control the alignment and padding of the output. Valid flags are:

Character Description Example

Minus sign (-) Left-justify the output in its field %-6.4d

Plus sign (+) Always print a sign (+ or -) character; by default sign is printed only for negative
numbers

%+6.4d

Space
character

If no sign character is going to be printed insert a space before the value % 6.4d

Zero (0) Left-pads with zeros rather than spaces %06.4d

For negative numbers, the '+' (plus) and ' ' (space) flags have no effect (they are
ignored).
For positive numbers they determine whether a '+' or ' ' character will be printed before
the value. If both flags are specified then the ' ' one is ignored.

FieldWidth specifies the minimum number of characters (including digits, the '.' character,
sign characters, spaces, etc.) that will be printed for the field. If left empty, then it
defaults to the minumum number of characters that is needed to print the result (no
truncation or information loss will occur).

Precision specifies

the total number of digits to be printed (for integer numbers)
the number of digits to be printed after the decimal point (for floating point numbers
using %f, %e, or %E)
the number of significant digits to be printed (for floating point numbers using %g or
%G)

ConversionChar must be one of the following:

SystemVue - Users Guide

91

Character Description

c Character sequence

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E
character

f Decimal floating point

g Use the shorter of %e or %f; do not print trailing zeros

G Use the shorter of %E or %f; do not print trailing zeros

o Unsigned octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

When a numeric conversion character is used with a complex number, only the real part of
the complex number is used.
When an unsigned integral conversion character (u, o, x, X) is used with a negative
number, the conversion character is changed to e.

Differences with MATLAB

When the scientific notation is used, the exponent is printed using two digits (e.g.1.
1.2345e+02) unless three digits are needed to represent it (e.g. 1.2345e+105). On
Windows platforms, MATLAB will use three digits to represent the exponent in
scientific notation. This may result in one extra 0 at the beginning or one extra space
at the beginning or end (if a FieldWidth is explicitly specified).
When floating point values are printed using an integral conversion character, they2.
are first truncated to integers and then printed.
Value Format MATLAB SystemVue

5.1235e-
6

%d 5.123500e-006 0

81.2915 %x 8.129150e+001 51

81.2915 %d 8.129150e+001 81

When values need to be rounded due to a finite number of precision digits specified3.
values are rounded down. For example, printing 1.2345e4 using %.3e results in
1.234e+04 in SystemVue and 1.235e+004 in MATLAB.
There is no support for the identifier operator ($).4.
There is no support for the '#' flag.5.
There is no support for '*' used in the FieldWidth or Precision.6.
There is no support for sub-type specification (e.g l, h, b, t)7.

See Also
fclose (users)
fgets (users)
fopen (users)
fread (users)
fscanf (users)
fwrite (users)
tcpip (users)

 fread
Reads binary data from a file.
fread supports both TCP/IP and FILE I/O connections.

 TCP/IP

Syntax
cIn = fread(cStream, iValues, cConvert)

Definition
Read some amount of binary data from the stream.

cStream is a stream class object.
iValues is the number of values to read.
cConvert is a string array defining how to read. It can be 'type' to read as this type.
It can be '*type' to have both input and output by this type. It can be
'type1=>type2' to have input data interpreted as type1 and output data in type2. By
default, input format is byte and output format is double.

Examples:

Formula Result

dOut = fread(t, 12, 'double') read 12 doubles from the input and save them as doubles (the default).

This will consume 96 bytes of input data.

iOut = fread(t, 100, '*int') read 100 integers from the input and save them as integers.
This will consume 400 bytes of input data.

cOut = fread(t, 22,
'uchar=>ushort')

read 22 ascii characters as input and save them as a character array \

 FILE I/O

Description

Formula Result

fread(fileP) reads the contents of the file pointed to by the handle fileP (obtained from fopen.) The file is
read from beginning to end and fileP is finally positioned at the end of the file.

mat=fread(fileP) does exactly the above and returns a matrix mat with the contents of the file.

Compatibility
Scalars, Vectors, Arrays. Real and Complex and Character.

See Also:
fclose (users)
fgets (users)
fopen (users)
fprintf (users)
fscanf (users)
fwrite (users)
tcpip (users)
(2 bytes per character for unicode).
This will consume 22 bytes of input data.|

 fscanf
Syntax
A = fscanf(fileP, format)
A = fscanf(fileP, format, size)

Definition
This function reads data from a file represented by a file handle fileP and converts it to a
string using format. The result is returned in a matrix A.

An optional argument can be passed size, to specify the amount of data in the resulting
matrix.

Compatibility
fileP - file pointer to an open file ready for reading
format - string description of format in which to access contents of file, e.g. '%f' for
floating-point

size - positive integer specifying number of parts to be read in readFormat
size can be in the form:

SystemVue - Users Guide

92

n read at most n elements from the file

inf read to the end of the file

[m,n] read at most m*n elements. Fill at most m rows in A

The format string consists of conversion patterns and characters to skip over. A
conversion patter start with the % character and at a minimum a conversion character.
Characters outside a conversion pattern must match in the input but will be skipped in the
output.

digit Maximum field width

* Skip over the match value for this format. The value much match but will be ignored and not added to A

Valid conversion characters are:

c Character sequence

d or i Signed decimal integer

e Scientific notation (mantise/exponent) using e character

E Scientific notation (mantise/exponent) using E
character

f Decimal floating point

g Use the shorter of %e or %f

G Use the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

For the floating point conversion characters (e, E, f, g and G), fscanf will also accept Inf, -
Inf, NaN and -NaN (not case sensitive) as unputs.

See Also
fclose (users)
fgets (users)
fopen (users)
fprintf (users)
fread (users)
fwrite (users)
tcpip (users)

 fwrite
Writes binary data to a file.
fwrite supports both TCP/IP and FILE I/O operations.

 TCP_IP

Syntax
iWritten = fwrite(cStream, Value)

iWritten = fwrite(cStream, Value, Mode)

iWritten = fwrite(cStream, Value, Precision, Mode)

Definition
Write some amount of binary data to the stream.

cStream is a stream class object.
Value is the data to write.
Mode can be 'sync' or 'async', default is async.
Precision is a char array defining the output data type. Default is byte.

Examples:

Formula Result

iOut = fwrite(t, 12) Write the value 12 to the stream as a single byte.

iOut = fwrite(t, [1, 2], 'int', 'async') Write the vector [1 2] to the stream as two integers.

iOut = fwrite(t, 22, 'sync') Write the value 22 synchronously to the stream as a single byte.

 FILE I/O

Description

Formula Result

fwrite(fileP, mat) will write the contents of matrix mat to the file pointed to by the handle fileP
(obtained from fopen.) Data is written to the file in column order.

counter=fwrite(fileP,
mat)

will do exactly the above. In addition it will return a counter with the number of
elements successfully written to the file.

Note: Until the file is closed using the fclose (users) function, the contents of that fill
cannot be viewed.

Compatibility
Scalars, Vectors, Arrays. Real and Complex and Character.

See Also
fclose (users)
fgets (users)
fopen (users)
fprintf (users)
fread (users)
fscanf (users)
tcpip (users)

 gaussfir
Gaussian FIR Pulse-Shaping Filter Design

Syntax

H=gaussfir(BT)

H=gaussfir(BT,NT)

H=gaussfir(BT,NT,OF)

Definition

H=gaussfir(BT) designs a low pass FIR gaussian pulse-shaping filter. BT is the 3-dB1.
bandwidth-symbol time product where B is the one-sided bandwidth in Hertz and T is
in seconds.
H=gaussfir(BT,NT) NT is the number of symbol periods between the start of the filter2.
impulse response and its peak. If NT is not specified, NT = 3 is used.
H=gaussfir(BT,NT,OF) OF is the oversampling factor, that is, the number of samples3.
per symbol. If OF is not specified, OF = 2 is used.
The length of the impulse response of the filter is given by 2*OF*NT+1. Also, the4.
coefficients H are normalized so that the nominal passband gain is always equal to
one.

Examples

Compatibility

See also

 gausswin
Syntax
c = gausswin(L)
c = gausswin(L,alpha)

SystemVue - Users Guide

93

Definition
This function returns, in the column vector c, a Gaussian window with L-points and a
window width parameter alpha. The default value of alpha is 2.5. The width of the window
is inversely related to the value of alpha as shown in the graph below.

_gausswin_at_n_of_L_with_alpha_ = exp(-0.5 * (2 * alpha * n / N) ^ 2)

where -N/2 <= n <= N/2, L = N+1

When L is odd valued the apex of 1 is reached by the central sample. When L is even the
two samples flanking the unsampled apex have a value of less than 1.

Note
gausswin(2), a redundant usage of this function returns [0.458 0.458], whereas gausswin(1) returns [1].

Examples:
In the following graph, 13-point Gaussian windows are overlaid for alpha in the range
[1.5,3.5]. Vector values at each sample point are shown. The default behavior of alpha
=2.5 is shown in green.
Note that the values at the end points of the vector are not forced to zero but rather
determined by the value of alpha.

Compatibility
scalar

See Also:
bartlett (users)
blackman (users)
hamming (users)
hann (users)
rectwin (users)

 getindep
Syntax
y = getindep(x)

Definition
Returns a string with the name(s) of the independent variable(s). x is the variable to
check.

Examples:

Formula Result

n=getindep(S) if S is a linear analysis result this will usually return "Linear_Data\Eqns\VarBlock\F" (the
longname of F)

n=getindep(VPORT) in a HARBEC analysis this will return "HbData\Eqns\VarBlock\Freq" - the Frequency
vector

Compatibility
Swept vectors, arrays

See Also
setindep

 getindepvalue
Syntax
y = (x)

Definition
text

Examples:

Formula Result

Compatibility
text

See Also
text

 getmatlabvariables
Syntax
getmatlabvariables('var1', 'var2')
getmatlabvariables var1 var2

Definition
This function gets a list of MATLAB variables to SystemVue.

Examples:

Formula Result

getvariable('var1', 'var2') define SystemVue variables(var1, var2) and set the values from MATLAB variables

Compatibility
variable is string.

See Also
MATLAB Integration, setmatlabvariables (users)

 getunits
Syntax
y = getunits(x)

Definition
Returns an integer corresponding to the units of a variable x. This integer may be used by
setunits.

Examples:

SystemVue - Users Guide

94

Formula Result

z = 1
setunits("z" , "V")
y = getunits(z)

y = 9001

z = 1
setunits("z" , "mil")
y = getunits(z)

y = 6002

z = 1
setunits("z" , "H")
y = getunits(z)

y = 4003

Compatibility
Numeric scalars, vectors, arrays

See Also
setunits

 getvariable
Syntax
y = getvariable(Dataset, Variable)
[y, yindep] = getvariable(Dataset, Variable)

Definition
This function gets a variable value (and, optionally, the value of its independent variable)
from a dataset. The Dataset and Variable arguments must be strings. If an independent
value is requested but the referenced variable doesn't have one, a warning is issued and
yindep is set to a blank value.

Examples:

Formula Result

OutVar = getvariable('OutData',
'OutVar')

set the variable OutVar from the dataset variable OutData.OutVar

myVar = getvariable('Out', 'Var') set the variable myVar from the dataset variable Out.Var

[myVar, myIndep] = getvariable(
'Out', 'Var')

set the variable myVar from the dataset variable out.Var and set myIndep
to Out.Var's independent value

Compatibility
Dataset and Variable are strings.

See Also
setvariable (users)

 grpdelay
Group delay of IIR filter

Syntax

[H_R, W_R] = grpdelay(B, A, N, REGION)

[H_R, W_R] = grpdelay(B, A, F)

Definition

[H_R, W_R] = grpdelay(B, A, N, REGION) turns the group delay specified by the1.
numerator B, the denominator A, number of frequcenies N. REGION has two options:
half or whole, which determines the frequency sample point to be even distributed in
pi or 2*pi.
[H_R, W_R] = grpdelay(B, A, F) turns the group delay at the frequency vector F.2.

Examples

Compatibility

See also
fft (users), hilbert (users)

 hamming
Syntax
c = hamming(L)

Definition
This function returns a Hamming window with L points into a column vector, c.

_hamming_value_at_n_of_L_symmetric_ = 0.54 - 0.46 * cos(2*pi*n/N)

where 0 <= n <= N

Note that the end points of the vector is not always 0. When N is odd, the apex of 1 is
explicitly an part of the window function. When N is even, the apex is not explicitly
sampled but rather the two sample points which flank the apex are represented in the
returned vector.

Note
hamming(2) a redundant usage of this function returns [0.08 0.08] whereas hamming(1) returns [1].

Examples:

Compatibility
scalar

See Also:
bartlett (users)
blackman (users)
gausswin (users)
hann (users)
rectwin (users)

 hann
Syntax
c = hann(L)

Definition

SystemVue - Users Guide

95

This function returns a hann window with L points into a column vector, c.

_hann_value_at_n_of_L_symmetric_ = 0.5 * (1 - cos(2*pi*n/N))

where 0 <= n <= N

Note that the end points of the vector are always 0. When N is odd, the apex of 1 is
explicitly an part of the window function. When N is even, the apex is not explicitly
sampled but rather the two sample points which flank the apex are represented in the
returned vector.

Note
hann(2) a redundant usage of this function returns [0 0] whereas hann(1) returns [1].

Examples:

Compatibility
scalar

See Also:
bartlett (users)
blackman (users)
gausswin (users)
hamming (users)
rectwin (users)

 hex2dec
Convert a hexadecimal string to decimal number

Syntax:
hex2dec('hex_value')

Definition:
The hex2dec function converts a hexadecimal number string to its decimal equivalent.

Examples:

Formula Result

d = hex2dec('3ff') d stores the conversion of hex no '3ff' in
decimal i.e. d = 1023

d = hex2dec(S) where S is a character array S[0]= 0FF,
s[1]=2DE & s[2]=123

255, 734, 291

Compatibility:
This function is Excel compatible.

See Also:
dec2hex (users)

 hilbert
Syntax:
V = hilbert(X)
V = hilbert(X,n)
V = hilbert(X,[],c)
V = hilbert(X,n,c)

Definition:
Computes the analytic signal from a real data vector using the Hilbert Transform, where
the Discrete Fourier Transform is used to calculate the Hilbert Transform. In the resulting
complex vector the original real vector values are stored in the real part, and the
imaginary part is the Hilbert Transform of the real vector.
hilbert(X) calculates the analytic signal of vector X. If X is a matrix, the analytic signal is
computed for each column.
hilbert(X,n) returns the n-point analytic signal. X is extended by adding zeros if n>length
of X, X is truncated if n<length of X.
hilbert(X, [], c) calculates the analytic signal on the dimension c.

Examples:
The following example creates a simple sinusoid at 400Hz then generates the analytic
signal from that waveform. The resulting complex vector will contain the original sine
wave as the real part, and a cosine wave (the Hilbert transform) as the imaginary part.

fs = 8000 % 8000 Hz sampling rate

T = 1/fs % sample time

L = 100 % length of signal

t = (0:(L-1))*T % time vector

x = sin(2*pi*400*t) % sine wave at 400 Hz

X = hilbert(x) % analytic signal calculation

The following graph displays the real and imaginary parts of X.

SystemVue - Users Guide

96

Compatibility:
Vectors, Arrays, Dataset

See Also:

 histc
Syntax
y = histc(x,e)
y = histc(x,e,dim)
[y,bin] = histc(x,e)

Definition
This function provides a count of the number of parts of a numeric real-valued vector or
array x that fall into each histogram bin where the histogram itself is defined by the bin
boundaries defined in the vector e. By definition y is a vector of integers. If x is a multi-
dimensional array then the dimension of binning may be included as an optional third
argument dim. If dim is omitted, the innermost non-singleton dimension is chosen as the
dimension to operate along.

If the function is called with an optional bin output variable, then the actual binning matrix
is returned in addition to the bin count vector y.

Examples:

% Define a large vector of normally-distributed random variables, with mean = 0

x = randn(1, 1e5);

% Detect the number that is farthest from 0

elim = max(abs(x));

% Create binning vector with bin span being one

e = [-elim-1:elim+1]

% Invoke histogram count

y = histc(x, e);

% y = [0,4,151,2400,14546,34846,33406,12648,1881,117,1,0]

% Note that the normalized distribution of values is captured in the vector y.

%

% Define a large 2-D array of bi-normally distributed random variables with mean = 0,0

x = randn(3, 1e3);

% Detect the number that is farthest from 0 along any radius

elim = max(abs(x);

% Create binning vector with bin span being one

e = [-elim-1:elim+1]

% Invoke histogram count row-wise (along dim=2)

y = histc(x, e, 2);

% y = [0,0,2,1,5,25,65,109,174,182,172,140,78,35,7,4,0,0,1,0;

% 0,0,0,2,11,13,59,113,156,206,193,124,68,33,20,2,0,0,0,0;

% 0,0,0,4,9,27,59,118,162,189,180,127,81,31,8,3,2,0,0,,0];

%

% Note that the normalized distribution of values is captured in each row of y.

 ifft
Syntax
ifft(data, len)

Definition
Inverse Discrete Fourier Transform (IDFT) of data. Computed with IFFT algorithm when
possible. The parameter len is the IFFT length and is optional.

Examples:
The following example code is taken from the fft example:

fft_len = 1024 % length of the FFT

fs = 8000 % 8000 Hz sampling rate

T = 1/fs % sample time

L = 1000 % length of signal

t = (0:(L-1))*T % time vector

% x will be the sum of two sinusoids:

% one at 400 Hz and one at 1500 Hz

x = 0.5*cos(2*pi*400*t) + cos(2*pi*1500*t)

X = fft(x, fft_len) % spectrum of x

X = X(1:(fft_len/2)) % we only care about single side\-band (the rest is

redundant)

f = fs/2 * (0:(2/fft_len):1)

If the following lines of code are now added:
y = ifft(X, fft_len)
then y and x would be identical.

Compatibility
Dataset

See Also
fft (users)

 imag
Syntax
y = imag(x)

Definition
imag returns the imaginary part of a complex number. This function operates on an part-
by-part basis on arrays.

Examples:

Formula Result

imag(2 - 5j) -5

imag([10 + 1j , 12]) [1 , 0]

imag([20 + 3j; 1 + 2j]) [3 ; 2]

Compatibility
Numeric scalars, Vectors, Arrays

 impz
Impulse response of IIR digital filter

Syntax

[H,T] = impz(B,A,N)

[H,T] = impz(B,A,N,Fs)

Definition

[H,T] = impz(B,A,N) generate N samples of the impulse response of the filter with1.
numerator coefficients B and denominator coefficients A. If N is not spcified, it will be
choosen that the signal has a chance to die down to 10e-6 of the original, or to not
explode beyond 10e6 of the original. Fs is the sampling frequency; the default value
is 1.

Examples

Compatibility

See also

 inf
Syntax
DA = Inf(n, dist)
DA = Inf(m, n, dist)
DA = Inf(..., classname, dist)

SystemVue - Users Guide

97

Definition
this function creates an n by n, or m by n, array of class double.
The classname parameter is for specifying the underlying class, which can be either
'double', the default, or 'single'.

Examples:

Formula Result

x = inf 1.#IOe

Compatibility
Numeric

 interp
Resample input at a higher rate with lowpass filter

Syntax

Y = interp(X,R)

Y = interp(X,R,L)

Y = interp(X,R,L,Alpha)

Y = interp(X,R,L,Alpha,SNR)

[Y,B] = interp(...)

Definition

Y = interp(X,R) resamples the signal in vector X at R times the original sample rate.1.
The resampled vector Y is R times the length of X. Filter transition is compensated by
image the input signal at the beginning and the end of filtering.
The symmetric lowpass filter B is obtained with minimum mean square error (MSE)2.
rule, it allows the original signal pass through unchanged and minimizes the mean
square error between the interpolated signal and the expected signal.
Y = interp(X,R,L,ALPHA,SNR) is used for specific filter length, cutoff frequency and3.
signal noise power ratio. 2*L is the number of original samples used to compute each
new sample. The filter length is 2*L*R+1. Alpha is bandwidth of the input signal
which should satisfy 0 < ALPHA <1.0, where 1.0 correspons to half the sample rate.
SNR is the power ratio of useful signal and AWGN noise. By default, L, ALPHA and
SNR is 4, 0.5 and 150(dB) respectively. For some large L, try a lower SNR to get a
reliable filter B.
[Y,B] = interp(X,R,L,ALPHA,SNR) returns the output and coefficients of filter B.4.

Examples

Compatibility

See also
resample (users), upfirdn (users)

 interp1
Syntax
y2 = interp1(x1,Y1,x2)
y2 = interp1(x1,Y1,x2,method)
y2 = interp1(x1,Y1,x2,method,'extrap')
pp = interp1(x,Y,method,'pp')

Definition
y2 = interp1(x1,Y1,x2) interpolates to find y2, the values of the underlying function Y1 at
the points in the vector x1.
method:
'nearest' Nearest neighbor interpolation
'linear' Linear interpolation (default)
'spline' Cubic spline interpolation
'pchip' Piecewise cubic Hermite interpolation
'cubic' (Same as 'pchip')

yi = interp1(x,Y,xi,method,'extrap') uses the specified method to perform extrapolation
for out of range values.

Examples:

Formula Result

x1=[1 2 4 5]
y1=[34 56 67 77]
y2=interp1(x1,y1,3)

y2
? ans =
? 61.5

x1=[1 2 4 5]
y1=[34 56 67 77]
y2=interp1(x1,y1,-1,'linear','extrap')

y2
? ans =
? -10

Compatibility
Numeric scalars, Vectors

See Also
spline (users)

 ischar
Syntax
y = char(x)

Definition
This function determines whether the given parameter x, is a character or array of
characters. If so, it returns true, logical 1, and if not it returns false, logical 0.

Examples:

Formula Result Comment

ischar(2) 0 scalar is not a character

ischar('2') 1 character

ischar(1:10) 0 numeric vector is not an array of characters

ischar('hello') 1 vector of characters

ischar(['hello','table']) 1 array of characters

ischar({'hello','table'}) 0 cell is not an array

Compatibility
Numeric and string valued variables.

See Also:
isempty (users)
isfloat (users)
isinteger (users)
islogical (users)
isreal (users)
isscalar (users)
isstr (users)

 isempty
Syntax
y = isempty(x)

Definition
This function returns true if x is an empty array and false otherwise. An empty array has
at least one dimension of size zero, for example, 0-x-0 or 0-x-5. This function does not
operate on strings or cells. So supplying an empty string to the function does not get a
logical true.

SystemVue - Users Guide

98

Examples:

Formula Result

isempty(rand(2,2)) 0

b(:,:) = [];
a = isempty(b)

a = 1;

Compatibility
Numeric scalars, vectors, arrays.

 isequal
Syntax
out = isequal(a, b[, ...])

Definition
isequal returns true if the input arrays have the same contents, and false otherwise.
Nonempty arrays must be of the same data type and size to be compared.

Examples:

Formula Result

a = [1,2;3,4]
b = [1,2;3,4]
out = isequal(a,b)

out=1;

Compatibility
Arrays and scalars.

 isfinite
Syntax
b = isfinite(Array)

Definition
isfinite returns an array the same size as Array containing true where the parts of Array
are finite and false where they are infinite or NaN. For a complex number z, isfinite(z)
returns true if both the real and imaginary parts of z are finite, and false if either the real
or the imaginary part is infinite or NaN.

Compatibility
Numeric arrays

See Also
isinf (users)

 isfloat
Syntax
y = isfloat(x)

Definition
This function determines whether the given parameter x, is a floating point number. If so,
it returns true, logical 1, and if not, it returns false, logical 0. When x is a character or a
string, this function returns 0 because the argument is not an explicit numeric value but
isreal (users) returns 1 because the argument is implicitly real valued because ASCII
characters are involved in scalar or vector format.

Examples:

Formula Result Comment

isfloat(23) 1 scalar is a 1-part vector

isfloat(1:0.5:10) 1 row-vector of floating point numbers

isfloat([2+3i;4]) 1 column-vector of real and complex numbers

isfloat('h') 0 ASCII character is not a floating point numeric value

isfloat('hello') 0 string is a vector of ASCII characters, not numeric values

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isinteger (users)
islogical (users)
isreal (users)
isscalar (users)
isstr (users)

 isinf
Syntax
out = isinf(Array)

Definition
isinf returns an array the same size as Array containing true where the parts of Array are
+Inf or -Inf and false where they are finite. For a complex number z, isinf(z) returns true
if either the real or imaginary part of z is infinite, and false if both the real and imaginary
parts are finite or NaN. For any real a, exactly one of the three quantities isfinite(a),
isinf(a), and isnan(a) is true.

 isinteger
Syntax
y = isinteger(x)

Definition
This function determines whether the given parameter x, is an integer. If so, it returns
true, logical 1, and if not it returns false, logical 0. When applied to a multi-part array, all
parts must be integers for the function to evaluate to a true.

Examples:

Formula Result Comment

isinteger(-23) 1 is an integer

isinteger(1:10) 1 10-part row-vector of integers

isinteger(1:0.5:2) 0 contains some non-integers

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isfloat (users)
islogical (users)
isreal (users)
isscalar (users)
isstr (users)

 islogical
Syntax
y = islogical(x)

Definition
This function determines whether the given expression x, is evaluates to a binary logical
value. If so, it returns true, logical 1, and if not it returns false, logical 0.

Examples:

SystemVue - Users Guide

99

Formula Result Comment

islogical(1) 0 numeric scalar not a logical expression even though it is binary valued 1

islogical(2>3) 1 is a logical expression

islogical([3,4] < [5,6]) 1 is a logical expression

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isfloat (users)
isinteger (users)
isreal (users)
isscalar (users)
isstr (users)

 isnan
Syntax
out = isnan(Array)

Definition
isnan returns an array the same size as Array containing true where the parts of Array are
NaN (not-a-number). For any real a, exactly one of the three quantities isfinite(a),
isinf(a), and isnan(a) is true.

 isreal
Syntax
y = isreal(x)

Definition
This function determines whether the given parameter x, is a real valued number or a
vector or array containing only real numbers. If so, it returns true, logical 1, and if not, it
returns false, logical 0.

Examples:

Formula Result Comment

isreal(23) 1 integer is real valued

isreal(1:0.5:10) 1 10-part real-valued row-vector

isreal([3;4+5i;6]) 0 has one complex valued part

isreal('h') 1 character has an ASCII value

isreal('hello') 1 string is an array of ASCII values

isreal({'hello'}) 0 cell is not a numeric part

isreal({1.4}) 0 cell is not a numeric part

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isfloat (users)
isinteger (users)
islogical (users)
isscalar (users)
isstr (users)

 isscalar
Syntax
y = isscalar(x)

Definition
This function determines whether the given parameter x, is a 1x1 part with an ASCII value
i.e. a scalar. If so, then it returns true, logical 1, and if not then it returns false, logical 0.

Examples:

Formula Result Comment

isscalar(23) 1 is a scalar

isscalar(1:10) 0 10-part row-vector

isscalar('d') 1 is an ASCII character

isscalar('hello') 1 string is not a scalar

isscalar({1}) 1 is a 1-part cell

isscalar({'This is a sentence'}) 1 is also a 1-part cell

isscalar({'This','is','a','sentence','.'}) 0 is a multi-part cell

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isfloat (users)
isinteger (users)
islogical (users)
isreal (users)
isstr (users)

 isstr
Syntax
y = isstr(x)

Definition
This function determines whether the given parameter x, is a string. If so, then it returns
true, logical 1, and if not then it returns false, logical 0.

Examples:

Formula Result Comment

isstr(23) 0 scalar is not a string

isstr('hello') 1 is a string

isstr({'This','is','a','sentence','.'}) 0 array of cells is not a string

isstr({'This'}) 0 even single string part in cell is not a string

Compatibility
Numeric and string valued variables.

See Also:
ischar (users)
isempty (users)
isfloat (users)
isinteger (users)
islogical (users)
isreal (users)
isscalar (users)

 kaiser
Kaiser window

Syntax

W = kaiser(NL,Beta)

Definition

SystemVue - Users Guide

100

W = kaiser(NL,Beta) returns column vector W of length NL for kaiser window. Beta1.
affects the side attenuation of the spectrum. If NL is 1, it returns 1.

Examples

Compatibility

See also
gausswin (users), kaiserord (users)

 kaiserord
Parameters that specify a kaiser window

Syntax

[n,wn,beta,ftype] = kaiserord(f,a,dev)

[n,wn,beta,ftype] = kaiserord(f,a,dev,Fs)

Definition

KAISERORD returns n, wn, beta and ftype that specify a kaiser window. It estimates1.
the minimum filter order n and beta that can meet the specifications.
[N,WN,BETA,FTYPE] = kaiserord(F,A,DEV) F is band edge vector. A is a vector2.
specifying the amplitude on the bands. 1 means passband and 0 means stopband.
The length of F should be twice of the length of A, minus 2. DEV is a vector with the
same size of A. It specifies the maximum deviation of the passband ripple and the
stopband attenuation. The default value of Sampling frequency is 2 Hz and F should
fall in [0,1].
[N,WN,BETA,FTYPE] = kaiserord(F,A,DEV,Fs) Fs is sampling frequency and F should3.
fall in [0,Fs/2].

Examples

Compatibility

See also
kaiser (users)

 length
Syntax
y = length(x)

Definition
This function returns the longest dimension of the array x. When presented with a single
string, it returns the character count. When presented with a list of strings it returns list
length even if one of the words has a character count (inner dimension) greater than the
word count of the string (outer dimension).

Examples:

Formula Result Comment

length(16) 1 scalar number

length([1 2 3]) 3 3-length vector

length([1 2 3; 4 5 6]) 3 2x3 matrix, number of colmns > number
of rows

length('hello') 5 string length is 5

length({'This','string','is','a','test','string','.'}) 7 word count is 7, all words have character
count < 7

length(
{'This','string','is','a','verylongwordedtest','string','.'})

7 word count is 7, even though one word
has character count > 7

Compatibility
Numeric and string scalars, vectors, arrays

See Also
size (users)

 linspace
Syntax
y = linspace(u,v)
y = linspace(u,v,x)

Definition
This function creates vectors that have values that are linearly spaced, similar to the colon
operator. However, unlike the colon operator, this function gives control on specifying the
number of points. The points are generated between, and including, u and v. The number
of points generated are determined by the parameter x. If not specified, this value
defaults to 100.

Examples:

Formula Result

y = linspace(1, 10,
10)

Y =
[1,2,3,4,5,6,7,8,9,10]

Compatibility
u - Real valued scalar
v - Real valued scalar
x - Positive integer

See Also:
logspace (users)

 log
Syntax
y = log(x)

Definition
This function returns the natural logarithm (base e) of the argument x. It operates on an
part-by-part basis on arrays. Exceptions of "-1.#INF" (negative infinity) and "-
1.#IND"(indefinable) are thrown for zero and negative arguments respectively, as is to be
expected. For complex valued arguments, the returned y = a + bi is such that a is
log(sqrt(real(x)^2+imag(x)^2)), i.e. the natural log of the magnitude and b is
atan(imag(x)/real(x)), i.e. the argument assumed to be in natural log.

Examples:

Formula Result

log(1) 0

log([10 , 1.5]) [2.3 , 0.4]

log([2.3 , 0.5 ; 3.7 , 0.8]) 0.832909 -0.693147
1.30833 -0.223144

Compatibility
Real and complex-valued scalars, Vectors, Arrays

See Also:
log10 (users)
log2 (users)

 log2
Syntax
y = log2(x)
[f, e] = log2(x)

Definition
When used with one output argument, this function returns the base-2 logarithm of the

SystemVue - Users Guide

101

argument. It operates on an part-by-part basis on arrays. Exceptions of "-1.#INF"
(negative infinity) and "-1.#IND"(indefinable) are thrown for zero and negative arguments
respectively, as is to be expected. For complex valued arguments, the returned y = a + bi
is such that a is log2(sqrt(real(x)^2+imag(x)^2)), i.e. the base-2 log of the magnitude
and b is atan(imag(x)/real(x))/log(2), i.e. the argument assumed to be in base-2 log.

When used with two output arguments, the mantissa and exponent of the floating point
argument are returned into f and e respectively.

Definition
This function returns the natural logarithm (base e) of the argument x.
Examples:

Formula Result

log2(2) 1

log2([4, 512]) [2, 9]

Compatibility
Real and complex-valued scalars, vectors, arrays

See Also
log (users)
log10 (users)

 log10
Syntax
y = log10(x)

Definition
This function returns the 10-base logarithm of the argument x. It operates on an part-by-
part basis on arrays. Exceptions of "-1.#INF" (negative infinity) and "-
1.#IND"(indefinable) are thrown for zero and negative arguments respectively, as is to be
expected. For complex valued arguments, the returned y = a + bi such that a is
log10(sqrt(real(x)^2+imag(x)^2)), i.e. the log10 of the magnitude of the vector and b is
atan(imag /imag)/log(10) i.e. the log10 of the argument, where log(10) is the natural
logarithm of 10.

Examples:

Formula Result

log10(1) 0

log10([10 , 1.5]) [1 , 0.176]

log10([2.3 , 0.5 ; 3.7 , 0.8]) [0.362 , -0.301 ; 0.568 , -0.097]

log10(3+2i) 0.556972 + 0.255366i

Compatibility
Real and complex valued scalars, vectors, arrays

See Also
log (users)
log2 (users)

 logspace
Syntax
y = logspace(u,v)
y = logspace(u,v,x)
y = logspace(u,pi)

Definition
This function creates a real-valued vector that is spaced logarithmically. It is the
logarithmic equivalent of linspace and the colon operator (:), and is useful for generating
frequency vectors.

This function generates values that are spaced from 10^u to 10^v. It creates an x
number of points, and if x is not specified, it defaults the value to 50.

If pi is specified instead of v then the values are spaced from 10^u to pi (approx. 3.14).
This is useful for digital signal processing where frequencies go around the unit circle.

Examples:

Formula Result

logspace(1,6,6) [10, 100, 1000, 1e4, 1e5, 1e6]

logspace(-3,3,7) [0.001, 0.01, 0.1, 1, 10, 100, 1000]

logspace(0,1,10) [1, 1.29155, 1.6681, 2.15443, 2.78256, 3.59381, 4.64159, 5.99484, 7.74264, 10]

logspace(0,pi,5) [1, 1.33134, 1.77245, 2.35973, 3.14159]

Compatibility
u - Real valued scalar
v - Real valued scalar
x - Positive integer

See Also
linspace (users)

 lp2bp
Transform lowpass filter to bandpass filter

Syntax

[bt,at] = lp2bp(b,a,wo)

[at,bt,ct,dt] = lp2bp(a,b,c,d,wo)

Definition

LP2BP transforms analog lowpass filter with normalized cutoff frequency of 1 rad/s1.
into bandpass filter with desired central frequency and passband.
[bt,at] = lp2bp(b,a,wo) is the transfer function form. B and A are polynomial2.
coefficients. wo has two elements. wo(1) is low band edge and wo(2) is high band
edge.
[at,bt,ct,dt] = lp2bp(a,b,c,d,wo) is the state-space form.3.

Output arguments should NOT be omitted

Examples

Compatibility

See also
bilinear (users), lp2bs (users), lp2hp (users), lp2lp (users)

 lp2bs
Transform lowpass filter to bandstop filter

Syntax

[bt,at] = lp2bs(b,a,wo)

[at,bt,ct,dt] = lp2bs(a,b,c,d,wo)

Definition

LP2BS transforms analog lowpass filter with normalized cutoff frequency of 1 rad/s1.
into bandstop filter with desired central frequency and stopband.
[bt,at] = lp2bs(b,a,wo) is the transfer function form. B and A are polynomial2.
coefficients. wo has two elements. wo(1) is low band edge and wo(2) is high band

SystemVue - Users Guide

102

edge.
[at,bt,ct,dt] = lp2bs(a,b,c,d,wo) is the state-space form.3.

Output arguments should NOT be omitted

Examples

Compatibility

See also
bilinear (users), lp2bp (users), lp2hp (users), lp2lp (users)

 lp2hp
Transform lowpass filter to highpass filter

Syntax

[bt,at] = lp2hp(b,a,wo)

[at,bt,ct,dt] = lp2hp(a,b,c,d,wo)

Definition

LP2HP transforms analog lowpass filter with normalized cutoff frequency of 1 rad/s1.
into highpass filter with desired cutoff frequency.
[bt,at] = lp2hp(b,a,wo) is in transfer function form. B and A are polynomial2.
coefficients. wo is the desired cutoff frequency.
[at,bt,ct,dt] = lp2hp(a,b,c,d,wo) is in state-space form.3.

Output arguments should NOT be omitted

Examples

Compatibility

See also
bilinear (users), lp2bp (users), lp2bs (users), lp2lp (users)

 lp2lp
Transform lowpass filter with normalized frequency to desired frequency

Syntax

[bt,at] = lp2lp(b,a,wo)

[at,bt,ct,dt] = lp2lp(a,b,c,d,wo)

Definition

LP2LP transforms analog lowpass filter with normalized cutoff frequency of 1 rad/s1.
into lowpass filter with desired cutoff frequency.
[bt,at] = lp2lp(b,a,wo) is in transfer function form. B and A are polynomial2.
coefficients. wo is the desired cutoff frequency.
[at,bt,ct,dt] = lp2lp(a,b,c,d,wo) is in state-space form3.

Output arguments should NOT be omitted

Examples

Compatibility

See also
bilinear (users), lp2bp (users), lp2bs (users), lp2hp (users)

 lu
Syntax
[L,U,P] = lu(A)

Definition
Let A be an m x n matrix and k=min(m,n).

[L,U,P] = lu(A) produces matrices L, U, and P such that L·U = P·A, where
L is a lower triangular (when m≤n) or lower trapezoidal (when m>n) m x k matrix with
unit parts in the primary diagonal
U is an upper triangular (when m≥n) or upper trapezoidal (when m<n) k x m matrix
P is a permutation m x m matrix

Examples:

>> A=randn(3,3)+j*randn(3,3)

 A =

 0.723014 + 1.18447j 0.934672 + 0.460644j 0.441228 + 0.256457j

 -0.328791 - 0.851946j -0.861837 + 2.87705j 0.955427 + 1.76944j

 0.179696 - 0.856819j 1.68603 - 0.932334j -0.0821437 - 1.2154j

>> [L,U,P] = lu(A)

 L =

 1 0 0

 -0.647459 - 0.117631j 1 0

 -0.459545 - 0.43222j -0.150244 - 0.569137j 1

 U =

 0.723014 + 1.18447j 0.934672 + 0.460644j 0.441228 + 0.256457j

 0 -0.310862 + 3.28524j 1.21094 + 1.98739j

 0 0 -0.939387 + 0.080946j

 P =

 1 0 0

 0 1 0

 0 0 1

>> max(max(abs(L*U-P*A)))

 ans =

 1.11022e-016

>> A = rand(6,3)

 A =

 0.60099 0.440156 0.864022

 0.127121 0.130142 0.348069

 0.946835 0.559306 0.632182

 0.766416 0.852558 0.260926

 0.857445 0.0636686 0.47777

 0.447486 0.372438 0.510765

>> [L,U,P] = lu(A)

 L =

 1 0 0

 0.905591 1 0

 0.634736 -0.192272 1

 0.809451 -0.902882 -0.756563

 0.134259 -0.124312 0.565567

 0.472613 -0.244116 0.424851

 U =

 0.946835 0.559306 0.632182

 0 -0.442834 -0.0947284

 0 0 0.444539

 P =

 0 0 1 0 0 0

 0 0 0 0 1 0

 1 0 0 0 0 0

 0 0 0 1 0 0

 0 1 0 0 0 0

 0 0 0 0 0 1

>> max(max(abs(L*U-P*A)))

 ans =

 1.11022e-016

 matdeintrlv

SystemVue - Users Guide

103

Reorder data by filling matrix by columns and emptying it by rows

Syntax

Y = matdeintrlv(X,Rows,Cols)

Definition

Y = matdeintrlv(X,Rows,Cols) rearranges the data in X by writting a temporary
matrix column by column and then reading the matrix row by row to the output.
Rows and Cols specifies the size of the temporary matrix. If X is a vector, it
must have Rows*Cols elements. If X is a matrix, it must have Rows*Cols rows,
each column is treated as an independent signal.

Examples

b = matdeintrlv([1 4 2 5 3 6; 7 10 8 11 9 12].',2,3)

b =

 1 7

 2 8

 3 9

 4 10

 5 11

 6 12

Compatibility

See also
matintrlv (users)

 matintrlv
Reorder data by filling matrix by rows and emptying it by columns

Syntax

Y = matintrlv(X,Rows,Cols)

Definition

Y = matintrlv(X,Rows,Cols) rearranges the data in X by writting a temporary
matrix row by row and then reading the matrix column by column to the output.
Rows and Cols specifies the size of the temporary matrix. If X is a vector, it
must have Rows*Cols elements. If X is a matrix, it must have Rows*Cols rows,
each column is treated as an independent signal.

Examples

b = matintrlv([1 2 3 4 5 6; 7 8 9 10 11 12].',2,3)

b =

 1 7

 4 10

 2 8

 5 11

 3 9

 6 12

Compatibility

See also
matdeintrlv (users)

 max
Syntax
y = max(x)
y = max(x,z)
y = max(x,dim)
[y, i] = max(...)

Definition
Returns the maximum part of a vector x. In the case of arrays, the function returns a row
vector with the maximum part in each column. When dealing with multidimensional
arrays, it treats the parts along the first non-singleton dimension, or the specified dim, as
vectors and returns the maximum of each.

y = max(x,z) returns an array with the same dimensions as x and z containing the
maximum parts from vectors x or z. The size of x and z have to be the same.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

[y, i] = max(...) also returns the indices of the maximum parts in a vector i. If more than
one maximum of the same value exists, then only the first parts index is returned.

Examples:

Formula Result

x = 10
y = max(x)

y = 10

x = [18 -20 23 54 4 71 -43]
y = max(x)

y = 71

x = [27 86; complex(600 , -435), 34]
y = max(x)

y = [600 - j435, 86]

x = [27 86; complex(1 , 1) , -34]
y = max(x)

y = [27, 86]

Compatibility
Numeric Scalars, Vectors, Arrays

See Also
min (users)

 mean
Syntax
y = mean(x)
y = mean(x,dim)

Definition
Returns the arithmetic mean of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim, is not specified.

Examples:

Formula Result

y = mean([3 ; 4 ; 8 ; 9]) y = 6

y = mean([complex(1 , 2) ; complex(1 , 1) ; complex(2 , 1)]) y = 1.333 + j1.333

y = mean([1,2,3;4,5,6;7,8,9]) y = [4, 5, 6]

Compatibility
Numeric arrays

See Also
median (users)

 median
Syntax

SystemVue - Users Guide

104

y = median(x)
y = median(x,iDim)

Definition
Returns the median of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result

y = median([3 ; 4 ; 8 ; 9]) y = 6

y = median([complex(1 , 2) ; complex(1 , 1) ; complex(2 , 1)])

y = 2 + j1

y = median([1,2,3;4,5,6;7,8,9]) y = [4, 5, 6]

Compatibility
Numeric arrays

See Also
mean (users)
mode (users)

 min
Syntax
y = min(x)
y = min(x,z)
y = min(x,dim)
[y,i] = min(...)

Definition
Returns the minimum part of a vector x. In the case of complex-valued arrays, the
magnitude of each part is used.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim is not specified.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

[y,i] = min(...) also returns the indices of the minimum valued parts in x. If there are
more than one minimum parts of the same value, the index of the first one found is
returned.

Examples:

Formula Result

x = [10]
y = min(x)

y = 10

x = [18 , -20 , 23 , 54 , 4 , 71 , -43]
y = min(x)

y = -43

x = [27, 86 ; complex(600 , -435) , 34]
y = min(x)

y = [27, 34]

x = [27, 86 ; complex(1 , 1) , -34]
y = min(x)

y = [1+j1, -34]

Compatibility
Numeric Scalars, Vectors, Arrays

See Also
max (users)

 mkdir
Make a new directory

Syntax:
mkdir('dname')
mkdir('pdir','dname')
status = mkdir('pdir','dname')
[status,mess,messid] = mkdir('pdir','dname')

Definition:
mkdir('dname') creates the directory dname in the current directory. The full path of the
directory is displayed in warnings. A warning sign is displayed if the directory dname
already exists.

mkdir('pdir','dname') creates the directory dname in the existing directory pdir. An error is
displayed if the directory pdir is not an existing directory. A warning sign is displayed if
the directory dname already exists.

status = mkdir('pdir,'dname') creates the directory dname and returns a status of logical 1
if the operation was successful. It returns an error message if the creation of dname
failed.

[status, mess, messid] = mkdir('pdir','dname') creates the directory dname and returns a
status of logical 1 if the operation was successful. If dname previously existed, mess and
messid contain appropriate messages.

Examples:
To create a New Sub Directory called NewTest in the Current Directory, type
mkdir ('NewTest')

To create a New Sub Directory called NewTest in the parent directory 'C:\Documents and
Settings', type
mkdir ('C:\Documents and Settings','NewTest')

To be notified if NewTest is already an existing directory, type
[status, mess, messid]= mkdir('C:\Documents and Settings','NewTest') which will display
status = 1
mess = Directory already exists.
messid = MATHLANG:MKDIR:DirectoryExists

See Also:
movefile
cd

 mod
Syntax
m = mod(a,b)

Definition
This function applies the modulus operation on a by b.
It returns, m = a - (floor(a./b) .* b). If b is a scalar, then all parts of a are treated by
its value. If b is nor

Examples:

Formula Result

m = mod(13, 5) m = 3

m = mod([1:5],3) m = [1,2,0,1,2]

Compatibility
Real valued scalars, vectors, arrays

SystemVue - Users Guide

105

See Also
rem (users)

 mode
Syntax
y = mode(x)
y = mode(x,iDim)
[y, n] = mode(x, ...)
[y,n,ca] = mode(x, ...)

Definition
Returns the mode of a vector x. If there are several values with equal maximum number
of occurrences, the smallest value is returned.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

[y, n] = mode(x, ...) also returns an array of same size as y which contains the number of
occurrences of each part in y.

[y,n,ca] = mode(x, ...) also returns a cell array with the same size as y and n, and it
contains, in each part, a sorted vector of the values that have the same frequency as each
part in y.

Examples:

Formula Result

y = mode ([8 ; 4 ; 8 ; 9]) y = 8

y = mode ([complex(1 , 2) ; complex(1 , 2) ; complex(2 , 1)])

y = 1 + j2

y = mode ([1,2,3;2,2,3;7,8,9]) y = [1, 2, 3]

Compatibility
Numeric arrays

See Also
mean (users)
median (users)

 muxdeintrlv
Restore ordering of data with specified shift register group

Syntax

Y = muxdeintrlv(X,Delay)

Y = muxdeintrlv(X,Delay,InitState)

[Y,FinalState] = muxdeintrlv(X,Delay,...)

Definition

Y = muxdeintrlv(X,Delay), as a reverse process of function MUXINTRLV, resotres
ordering of data in X with shift register group specified in the vector Delay which
must be the same as that in MUXINTRLV. The length of Delay indicates the
number of shift registers used.

Y = muxdeintrlv(X,Delay,InitState) initialize the shift registers specified in
InitState instead of all zeros.

[Y,FinalState] = muxdeintrlv(X,Delay,...) returns the final state of shift registers
in FinalState which may be used as initial state of the next process when dealing
with consecutive data.

The total processing delay of the muxintrlv concatenated by muxdeintrlv is Td =
max(Delay) * size(Delay)

muxdeintrlv is implemented by calling muxintrlv (users)

Y = muxintrlv(X, max(Delay)-Delay)

Examples

Compatibility

See also
muxintrlv (users)

 muxintrlv
Reorder data with specified shift register group

Syntax

Y = muxintrlv(X,Delay)

Y = muxintrlv(X,Delay,InitState)

[Y,FinalState] = muxintrlv(X,Delay,...)

Definition

Y = muxintrlv(X,Delay) rearranges the data in X with shift register group
specified in the vector Delay. The length of Delay indicates the number of shift
registers used. Each value of Delay indicates the number that shift register can
hold data. The input data is fed into the shift registers, from the first to the last,
in sequence and periodicly. Assuming X={x1,x2,x3,...}, x1 is fed into branch 1,
x2 is fed into branch 2, The output picks up data from output of each shift
register, from the first to the last, in sequence and periodicly. Note that the data
feeding to each shift register and data picking up from each shift register are
synchronou. If X is a matrix, each column is treated as an independent signal.
Delay is initialized with zeros before process begins.

Y = muxintrlv(X,Delay,InitState) initialize the shift registers specified in
InitState instead of all zeros. InitState is a struct composed of variables
InitState.value and InitState.index. InitState.value has the same number of
columns as X, each stores the initial state of shift registers (from first to last).
FinalState.index represents the index of the shift register into which the first
symbol shall be fed.

Assuming Delay is [0,1,2,3], InitState.value=[1 2 3 4 5 6].', InitState.index=2, then we have

initial state:

 [] --FIFO 1

 [1] --FIFO 2

 [2 3] --FIFO 3

 [4 5 6], --FIFO 4

and shall start processing from the second FIFO.

[Y,FinalState] = muxintrlv(X,Delay,...) returns the final state of shift registers in
FinalState which may be used as initial state of the next process when dealing
with consecutive data. FinalState is a struct composed of variables
FinalState.value and FinalState.index. FinalState.value has the same number of
columns as X, each stores the final state of shift registers (from first to last)
after processing the corresponding column of X. FinalState.index represents the
index of the shift register from which the next consecutive processing shall
begin.

Examples

SystemVue - Users Guide

106

Compatibility

See also
muxdeintrlv (users), convintrlv (users)

 NaN
Syntax
array = NaN(n, distdim)
array = NaN(m, n, distdim)
array = NaN(..., classname, distdim)

Definition
This function creates an n-by-n, or m-by-n as specified, distributed array, which is of class
double by default. The distributed dimension dim and partition PAR are specified by
distdim in the parameters, but if not then it automates to the second dimension and
defaultPartition(n) is used.

array = NaN(..., classname, distdim) also allows you to specify the class of the array.
These can either be 'double' or 'single.'

Examples:

Formula Result

 false
Syntax
false

Definition
false as a boolean value.

Examples:

Formula Result

x=false false

See Also
true (users)

 noisebw
Equivalent two-sided noise bandwidth of lowpass filter

Syntax

NBW = noisebw(NUM, DEN)

NBW = noisebw(NUM, DEN, NumSamp)

NBW = noisebw(NUM, DEN, NumSamp, Fs)

Definition

NBW = noisebw(NUM, DEN, NumSamp, Fs) returns the two-sided equivalent
noise bandwidth, in Hz, of a digital LOWPASS filter given in descending power of
z by numerator vector NUM and denominator vector DEN. NumSamp specifies
the number of impulse response samples used for calculation, defaults by 500.
Fs is the sampling rate of input signal, defaults by 1.

The algorithm is as follows:

 [h(1),h(2),...h(NumSamp)] * conj([h(1),h(2),...h(NumSamp)].')

NBW = Fs * ---

 abs(sum([h(1),h(2),...h(NumSamp)])).^2

where h(1),h(2),... h(NumSamp) is impulse response of the given filter.

Examples

Compatibility

See also

 num2str
Syntax
ystring = num2str(x)

Definition
This function can convert a real-valued scalar, vector or array to a string representation.
Only real portions of complex valued numbers will be entered to the string. Arrays are
traversed along the innermost (column) dimension. Commas, semicolons, brackets and
other non-whitespace delimiters are ignored when drafting the string.

Examples:

Formula Result

num2str(500) '500'

num2str([500,200;100,400]) '500 100 200
400'

num2str(500+200i) '500'

Compatibility
Real valued scalars, vectors, arrays

See Also
str2num (users)

 numel
Syntax
y = numel(x)

Definition
This function returns the total number of parts in the array x.

Examples:

Formula Result

numel(2) 1

numel([1 2 3]) 3

numel(diag([1 1])) 4

Compatibility
scalars, vectors, arrays

 oct2dec
Convert octal to decimal numbers

Syntax

d = oct2dec(c)

Definition

D = oct2dec(C) converts octal matrix C to a decimal matrix D, element by

SystemVue - Users Guide

107

element. In both representations, the rightmost digit is the least significant.

Examples

Compatibility

See also
bi2de (users)

 phasedelay
Phase delay vector of digital filter

Syntax

[phi,w] = phasedelay(b,a,n)

[phi,w] = phasedelay(b,a,n,'whole')

phi = phasedelay(b,a,w)

[phi,f] = phasedelay(b,a,n,fs)

[phi,f] = phasedelay(b,a,n,'whole',fs)

phi = phasedelay(b,a,f,fs)

Definition

[PHI,W] = phasedelay(B,A,N) returns frequency vector W and phase delay vector PHI1.
of the filter defined by numerator coefficients of B and denominator coe -fficients of
A. The length of PHI and W are N. W is n points equally spaced from 0 to pi. N should
be integer larger than 1.
[PHI,W] = phasedelay(B,A,N,'whole') uses n points eually spaced from 0 to 2*pi2.
PHI = phasedelay(B,A,W) returns the phase delay at given frequencies specified in3.
W. W is normally between 0 and pi.
[...] = phasedelay(...,fs) is same with above except the frequency vector is in HZ.4.
In [PHI,F] = phasedelay(B,A,N,FS), F is equally spaced from o to FS/2.5.
In [PHI,F] = phasedelay(B,A,N,'whole',FS), F is equally spaced from o to FS.6.
In PHI = phasedelay(B,A,F,FS), F should be in the range of 0 to FS/2.7.

Output arguments should NOT be omitted

Examples

Compatibility

 poly2trellis
Convert convolutional code polynomials to trellis description

Syntax

Y = poly2trellis(CONSLEN,CODEGEN)

Definition

Y = poly2trellis(CONSLEN,CODEGEN) generates coding trellis of convolutional
coder, from code constraint length and code generating polynomials.

CONSLEN: K by 1 vector, whrer K is the number of input bit streams to the encoder,
or the number of bits the encoder takes simultaneously each clock cycle.
CONSLEN[i]-1 specifys the number of registors used for the i'th input bit stream.

CODEGEN: K by N matrix of octal numbers, where N is the number of output bit
streams from the encoder, or the number of bits the encoder generates
simultaneously each clock cycle. CODEGEN specifys the relationships between the K
input streams and the N output streams.

Y: 5-element struct, trellis description of the encoder:
numInputSymbols : equals to 2K

numOutputSymbols: equals to 2N

numStates : number of the registor states inside the encoder, equals to 2
sum(CONSLEN-1)

nextStates : numStates by numInputSymbols matrix. nextStates(Row,Col)
specifys the index of next state when the index of current state is Row and
index of input symbol is Col.
outputs : numStates by numInputSymbols matrix. outputs(Row,Col) specifys
the index of output symbol when the index of current state is Row and the index
of input symbol is Col.

Examples

For the classic (2,1,6) code shown below, the parameters should be

ConsLen = [7]; % 7=m+1, m=6 is the number of registers

CodeGen = [133,171]; % octal 133=[1 0 1 1 0 1 1], octal 171=[1 1 1 1 0 0 1]

For the (2,1,3) code shown below, the parameters should be

ConsLen = [4]; % 4=m+1, m=3 is the number of registers

CodeGen = [13,17]; % octal 13=[1 0 1 1], octal 17=[1 1 1 1]

trellis = poly2trellis(ConsLen,CodeGen);

results

trellis =

 numInputSymbols: [2]

SystemVue - Users Guide

108

 numOutputSymbols: [4]

 numStates: [8]

 nextStates: [8x2 double]

 outputs: [8x2 double]

trellis.numInputSymbols =

 2

trellis.numOutputSymbols =

 4

trellis.numStates =

 8

trellis.nextStates =

 0 4

 0 4

 1 5

 1 5

 2 6

 2 6

 3 7

 3 7

trellis.outputs =

 0 3

 3 0

 3 0

 0 3

 1 2

 2 1

 2 1

 1 2

Compatibility

See also
convenc (users), vitdec (users)

 true
Syntax
true

Definition
The value true (logical 1).

Examples:

Formula Result

x = true x is a true (logical 1)

See Also
false (users)

 puncture
Erase specified symbols based on puncture pattern

Syntax

Y = puncture(X, puncPat)

Definition

puncPat: a vector of 1's and 0's, such as [1 0 0 1 1]

Examples

x = 1:10;

puncPat = [1 0 1 1];

y = puncture(x,puncPat),

y =

 1 3 4 5 7 8 9

Compatibility

See also
depuncture (users)

 qamdemod
Quadrature amplitude demodulation

Syntax

Definition

Examples

Compatibility

No

See also
qammod (users)

 qammod
Quadrature amplitude modulation

Syntax

Definition

Examples

Compatibility

See also
qamdemod (users)

 qfunc
Q function

Syntax

Y = qfunc(X)

Definition

Y = qfunc(X) returns the Q function of real scalar X, i.e.

 1 _+Inf t^2

Y = Q(X) = ---------- | exp(- ---) dt

 sqrt(2*pi) _|X 2

The Q function is related to complementary error function erfc (users), according
to

 1 X

Q(X) = - erfc(-----)

 2 sqrt(2)

Examples

Compatibility

See also
qfuncinv (users), erf (users), erfc (users)

SystemVue - Users Guide

109

 qfuncinv
Inverse Q function

Syntax

Y = qfuncinv(X)

Definition

Y = qfuncinv(X) returns the argument of Q function of real scalar X satisfying:

 1 _+Inf t^2

X = Q(Y) = ---------- | exp(- ---) dt

 sqrt(2*pi) _|Y 2

The Q function is related to complementary error function ERFC, according to

 1 X

Q(X) = - erfc(-----)

 2 sqrt(2)

Examples

Compatibility

See also
qfunc (users), erf (users), erfc (users)

 rand
Syntax
y = rand(n1)
OR
y = rand(n1,n2)
OR
y = rand([n1,n2,..nN])

Definition
This function returns an array of random numbers with uniform distribution. The size of
the array can be specified either as a list of one or two scalars or a vector for higher-
dimensions. If a single scalar n1 is used as the only parameter, a square matrix of size n1
x n1 is returned.

Examples:

% Create a 5x5 matrix of uniformly distributed random numbers

y = randn(5)

%

% Create a 5-part row vector of uniformly distributed random numbers

y = randn(1,5)

%

% Create a 3x4x2 matrix of uniformly distributed random numbers

y = randn([3,4,5])

%

Compatibility
nN - positive integer valued scalar or vector for all N >= 1.

See Also:
randn (users)

 randerr
Generate bit error patterns

Syntax

OUT = randerr(M)

OUT = randerr(M,N)

OUT = randerr(M,N,ERRORS)

OUT = randerr(M,N,ERRORS,STATE)

Definition

OUT = RANDERR(M) generates an M-by-M binary matrix, each row of which has
exactly one nonzero entry in a random position.

OUT = RANDERR(M,N) generates an M-by-N binary matrix, each row of which
has exactly one nonzero entry in a random position.

OUT = RANDERR(M,N,ERRORS) generates an M-by-N binary matrix, where
errors determines how many nonzero entries are in each row.

OUT = RANDERR(M,N,ERRORS,STATE) specifies the state of the random number
generator.

Examples

Compatibility

See also
rand (users), randsrc (users), randint (users)

 randint
Generate uniformly distributed random integers

Syntax

OUT = randint

OUT = randint(M)

OUT = randint(M,N)

OUT = randint(M,N,RANGE)

OUT = randint(M,NRANGE,STATE)

Definition

OUT = randint generates a random scalar that is either 0 or 1 with equal
probability.

OUT = randint(M) generates a random M-by-M binary matrix,the elements of
which take the value 0 or 1 with equal probability.

OUT = randint(M,N) generates random M-by-N binary matrix.

OUT = randint(M,N,RANGE) specifis the element value range. If RANGE is a
positive integer, the OUT will be from [0, RANGE-1]. If RANGE is a negative
integer, the OUT will be from [RANGE+1,0]. If RANGE is two element vector, the
OUT will be from [MIN, MAX].

OUT = randint(M,NRANGE,STATE) specifies the state of the random number
generator.

SystemVue - Users Guide

110

Examples

Compatibility

See also
rand (users), randsrc (users), randerr (users)

 randn
Syntax
y = randn(n1)
OR
y = randn(n1,n2)
OR
y = randn([n1,n2,..nN])

Definition
This function returns an array of random numbers with Normal (Gaussian) distribution.
The size of the array can be specified either as a list of one or two scalars or a vector for
higher-dimensions. If a single scalar n1 is used as the only parameter, a square matrix of
size n1 x n1 is returned.

Examples:

% Create a 5x5 matrix of normally distributed random numbers

y = randn(5)

%

% Create a 5-part row vector of normally distributed random numbers

y = randn(1,5)

%

% Create a 3x4x2 matrix of normally distributed random numbers

y = randn([3,4,5])

%

Compatibility
nN - positive integer valued scalar or vector for all N >= 1.

See Also:
rand (users)

 randsrc
Generate random matrix using prescribed alphabet

Syntax

OUT = randsrc

OUT = randsrc(M)

OUT = randsrc(M,N)

OUT = randsrc(M,N,ALPHABET)

OUT = randsrc(M,N,[ALPHABET;PROB])

OUT = randsrc(M,N,[ALPHABET;PROB],STATE)

Definition

OUT = randsrc generates a random scalar that is either -1 or 1 with equal
probability.

OUT = randsrc(M) generates a random M-by-M matrix, the element of which is 1
or -1 with equal probability.

OUT = randsrc(M,N) generates a random M-by-N matrix.

OUT = randsrc(M,N,ALPHABET) specifies the ALPHABET instead of the default -1
and 1.

OUT = randsrc(M,N,[ALPHABET;PROB]) specifies the probabilty of each
alphabet.

OUT = randsrc(M,N,[ALPHABET;PROB],STATE) specifies the state of the random
number generator.

Examples

Compatibility

See also
rand (users), randint (users), randerr (users)

 rcosflt
Filter input signal with (sqrt) raised cosine filter

Syntax

Y = rcosflt(X,OSR,fltType,Alpha)

Y = rcosflt(X,OSR,fltType,Alpha,Delay)

[Y,H] = rcosflt(X,OSR,fltType,Alpha,...)

Definition

Y = RCOSFILT(X,OSR,fltType,Alpha,Delay) filters the input signal vector with1.
automatically designed raised cosine FIR filter, where

X: Original input data (without zero inserted)
OSR: Oversample ratio, the sample frequency ratio of output signal to
input signal, must be a integer at least 1.
fltType: "normal" or "sqrt", specifies the filter used is a normal raised
cosine filter or root raised cosine filter, defaults by "normal".
Alpha: Rolloff factor of the filter, or the ratio of extra bandwidth to input
sample rate, must be in the range of [0,1], defaults by 0.5. If OSR is 1,
Alpha can only be set 0.
Delay: Group delay of the filter, measured in input samples, defaults by 8.
The designed filter length is 2*OSR*Delay+1.

Root mean square (rms) value of Y is almost the same as that of X. Length of output
signal is (length(x)+2*Delay)*OSR when OSR is greater than 1. If X is a matrix, each
column is treated as a independent signal.
[Y,H] = RCOSFILT(X,OSR,fltType,Alpha,...) returns the filter used in H.2.
This function is generally used for pulse shaping of baseband signal with the following3.
process:

Design a raised cosine filter based on OSR,fltType,Alpha and Delay.1.
Zeros inserting (X) according to OSR,2.
Filtering with designed filter.3.

Examples

Compatibility

See also
firrcos (users)

 real

SystemVue - Users Guide

111

Syntax
y = real(x)

Definition
This function returns the real part of a complex number. This function operates on an
part-by-part basis on arrays.

Examples:

Formula Result

real(20) 20

real(3+2j) 3

real([-2+4j 5-3j 2+j]) [-2 5 2]

Compatibility
Numeric scalars, vectors, arrays

See Also
imag (users)

 rectpulse
Rectangular pulse shaping

Syntax

Y = rectpulse(X,nSamp)

Definition

Y = RECTPULSE(X,nSamp) return the rectangular pulse shaped signal of X by
replicates each symbol in X nSamp times. If X is a matrix, each column is
treated as a independent signal.

Examples

Compatibility

See also
upsample (users), rcosflt (users)

 rectwin
Rectangular window

Syntax

C = rectwin(L)

Definition

C = rectwin(L) returns an all-1 column vector C of length L.

Examples:

Formula Result

rectwin(5) [1 1 1 1
1].'

See Also:
bartlett (users), triang (users), blackman (users), gausswin (users), hamming (users),
hann (users)

 rem
Syntax
r = rem(a,b)

Definition
This function returns the remainder when dividing a by b. Both parameters are required to
be real arrays or real scalars subject to the restriction that if b is a vector or array, it must
be the same size as a for part-by-part division and remainder computation. when b is a
scalar, all the parts of a are divided by it. When b is explicitly zero, the result is NaN.

Examples:

Formula Result

rem(2, 1.45) 0.55

rem([2,5,6], 1.45] [0.55, 0.65, 0.20]

rem([2,5,6], [1.45,1.55,1.65] [0.55, 0.35, 1.05]

Compatibility
Real valued scalars, vectors, arrays

See Also
mod (users)

 resample
Change sampling rate by rational factor

Syntax

Y = resample(X,P,Q)

Y = resample(X,P,Q,N)

Y = resample(X,P,Q,N,Beta)

Y = resample(X,P,Q,B)

[Y,H] = resample(X,P,Q,...)

Definition

Y = RESAMPLE(X,P,Q) resamples the signal in vector X at P/Q times the original1.
sample rate using a polyphase implementation. P and Q must be positive integers.
Length of Y is ceil(length(x)*P/Q). If X is a matrix, resample works down its columns.
Resample applies an anti-aliasing (lowpass) FIR filter to X during the resampling2.
process. It designs the filter using FIRLS with a Kaiser window. Cutoff frequency of
the filter is 1/max(p,q). Signal delay introduced by filtering is compensated.
Deviations may exist at both ends of Y due to filter transient (data preceding and
following given data is regarded as zero).
Y = RESAMPLE(X,P,Q,N) uses 2*N*max(1,Q/P) samples of X to compute each sample3.
of Y. The length of the FIR filter is 2*N*max(P,Q)+1; By default, N=10. If N = 0,
RESAMPLE performs a nearest-neighbor interpolation, i.e., the output Y(k) =
X(round((k-1)*Q/P)+1).
Y = RESAMPLE(X,P,Q,N,BETA) uses BETA as the BETA parameter for the Kaiser4.
window. By default, BETA = 5.
Y = RESAMPLE(X,P,Q,B) equals to the following processes (regardless of filter5.
transient): ceil(length(x)*p/q)

Y1 = zeros(length(X)*P,1);
Y1(1:P:end) = X;
Y2 = CONV(X,B);
Y = Y2((ceil((length(B)-1)/2)+(1:Q:1+Q*ceil(length(X)*P/Q)-Q)));
B should be a odd length phase linear filter to keep Y(1) the same time
index as X(1). If B is of even length, Y(1) is coordinate with X(1+1/P).

[Y,B] = RESAMPLE(X,P,Q,...) returns the vector B, the coefficients of the filter applied6.
to x during the resampling process (after upsampling).

SystemVue - Users Guide

112

Examples

Compatibility

See also
downsample (users), firls (users), interp (users), interp1 (users), kaiser (users), upfirdn
(users), upsample (users)

 reshape
Syntax
y = reshape(x , i,j)
y = reshape(x , i,j,k, ...)
y = reshape(x , [i,j,k, ...])
y = reshape(x , ...,[],...)

Definition
y = reshape(x , i,j) returns a i-by-j matrix with elements taken column wise from x. The
number of elements in the resulting i-by-j matrix y must be same as number of elements
in the input matrix x.
y = reshape(x , i,j,k, ...) and y = reshape(x , [i,j,k, ...]) will return a i-by-j-by-k-by....
matrix with same elements as in input matrix x. The number of elements in the resulting
i-by-j-by-k-by.... matrix y must be same as number of elements in the input matrix x.
y = reshape(x , ...,[],...) replaces [] with an integer scalar number representing the
number of elements in the corresponding dimension such that the total number of
elements in output matrix y is same as the number of elements in input matrix x. You can
have only one instance of [] in argument.

Swept-dimensions are NOT counted. (eg. if S is the variable produced by a 100 point
linear analysis of a 2-port circuit, reshape(S, [4;1]) would return a variable containing S,
but having dimensions 100x4x1)

Examples:

Formula Result

x = [1 , 2 , 3 ; 4 , 5 ,6]
y = reshape(x , 1, 6)

y = [1 , 4, 2, 5, 3 , 6]

x = [1 , 2 , 3 ; 4 , 5 ,6]
y = reshape(x , [6, 1])
Or
y = reshape(x , 6, 1)

y = [1; 4; 2; 5; 3; 6]

x = [1 , 2 , 3 ; 4 , 5 ,6 ; 7, 8, 9; 10, 11, 12]
y = reshape(x , 6, [])

y = [1, 8; 4, 11; 7, 3; 10, 6; 2, 9; 5, 12]

Compatibility
Real and complex-valued Scalars, Vectors, Arrays

 roots
Syntax
polyroot = roots(polycoef)

Definition
This function returns a column vector, polyroot, whose parts are the roots of the
polynomial expressed in the form of the coefficient vector polycoef.

Examples:

% Find the roots of the polynomial:

% y = 1 - 6*x - 72*x^2 - 27*x^3

polycoef = [1,-6,-72,-27];

polyroot = roots(polycoef);

% polyroot = [12.1229;-5.7345;-0.3884]

Compatibility
Real or complex valued vector

 round
Syntax
y = round(x)

Definition
round rounds the argument to the nearest integer. This function operates on an part-by-
part basis on arrays.

Examples:

Formula Result

round(2.2) 2

round(2.2 + 3.7j) 2 + 4j

round(-2.3 - 3.9j) -2 - 4j

Compatibility
Numeric scalars, Vectors, Arrays

See Also
floor (users)
ceil (users)
fix (users)

 rsdec
Reed-Solomon decoder

Syntax

MSG = rsdec(CODE, M, K, PrimPoly)

MSG = rsdec(CODE, M, K, PrimPoly, B)

MSG = rsdec(CODE, M, K, PrimPoly, B, ErasLoc)

Definition

CODE: received symbol block to be decoded, length within [2T+1,N], each symbol
should be an integer within [0,2M-1]
M: the code is defined in GF(2M), a message symbol represents M bits
K: unshortened message length, an odd integer within [1,2M-3]
PrimPoly: P(x), primitive polynomial (Galois Field generator polynomial), M+1 terms
with degree of M, highest degree item first
B: degree of alpha, alpha^B is the first root of generator polynomial, B is 1 by
default.
ErasLoc: position vector of erasure symbols, each within [1,length(CODE)]

If Ns = length(CODE) is less than N=2M-1, N-Ns zeros shall be padded to head
of CODE before decoding and discarded after decoding.

Derived variables are:

N: N=2M-1, is the unshortened codeword length, such as 7, 15, 255, etc
a: alpha, the prime element from which the Galois Field is generated, is commonly
02Hex in implementation.
T: (N-K)/2, number of error symbols that can be corrected, 2*T+1 is the minimum
distance between any two codewords
G(x): Galois Field generator polynomial,

G(x) = (x+aB) * (x+a(B+1)) * (x+a(B+2)) * ... * (x+a(B+2T-1))

code polynomial: C(X) = code(1:Ns) .* [X(Ns-1), X(Ns-2), ... X1, x0]

SystemVue - Users Guide

113

msg polynomial: MSG(X) = msg(1:Ks) .* [X(Ks-1), X(Ks-2), ... X1, x0]

Examples

% An R-S code in GF(2^4) correcting 3 errors can be coded/decoded as follows.

M = 4; % N = 2^M-1 = 15

K = 9; % T = 3, K = N-2*T

PrimPoly = [1,0,0,1,1] % P(x) = x^4 + x + 1

B = 1;

msg = [9,2,15,12,13,7,7,2,8]; % each symbol must in [0,2^M-1]

code = rsenc(msg,M,K,PrimPoly,B), % encoding

% code = [9 2 15 12 13 7 7 2 8 14 12 12 6 8 12]; % [msg,parity]

code_error = [9 2 4 12 13 11 7 2 8 14 12 15 6 8 12]; % 3 error symbols

msg_dec = rsdec(code, M, K, PrimPoly, B), % decoding

% if some received symbols are known to be errors, erase decoding can be used

% the sum of error symbols and half the erased symbols should be not great than T

code_error_erase = [9 2 4 12 0 11 7 2 8 14 12 0 6 8 12]; % 2 error symbols and 2 erased symbols

ErasLoc = [4,12];

msg_dec_eras = rsdec(code, M, K, PrimPoly, B, ErasLoc), % erase decoding

results

msg_dec =

 9 2 15 12 13 7 7 2 8

msg_dec_eras =

 9 2 15 12 13 7 7 2 8

Compatibility

See also
rsenc (users)

 rsenc
Reed-Solomon encoder

Syntax

CODE = rsenc(MSG, M, K, PrimPoly)

CODE = rsenc(MSG, M, K, PrimPoly, B)

Definition

MSG: information symbol block to be encoded, length within [1,K], each symbol
should be an integer within [0,2M-1]
M: the code is defined in GF(2M), a message symbol represents M bits
K: unshortened message length, an odd integer within [1,2M-3]
PrimPoly: P(x), primitive polynomial (Galois Field generator polynomial), M+1 terms
with degree of M, highest degree item first
B: degree of alpha, alpha^B is the first root of generator polynomial, B is 1 by
default.

If Ks = length(MSG) is less than K, K-Ks zeros shall be padded to head of MSG
before encoding and discarded after encoding. The codeword is called shortened
R-S code.

Derived variables are:

N: N=2M-1, is the unshortened codeword length, such as 7, 15, 255, etc
a: alpha, the prime element from which the Galois Field is generated, is commonly
02Hex in implementation.
T: (N-K)/2, number of error symbols that can be corrected, 2*T+1 is the minimum
distance between any two codewords
G(x): Galois Field generator polynomial,

G(x) = (x+aB) * (x+a(B+1)) * (x+a(B+2)) * ... * (x+a(B+2T-1))

msg polynomial: MSG(X) = msg(1:Ks) .* [X(Ks-1), X(Ks-2), ... X1, x0]

code polynomial: C(X) = code(1:Ns) .* [X(Ns-1), X(Ns-2), ... X1, x0]

code(1:Ns) = [msg(1:Ks), parity(1:2T)]

Examples

% An R-S code in GF(2^4) correcting 3 errors can be coded as follows.

M = 4; % N = 2^M-1 = 15

K = 9; % T = 3, K = N-2*T

PrimPoly = [1,0,0,1,1] % P(x) = x^4 + x + 1

B = 1;

msg = [9,2,15,12,13,7,7,2,8]; % each symbol must in [0,2^M-1]

code = rsenc(msg,M,K,PrimPoly,B), % encoding, [msg,parity]

results

code =

 9 2 15 12 13 7 7 2 8 14 12 12 6 8 12

Compatibility

See also
rsdec (users)

 runanalysis
Syntax
runanalysis('AnalysisName')
runanalysis('AnalysisName', ContinueOnError)

Definition
The runanalysis function is used to force an analysis to run from an equation block. It can
be used to control simulations in a sequential manner. The function does not return until
the analysis finishes, whether successful or in error.

The second argument, ContinueOnError, is optional and defaults to false. If
ContinueOnError is false and an error is encountered when running the analysis, the
equation block throws an error and terminates. If ContinueOnError is true, the equation
script continues to run.

Examples:

SourceAmpls = [1 2 5 10]; % We'll step our source's amplitude with these values

for i = 1 : length(SourceAmpls)

 CurAmplitude = SourceAmpls(i); % This variable is used by our source's Amplitude parameter

 runanalysis('Analysis1');

% Post process data from the current analysis run

% Post-processing equations would go here

end

Compatibility

See Also

 sec
Syntax
y = sec(x)

Definition
sec returns the secant of a radian-valued argument. This function operates on an part-by-

SystemVue - Users Guide

114

part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 secd
Syntax
y = secd(x)

Definition
secd returns the secant of a degree-valued argument. This function operates on an part-
by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 sech
Syntax
y = sech(x)

Definition
sech returns the hyperbolic secant the argument. This function operates on an part-by-
part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 setindep
Syntax
setindep("dependentvar", "independentvar1", "independentvar2", ...)

Definition
setindep manually sets the independent variable(s) for a swept variable. Both are passed
by name. A long name can be used for the independentvar. If independentvar is empty
(blank) the dependentvar becomes unswept. All independents should have the same
length, equal to the number of rows in the dependent.

Examples:

Formula Result

ind = [0.025;1;2;5]
setindep("x" ,"ind")

set x to have a 4 part independent vector. x should be of size 4xm or 4xmxn

abest = myS[2,1]
setindep("abest",
"myData.F")

set abest to use MyData.F as an independent vector. F must have the same
number of parts as abest has rows.

Compatibility
Vectors and Arrays. The independent var must be numeric.

See Also
getunits

 setmatlabvariables
Syntax
setmatlabvariables('var1', 'var2')
setmatlabvariables var1 var2

Definition
setmatlabvariables sets SystemVue's variables to MATLAB, which will defines MATLAB
variables and set value to variable

Examples:

Formula Result

setmatlabvariables('var1', 'var2') set two variables named var1/var2 in the SystemVue to MATLAB

Compatibility
variables are strings.

See Also
MATLAB Integration, getmatlabvariables (users)

 setunits
Syntax
setunits('varname', unit)

Definition
setunits sets a variable named varname to have units specified by the parameter unit.
unit may be an integer or a string.

setunits is used only to set the units of variables in equations and datasets. It will not change units of a
part's parameters.

Examples:

Formula Result

y = [0.025]
setunits('x' , 6006)

sets units of y to um
y = 25000

y = 5
setunit('y' , 'mm')

sets units of y to mm
y =5000

y = 0.0001
setunits('y', 'uF')

sets units of y to uF
y = 100

Compatibility
Numeric Scalars, Strings

See Also
getunits

 setvariable
Syntax
setvariable(Dataset, Variable, value)

Definition
setvariable sets a variable value in a dataset

Examples:

Formula Result

setvariable('OutData', 'OutVar', 3) set the variable named Outvar in the dataset OutData to the value 3

setvariable('Out', 'Var', [1 2 3]) set the variable named Var in the dataset Out to a vector [1 2 3]

Compatibility
Dataset and Variable are strings. value is any valid value.

See Also
getvariable (users)

 sftrans
transform of lowpass filter to other type filter

Syntax

[fz, fp, fg] = sftrans(z,p,g,w,stop)

Definition

This function transform the zero-pole-gain of a lowpass filter with normalized1.
bandwidth to lowpass filter, highpass filter, bandpass filter or bandstop filter. W is

SystemVue - Users Guide

115

desired bandwidth which for lowpass and highpass has one element,and for bandpass
and bandstop has two elements [W1 W2]. STOP is set true for highpass and
bandstop filter or set false for lowpass and bandpass filter. W is in s-plane and is in
rad/s.

Output arguments should NOT be omitted
2.

Examples

Compatibility

See also

 sign
Syntax
y = sign(x)

Definition
sign returns the signum of the argument. The signum function returns -1 if the argument
is negative, 1 if the argument is positive, and 0 if the argument is 0. This function
operates on an part-by-part basis on arrays.

Compatibility
Numeric scalars, Vectors, Arrays

 sin
Syntax
y = sin(x)

Definition
sin returns the sine of the radian-valued argument. This function operates on an part-by-
part basis on arrays.

Examples:

Formula Result

sin(0) 0

sin(pi/2) 1

sin(-pi/2) -1

sin([pi/4 2*pi/3]) [0.707 0.866]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
asin (users)
sind (users)

 sinc
Syntax
y = sinc(x)

Definition
sinc returns the sinc function of the argument. The sinc function is defined as
sin(pi*x)/(pi*x) or 1 if x is equal to 0. This function operates on an part-by-part basis on
arrays.

Examples:

Formula Result

sinc(0) 1

sinc(pi/2) 0.198

sinc(pi/4) 0.253

sinc(2*pi/3) 0.044

The following figure shows sinc(-10:0.01:10).

Compatibility
Numeric scalars, Vectors, Arrays

See Also
sin (users)

 sind
Syntax
y = sind(x)

Definition
sind returns the sine of the degree-valued argument. This function operates on an part-
by-part basis on arrays.

Examples:

Formula Result

sind(0) 0

sind(90) 1

sind(-90) -1

sind([45 60]) [0.707 0.866]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
asin (users)
sin (users)

 sinh
Syntax
y = sinh(x)

Definition
sinh returns the hyperbolic sine of the number, or (exp(x) - exp(-x)) / 2. This function
operates on an part-by-part basis on arrays.

SystemVue - Users Guide

116

Examples:

Formula Result

sinh(1) 1.175

sinh(5) 74.203

sinh([pi/3 0]) [1.249 0]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
asinh (users)

 size
Syntax
y = size(x)

Definition
size returns a vector containing the number of parts in each dimension of x. part one of y
corresponds to the number of parts in the first dimension, part two to the second
dimension, and so on.

Examples:

Formula Result

size([1 2 3 4]) [1 4]

size([1 2 3; 4 5 6]) [2 3]

size(ones(4,3,2)) [4 3 2]

Compatibility
Numeric Scalars, Vectors, Arrays

 skewness
Syntax
y = skewness(x)
y = skewness(x,Flag)
y = skewness(x,Flag,iDim)

Definition
Returns the sample skewness of a vector x. Skewness is the third central moment of X
divided by the cube of the standard deviation.

If Flag is 0 (default), skewness normalizes by N-1 where N is the sample size. If Flag is 1,
skewness normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result

y = skewness([3 ; 4 ; 8 ; 9]) y = 0

y = skewness([1, 2, -5], 1) y = -0.652

Compatibility
Numeric arrays

See Also
std (users)
var (users)

 sort
Syntax
y = sort(x)
y = sort(x,dim)
[y,index]=sort(x)
[y,index]=sort(x,dim)

Definition
This function sorts contents of the array x in ascending order along one specific dimension
of the array. When unspecified, the innermost non-singleton dimension is chosen. The
function can be required to additionally specify the original indices in the sorted order.

Examples:

In the following example note that b is the column-wise (default dim is 1 for a 2x3 matrix)
sorted whereas c and d are sorted row-wise. The index matrix associated with d is
interpreted as follows: if the value k appears at a specific location along row i column j, it
means that the number now placed (row i,column j) was originally the number at (row i,
column k).

Strings can be sorted alphabetically according to ASCII dictionary if the collection is
presented as cells as shown in the following example. Note that here the string "This" is
retained as the first part because large-cap letters occur before small-cap letters in the
ASCII dictionary.

Compatibility:
Real-valued numeric vectors and arrays or strings

 spline
Syntax
polynomial = spline(originalIndep,originalDep)
OR
fittedDependent = spline(originalIndep,originalDep,fittedIndep)

Definition
This function performs spline polynomial extraction from a one-dimensional function
defined as the mapping of an original independent vector onto an original dependent
vector. If supplied with a third argument explicitly specifying the independent vector to
which fitting is required, the function returns the fitted dependent vector. If the third

SystemVue - Users Guide

117

parameter is not supplied then a structure describing the piece-wise polynomial function is
returned, which may then be used in a call to the ppval(polynomial,fittedIndep) function
to generate the fittedDependent variable.

Examples:
In the following example, the original mapping of x and sinc(x) are shown in sparsely
spaced blue dots, one dot per unit along the independent axis. When four times as much
granularity is required, an extended fitting vector xx is introduced. Spline curves produced
using this extended independent vector are compared against the true sinc() function of
the extended vector. Note how there is substantial match when some variation is present
in the original data, e.g. just one non-zero data point in the original dependent vector. In
regions where there is absolutely no off-axis data in the dependent vector i.e. in the side-
lobes, the spline() function is still able to partially recover the existence of the side lobes,
if not the full amplitude of each.

Compatibility
Real-valued 1-dimensional vector: originalIndep, fittedIndep
Real or complex-valued array: originalDep

 sqrt
Syntax
y = sqrt(x)

Definition
This function returns the square-root of the argument.
This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

sqrt(0) 0

sqrt(4) 2

sqrt(2+3i) 1.67415+j0.895977

sqrt(-1) j

sqrt([9 16 -4]) [3 4 -2j]

Compatibility
Real and complex-valued scalars, vectors, arrays

 square
Square wave generation

Syntax

S = square(Rad)

S = square(Rad,Duty)

Definition

S = SQUARE(Rad) generates a 50% duty square wave with period 2*Pi for the vector1.
Rad (radian). Rad is the product of 2*PI, frequency and time.
S = SQUARE(T,DUTY) generates a square wave with specified duty cycle. Duty is the2.
percent of the period in which the signal is positive.

Examples

f = 100;

t = 0:.0001:.0100;

y = square(2*pi*f*t);

Compatibility

See also
cos (users), sin (users), sinc (users)

 ss2tf
Convert state-space filter parameters to transfer function form

Syntax

[num,den] = ss2tf(a, b, c, d)

Definition

[NUM, DEN] = ss2tf(A, B, C, D). A should be square matrix. B should be column1.
vector with length equal with A's column number. C should be row vector with length
equal with B. D should be a scalar.

Examples

Compatibility

See also
ss2zp (users), tf2ss (users), zp2tf (users)

 ss2zp
Convert state-space filter parameters to zero-pole-gain form

Syntax

[z, p, k] = ss2zp(a, b, c, d)

Definition

[Z, P, K] = ss2zp(A, B, C, D) A should be square matrix. B should be column vector1.
with length equal with A's column number. C should be row vector with length equal
with B. D should be a scalar.

Examples

SystemVue - Users Guide

118

Compatibility

See also
ss2tf (users), tf2zp (users), zp2ss (users)

 sscanf
Syntax:
A = sscanf(string, format)
A = sscanf(string, format, size)
[A, count, msg, next] = sscanf(...)

Definition:
Used to read formatted input from a string. Converts the input string using format
argument (format) and puts the results into a matrix (A).

size (optional) argument is used to determine how much data is read. Valid values are:

n read at most n fields from the string

inf read all of the input string

[m,n] read at most m*n fields. Fill a matrix with at most m
rows.

count (optional) result is the number of matching fields.
msg (optional) is for an error message
next (optional) is one more than the number of characters match in the input string

Format:

Whitespace characters (space, tab or new lines) are used to delimit fields. There
are not included in the output.
Non-whitespace characters that are not a part of a format specifier are matched
with the next character in string and then discarded. If the character does not match
sscanf stops process string.
Format specifers: %[*][width][modifiers]conversionChar, where:
* (optional) match the data in string but do not put the corresponding match in the

output matrix. The format must match but it isn't included in the output.

width (optional) maximum number of characters to match in string

modifiers (optional) For compatibility only. valid values (h, l, L)

conversionChar see table below

Conversion Characters:

Type Qualifying Input

c Single character: Reads the next character. If a width different from 1 is specified, the function
reads width characters and stores them in the successive locations of the array passed as
argument. No null character is appended at the end.

d Decimal integer: Number optionally preceeded with a + or - sign.

e,E,f,g,G Floating point: Decimal number containing a decimal point, optionally preceeded by a + or - sign
and optionally folowed by the e or E character and a decimal number.

o Octal integer.

s String of characters. This will read subsequent characters until a whitespace is found (whitespace
characters are considered to be blank, newline and tab).

u Unsigned decimal integer.

x,X Hexadecimal integer.

 std
Syntax
y = std(x)
y = std(x, Flag)
y = std(x, Flag, iDim)

Definition
Returns the standard deviation of a vector x.

If Flag is 0 (default), std normalizes by N-1 where N is the sample size. If Flag is 1, std
normalizes by N.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result

y = std([3 ; 4 ; 8 ; 9]) y = 2.9439

y = std([1, 2, 3], 1) y = 0.8165

Compatibility
Numeric arrays

See Also
var (users)
skewness (users)

 str2num
Syntax
y = str2num('xstring')

Definition
This function can convert a single real-valued number from string format to numeric
format.
When supplied with a string containing preceeding non-numeric characters, other than
whitespace or tab, the function returns zero.

Examples:

Formula Result

str2num('500') 500

str2num('
500')

500

Compatibility
String

See Also
num2str (users)

 strcmp
Syntax
out = strcmp(str1, str2)
out = strcmp(str, ca)
out = strcmp(ca1, ca2)

Definition
out = strcmp(str1, str2) compares two strings, str1 and str2, and returns true (logical 1)
if they are identical. If not, then it returns false (logical 0).

out = strcmp(str, ca) compares str with each string in a cell array. It then returns a logical
array, out, that contains the corresponding logical values on whether the two strings are
identical.

out = strcmp(ca1, ca2) compares each part in ca1 to the corresponding part in ca2. It
then returns a character array that is the same size as ca1 and ca2 with the corresponding
logical value on whether the two strings are identical.

This function does not ignore case. To ignore case, use the strcmpi function.

SystemVue - Users Guide

119

Examples:

Formula Result

out = strcmp('One', 'Two') out = 0

out = strcmp('Yes', {'No', 'Yes'}) out = [0,
1]

Compatibility
string array, cell array

See Also
strcmpi (users)

 strcmpi
Syntax
out = strcmpi(str1, str2)
out = strcmpi(str, ca)
out = strcmpi(ca1, ca2)

Definition
out = strcmpi(str1, str2) compares two strings, str1 and str2, and returns true (logical 1)
if they are identical. If not, then it returns false (logical 0).

out = strcmpi(str, ca) compares str with each string in a cell array. It then returns a
logical array, out, that contains the corresponding logical values on whether the two
strings are identical.

out = strcmpi(ca1, ca2) compares each part in ca1 to the corresponding part in ca2. It
then returns a character array that is the same size as ca1 and ca2 with the corresponding
logical value on whether the two strings are identical.

This function ignores case. To take the case into account, use the strcmp function.

Examples:

Formula Result

out = strcmpi('One', 'Two') out = 0

out = strcmpi('Yes', {'No', 'YES'}) out = [0,
1]

Compatibility
string array, cell array

See Also
strcmp (users)

 strncmp
Syntax
out = strncmp(str1, str2, n)
out = strncmp(str, ca, n)
out = strncmp(ca1, ca2, n)

Definition
This function compares the first n characters in str1 and str2 and if they are identical, it
returns true (logical 1). Otherwise, it returns false (logical 0).

The function can also compare a string and each part in a cell array, or the parts in two
cell arrays.

This function is case sensitive. To ignore case, use the strncmpi function.

Examples:

Formula Result

out = strncmp('example', 'exam', 4) out = 1;

out = strncmp('test', {'exam', 'testing'},
4)

out =
[0,1];

Compatibility
string array, cell array

See Also
strncmpi (users)

 strncmpi
Syntax
out = strncmpi(str1, str2, n)
out = strncmpi(str, ca, n)
out = strncmpi(ca1, ca2, n)

Definition
This function compares the first n characters in str1 and str2 and if they are identical, it
returns true (logical 1). Otherwise, it returns false (logical 0).

The function can also compare a string and each part in a cell array, or the parts in two
cell arrays.

This function is not case sensitive. To take case into account, use the strncmp function.

Examples:

Formula Result

out = strncmpi('example', 'EXAM', 4) out = 1;

out = strncmpi('test', {'exam', 'TeStING'},
4)

out =
[0,1];

Compatibility
string array, cell array

See Also
strncmp (users)

 struct
Syntax
y = struct(field1,value1,filed2,value2,....,fieldN,valueN)

Definition
This function creates a structure parts of which can be of various types ranging from
strings through complex cell arrays. Each field is assigned the type of the value which
succeeds it. If the structure contains more than one cell array, like a matrix, all such cell
arrays must be of the same size. Note that fields are always specified as strings.

Examples:
In the figure below, observe how records of two people who share the same last name can
be saved to and retrieved from a single structure.

SystemVue - Users Guide

120

Compatibility
Numeric scalars, Vectors, Arrays

 sum
Syntax
y = sum(x)
y = sum(x,dim)

Definition
Returns the sum of parts of a vector x.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
dim, or the first non-singleton dimension if dim is not specified.

The dim argument is optional and specifies which dimension to operate along. For
example, if dim is 1, this function operates on each column of the argument. If the
argument is omitted, the first non-singleton dimension is chosen as the dimension to
operate along.

Examples:

Formula Result

y = sum([10 , 3 , 5]) y = 18

y = sum([2 ; 9 ; 11]) y = 22

y = sum([complex(3 , 3) , complex(5 , 2)]) y = 8 + j5

y = sum([3 , 2 , 19 ; 5 , 7 , 1.5]) y = [8, 9, 20.5]

y = sum([3 , 2 , 19 ; 5 , 7 , 1.5], 2) y = [24; 13.5]

Compatibility
Numeric scalars, Vectors, Arrays

 svd
Syntax
s = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X, 0)
[U,S,V] = svd(X, 'econ')

Definition
Let X be an m x n matrix and k = min(m,n).

S = svd(X) returns, in the vector S, the singular values (in decreasing order) of the matrix
X. S is a column vector of size k.

[U,S,V] = svd(X) produces matrices U, S, and V that form the singular value
decomposition of X, that is, X = U·S·V', where
U is a unitary m x m matrix
S is a diagonal m x n matrix whose primary diagonal parts are the singular values (in
decreasing order) of X
V is a unitary n x n matrix

[U,S,V] = svd(X, 0) OR [U,S,V] = svd(X, 'econ') produce matrices U, S, and V that form
the 'economical' singular value decomposition of X, that is, X = U·S·V', where
U is an m x k matrix containing only the first k columns of the unitary matrix U returned
by [U,S,V] = svd(X)
S is a diagonal k x k matrix whose primary diagonal parts are the singular values (in
decreasing order) of X
V is an n x k matrix containing only the first k columns of the unitary matrix V returned by
[U,S,V] = svd(X)

Examples:

>> X = [0.60099 0.766416 0.440156; 0.12712 0.857445 0.130142; 0.94683 0.447486 0.559306]

 X =

 0.60099 0.766416 0.440156

 0.12712 0.857445 0.130142

 0.94683 0.447486 0.559306

>> S = svd(X)

 S =

 1.6967

 0.663471

 0.0347664

>> [U,S,V]=svd(X)

 U =

 -0.628061 -0.11714 -0.769297

 -0.41523 -0.78565 0.458627

 -0.658122 0.607481 0.444796

 S =

 1.6967 0 0

 0 0.663471 0

 0 0 0.0347664

 V =

 -0.620837 0.610289 0.492046

 -0.667115 -0.740937 0.0772603

 -0.411726 0.280286 -0.867134

>> X = [0.723014 0.179696 -0.861837 0.441228; -0.328791 0.934672 1.68603 0.955427]

 X =

 0.723014 0.179696 -0.861837 0.441228

 -0.328791 0.934672 1.68603 0.955427

>> [U,S,V]=svd(X)

 U =

 -0.293781 0.955873

 0.955873 0.293781

 S =

 2.25294 0 0 0

 0 1.07425 0 0

 V =

 -0.233779 0.553425 0.721934 -0.343335

 0.373129 0.415505 -0.509149 -0.654903

 0.827729 -0.305779 0.463201 -0.0825176

 0.347831 0.653893 -0.0708765 0.668142

>> [U,S,V]=svd(X,'econ')

 U =

 -0.293781 0.955873

 0.955873 0.293781

 S =

 2.25294 0

 0 1.07425

 V =

 -0.233779 0.553425

 0.373129 0.415505

 0.827729 -0.305779

 0.347831 0.653893

 symerr
Compute number of symbol errors and symbol error rate

Syntax

[number,ratio] = symerr(x,y)

[number,ratio] = symerr(x,y,flg)

SystemVue - Users Guide

121

[number,ratio,loc] = symerr(...)

[NUMBER,RATIO,LOC] = symerr(X,Y,FLG)

Definition

This function compares the symbol difference between X and those in Y.

If X and Y are of the same size, FLG may be 'overall','row-wise' and 'column -
wise'. When FLG is 'overall', NUMBER and RATIO are scalar which mean the
difference number and rate of all elements in X compared with those in Y. When
FLG is 'row-wise', NUMBER and RATIO are column vectors which mean the
difference number and rate of each row of X compared with that in Y. When FLG
is 'column-wise',NUMBER and RATIO are row vectors which mean the difference
number and rate of each column of X compared with that in Y. LOC is the same
size with X, in which 0 means same, 1 means difference. Default is 'overall' in
this case.

If X is MX-1 vector and Y is MX-NY matrix, FLG may be 'overall' and 'column-
wise'. Default is 'overall'. In this case, X is extended to MX-NY matrix in which
each column is same. Then the calculation is same with that when X and Y are
of the same size.

If X is 1-NX vector and Y is MY-NX matrix, FLG may be 'overall' and 'row-wise'.
Default is 'overall'. In this case, X is extended to MY-NX matrix in which each
row is same. Then the calculation is same with that when X and Y are of the
same size.

If Y is vector while X is matrix, Y will be extended to matrix in the same way.

Examples

Compatibility

 tan
Syntax
y = tan(x)

Definition
tan returns the tangent of the radian-valued argument. This function operates on an part-
by-part basis on arrays.

Examples:

Formula Result

tan(pi) 0

tan(pi/4) 1

tan(-pi/4) -1

tan([5*pi/11 -5*pi/11]) [6.955 -6.955]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
atan (users)
tand (users)

 tand
Syntax
y = tand(x)

Definition
tand returns the tangent of the degree-valued argument. This function operates on an
part-by-part basis on arrays.

Examples:

Formula Result

tand(180) 0

tand(45) 1

tand(-45) -1

tand([180 45]) [0 1]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
atan (users)
tan (users)

 tanh
Syntax
y = tanh(x)

Definition
tanh returns the hyperbolic tangent of the argument, defined as (exp(x) - 1) / (exp(x) +
1). This function operates on an part-by-part basis on arrays.

Examples:

Formula Result

tanh(1) 0.762

tanh(5) 1

tanh(pi/3) 0.781

tanh([pi/6 0]) [0.48 0]

Compatibility
Numeric scalars, Vectors, Arrays

See Also
atanh (users)

 tcpip
Syntax
t = tcpip(ipAddr, nPort)

Definition
tcpip creates a class object to do tcpip i/o over a lan. ipAddr is a string with the IP
Address in dotted format, and nPort is a port number for the connection. Once created,
use fopen, fwrite, fread, fprintf, fscanf, fclose to manipulate the port.

Examples:

Formula Result

t = tcpip('127.0.0.1', 80) Create an object to connect to the web server on this computer (port 80 on 'this')

Compatibility
TCP/IP connections via LAN. ipAddr is a char array, and nPort is an integer.

tcpip Properties
Modify the way the tcpip link works by setting properties in the created class object. tcpip
supports the following properties

SystemVue - Users Guide

122

Property Description

LocalHost Local host descriptor

LocalPort Local port descriptor

LocalPortMode Specify automatic local port assignment

ReadAsyncMode Specfiy whether an asynchronous read operation.

RemoteHost The remote host ip address (char array)

RemotePort The remote port # (integer)

Terminator Terminator string, such as 'CR/LF'. ASCII value 0 - 127, or 'CR', 'LF', 'CR/LF', or 'LF/CR'

TransferDelay Specifies whether or not to use Nagle's algorithm.

InputBufferSize Size of the input buffer in bytes.

OutputBufferSize Size of the output buffer in bytes.

Timeout Time to wait before timing out on receive (in seconds, floating point).

 tf2ss
Convert transfer function filter parameters to state-space form

Syntax

[a, b, c, d] = tf2ss(num, den)

Definition

[A, B, C, D] = tf2ss(NUM, DEN). A,B,C and D are returned state-space. NUM should1.
be empty or a vector while DEN should be a vector longer than NUM.

Examples

Compatibility

See also
ss2tf (users), tf2zp (users), zp2ss (users)

 tf2zp
convert transfer function filter parameters to zero-pole-gain form

Syntax

[z, p, k] = tf2zp(num, den)

Definition

[Z, P, K] = tf2zp(NUM, DEN). Z and P are column vectors, NUM should be empty or a1.
vector while DEN should be a vector longer than NUM.

Examples

Compatibility

See also
ss2zp (users), tf2ss (users), zp2tf (users)

 toeplitz
Syntax
tm = toeplitz(x)
OR
tm = toeplitz(x,y)

Definition
This function returns an m x m Toeplitz matrix based on an m-length vector x or a
combination of m-length vectors x and y.

When only a single vector is used, the result is a symmetric, Hermitian matrix as shown in
the Tr1 table below. Note that the vector parts are distributed symmetrically with respect
to the principal dialoginal which is occupied by the first part of the input vector.

When two vectors are present, the first part of the first vector populates the principal
diagonal as evidenced in the differences between Tr12 and Tr21. The other parts of the
first vector populate the lower-triangle whereas those of the second vector populate the
upper-triangle of the resultant matrix.

Examples:

 triang
triangular window

Syntax

W = triang(N)

Definition

W = triang(N) returns the triangular window coefficients of length N in column vector1.
W.

for N odd:

 W(k) = 2*k/(N+1), if 1<= k <=(N+1)/2

 = 2*(N-k+1)/(N+1), if (N+1)/2< k <=N

for N even:

 W(k) = 2*k/N, if 1<= k <=(N+1)/2

 = 2*(N-k+1)/N, if N/2+1< k <=N

Examples

Compatibility

See also
rectwin (users)

 turbodec
Turbo decoder

Syntax

y=turbodec(x, g1, g2, map, puncture, tail, niter, algorithm, EbN0, rate)

SystemVue - Users Guide

123

Definition
This function decodes the codeword defined from turboenc (users)

Examples

Compatibility

See also
turboenc (users)

 turboenc
turbo encoder

Syntax

y = turboenc(x, g1, g2, map, puncture, tail)

Definition

This function eccodes the input message with turbo generation polynomial
defined below.

g1 and g2 are binary form component generator each contains two rows the first is
FeedbackPolynomial and the second is GeneratorPolynomial, e.g.

g1 =

 [1 1 1;

 1 0 1]

map is used as interleaver and deinterleaver. when interleaving, y(k)=x(map(k)),
when deinterleaving, y(map(k))=x(k).
If puncture = 1, coding rate is 1/3. If puncture = 0, coding rate is 1/2. when
puncturing, odd check bits from component coder1 and even check bits from
component coder2 are transmitted.
If tail = 1, zerotailing bits of both component coder are transmitted. If tail = 0,
zerotailing bits are not transmitted.

Both component coder will be reset to zero at the beginning of a frame whether
tail is 0 or 1.

Examples

Compatibility

See also
turbodec (users)

 upfirdn
Upsample by zero inserting, filtering and downsampling a signal

Syntax

Y = upfirdn(X,H)

Y = upfirdn(X,H,P)

Y = upfirdn(X,H,P,Q)

Definition

Y = upfirdn(X,H,P,Q) performs a cascade of three operations:1.
Upsampling by the ratio of positive integer P (zero insertion). P defaults to 1.
FIR filtering the upsampled signal with impulse response sequence given in H.
Downsampling the filtered signal by the ratio of positive integer Q. Q defaults to
1.

If X and H are vectors, the output is also a vector whose size satisfies length(y) =2.
ceil(((length(x)-1)*P + length(h))/Q). In this case, upfirdn(X,H,P,Q) results in the
same results as the following procedure:

x_zeroInsrt = zeros(length(x)*p-p+1,1);

x_zeroInsrt(1:p:end) = x;

x_applyH = conv(h,x_zeroInsrt);

x_dnsmpl = x_applyH(1:q:(length(y)));

If X is a matrix and H is a vector, each column of X is filtered by H.
If X is a vector and H is a matrix, each column of H is used to filter a copy of X.
If X is a matrix and H is a matrix with the same number of columns, then the the i-th
column of X is filered by the i-th column of H. If each column of X is identical, it's
degraded to the case where X is a vector and H is a matrix.
Followed are the valid combinations of arguments.
X H Y

row(column) vector vector row(column) vector

matrix vector matrix

vector matrix matrix

matrix matrix matrix

Examples

Compatibility

See also
conv (users), downsample (users), filter (users), interp (users), resample (users),
upsample (users)

 upsample
Upsample input signal by inserting R-1 zeros between elements

Syntax

Y = upsample(X,R)

Y = upsample(X,R,OFFSET)

Definition

Y = upsample(X,R) upsamples input signal X by inserting R-1 zeros behind each input1.
sample. X may be a vector or a matrix (one signal per column). For matrix,
upsampling is applied to each column respectively.
Y = upsample(X,R,OFFSET) specifies an optional sample offset. OFFSET should be an2.
positive integer within [0,R-1] and is 0 by default.

Examples

x = [1 2 3 4 5].';

y = upsample(x, 4);

z = upsample(x, 4, 1);

p = [1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0].'; % p equals to y

q = [0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0].'; % q equals to z

Compatibility

See also

SystemVue - Users Guide

124

downsample (users), interp (users), interp1 (users), resample (users), upfirdn (users)

 using
Syntax
using('DatasetName');

Definition
This function sets the current context in an equation block to the named dataset. When
set, you can use the variables within the dataset as if there were defined in the equation
block. This function can be used to context switch between datasets in any post
processing Equation page.

Examples:
If there are two datasets, called "Data1" and "Data2" which both contain a variable called
"Var1".
Then the way to access these variables without confusion is as follows:

using('Data1');

% Assume "Var1" of "Data1" is [3, 6, 9, 12]

z1=Var1/3;

using('Data2');

% Assume "Var1" of "Data2" is [2, 4, 6]

z2=Var1/2;

The results are:

z1 = [1, 2, 3, 4]

Z2 = [1, 2, 3]

Compatibility
String

 var
Syntax
y = var(x)
y = var(x, W)
y = var(x, W, iDim)

Definition
Returns the variance of a vector x.

If W is 0 (default), var normalizes by N-1 where N is the sample size. If W is 1, var
normalizes by N. If W is a vector, it is treated as coefficient weights for computing the
variance. In this case, the coefficients of W are scaled so that they sum to unity.

For matrices, this function operates separately on each column and returns a vector. For
multi-dimensional arrays in general, this function operates on the dimension specified by
iDim, or the first non-singleton dimension if iDim is not specified.

Examples:

Formula Result

y = var([3 ; 4 ; 8 ; 9]) y = 8.6667

y = var([1, 2, 3], 1) y = 0.6667

y = var([1, 2, 3], [0.7, 0.1, 0.2]) y = 0.65

Compatibility
Numeric arrays

See Also
std (users)
skewness (users)

 vitdec
Convolutionally decodes binary stream using Viterbi algorithm

Syntax

Y = vitdec(X,TRELLIS,tbLen,MODE,inType)

Y = vitdec(X,TRELLIS,tbLen,MODE,inType,puncPat)

Y = vitdec(X,TRELLIS,tbLen,'cont',inType,puncPat,initState)

[Y,finalState] = vitdec(X,TRELLIS tbLen,'cont',inType, ...)

Definition

Y = vitdec(X,TRELLIS,tbLen,MODE,inType,puncPat) decodes the input vector X
using the Viterbi Algorithm, where

X: Vector to be decoded, of bipolar, or logic type, must be synchronous
with the puncture pattern (if puncPat is used).

TRELLIS: Trellis structure generated with function TRELLIS.

tbLen: Trace back depth (in symbol number) when decoding, the decoded
will be delayed by tbLen*K bits when MODE is 'cont'. K equals to
log2(TRELLIS.numInputSymbols). Typical value of trace back length is
5~10 times of constraint length.

MODE: 'cont', 'term', 'trunc' or 'tailbit'. All modes except 'tailbit' assume
the decoding state starts from state 0.

'cont' is used for continuously invoking of the function, the
decoding delay is tbLen*K.

'term' is used when there are at least max(constraint length -
1)*K zeros tail bits in the uncoded bits, decoding delay is
removed.

'trunc' estimate the last tbLen*K decoded bits from the input
trace with the best metric, decoding delay is removed.

'tailbit' is used for tail biting encoding, decoding delay is
removed.

inType: Data type of X, 'bipolar' or 'logic'.

'bipolar' indicates that X consists of real type data, positive
represents logic 0, negative represents logic 1, data in X should
be within[-1,1].

'logic' indicates that X consists of 1's and 0's. For quantified non-
negative data(such as, 0~2^Nbits-1, 0 represents the most
confident logic 0, 2^Nbits-1 represents the most confident logic
1), set MODE with 'logic' and use X/(2^Nbits-1) instead of X.

puncPat: Puncture pattern vector, must be the same as that when
encoding, set [] when puncture is not used and initState is used. Generally,
the length of puncPat is a multiple of N, where N equals to
log2(TRELLIS.numOutputSymbols).

[Y, finalState] = VITDEC(X,TRELLIS,tbLen,inType,'cont',puncPat,initState) is
used for consecutive long input data. Each invoking of this function, set initState
with finalState obtained from the preceding run. initState is a two element
structure consists of the final input trace and state metric.

SystemVue - Users Guide

125

For example, if X=[X1 X2 X3], t=TRELLIS,

 [Y, finalState] = vitdec(X,t,tbLen,inType,'cont',puncPat)

 [Y1,finalState1] = vitdec(X1,t,tbLen,inType,'cont',puncPat)

 [Y2,finalState2] =
vitdec(X2,t,tbLen,inType,'cont',puncPat,finalState1)

 [Y3,finalState3] =
vitdec(X3,t,tbLen,inType,'cont',puncPat,finalState2)

then Y=[Y1 Y2 Y3] and finalState=finalState3.

Note
For consecutive processing, do make sure the length of input data (each piece of total input) is a multiple
of the number of 1's in punctPat, i.e. sum(puncPat), and the length of puncPat is a multiple of N. With this
assumption, the length of de-punctured data shall be a multiple of N=log2(trellis.numOutputSymbols). If
above condition is not satisfied, consecutive decoding may fail. For 'tailbit' decoding, similar condition
must be satisfied.

Examples
A coding/decoding process for the (2,1,3) (users) code

ConsLen = [4]; % 3 registers

CodeGen = [13,17]; % octal [1 0 1 1] and [1 1 1 1];

trellis = poly2trellis(ConsLen, CodeGen);

uBits = [1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0]; % 3 tail 0's for return coder state to zero,

length is 20

cBits = convenc(uBits,trellis); % encoding, output length is 40

errPattern = [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %

3 errors

cBits_error = mod(cBits + errPattern,2);

tbLen = 10; % number of symbols to trace back

Mode = 'term'; % the infomation bits are terminated with ConsLen symbols

inType = 'logic'; % input are logic 0's and 1's

puncPat = []; % no puncture in encoding

dBits = vitdec(cBits_error,trellis,tbLen,Mode,inType,puncPat); % decoding

decode_error = dBits - uBits; % verify decoding results

results

decode_error =

 0

Compatibility

See also
convenc (users), poly2trellis (users)

 warning
Syntax
error('message')

Definition
Posts the warning message to the error log and also places the yellow warning symbol on
the menu button.

Examples:

Formula Result

warning('out of range') the message "out of range" is posted to the Error Log as a warning

Compatibility
Strings

See Also
error (users)

 wgn
Generates white Gaussian noise

Syntax

Y = WGN(M,N,PWR)

Y = WGN(M,N,PWR,IMP)

Y = WGN(M,N,PWR,IMP,STATE)

Y = WGN(..., POWERTYPE)

Y = WGN(..., OUTPUTTYPE)

Definition

Y = WGN(M,N,PWR) generates an M-by-N matrix of white Gaussian noise. PWR
specifies the output power in decibels relative to a watt. The default load
impedance is 1 ohm.

Y = WGN(M,N,PWR,IMP) is the same as the previous syntax with impdedance
specified.

Y = WGN(..., POWERTYPE) is the same as the previous syntaxes with powertype
specified. Choices for powertype are 'dBW', 'dBm', and 'linear'.

Y = WGN(...,OUTPUTTYPE)) is the same as the previous syntaxes with
outputtype specified. Choices for outputtype are 'real' and 'complex'.

Examples

Compatibility

See also
randn (users), awgn (users)

 xcorr

SystemVue - Users Guide

126

Compute cross-correlation

Syntax

c = xcorr(x, y, maxlags, 'option')

[c, lags] = xcorr(...)

Definition

xcorr estimates the cross-correlation sequence of a random process. Autocorrelation1.
is a special case of cross-correlation.
y, maxlags, and 'option' are optional parameters.2.
When only x is specified i.e. c = xcorr(x) then c is the autocorrelation sequence for3.
the vector x.
The various 'options' are:4.

'biased' - Biased estimate of the cross-correlation function Rxy_biased(m) = [1.
1 / N] * Rxy(m)
'unbiased' - Unbiased estimate of the cross-correlation function Rxy_unbiased(2.
m) = [1 / (N - | m |)] * Rxy(m)
'coeff' - Normalizes the sequence so the autocorrelations at zero lag are3.
identically 1.0.
'none' - Use the raw unscaled cross-correlations. This is the default.4.

maxlags - Limits the autocorrelation lag range to [-maxlags:maxlags].5.
[c, lags] = xcorr(...) returns two variables c and lags. lags is a vector of the lag6.
indices at which c was estimated. The ' ... ' represent the x, y, maxlags, 'option'
arguments.

Examples:

Formula Result

x = [1, 2i, 3]
y = [4, 5, 6]
c = xcorr(x, y)

c = [6 + i333.1e-18, 5 + i12, 22 + i10, 15 + i8, 12 - i333.1e-18]

See also
conv (users)

 xor
Syntax
y = xor(A, B)

Definition
This function performs an exclusive OR operation on arrays A and B.
It returns a vector of logical values that are true if only one of the corresponding values in
A OR B is nonzero, but not both. Otherwise, the value is false. A and B have to be vectors
or arrays of the same size.

Examples:

A = [0 0 pi eps], B=[0 -2.4, 0, 1]

C = xor(A, B) = [0, 1, 1, 0]

 zp2ss
Convert zero-pole-gain filter parameters to state-space form

Syntax

[a, b, c, d] = zp2ss(z, p, k)

Definition

Examples

Compatibility

See also
ss2zp (users), tf2ss (users), zp2tf (users)

 zp2tf
Convert zero-pole-gain filter parameters to transfer function form

Syntax

[num, den] = zp2tf(z, p, k)

Definition

Examples

Compatibility

See also
ss2tf (users), tf2zp (users), zp2ss (users)

 Basic

Function
Name

Description

 abs (users) absolute value or magnitude

acos (users) inverse cosine, in radians

acosd (users) inverse cosine, in degrees

acosh (users) inverse hyperbolic cosine

acot (users) inverse cotangent

acotd (users) inverse cotangent, in degrees

acoth (users) inverse hyperbolic cotangent

acsc (users) inverse cosecant

acscd (users) inverse cosecant, in degrees

acsch (users) inverse hyperbolic cosecant

all (users) true if all parts in a vector are nonzero

angle (users) phase of a complex number, in radians

any (users) true if any part in a vector is nonzero

asec (users) inverse secant, in radians

asecd (users) inverse secant, in degrees

asech (users) inverse hyperbolic secant

asin (users) inverse sine, in radians

asind (users) inverse sine, in degrees

asinh (users) inverse hyperbolic sine

atan (users) inverse tangent, in radians

atan2 (users) 4-quadrant inverse tangent, in radians

atand (users) inverse tangent, in degrees

atanh (users) inverse hyperbolic tangent

 ceil (users) smallest integer greater than or equal to argument

class (users) data-type (class name) of argument

conj (users) complex conjugate

conv (users) linear convolution (or polynomial multiplication)

cos (users) cosine of a radian-valued argument

cosd (users) cosine of a degree-valued argument

cosh (users) hyperbolic cosine

cot (users) cotangent of a radian-valued argument

cotd (users) cotangent of a degree-valued argument

coth (users) hyperbolic cotangent

SystemVue - Users Guide

127

csc (users) cosecant of a radian-valued argument

cscd (users) cosecant of a degree-valued argument

csch (users) hyperbolic cosecant

 dbg_print
(users)

output to equation debug window

dbg_showvar
(users)

output contents of a variable to equation debug window

deconv (users) deconvolution (or polynomial division)

dec2hex
(users)

decimal to hexadecimal conversion

diag (users) create diagonal matrix or extract diagonal of a matrix

diff (users) difference (or approximate derivative)

 eig (users) eigenvalues and eigenvectors of a matrix

erf (users) error function

erfc (users) complementary error function

error (users) posts to error log or output error to command window

exist (users) check the existance of a variable or a builtin function

exp (users) exponential

eye (users) construct identity matrix

eyediag (users) build an eye diagram from time data

 false (users) logical false

fclose (users) close a file or stream

fft (users) Discrete Fourier Transform (DFT)

fgets (users) read a line from a file, keep newline

find (users) indices of nonzero parts

findstr (users) find a string within another string

fix (users) round toward zero

floor (users) largest integer less than or equal to argument

fopen (users) open file or stream

fread (users) read binary data from a file or stream

fprintf (users) write formatted text to a file or stream

fscanf (users) read formatted text from a file or stream

fwrite (users) write binary data to a file or stream

 getindep
(users)

returns the string property containing the path to the independent value of a variable
x. (ie. the reference to the independent
variable)

getindepvalue
(users)

returns the single independent value of a variable x.

getunits (users) Returns an integer corresponding to the units of a variable x. This integer may be
used by setunits.

getvariable
(users)

get the value of a variable from a dataset

 hex2dec
(users)

hexadecimal to decimal conversion

hilbert (users) compute the analytic signal from a real data vector

histc (users) histogram count

 ifft (users) Inverse Discrete Fourier Transform (IDFT)

imag (users) imaginary part of a complex number

inf (users) infinity

ischar (users) true if argument is of type character array

isempty (users) true if argument is empty or array with a dimension of length 0

isequal (users) true if arrays contain equal values, ignoring NaNs

isfinite (users) true for finite parts

isfloat (users) true if argument is a floating point scalar or array

isinf (users) true for infinite parts

isinteger
(users)

true if argument is an integer scalar or array

islogical (users) true if argument is a logical scalar or array

isnan (users) true for NaN parts

isreal (users) true if argument is a real-valued scalar or array fones

isscalar (users) true if argument is a scalar

isstr (users) true if argument is a character array

 length (users) length of a vector

linspace (users) construct linearly spaced vector

log (users) natural logarithm

log2 (users) Base-2 logarithm

log10 (users) Base-10 logarithm

logspace
(users)

construct logarithmically spaced vector

lu (users) LU matrix factorization

 max (users) largest value of a vector

mean (users) arithmetic mean of a vector

median (users) median of a vector

min (users) smallest value of a vector

mkdir (users) make directory

mod (users) modulus after division

mode (users) mode (most frequent value) of a vector

 nan (users) Not-a-Number

num2str
(users)

convert number to a character array

numel (users) total number of parts in an array

 rand (users) uniformly distributed random numbers between 0 and 1

randn (users) Normally (Gaussian) distributed random numbers

real (users) real part of a complex number

rem (users) remainder after division

reshape (users) change dimensions of an array

roots (users) roots of a polynomial

round (users) round towards nearest integer

runanalysis
(users)

Run an analysis in the workspace tree. Useful for scripting simulations.

 sec (users) secant of a radian-valued argument

secd (users) secant of a degree-valued argument

sech (users) hyperbolic secant

setindep
(users)

set the independent reference for a swept dependent variable to indepvar(s). A
minimum of two arguments is required.
This function can be used to remove all independent values of a variable by passing in
a blank string for the second argument.

setvariable
(users)

write a value to a variable in a dataset

setunits (users) sets a variable to have units specified by unit. The unit may be an integer or a string.
Integer units correspond to the units returned by the getunits function. Units do not
change the underlying value of a variable, but rather, just change how the value is
displayed. Example: setunits('freqaxis', 'MHz')

sign (users) signum

sin (users) sine of a radian-valued argument

sinc (users) sinc function (sin(pi*x) / (pi*x))

sind (users) sine of a degree-valued argument

sinh (users) hyperbolic sine

size (users) dimensions of an array

skewness
(users)

skewness of a vector

sort (users) sort a vector in ascending or descending order

spline (users) cubic spline interpolation

sqrt (users) square root

sscanf (users) read formatted text from a string

std (users) standard deviation of a vector

str2num convert a string to a number

SystemVue - Users Guide

128

(users)

strcmp (users) case-sensitive string comparison

strcmpi (users) case-insensitive string comparison

strncmp (users) compare first N characters of a string (case-sensitive)

strncmpi
(users)

compare first N characters of a string (case-insensitive)

struct (users) construct a structure array

sum (users) sum of the parts of a vector

svd (users) matrix singular value decomposition

 tan (users) tangent of a radian-valued argument

tand (users) tangent of a degree-valued argument

tanh (users) hyperbolic tangent

tcpip (users) construct tcpip stream object for TCP/IP communications

toeplitz (users) construct Toeplitz matrix

true (users) logical true

 using (users) sets the current context in an equation block to the dataset called Dataset

 var (users) variance of a vector

 warning
(users)

posts a warning to error log or output warning to command window

 xcorr (users) cross correlation

xor (users) logical exclusive-OR

 Communications

alignsignals (users) align two signals by delaying earliest signal

awgn (users) add white Gaussian noise to signal

bi2de (users) convert binary vectors to decimal

convdeintrlv (users) permute data with specified shift register group

convenc (users) convolutionally encode binary data

convintrlv (users) permute data with specified shift register group

crcdec (users) cyclic redundancy check decoder

crcenc (users) cyclic redundancy check encoder

de2bi (users) decimal numbers to binary vectors

deintrlv (users) reorder data back with specified permutation table

depuncture (users) restores erasures based on puncture pattern

finddelay (users) estimate delay(s) between signals

matdeintrlv (users) reorder data by filling matrix by columns and emptying it by
rows

matintrlv (users) reorder data by filling matrix by rows and emptying it by
columns

muxdeintrlv (users) restore ordering of data with specified shift register group

muxintrlv (users) reorder data with specified shift register group

noisebwlv (users) equivalent two-sided noise bandwidth of lowpass filter

oct2dec (users) convert octal to decimal numbers

poly2trellis (users) convert convolutional code polynomials to trellis description

puncture (users) erase specified symbols based on puncture pattern

qfunc (users) Q function

qfuncinv (users) inverse Q function

randerr (users) generate bit error patterns

randint (users) generate uniformly distributed random integers

randsrc (users) generate random matrix using prescribed alphabet

rcosflt (users) filter input signal with (sqrt) raised cosine filter

rectpulse (users) rectangular pulse shaping

rsdec (users) reed-Solomon decoder

rsenc (users) reed-Solomon encoder

symerr (users) compute number of symbol errors and symbol error rate

turbodec (users) compute number of symbol errors and symbol error rate

turboenc (users) inverse Q function

vitdec (users) convolutionally decodes binary stream using Viterbi algorithm

wgn (users) generates white Gaussian noise

 Signal Processing

Function Name Description

bartlett (users) Bartlett Window

bilinear (users) parameter transformation from analog filter to digital filter

blackman (users) Blackman Window

butter (users) Butterworth filter designer

buttord (users) butterworth filter order and cutoff frequency calculation

cheby1 (users) Chebyshev type 1 filter designer

cheb1ord (users) minimum order calculation for Chebyshev Type I filter

cheby2 (users) Chebyshev type 2 filter designer

cheb2ord (users) minimum order calculation for Chebyshev Type II filter

conv (users) Convolution of u and v

downsample (users) downsample input signal

ellip (users) elliptic or cauer filter designer

fftfilt (users) FFT-based FIR filtering using overlap-add method

filter (users) one dimensional digital filtering

firls (users) multiband least square FIR filter design

firrcos (users) raised cosine FIR Filter design

gaussfir (users) Gaussian FIR Pulse-Shaping Filter Design

gausswin (users) Gaussian Window

grpdelay (users) group delay of IIR filter

hamming (users) Hamming Window

hann (users) Hann Window

impz (users) impulse response of IIR digital filter

interp (users) resample input at a higher rate with lowpass filter

interp1 (users) one dimensional interpolation

kaiser (users) kaiser window

kaiserord (users) parameters that specify a kaiser window

lp2bp (users) transform lowpass filter to bandpass filter

lp2bs (users) transform lowpass filter to bandstop filter

lp2hp (users) transform lowpass filter to highpass filter

lp2lp (users) lowpass filter with normalized frequency to desired frequency

phasedelay (users) return phase delay vector for digital filter

rectwin (users) Rectangular Window

resample (users) change sampling rate by rational factor

sftrans (users) transform of lowpass filter to other type filter

sinc (users) sinc function (sin(pi*x) / (pi*x))

square (users) Square wave generation

ss2tf (users) convert state-space filter parameters to transfer function form

ss2zp (users) convert state-space filter parameters to zero-pole-gain form

tf2ss (users) convert transfer function filter parameters to state-space form

tf2zp (users) convert transfer function filter parameters to zero-pole-gain
form

triang (users) coefficients of a triangular window

upfirdn (users) Upsample by zero inserting, filtering and downsampling a signal

upsample (users) Upsample input signal by inserting R-1 zeros between elements

zp2ss (users) convert zero-pole-gain filter parameters to state-space form

zp2tf (users) convert zero-pole-gain filter parameters to transfer function
form

 Using Math Language
Math Language, along with most of its built-in functions, was designed to be compatible
with m-file script syntax.

SystemVue - Users Guide

129

 Statements
An equation block consists of one or more statements. Multiple statements placed on the
same line are separated by line breaks, commas, or semicolons. The following two
equation blocks are equivalent:

X = 2
Y = 3

and

X = 2, Y = 3

If you end a statement with a semicolon, it does not generate output in the command
window.

Complicated statements can span multiple lines and use control structures like while
loops, for loops, and if statements.

The following statement types are supported by Mathematics Language equations:
assignment, comment, if, for, while, function, or return. The format of each statement
type is described below.

 Assignments

An assignment statement assigns a value to a variable. The syntax of an assignment
statement is as follows:

variableName = Expression

For example,

X = 3.6;

Y = sin(3*PI);

Z = [1 2 3];

are all assignments.

A variable name must start with a letter, and can contain alphanumeric characters and
underscore characters. An expression can contain numerical operations involving
numbers, other variables, and function calls.

Vectors and matrices can be defined inline, as the following example illustrates:

x = [1 2 3] % a row vector

y = [1;2;3] % a column vector

z = [1 2 3; 4 5 6] % a 2x3 matrix

 Tune Assignments

A Tune Assignments assigns a variable a specific value while marking it as Tunable. A
tunable variable can then be tuned from the Tune Window and can be used by
evaluations, such as Sweeps, that operate on tunable variables.

When a Tunable variable is tuned from the Tune Window, the resultant value is then
updated in the Equation block where it was originally defined.

The syntax for a Tune Assignment is as follows, where Constant represents a real-valued
constant:

variableName = ?Constant

For example:

x = ?23 % x is tunable with initial value 23

y = ?-1.5 % y is tunable with initial value -1.5

 Comments

A comment starts with a percent character (%) and continues for the rest of that line. The
following are examples of comments:

X = R * cos(theta) % Here is an in-line comment

% Here is another comment

In the example above, only the assignment statement is executed, while both comments
are ignored.

 if statement

The if statement is a control structure that allows one set of statements to execute if a
condition is met, and optionally, another set of statements to execute if the condition is
not met. Valid syntax for the if statement is:

if _expression_

_one_or_more_statements_

elseif

_one_or_more_statements_

else

_one_or_more_statements_

end

1.

if _expression_

_one_or_more_statements_

end

2.

if _expression_, _statement,_ end

3.

If expression evaluates to a nonzero value, the following statement block is executed,
otherwise that statement block is skipped. If an else block is specified and expression
evaluates to zero (false), the else block is executed. The expression is generally
Boolean in construction.

Example:

x = 3

y = 2

if x == y % Note that double equals are used for comparison

x = x + 1

y = y - 2

else

x = 0

end

 for statement

The for loop statement is a control structure that allows a set of statements to repeatedly
execute according to the value of the loopVariable. The syntax is as follows:

for _loopVariable_ = _startValue_ : _stepValue_ : _stopValue_

_one_or_more_statements_

end

The loopVariable is initialized to the startValue. When stepValue is explicitly mentioned,
loopVariable increments by it until it reaches or exceeds the stopValue. When left
unspecified, stepValue is assumed to be of unit magnitude. The following example clarifies
this:

SystemVue - Users Guide

130

x = 0, y = 0

for i = 1 : 5 % i, the _loopVariable_ takes the values [1 2 3 4 5]

x = x + 10

y = y + 100

end

After execution completes in the above example, i is equal to 5, x is equal to 50, and y is
equal to 500.

 while statement

The while loop statement is a control structure that executes a set of statements
repeatedly based on a condition. The loop is exited when the condition is no longer
satisfied. The syntax is as follows:

while _expression_

_one_or_more_statements_

end

As long as expression evaluates to a nonzero number or a Boolean true, the statements
execute repeatedly. When expression evaluates to zero (false), execution continues after
end. The following example clarifies this:

x = 1, y = 15;

while (y)

x = x * y;

y = y - 1;

end

After execution completes, when y reaches 0 in the above example, x equals factorial of
the original value of y.

 function statement

The function statement is used to define functions or procedures. A function takes zero or
more parameters as input and returns exactly list of values as the result. All variables
used within a function are local; that is, you cannot use variables defined in a function in
another function or in the main equation block. However, you can use variables defined in
the equation block in the function. The syntax of the function statement is as follows:

function <resultList> = functionName(<paramList>)

_computation_statements_

_calls_to_other_functions_

end % Note: this end is optional

If the function takes no parameters, the parentheses must still be present after
functionName . If the function returns a value, you should set the values in the
<resultList> block.

<paramList> and <resultList> are lists of variable names separated by commas. If the
last variable in <paramList> is 'varargin', then the function can take in an unspecified
number of arguments, and the remaining arguments are placed into the 'varargin' cell
array which can be accessed from within the function. Similarly, if the last variable in
<resultlist> is 'varargout', then the function can return an unspecified number of return
values which are set in the function by assigning to the 'varargout' cell array.

Inside a function definition, you may use the variables named 'nargin' and 'nargout' which
hold the number of arguments passed in to the function and the number of return values
requested by the caller, respectively. These may be used for error checking or other
purposes.

The following example is a function used to calculate the inductor value necessary to
produce a resonance at a given resonant frequency and capacitor value:

function resonantInductor = ResL(resonantCapacitor, resonanceFrequency)

% inductance is in nH, capacitance is in pF, frequency is in MHz

FHz = 1e6 * resonanceFrequency;

CFarads = 1e-12 * resonantCapacitor;

Omega = 2 * pi * FHz;

LHenries = 1 / (Omega^2 * CFarads);

resonantInductor = LHenries * 1e9; % the return value

end

The function defined above may be called as follows:

L = ResL(50, 25.8) % computes the L value in nH resonanct with 50 pF at 25.8 MHz

You may return multiple values by listing them in the result expression, as in

function [Ind, Q] = ResL(C, F, R)

Ind = 1

Q = 2

end

this is used as [MyInd, MyQ] = Resl(a,b,c)

The following example illustrates a function that takes in a variable number of arguments
and returns a variable number of results.

function varargout = f(varargin)

SumOfArgs = 0;

for i = 1 : nargin

SumOfArgs = SumOfArgs + varargin{i}

end

varargout{1} = SumOfArgs

if nargout > 1

varargout{2} = 2 * SumOfArgs

end

end

Suppose we call this function as follows:

[a, b, c] = f(1, 2, 3, 4)

a would be set to 10 (the sum of the input arguments), b would be set to 20, and c would
be blank since it was not assigned to in the function.

 Operators
Operators and their descriptions are listed in the table below. Examples for each operator
are also listed.

SystemVue - Users Guide

131

Operator Description Example

+ Addition a + b

- Subtraction a - b

* Matrix Multiplication a * b

.* part-by-part Matrix Multiplication a .* b

/ Matrix Right-Division a / b

./ part-by-part Division a ./ b

\ Matrix Left-Division a \ b

.\ part-by-part Left-Division a .\ b

^ Matrix Exponentiation a ^ 2 (means a-
squared)

.^ part-by-part Exponentiation a .^ b

' Matrix conjugate-transpose (hermitian) a'

.' Matrix transpose (no conjugation) a.'

& part-wise Boolean And a & b

&& Boolean And a && b

| part-wise Boolean Or a | b

|| Boolean Or a || b

~ Boolean Not ~a

= Assignment Operator a = 2

== Boolean Comparison a == b

> Boolean Greater Than a > b

>= Boolean Greater Than or Equal a >= b

< Boolean Less Than a < b

<= Boolean Less Than or Equal a <= b

~= Boolean Not Equal a ~= b

 Vectors, Matrices, and Multidimensional Arrays
Mathematics Language supports vectors, matrices, and multidimensional arrays. Column
vectors are treated as Nx1 matrices, while row vectors are 1xN matrices. Vectors and
matrices can be defined inline using bracket notation, as shown below.

a = [1;2;3] % a is a column vector containing the parts 1, 2, and 3

b = [2.5 3 8] % b is a row vector containing the parts 2.5, 3, and 8

c = [1, 2, 3] % c is a row vector containing 1, 2, and 3. Commas are optional

M = [1 2 3; 4 5 6; 7 8 9] % M is a 3x3 matrix with the first row containing 1, 2, and 3.

M = ['help1'; 'help2'; 'help3'] % M is a 3 by 5 character array

M = ['help1' 'help2' 'help3'] % M is the string 'help1help2help3'

Note that semicolon denotes the end of a row, while comma separates row parts.

 Indexing into Numeric Arrays

An part in an array variable is accessed with the following syntax:

matrixVariable(index1, index2, ..., indexN)

where matrixVariable is the name of the N-dimensional array.
 A colon may be used to indicate every part in the dimension. If only one indexing
dimension is specified, then the array is linearly indexed, which means that the array is
treated as a flat list (in column-wise order) and the N'th part of the list is returned.

Note: If only one indexing dimension is specified and it is a colon, then the array is returned as a single
column vector with N parts, where N is equal to the number of parts in the array.

The following example illustrates indexing into arrays.

M = [1 2 3; 4 5 6; 7 8 9] % M is a 3x3 matrix with the first row containing 1, 2, and 3.

a = M(2,1) % a equals 4

b = M(1,:) % b is the row vector [1,2,3]

c = M(:,[1;3]) % c is the 3x2 matrix formed by taking the columns of the 1st and 3rd columns of

all the rows [1,3; 4,6; 7,9]

d = M(:) % d is the column vector [1;4;7;2;5;8;3;6;9]

e = M(6) % e equals 8 because it is the 6th part when M is traversed column-by column

M(1,1) = 5 % sets the value of the part in the first row and first column of M to 5

Vectors may also be used for specifying multiple parts in a dimension. The following
example illustrates this:

M = [1,2,3; 4,5,6; 7,8,9]

a = M([1; 3], [1; 2]) % a is the matrix [1,2; 7,8]

Multi-dimensional arrays are formed by combining arrays of smaller dimensions in nested
fashion using [s and semi-colons. For instance, a three dimensional array of size 3x2x2
would have two levels of []s:

M3D = [[1, 2, 3; 4, 5, 6]; [-1, -2, -3; -4, -5, -6]]

 Searching Vectors and Indexing into Sweeps

Sometimes it is useful to know at what index or indices in an array a particular value is
contained. To find what indices a vector contains a certain value or range of values, the
find function may be used. This is especially useful for indexing into sweeps to extract
desired data. The following example illustrates a simple case using the find function:

F = [100; 200; 300; 400; 500; 600]

i = find(F == 300) % i equals 3

n = find(F >= 200 & F <= 350) % n is the vector [2, 3]

X = F(n) % X is the vector [200;300]

Suppose V1 is a waveform of voltages as a function of time. V1 contains data for 101
timepoints: 0 ns through 100 ns in steps of 1 ns. That is, V1 has an independent value T,
the time vector, of length 101. Therefore, V1 is a 101x1 array. The following example
shows how to extract a subset of the voltage waveform and construct a new time
independent variables corresponding to that subset:

% Suppose V1 and T already exist, as described above

time_indices = find(T >= 10e-9 & T <= 20e-9); % indices where T is between 10 and 20 ns

V1_subset = V1(time_indices); % extract waveform between 10 and 20 ns

time_subset = T(time_indices); % ditto for the time indep

setindep('V1_subset', 'time_subset'); % now if we plot V1_subset, we see a nice x-axis

We can use the same approach for indexing into multi-dimensional sweeps. The key is to
use the find function to extract the correct indices.

 Indexed Assignments

Mathematics Language supports assigning a value or values into arrays. If you assign data
to parts outside the current dimensions of an array, the array is automatically re-sized to
accommodate the new data, while any new parts in the array are initialized to zero.

When assigning from one array to another in the form A = B, the following rules must be
obeyed:

The number of subscripts specified for array B not including trailing 1's may not
exceed the number of dimensions of B
The number of non-scalar subscripts specified for A is equal to the number of non-
scalar subscripts specified for B
The length and order of all non-scalar subscripts specified for A is equal to the length
and order of all non-scalar subscripts specified for B

The following code example illustrates various aspects of indexed assignments.
Initially the variable x does not exist.:

SystemVue - Users Guide

132

x(2,3) = 5; % x is created to be a 2x3 matrix with the entry at (2,3) equal to 5 and the other

parts equal to zero so x is [0, 0, 0; 0, 0, 5]

x(:,2) = [11; 22] % x is now [0, 11, 0; 0, 22, 5]

x(1, [1 3]) = [100 200] % x is now [100, 11, 200; 0, 22, 5]

x(1:6) = 1:6 % x is now equal to [1 3 5; 2 4 6]

x(1,1,2) = 23 % now x is a 2x3x2 array with x(1,1,2) equal to 23

 Range Vectors

A range defines a row vector in either of the following two ways:

start:stop

start:stepsize:stop

where start, stepsize, and stop are expressions. If stepsize is left out, it is assumed to be
1. A range creates a row vector with the first part value being equal to start , each
successive part being stepsize greater than the previous part, until stop is reached.
 Ranges may also be used to index into arrays and extract desired sub-arrays. The
following example illustrates the use of ranges.

x = 1:10 % x is the row vector [1 2 3 4 5 6 7 8 9 10]

y = 1:2:10 % y is the row vector [1 3 5 7 9]

M = [1 2 3; 4 5 6; 7 8 9] % M is a 3x3 matrix with the first row containing 1, 2, and 3.

a = M(1:2, 2:3) % a is the 2x2 matrix: [2,3; 5,6]

b = M(1:2:3, :) % b is the 2x3 matrix: [1,2,3; 7,8,9]

 Mathematical Operations on Arrays

Mathematical operations on arrays are supported. In general, any scalar operation or
function may be performed on an array, and the operation will be performed on an part-
by-part basis, producing a resulting array that has the same dimensions as the original
array. The following example illustrates this:

x = [1,2; 3,4]

y = [1,1; 1,1]

z = x + y % z is the matrix [2 3; 4 5]

z = z - 1 % z is now the matrix [1 2; 3 4]

w = sin(z) % w is the matrix [sin(1), sin(2); sin(3),sin(4)]

Multiplication is a special-case operator. When using the multiplication operator on a
matrix or vector, matrix-multiplication is assumed. To do an part-by-part multiplication,
the .* operator is used. Here is an example:

x = [1 2; 3 4]

y = [1;1]

z = x * y %z is the vector [3; 7]

w = x .* [1 0;0 1] % w is the same matrix as x

To find out the dimensions of an array, use the size function. To find out how many parts
are in an array, use the length function:

x = [1 2 3; 4 5 6]

x_dims = size(x) % x_dims is the vector [2 3]

num_parts = length(x) % num_parts is 6

 Cell Arrays
Cell arrays are arrays that support each part having a differing data type. Each part in a
cell array is called a cell. As an example, you may have a 1x3 cell array in which the first
cell is a number, the second cell is a character array, and the third cell is a structure.
Furthermore, parts of cell arrays may be cell arrays themselves. Cell arrays, just like
numeric arrays, may have any number of dimensions. Cell array vectors and matrices
may be defined inline as shown here:

X = { [1 2; 3 4] 'abc' 3j } % X is a 1x3 cell array containing a 2x2 real matrix, a 1x3 character

array, and a complex scalar

Y = { {1 2}; {1 2; 3 4} } % Y is a 2x1 cell array containing a 1x2 cell array and a 2x2 cell array

 Indexing into Cell Arrays

There are two ways to index into a cell array, described here:

M{indices} % returns the contents of the cell at the index specified by indices

M(indices) % returns the cell or cells at the index or indices specified by indices

Numeric arrays contained in cell arrays may be indexed inline as well:

M{2,3}(6) % returns 6th part of the array contained in the cell array M at location (2,3)

M{2,3}{2}(6) % returns 6th part of the array contained in the 2nd part of the cell array located

in the cell array M at location (2,3)

The following example illustrates indexing into cell arrays.

M = { 1 'abcd' [2j 56; 3 j] {6 7} } % M is now a 1x4 cell array

a = M{1} % a equals 1

b = M{2} % b equals the 1x4 character array 'abcd'

c = M(2) % c equals a 1x1 cell array that contains 1 part: a 1x4 character array 'abcd'

d = M{3}(1,1) % d equals 2j

e = M{4} % e equals the cell array {6 7}

 Structures
A structure is a data type with named fields. Each field has a name and a value. The value
may be of any type, including a cell array or another structure. Structure arrays of any
number of dimensions are supported. In a structure array, all structures in the array have
the same field names.

Structures may be defined inline as shown here:

x.field1 = 23; % x is a structure with a field named "field1" with value 23

x.hello = {1 2}; % x now has another field named "hello" whose value is a 1x2 cell array

x(3).hello = 1; % x is now a 1x3 structure array with fields "field1" and "hello". The third

part's hello field has value 1.

You may use the fieldnames function to determine what field names are in a structure.
fieldnames returns a cell array of strings.

Structures may also be built using the struct function.

 Network Communication and Instrument Control
The Math Language includes TCP/IP communication capabilities. This enables control of
instruments.

When you create an equation set to do communication you will almost always want it to
be not Auto-Calc. It should only calculate when specifically requested, otherwise every
time an input variable changes it will rerun. It will also run on load. Turn off auto-calc by
clicking the Check-Calculator tool button when viewing the equation set.

TCP/IP communication is done via the tcpip class, which is constructed using the tcpip
function. A simple example follows (waitfor is a wait-for-character routine, PSAip contains
the IP address string of an instrument, while PSASpciPort contains the port number to use
for communications):

SystemVue - Users Guide

133

% - set up the tcpip pipe to the instrument

t = tcpip(PSAip, PSASpciPort) % build tcpip object using the PSA ip address and spci port

t.Terminator = 'CR/LF'; % set Terminator field

t.InputBufferSize = 100000; % use a big buffer

% - open the port

fopen(t)

% - set real data format

fprintf(t, 'form:data real,64')

% - swap byte order

fprintf(t, 'form:border swap')

% - read the trace

fprintf(t, 'trace? trace1') % tell it to send the first trace

a3 = waitfor(t, '#') % the # is followed by some count chars

% - get the # of count bytes

aBytecnt = fread(t, 1, 'uchar=>ushort')

tTotal = str2num(aBytecnt)

% - if valid # count bytes, read them

if tTotal > 0 && tTotal < 7 % we will never have more than 6 digits of stuff

ascCount = fread(t, tTotal, 'uchar=>ushort'); % read n count bytes

nCount = str2num(ascCount); % convert to numeric

nCount = nCount / 8; % convert to doubles at 8 bytes each

else

nCount = 0;

end

% - finally read the actual data

if nCount > 0

dInput = fread(t, nCount, 'double') % get nCount data values

setvariable('OutData', 'aOut', dInput) % save it in our dataset

end

% - close t so we rerun cleanly

fclose(t)

 Analyzing the previous example

We start by creating a tcpip class object connected to our PSA device. PSAip=='127.0.0.1'
or some valid ip address as a char array. PSAspciPort is an integer port number. Once the
object is built, we set the terminator (for telnet in this case) and the input buffer size
(plenty to avoid overflow).

We do fopen(t) which opens the socket connection.

Once connected you can use

fread - read nnn values from the data stream
fwrite - write nnn values to the data stream
fprintf - write a string to the data stream
fscanf - read a string from the data stream

When finished, close the socket by using fclose. If you are totally done with the socket you
can use the Math Language clear function to remove the class object entirely.

 MATLAB Integration
SystemVue is shipped with MATLAB® interface integrated, which gives user the choice to
leverage their MATLAB codes in SystemVue to conduct co-simulation.

 Supported MATLAB Version

MATLAB integration supports MATLAB 2009a and later versions.
If more than one supported MATLAB version installed, you can switch to your desired
MATLAB version according to the following steps.

In Vista or Win7, right click on a command window in the start menu, and choose
"Run as administrator" (in WinXP, just start it)
cd to the directory where the MATLAB exe is (typically C:\Program
Files\MATLAB\Rxxxx\bin) that you want to use with SystemVue
type "matlab –regserver" (no quotes)
type "exit" in the window that opens

SystemVue will use that version.

 Using MATLAB Integration
To use this feature in SystemVue, you only need to do

Installed the supported MATLAB version
Type MATLAB code within MATLAB region of equations, the region pair key words are
#matlabregion and #endregion

Refer to the picture the below for the usage in MathLang part.

 Starting MATLAB

There are several ways to launch MATLAB.

Launch MATLAB when SystemVue startup. You can go to menu "Tools->Options" and
select startup tab.

SystemVue - Users Guide

134

Starting MATLAB when SystemVue parses the MATLAB region at the first time
Launch MATLAB by clicking on equation's context menu

Generally speaking, it will take more than 1 minute to startup MATLAB. So one waiting
dialog will be shown during starting MATLAB.

 End MATLAB

If MATLAB instance is created by SystemVue, it will be closed when SystemVue exits.

Note that it will take several seconds to release MATALB interface resource.

 Data Exchange between SystemVue and MATLAB

Please note that for MATLAB integration, SystemVue and MATLAB own independent
variable namespace. In order to support data exchange between SystemVue and MATLAB,
there are two built-in functions privided. Please refer to the two build-in functions the
below for the detail.

setmatlabvariables
getmatlabvariables

Not all of MATLAB data type can be supported by SystemVue. Basically, the standard
VARTYPE (VT_I2, VT_I4, VT_R4, VT_R8, etc) can be supported whatever the shape is
scalar or array.

Set MathLang complex variable to MATLAB

Get MATLAB complex variable to MathLang

Note that getmatlabvariable will return silently if the variable is a MATLAB instance of class

 Debugging Equations with MATLAB Integration

Fetch MATLAB variable's value.

You can go to command window and type "gmv <matlabvariablename>" to get the value.
Please note that gmv is only used in debug state. You can refer to the picture the below.

 Performance
 Time consuming of calling MATLAB interface

In order to leverage your MATLAB code in your application, it is useful to understand the
time cost to calling MATLAB interface. Generally speaking, calling the three items the
below has a relatetively constant time.

setmatlabvariable
getmatlabvariable
#matlabregion - #endregion

For example, in your pc, if setmatlabvariables/getmatlabvariables takes 0.3ms and getting
in/out matlabregion region requires 1ms, for the following simple application, it requires
1.6ms to complete the operation for one round. If the code is running for 1000 times, it
requires 1.6s to complete it.

 Persistent in MATLAB region

Please note that persistent variable cannot be put in MATLAB region directly. It can be
used out of MATLAB region and using setmatlabvariables to transfer it to MATLAB. You can
refer to the usage as the picture the below.

SystemVue - Users Guide

135

Initializing persistent out of MATLAB region can gain high performance.

 Multi-threaded Issue for MATLAB Integration

MATLAB COM server doesn't support multi-threaed. So if more than one SystemVue
instance that is using MATLAB interface, SystemVue will throw an error dialog to show
that the port is not available. To avoid this error, make sure only one SystemVue program
is using MATLAB integration.

 See Also
getmatlabvariables (users), setmatlabvariables (users)

 Tips for Effective Equation Writing
As a program becomes more complex, it becomes necessary to carefully debug and test
the results. Breakpoints and Debug-Print functions can be very helpful, as has already
been discussed. In general, however, there are several things one should get accustomed
to doing when writing equations. Below are some tips to follow when an equation is
causing difficulty:

Make sure the input and output equations are in separate blocks1.
It is a bad idea to have something like:
c = ?4 ' value of some capacitor in the schematic
s21 = Linear1_Data.S[2,1] ' s21 from analyzing the schematic
The "c" is an input to a schematic; it MUST exist before Linear1_Data is ever created,
so this equation block will not compile reliably. Any equation statements that call
variables from analysis datasets should be in a separate block.
Let each line compile cleanly before typing more text2.
Avoid the temptation to write a long set of statements before verifying that it works;
type one line at a time and check that there are no error messages, and that the
variables are showing up in the left side of the equation editor.

Before writing a large loop or in-line vector statement, check the boundary3.
values
Instead of writing a large loop then wondering why there are out of bounds errors or
wrong calculations, first type something like:
testA = myVector[firstIndex]
testB = myVector[lastIndex]
The values will display in the Variable view; this way you first verify that the initial
and final values are as expected; then you can let the loop or vector operation run
with more confidence.
Don't try to pack everything into one line of code4.
It is very difficult to find the problem when there are too many calculations packed
into a one line statement. By breaking up a line into several variables and lines you
give yourself the chance to debug and find problems, rather than just look at a huge
line that doesn't work as intended.
Check dimensions of variables carefully5.
Always pay attention to the size and dimension of variables being used; a common
pitfall is to use incorrect multiplication or division of vectors and thus accidentally
create wrong-sized matrices or other unwanted results.

Careless use of the "/" operator causes a 1601x1601 matrix to be created; the
variables view alerts the user of the problem, so part-wise division can be used
instead:

Note that the functions numcols(myMatrix) and numrows(myMatrix) can be used to find the
dimensions of a variable. For matrix operations, the number of columns of a left-hand operator
should equal the number of rows of a right-hand operator, while for part-wise operations the
dimensions should be identical.

Use the Command Window to output or change variable values6.
See Equations User Interface for more information about the Command Window.
Use the online help7.
The online help for equations is extensive. You can select a keyword in the equation
editor and press F1 for context help on that keyword. General equation help is in the
User's Guide manual Using Equations section.

SystemVue - Users Guide

136

 Examining Datasets
Datasets are containers which hold data, such as the results of a simulation or a table of
input. The results are stored in Variables which can be viewed in tabular form within the
dataset, plotted on a graph, displayed in an output Table, etc. Examine a dataset by
opening it with a double-click. You can also add new variables to a dataset (for sweeping
or just for analizing the data in greater detail).

Open the Data Flow Template (via the Start Page). Double-click Design1_Data on the
workspace tree and then click the variable "Spectrum_Phase" on the left-side of the
window, to see its values. Hovering the mouse over a variable pops up some info, which
varies according to the measurement.

In the display above the left-hand pane shows all of the result variables (including
Spectrum_Phase_Freq, the frequency or independent variable associated with
Spectrum_Phase, the selected variable). The right-hand pane shows whatever piece of
data you have selected in the left pane. The upper left-corner box in the grid is the units
of measure (Hz down and radians for the values). The lower right pane (which is usually
collapsed – drag the divider bar upwards to see it) displays a summary of the variable
information.

Each type of analysis creates a different dataset with differing variables which are
determined by the Analysis. Often, the variable is directly associated with a particular
measurement, such as BER, EVM, or P2.

Each dataset contains variables, which can be matrices, vectors, or scalars. These
variables are either automatically created by simulation runs or manually by the user.
Note that when a dataset is created by a simulation, the data within that dataset is always
in MKS. You may display the data in a unit of your choice, but the actual data values are
MKS values.

Click Spectrum_Phase on the left to show the tabular display of values in the grid on the
top-right. It shows that the frequencies analyzed were 0, 1000, 2000, ..., 500000 Hz. The
single grid-cell (top left corner of the grid) which says Hz:rad shows that the units for
Frequency are Hz and the angles are shown in radians. The display on the bottom-right
(which is usually collapsed) shows the type and size of the clicked data.

In addition to seeing the simulation results, Datasets can have short equations to help you
analyze and diagnose issues with your circuits. For details, see Creating Variables (users).

 Contents
Creating Datasets (users)
Creating Variables (users)
Using Dataset Variables (users)
Importing Variables (users)
Variable Properties (users)

 Creating Datasets
Datasets are usually created automatically when Analyses run. Some analyses
(particularly SPECTRASYS) can create more than one dataset. Within the dataset are the
fundamental results – measurements created by the simulation.

In addition, a blank dataset can be created manually from the workspace tree (in the
docking window) via the "new item" button (although that is rarely neccesary).

The actual data within a dataset is determined the Analyses settings. SPECTRASYS lets
you limit which data is created during the simulation run. This can reduce the size of
datasets significantly and also reduce their complexity.

To examine a dataset, open it by double-clicking it in the workspace tree.

Here's a minimal SPECTRASYS dataset:

If we rerun SPECTRASYS with all of the output options enabled, we get this:

Now we can't even fit the entire dataset contents in the window.

Although more complex and intimidating there are many cases where more data is better
than less. However, file storage requirements go way up with this sort of data.

SystemVue - Users Guide

137

 Creating Variables

 Variable Properties Dialog Box

For complete description of Variable Properties dialog box, see Variable Properties
(users)

 Why add variables to a dataset?

Add a variable to examine more closely a piece of data (such as ang(S[2,1]) to1.
examine S21's angle). Don't forget that all measurement data is fundamentally in
MKS units.
Add a variable to propagate it during a sweep (enable the propagate option in the2.
sweep and it will sweep the variable along with the rest of the measurement data).
Add a variable to use in an optimization.3.

 How to add a variable to a dataset

Open Data Flow Template / Design1_Data, as described above.1.
Right-click the white area on the left and select Add New Variable...2.

Add a variable named A.3.
Type abs(SineWave) for the formula.4.
Leave the Independent Variable field blank; it will be automatically filled in based on5.
the indep associated with the SignWave variable.
Optionally, you can choose a display option for the dataset view of the variable. If the6.
variable type is integer or floating point, select a display unit; if it's complex, select a
complex number formatting option.
Click OK.7.

To get...8.

For most formulas, the Unit of Measure and Independent Variable will fill themselves9.
in once the formula is parsed.

 How to delete a variable from a dataset

Right-click the variable and select Delete

 Importing Variables
Variables can be imported to the dataset from any text file. Access this feature by right-
clicking in the variable block of the data set and choosing "Import Variable".

Browse and select a file. Enable "First Column is Independent Data" if the first column of
the data is independent data (swept). Name the variable in the Variable Name field.

The data should be formatted as a list or matrix of numbers. Semicolons (" ; ") and
spaces (" ") are used to indicate breaks between values Other characters are treated as
zeroes. Begin the data with !Units unitindep unitdep to define a unit of measure for the
data. Other rows that begin with a ! are ignored as comments.

 Example (Choose Real, check First column as independent)

SystemVue - Users Guide

138

 Importing Complex Variables

Complex data can be imported in several formats. A typical usage is shown below, where
the independent vector is frequency (MHz) and the dependent is S21 in DB and ANG
format. The same conventions apply here as for reals; spaces, tabs, and semicolons define
breaks between entries.

 Example using rectangular coordinates (Re + Im)

 Notes

Complex data should come in pairs of columns; two parts are needed to specify a1.
point in the 1D complex space. A warning is given if there is an odd number of
columns (excluding the independent vector).
To use the dB scale for complex numbers, the unit should be specified as dB;2.
otherwise the absolute scale is used based on whatever unit is defined. For example,
input impedance should have a unit of "Ohm" which can also potentially have a
phase; thus it cannot be in Ohms and dB simultaneously.
Typical units: dB, dBm, dB10, dB20, Abs, Ohms, V, A, mil, pF, nH3.
The independent variable must be real (this will typically correspond to time or4.
frequency, both of which are real quantities).

 Using Dataset Variables
You can create variables and analyses will create variables when they run.

 To graph a Dataset variable

Right-click the variable and see creating a graph from a dataset (users).

 To duplicate a Dataset variable

Right-click the variable and select Duplicate

 To edit a Dataset variable

SystemVue - Users Guide

139

You can not edit Measurement variables (variables created during a simulation run).
You can edit variables you create. Double-click the variable or right-click it and select
Properties from the menu.

 To delete a Dataset variable

You should not delete Measurement variables (variables created during a simulation
run). You may delete variables you create. Right-click it and select Delete from the
menu.

 To view a Dataset variable

If the variable is an array, click it and the right pane will fill with the array values. If
the variable is a scalar the value should be shown in the list on the left.

 To export a Dataset variable

Right-click the variable and select Export. This will export it into an XML data form.

 Using Datasets
Datasets are extremely useful for comparing different circuit configurations. You can run a
simulation, save the data, then change some parameters, rerun the simulation and
compare the two sets of data easily.

Normally, an analysis has the dataset name stored within it. You might set that name to a
formula based on the parameters, but it's simpler to just Snapshot or Checkpoint the
dataset.

 To Checkpoint a Dataset

Right-click the dataset and select Snapshot. Another dataset named mydata_Snap is
created. This Snap dataset contains the numerical data from the first dataset (all
formulas are parsed and converted to data and the formula text is stored in the variable
description).

To compare PPORT[2] for the two datasets just enter two measurements in a graph or
table like this:

The HB1_Data_Snap.VPORT entry says to use the VPORT variable from HB1_Data_Snap.

Note we use db() here because the data in the dataset is in MKS and we want dBV for
display.

SystemVue - Users Guide

140

 Variable Properties
This window defines a variable and its display properties:

Name – The variable name.
The name must start with a letter and contain only letters, numbers, and/or the
underscore "_" character.
Names are case-sensitive. (V1 is a different variable than v1.)

Formula – The equation which defines the variable's value.
The Math Language equation may refer to other variables, functions, define
vectors, matrices, etc. Please see the appropriate section in the User's Guide for
details on using Equations.

Independant Variable – One or more associated variables, which define related
data, such as the X-Axis variable (which is the first indep).

If there is more than one independant variable, each indep should be separated
by a vertical-bar character "|".

Description – The discription of the variable, usage notes, etc.
Complext Format – If the value is one or more complex numbers, the values can be
displayed in several formats:

Default – Allows SystemVue to automatically determine the most appropriate
format to use.
Real + Imaginary – Displays the values using real and imaginary values.
Magnitude + Angle – Displays the values using magnitude and angle. The
magnitude is displayed using the units specified in the "Display Magnitude In"
dropdown. The angle is displayed using the global Angle units, as specified in
Tools / Options.
Magnitude Only – Only the magnitude is displayed.

Units Of Measure – The units used for displaying the variable in the DataSet view
window.
Display Magnitude In – If the value is a complex number and the Complex Format
includes magnitude, this specifies the units to use (for magnitude).

SystemVue - Users Guide

141

 Graphs
Graphs display data from datasets (users) or equations (users), which are usually
measurement data derived from the analysis of a design. For more information on menu
items, refer Graph Menu (users) or Graph Toolbar (users) in the Appendix sections.

 Contents
Types of Graphs (users)
Creating Graphs (users)
Graph Properties (users)
Graph Series Properties (users)
Graph Series Wizard (users)
Using Markers on Graphs (users)
Annotating Graphs (users)
Zooming Graphs (users)

 Annotating Graphs

The Annotation button () on the Graph toolbar gives you access to the Annotation
Toolbar (users). The Annotation toolbar provides lines, circles, and text that you can use
to point out details of interest on a graph.

For example, the Text Balloon annotation has a "tail" which can be anchored to a data
point on a graph, to the page, or not anchored by right-clicking on the balloon and
selecting Anchor Pointer on the menu.

To create a balloon that's initially anchored to a data point, first ensure that no marker is selected. If the
trace vertices are not visible, right-click the trace and select Show Vertex Symbols. Right-click a trace
vertex (or WhatIF bar) and select Create Info Balloon. The balloon will be anchored to the point and
filled from the info box that is displayed when the mouse hovers over a data point.

Tip for advanced users: To copy the text from the balloon to the Windows clipboard, click on the
balloon, right-click on the balloon and select Enter Text, select the text and copy it to the clipboard using
Ctrl_V.

 Creating Graphs
Graphs can be created manually, however the easier way to provide a context first. See
sections on creating a graph from a dataset or creating a graph from a schematic.

 Manually create a graph

Click the New Item button () on the Workspace Tree toolbar.1.
Select Add Graph..., and the Graph Series Wizard (users) window will appear.2.
Select the series plot type.3.
Select the variable that you want plotted. Some plot types require more than one4.
variable.
Click the OK button and the Graph Properties (users) window will appear.5.
If desired, change the graph Name, and add a title to the Graph Heading.6.
Click OK.7.

 Create a graph from a dataset

Right click a variable in a dataset. Select Add Graph... and click on New Graph.

 Create a graph from a schematic (RF Design Kit only)

Right-click a port or node on a schematic and select Add New Graph/Table then1.
the measurement you want to graph from the menu.

The actual items available on the menu are context-sensitive, based on the part or node you clicked
and the simulations available. For example, the Relevant S-Parameters option generates
measurements for all S-parameter measurements that are pertinent to the indicated port. Also, the
workspace must contain at least one analysis referring to this schematic design to make this feature
available. (Otherwise there is nothing to plot.)

To create another graph, right click the port again and select a different option. Your2.
screen should now have a spectrum similar to this:

Double-click a graph to change the graph's properties. Right-click a trace or legend to3.

SystemVue - Users Guide

142

make specific changes to the appearance of the trace or legend. Hover over a symbol
(a dot on the trace) to get a pop-up showing the value at that point. Check out the
Graphs tutorial video for tips and techniques.

 Graph Properties
Graph properties define a graph object. The Graph Properties window permits changes
to properties such as the title or a series, i.e. a plot of a measurement variable.

 Changing Graph Properties

The Graph Properties window initially appears when a graph is created, so that you can
add a series and/or customize the graph. You can make additional changes after the graph
is created by right clicking the graph window or double clicking an "empty" area of the
graph window and then selecting Graph Properties... as illustrated below.

 Graph Properties Dialog

The following Graph Properties window was created for a General plot type with a
Rectangular graph format and plots two variables from two different datasets.

Name – The name of the graph object, which is shown on the workspace tree
Graph Title – The plot title, which is drawn at the top of the graph (like a heading)
Show All Columns – When this box is checked, infrequently-used columns in the
Series window (such as On Right and Hide?) are shown.
Advanced... Button – Clicking this button displays the Advanced Graph
Properties dialog, as described below.

 Series Settings

The following series window has defined two series for plotting.

Edit/Add Button – Clicking on the Edit or Add buttons will pop-up the Graph Series
Wizard (users) for a series definition.
Remove Button – Clicking on this button removes the associated series.
Context – The text provides context for the Variable text box. If left blank, the
Variable text box must have a fully qualified variable name. Typically, the context is
the dataset name where the variable is defined. To graph an equation variable, set
this text box to [Equations]. The equation hierarchy is searched for the equation
variable. If the equation variable is not found, an error is logged.
Variable – The text contains the name of the variable that is to be graphed.
Label (Optional) – The text contains the axis label for the series. If left blank, the
Variable text is used.
On Right / On Bottom – If the box is checked, the an alternate vertical axis for the
series is placed on the right side of a rectangular graph. Polar charts use On Bottom
to indicate the use of the "lower" radial axis.
Hide? – If the box is checked, the series is not plotted.
Color Button – Click on this button to change the color that has been assigned to
the series.
Type – This informational (read only) text box states the series plot type.

Note: Checkpoint traces are NOT shown in the series grid. You can remove all the checkpoint traces on a
graph by clicking the Checkpoint button on the Graph Toolbar (users). You can change the trace color
by right-clicking a trace.

 Axis Settings Tabs

The lower portion of the window contains various axis and settings tabs, which depend on
the graph type.

The following is an example of a rectangular graph with a single vertical axis.

If both vertical axes are used, the Y-Axis tab name is changed to Left Y-Axis, and an
additional tab labeled Right Y-Axis is added. Most of the settings are similar.

Auto-Scale – When checked, the axis automatically sets its limits to match the
range of the data which is being plotted
Label – Use this label to customize the axis name

SystemVue - Users Guide

143

Logarithmic – When checked, the axis is drawn with a logarithmic scale
Min – Sets the lower numerical range of an axis
Max – Sets the upper numerical range of an axis
Units – Sets the units-of-measure used by the axis (and Min and Max)
Divisions – Sets the number of divisions to use on the axis; contains Auto if the
divisions will be determined automatically

Tip: To control the axis tick marks, you can set the Min and Max fields to appropriate numbers, e.g. in
the above examples you might want to specify the Max to 1000e-6 s.

 Polar Tab

For a polar plot, there is simply a tab labeled Polar.

Upper and Lower Scale – Polar charts have both an upper and lower scale, so that
different numerical ranges may be compared on the same plot.
Linear or dB – Indicates which scaling method to use
Maximum – Typically 0.0 for dB and 1.0 for Linear

 Advanced Graph Properties

 General Tab

The General tab contains generalized graph settings, such as a description field.

Description – An optional description which is saved with your graph.
Allow Reduction When the Number of Data Samples Exceeds # – Graphs
normally plot a reduced dataset when a large number of data points must be
displayed (which increases the drawing speed). Under normal circumstances, you
should not be able to see a difference in the visual trace. However, markers can only
be placed on a non-reduced data point. Data on a circular graph, sweeps, X-Y
(trajectory or constelation) plots, or measurements without indep data cannot be
reduced. The default is 5000 and the range is 5000-1000000 sample points (before
data reduction is triggered).

 Graph Lines Tab

Marker Lines – Sets the thickness of the graph traces: Thin, Medium, Thick, Heavy,
or None
Smooth Graph Traces – By default, anti-aliasing techniques are used to remove
jagged pixel edges, however by default, traces with a large number of vertices are
not smoothed
Allow smoothing when number of vertices is large – Also smooth traces that
contain a lot of points
Smooth Graph Background – Smooths the "graph paper" background; only
available for circular charts
Apply to All Graphs button – Applies the current Graph Lines tab settings to all
the graphs in the current workspace.

 OK, Cancel, Apply and Help Buttons

Clicking the OK button accepts the property changes and exits the dialog. Clicking the
Cancel button dismisses any changes and exits the dialog. Clicking the Apply button
temporarily accepts property changes for previewing. The Help button links to
documentation.

SystemVue - Users Guide

144

 Graph Series Properties
To access the settings of a graph series (one or more data traces, based on a single
measurement), right-click a series on a graph. A menu will be displayed:

Zoom to Fit Spectrum / Trace – Zooms the graph, so that the selected trace fills
the graph.
Show Vertex Symbols – Toggles (show/hide) vertex symbols (circles, squares,
triangles, etc. which indicate individual data points).
Show Every Nth Symbol – Brings up a dialog box with symbol interval settings, as
described below.
Symbol Shape – Selects the symbol shape for the selected series.
Symbol Size – Specifies the symbol size for the selected series.
Dash Style – Specifies the dash style for the selected series.
Line Thickness – Specifies the line thickness for the series trace(s).
Series Color... – Specifies the series color.
Hide Measurement – Hides the selected series. To make it visible again, double
click the graph and uncheck the Hide checkbox. (Check Show All Columns if the
Hide column is not visible.
Create Info Balloon – Creates a Balloon annotation with info on the specified data
point. Use the Annotation toolbar to change the balloon colors and other settings.
Graph Properties... – Brings up graph properties (just like double-clicking the
graph).
Marker Font... – Brings up marker font properties.

 Show Every Nth Symbol

Show Vertex Symbols – Same as menu toggle Vertex Symbols setting above, for
convenience (since you can't see the symbol unless this is enabled).
Automatic – Draws a symbol on every data point, unless it overlaps the preceeding
symbol(s), in which case it is omitted. This is the default settings.
Draw symbol on EVERY data sample point – Draws a symbol at every single data
point (in the "reduced" data set, see note below). This can be time-consuming to
draw when there are a lot of data samples.
Draw symbol on every Nth vertex – Specifies that symbols should only be drawn
on some of the data points, for example, 2 indicates symbols should be drawn on
every-other data sample.

Note
Data reduction is used on large datasets to increase drawing speed. To adjust this setting, double-click the
graph and click the Advanced button.

 Graph Series Wizard
This wizard initializes properties for a graph object. For a new graph, the wizard is invoked
by adding a graph to the work space tree or by selecting a variable from a dataset and
adding a new graph. For a created graph, clicking on the Add or Edit buttons in the
Graph Properties (users) dialog will pop-up the Graph Series Wizard. The following
shows the wizard when a graph object is added to the work space tree.

Note that a complete list of series (plot) types is available and that all dataset variables
are ready for selection. This wizard state can be reached by clicking the Clear Mode
button.

A specific series can be directly chosen from the list in the Type of Series window, and
consequently the list of available dataset variables is refined. Conversely, a dataset
variable can be chosen from the Data window, and the list of available plot types is
refined.

 Wizard Components

The components are described in top-down order.

 Type of Series Window

Choosing a series type limits which dataset variables can be selected for the series. It also
determines how many Data windows are displayed (1 or 2). Note the different series
types will often share some of the same variables (the measurement sets may overlap).

SystemVue - Users Guide

145

The list of available series types follows.

General. Variables are plotted against their domains. Every variable is compatible
with this type.
Level Diagram. A variable generated by SpectraSys (RF System Analysis) which is
a measurement at components along a selected path is graphed as a function of its
path position.
Spectrum. Plot a variable whose independent axis is Frequency. This plot type is
also compatible with variables whose independent is Time and will produce a post-
processed set of equations which involve taking an FFT. Various options for the FFT
are available - see the Post Processed equation block.

Constellation. Complex samples are plotted with the real part specifying the X-Axis
coordinate and the imaginary part specifying the Y-Axis coordinate.
Cross Correlation. Performs a cross correlation between two variables that are
selected in separate Data windows.
Eye. An Eye diagram is produced by overlaying fixed periods of a real variable.
Time. Only variables with a time domain are selected for graphing.
Trajectory. This is the Constellation plot with line segments connecting
consecutive samples.
Y versus X. A variable from each Data window is selected and graphed against each
other.

 Data Window

Once a series type is selected, the possible dataset variables required for the plot are
displayed in one or more Data windows. Alternatively, if a variable is chosen then a
refined list of plot types is shown in the Type of Series window.

Note that an un-named pull-down menu that is located at the upper right of a Data
window can be used to modify a selected variable. This pull-down menu is activated when
there is a potential need to further specify the selected variable. In the following example,
only the imaginary part of the complex variable N1 that has been selected in Y Data
window is desired.

 Post Process Button and Series Equations Window

The preparation for the plot may require additional calculation which is viewed in the
Series Equations window.

While equations are automatically added, one can customize the equations. To edit the
equations, click on the Post Process button and the following window post processing
window should appear.

SystemVue - Users Guide

146

For the description of the equation language, see Using Mathematics Language
(users). The language functions are described in Math Language Function Reference
(users).

 Clear Mode button

The new graph object wizard state can be reached by clicking this button.

 Plot On Right Check Box

If this box is checked, the vertical axis on the right is used for this series. This check box
is also available on a per series basis in the Graph Properties (users) dialog.

 OK, Cancel and Help Buttons

Clicking the OK button proceeds to the Graph Properties (users) dialog. Clicking the
Cancel button dismisses the wizard. The Help button links to documentation.

 Types of Graphs
SystemVue has several types of graphs, including:

Rectangular Graphs - a Cartesian coordinate plot.
Polar Charts - displays complex data, such as S-Parameters or impedances.

In addition, data can be displayed in a spreadsheet-style Table (users) view. These
differing output options allow you to display data in a variety of formats.

 Rectangular Graphs
A rectangular graph is a Cartesian coordinate plot. You can use a rectangular graph to
display two-dimensional data versus frequency (for example: magnitude or phase of a
complex measurement, but not both).

In the figure below, the S-parameter insertion loss and return loss of a bandpass filter are
plotted. There are 3 types of markers shown: a peak marker, a regular (fixed frequency)
marker, and a valley marker. You can add to any rectangular graph. Regular markers can
also be placed on circular charts.

If you do not like the small circles, squares, or triangles that show each data point, hide them using the
Show Symbols On Trace option on the Graph menu.

 Polar Charts
A polar chart is used to display complex data, such as S-Parameters or impedances. In the
figure below, S11 (input reflection coefficient) and S22 (output reflection coefficient) are
plotted. The horizontal axis on a polar chart represents purely real numbers, while the
vertical axis represents purely imaginary numbers. Numbers that lie between the two axes
have both imaginary and real components.

Smith charts and polar charts generate the same plots for S-parameters (only the
background and scales are changed). Additionally, certain measurements (such as Y
Parameters) may be plotted on polar charts and not on Smith charts (where those
measurements don't really make sense).

 Using Markers on Graphs
Markers are a useful way to examine and document data values on a graph.

 Adding Markers to Graphs

You can add markers to any graph except 3D graphs. The following figure shows a
rectangular graph before adding a marker:

SystemVue - Users Guide

147

Here is the graph after placing a standard marker on the red trace:

The Mark All Traces mode displays additional marker flags on all relevant traces of chart
as shown in the following figure:

Whenever a marker is selected as the currently active marker, the marker text colors are
inverted (white on a colored rectangle). The figure below shows two markers. The marker
on the right is selected.

 To add a marker

Click a data point on a trace. Clicking on a graph data point will create a new Marker.

 To add a marker to all of the traces on a graph

Click the Mark All Traces button on the graph toolbar.

 To select a marker

Click the marker you want to select.

 To change the properties of a marker

Double-click the marker to display the Marker Properties window.

 To delete a marker

Select the marker and then press the Delete key
Alternate: click the Delete All Markers button

 Marker Styles (Peak, Valley, etc.)

SystemVue has several marker types. These markers are available only for rectangular
graphs. A marker's type can be changed in the Marker Properties dialog box.

Standard - A non-moving, fixed frequency marker.
Peak - A marker that automatically tracks the peaks of a graph, even while tuning.
Valley - A marker that automatically tracks the valleys of a graph, even while tuning.
Bandwidth - A composite marker for ease-of-use. Bandwidth markers are peak
markers which drop two relative markers to measure the bandwidth of the peak. A
bandwidth marker can also be a valley marker, simply by setting the Relative offset
to be a positive number.
Relative - A marker that automatically tracks the position of another marker and are
adjusted to the relative offset (dB down). Relative markers are rarely used, except
when automatically placed by SystemVue to indicate the limits of a bandwidth
marker.
Delta - Any marker style can be used as a delta marker. A delta marker displays the
x / y distance to another marker.

 Placing a Marker on a Trace

 Standard marker

To place a Standard marker on a graph, just position the mouse over the spot where1.
the marker is needed and click the graph trace (on or near a data point) with the left
mouse button.
The marker can then be changed to one of the other marker types like Peak, as2.
desired (using the Marker Toolbar or the Marker Properties window).

 Peak marker

Place a Standard marker on a graph, as described above.1.
Click the marker and set its style to Peak using the Marker Toolbar.2.

The following figure is an example of what happens when a standard marker (red) is
changed to a peak marker:

Notice how the marker travels to the nearest peak.

SystemVue - Users Guide

148

Peak/Valley detection works as follows: The "aperture" window is a box that is used for peak / valley
detection. A peak or valley must be at least as large as the box, otherwise it is ignored. In general, a user
should never need to adjust these, as the defaults are pretty good. A local maximum can be rejected by
increasing the aperture window. Small peaks can be detected by decreasing the window size. The same
criteria are used for valley detection (with a sign flip). The parameters are percentages (which are scaled
by the bounds of the graph) and then used to evaluate candidate peaks / valleys and reject those that are
too small to be of interest.

 Valley marker

Place a Standard marker on a graph, as described above.1.
Click the marker and set its style to Valley using the Marker Toolbar (users).2.

 Bandwidth marker

Place a Standard marker on a graph, as described above.1.
Click the marker and then click Bandwidth on the Marker Toolbar (users). The2.
marker's style and name will be updated and 2 associated relative markers will be
placed automatically.

Here is an example of a Bandwidth marker, along with its associated relative markers:

Notice that the actual measured bandwidth of 24 MHz is displayed. It is calculated directly
from the positions of the two relative markers, which are both set to -6.0 dB down. You
can increase the number of data points in the simulation as needed so that the relative
markers are positioned with sufficient precision. You can adjust the dB down settings of
both relative markers associated with the Bandwidth marker at the same time by setting
the Bandwidth marker's properties. Set an individual relative marker's properties to
independently set the dB down to different values.

If you need the bandwidth based on a fixed center frequency, place a bandwidth marker, change the
marker type to Standard, and then type the frequency in the marker's properties window. The relative
markers automatically follow the marker to its new location.

 Relative marker

Place a Standard marker on a graph, as described above.1.
Click the marker and set its style to Relative Left or Relative Right using the Marker2.
Toolbar. The associated relative markers will be automatically placed.

The following figure is an example of a Relative maker (on right) that is relative to the
first marker ("M1"):

Notice the delta value (-2.68 dB) is displayed. That is the actual value derived from the
simulation data, even though the marker's default dB down of -3.0103 dB was requested.
The relative marker is always placed on an actual simulation data point.You can
increase*the number of data points in the simulation as needed to get the relative marker
value closer to -3 dB down.*Because this relative marker is attached to a peak marker,
both markers track tuning changes in tandem.Also, notice that the original marker is
automatically named M1 so the relative marker can reference it.

 Delta marker

Double-click the existing marker that you want to measure the delta to and ensure1.
that it has a name.
Place a Standard marker on a graph, as described above. This will become the "delta2.
marker".
Double-click the new marker.3.
Check Show delta X (and/or delta Y).4.
Select the original marker name in the Relative To combo box.5.
Click OK.6.

 Naming Markers

Name a marker for reference or documentation purposes. You must name a marker if a
Relative or Delta marker references it.

Bandwidth markers are automatically named in the format BW1, BW2, and so on. Other
markers are automatically named M1, M2, and so on.You can hide marker names using
the Marker Properties window; however, the name always displays on a tool tip.

 Graph Marker Properties

The marker properties window lets you change the attributes of a graph marker.

To change the properties of a graph marker:

Double-click a marker to open its properties window.1.

SystemVue - Users Guide

149

Make the changes you want to the following settings:2.
Name - The name of the marker, which is optional, unless the marker needs to
be referenced by a relative or delta marker.
Mark All Traces - When checke,d the marker will mark all traces (otherwise it
will only mark a single trace).
Show Name - When checked, the name of the marker will be displayed on the
graph.
Standard - A normal, fixed-frequency marker.
Bandwidth - A marker which uses 2 relative markers to display the bandwidth
of a peak (or valley if Relative Offset is a positive number).
Peak - A peak marker, which tracks a peak on the graph (even while tuning).
Valley - A valley marker, which tracks a valley on the graph.
Relative Marker (on Left or Right) - A tracking marker, used to measure
bandwidth, etc.
X-Axis Value - The marker's location on the X-axis.
Aperture Width / Height - These values are shared between all graphs and
are used to track peaks and valleys. The values are a percentage of the width /
height of the graph window.
Default - Sets the Aperture Width and Height back to the Factory Default
settings of 10% and 5%.
Relative To - The name of the marker to reference for relative and delta
markers.
Show Delta X / Y - When checked, the distance from the "delta" marker to the
reference marker will be displayed.

Click OK.3.

 Customizing Graphs and Markers

Customize your graphs and markers to create a neater, more usable graph. There are
many graph and marker options from which to choose.They include the following:

Hiding vertical lines and trace symbols using the Graph menu.
Placing marker text on the right using the Graph menu.
Changing graph and marker settings using the Graph menu or Graph toolbar.
Adding titles and annotations by right-clicking the graph and using the menu.
Moving graph legends by dragging them into place.
Removing symbols on traces using the Graph menu.

This following figure shows a less cluttered graph:

 Zooming Graphs
You can zoom on graphs using buttons on the Graph Toolbar (users). Depending on which
graph type you are using, some of these buttons might be grayed out.

When zooming to a rectangle or zooming-out, both axes are zoomed, however, when zooming-in, only
the X-Axis on a rectangular graph is zoomed by default. (This is because much of the time, it makes
sense to keep the Y-range unchanged.)

Hold down the Ctrl key to toggle the Y-Axis zoom.

As you zoom out, the graph background may selectively skip drawing excessive details. This is intentional.
Similar to using a street atlas, a state map or a world map, only the appropriate details are shown at a
particular zoom setting.

Some different ways to zoom a graph follows:

Click one of the following buttons on the Graph toolbar or press one of the1.
corresponding keys:
Click this button To select this tool Keyboard Shortcut

Pan the graph. P

Zoom the graph to a rectangular region. X

 Zoom in. +

 Zoom out. –

After selecting the tool, click and drag in the graph to use the tool. When you let up
on the mouse, the tool returdisappears.
Zoom in on a rectangular area of the graph by click-dragging with the zoom tool.
Click the left button to zoom in; click the right button to zoom out.
Click one of the following buttons on the Graph toolbar to automatically zoom to a2.
region
Click this button For this action Keyboard Shortcut

Zoom the graph to the page. Ctrl+End

Maximize the graph to show all the
data.

Z

Move the mousewheel in/out to zoom the schematic in/out3.
Use the keyboard + and - keys to zoom in and out.4.

 Graph Axis Favorites

As you work with graphs, you will find that you have sections of the graph you want to
study consistently. You can define an Axis Favorite and easily return to it with one of the
following buttons on the Graph Toolbar (users).

Click this button To do Keyboard Shortcut

Save the current axis settings as a favorite. F

Use an axis favorite setting (cycle through the saved settings). B

When you click the Save Axis Favorite button (or use a hot key found in the Graph menu),
the current axis settings will be saved in a short list of favorites. If the list is full, the new
settings will overwrite the oldest Axis Favorite.

SystemVue - Users Guide

150

 Importing and Exporting
 Contents

Importing Data Files Using SystemVue (users)
Exporting Data Files Using SystemVue (users)

 Exporting Files Using SystemVue
SystemVue can export the following file types:

Bitmap (Active Window)
Bitmap (Entire Screen)
XML File

 Export a file

To export a file please follow the following steps detailed below:
Select the object in the Workspace Tree to be exported.
Click File on the SystemVue menu and select a file type from the Export menu.
Follow the instructions in the windows that appear.
Or
Right click on the object in the Workspace Tree to be exported.
Select the Export menu.
Follow the instructions in the windows that appear.

 Bitmap (Active Window) Export

A bitmap of the active window can be exported. To export the active window:

Open the window and make sure it is the active window1.
Select the File > Export > Bitmap (Active Window) menu2.
When prompted specify the directory and filename3.

 Bitmap (Entire Screen) Export

A bitmap of the entire screen can be exported. To export the entire screen:

Select the File > Export > Bitmap (Entire Screen) menu1.
When prompted specify the directory and filename2.

 XML file Export

Each SystemVue object in the workspace tree has an XML format associated with it.
Workspace tree objects that can be exported to an XML format. To export an XML file:

Click the object in the workspace tree to be exported1.
Select the Export menu option from one of the given methods2.
Specify the name of the directory and filename of the exported object3.

 Importing Data Files Using SystemVue
SystemVue can import the following file types:

M-File
Directory of M-Files
S-Data File
XML File
CITI File

 To import a file
Click File on the SystemVue menu and select a file type from the Import menu.1.
Follow the instructions in the windows that appear.2.
Or
Right click on a folder in the Workspace Tree and select the Import menu.3.
Follow the instructions in the windows that appear.4.

 M-File Import

Imported M-Files are placed in an equation block on the workspace tree.

Browse to the M-file of interest1.
Click OK2.

 Directory of M-Files Import

All of the M-Files located in a selected directory are imported and placed in an equation
blocks on the workspace tree.

Browse to the M-file directory of interest1.
Click OK2.

 S-Parameter Files Import

When S-Parameters are imported a dataset is create and placed in the workspace tree.
This dataset is saved and loaded with the workspace and will be cached in memory to
increase the simulation speed. The dataset can be deleted from the workspace. Memory
cache will be used until there is a need to re-read the dataset from the workspace tree or
if the dataset is not found the original file will be re-imported and cached once again.

S-Parameter can be imported in one of several ways detailed below:

 Importing from a library

Open up the Parts Selector (Ctrl_Shift_A) or click the part selector button ()1.
Change the Current Library to the S-Parameter library of interest2.
Click the library part of interest (the mouse cursor will change to a + sign)3.
Place the part in the schematic by clicking the schematic4.

NOTE: On first use of the selected library it will be unzipped and the S-Parameter file associated
with the part will be imported into the workspace tree

Or

SystemVue - Users Guide

151

 Importing from the Main Menu

Select File, Import, then S-Data File from the main SystemVue menu1.
Browse to the S-Parameter file2.
Or

 Importing from a Part

Place a S-Parameter part in the schematic (1-port (rfdesign), 2-port (rfdesign), n-1.
port (rfdesign)). This can be done from the Linear Toolbar or the Part Selector
Double click the part to bring up the part properties2.
Click the Browse button to browse to the S-Parameter file3.

 Manually Imported S-Parameters

Manually imported S-Parameters don't use a filename name. The data must exist on the
workspace tree. If the dataset is deleted then there is insufficient information to correctly
build the model. The model has no need of the filename and simply needs to know the
name of the dataset.

Place a dataset part in the schematic (NPOD (rfdesign)). This can be done from the1.
Linear Toolbar or the Part Selector
Double click the part to bring up the part properties2.
Set the dataset name to the name of the imported S-Parameters3.
Add an analysis and point it to the desired schematic4.
Run the analysis5.

 Reference

NPOD

 XML File Import

Each SystemVue object in the workspace tree has an XML format associated with it.
Workspace tree objects that have been exported to an XML format can be re-imported
into any workspace. To import an XML file:

Select the Import menu option from one of the given methods1.
Click XML file2.
Browse to the XML file of interest3.

 CITI file Import

 Overview

CITIfile is a standardized data format that is used for exchanging data between different
computers and instruments. CITIfile stands for Common Instrumentation Transfer and
Interchange file format.

This standard is a group effort between instrument and computer-aided design program
designers. As much as possible, CITIfile meets current needs for data transfer, and it is
designed to be expandable so it can meet future needs.

CITIfile defines how the data inside an ASCII package is formatted. Since it is not tied to
any particular disk or transfer format, it can be used with any operating system, such as
DOS or UNIX, with any disk format, such as DOS or HFS, or with any transfer mechanism,
such as by disk, LAN, or GPIB.

By careful implementation of the standard, instruments and software packages using
CITIfile are able to load and work with data created on another instrument or computer. It
is possible, for example, for a network analyzer to directly load and display data measured
on a scalar analyzer, or for a software package running on a computer to read data
measured on the network analyzer.

 Data Formats

There are two main types of data formats: binary and ASCII. CITIfile uses the ASCII text
format. Although this format requires more space than binary format, ASCII data is a
transportable, standard type of format which is supported by all operating systems. In
addition, the ASCII format is accepted by most text editors. This allows files to be created,
examined, and edited easily, making CITIfile easier to test and debug.

 File and Operating System Formats

CITIfile is a data storage convention designed to be independent of the operating system,
and therefore may be implemented by any file system. However, transfer between file
systems may sometimes be necessary. You can use any software that has the ability to
transfer ASCII files between systems to transfer CITIfile data.

The descriptions and examples shown here demonstrate how CITIfile may be used to
store and transfer both measurement information and data. The use of a single, common
format allows data to be easily moved between instruments and computers.

 CITIfile Definitions

This section defines: package , header , data array , and keyword .

 Package

A typical CITIfile package is divided into two parts:

The header is made up of keywords and setup information.
The data usually consists of one or more arrays of data.

The following example shows the basic structure of a CITIfile package:

When stored in a file there may be more than one CITIfile package. With the Agilent 8510
network analyzer, for example, storing a memory all will save all eight of the memories
held in the instrument. This results in a single file that contains eight CITIfile packages .

 Header

The header section contains information about the data that will follow. It may also
include information about the setup of the instrument that measured the data. The
CITIfile header shown in the first example has the minimum of information necessary; no
instrument setup information was included.

 Data Array

An array is numeric data that is arranged with one data part per line. A CITIfile package
may contain more than one array of data. Arrays of data start after the BEGIN keyword,
and the END keyword follows the last data part in an array.

A CITIfile package does not necessarily need to include data arrays. For instance, CITIfile
could be used to store the current state of an instrument. In that case the keywords VAR ,
BEGIN , and END would not be required.

When accessing arrays via the DAC (DataAccessComponent), the simulator requires array
parts to be listed completely and in order.

http://edocs.soco.agilent.com/display/source/RF+S+Parameter+File
http://edocs.soco.agilent.com/display/source/RF+S+Parameter+File

SystemVue - Users Guide

152

Example: S[1,1], S[1,2], S[2,1], S[2,2]

 Keywords

Keywords are always the first word on a new line. They are always one continuous word
without embedded spaces. A listing of all the keywords used in version A.01.00 of CITIfile
is shown in CITIfile Keyword Reference.

 To import CITI File in SystemVue:

Open File > Import > CITI File..1.

Select CITI File for Import in the Open file dialog:2.

If the CITI file has arrays (variable, which names have indexes in square braces[]), it3.
opens the dialog, defining output format of the array data.

Select Yes to convert array data in arrays, or No- otherwise:
The imported file creates dataset with name = the file name in the SystemVue4.
workspace tree.
We imported "proj.cti" CITI file, which created same named dataset:

If the workspace tree has dataset with name of the imported CITI file, then this5.
dialog is opened to rename the output dataset:

For example, if CITI file has array data Si,j

 Saving its array data as Arrays will creates swept relative to independent variable
freq vector PORTZ and matrix S:

file:/pages/createpage.action?spaceKey=sv201103&title=i%2Cj&linkCreation=true&fromPageId=117477223
file:/pages/createpage.action?spaceKey=sv201103&title=i%2Cj&linkCreation=true&fromPageId=117477223

SystemVue - Users Guide

153

otherwise the array data will be saved as scalar varaiables PORTZ_i and S_i_j:

 CITIfile Examples

The following are examples of CITIfile packages.

 Display Memory File

This example shows an Agilent 8510 display memory file. The file contains no frequency
information. Some instruments do not keep frequency information for display memory
data, so this information is not included in the CITIfile package.

Note that instrument-specific information (#NA = network analyzer information) is also
stored in this file.

CITIFILE A.01.00

#NA VERSION HP8510B.05.00

NAME MEMORY

#NA REGISTER 1

VAR FREQ MAG 5

DATA S RI

BEGIN

-1.31189E-3,-1.47980E-3

-3.67867E-3,-0.67782E-3

-3.43990E-3,0.58746E-3

-2.70664E-4,-9.76175E-4

0.65892E-4,-9.61571E-4

END

 Agilent 8510 Data File

This example shows an 8510 data file, a package created from the data register of an
Agilent 8510 network analyzer. In this case, 10 points of real and imaginary data was
stored, and frequency information was recorded in a segment list table.

CITIFILE A.01.00

#NA VERSION 8510B.05.00

NAME DATA

#NA REGISTER 1

VAR FREQ MAG 10

DATA S[1,1] RI

SEG_LIST_BEGIN

SEG 1000000000 4000000000 10

SEG_LIST_END

BEGIN

0.86303E-1,-8.98651E-1

8.97491E-1,3.06915E-1

-4.96887E-1,7.87323E-1

-5.65338E-1,-7.05291E-1

8.94287E-1,-4.25537E-1

1.77551E-1,8.96606E-1

-9.35028E-1,-1.10504E-1

3.69079E-1,-9.13787E-1

7.80120E-1,5.37841E-1

-7.78350E-1,5.72082E-1

END

 Agilent 8510 3-Term Frequency List Cal Set File

This example shows an 8510 3-term frequency list cal set file. It shows how CITIfile may
be used to store instrument setup information. In the case of an 8510 cal set, a limited
instrument state is needed to return the instrument to the same state that it was in when
the calibration was done.

Three arrays of error correction data are defined by using three DATA statements. Some
instruments require these arrays be in the proper order, from E[1] to E[3] . In general,
CITIfile implementations should strive to handle data arrays that are arranged in any
order.

CITIFILE A.01.00

#NA VERSION 8510B.05.00

NAME CAL_SET

#NA REGISTER 1

VAR FREQ MAG 4

DATA E[1] RI

DATA E[2] RI

DATA E[3] RI

#NA SWEEP_TIME 9.999987E-2

#NA POWER1 1.0E1

#NA POWER2 1.0E1

#NA PARAMS 2

#NA CAL_TYPE 3

#NA POWER_SLOPE 0.0E0

#NA SLOPE_MODE 0

#NA TRIM_SWEEP 0

#NA SWEEP_MODE 4

#NA LOWPASS_FLAG -1

#NA FREQ_INFO 1

#NA SPAN 1000000000 3000000000 4

#NA DUPLICATES 0

#NA ARB_SEG 1000000000 1000000000 1

#NA ARB_SEG 2000000000 3000000000 3

VAR_LIST_BEGIN

1000000000

2000000000

2500000000

3000000000

VAR_LIST_END

BEGIN

1.12134E-3,1.73103E-3

4.23145E-3,-5.36775E-3

-0.56815E-3,5.32650E-3

SystemVue - Users Guide

154

-1.85942E-3,-4.07981E-3

END

BEGIN

2.03895E-2,-0.82674E-2

-4.21371E-2,-0.24871E-2

0.21038E-2,-3.06778E-2

1.20315E-2,5.99861E-2

END

BEGIN

4.45404E-1,4.31518E-1

8.34777E-1,-1.33056E-1

-7.09137E-1,5.58410E-1

4.84252E-1,-8.07098E-1

END

When an instrument's frequency list mode is used, as it was in this example, a list of
frequencies is stored in the file after the VAR_LIST_BEGIN statement. The unsorted
frequency list segments used by this instrument to create the VAR_LIST_BEGIN data are
defined in the #NA ARB_SEG statements.

 2-Port S-Parameter Data File

This example shows how a CITIfile can store 2-port S-parameter data. The independent
variable name FREQ has two values located in the VAR_LIST_BEGIN section. The four
DATA name definitions indicate there are four data arrays in the CITIfile package located
in the BEGIN...END sections. The data must be in the correct order to ensure values are
assigned to the intended ports. The order in this example results in data assigned to the
ports as shown in the table that follows:

CITIFILE A.01.00

NAME BAF1

VAR FREQ MAG 2

DATA S[1,1] MAGANGLE

DATA S[1,2] MAGANGLE

DATA S[2,1] MAGANGLE

DATA S[2,2] MAGANGLE

VAR_LIST_BEGIN

1E9

2E9

VAR_LIST_END

BEGIN

0.1, 2

0.2, 3

END

BEGIN

0.3, 4

0.4, 5

END

BEGIN

0.5, 6

0.6, 7

END

BEGIN

0.7, 8

0.8, 9

END

DATA FREQ = 1E9 FREQ = 2E9

s[1,1] s[0.1,2] s[0.2,3]

s[1,2] s[0.3,4] s[0.4,5]

s[2,1] s[0.5,6] s[0.6,7]

s[2,2] s[0.7,8] s[0.8,9]

 CITIfile Keyword Reference

The following table lists keywords, definitions, and examples.

h7. CITIfile Keywords and Definitions

Keyword Example and Explanation

CITIFILE Example: CITIFILE A.01.00
Identifies the file as a CITIfile and indicates the revision level of the file. The CITIFILE
keyword and revision code must precede any other keywords.
The CITIFILE keyword at the beginning of the package assures the device reading the file
that the data that follows is in the CITIfile format.The revision number allows for future
extensions of the CITIfile standard.
The revision code shown here following the CITIFILE keyword indicates that the machine
writing this file is using the A.01.00 version of CITIfile as defined here. Any future extensions
of CITIfile will increment the revision code.

NAME Example: NAME CAL_SET
Sets the current CITIfile package name. The package name should be a single word with no
embedded spaces. Some standard package names:
RAW_DATA : Uncorrected data.
DATA: Data that has been error corrected. When only a single data array exists, it should be
named DATA .
CAL_SET: Coefficients used for error correction.
CAL_KIT: Description of the standards used.
DELAY_TABLE: Delay coefficients for calibration.

VAR Example: VAR FREQ MAG 201
Defines the name of the independent variable (FREQ); the format of values in a
VAR_LIST_BEGIN table (MAG) if used; and the number of data points (201).

CONSTANT Example: CONSTANT name value
Lets you record values that do not change when the independent variable changes.

Example: #NA POWER1 1.0E1
Lets you define variables specific to a particular type of device. The pound sign (#) tells the
device reading the file that the following variable is for a particular device.
The device identifier shown here (NA) indicates that the information is for a network
analyzer. This convention lets you define new devices without fear of conflict with keywords
for previously defined devices. The device identifier can be any number of characters.

SEG_LIST_BEGIN Indicates that a list of segments for the independent variable follows.
Segment Format: segment type start stop number of points
The current implementation supports only a signal segment. If you use more than one
segment, use the VAR_LIST_BEGIN construct. CITIfile revision A.01.00 supports only the SEG
(linear segment) segment type.

SEG_LIST_END Sets the end of a list of independent variable segments.

VAR_LIST_BEGIN Indicates that a list of the values for the independent variable (declared in the VAR
statement) follows. Only the MAG format is supported in revision A.01.00.

VAR_LIST_END Sets the end of a list of values for the independent variable.

DATA Example: DATA S[1,1] RI
Defines the name of an array of data that will be read later in the current CITIfile package ,
and the format that the data will be in. Multiple arrays of data are supported by using
standard array indexing as shown above. CITIfile revision A.01.00 supports only the RI (real
and imaginary) format, and a maximum of two array indexes.
Commonly used array names include:
S - S parameter
E - Error Term
Voltage - Voltage
VOLTAGE_RATIO - a ratio of two voltages (A/R)

 CITIfile Guidelines

The following general guidelines aid in making CITIfiles universally transportable:

Line Length. The length of a line within a CITIfile package should not exceed 80
characters. This allows instruments which may have limited RAM to define a reasonable
input buffer length.

Keywords. Keywords are always at the beginning of a new line. The end of a line is as
defined by the file system or transfer mechanism being used.

Unrecognized Keywords. When reading a CITIfile, unrecognized keywords should be
ignored. There are two reasons for this:

Ignoring unknown keywords allows new keywords to be added, without affecting an
older program or instrument that might not use the new keywords. The older
instrument or program can still use the rest of the data in the CITIfile as it did

SystemVue - Users Guide

155

before. Ignoring unknown keywords allows "backwards compatibility" to be
maintained.
Keywords intended for other instruments or devices can be added to the same file
without affecting the reading of the data.

Adding New Devices. Individual users are allowed to create their own device keywords
through the # (user-defined device) mechanism. (Refer to the table immediately above
for more information.) Individual users should not add keywords to CITIfiles without using
the # notation, as this could make their files incompatible with current or future CITIfile
implementations.

File Names. Some instruments or programs identify a particular type of file by characters
that are added before or after the file name. Creating a file with a particular prefix or
ending is not a problem. However in general an instrument or program should not require
any such characters when reading a file. This allows any file, no matter what the filename,
to be read into the instrument or computer. Requiring special filename prefixes and
endings makes the exchange of data between different instruments and computers much
more difficult.

A CITIfile package is as described in the main CITIfile documentation: the CITIFILE
keyword, followed by a header section, usually followed by one or more arrays of data.

Note
There are some specific problems with the current version in reading and/or writing this data format. On
the Agilent EEsof web site, refer to the Release Notes in Product Documentation, and to Technical Support
for more information and workarounds (http://www.agilent.com/find/eesof).

 Generic MDIF Format

The generic MDIF provides a generalized MDIF format for unifying the various specific
MDIF formats, and overcoming some limitations of other formats. The generic format
enables diverse applications to use a common data I/O interface, so long as the intent is
to access/save multidimensional (multiple independent vs dependent variables) data.

The general format is as follows:

VAR var1Name(var1Type) = var1

ValueVAR var2Name(var2Type) = var2Value

..

VAR varNName(varNType) = varNValue

BEGIN blockName

% bVar1Name(bVar1Type) bVar2Name(bVar2Type)

% bVarLName(bVarLType) ...

% ...

% bVarQName(bVarQType) ... bVarPName(bVarPType)

bVar1Value bVar2Value ...

bVarLValue ..

..

bVarQValue ... bVarPValue

bVar1Value bVar2Value ...

bVarLValue ..

..

bVarQValue ... bVarPValue

...

END

where var*Type can be the token:

0 or int
1 or real
2 or string

Type bVar*Type can be one of the above as well as:

3 or complex
4 or boolean
5 or binary
6 or octal
7 or hexadecimal
8 or byte16

The variable names above constitute a name-space uniquely identified by the string
blockName which is either:

alphanumeric: all bVar*Name block variables are dependent, except bVar1Name,
which is usually the most rapidly changing (innermost) independent variable.
or
DSCR(blockName): all bVar*Name block variables are dependent, and there is an
indexing implicit independent variable.

 Guidelines

A string type variable's value must be surrounded by "".

If there are multiple blocks, the outermost independent variables (e.g., VAR
var1Name(var1Type) = var1) apply only to the block immediately following the
variable definitions, and not to any other blocks.

The block data (bVar*Value) lines must follow the pattern (order, number of values
per line, and number of lines) of the format (%) lines. If the number of values in any
data line does not match the number of dependent variables specified in the
corresponding format (%) line, incorrect results will occur. A variable's value cannot
be split across lines. Although there is no line length limit specified, MDIF file readers
may choose to truncate at some finite length. This may result in a file read error, or,
if the file was carefully crafted, truncated names and/or string-type values.

Scale factors, which can be applied only to real numbers, may be case-insensitive
suffixes as follows:

f = 1e-15, p = 1e-12, n = 1e-9, u = 1e-6, mil = 2.54e-5, m = 1e-3,

k = 1e3, g = 1e9, t = 1e12

E.g.: 15mA = 15e-3, 30KHz = 30e3

There should be no space between the number and the suffix, and extra characters
are ignored. Unrecognized suffixes result in 1.0. The above is not totally consistent
with the rest of ADS.

The format of complex data is real/imag, with a column for real and a column for
imaginary.

Multidimensional data is organized by outer to inner independent variables. VAR
statements go from outermost to innermost.

Vary innermost independent variables first, proceeding toward outermost variables
changing last.

Independent variables should change monotonically.

 Example

!==

! Example 1

REM This has 3 indepVars: v1, v2, v3(innermost) and

REM 4 depVars: dv1(integer), dv2(real), dv3(string) and

REM dv4(hexadecimal), but is read in as a string.

REM The outermost indepVars: v1, v2 apply only to the block

REM immediately following them, and not to any other block.

http://www.agilent.com/find/eesof
http://www.agilent.com/find/eesof

SystemVue - Users Guide

156

! There are 2 data nodes

VAR v1(0) = 1

VAR v2(1) = 2.2

BEGIN blk1

% v3(1) dv1(1) dv2(1) dv3(2) dv4(hexadecimal)

7.7 8 9.9999 "line 1" 0xabc

8.8 9 1.11 "line 2 " 0x123

END

VAR v1(0) = 2

VAR v2(1) = 3.2

BEGIN blk1

% v3(1) dv1(1) dv2(1) dv3(2) dv4(hexadecimal)

8.7 9uF 10.9999mA "line 1" 0xff

9.8 10uF 11.11mA "line 2 " 0xdef

END

!===

! Example 2

! Created Tue Mar 9 13:39:19 1999

! Data Acquired Tue Mar 9 13:38:34 1999

BEGIN NDATA_noise

% freq(real) Sopt(complex) NFmin(real) Rn(real) PortZ[1](real)

 1e+09 0.098481 0.017365 1 5 50

 2e+09 0.18794 0.068404 2 10 50

 3e+09 0.25981 0.15 3 15 50

 4e+09 0.30642 0.25712 4 20 50

 5e+09 0.32139 0.38302 5 25 50

 6e+09 0.3 0.51962 6 30 50

 7e+09 0.23941 0.65778 7 35 50

 8e+09 0.13892 0.78785 8 40 50

9.543e+09 -0.014122 0.911 9.5445 46.166 50

END

 X-parameter GMDIF Format

This section describes:

Choosing an X-parameter file for use with an X-Parameter part
An overview of the X-parameter file
Examples of various details in X-parameter files

 Overview

These files contain X-parameter data for nonlinear n-port devices, or subcircuits. They are
ASCII files in GMDIF format. They use extension: .xnp.
The X-parameter files completely comply by Generic MDIF Format. The specific block and
variable names used in the X-parameter GMDIF files are described in this section.
This section describes Version 2.0 X-parameter GMDIF files.
An X-parameter GMDIF file can be used with an X-Parameter part to model the behavior
of a nonlinear device or subcircuit using X-parameters. The file contains the X-parameters,
the part is placed within the schematic.

 Linking an X-parameters GMDIF File to an X-parameters Part

To link a file to the part:

Add X-parameters part to your schematic. It can be found in the RF Design library.1.
Set up the X-parameters parameters. For instructions on how to set the parameters,2.
click Model Help in the part's dialog box.

 Comments

GMDIF files support comments in two ways:

by using "!" or
by using "REM" statement.

The "!" can be used in the beginning of a line, or at the end of the line where as, "REM"
can be used only in the beginning of a line.
Version 2.0 X-parameter GMDIF files contain a pre-defined comment section at the
beginning of the files, which provides useful information about the range of operating
conditions covered by the data as shown in the example below:

 Example

! Created Fri Jul 10 15:29:17 2009

! Version = 2.0

! HB_MaxOrder = 9

! XParamMaxOrder = 3

! NumExtractedPorts = 3

! fund_1=[1e+09->1.4e+09] NumPts=5

! VDC_3=[10->11] NumPts=2

! ZM_2_1=50 NumPts=1

! ZP_2_1=0 NumPts=1

! AN_1_1=[3.16228e-03(-20.000000dBm)->70.7107e-03(6.989700dBm)] NumPts=36

The version of the file is stated just for convenience. The statement determining the
version is elsewhere. The comment "HB_MaxOrder = 9" tells you that the Harmonic
Balance with MaxOrder=9 was used by X-Parameter Generator. The comment
"XParamMaxOrder = 3" tells you that the X-parameter data in this file contains mixing
indices up to the 3rd order.
The comment "NumExtractedPorts = 3" indicates the total number of ports used for X-
parameter generation. In case of non-consecutive port numbering this value may be
smaller than the highest port number.
The lower part of this comment section indicates various independent variables together
with the covered sweeps for each of them. See X-parameter Independent Variables
(users) for explanation of the variable names.

 X-parameter GMDIF File Blocks

Version 2.0 of X-parameter GMDIF files contains three types of blocks:

XParamAttributes
XParamPortData
XParamData

The first two blocks appear only once in the file. The third block appears as many times as
the number of distinct different sweep points present in the data for all but the innermost
independent variable. The following sections provide details for these blocks.

 XParamAttributes Block

The XParamAttributes block provides the vehicle for the official statements of (1) the
file version, (2) the number of ports, and (3) the number of fundamental frequencies
(tones).

 Example

BEGIN XParamAttributes

% Index(int) Version(real) NumPorts(int) NumFundFreqs(int)

 0 2.0 3 1

END

The sole purpose of the Index column is compliance with the Generic MDIF format.
The NumPorts entry indicates the highest port index in the data.

 XParamPortData Block

The XParamPortData block provides reference impedances for the incident and reflected
waves at each port covered by the data. The reference impedances can be complex and
the power definition of the waves is used, as follows:

SystemVue - Users Guide

157

In the above equations, Vp and Ip represent amplitude phasors.

 Example

BEGIN XParamPortData

% PortNumber(int) RefZ0(complex) PortName(string)

 1 50 0 "Input"

 2 50 0 "Output"

 3 50 0 "VDC"

END

The XParamPortData block also includes the port names. This information is particularly
useful in proper hookup of the X-parameters part (rfdesign) in cases where more than
two ports are present and a mixture of port types is used.

 XParamData Block

The XParamData block provides the actual X-parameters. This block may appear many
times in the file, each containing X-parameters at one sweep point (of all but the
innermost independent variable) at a time.
Each XParamData block is preceded by m-1 VAR statements for m-1 independent
variables, where m is the total number of independent variables. These VAR statements
provide the types and the values of the independent variables. These values apply to the
XParamData block immediately following the VAR statements, and only to that block.

 Example

VAR fund_1(real) = 1e+09

VAR VDC_3(real) = 10

VAR ZM_2_1(real) = 50

VAR ZP_2_1(real) = 0

BEGIN XParamData

% AN_1_1(real) FI_3(real) FB_1_1(complex) ...

...

...

...

END

The last, mth, independent variable is the innermost variable and is placed as the first
variable inside the block. In the above example that variable is "AN_1_1".
The naming convention for the independent variables in X-parameter files is described in
X-parameter Independent Variables (users).
All the dependent variables (the X-parameters) are provided inside the block. Following
the mth independent variable, the names and the types of the dependent variables are
specified in the header lines (lines starting with a "%" character). The header lines are
specified once per block at the beginning of the block. They are then followed by as many
data groups as the number of sweep points of the innermost independent variable. Each
group consists of data values formatted into lines exactly in the same way as the block
header lines with each entry representing a value of the correspondingly placed variable in
the header lines. Complex data is specified in the rectangular format (real, imaginary) by
two numbers.

 Example

VAR fund_1(real) = 1e+09

VAR VDC_3(real) = 10

VAR ZM_2_1(real) = 50

VAR ZP_2_1(real) = 0

BEGIN XParamData

% AN_1_1(real) FI_3(real) FB_2_1(complex) S_1_2_2_2(complex)

0.0657 -0.32 0.113 1.01 0.222 -0.0031

0.0667 -0.33 0.111 1.02 0.222 -0.0034

0.0677 -0.34 0.110 1.05 0.222 -0.0039

END

In the above example the complex number (0.111 + j1.02) is the value of the dependent
variable FB_2_1 at the multidimensional point established by all the values of the
independent variables, including the value of 0.0667 of AN_1_1.
The naming convention for the dependent variables in X-parameter files is described in X-
parameter Dependent Variables (users).

 X-parameter Variables

 Notation

All independent and dependent variables are defined with respect to port and harmonic (or
mixing) indices. For each variable these indices, separated by the underscore character "",
form a string appending the reserved name of the variable. Negative indices, if allowed,
are represented by a string in which the "m" character is used in place of the minus ("-")
sign, with no space between the sign and the number. For example "_m2" represents the
index "-2". For clarity of presentation the following table shows the notation used in
indexing the X-parameters.

k fundamental frequency index; 1 in the case of single tone X-parameters;all consecutive numbers must be
present

p port index - a positive integer; may not be consecutive
pIn - denotes the "input" port index
pOut - denotes the "output" port index

n harmonic index; positive integer
nIn - denotes the harmonic on the "input" port
nOut - denotes the harmonic on the "output" port
in case of multi-tone X-parameters there is a mixing index that is concatenated from harmonic indices
w.r.t. to subsequent fundamentals, for example "_1_m2_2" in the three-tone case refers to the mixing
product f1-2f2+2f3 - the index w.r.t. the first fundamental is expected to be non-negative and all-zero
entries are not allowed.

 Independent Variables

The following table lists all the supported independent variables in Version 2.0 X-
parameter files. In general, all X-parameters are functions of some or all of these
independent variables. Their dependence is tabulated in the X-parameter files for all
sweep points of the independent variable values.
All independent variables are real numbers.

SystemVue - Users Guide

158

fund_k kth fundamental frequency; assumed non-commensurate if more than one is present; fund_1 is
required

VDC_p DC voltage applied to port p; not required; mutually exclusive with IDC_p at the same port p

IDC_p DC current applied to port p; not required; mutually exclusive with VDC_p at the same port p

AN_p_n magnitude of a large-signal incident wave applied to port p at harmonic n; only one per each
fundamental is both allowed and required; phase of this incident wave is not tabulated in the X-
parameter files as this incident wave serves as a Reference Signal (Refer to ADS document for
detailed description); power definition of incident waves is used

AM_p_n magnitude of any other than Reference Signal large-signal incident wave applied to port p at
harmonic n; required only if AP_p_n is used at the same port p and harmonic n; power definition of
incident waves is used

AP_p_n phase in degrees of any other than Reference Signal large-signal incident wave applied to port p at
harmonic n; required only if AM_p_n is used at the same port p and harmonic n

GM_p_n magnitude of the reflection coefficient of the load at port p and harmonic n; required only if GP_p_n
is used at the same port p and harmonic n; power definition of the reflection coefficient and the
reference impedance specified for port p are used; mutually exclusive with other formats of
specifying load at the same port p and harmonic n

GP_p_n phase in degrees of the reflection coefficient of the load at port p and harmonic n; required only if
GM_p_n is used at the same port p and harmonic n; mutually exclusive with other formats of
specifying load at the same port p and harmonic n

GX_p_n
GY_p_n

alternative to GM_p_n and GP_p_n; real and imaginary parts of the reflection coefficient; mutually
exclusive with other formats of specifying load at the same port p and harmonic n

ZM_p_n
ZP_p_n

alternative to GM_p_n and GP_p_n; magnitude and phase of the load impedance; mutually exclusive
with other formats of specifying load at the same port p and harmonic n

ZX_p_n
ZY_p_n

alternative to GM_p_n and GP_p_n; real and imaginary parts of the load impedance; mutually
exclusive with other formats of specifying load at the same port p and harmonic n

 Dependent Variables

The following table provides the notation for the dependent variables (X-parameters) used
in Version 2.0 X-parameter files. The X-parameters can be either real or complex
numbers. In the latter case the rectangular format (real and imaginary parts) is used. It is
not essential for any specific dependent variable to be present in an X-parameter file. In
general, the default value is zero for any absent parameter that could otherwise be
included in the file (some parameters are mutually exclusive with some other
parameters).

FB_pOut_nOut complex B-type X-parameter - measured reflected wave at output port pOut and
harmonic nOut as the response to all large-signal excitations (i.e., under the
large-signal operating conditions); power definition of the reflected waves is
used

FI_pOut real I-type X-parameter - DC current measured at output port pOut under the
large-signal operating conditions

FV_pOut real V-type X-parameter - DC voltage measured at output port pOut under the
large-signal operating conditions

S_pOut_nOut_pIn_nIn complex S-type X-parameter providing the small-signal added-contribution to the
reflected wave at output port pOut and harmonic nOut due to a small-signal
incident wave at input port pIn and harmonic nIn measured under the large-
signal operating conditions; power definition of the incident and reflected
waves is used

T_pOut_nOut_pIn_nIn complex T-type X-parameter providing the small-signal added-contribution to the
reflected wave at output port pOut and harmonic nOut due to a phase-
reversed small-signal incident wave at input port pIn and harmonic nIn
measured under the large-signal operating conditions; power definition of
the incident and reflected waves is used

XY_pOut_pIn_nIn complex Y-type X-parameter providing the small-signal contribution to the DC current
at output port pOut due to a small-signal incident wave at input port pIn and
harmonic nIn measured under the large-signal operating conditions; power
definition of the incident waves is used; the real-valued contribution to the
DC current is the real part of complex product of this X-parameter and the
corresponding incident wave

Yre_pOut_pIn_nIn
Yim_pOut_pIn_nIn

real
real

alternative to XY_p_n, obsolete in Version 2.0 X-parameter files; two real
numbers: the real part and negative of the imaginary part are provided
instead of one complex number, as XY = Yre - j*Yim

XZ_pOut_pIn_nIn complex Z-type X-parameter providing the small-signal contribution to the DC voltage
at output port pOut due to a small-signal incident wave at input port pIn and
harmonic nIn measured under the large-signal operating conditions; power
definition of the incident waves is used; the real-valued contribution to the
DC voltage is the real part of complex product of this X-parameter and the
corresponding incident wave

Zre_pOut_pIn_nIn
Zim_pOut_pIn_nIn

real
real

alternative to XZ_p_n, obsolete in Version 2.0 X-parameter files; two real
numbers: the real part and negative of the imaginary part are provided
instead of one complex number, as XZ = Zre - j*Zim

 Restrictions

If the independent variable VDC_pOut is specified for the port pOut then neither the V-
type (FV_pOut) nor the Z-type (XZ_pOut_pIn_nIn, Zre_pOut_pIn_nIn, Zim_pOut_pIn_nIn
) X-parameters can be specified for the port pOut.
Similarly, if the independent variable IDC_pOut is specified for the port pOut then neither
the I-type (FI_pOut) nor the Y-type (XY_pOut_pIn_nIn, Yre_pOut_pIn_nIn,
Yim_pOut_pIn_nIn) X-parameters can be specified for the port pOut.

http://edocs.soco.agilent.com/display/ads2009U1/X-Parameter+Generator+Parameters#X-ParameterGeneratorParameters-refsig
http://edocs.soco.agilent.com/display/ads2009U1/X-Parameter+Generator+Parameters#X-ParameterGeneratorParameters-refsig

SystemVue - Users Guide

159

 Instrument Scripting and Control
 Overview
Many applications require to run multiple simulations sequentially. For example, in an LTE
Bit Error Rate (BER) measurement over a device, one simulation can generate
waveform(s) that will be downloaded into RF Signal Synthesizer(s) to modulate the RF
signals that will stimulate the device. Another simulation will then use measurement
equipment such as the Agilent Technologies MXA's to capture the output RF signal from
the device and feed the measured data back into the simulation to be demodulated for
BER analysis.

Further more, in order to characterize the device's performance, it might be necessary to
adjust certain settings of some instruments several times and make the measurements
after each instrument adjustment. For example, it might be necessary to change a DC
bias level and see how the BER is impacted by it.

These are the applications where sequence control can be used.

SystemVue provides a powerful and flexible sequence control mechanism that is based on
MathLang scripting (users).

Important Note: For all available SystemVue releases, MathLang scripting (users) can only support
LXI compliant instruments.

 A Simple Sequence

In the above example, there are two simulations:

DF_Gen_Waveform(Waveform Generation) that performs a Data Flow
Simulation (sim) over the Waveform Generation(Schematic) design
DF_Meas_BER(Measure BER) that performs a Data Flow Simulation (sim) over
the Measure BER (Schematic) design

The critical MathLang (users) built-in functions used are:

runanalysis - executes the specified Data Flow Simulation (sim)
getvariable - gets the simulation result data

Obviously, the BER result is stored in a variable named MeasuredBER_BER inside the
simulation results of DF_Meas_BER_Data(DF_Meas_BER).

Notice that the Sequence Control ~ A MathLang Equation (users) page, i.e. the script, is located at
the same level on the workspace tree as the workspace (i.e. project) name.

 How to Run the Sequence
You can use either of the following two ways to run the sequence (the sequence
MathLang Equation (users) page must be open):

click the GREEN triangle button (the 4th icon) on the second tool bar
click the Go button next to the Equation editor area

 Example of a more Advanced Sequence
In the following sequence, we will vary the DC bias (provided by an LXI compliant DC
supply), measure the BER at each of the differnt bias levels, and finally put the measured
BER results into the simulation results.
The additional MathLang (users) function used in this example are:

setvariable - brings the value stored in a variable into the measurement results
storage area (i.e. Data Set) of the simulation
num2str - converts a number to a string
fprintf - writes a string to the opened tcpip port

Note the use of the [] operation to concatenate the strings when creating the dcCmdStr command
string

Important Note: Note how the accumulated BER results are stored in the myBers variable and
how this variable is transposed with the ' operator when calling setvariable(...) on the last line.

% 5 DC Levels starting at 3.5V at a step of 0.5V

DCLevels = (3.5:0.5:5.0);

% Number of DC's

numDCs = length(DCLevels);

% Place holder for the 5 BER's to be measured

myBers = zeros(1, numDCs);

% Generate modulated RF signals

runanalysis('DF_Gen_Waveform');

% Create tcpip communication with DC supply

dcSply = tcpip('111.222.333.444', 5025);

fopen(dcSply);

% Loop the DC levels and make the measurement

% at each level

for idx = 1:1:numDCs

dcCmdStr = [':VOLT ' num2str(DCLevels(idx))];

fprintf(dcSply, dcCmdStr);

% make sure the DC is settled

fprintf(dcSply, '*OPC?');

statusRes = fgets(dcSply);

% Measure BER at this DC bias

runanalysis('DF_Meas_BER');

% Get the measured BER and store it away

myBers(idx) = getvariable('DF_Meas_BER_Data', 'MeasuredBER_BER');

end

% Now close communication with DC supply

fclose(dcSply);

% Now bring the stored 5 BER's into the simulation results

% and name the variable AllBers

setvariable('DF_Meas_BER_Data', 'AllBers', myBers');

SystemVue - Users Guide

160

 LiveReports
A LiveReport is a living page that can contain live views of various kinds of SystemVue
objects. You can mix Graphs, Designs, Equations, Notes, Tables, and Datasets all in a
single printable and viewable page. Below is an example of a LiveReport page from the
simple Bridge-T Example.

It's a Live Report because you can click in any of the windows on the page and work
exactly as you would work in single windows in SystemVue. The border turns green when
a window is active, as seen below.

When you want to move or resize a window within a LiveReport click the black border
(box) outside the window and it will turn yellow and gain handles you can drag/move.

To use the LiveReport rather than one of the windows, click outside all of the windows and
you will see the LiveReport toolbar and the LiveReport menu. No windows will be green or
yellow.

 Contents
Creating a LiveReport (users)
Supported LiveReport Object Types (users)
View Window in LiveReport (users)
Arranging Views (users)
LiveReport Properties (users)

 Arranging Views
Use the LiveReport Arrange Views dialog box to arrange the sub-objects of a LiveReport.

SystemVue - Users Guide

161

Automatic - In general, automatic arrangement is quick, easy, and does a reasonable job
of laying out the view windows.

If a window is not placed in the desired location when OK is clicked, simply drag the
window into place and swap it with another, then re-do the Arrange Views.

If the LiveReport page is not divided in the desired fashion, use one of the Best Fit or Split
options.

Best Fit - The best-fit options arrange sub-objects in a tiled arrangement, similar to the
way Windows arranges Tiled views. The images show the order of the major and minor
page splits.

Split Horizontally / Vertically - Arrange sub-objects so they are ordered in a linear
fashion and are all the same size.

Inter-object Spacing - The distance (gap) between the arranged views. The units can
be set in Page Properties.

Sort Alphabetically - This rarely-used option sorts the views by name, instead of the
usual geometric positioning based on current pane positions. This options is mostly used
to display libraries of symbols or parts.

The images to the left of the radio buttons may be double-clicked to quickly select an arrangement and
close the dialog box.

 Creating a LiveReport
To manually create a LiveReport:

Click the New Item button () on the Workspace Tree toolbar, select *add*1.
LiveReport....
If desired, change the LiveReport name, layout, or other properties. 2.
Click OK to create the LiveReport or click Cancel to not create the new LiveReport.3.

 LiveReport Properties
There are several tab pages that you can use to change the properties of a LiveReport:

Page Properties
Margin Properties
Header and Footer Properties

To change the properties of a LiveReport:

Double-click the report or click LiveReport on the SystemVue menu and select1.
Properties.
Click the desired tab.2.
Make the changes you want.3.
Click OK.4.

When double-clicking the LiveReport, SystemVue uses the mouse cursor location to pick an
appropriate tab. Double-click the upper or lower page area to initially display the Header & Footer
page; double-click the side margins to initially display the Margins page; anywhere else displays the
Page settings tab page.

 Page Properties

Use the LiveReport Page Properties tab page to change the general properties of a
LiveReport.

Name - The name of the LiveReport.1.
Description - The LiveReport description (optional).2.
Use long names on titles - When checked, the sub-object view windows will show3.
the full workspace pathname in their title.
Paper Size - Use this combo-box to set your page size.4.
Orientation - Sets the page to portrait (tall) or landscape (wide) mode.5.
Width & Height - The size of the paper (in current units).6.
Grid Spacing - The distance between grid dots.7.
Units - The units used by LiveReport for all of its settings, including margins and8.
arrangement spacing.
Font - The page font, which is used for sub-object titles.9.

 Margin Properties

Use the LiveReport Margins Properties page to change the margins of a LiveReport.

SystemVue - Users Guide

162

Top, Left, Right, Bottom - The margin widths to use for the page. The margins are1.
shown by a light-gray, non-printing box; the box can be hidden using the eye toolbar
button menu.
Units - The units used by LiveReport for all of its settings can be set on the Page tab.2.

 Header and Footer Properties

Use the LiveReport Header & Footer Properties page to change the margins of a
LiveReport.

Header - When checked, the header is enabled. It will print at the top of the1.
LiveReport page. The text is completely customizable; strings such as "Company
Confidential" may be used. Also, macro strings like "%DATE%" and "%TIME%" will
be converted into the actual date, time, filename, etc.
Font - Sets the header font.2.
Justification - Determines the header horizontal justification (left / centered / right3.
).
Footer - The footer works just like the header, but is printed at the bottom of the4.
page.

 Supported LiveReport Object Types
LiveReports supports most of the standard SystemVue object types.

Object Type Supported? Limitations

Graph yes A Graph has a single aspect ratio. If you have an open graph and a graph in
report only the only the graph that is currently selected will own the aspect
ratio.

Design yes (partial) Not supported - Parameters, PartList, and SubstrateSet

Notes yes

Datasets yes

Equations yes

Scripts yes

Tables yes

Analyses no Linear, Transient, ... have no view

Evaluations
(sweeps)

no Evaluations have no view

Syntheses no Syntheses have no view

Substrates no Substrates have no view

 Adding a View Window to a LiveReport
There are two ways to put objects (windows) on a LiveReport.

Right-click the page and select Insert then select one of the objects listed to insert a
window with that object.

Drag-drop an object from the workspace tree into the page using the mouse left
button.

SystemVue - Users Guide

163

 Removing a Window from a LiveReport
Select the surrounding rectangle (click it or select multiple with the select tool and draw a
box) and then either click the Del key or right-click the mouse and select Delete... from
the menu.

SystemVue - Users Guide

164

 Managing Libraries
Libraries serve as a container for parts, designs, equations, and lots of other SystemVue
objects. They let you keep all of your objects in one place, which makes it easier for you
to organize the contents. SystemVue provides a number of libraries for your convenience
and allows you to add custom libraries. Libraries that are added will be auto-loaded when
SystemVue starts.

There are two dialog boxes in SystemVue that allow you to interact with Libraries: The
Library Selector and the Part Selector. There is also a Library Manager dialog box that
allows you to do things such as import and remove libraries.

The two dialog boxes that enable the interaction with objects are the Library Selector and
the Part Selector.

The Library Selector allows interaction with all object types except parts, since the Part
Selector is used to interact with Parts. You can think of the Part Selector as a specialized
Library Selector where the Library object type is Parts. Both the Library Selector and Part
Selector allow you to bring objects into your workspace or view objects that you have put
into them from the workspace. A search text box is provided in both selectors to help you
find objects in your libraries.

 Contents
Using the Library Manager (users)
Creating Custom Libraries (users)
Adding Library Items to Your Workspace (users)

 Adding Library Items to Your Workspace
Any object in a library can be added to your workspace. In the case of Symbols or Models
you can just double-click (or edit) the object in the Library Selector. You can use the
library selector to add any object type into your workspace.

If you don't want the docking library selector to be visible (taking up screen real estate)
use the Add From Library Option as seen below.

Parts are special. They are not added (separately) to your workspace, but instead, are placed using a
mouse onto a schematic design.

 To Insert an Object from a Library into your workspace

Select From Library...1.
Set the Library Type to the type of object you want to insert in your workspace2.
Set the Current Library to the Library you want to add from3.
Double-click the specific Object you want to add.4.

 Creating Custom Libraries

SystemVue - Users Guide

165

A custom library can contain custom parts or designs (models and symbols and circuits),
custom C++ data flow models, or anything else. Each Library Manager section can only
hold custom libraries of its specific type (so you can not use a design library in the part
selector, you can not use a Dataset library in the design selector, and so on). Custom C++
libraries must be created using the C++ model builder, detailed in the Creating a Custom
C++ Model Library (users) documentation. To create libraries for other types, follow the
procedure detailed below:

 To create a custom library

Right click an object in the workspace tree or for a part right click a part in the Part1.
Selector
Select New Library... from the Copy To menu2.

Set the library name.3.
If you want, browse for a different path for the new library. We recommend the My4.
Workspaces folder for libraries, though.
Click OK.5.

 Using the Library Manager
 To open the Library Manager window:

Click the Library Manager () button on the Part Selector or Library Selector
toolbar.
or
Select the Tools menu and Library Manager.

Only Show Libraries of Type - Selects which type of libraries to view in the main
window.
Add From File... - Add a SystemVue XML library,
Remove Library - Remove the selected library from the Library Manager.
Up - Move the selected library up one position on the Library list.
Down - Move the selected library down one position on the Library list.
Properties... - View the properties of the selected library.
Save As... - Save the selected library as some other name, or as a encrypted library.
Hide Built-in Libraries - Hides all built in libraries from the library list. Only vendor
and custom libraries are displayed.

 You can use the Library Manager to:

Add a Library from a File
View Libraries of Different Types
Add Libraries to the Search Path
Remove a Library
Edit the Properties of a Library
Export an Encrypted Library

 Add a Library from a File

Select the Add From File... button to add a SystemVue XML library, a C++ custom
library, or a wireless library to SystemVue. SystemVue ships wireless libraries in
\AutoLoad folder and a large number of ADI models in Model\ADI folder of the SystemVue
installation directory.

 Adding XML Libraries

Click the Add From File... button.1.
Browse to the folder with the XML library you want to use.2.
Select one or more libraries (use Shift+Click, Ctrl+Click, or Ctrl+A to select more3.
than one).
Click Open to add the library or Libraries to the available Libraries.4.

 Adding XML Libraries via Drag-Drop

Find the XML libraries you want to add using Windows Explorer. Select all of the
libraries and drag then drop them into the SystemVue work area.

SystemVue - Users Guide

166

In the image above we add 3 new libraries (equation, model, and symbol library) to
SystemVue.

 Adding C++ Custom Libraries

In the Library Manager, select the Add From File... button.1.
Set the Files of Type field to SystemVue DLL Libraries.2.
Browse to the folder with the DLL library you want to use.3.
Select one or more libraries4.
Click Open5.

 Adding Optional Libraries

Use the above steps to add optional SystemVue libraries located in <SystemVue1.
installation directory>\AutoLoad.

 View Libraries of Different Types

The Library Manager lists all of the libraries that are currently loaded into SystemVue. Use
the dropbox Only Show Libraries of Type to select which type of libraries to view in the
Library Manager.

The selection Design - Schematic, Model, Symbol, etc. shows all libraries that contain
schematics, models, or symbols. Notice that if you change the Type to Equation only
libraries of equations are shown in the Library Manager.

 Adding Libraries to the Search Path

The checkbox next to each library determines whether or not the library is included in the
search path. Once a library has been added to the search path, it will always be in the
search path unless you manually remove it. Libraries at the top of the list have the highest
priority in the search path. Use the Up and Down buttons to move libraries around in the
list.

This feature is useful for libraries of custom models or symbols that you may have. Models
and symbols from libraries that are included in the search path can be type in the Change
Model or Change Symbol dialogs. For example, a library called MyModels that contains a
model called CustomFilter has been added to the Library Manager and added to the search
path. The model CustomFilter or any other model in MyModels can now be entered in the
Change Model dialog directly.

Adding the MyModels library to the search path removes the need to type CustomFilter@MyModels or to
add the model from the library to the workspace tree in order to use the model in a part.

Another helpful tip is to add custom Equation libraries to the search path. Functions in an
Equation library that has been added to the search path can be called directly from any
equation block. For example, a library called "MyEquations" that contains a function called
MyFunction is added to the Library Manager and included into the search path. The
function MyFunction or any other function in MyEquations can now be called from any
equation block.

Functions in the MyEquations library do not need to be added to the workspace if MyEquations has been
added to the search path.

 Removing a Library

SystemVue - Users Guide

167

When you remove a library, you only remove it from the Library box in the Library
Manager. The external library file is not deleted.

You cannot remove the Internal libraries. These libraries are read-only.

 To remove a library from the Libraries list:

Click the name of the library in the Library Manager dialog.1.
Click Remove Library.2.

This does not delete the library file. It just assures that the library is not auto-loaded the next time you
run SystemVue.

The following picture shows an example of removing a custom XML library.

The following picture shows an example of removing a wireless library.

 Editing Library Properties

You can use the Library Manager to edit the properties of your libraries such as the name
or description of the library.

 To edit the properties of a library:

Click the name of a library in the Library list.1.
Click the Properties... button.2.
Make the changes you want, and then click OK.3.

You cannot edit Internal libraries nor can you edit Encrypted Libraries. These libraries are read-only.

 Export an Encrypted Library

SystemVue supports encrypting and using encrypted libraries. The option to encrypt a
library is accessible through the Library Manager, which itself is accessible from the
Library Selector (View/Docking Windows/Library Selector) or the the Tools Menu. Once
you have created a custom library, you may save it as encrypted.

In the Library Manager, select your custom library and click the Save As... button on the
right.

In the Save As dialog box, there is a checkbox labeled Save Encrypted on the lower
right. Check this box as shown here:

The library will then be saved as encrypted. If the library you are encrypting is a Design
Library, you will not be able to view the contents of the designs' part lists or equations.

SystemVue - Users Guide

168

 Nets, Connection Lines and Buses
In a data flow schematic, data move directionally from input ports to output ports through
parts and from output ports to input ports through connection lines. A connection line may
be drawn by using the toolbar button to initiate connection line drawing mode or simply by
hovering over a part's terminal until the cursor changes to connection-line mode, at which
point you can click and drag to draw a connection line.

 Contents
Part Ports (users)
Connection Terminology (users)
Connection Line Net Labels (users)
Connection Lines and Ports (users)
Mapping Nets to Ports (users)
Connecting Parts (users)

 Connecting Parts in SystemVue
Connection lines are used to connect part terminals and other connection lines. If a part
terminal or connection line end is unconnected, the arrow tail or tip is marked with a pink
dot. The pink dot disappears after a connection is made.

To draw a connection line:

Click one of the two Draw Connection buttons from the main toolbar: 1.
Click and hold the the start point on the schematic and drag the line to its end point2.
on schematic.

OR

Hover over a part or connection line terminal and see the mouse cursor change into1.
connection line mode. Click and drag the connection line.

To create a bus:

Draw a connection line.1.
Double-click the connection line OR Right-click on the connection line and select Net2.
-> Edit Net Name...
Enter a bus name to the new name text box. See bus names.3.
Click OK.4.
The bus name should label the connection line. The bus connection line changes to5.
purple and is drawn as a thicker line.

To tap connection line(s) off the bus:

Draw the bus tap connection line.1.
Double-click the connection line OR Right-click on the connection line and select Net2.
-> Edit Net Name...
Enter the bus base name and the indices for the bus connection lines you want to3.
tap. See bus names.
Click OK.4.

To edit terminal mapping: The precise mapping of individual line(s) of a bus to a multi-
input port component can be achieved using the input Terminal Mapping or output
Terminal Mapping dialogs which is invoked by right clicking on the multi-input or output
pin and selecting Edit Terminal Mapping as shown.

Use the Up and Down buttons to rearrange the incoming bus line(s) with respect to1.
the input sequence. Note that only incoming lines may be moved with respect to the
input ports.
Use the context sensitive Disconnect and Connect toggle button to delete and2.
establish connections. Once a line is disconnected, it is automatically moved to the
bottom of the queue. Connecting it now establishes a link between the last input
part.
Use the context sensitive Replicate and Delete toggle button to replicate an3.
incoming line to drive an additional input to the component. By default, this
additional input is inserted immediately below the line entry that was replicated,
resulting in a duplication of the Connect To entry and an occupation of the next port
index on the component side, resulting in all successive inputs being assigned higher
indices of input port number than before.

The following four figures show the default view of the input terminal mapping dialog box,
the change of listing because of movements up and down the sequence, followed by the
disconnection of A(5) and reconnection followed by insertion of a duplicate of A(2). Note
how the port side now has input indices ranging from 1 through 6, whereas the connection
side has a duplicate of the second incoming line. Note also how the previous association of
A(1) and input(4) has now been replaced by one between A(1) and input(5) and so on.

SystemVue - Users Guide

169

The output terminal mapping dialog is a vertical mirror of the input terminal mapping
dialog except that it does not have the ability for replication and deletion of duplicate
entries. Unilateral input-side replication of connections provides a barrier against
proliferation of bus line(s) at the output of the transmitting component and transfers the
responsibility of duplication to the input of the receiving component(s).

 Connection Line Net Labels
Connection lines by default have no net label, so they inherit the automatically assigned
net of part terminals or other connection lines that they are connected to. If a connection
line is given a Net Label, then that label becomes the net that the connection line resides
on.

A net label could be a simple name or number which represents a single net, or it could be
a Bus label, in which case the connection line represents several nets. Bus labels are
simple names or numbers followed by indices specified in parentheses. The syntax is as
follows:

BaseName(Start:Stop:Step)

where everything except the BaseName is optional.

Note that the Start:Stop:Step ordering for Bus labels is different than the Math Language range vector
ordering of Start:Step:Stop. This was done in order to conform to the industry standard bus notation
ordering.

Here are some examples:

Net Label Nets, in order

MyNet MyNet

MyNet(3) MyNet(3)

MyNet(1:3) MyNet(1), MyNet(2), MyNet(3)

MyNet(2:1) MyNet(2), MyNet(1)

MyNet(0:4:2) MyNet(0), MyNet(2), MyNet(4)

You may use variables or expressions for each of Start, Stop, and Step in the bus indices. This results in a
dynamic bus width: When the variable(s) you use change, so do the widths of buses that use them.

To assign a net name:

Double-click on the connection line OR Right-click on the connection line and select1.
Net -> Edit Net Name...
Enter a net name and click OK.2.

To remove a net name:

Double-click on the connection line OR Right-click on the connection line and select1.
Net -> Edit Net Name...
Delete the net name from the field leaving the field blank and click OK.2.

If two connection lines share a common net from their Net Label, but they do not look visually connected,
they are still connected for simulation purposes.

Renaming a connection line can cause redefinition to a bus or to a simple connection line,
e.g. A to A(1:4) or A(1:4) to A.

When an unconnected connection line is created, it does not have a net name. When the
connection line is connected to net, it may gain a net name from the net. If the net has
context and the net name is not set, an implicit net name is generated which may change
with the schematic. This net name is an integer that is shown at the ends of the net.
When a net name is explicitly assigned, the net name becomes persistent. While a
persistent net name can be an integer, begin the net name with an alphabetic character.

 Connection Lines and Ports
If no Net Labels are given to connection lines, they are automatically assigned nets in an
intelligent manner, taking into account directionality and type (standard or bus) of ports
they are connected to. Connection lines that end at a Bus port will produce separate nets
at that bus port, as shown here:

SystemVue - Users Guide

170

Notice in the above schematic that the output from the Constant source is on net 3, while
the output from the Sinusoidal source is on net 4. This is the preferred way to connect
multiple things to a Bus port since it produces separate nets for each terminal connected
to it. This allows an ordering to be defined at the Bus port via the Terminal Mapping dialog
box, which will be discussed shortly.

Since the Addition operation performed by the adder part is commutative, ordering of the
inputs is irrelevant, so the following schematic would yield the same results:

In the above schematic, both the Constant source and the Sinusoidal source are on the
same net. The simulator is intelligent enough to expand the net into 2, since 2 outputs are
feeding an input, however the ordering is undefined.

 Connection Terminology
A connection line is a drawn line on the schematic that can be used to connect an output
port with an input port. A bus is a connection line that is a collection of two or more
connection lines. A net is a group of simple connection lines that share a unique net
name and a common value at any instant.

The following schematic has 13 nets with net names: 1, A(1) ... A(10), 4 and 5. Net 1 is a
simple connection line between the Ramp and the Distributor part. Similarly, Net 4 and 5
are simple connection lines. Net A(1) connects an output of the Distributor to one input of
Commutator-1. Net A(10) connects an output of the Distributor to input ports of both
Commutators. All nets named A are contained in the 3 buses labeled A(1:10), A(10:1:-1)
and A(2:10:2).

 Mapping Nets to Ports
The mapping from connection line nets to a particular part port (terminal) can be seen and
modified by looking at the Terminal Mapping dialog, accessible by right-clicking on the
terminal and selecting the Edit Terminal Mapping menu entry, if it exists. The menu entry
will not exist if there is no ambiguity in the ordering of the net to part terminal mapping,
as is the case when there is a single net connected to the part terminal.

The Netlist for a part (all terminals) can be viewed in the Netlist tab of the Advanced
properties of a part. See Part Properties (users) for details.

There is no net name or ordering ambiguity in a connection between a standard port and a
simple connection line.

However, this is not the case for a bus entering or leaving a bus port. The default
assignment for the bus port matches the order of ports with the order of the net names.
For example in the schematic shown under the Connection Terminology heading, the bus
port of the Distributor has ports named output(1:10), i.e. output(1) through output(10),
which is mapped to the bus connection line nets named A(1:10), i.e. A(1) through A(10).

The default mapping may not be what is intended, so it is possible to specify an arbitrary
ordering, replicate, and disconnect the sub-nets. These actions can be performed by
means of the Terminal Mapping dialog. To access it, right-click the part terminal you want
to define the terminal mapping for and select "Edit Terminal Mapping" if that menu item
exists. If it does not exist, there is no ambiguity in ordering of the nets presented to the
terminal.

The Terminal Mapping dialog displays differently depending on whether it is for an input
port or an output port. For the input Terminal Mapping dialog, nets are in the left column
(Connect To) and ports are in the right column (Terminal). For the output Terminal
Mapping dialog, nets are in the right column (Connect To) and ports are in the left column
(Terminal). When a row is clicked, the net for that row is selected for operation by the Up,
Down, Connect/Disconnect or Replicate buttons. Click the desired button for the following
results:

The Up button will swap the selected net with the one above it.1.
The Down button will swap the selected net with the one below it.2.
The Disconnect button will disconnect the select net and decrement the number of3.
sub-nets.
The Connect button will reconnect the selected (disconnected) net with an appended4.
sub-net.
The Replicate button will present a duplicate sub-net to the port which is appended to5.
the list.

To exit the Terminal mapping dialog, click the OK button to save the changes or the
Cancel button to discard the changes.

 Part Ports (Terminals)
On a schematic, the Adder part is depicted as follows.

This part has one input port with net name 2 and one output port with net name 1. The
input port is a bus port (indicated by the two arrows), while the out port is a standard port
(indicated by a single arrow). A bus port is an ordered set of ports that can be expanded
dynamically. In other words, while a single port resides on a single net, a bus port can
reside on multiple nets. Bus ports are described in more detail below.

Every part port is assigned a unique net name when placed unconnected on the
schematic. Inputs are distinguished from outputs, because input port arrows point into the
part symbol. For additional visual cues, see port data type (sim).

SystemVue - Users Guide

171

 Parts, Models and Symbols
 Contents

Parts (users)
Models (users)
Symbols (users)
Mapping Symbols to Models in Parts (users)
Finding Symbols and Models during Simulation (users)

 Finding Symbols and Models during Simulation
During an analysis or code generation , the models are instantiated for each part. The
model instantiated is determined in the following order:

If a design configuration (users) is used, all parts are switched to the model
specified.
Then if the model was not specified in a design configuration, the model will be
instantiated based on what is selected in the part's manage models list (users).
If the model has it's path specified (users) (e.g. Model1@Library1), then it is
instantiated from the library specified.
If the model does not have a path specified, the library search path (users) will be
used to find the model.

 Mapping Symbols to Models in Parts
Port names and numbers used on symbols map the symbol terminals to the sub-ciruit
or model nets. Both the symbol and sub-circuit or model contains ports. The mapping
precedence if first by port name and then port number. If the port names match
between the symbol and the sub-circuit or model then these port names will be used and
port numbers will be ignored.

Note
It is important to recognize that the mapping is taking place between the ports names and numbers
used on the symbol and port names and numbers used to define the sub-circuit or model.

Caution
Net names on a part placed in a schematic provide no useful information as to what the symbol port
names or numbers are. The user must open up the symbol which represents the sub-circuit or part to
determine what the port names and numbers are actually mapped to.

If the symbol port naming or numbering is wrong, the model will be incorrectly connected in the
simulation.

 Models
A single part can support multiple models. Models can even be different types. Supported
models types are:

Math (users)
Code (users)
Sub-Network Models (users)

When a model is changed any common properties from one model to the next are copied
over to the new model. Furthermore, the old model is cached so if the user decides to
return to the old model they won't need to re-enter the parameters.

Models can be saved in libraries or in the workspace tree. The model naming convention
is: ModelName@LibraryName. Local model versions can be copied from an original
model in a library. By default these local model copies have the same model name as the
parent model in the library.

For more information on models see User Defined Models under the Using SystemVue
section in the users guide.

Tip: Use the toolbar Show/Hide (eyeball) button to show or hide all the model names on a schematic.

Hint: During a simulation a model appearing in the workspace tree will always be used before a model in
a library even if the library name has been specified for the model.

Note: A part can have several models and each model can have its own set of parameters. Those
parameters with the same name and type can be synced, i.e. a change in value for a synced parameter is
a change for all models that have this parameter.

 Changing a Model

Each part can contain several models. Pick one using the Model combobox in Part
Properties.

Note: Certain specialized symbols, like those using %MACROS%, are designed for use with certain specific
models. When you change a model, you may occasionally also need change the part's symbol, since the
symbol might no longer match.

The list of available models can be changed using the model manager. Click on the

Manage Models button () to bring up the model manager dialog box.

Model Identifier - This parameter is used to distinguish between models of the same

SystemVue - Users Guide

172

name.

Sync Parameters - This check box declares if the common parameters will be synced
between the models.

Status Pane - This pane will alert users to potential errors or warnings.

To add a model:

Click on the Add Model button ()1.
Select the desired option:2.

(A list of models in the workspace are listed)1.
From Library (load a model from a library)2.
Enter Model Name (select a model name)3.

To remove a model:

Click on the model to be removed1.

Click on the Remove Model button ()2.

 Defining Configurations for a Design

A design configuration tells an Analysis (sim) or a Code Generator to use specific model
for a part which is already included in the manage model list of that part. For more
information read Configurations (users) in Modifying a Design (users) documentation.

 Creating a Model

To create a model select the type of model to be created. Follow those instructions:

Math (users)
Code (users)
Sub-Network Models (users)

 Parts
A part is a the fundamental building block in any schematic. Each part contains both a
Model and a Symbol, which, for maximum flexibility, may be changed independently.

Only parts can be placed on schematics. The part's symbol is the image on a schematic
and the part model is what is being simulated. Users connect parts together on a
schematic by placing wires between the part's symbol terminals. These connection points
are called nets. The part itself maps symbol terminal pins to the model nets which are
what actually gets simulated.

Double-click a part to access Part Properties, which provides a quick way to identify or
change:

The visible symbol - via the Advanced Settings button
The model being simulated
The model's parameter settings and
Other part characteristics
Furthermore, every part has the ability to ignore the parent model – which can short
all simulation nets together or make all part nets have an open connection.

Each part supports a list of multiple models, with a means to manage these models in Part
Properties.
Parts, their models, and symbols can be saved in libraries for reuse.

 Placing Parts on a Schematic

 From the Part Selector

To place a part from the part selector:

Click on the part in the part selector.
Move the mouse over the schematic. The mouse cursor will change to a plus sign
when placed over the schematic.
Click the schematic where the part is to be placed.

 From the Keyboard

Certain frequently-used parts can be placed via the keyboard. Inside SystemVue, use the
Help / Keystroke Commands menu to display Appendix A, which lists the available parts.

 From the Workspace Tree

Schematics can be dropped into other schematics to create a sub-network model. Models,
and S-Parameter files can be dragged and dropped onto the schematic. When a schematic
or model is dragged and dropped on a schematic a sub-network model is created along
with a generic symbol. When an S-Parameter file is dragged and dropped onto a
schematic the dataset part will placed on the schematic.

To place a part from the workspace tree:

Click on the schematic, model, or S-parameter dataset.
Move the mouse over the schematic. The mouse cursor will change to a plus sign
when placed over the schematic.
Click the schematic where the part is to be placed.

file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477249
file:/pages/createpage.action?spaceKey=sv201103&title=C+Code+Generation&linkCreation=true&fromPageId=117477249

SystemVue - Users Guide

173

 Part Properties

Each part has the following characteristics:

Designator - Descriptive text that appears on the schematic that references the
part.
Show Designator - When checked the designator will appear on the schematic.
Description - Documentation info for the part. This info can be displayed in the part
selector.
Model - Name of the model to be simulated. The format is ModelName@
LibraryName. From this combo box the user can select the active model. The
model parameters table will automatically be updated with this selection.
Show Model - When checked the model name will appear alongside the designator
on the schematic.
Manage Models - When clicked will open a dialog box giving the user the ability to
manage the models that are available for selection.
Model Help - When clicked will open the help page providing descriptive information
for all parameters in the model parameter table.
Part Behavior - This button controls the behavior of the part. The four options are:

Use Model - Use the currently specified model (). This is the default
state.

Disable, Open - All model net connections are opened (). No data will
flow through this model.

Disable, Short - All model net connections are shorted (). The model is
bypassed.
Control by Equation... - Use an equation expression to control the Part
Behavior. The expression must evaluate to 0 = Use Model, 1 = Disable to Open,
2 = Disable to Short. For example: Enter UseMyModel, click OK, and add this
equation (either to the design containing the part or as a global equation)
UseMyModel=?1, then click the Go button at the top of the equations window.
Now you can Tune UseMyModel to use/open/short the part. You can enter ANY
equation in the Control by Equation window and as long as it evaluates to 0, 1,
or 2, the part will use the appropriate setting. To later modify the equation,
simply click the Part Behavior button again and select Control by Equation.

Symbol - Shows a picture of the symbol associated with the part. This symbol can be
changed on the Advanced Options dialog box.
Models Parameters Table - This table contains the list of parameters specified by
the model. In some cases there are models that have a custom interface that
appears in the same area of the dialog box. See the model help for specifics on these
models.
Parameter Options - Click this button for options like sorting all model parameters
in the table alphabetically, checking all the Show checkboxes, etc.
Browse - This button will be enabled when the user clicks on a model parameter
that needs a filename. (If the model has no filename parameters, the button will be
hidden.) The user can then browse to the desired file.
Advanced Options - Gives the user the ability to change / create a symbol. Change
its positioning and manage the mapping of the symbol terminals to the model net.
(See details on each Advanced Options tab page below.)
Filter Designer - This button is only available for parts whose model is a filter; click
to close this dialog box (with an OK) and bring up the Filter Designer GUI
Edit Equations - This button is only available for parts with equations (like
MathLang and Sink); click to close this dialog box (with an OK) and bring up the
equations editor window.

 Model Parameters Table

This table lists all model parameters, their values, units, and characteristics.

Column
Headings

Description

Name Parameter name specified in the model. (Read-only)

Value Parameter value. The values can be in following forms: numeric, enumeration, variable, or
formula. Allowed enumeration values are specified by the model. A formula or an equation can
be used in an enumeration field.

Units Determines the units the parameter value is interpreted in.

Default This is the default parameter value specified in the model. (Read-only)

Use Default When checked the default model parameter value will be used.

Tune When checked will make this model parameter value tunable.

Show When checked with show the parameter and its value on the schematic.

Changing the units in the units drop down will NOT do unit conversion. If you want the
value converted to a new unit you need to right click on the parameter's Value or Units
field and select the new unit. An example right click menu is shown above.

For example, in the picture above when changing the unit for L from uH to nH:

if you use the right click menu the value will change from 0.267 to 267.
if you use the normal drop down unit menu the value will remain 0.267.

 Use MathLang Variables for Parameters

SystemVue - Users Guide

174

MathLang variables can be used to pass values to parameters. If the parameter
value is not text, simply type the MathLang variable name into the parameter's value field
and the variable's value will be passed on to the parameter.

However, if the parameter value is text (e.g.file name, or a text string, etc.), use the
syntax =MathLangVariableName to fill the parameter's value field as shown in the
following example.
In this example, MyFileName is defined in a MathLang Equation (users) page, and is
used for the File parameter in the ReadFile (algorithm) part.

When using MathLang variable to pass parameter values, make sure the MathLang variable is defined in a
scope that is accessible by the schematic. If the MathLang variable is not accessible by the schematic, it
will be treated as undefined and will result in errors.

The easiest way to understand scope is to look at the relative position of the MathLang
Equation (users) (that defines the variables) and the schematic (that uses the defined
variables) on the workspace tree. The MathLang Equation (users) can not be farther
from the root of the tree than the schematic. In the example below, notice that
Equation1 where the MathLang variables are defined is at the same level from the root
StringParameters as the Designs folder, where the MyDesign schematic (in which the
MathLang variables will be used) is hosted. This makes MyDesign one level farther away
from the root StringParameters. It is fine to move Equation1 into the Designs folder
on the workspace tree, which makes Equation1 and MyDesign on the same scope level.

 Editing Part Parameters On a Schematic

Part parameters that appear on the schematic can be directly edited without opening up
the part properties dialog box.
To edit the part parameters:

Move the mouse pointer over the part text on the schematic. Note that the mouse
pointer changes to resemble an I-beam (the text edit cursor). Click in the text.

The following editor will appear:

Things you can do when editing a single part:

Type a new value
Click outside the box or click Accept to close/accept the changes
Click a different part to Accept and switch parts (if pinned)

Click in the S column to set a parameter show/hide
Click in the T column to set a parameter tunable/fixed
Click up/down arrows to edit other parameters
Use a button to do more

The buttons on top:

Accept Do an OK

Cancel Cancel all changes

<< and >> Expand and contract the box to show/hide the Tune and Show columns.

Up and
Down

Expand and contract the box to show/hide non-shown parameters.

Pin / Unpin When pinned, clicking another part will move the box. When unpinned, the box just closes
(Accept).

Help Brings up this help

Keys Supported:

Up Cursor Move to prior value

Down Cursor Move to next value

Tab same as Down
Cursor

Shift+Tab same as Up Cursor

Enter Accept

Esc Cancel

 Advanced Options

Part symbols and part connectivity can be changed on the advanced options dialog box.

Click the Advanced Options button () to bring up the Advanced
Options dialog box.

See individual tab page topics below for additional information.

 Creating a Part

When the user has a model and schematic symbol they want combined into a part
they can use the Create Part Wizard to automate this process. The finished part must be
placed in a library for future reuse.
To create a part using the Create Part Wizard:

Click Action on the menu and select Create Part Wizard.1.

SystemVue - Users Guide

175

Browse for an existing part to use as a starting point or begin with a blank part.2.

Click Next.3.
Fill in the descriptive fields as you want. If you re-used an existing part, the fields will4.
be fill from the existing part properties.

Note: The RefInfo string is composed of |-delimited "name|reference-link" pairs of
substrings. Each pair consists of a menu item and a command, usually a URL,
directory path, or file (.doc, .txt, .htm, etc.)
Click Next.5.
Select the model to use. Note that the <registered> models are internal to the6.
product and cannot be found in the Model libraries.

Click Next.7.
Select a symbol.8.

Click Next.9.
Select the library were the part is to be placed.10.

Click Finish.11.
Follow dialog prompts to add the new part to a library.12.

 Symbols
The part symbol is the graphical picture the user sees on the schematic that represents
the part. Symbols can easily be created, modified, or changed for a given part.

 Changing a Symbol

To change a symbol:

SystemVue - Users Guide

176

Click the Advanced Options button () on the part properties1.
dialog box.

Click the Change Symbol button ()2.
Select a new symbol or option3.

(A list of symbol names in the workspace are listed)1.
From Library (load a symbol from the library)2.
Edit Symbol Name (change the name of a symbol)3.

 Algorithmic and Automatic (Dynamic) symbols

"Algorithmic" symbols are those that are created automatically by SystemVue, as
opposed to being hand-drawn and stored in an XML Symbol Library. These symbols are
defined using a root name / modifier format. Usually the modifier is a simple number 'N'
representing the number of ports, switch-throws, etc. Here's a list of commonly-used
algorithmic symbols:

SwitchN – switch with 'N' throws
SplitN – an N-way splitter
Box-M-N – a filled rectangle w/ M pins on left and N pins on right
N-XFile – X-Parameter File
N-XData – X-Parameter Dataset
N-XFile-Gnd – X-Parameter File with ground
N-XData-Gnd – X-Parameter Dataset with ground

Note: These parts are normally built for the Genesys-standard schematic grid spacing of 1/6th inches. To
generate symbols for an ADS-standard 1/8th grid, append the @SymbolsQtr suffix to the symbol name.

"Automatic" symbols are a subset of algorithmic symbols, which are based on a model.
The symbol is a filled box with terminal pins on the left (input) and right (output); if in/out
is not specified, the pins will be split evenly between the 2 sides. In addition, model port
info is used to label the symbol pins.

Automatic Symbols are specified as follows:

AutoSym – A Genesys symbol (RF part); used for Spectrasys schematic symbols.1.
AutoSymDF – A SystemVue "Data Flow" symbol, with arrowheads on the I/O pins.2.
MathSymDF – Just like AutoSymDF, but with the MathLang gradient 'M' icon at the3.
top.
HdlSymDF – Just like AutoSymDF, but with a blue square wave at the top to indicate4.
an HDL part.

Note that if the symbol cannot find the specified model, an error is shown as
indicated.
Data flow pin colors are based on the model port info.
Parts with only 1 input or 1 output will be drawn as circles or ellipses, depending on
the situation.
Unambiguous terminal pin text will be omitted.
The box fill color is based on the average of all the pin colors. In Spectrasys, since
the pins are always dark blue, the fill color for AutoSym will always be light blue.
An optional model suffix may be specified; for example, use AutoSym-
MyModel@MyModelLibrary to fully specify the model. The @Lib is optional, but can
only be omitted if the model can be found without it.
An optional icon can be placed on the symbol by appending an icon (subsymbol)
name to AutoSym or AutoSymDF. The icon must be in a loaded symbol library and
the icon name must be inclosed within curly-braces { and }. Valid icon names include
{MathLangM}, {VSA Icon}, and {RfLink Icon}. The model suffix (if any) must come
AFTER the icon suffix.

 Dynamic Symbol Switching

This is an advanced feature, for use by expert users.

The symbol associated with a part can be changed dynamically, based on a part
parameter. This is done via string substitution (macros); the macro substitution character
is '+'.

For example, suppose there is a part called "RotarySwitch", which has a parameter
"Throw". If the part's symbol is Switch+Throw+, when Throw=0, the symbol used by the
part will be Switch0; likewise, if Throw=3, the symbol will be Switch3. If there is no
symbol which matches the computed name, a placeholder "Not Found" symbol will be
displayed.

In addition, the names of enumerated parameters can be used in the computed symbol
names: Suppose there is a MathLogic part with a Logic paramerer, which is an
enumeration (And = 1 and Or = 0). Like the previous example, if the part's symbol is
Sym_+Logic+, when Logic=1, the symbol used by the part will be Sym_1. However, if the
enumeration prefix character '#' is used, the NAME of the enumeration value will be used
to build the symbol name: Sym_+#Logic+ will become Sym_And, which is a lot more
clear when these symbols are used in a library.

 Create a Symbol

To create a symbol based on an existing part:

Right click the part and select Open / Symbol.1.

SystemVue - Users Guide

177

Modify the new symbol2.
Optionally, double-click the original part and change the symbol to the new custom3.
symbol.

To create a new symbol "from scratch":

Click the New Item button () on the Workspace Tree toolbar, then click1.
"Designs", then select "Add Schematic Symbol"
Enter the symbol's name2.
Draw the symbol in the schematic area. Use the Annotation toolbar to place text,3.
lines, arcs, and other drawing objects.
Place input (i key) and output (o key) ports where symbol terminals are to be4.
located.

Note: Ports do not appear on the schematic when the symbol is used in a part.

Connect the symbol to the ports. These connection points are the connection points5.
seen on a schematic when a part is placed.
Change the port designator to give the symbol terminals a name. This name is6.
used to map symbol terminals to model nets.

Displaying Parameter Values on a Symbol:

When any (not just an algorithic) symbol is drawn on a schematic, symbol text is
processed prior to display, using a technique called "Macro Substitution". The text within
the '%' characters will be replaced with the appropriate value. For example,
Name=%Model% would be displayed as "Name=Resistor" on a symbol using a resistor
model.

For example, when "Impedance = %L%" is drawn on a schematic, the value of parameter
'L' is retrieved from its model and the result is "Impedance = 1.5". Another common use
is to place the model name on the symbol.

To use this advanced feature, place special "macro" strings in any symbol text:

Place a text annotation anywhere on the schematic symbol1.
Double-click it and change the text, so that it includes one or more macros from the2.
table below.
Click OK3.
Macro Result

%Model% Name of the model attached to the
schematic part

%MODEL% Name of the model in UPPERCASE

%Des% The part designator: R1, L3, etc.

%ParameterName%, where the name is any model parameter
name, such as R, C, L, etc.

The actual value of the parameter.

%% Displays a single % character.

 Netlist Options

The Netlist tab page shows the current part connectivity. (That is, which terminal is
connected to which schematic network node.)

Terminal - Names of the symbol terminals.
Net - Name of the schematic net the symbol is connected to.

Note: These fields are read-only unless there is no schematic. Connectivity is then determined by the
names in the Net field.

SystemVue - Users Guide

178

 Overview
A Data Flow simulation is used to understand a communication system at the algorithmic
level using time domain analysis for baseband and RF signals. An RF analysis in Data Flow
consists of the time domain analysis of the modulation information centered at the RF
carrier frequency (commonly called the RF characterization frequency). The information or
modulation bandwidth is based on the sampling frequency of the Data Flow analysis.

The RF analysis in SystemVue can be done using:

RF Data Flow models OR
Co-simulation with an RF architecture simulator using the RF Design Kit

The connection between Data Flow and RF simulator called Spectrasys is through a part
called the RF Link (algorithm). This RF Link part is placed in a Data Flow schematic. When
the Data Flow engine executes the RF design will be characterized at the carrier frequency
with respect to frequency and power. This characterization information will be used by
Data Flow to determine the output response.

See Theory of Operation - RF (users) for additional information.

SystemVue - Users Guide

179

 RF Link Limitations
Use of RF (Spectrasys) designs in Data Flow schematics has certain limitations. These
limitations include:

The paths through the RF design from any connected input to any connected output1.
must NOT include any of the following models (the models below may be used in
LO paths):

models that provide frequency multiplication, frequency division, or
analog to digital conversion. These models include FREQ_MULT (rfdesign),
FREQ_DIV (rfdesign), DIG_DIV (rfdesign) and ADC_BASIC (rfdesign).
variable gain amplifiers/attenuators. These models include VarAmp (rfdesign),
VarAmp1V (rfdesign), ATTN_Ctrl (rfdesign).

The paths through the RF design from any connected input to any connected output2.
must NOT go through any mixer LO port, that is, the LO signals for all mixers in the
RF design must be provided in the RF design itself (they cannot be provided from the
top level Data Flow design).
The IR (Image Rejection) parameter for mixers in the RF design is ignored.3.
Interfering signals created internal to the RF design are ignored. For example, in a4.
poorly designed receiver combinations of the RF input signal mixed with a mixer LO
may create intermods that fall in the desired channel bandwidth. This type of
interference is being ignored.
Carrier noise includes both amplitude and phase noise. Only phase noise is5.
modeled in the RF Link. The manifestation of amplitude noise on a carrier is seen as
asymmetric noise centered around the carrier.
AM to PM distortion is not currently supported in Spectrasys models so these6.
distortion effects will also be ignored in the RF Link.
All noise simulated in the RF Link is done at a single temperature.7.
X-Parameter models that translate frequency are not supported.8.

SystemVue - Users Guide

180

 Simulation
Here are some things to consider when setting up an RF / Data Flow co-simulation.

 Data Flow Specific
The Data Flow input to RF_Link must be a complex envelope signal (sim) with a non-
zero characterization frequency. This signal is typically defined by use of an Oscillator
(algorithm), Modulator (algorithm) or CxToEnv (algorithm) model.

Caution
The speed of phase noise simulation in Data Flow is dependent on the offset frequencies and range of
offsets being simulated. For example, a phase noise simulation that covers the offset frequencies from 100
Hz to 1 MHz will be much slower than an offset range of 1 kHz to 1 MHz.

 RF Link Specific
To enable thermal noise analysis in the RF Link, check the Enable Thermal Noise
checkbox. When this checkbox is checked, the Spectrasys design characterization will
include thermal noise from all parts that generate thermal noise. This includes
thermal noise from passive parts and noise due to noise figure from active parts.
However, thermal noise from the source model associated with the Input Part is not
included. The RF_Link input noise is presumed to be already included in the input
data flow signal. The noise analysis is performed over the RF Link frequency range.

Caution
In RF designs normally all RF ports generate thermal noise. However, in Data Flow simulations thermal
noise is not modeled unless the user specifically adds appropriate Data Flow noise models. The 'Add
source thermal noise to input' option, when checked, will automatically add thermal noise to the Data
Flow input signal driving the RF Link that represents the RF input port noise commonly modeled in an RF
design. During an RF Link simulation the RF input port of the RF Link design does NOT generate thermal
noise. Is is assumed that RF Link input signal contains the correct input thermal noise when the Enable
Thermal Noise option has been checked. If the RF Link data flow input signal contains noise AND the
'Add source thermal noise to input' is also checked the total noise may be double counted.

The input frequency characterization range of the RF Link is nominally divided into
101 equi-distant frequency points. This input frequency range is automatically
converted within the RF design to account for frequency translation caused by
mixers. Alternatively, the user can specify their own characterization frequency
range.

The RF Link supports mixer conversions to DC (0 Hz) and output baseband signals.
Thus, ZIF (zero-IF) downconverter applications are supported. This includes any non-
ideal isolation from LO to mixer input and mixer input to LO, which results in
downconverter spectral products at 0 Hz.

See Limitations - RF (users) for additional information.

SystemVue - Users Guide

181

 Theory of Operation
To use a Spectrasys design in a Data Flow schematic (via the RF_Link), an array of
frequency domain data is extracted from the Spectrasys design for all paths in the RF
design and converted to its time domain representation for use in the Data Flow
simulation.

For each path in the RF design non-linear sections are extracted. Each section ends in a
non-linearity such as an amplifier or mixer, unless a linear section is the last section in a
path. The entire RF design is characterized across a power range from -200 to +60 dBm.
The default characterization frequency range is the carrier frequency +/- sample rate / 2.
The frequency range characterization extracts the RF circuit frequency response at the
carrier frequency which includes all impedance mismatches. Thermal noise is also
extracted for each section. Each RF section is modeled in the time domain with Data Flow
models that include an FIR filter, additive noise density (if the Calculate Thermal Noise
option is checked), nonlinear amplifier or mixer. For each mixer encountered the local
oscillator frequency, amplitude, and phase are extracted. Any effects of an LO path from
the LO source to the LO node of the mixer is accounted for in the LO frequency,
amplitude, or phase.

For example, consider this RF design with section boundaries as shown.

The RF design is represented in Data Flow with the same number of sections as shown.

As can be seen from the above figures, the automatic conversion from the frequency
domain design to its time domain equivalent is "correct by construction" with proper
positioning of linear filtering, additive thermal noise, non-linearities and up or down
converting mixers. The time domain equivalent is assured to have time causality. Thus, if
a frequency domain characteristic is not time causal, such as a frequency domain
characteristic with zero phase shift at all frequencies, it will have an appropriate amount of
time delay applied to force it to be causal.

Each RF section is replaced with one or more of these Data Flow models:

CustomFIR (algorithm) used to model the RF small signal gain and phase response
versus frequency.
AddNDensity (algorithm) used to model the RF thermal noise versus frequency.
Amplifier (algorithm) used to to model the RF gain and phase change from small
signal condition versus power.
Mixer (algorithm) and Oscillator (algorithm) used to model frequency conversion.

The Data Flow input to RF_Link must be a complex envelope signal (sim) with a non-zero
characterization frequency. This signal is typically defined by use of an Oscillator
(algorithm), Modulator (algorithm) or CxToEnv (algorithm) model.

When the Calculate Thermal Noise option is enabled on the RF Link all noise generated
by both passive and active components is extracted across the frequency characterization
range and passed to the AddNDenisty block. However, thermal noise from the source or
port associated with the input in the RF design is not included.

Caution
In RF designs normally all RF ports generate thermal noise. However, in data flow simulations thermal
noise is not modeled unless the user specifically adds appropriate data flow noise models. The 'Add
source thermal noise to input' option, when checked, will automatically add thermal noise to the data
flow input signal driving the RF Link that represents the RF input port noise commonly modeled in an RF
design. During an RF Link simulation the RF input port of the RF design does NOT generate thermal noise.
Is is assumed that input signal to the RF Link contains the correct input thermal noise when the Calculate
Thermal Noise option has been checked. If the data flow signal driving the RF Link contains noise AND
the 'Add source thermal noise to input' is also checked the total noise may be double counted.

When the Calculate Phase Noise option is enabled on the RF Link the phase noise will be
extract from the mixer LO's and will be passed to data flow for proper co-simulation.

Caution
Amplitude noise on the LO is currently being ignored.

 Multiple Input and Output Ports
Gain, phase, and noise is characterized across frequency and power along the RF path
from the input to the path output. The previous section illustrates a characterization for a
single path from its input to its output. When more than 1 input and 1 output exist then a
path characterization of gain, phase, and noise is needed for each input to each output.

For example, for the following dual hybrid matrix amplifier:

The following symbol is created in a dataflow schematic that represents that RF circut:

Internally, 4 characterization paths are created behind the scenes from the each of the
inputs to all the outputs.

Path Number Input Output

1 TXAin TxAOut

2 TXAin TxBOut

3 TXBin TxAOut

4 TXBin TxBOut

Note
The number of characterization paths = number of inputs x number of outputs. The simulation speed
obviously decreases as more paths are needed to characterize the RF system.

See Simulation - RF (users) for additional information.

SystemVue - Users Guide

182

 Tutorial
The connection between Data Flow and the RF simulator called Spectrasys is through a
part called the RF Link (algorithm). An RF Link part can be placed on a data flow
schematic in one of two ways.

Dragging the RF schematic from the workspace tree and dropping it onto the data1.
flow schematic
Using the RF Link part in the part selector or toolbar2.

 Drag and Drop
When dragging and dropping the RF design onto the data flow design the RF Link symbol
is automatically configured with the corresponding types and directions of ports used in
the RF design.

 Part Selector
After the RF Link part has been placed on a data flow schematic the specific RF design
needs to be selected so that the schematic symbol can be configured correctly. Double
click the RF Link symbol and select the desired RF design. The RF Link symbol will
automatically configure itself with the corresponding types and directions of ports used in
the RF design.

 RF / Data Flow Co-Simulation Walk Through
A zero IF receiver will be constructed and simulated in the frequency domain. This
receiver will be co-simulated in data flow using QPSK modulation.

 Create the Zero IF Receiver

Create the a new RF schematic and name it: ZeroIF Rx (See Schematics (users) for
additional information)

Place the RF parts on the schematic

Change the part parameters to correspond with those shown in the schematic

Note
If a System Analysis is to be run on the ZeroIF Rx schematic then the input port (RFIn) should be
replaced with a Spectrasys Multisource part.

 Analyze the RF Simulation Results

Add desired Graphs or Tables (See Graphs (users) or Adding a Graph or Table in
Spectrasys (sim) for additional information)

 Create the QPSK Modulator

Create new schematic and name it: QPSK Modulator. (See Schematics (users) for
additional information)

Place the data flow parts on the schematic

Change the part parameters to correspond with those shown in the schematic

 Create the QPSK Demodulator

Create new schematic and name it: QPSK Demodulator. (See Schematics (users)
for additional information)

SystemVue - Users Guide

183

Place the data flow parts on the schematic

Change the part parameters to correspond with those shown in the schematic

 Create the Co-Simulation Design

Drag the QPSK Modulator icon from the Workspace Tree to Design1

Drag the ZeroIF Rx icon from the Workspace Tree to Design1

Drag the QPSK Demodulator icon from the Workspace Tree to Design1

Finish the design by adding a Sink as shown

Hint
There are two outputs for the QPSK Modulator. Make sure the Modulation output is connected to the RF
Link.

 Analyze the Co-Simulation Results

The Data Flow analysis should already be created and the Design parameter should
be pointing to the co-simulation schematic named Design1

Run the Data Flow analysis (See Running the Simulation (sim) for additional
information)

Add a Graph and plot Bits_In and Bits_Out. (See Graphs (users) for additional
information)

Hint
The x-axis on the graph was set to 50 to minimize the amount of data shown.

SystemVue - Users Guide

184

 Schematics
This section describes how to create and use a schematic. A schematic is a graphical way
of describing a network of parts connected together through schematic symbols. These
parts also contain models that are simulated. The schematic symbols and wiring show the
connectivity between models.

 Contents
Creating a Simple Schematic (users)
Placing Parts on a Schematic (users)
Manipulating Parts (users)
Changing the Schematic View (users)
Title Blocks (users)
Annotating Schematics (users)

 Annotating Schematics

The Annotation button () on the Schematic toolbar gives you access to the
Annotation toolbar.

The Annotation toolbar provides tools like lines, circles, and text that you can use to point
out details of interest on a schematic, draw a box around a group of components, etc.

Hint
Double-click a text annotation to set the horizontal and vertical justification (text alignment).

Hint
For Advanced users: An equation can be used for the text. For example, if the workspace contains an
equation block with a text variable named CompanyName, place =CompanyName in the Text field of
the title block. The leading = sign indicates that the text string is actually an expression. When the title
block is drawn, the variable will be evaluated and the result will be displayed in the title block.

Text annotations can display model and parameter info when used within a custom
symbol. This is implemented via macro-text-substitution. When symbol text is drawn on a
schematic, the displayed text is modified prior to output. For example, Name=%Model%
would be displayed as "Name=Resistor" on a symbol using a resistor model. The
recognized macro strings are:

%Des% - Displays the part's designator.1.
%Model% - Displays the name of the model attached to the part.2.
%MODEL% - Displays the model name in UPPERCASE.3.
%ParameterName% - Displays the value of the specified model parameter4.
attached to the part.

 Adding Text

Text can be placed directly on a schematic.

To add text:

Click the Annotation button () to display the Annotation toolbar.1.

Click the Text button ().2.
Click in the Schematic window where you want to place the text.3.
Type the text into the Enter 1 or lines of text field.4.

 Specifying Schematic Part Layout Options

Often in RF circuits, you want to model packaging or component parasitics. You do this by
placing lumped parts in series or parallel with the actual part. However, you do not want
these parts to display in the layout.

To prevent a schematic part from displaying in a layout:

Double-click a part in the schematic and click the Advanced Options button.1.
Click the Layout tab.2.
Click an option. For capacitors, select Replace Part with Open. For inductors and3.
resistors, select Replace Part With Short.
Click OK.4.

 Changing the Schematic View
Many times schematics can become so large that the entire schematic is not visible. In
these cases panning and zooming helps change the current schematic view.

 Panning a Schematic

Panning can be used to move the position of the schematic.

To pan:

Use the scroll bars to move the page up and down or left and right.
Or

Select the Pan Tool (keyboard P) from the schematic toolbar. Click and drag
the schematic to pan with the mouse.

 Zooming a Schematic

Use the zooming features to change the viewing area of the schematic.

Ways to zoom a schematic:

Click one of the following buttons on the Schematic toolbar:
Button Description Keyboard Details

Zoom an arbitrary
area.

 Click the schematic and drag the mouse to set the zoom
selection rectangle. All items within this rectangle will be
zoomed.

Zoom the schematic
to page.

Ctrl+End Zoom to the page frame.

Zoom to fit selected
parts.

 Only selected parts will be zoomed as a group.

Zoom to fit all
schematic objects.

Z Zoom to include all parts in the schematic.

Move the mousewheel in/out to zoom the schematic in/out
Use the keyboard + and - keys to zoom in and out.

SystemVue - Users Guide

185

 Changing Schematic Properties

To change the properties of a schematic:

Double-click any empty area of a schematic.1.
Click the Schematic tab.2.
Make any changes.3.
Click OK.4.

Page Settings

Page Width & Height - The size of the paper (in current units).
Standard Part Length - The length of a resistor part. Defaults to 1 inch. This
setting controls the schematic scaling. (If standard part length is set to 0.5, all parts
on the schematic will be half-size.)
Grid Spacing - The distance between grid dots.
Units - The units used by the schematic for its settings.
Font - Default font use when text is placed on the schematic.
Show Page Frame - When checked shows the page outline on the schematic.

Symbol

Scaling -
Rotation -
CenterX and Y -

 Creating a Simple Schematic
There are two different ways to to create a design in SystemVue. One is the by clicking on

the New Item button () on the Workspace Tree toolbar or by right clicking on a folder
in the workspace tree.

Method 1 - Clicking on the New Item Button

Click the New Item button () on the Workspace Tree toolbar1.
Select the Designs > submenu2.
Now select Add Schematic...3.

Or

Method 2 - Right Clicking on a Workspace Folder

Right click on a folder in the workspace tree to bring up the right click menu.1.
Select the Add > submenu.2.
Select the Designs > submenu3.
Now select Add Schematic...4.

The name of the schematic can then be entered along with an optional description.

Note: The schematic will be added under the folder that was last selected in the workspace tree. (ie.
whatever is the "current" folder.) If you want to move it to a different directory simply drag and drop it in
the new folder.

A blank schematic will appear.

 Manipulating Parts

 Connecting Parts

There are three methods that can be used to connect parts together.

Method 1- Wire Toolbar Buttons:

Click on the right angle () or angled () toolbar buttons contained on the1.

SystemVue - Users Guide

186

schematic toolbar.
Click and drag to draw the wire on the schematic.2.

Method 2- Dragging the Part Terminal:

Click the part terminal to be connected. A connection highlight dot (green circle) will1.
appear on the terminal nearest the mouse cursor. This marks the terminal which will
snap to the grid and to other connection nodes.

Drag the terminal over the terminal of the part to be connected.2.

Move the part to the desired location.3.

Method 3- Dragging a Wire between Terminals:

Place the mouse over the part terminal to be connected. The mouse cursor will1.
change to black with an angled arrow indicating a wire can be drug from terminal.

Click the part terminal and hold the left mouse button down will dragging the wire.2.

Drag the wire to the terminal of the part to be connected. Release the mouse button.3.
The finished wire will be selected.

For additional information read Nets, Connection Lines, and Buses (users) in the Users
Guide.

 Moving Parts

There is a global option to keep parts connected (users) when they are moved or they will
be unconnected when they move. The Alt key toggles this behavior.

+To move a part:

Click the part to select it.1.

Hint
A small green circle appears on the terminal closest to the mouse. This is the reference terminal for
part alignment, connections, and snap points.

Drag the part to the location of interest.2.

Hint
Multiple parts can be selected and manipulated at the same time. Click and drag a selection rectangle
around the parts of interest in a schematic. Holding down the Ctrl key during part selection will select /
de-select parts from the group.

Advanced Tip
Net names (node numbers) may be re-assigned during a move; when that happens, the first priority is to
retain the existing nets attached to ports. Parts which are stationary have the the next highest priority and
parts which moved have the lowest priority. This means that if you would like to retain certain existing
net/node names (perhaps because you are referencing them in graph measurements), make sure you
move the other parts of the schamatic, instead of the area you care about.

 Moving Part Text

There are three ways to the move the part text.

Method 1- Drag to Location:

Click the part to select it.1.
Move the mouse over the part text selection rectangle. The cursor will change to a T2.
and a pointer indicating text will be moved on a mouse drag.

Drag the text block to a new location.3.

Method 2- Keyboard Shortcut:

Click the part to select it.1.
Press F4 to rotate through standard text locations of: Top, Bottom, Left, Right, and2.
Center.

Method 3- Right Mouse Menu:

Right Click the part.1.
Select the Text menu.2.
Select the desired text location.3.

 Deleting Parts

Parts can be deleted from the schematic.

To delete a part:

Click the part(s) to be deleted.1.
Press the Del key2.

 Modifying Part Parameters

To modify part parameters directly on the schematic see Editing Part Parameters On a
Schematic (users) in the User's Guide.

 Placing Parts on a Schematic

SystemVue - Users Guide

187

Only parts and annotations can be placed on a schematic. Annotation objects are things
like text, title blocks, and other drawing objects like polygons, and rectangles. Only parts
are connected together through wires or buses.

Parts can be placed on the schematic in either of two ways. Through a part selector or
through part toolbars.

Hint
Some parts can be placed with keyboard short cuts. See Appendix A Keystroke Commands (users) for
more information.

Hint
Some parts can be placed by dragging them from the workspace tree to the schematic. When a schematic
or sub-network model is dragged in this way a sub-network part is created with an auto-generated
schematic symbol. S-parameter datasets can also be placed on the schematic by dragging them.

Method 1 - Part Selector

1. Bring up the part selector by clicking on the Part Selector button () on the
Schematic toolbar.

2. Click on a part.
3. Move the mouse over the schematic. The cursor will change to a plus sign when placed
over the schematic.
4. Click the schematic where the part is to be placed.

Method 2 - Part Toolbars

Click either the Data Flow () or the the Part Groups () toolbar on the1.
Schematic Toolbar to make visible the desired part toolbar.
For example, select the Data Flow toolbar. The toolbar will appear.2.

Click the desired part.3.
Move the mouse over the schematic. The cursor will change to a plus sign when4.
placed over the schematic.
Click the schematic where the part is to be placed.5.

 Changing Part Orientation

The user can change the part orientation using keystrokes, a part right click menu, and
the Main menu.

Hint
When placing the part on the schematic with the mouse the direction of its travel on the left mouse click
will determine the initial orientation of the part. For example, if the mouse were being dragged slightly
from left to right when the left mouse button is clicked the part would be oriented from left to right on the
schematic.

To change the part orientation:

Select the part by clicking on it. A red selection rectangle will appear around the1.
part.
Press F3 to rotate the part clockwise, Shift + F3 for counter clockwise, and F6 for a2.
mirror.
Repeat step 2 as necessary.3.

 Title Blocks
A title block is used to document a schematic. It often contains information regarding the
name of the schematic, the name of the person who drew it, copyright information, etc. A
library of common title blocks ship with the product.

 Adding a Title Block

There are two ways to add a title block.

Method 1 - From the Main Menu:

Click the Schematic menu and select Add Title Block....1.
Select the desired title block from the library selector.2.
Drag the title block to the location of interest.3.

Or

Method 2 - From the Schematic Right Click Menu:

Right Click the Schematic and select Add Title Block....1.
Select the desired title block from the library selector.2.
Drag the title block to the location of interest.3.

Title Blocks in the Library Selector:

SystemVue - Users Guide

188

 Editing the Title Block

To Edit a Title Block:

Double Click the title block.1.
Enter the desired information.2.
Click Ok.3.

Item - Name or titles of information.

Note: These titles can only be changed on a custom title block symbol.

Text - The actual text string to be drawn in the title block.
Scale X & Y - Scales the title block. For example, 0.5 is half-size.
Draw semi-transparent - When checked draws a faded title block.

Hint
For Advanced users: An equation can be used for the text. For example, if the workspace contains an
equation block with a text variable named CompanyName, place =CompanyName in the Text field of
the title block. The leading = sign indicates that the text string is actually an expression. When the title
block is drawn, the variable will be evaluated and the result will be displayed in the title block.

 Creating a Custom Title Block

The easiest way to create a custom title block is to start with an existing one.

Open up the Library Selector.1.
Set the Library Type to Design.2.
Change the Current Library to TitleBlocks.3.
Double click on the title block to be modified.4.

Note: This will add the title block as a schematic symbol on the workspace tree.

Edit title block symbol as needed, using annotations:5.
The text annotation Name property will be used as the Item Name. The Show
Name option must be checked in this annotation dialog box to see this name on
the schematic.
The text annotation Enter 1 or more lines of text property will be the text
value of the field that appears in the title block.

Hint
For best results, only use 1 line of text and keep it fairly short.

Images, like a company logo, or any other annotation can be placed on the
custom symbol.

Save the workspace.6.
On workspace tree, right-click the symbol and use "Copy To" to place the symbol7.
in a new (or existing) library.
To use your new custom title block on a schematic, use "Add Title Block..." and8.
select the custom title block from the library it was saved in.

SystemVue - Users Guide

189

 Scripts
Scripts can be used to perform a variety of functions in SystemVue. Some pre-written
script have been included with SystemVue and can be found in the Library Selector by
setting the Library Type to "Scripts".

 Contents
Adding a Script (users)
Creating Script Objects (users)
Script Processor (users)
Script Verbs (users)
Calling Scripts From External Programs (users)
Example Running a BER Analysis Controlled From LabVIEW MATLAB or C Sharp
(users)
Example Exploring the Workspace Using Visual Basic (users)
Example Running a Script from Microsoft Excel (users)

 Adding a Script
To add a script to SystemVue:

Click the New Item button () on the Workspace Tree toolbar and select Add
Script.
Once the script is added, edit script text in the window just like a Notes window.
The toolbuttons at the top let you run the script or copy the script to the script
processor (if you want to edit it there).
You can also run a script by using an Annotation Button with an embedded script or
by right-clicking a script in the workspace tree and picking Run.

Scripts have been color enhanced to improve their readability.

 Using Scripts in Programs
Supported Languages: C#, C++, Visual Basic
External Environments: LabVIEWTM , MATLABTM

A program can be written in any one of the supported languages to communicate with
SystemVue using our COM interface. Scripts and commands can be executed in the
SystemVue Script Processor from your program. Your program needs to contain the
proper COM reference and include the proper header for our COM Interface.

 Register the SystemVue COM Interface

In previous releases of Genesys and SystemVue, the COM interface was registered each
time the program was run. Starting in the SystemVue 2011.03 and Genesys 2011.06
releases, the COM interface will registered automatically by the installer. If you run an
older version of either product, you will need to re-register the COM interface for the
program you wish to run.

To register the COM interface, you will need to run the following command in the windows
command prompt (Run as administrator):

cd C:\Program Files (x86)\SystemVue2011.03\bin

SystemVue.exe /regserver

To unregister the COM interface, you will need to run the following command in the
windows command prompt (Run as administrator):

cd C:\Program Files (x86)\SystemVue2011.03\bin

SystemVue.exe /unregserver

 Using the COM Interface for SystemVue

Add Interop.GENESYS.dll as a COM Reference to your project. Interop.GENESYS.dll is1.
found under Examples\VBScripting\VBBrowser in your SystemVue directory.
Import, Use, or Include GENESYS as a header in your program depending on what2.
language you are using.
Create an Instance of the GENESYS.Application3.

 Running Scripts from COM Interface

A script can be run from either the RunScript function or the RunScriptFromFile function.

 RunScript Function

To use the RunScript function the context of the script you wish to run must be contained
in a string variable. The Script Processor works line by line, so the string variable will need
to contain a line return character after each line in your script.

For Example, in VB this is one way you could format a string variable strScript to contain a script that
opens a workspace and runs an analysis.

strScript = "OpenWorkspace("C:\Program Files\SystemVue(Version)\Examples\Comms\Bluetooth.wsv")"
strScript = strScript & vbCrLf & "WsDoc = theApp.GetWorkspaceByIndex(0)"
strScript = strScript & vbCrLf & "WsDoc.Analyses.DF1.RunAnalysis()"

Once you have formulated a string containing the script that you want to execute within
SystemVue, then use the command RunScript to send the script through SystemVue to
the script processor. For example, if the GENESYS.Application was instantiated as
SystemVueApp and the string containing the script was called strScript:

For VB script
SystemVueApp.RunScript(strScript, ScriptLanguage.genLangVBScript).

For J Script
SystemVueApp.RunScript(strScript, ScriptLanguage.genLangJScript).

 RunScriptFromFile Function

An easier method for running a script in SystemVue from your program is to use the
RunScriptFromFile function which runs a script from a text file. Simply copy the cotents of
a script in SystemVue to a text file and save the file.

SystemVue - Users Guide

190

For example, a text file name MyScript.txt contains:

OpenWorkspace("C:\Program Files\SystemVue(Version)\Examples\Comms\Bluetooth.wsv")
WsDoc = theApp.GetWorkspaceByIndex(0)
WsDoc.Analyses.DF1.RunAnalysis()

Use the RunScriptFromFile to load the script text file and execute the script. For example,
if the GENESYS.Application was instantiated as SystemVueApp and the string containing
the path to MyScript.txt was called strPath:

For VB script
SystemVueApp.RunScriptFromFile(strPath, ScriptLanguage.genLangVBScript).

For J Script
SystemVueApp.RunScriptFromFile(strPath, ScriptLanguage.genLangJScript).

 Examples

In this section, we will review the COM interface examples that ship with SystemVue. All
except the last example in this section preform the following steps, native in each
environment:

Launch SystemVue1.
Open a workspace2.
Sweep a variable3.
Run a simulation4.
Retrieve the result5.

To simplify use of the COM interface of SystemVue, we have created an example NET DLL
component, SystemVueNET.dll, using Visual C#.

 Introduction: SystemVue Eb/N0 Sweep for BER

In this section, we review the workspace used in the the first three COM interface
examples. In each of these examples, we will be preforming a bit error rate (BER) analysis
by sweeping the Eb/N0 parameter. We can implement this sweep natively in SystemVue
using a parameter sweep (users). The workspace example is located in
"Examples\Comms\BER\QPSK_BER_Coded_Viterbi.wsv". In this workspace, we will be
sweeping the Uncoded_QPSK_Design over multiple parameter Eb/N0 values.

Below is the schematic, note the four distinct sections, transmitter, channel, receiver, and
BER measurement:

As we preform the BER analysis for a Eb/N0 value, we calculate and modify the value of
noise density (NDensity) of the channel:

Below is the parameter sweep in SystemVue, we will be reimplementing this control for
the COM interface examples. If you hit calculate now, you can zoom into the channel and
see the NDensity as it is being updated for each sweep point.

Finally, after we calculate the Eb/N0 sweep in SystemVue, we can see the BER waterfall
plot:

To accomplish this sweep, we first define a equation block declaring that Eb/N0 will be
swept:

% Eb/No = energy per bit / noise density

% EbN0 is defined in a separate equation block to enable

% updating the variable using external control. See the

% Automation section in the notes.

EbN0 = ?3

SystemVue - Users Guide

191

In another equation block, we calculate the NDensity using the swept Eb/N0 value:

ModPower_dBm = 13 % modulator output power in dBm

SymbolRate = 51.2e+6

ModPower_W = 10^((ModPower_dBm-30)/10);

ModPower_Vrms = sqrt(50*ModPower_W);

ModCarrier = 300e6;

ModAmpSensitivity = ModPower_Vrms*sqrt(2);

SymbolTime = 1/SymbolRate

BitsPerSymbol = 2

% Eb/No = energy per bit / noise density

Eb_dBm = ModPower_dBm - 10*log10(SymbolRate * BitsPerSymbol)

No_dBm = Eb_dBm - EbN0

NDensity = No_dBm

Note, since we are using the COM interface, we must declare Eb/N0 in a separate equation
block. By doing so, as we change Eb/N0 over COM, the second equation block will be
automatically calculated before the simulation is run.

In this example we swept Eb/N0 and displayed the BER results. In the following sections,
we will use the SystemVue COM interface to implement the sweep in the following
environments:

Visual C#
Simplifying the COM Interface using NET DLL component
Preforming the BER Analysis

LabVIEW
MATLAB

 Visual C#

In this example, we use Visual C# to preform the Eb/N0 sweep. The executable is
provided at: "Examples\Scripting\C#\QPSK_BER.exe"

When you start it, you will see:

This custom application, enables you to:

Hit the Run button to preform the sweep
Hide and unhide the visibility using the check box provided.

To see the sweep in action, unhide SystemVue, zoom into the channel, and watch the
NDensity parameter update as each sweep point is evaluated.

The Visual Studio solution is supplied in the "Examples\Scripting\C#\Visual Studio"
directory. To customize it, you can use Visual Studio 2008 C# Express Edition (free from
Microsoft).

 Simplifying the COM Interface using NET DLL component

To help with all of the Eb/N0 examples, we supply an example NET DLL component,
named SystemVueNET.dll. This DLL allows us to simplify the management of the COM
interface for the QPSK BER examples implemented in C#, LabVIEW, and MATLAB.

In this DLL, we define a class called SystemVue, the file located in
"Examples\Scripting\C#\Visual Studio\SystemVueNET\SystemVue.cs":

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

using Microsoft.Win32;

namespace SystemVueExample

{

public class SystemVue

{

// Instance of SystemVue application

GENESYS.Application m_app;

// Constructor, called when a instance of this class is created

public SystemVue()

{

try

{

// Start a new instance of SystemVue

m_app = new GENESYS.Application();

}

catch

{

// If we have a exception, the COM server is probably not registered.

// Register it by running SystemVue.exe /regserver

m_app = null;

}

// By default, make SystemVue hidden

Visible = false;

}

// Member boolean to track visibility

bool m_bVisible = false;

// Methods to set/get Visible property of SystemVue

public bool Visible

{

get { return m_bVisible; }

set

{

m_bVisible = value;

if (m_app != null)

{

m_app.Application.Visible = m_bVisible;

}

}

}

// Some external environments need a separate method to set visibility

public void SetVisible(bool bVisible)

{

Visible = bVisible;

}

// Version number of SystemVue, used to find example area

static string m_sSystemVueVersion = "2011.03";

// Return the examples directory path for the version declared above

public static string ExamplesDirectory()

{

RegistryKey hkcu = Registry.CurrentUser;

string systemVueRegPath;

systemVueRegPath = "Software\\Agilent\\SystemVue" + m_sSystemVueVersion + "\\System";

RegistryKey svuRegistry = hkcu.OpenSubKey(systemVueRegPath);

Object examplesPath = svuRegistry.GetValue("ExamplesPath");

hkcu.Close();

return (string)examplesPath;

}

// Destructor

~SystemVue()

{

// Close and save all workspaces

try

{

for (int i = 0; i < m_app.Manager.GetWorkspaceCount(); i++)

{

GENESYS.Workspace workspace = m_app.Manager.GetWorkspaceByIndex(i);

// COM interface does not support quitting without saving, so save to temp

file, and then delete it

string file = Path.GetTempFileName();

workspace.SaveAs(file);

File.Delete(file);

}

}

catch

{

}

// Quit the application

if (m_app != null)

m_app.Quit();

http://www.microsoft.com/express/Downloads/
http://www.microsoft.com/express/Downloads/

SystemVue - Users Guide

192

}

// Run a VB script command

public bool RunScript(string csScript)

{

bool bStatus = true;

try

{

// Run a script, assuming Visual Basic

m_app.Application.RunScript(csScript, GENESYS.ScriptLanguage.genLangVBScript);

}

catch

{

bStatus = false;

}

return bStatus;

}

// Open a workspace, given the path

public bool OpenWorkspace(string sPath)

{

string sCommand;

sCommand = "OpenWorkspace(\"";

sCommand += sPath;

sCommand += "\")";

return RunScript(sCommand);

}

// Set a scalar double parameter

public bool SetParameter(string sParamPath, double sParamValue)

{

bool bSuccess = true;

bSuccess = RunScript(sParamPath + ".Set(" + sParamValue + ")");

return bSuccess;

}

// Get data from dataset, assuming double

public double[] GetData(string sDataName)

{

GENESYS.IItem item = GetItem(sDataName);

double[] data = null;

if (item != null)

{

data = (double[])(((GENESYS.IItem)item).GetVarValue(1));

}

return data;

}

// Find a item in a Genesys item

public GENESYS.IItem GetItem(string sItemName)

{

GENESYS.IItem me = null;

if (m_app != null)

{

me = (GENESYS.IItem)m_app.Manager;

me = GetItem(me, sItemName);

}

return me;

}

// Find a item, given a path

static GENESYS.IItem GetItem(GENESYS.IItem parent, string sItemName)

{

GENESYS.IItem item = parent;

string[] path = sItemName.Split('.');

try

{

foreach (string itemName in path)

{

if (item != null)

item = item.GetItemByName(itemName);

}

}

catch

{

item = null;

}

return item;

}

}

}

 Preforming the BER Analysis

In the Visual Studio solution, the QPSK_BER project defines the GUI and control for the
BER sweep. Most of the implementation of this application is in the
"Examples\Scripting\C#\Visual Studio\QPSK_BER\QPSK_BER.cs" file. The RunAnalysis
method (shown below) preforms the sweep. We use SystemVueNET.dll created in the
previous section to interface to the SystemVue COM interface.

public void RunAnalysis()

{

// Create a new instance only if needed

if (systemVue == null)

{

// Start a new instance of SystemVue

systemVue = new SystemVueExample.SystemVue();

string workspacePath = SystemVueExample.SystemVue.ExamplesDirectory();

workspacePath += "\\Comms\\BER\\QPSK_BER_Coded_Viterbi.wsv";

// Open the workspace

systemVue.OpenWorkspace(workspacePath);

systemVue.Visible = Visible;

}

// Sweep Eb/N0 -2 to 10 and calculate the BER

for (int EbN0 = -2; EbN0 <= 10; EbN0++)

{

// Set the NDenstity parameter

systemVue.SetParameter("QPSK_BER_Coded_Viterbi.EbN0.VarBlock.[EbN0]", EbN0);

// Run the analysis

systemVue.RunScript(

"QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Analysis.RunAnalysis");

// Read BER from dataset

double[] BER = systemVue.GetData(

"QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Data.Eqns.VarBlock.B11_BER");

// BER could be null if user manually exited SystemVue

if (BER != null)

{

QPSK_BER.SimulationResult newSim = new QPSK_BER.SimulationResult();

newSim.BER = BER[0];

newSim.EbN0 = EbN0;

newSim.Test = BER[0] > .1 ? "Fail" : "Pass";

m_SimulationResults.Add(newSim);

}

}

}

 LabVIEW

In this example, we use LabVIEW to implement the BER analysis. The compiled executable
is available in "Examples\Scripting\LabVIEW\QPSK_BER_vi.exe":

SystemVue - Users Guide

193

To run it, you will need to install "LabVIEW Run-Time Engine 2009 - (32-bit Minimum
RTE)" available free from National Instruments at:
http://joule.ni.com/nidu/cds/view/p/id/1406/lang/en

As in the previous example, we use SystemVueNET.dll to manage the SystemVue COM
interface.

The LabVIEW vi is defined in the "Examples\Scripting\LabVIEW\QPSK_BER.vi" file. You will
need LabVIEW 2009 or later to open the vi file.

The LabVIEW application provides the implementation for:

Starting SystemVue and loading the workspace:

Toggling the visibility of SystemVue:

Sweeping over the Eb/N0 and displaying the resultant BER:

To see the full LabView implementation, click on the image below:

 MATLAB

In this example, we use MATLAB to implement the BER analysis. The MATLAB script is
defined in the "Examples\Scripting\MATLAB\QPSK_BER.m" file.

As in the previous example, we use SystemVueNET.dll created above to interface to the
SystemVue COM interface.

% Find the directory path where this file is located

pathToDLL = fileparts(mfilename('fullpath'));

% Load the assembly in this directory (source code in C# example area)

%NET.addAssembly([pathToDLL '/SystemVueNET.dll']);

% Open SystemVue and the workspace that we are interested in

if exist('systemVue') == false

% Start a new instance of SystemVue

 systemVue = SystemVueExample.SystemVue();

% Hide SystemVue

 systemVue.Visible = false;

% Get the examples directory path

 examplesDirectory = char(systemVue.ExamplesDirectory());

% Define workspace path to build directory examples directory

 workspacePath = [examplesDirectory '/Comms/BER/QPSK_BER_Coded_Viterbi.wsv'];

% Open the workspace

 systemVue.OpenWorkspace(workspacePath);

end

% Index into results matrix

i = 1;

% Sweep Eb/N0 -2 to 10 and calculate the BER

for j =-2:10,

% Set EbN0

 EbN0(i) = j;

 systemVue.SetParameter('QPSK_BER_Coded_Viterbi.EbN0.VarBlock.[EbN0]', EbN0(i));

% Run the analysis

 systemVue.RunScript('QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Analysis.RunAnalysis');

% Read BER from dataset

 data = systemVue.GetData('QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Data.Eqns.VarBlock.B

11_BER');

http://joule.ni.com/nidu/cds/view/p/id/1406/lang/en
http://joule.ni.com/nidu/cds/view/p/id/1406/lang/en
http://edocs.soco.agilent.com/download/attachments/117477316/QPSK_BER_vi.png

SystemVue - Users Guide

194

 BER(i) = data(1);

% Display NDensity and BER on the console window

 disp(['Eb/N0 = ' num2str(EbN0(i)), ' BER = ', num2str(BER(i))]);

% Increment index into results matrix

 i = i+1;

end

%plot the results

semilogy(EbN0,BER)

xlabel('Eb/N0')

ylabel('BER')

title('Uncoded QPSK BER Analysis')

 Visual Basic

The VBBrowser communicates to SystemVue through the COM interface. The source code
for the VBBrowser is located in "Examples\Scripting\Visual Basic\Browser\MainForm.vb"
for your viewing.

The executable is available in "Examples\Scripting\Visual Basic\Browser\VBBrowser.exe".
This application will let you explore an opened workspace, with it you can find the path to
the items in your workspace to use in your automation scripts. To learn more about this
application, refer to the Example Exploring the Workspace Using Visual Basic (users)
documentation.

 Creating Script Objects
In SystemVue, all designs and their components are objects that you can refer to by
name. In the following example, there is a design named Design1 and it has a SineGen
source called S1

Typically, most scripts start out by defining a variable to be the workspace object. In the
example below the workspace object was defined by WsDoc =
theApp.GetWorkspaceByIndex(0)

To create a sample script object:

Set the frequency of a SineGen source named S1 to 12000 Hz1.
WsDoc.Design1.PartList.S1.ParamSet.Frequency.Set(12000)
Define an object pointing to the S1 part parameter set.2.
MySub=WsDoc.Design1.PartList.S1.ParamSet
Set the frequency parameter to 12000 Hz3.
MySub.Frequency.Set(12000)
Set the amplitude parameter to 2 V4.
MySub.Amplitude.Set(2)

Set uses the parameter's defined unit of measure.

There is an object browser example using Visual Basic in the SystemVue Examples\VBBrowser directory.
This example shows you how to:

Connect to SystemVue from Visual Basic.
Browse objects in SystemVue.
Execute any method in SystemVue.

See the doc on VBBrowser for more details.

SystemVue - Users Guide

195

 Example: Exploring the Workspace
Using Visual Basic
 VBBrowser
The VBBrowser communicates to SystemVue through the COM interface. The source code
for the VBBrowser is located in "Examples\Scripting\Visual Basic\Browser\MainForm.vb"
for your viewing.

The executable is available in "Examples\Scripting\Visual Basic\Browser\VBBrowser.exe".
This application will let you explore an opened workspace, with it you can find the path to
the items in your workspace to use in your automation scripts. To learn more about this
application, refer to the Example Exploring the Workspace Using Visual Basic (users)
documentation.

 (SystemVue Browser)

The VBBrowser is used to browse objects in SystemVue. This is an interactive program
that allows a user to see what functions are available to call within the script processor.
The program communicates with one active instance of the SystemVue program. The
browser looks at the current workspace and retrieves objects and items from it.

 Running the VBBrowser

The VBBrowser is located in the Examples\VBScripting\VBBrowser folder of your
SystemVue directory. Source code for the VBBrowser can be found in this same folder in
the file called MainForm.vb. The files Interop.GENESYS.dll and VBBrowser.exe were
created following the instructions found in the ReadMe.txt located in the same folder.

There are two ways to launch the VBBrowser

Run the VBBrowser while you have a SystemVue Running.1.
Launch the VBBrower without SystemVue Running. The VBBrowser will launch as well2.
as SystemVue.

If you load another workspace in SystemVue while the VBBrowser is running it is best to click the Go
To Root button to avoid errors. Clicking the Refresh or Up button will throw an error and then load
the root.

 Contents of the VBBrowser

 General

The Selected Item box contains the syntax for the script that you can execute by clicking
the Execute Method button.

The Context drop box contains three items

Application.Manager (default) Sets the Item List to the context of the workspace tree.1.
Application.Menu Sets the Item List to the context of the current Menu Bar in2.
SystemVue
Application.StdMenu - Sets the Item List to the context of the standard Menu Bar in3.
SystemVue

 Lists

Item List - The window contains a list of all the items found in the current context. If
nothing appears in the window you can click the Refresh button to refresh the context.
Clicking on an item in this list will show you a list of sub items. Note that the sub items
correspond to the items inside the opened workspace. Notice that as you click items, the
text in the selected item box changes. The first thing you should see (in the default
context) in the Item list is the name of the workspace(s) that are loaded in SystemVue. In
the example above you would see Data Flow Template as the first item in the list.

Variable List - The window contains a list of properties, variables, or parameters that are
associated with the current item. Items in this list can be called as a property to an item.

SystemVue - Users Guide

196

Method List - The window contains a list of the methods that can be used with the current
item. Notice that by double clicking on a method the ExecuteScript window pops up with
current syntax of the method youve selected. This syntax is generated from the Selected
Item text box and the method you have clicked. This is what would pop up if you double
clicked the Save() method.

You can execute this one line script by clicking on OK. A script processor window will not pop up in
SystemVue, so you may not always know if it worked or not. If you need to execute many lines it is
suggested to use a script. The ExecuteScript window is best used as a guide to get the correct syntax for
writing your own script.

 Buttons

Up - The button sets the Item List to the parent item of the current Item List window

Execute Method The button will bring up the ExecuteScript window that shows the syntax
for the current Selected Item and gives the option to run it or not.

Refresh - The button reloads the items in the three lists.

Go To Root - The button sets the Item List to the top most parent.

SystemVue - Users Guide

197

 Example Running a BER Analysis
Controlled From LabVIEW, MATLAB, or
C#
In this section, we will review the COM interface examples that ship with SystemVue. All
except the last example in this section preform the following steps, native in each
environment:

Launch SystemVue1.
Open a workspace2.
Sweep a variable3.
Run a simulation4.
Retrieve the result5.

To simplify use of the COM interface of SystemVue, we have created an example NET DLL
component, SystemVueNET.dll.

 Introduction: SystemVue Eb/N0 Sweep for BER

In this section, we review the workspace used in the the first three COM interface
examples. In each of these examples, we will be preforming a bit error rate (BER) analysis
by sweeping the Eb/N0 parameter. We can implement this sweep natively in SystemVue
using a parameter sweep (users). The workspace example is located in
"Examples\Comms\BER\QPSK_BER_Coded_Viterbi.wsv". In this workspace, we will be
sweeping the Uncoded_QPSK_Design over multiple parameter Eb/N0 values.

Below is the schematic, note the four distinct sections, transmitter, channel, receiver, and
BER measurement:

As we preform the BER analysis for a Eb/N0 value, we calculate and modify the value of
noise density (NDensity) of the channel:

Below is the parameter sweep in SystemVue, we will be reimplementing this control for
the COM interface examples. If you hit calculate now, you can zoom into the channel and
see the NDensity as it is being updated for each sweep point.

Finally, after we calculate the Eb/N0 sweep in SystemVue, we can see the BER waterfall
plot:

To accomplish this sweep, we first define a equation block declaring that Eb/N0 will be
swept:

% Eb/No = energy per bit / noise density

% EbN0 is defined in a separate equation block to enable

% updating the variable using external control. See the

% Automation section in the notes.

EbN0 = ?3

In another equation block, we calculate the NDensity using the swept Eb/N0 value:

ModPower_dBm = 13 % modulator output power in dBm

SymbolRate = 51.2e+6

ModPower_W = 10^((ModPower_dBm-30)/10);

ModPower_Vrms = sqrt(50*ModPower_W);

ModCarrier = 300e6;

ModAmpSensitivity = ModPower_Vrms*sqrt(2);

SymbolTime = 1/SymbolRate

BitsPerSymbol = 2

% Eb/No = energy per bit / noise density

Eb_dBm = ModPower_dBm - 10*log10(SymbolRate * BitsPerSymbol)

No_dBm = Eb_dBm - EbN0

NDensity = No_dBm

Note, since we are using the COM interface, we must declare Eb/N0 in a separate equation
block. By doing so, as we change Eb/N0 over COM, the second equation block will be
automatically calculated before the simulation is run.

In this example we swept Eb/N0 and displayed the BER results. In the following sections,
we will use the SystemVue COM interface to implement the sweep in the following
environments:

Visual C#
Simplifying the COM Interface using NET DLL component
Preforming the BER Analysis

LabVIEW
MATLAB

 Visual C#

In this example, we use Visual C# to preform the Eb/N0 sweep. The executable is
provided at: "Examples\Scripting\C#\QPSK_BER.exe"

When you start it, you will see:

SystemVue - Users Guide

198

This custom application, enables you to:

Hit the Run button to preform the sweep
Hide and unhide the visibility using the check box provided.

To see the sweep in action, unhide SystemVue, zoom into the channel, and watch the
NDensity parameter update as each sweep point is evaluated.

The Visual Studio solution is supplied in the "Examples\Scripting\C#\Visual Studio"
directory. To customize it, you can use Visual Studio 2008 C# Express Edition (free from
Microsoft).

 Simplifying the COM Interface using NET DLL component

To help with all of the Eb/N0 examples, we supply an example NET DLL component,
named SystemVueNET.dll. This DLL allows us to simplify the management of the COM
interface for the QPSK BER examples implemented in C#, LabVIEW, and MATLAB.

In this DLL, we define a class called SystemVue, the file located in
"Examples\Scripting\C#\Visual Studio\SystemVueNET\SystemVue.cs":

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

using Microsoft.Win32;

namespace SystemVueExample

{

public class SystemVue

{

// Instance of SystemVue application

GENESYS.Application m_app;

// Constructor, called when a instance of this class is created

public SystemVue()

{

try

{

// Start a new instance of SystemVue

m_app = new GENESYS.Application();

}

catch

{

// If we have a exception, the COM server is probably not registered.

// Register it by running SystemVue.exe /regserver

m_app = null;

}

// By default, make SystemVue hidden

Visible = false;

}

// Member boolean to track visibility

bool m_bVisible = false;

// Methods to set/get Visible property of SystemVue

public bool Visible

{

get { return m_bVisible; }

set

{

m_bVisible = value;

if (m_app != null)

{

m_app.Application.Visible = m_bVisible;

}

}

}

// Some external environments need a separate method to set visibility

public void SetVisible(bool bVisible)

{

Visible = bVisible;

}

// Version number of SystemVue, used to find example area

static string m_sSystemVueVersion = "2011.03";

// Return the examples directory path for the version declared above

public static string ExamplesDirectory()

{

RegistryKey hkcu = Registry.CurrentUser;

string systemVueRegPath;

systemVueRegPath = "Software\\Agilent\\SystemVue" + m_sSystemVueVersion + "\\System";

RegistryKey svuRegistry = hkcu.OpenSubKey(systemVueRegPath);

Object examplesPath = svuRegistry.GetValue("ExamplesPath");

hkcu.Close();

return (string)examplesPath;

}

// Destructor

~SystemVue()

{

// Close and save all workspaces

try

{

for (int i = 0; i < m_app.Manager.GetWorkspaceCount(); i++)

{

GENESYS.Workspace workspace = m_app.Manager.GetWorkspaceByIndex(i);

// COM interface does not support quitting without saving, so save to temp

file, and then delete it

string file = Path.GetTempFileName();

workspace.SaveAs(file);

File.Delete(file);

}

}

catch

{

}

// Quit the application

if (m_app != null)

m_app.Quit();

}

// Run a VB script command

public bool RunScript(string csScript)

{

bool bStatus = true;

try

{

// Run a script, assuming Visual Basic

m_app.Application.RunScript(csScript, GENESYS.ScriptLanguage.genLangVBScript);

}

catch

{

bStatus = false;

}

return bStatus;

}

// Open a workspace, given the path

public bool OpenWorkspace(string sPath)

{

string sCommand;

sCommand = "OpenWorkspace(\"";

sCommand += sPath;

sCommand += "\")";

return RunScript(sCommand);

}

// Set a scalar double parameter

public bool SetParameter(string sParamPath, double sParamValue)

{

bool bSuccess = true;

bSuccess = RunScript(sParamPath + ".Set(" + sParamValue + ")");

return bSuccess;

}

// Get data from dataset, assuming double

public double[] GetData(string sDataName)

{

GENESYS.IItem item = GetItem(sDataName);

double[] data = null;

if (item != null)

{

data = (double[])(((GENESYS.IItem)item).GetVarValue(1));

}

http://www.microsoft.com/express/Downloads/
http://www.microsoft.com/express/Downloads/

SystemVue - Users Guide

199

return data;

}

// Find a item in a Genesys item

public GENESYS.IItem GetItem(string sItemName)

{

GENESYS.IItem me = null;

if (m_app != null)

{

me = (GENESYS.IItem)m_app.Manager;

me = GetItem(me, sItemName);

}

return me;

}

// Find a item, given a path

static GENESYS.IItem GetItem(GENESYS.IItem parent, string sItemName)

{

GENESYS.IItem item = parent;

string[] path = sItemName.Split('.');

try

{

foreach (string itemName in path)

{

if (item != null)

item = item.GetItemByName(itemName);

}

}

catch

{

item = null;

}

return item;

}

}

}

 Preforming the BER Analysis

In the Visual Studio solution, the QPSK_BER project defines the GUI and control for the
BER sweep. Most of the implementation of this application is in the
"Examples\Scripting\C#\Visual Studio\QPSK_BER\QPSK_BER.cs" file. The RunAnalysis
method (shown below) preforms the sweep. We use SystemVueNET.dll created in the
previous section to interface to the SystemVue COM interface.

public void RunAnalysis()

{

// Create a new instance only if needed

if (systemVue == null)

{

// Start a new instance of SystemVue

systemVue = new SystemVueExample.SystemVue();

string workspacePath = SystemVueExample.SystemVue.ExamplesDirectory();

workspacePath += "\\Comms\\BER\\QPSK_BER_Coded_Viterbi.wsv";

// Open the workspace

systemVue.OpenWorkspace(workspacePath);

systemVue.Visible = Visible;

}

// Sweep Eb/N0 -2 to 10 and calculate the BER

for (int EbN0 = -2; EbN0 <= 10; EbN0++)

{

// Set the NDenstity parameter

systemVue.SetParameter("QPSK_BER_Coded_Viterbi.EbN0.VarBlock.[EbN0]", EbN0);

// Run the analysis

systemVue.RunScript(

"QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Analysis.RunAnalysis");

// Read BER from dataset

double[] BER = systemVue.GetData(

"QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Data.Eqns.VarBlock.B11_BER");

// BER could be null if user manually exited SystemVue

if (BER != null)

{

QPSK_BER.SimulationResult newSim = new QPSK_BER.SimulationResult();

newSim.BER = BER[0];

newSim.EbN0 = EbN0;

newSim.Test = BER[0] > .1 ? "Fail" : "Pass";

m_SimulationResults.Add(newSim);

}

}

}

 LabVIEW

In this example, we use LabVIEW to implement the BER analysis. The compiled executable
is available in "Examples\Scripting\LabVIEW\QPSK_BER_vi.exe":

To run it, you will need to install "LabVIEW Run-Time Engine 2009 - (32-bit Minimum
RTE)" available free from National Instruments at:
http://joule.ni.com/nidu/cds/view/p/id/1406/lang/en

As in the previous example, we use SystemVueNET.dll to manage the SystemVue COM
interface.

The LabVIEW vi is defined in the "Examples\Scripting\LabVIEW\QPSK_BER.vi" file. You will
need LabVIEW 2009 or later to open the vi file.

The LabVIEW application provides the implementation for:

Starting SystemVue and loading the workspace:

Toggling the visibility of SystemVue:

Sweeping over the Eb/N0 and displaying the resultant BER:

http://joule.ni.com/nidu/cds/view/p/id/1406/lang/en
http://joule.ni.com/nidu/cds/view/p/id/1406/lang/en

SystemVue - Users Guide

200

To see the full LabView implementation, click on the image below:

 MATLAB

In this example, we use MATLAB to implement the BER analysis. The MATLAB script is
defined in the "Examples\Scripting\MATLAB\QPSK_BER.m" file. When you run the script,
you will see:

As in the previous example, we use SystemVueNET.dll created above to interface to the
SystemVue COM interface.

% Find the directory path where this file is located

pathToDLL = fileparts(mfilename('fullpath'));

% Load the assembly in this directory (source code in C# example area)

%NET.addAssembly([pathToDLL '/SystemVueNET.dll']);

% Open SystemVue and the workspace that we are interested in

if exist('systemVue') == false

% Start a new instance of SystemVue

 systemVue = SystemVueExample.SystemVue();

% Hide SystemVue

 systemVue.Visible = false;

% Get the examples directory path

 examplesDirectory = char(systemVue.ExamplesDirectory());

% Define workspace path to build directory examples directory

 workspacePath = [examplesDirectory '/Comms/BER/QPSK_BER_Coded_Viterbi.wsv'];

% Open the workspace

 systemVue.OpenWorkspace(workspacePath);

end

% Index into results matrix

i = 1;

% Sweep Eb/N0 -2 to 10 and calculate the BER

for j =-2:10,

% Set EbN0

 EbN0(i) = j;

 systemVue.SetParameter('QPSK_BER_Coded_Viterbi.EbN0.VarBlock.[EbN0]', EbN0(i));

% Run the analysis

 systemVue.RunScript('QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Analysis.RunAnalysis');

% Read BER from dataset

 data = systemVue.GetData('QPSK_BER_Coded_Viterbi.Analyses.Uncoded_QPSK_BER_Data.Eqns.VarBlock.B

11_BER');

 BER(i) = data(1);

% Display NDensity and BER on the console window

 disp(['Eb/N0 = ' num2str(EbN0(i)), ' BER = ', num2str(BER(i))]);

% Increment index into results matrix

 i = i+1;

end

%plot the results

semilogy(EbN0,BER)

xlabel('Eb/N0')

ylabel('BER')

title('Uncoded QPSK BER Analysis')

 Example: Running a Script from Microsoft Excel
Microsoft Excel has a VB Script engine that one can use to script other applications that
support a COM interface. In the case of SystemVue, this means that a Script can be
written in Microsoft Excel that opens SystemVue, does something such as load a
workspace and run simulations, collects data, and processes the data. For information on
accessing the VBScript development editor in Microsoft Excel, see your version of Excel's
Help.

The global Windows name for SystemVue's COM server is GENESYS. When SystemVue
runs, it registers itself with the Windows operating system by name so that a script can
access it (including run an instance of it).

The first thing one must do to be able to access the SystemVue COM server in Excel is to
make it visible to Excel by setting it as a "Reference". In the Microsoft Visual Basic editor
in Excel, you must declare "GENESYS" as a reference, and this is normally done by
accessing the References dialog box via "Tools/References... "

Note: GENESYS will only appear in the References list only if SystemVue has been installed and run at
least once.

Now, the SystemVue COM server can be accessed in a VBScript module by the name
"GENESYS". Create a new VBScript module by right-clicking on your VBA Project in the

http://edocs.soco.agilent.com/download/attachments/133300576/Scripting_LabView.PNG

SystemVue - Users Guide

201

Project explorer and selecting "Insert... / Module".

The following code snippet shows the simplest possible script which simply opens an
instance of SystemVue:

Sub myScript()

 Dim comServer As GENESYS.Application ' Declare variable that references our COM server

 Set comServer = CreateObject("Genesys.Application") ' Open an instance of the application

End Sub

For illustrative purposes, here is a more involved VBScript which opens SystemVue, opens
a workspace named "MyWorkspace.wsx", Runs a particular analysis that is located in the
workspace, gets data from the dataset, and sets the data into an excel spreadsheet:

Sub myScript()

 Dim oGen As GENESYS.Application

 Dim WsDoc As GENESYS.Workspace

 Dim Stri As String

 ' Open Genesys

 Set oGen = CreateObject("Genesys.Application")

 ' Load workspace

 oGen.Manager.OpenWorkspace ("C:\Workspaces\MyWorkspace.wsx")

 ' Get Workspace

 Set WsDoc = oGen.Manager.GetWorkspaceByIndex(0)

 ' Run Analysis called Analysis1

 WsDoc.Designs.Analysis1.RunAnalysis

 ' Get V1 variable from Dataset named MyData

 arr = WsDoc.Designs.MyData.Eqns.VarBlock.V1.GetValue()

 ' Save the workspace

 oGen.Menu.File.Save.Execute

 ' Exit(optional)

 oGen.Menu.File.Exit.Execute

 Dim oXL As Excel.Application

 Dim oWB As Excel.Workbook

 Dim oSheet As Excel.Worksheet

 Dim oRng As Excel.Range

 Dim iNumQtrs As Integer

 Set oXL = Excel.Application ' Activate Excel

 oXL.Visible = True

 ' Set active Workbook

 Set oWB = oXL.Workbooks.Application.ActiveWorkbook

 ' Set active Sheet

 Set oSheet = oWB.ActiveSheet

 ' output first 201 datapoints to excel

 For i = 0 To 200

 oSheet.Cells(i + 1, 1).Value = arr(i)

 Next i

 Exit Sub

Err_Handler:

 MsgBox Err.Description, vbCritical, "Error: " & Err.Number

End Sub

 Script Processor
A script contains objects that let you control SystemVue using industry-standard scripting
languages. Scripts specifically control SystemVue operations and are very different from
equations, which relate variables in SystemVue. Use scripts to load files, save files, save
data sets, and change object parameters. Create and run scripts using the Script
Processor window. Add the scripts to SystemVue or to a specific design.

SystemVue supports scripts written in both VBScript and JScript. These are standard
programming languages not written by Agilent. Documentation for VBScript and JScript is
widely available on the Web.

Note: The latest version of scripting allows scripting from Visual Basic or C__, access to all SystemVue
menu items, customization of menus, and custom optimization. For more information on using any of
these features, please contact Agilent directly or check the latest Help files at Agilent EEsof EDA
Documentation .

To run a script:

Click Tools on the SystemVue menu and select Script Processor.1.
Type or copy a script in the box.2.
Click the Run button.3.

To add a script to SystemVue:

Click the New Item button () on the Workspace Tree toolbar and select Add1.
Script.
Once the script is added, edit script text in the window just like a Notes window.2.

 Script Verbs
Some SystemVue objects have verbs you can use, including a few global verbs that are
applicable to the program.

This table contains a list of all the available functions to use in scripts. The functions are
organized by what type of object or item they can be called on. For example, functions in
the Dataset table can be used off of datasets in your workspace. The VBBrowser is also
very helpful in showing what functions can be used on what objects.

The examples in the table below were created using the Data Flow Template.wsv as the
opened workspace. The Data Flow Template.wsv workspace can be found in the Template
folder of the SystemVue directory. These examples work with the Data Flow Template.wsv
example, but can be applied to any workspace. To see the return value of any function in
the script processor you can use the Show() function. If the return value is an object it
may be necessary to use the GetName property before you can use the Show() function to
display the name of the object in the script processor. By default, any file created by a
function call is created in the same directory as the workspace currently opened unless a
path is specified. Any function that takes a file name as a string parameter can also take a
string containing the path of a file as a parameter.

Some sample scripts have been included with SystemVue and can be used as a reference
in writing your own. These scripts are located in the Library Selector under the Library
Type "Script".

For all the examples below w = Application.Manager.GetWorkspaceByIndex(0). This sets the variable "w"
to the current workspace.

 All Main SystemVue Objects

http://edocs.soco.agilent.com/display/doc/Home
http://edocs.soco.agilent.com/display/doc/Home
http://edocs.soco.agilent.com/display/doc/Home

SystemVue - Users Guide

202

Syntax Description Example

ExportToLibrary(bstr
LibName)

Export the object to a library. w.ExportToLibrary("Test")

ImportFromLibrary(bstr
LibType, bstr LibName, bstr
PartName)

Import an object from the library. w.ImportFromLibrary("Dataset",
"Test", "myData")

GetLibrary(bstr LibType, bstr
LibName)

Get the library specified by its type and its
name. Use the Library Selector as a
reference for the inputs.

result = w.GetLibrary("Design",
"SymbolsQtr")

GetRegisteredModels Gets a list of the registered models w.GetRegisteredModels result

ImportFromLibrary(bstr
LibType, bstr LibName, bstr
PartName)

Import a part from a library. The
parameters are the library type, the
library name, and the name of the part.
Use the Library Selector in SystemVue as
a reference to find all these inputs.

w.ImportFromLibrary "Design",
"Symbols", "OSC"

OpenWindow Open a view of the object. w.Designs.Signal.OpenWindow()

CloseWindow Close any open views. w.Designs.Signal.CloseWindow()

SelectAll Select all 'parts' in the object w.Designs.Design1.SelectAll

SelectNone Deselect all 'parts' in the object w.Designs.Design1.SelectNone

 Analysis

Syntax Description Example

ClearModelCache() Clear the model cache from this
analysis.

w.Designs.[Design1
Analysis].ClearModelCache()

GetDataName() Get the name of the dataset. If an
equation, this is parsed.

result = w.Designs.[Design1
Analysis].GetDataName()

RunAnalysis() Run this analysis. w.Designs.[Design1 Analysis].RunAnalysis()

SetDataName(bstr
Name)

Set the dataset name the analysis
will use.

w.Designs.[Design1
Analysis].SetDataName("Dataset Name")

 Application

Syntax Description Example

Application() Returns the current version
of SystemVue.

Application()

Create(bstr Type, bstr
Name)

Create a new object with the
specified type and name.

result = Create("Notes", "ThisNote")

FileNewFromTemplate(bstr
FileName)

Open a template from the
template directory.

FileNewFromTemplate("Data Flow Template.wsv")

FileOpen(bstr FileName) Open a file from the last
opened directory.

FileOpen("Data Flow Template.wsv")

FileOpenExample(bstr
FileName)

Open an example from the
last opened directory.

FileOpenExample("SPDT.wsv")

FileOpenRecent(int
FileNumber)

Open a recent file. 1
represents the most recent
file.

Application.Manager.FileOpenRecent(1)

GetToolbarSet() Gets the toolbar set as an
object.

result = Application.Manager.GetToolbarSet()

GetWorkspaceByIndex(int
iNum)

Returns the workspace
object at index iNum

w=theApp.GetWorkspaceByIndex(0)

GetWorkspaceCount() Returns the number of
workspaces opened the
instance of SystemVue

result
=Application.Manager.GetWorkspaceCount()

OpenWorkspace(bstr strFile
)

Loads the specified
workspace without a open
window prompt

OpenWorkspace("SPDT.wsv")

PostCommand(bstr
CmdMsg)

Display a command message
in the current view.

Application.Manager.PostCommand("fit_windows")

SaveTextToFile(bstr
FileName, bstr ToShow)

Save text to a file. SaveTextToFile "File.txt", "HelloWorld"

SetNetworkReuse(int iPorts
)

Displays dialog to re use a
design as a part with the
specified number of ports. A
part of iPort number of ports
is created representing the
design you select.

Application.Manager.SetNetworkReuse 2

Show(bstr ToShow) Display the text in the
Status box below the Edit
box of a window.

Show("HelloWorld")

ShowToolBar(bstr
ToolBarName, int Show)

Toggle, show, or hide a
toolbar by name. 0 = Off, 1
= On

Application.Manager.ShowToolBar "Schematic", 1

Update() Runs all pending analyses. Application.Manager.Update()

ViewDesignSelector(int
Flags)

Toggle (0), show (1), or hide
(2) the Library Selector.

Application.Manager.ViewDesignSelector(0)

ViewPartPicker(int Flags) Toggle (0), show (1), or hide
(2) Part Selector A.

Application.Manager.ViewPartPicker(0)

ViewPartPickerB(int Flags) Toggle (0), show (1), or hide
(2) Part Selector B.

Application.Manager.ViewPartPickerB(0)

ViewSimulationStatus(int
Flags)

Toggle (0), show (1), or hide
(2) the Simulation Status
window.

Application.Manager.ViewSimulationStatus(0)

ViewTuneWindow(int Flags) Toggle (0), show (1), or hide
(2) the Tune window.

Application.Manager.ViewTuneWindow(0)

ViewWorkspaceWindow(int
Flags)

Toggle (0), show (1), or hide
(2) the Workspace window.

Application.Manager.ViewWorkspaceWindow(0)

 Atom

Syntax Description Example

ExportXML(bstr Path) Save an object's XML stream to file. Path needs file
extension.

w.Note.ExportXML "test.xml"

GetName() Get the external name of an object. result = w.GetName

ToString() Convert an object into a string (text) representation. result =w.Note.ToString

ToXML() Convert an object into XML. result =w.Note.ToXML

SetName(bstr
bsName)

Set the object name w.Note.SetName
 "HelloName"

 Dataset

Syntax Description Example

ExportS(bstr
FileName)

Export data as an S-
parameter data file.

w.Designs.Design1_Data.ExportS("Design1_Data.s2p")

SnapShotToData Creates a snapshot of
a dataset or equation.
This can be used to
make a checkpoint
dataset.

w.Designs.[Design1_Data].Eqns.SnapShotToData("New_Dataset")

DeleteAnalysisVars Delete all calculated-
by-analysis variables
from a dataset

w.Designs.[Design1_Data].DeleteAnalysisVars()

 Folder

Syntax Description Example

DeleteObject(bstr
ObjectName)

Delete a SystemVue object. w.Designs.DeleteObject("Design1_Data")

GetNameList(variant*
ItemList)

Get the list of names in the folder. List
is a collection of names.

w.Designs.GetNameList result

GetObjectCount() Count the number of sub objects in the
folder.

result = w.Designs.GetObjectCount()

GetObjectList(variant*
ItemList)

Get the list of objects (as pointer). w.GetObjectList result

GetObjectType(bstr
ObjectName)

Gets the type of an object called
ObjectName inside a folder.

w.Designs.GetObjectType("Signal")

 Item

SystemVue - Users Guide

203

Syntax Description Example

AddProperty(IDispatch*
Property)

Insert this
property.
Input must be
an item.

result = w.GetItemByName("Note")
w.Designs.AddProperty(result) 'adds the note to the designs
folder

DeleteProperty(bstr
Property)

Delete this
property.

w.DeleteProperty("Note")

GetItemByIndex(int Index) Get items by
index starting
with index 0.

result = w.GetItemByIndex(1)

GetItemByName(bstr
ItemName)

Get item by
name.

result = w.Designs.GetItemByName("Signal")

GetItemCount() Count the
number of
items.

result = w.GetItemCount()

GetMethodList() Get the list of
methods from
the GDISP
entries.

result = w.GetMethodList()

GetParentOfItem(IDispatch*
Child)

Get the
parent item of
given item.

child = w.Designs.[Design1 Analysis].DataName
result = w.GetParentOfItem(child)

GetPropertyList(variant*
 ItemList)

Get the
property list
of an item.

w.Designs.Design1.PartList.GetPropertyList result

GetPropertyType(bstr
PropName)

Get property
type by
name.

result=w.Designs.GetPropertyType("Design1 Analysis")

GetType() Gets the type
of an item.

result = w.Designs.Spectrum.GetType()

GetPropertyAsArray(bstr
name, variant* ItemList)

Gets the
contents of a
property as a
list

w.GetPropertyAsArray "Notes", result

GetVarCount() Count the
number of
variables.

result = w.Designs.Spectrum.GetVarCount()

GetVarName(int Index) Get the
variable name
at given
index.

result = w.Designs.Spectrum.GetVarName(2)

GetVarType(int Index) Get variable
type at given
index.

result = w.Designs.Spectrum.GetVarType(2)

GetVarValue(int Index) Get the
variable value
at a given
index.

result = w.Designs.Spectrum.Width.GetVarValue(2)

GetVarXMLName(int Index
)

Get the XML
name of a
variable at a
given index.

result = w.Designs.Spectrum.Width.GetVarXMLName(2)

HasProperty(bstr PropName
)

Returns -1 is
the Item has
the property
and 0 if it
does not

if w.HasProperty("IsOpen") then
Show "yes" 'is the workspace open?
end if

SetProperty(bstr Property,
variant* Value)

Set a property
to a value.

number ="2500"
w.Designs.Design1.PartList.S1.ParamSet.Frequency.SetProperty
"DataEntry", number

 Library

Syntax Description Example

GetPartList(variant*
ItemList)

Get the part list of a
library.

dim Symbols
Library = w.GetLibrary("Design", "SymbolsQtr")

Library.GetPartList Symbols
For each part in Symbols
Show part
next

 Menu

Syntax Description Example

Execute() Execute a menu entry. Application.Menu.File.New.Execute()

InsertItem(int Pos, bstr
Text, bstr Name, bstr
Script)

Insert a menu item
inside any menu. The
action of this new menu
item is based on the
script passed in.

Application.Menu.Run.InsertItem 0, "Open", "Open",
"Application.Manager.OpenWorkspace(""SPDT.wsv"")"

InsertMenu(int
iPosition,bstr
bsText,bstr bsName)

Insert a menu tab on
the top of the window.

Application.Menu.InsertMenu 8, "Run Script", "Run Script"

InsertSeparator(int
Pos)

Insert a separator
(bar). 0 is the initial
position.

Application.Menu.Tools.InsertSeparator(2)

 Parameters

Syntax Description Example

Get() Get the parameter entry
(what the user typed).

result =
w.Designs.Design1.PartList.S1.ParamSet.Frequency.Get()

GetData Get the formatted value of
data.

result =
w.Designs.Design1.PartList.S1.ParamSet.Frequency.GetData()

GetValue Get the value of the data.
This will always be in MKS for
united Parameters.

result =
w.Designs.Design1.PartList.S1.ParamSet.Frequency.GetValue()

Set(bstr
NewValue)

Set the parameter entry (as
if you typed it).

w.Designs.Design1.PartList.S1.ParamSet.Frequency.Set(7e3)

SetValue(
variable)

Set the value of the data to
the variable value.

a=7000
w.Designs.Design1.PartList.S1.ParamSet.Frequency.SetValue(a)

 Part

Syntax Description Example

ChangeModel(bstr
strName)

Change the Model
of a part.

w.Designs.Design1.PartList.S1.ChangeModel("RampGen@Data
Flow Models")

ChangeSymbol(bstr
strName)

Change the
Symbol of a part.

w.Designs.Design1.PartList.S1.ChangeSymbol("SYM_RampGen")

SetCustomValue(bstr
ParamName, variant*
piParamValue, bstr
bsUnit, bstr bsValidate,
bool vbShow)

Adds a custom
value to a part,
which will appear
in the custom tab
of the part
properties.

dim val
Freq2 = 1000
w.Designs.Design1.PartList.S1.SetCustomValue "Frequency 2",
Freq2, "Hz", "Error", 1

Set(bstr
bsParamValue)

Sets a part
parameter to the
specificed value.

' Set Sch1.C1.Output to 3.14
WsDoc.Designs.Sch1.PartList.C1.ParamSet.Output.Set("3.14")

 Schematic

SystemVue - Users Guide

204

Syntax Description Example

AddAnnotationBox(bstr
bsTag, bstr bsText)

Adds a text box named bsTag
containing the text bsText to a
schematic.

w.Design.BRIDGE_T.AddAnnotationBox "Hello",
"World"

ExportIFF(bstr FileName
)

Export to ADS/IFF format. w.Design.BRIDGE_T.ExportIFF "IFF.iff"

GetIntent() Get intended-use of the design.
Returns integer value: 0=General,
1=Schematic, 2=Layout,
3=Symbol, 4=Model, 5=Footprint.

result = w.Design.BRIDGE_T.GetIntent()

PlacePart(bstr bstr int
int int int)

Returns an HRESULT (0 indicates
success).

Dim MySch
MySch = w.Designs.Sch1.Schematic '
destination schematic
MySch.PlacePart "Const@MyLibrary", "C1",
1500, 500, 0, 0

PlaceWire (bstr
bsNetName, int X1, int
Y1, int X2, int Y2)

Places a connecting wire starting
at X1,Y1 and ending at X2, Y2.
Use a NetName of "" for an
unnamed (numeric) net. Returns
an HRESULT.

w.Designs.Sch1.Schematic.PlaceWire "Net7",
2500, 2250, 2500, 3000

SelectObject(int X, int Y) Selects the object at a specific
point on the schematic.
Coordinates are in 1000th of an
inch. Returns an HRESULT.

w.Designs.Sch1.Schematic.SelectObject 2500,
3000

SetNet(bstr bNetName) Sets the Net Name of a selected
connecting wire. Returns an
HRESULT.

result = w.Design.Sch1.Schematic.SetNet(
"Net9")

DeleteSelection() Deletes currently selected objects
from the schematic. Returns an
HRESULT.

result =
w.Design.Sch1.Schematic.DeleteSelection()

 Equations

Syntax Description Example

SnapShotToData Convert the equation variable values into a fixed dataset. w.Equations.SnapShotToData

Calculate Calculate an equation set. Designed for non-auto-calc
equations. This is useful for running communications, for
example.

result =
w.Equations.Calculate()

 Script

Syntax Description Example

RunScript(int
Language)

Executes a script in the specified language. 0==VBScript,
1==JScript

w.Script1.RunScript(0)

 Workspace

Syntax Description Example

ClearCompareLog() Clears the Run and Compare error log. w.ClearCompareLog()

ClearErrorLog() Clears the error log at the bottom of the window. w.ClearErrorLog()

GetCompareLog() Gets the compare as generated by the
RunAndCompare function.

SaveTextToFile
"test.txt",w.GetCompareLog

DeleteOldDatasets() Deletes all but the most recent dataset. Works if
you have used the RunAndCompare function.

w.DeleteOldDatasets

IsAnalysisDone() Returns 1 if the analysis is done and 0 if it is
not.

result = w.IsAnalysisDone()

RunAndCompare(int
numErrors, double
dTolerance, double
dAbsouleTol)

Runs and creates a new dataset for each
analysis. Compares the two datasets on a
tolerance of dTolerance and ignores any values
below the absolute tolerance dAbsoluteTol.It
reports errors stopping after numErrors errors
have been found to the compare log. The return
value is Pass, Warn, or Fail

w.RunAndCompare 2, 0.02,
0.00001

SaveErrorLog(bstr
FileName)

Save the error log into a file. w.SaveErrorLog("ErrorLog.txt")

Save() Save a workspace. w.Save()

SaveAs(bstr FileName) Save a workspace with new name. w.SaveAs("name.wsv")

SystemVue - Users Guide

205

 Using S-Parameters in SystemVue (RF
Design Kit)
This section shows how S-Parameter data can be incorporated into SystemVue designs
and exported to other programs.

S-Parameters are commonly used in RF circuits to represent incident and reflected
traveling waves. S-Parameters are created by a linear simulation and are generally
available from component manufactures. Several libraries of S-Parameter data ship with
SystemVue. S-Parameters in SystemVue are imported and exported in the Touchstone
format.

 Contents
Creating S-Parameter Data (users)
File Based S-Parameters (users)
Displaying S-Parameter Data (users)
Physical S-Parameters (users)
Touchstone Format (users)

 Creating S-Parameter Data
Create the schematic for which the S-Parameter data will be represented1.
Add a linear analysis and point it to the desired schematic2.
Set the frequency range and step size of the linear analysis to the desired resolution3.
of the S-Parameter data
Run the linear analysis4.
Export linear analysis data as a S-Parameter file5.

 Using S-Parameters in a Simulation

The use model for S-Parameters manually imported into the workspace versus file based
S-Parameter is slightly different. The model used in the schematic determines how the S-
Parameters will be managed.

 Displaying S-Parameter Data
The easiest way to display S-Parameter data is to open up the S-Parameter dataset and
the right click on the S variable. Then select Create Table or Graph and the type of
graph. The data will automatically be displayed.

 File Based S-Parameters
File based S-Parameter import the S-Parameters from a file into a dataset providing
simulation cache. This dataset is used when reloading the workspace to re-cached the
data. If the dataset is deleted the S-Parameters will be re-imported the next time a
simulation needs the data.

Place a S-Parameter file based part in the schematic (1-port , 2-port , n-port). This1.
can be done from the Linear Toolbar or the Part Selector
Double click the part to bring up the part properties2.
Click the Browse button to browse to the S-Parameter file3.
Add an analysis and point it to the desired schematic4.
Run the analysis5.

 Physical S-Parameters
S Parameters can be taken or formed in such a way that they represent non physical parts
like negative resistors. Realistic real world answers only come when S-Parameters are
physical. If S-parameters are physical, then the corresponding Y-parameters will meet all
of the following requirements:

The real part of every diagonal entry must be positive. i.e. Real.Yp[i,i] > 01.
The real part of every non-diagonal entry must be negative. i.e. Real.Yp[i,j] < 02.
where i is not equal to j
The absolute value of the row real summation, excluding the diagonal, must be less3.
than real value of the diagonal in that row. i.e. abs (sum(Real.Yp[i,j])) <
Real.Yp[i,i] where i is not equal to j
The absolute value of the column real summation, excluding the diagonal, must be4.
less than the real value of the diagonal in that column. i.e. abs (sum(Real.Yp[i,j]
)) < Real.Yp[j,j] where i is not equal to j

Note: It is assumed the Y parameters are in Real _ j Imaginary format.

Examples:
Here are some typical Y-parameters (which is converted from S-parameters):

The Y parameter matrix for F = 3000 is:

0.077 - j0.122 -0.078 + j0.123

-0.078 + j0.123 0.078 - j0.121

This matrix meets items 1 and 2 but not 3 and 4, because abs(Real.Y[1,2]) >
Real.Y[1,1] or abs(Real.Y[2,1]) > Real.Y[1,1], so these S parameters are non physical.

 Touchstone Format
These files contain small-signal S-parameters described by frequency-dependent linear
network parameters for 1- to 10-port components. The 2-port component files can also
contain frequency-dependent noise parameters. This data file format is also known as
Touchstone format.

 Overview

Touchstone files are ASCII text files in which frequency dependent data appears line by
line, one line per data point, in increasing order of frequency. Each frequency line consists
of a frequency value and one or more pairs of values for the magnitude and phase of each
S-parameter at that frequency. Values are separated by one or more spaces, tabs or
commands. Comments are preceded by an exclamation mark (!). Comments can appear
on separate lines, or after the data on any line or lines. Extra spaces are ignored.

 Filename Recommendations

1-port: filename.s1p, 2-port: filename.s2p, ... i.e. n-port: filename.snp

 Basic File Format

The file format consists of:

Comments
Option Line
S-Parameter Data Lines
Noise Data Lines

 Comments

Comments can be placed anywhere in the file by preceding a comment with the
exclamation mark !. A comment can be the only entry on a line or can follow the data.

 The Option Line

The option line specifies the format of the data in the file. The line looks like: # GHZ S MA
R 50

<FREQ_UNITS> <TYPE> <FORMAT> <Rn>

= Option line delimiter

file:/pages/createpage.action?spaceKey=sv201103&title=RF+Dataset+NPort&linkCreation=true&fromPageId=117477202
file:/pages/createpage.action?spaceKey=sv201103&title=RF+Dataset+NPort&linkCreation=true&fromPageId=117477202
file:/pages/createpage.action?spaceKey=sv201103&title=RF+Dataset+NPort&linkCreation=true&fromPageId=117477202
file:/pages/createpage.action?spaceKey=sv201103&title=RF+Dataset+NPort&linkCreation=true&fromPageId=117477202
file:/pages/createpage.action?spaceKey=sv201103&title=RF+Dataset+NPort&linkCreation=true&fromPageId=117477202
file:/pages/createpage.action?spaceKey=sv201103&title=RF+Dataset+NPort&linkCreation=true&fromPageId=117477202

SystemVue - Users Guide

206

<FREQ_UNITS> = Units of the frequency data. Options are GHz, MHz, KHz, or Hz.

<TYPE> = Type of file data. Options are: S, Y or Z for S1P components, S, Y, Z, G, or H for S2P

components, S for 3 or more ports

<FORMAT> = S-parameter format. Options are: DB for dB-angle, MA for magnitude angle, RI for real-

imaginary

<Rn> = Reference resistance in ohms, where n is a positive number. This is the impedance the S-

parameters were normalized to.

In summary:
For .s1p files:

[HZ / KHZ / MHZ / GHZ] [S / Y / Z] [MA / DB / RI] [Rn]

For .s2p files:

[HZ / KHZ / MHZ / GHZ] [S / Y / Z / G / H] [MA / DB / RI] [Rn]

For .snp (n >= 3) files:

[HZ / KHZ / MHZ / GHZ] [S] [MA / DB / RI] [Rn]

where square brackets [...] indicate optional information; .../.../.../ indicates that you
select one of the choices; and, n is replaced by a positive number.

 S-Parameter Data

Frequency data lines contain the data of interest. A special format is used for 2-port data
files where all of the network parameter data for a single frequency is listed on one line.
The order of the network parameters is:

S11, S21, S12, S22

For 3-port or higher data files, the network parameters appear in the file in a matrix form,
each row starting on a separate line. A maximum of four network parameters (with 2 real
numbers for each) appear on any line. The remaining network parameters are continued
on as many additional lines as are needed.

The following sections describe the data-line format for single and multi-port components.

 S-Parameter Data Line Format

The frequency line data will have one of the following formats:

Magnitude Angle

<FREQ> |S11| <S11 |S21| <S21 |S12| <S12 |S22| <S22

Real Imaginary

<FREQ> Re{S11} Im{S11} Re{S21} Im{S21} Re{S12} Im{S12} Re{S22} Im{S22}

dB Angle

<FREQ> 20log10|S11| <S11 20log10|S21| <S21 20log10|S12| <x12 20log10|S22| <S22

Note: For each s1p and s2p file format, the data must be on one line.

 3-port Data Magnitude Angle Example

<FREQ> |S11| <S11 |S12| <S12 |S13| <S13

 |S21| <S21 |S22| <S22 |S23| <S23

 |S31| <S31 |S32| <S32 |S33| <S33

 4-port Data Magnitude Angle Example

<FREQ> |S11| <S11 |S12| <S12 |S13| <S13 |S14| <S14

 |S21| <S21 |S22| <S22 |S23| <S23 |S24| <S24

 |S31| <S31 |S32| <S32 |S33| <S33 |S34| <S34

 |S41| <S41 |S42| <S42 |S43| <S43 |S44| <S44

 Noise Parameters

Noise parameters can be included in Touchstone files. Noise data follows the S-parameter
data. It has the following format:

<FREQ> <NF min dB> <|Gamma opt|> <Ang(Gamma opt)> <Rn>

where

<FREQ> = Frequency of the noise data In units specified in the options line
<NF min dB> = Minimum noise figure in dB

<|Gamma opt|> = Magnitude of the source reflection coefficient at the minimum noise

figure
<Ang(Gamma opt)> = Phase angle in degrees of the source reflection coefficient at the

minimum noise figure

<Rn> = Effective noise resistance normalized to the system impedance defined in the
option line. It defines the rate at which the noise figure increases as the reflection
coefficient is moved away from the optimum values. In other words, how tightly spaced
the noise circles are.

Note: The frequencies for noise and S parameters need not match. The only requirement is that the
lowest noise-parameter frequency be less than or equal to the highest S-parameter frequency.

 Noise Data Example

This is an example of a data file with noise data:

! NEC710

GHZ S MA R 50

2 .95 -26 3.57 157 .04 76 .66 -14

22 .60 -144 1.30 40 .14 40 .56 -85

! NOISE PARAMETERS

4 .7 .64 69 .38

18 2.7 .46 -33 .40

 S-Parameter 5 to 99 Port File Formats

These file formats appear in a matrix form similar to the 3 and 4 port files, except that
only four S-parameters (with 2 real numbers for each) can appear on a given line.
Therefore, the remaining S-parameters in that row of the S-matrix continue on the next
line of the file.

Each row of the S-matrix must begin on a new line of the file. The first line of the first row
of the S-matrix begins with the frequency value.

 S-Parameter 10-Port File Example (at One Frequency)

<FREQ_UNITS> <TYPE> <FORMAT> <Rn>

<FREQ> magS11 angS11 magS12 angS12 magS13 angS13 magS14 angS14 ! 1st row

magS15 angS15 magS16 angS16 magS17 angS17 magS18 angS18

magS19 angS19 magS1,10 angS1,10

SystemVue - Users Guide

207

magS21 angS21 magS22 angS22 magS23 angS23 magS24 angS24 ! 2nd row

magS25 angS25 magS26 angS26 magS27 angS27 magS28 angS28

magS29 angS29 magS2,10 angS2,10

magS31 angS31 magS32 angS32 magS33 angS33 magS34 angS34 ! 3rd row

magS35 angS35 magS36 angS36 magS37 angS37 magS38 angS38

magS39 angS39 magS3,10 angS3,10

magS41 angS41 magS42 angS42 magS43 angS43 magS44 angS44 ! 4th row

magS45 angS45 magS46 angS46 magS47 angS47 magS48 angS48

magS49 angS49 magS4,10 angS4,10

magS51 angS51 magS52 angS52 magS53 angS53 magS54 angS54 ! 5th row

magS55 angS55 magS56 angS56 magS57 angS57 magS58 angS58

magS59 angS59 magS5,10 angS5,10

magS61 angS61 magS62 angS62 magS63 angS63 magS64 angS64 ! 6th row

magS65 angS65 magS66 angS66 magS67 angS67 magS68 angS68

magS69 angS69 magS6,10 angS6,10

magS71 angS71 magS72 angS72 magS73 angS73 magS74 angS74 ! 7th row

magS75 angS75 magS76 angS76 magS77 angS77 magS78 angS78

magS79 angS79 magS7,10 angS7,10

magS81 angS81 magS82 angS82 magS83 angS83 magS84 angS84 ! 8th row

magS85 angS85 magS86 angS86 magS87 angS87 magS88 angS88

magS89 angS89 magS8,10 angS8,10

magS91 angS91 magS92 angS92 magS93 angS93 magS94 angS94 ! 9th row

magS95 angS95 magS96 angS96 magS97 angS97 magS98 angS98

magS99 angS99 magS9,10 angS9,10

magS10,1 angS10,1 magS10,2 angS10,2 magS10,3 angS10,3 magS10,4 angS10,4 ! 10th row

magS10,5 angS10,5 magS10,6 angS10,6 magS10,7 angS10,7 magS10,8 angS10,8

magS10,9 angS10,9 magS10,10 angS10,10

 Linear 1-Port (.s1p) File Example

GHZ S RI R 50.0

 1.00000000 0.9488 -0.2017

 1.50000000 0.9077 -0.3125

 2.00000000 0.8539 -0.4165

 2.50000000 0.7884 -0.5120

 3.00000000 0.7124 -0.5978

 3.50000000 0.6321 -0.6546

 4.00000000 0.5479 -0.7013

 4.50000000 0.4701 -0.7380

 5.00000000 0.3904 -0.7663

 5.50000000 0.3302 -0.7778

 6.00000000 0.2702 -0.7848

 6.50000000 0.2041 -0.7890

 7.00000000 0.1389 -0.7878

 7.50000000 0.0894 -0.7849

 8.00000000 0.0408 -0.7789

 8.50000000 0.0134 -0.7649

 9.50000000 0.0654 -0.7471

 9.00000000 0.1094 -0.7319

 10.0000000 0.1518 -0.7140

 Linear 2-Port (.s2p) File Example

GHZ S RI R 50.0

1.0000 0.3926 -0.1211 -0.0003 -0.0021 -0.0003 -0.0021 0.3926 -0.1211

2.0000 0.3517 -0.3054 -0.0096 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

10.000 0.3419 0.3336 -0.0134 0.0379 -0.0134 0.0379 0.3419 0.3336

! Noise parameters

 1.0000 2.0000 -0.1211 -0.0003 .4

 2.0000 2.5000 -0.3054 -0.0096 .45

 3.0000 3.0000 -0.6916 -0.6933 .5

 4.0000 3.5000 -0.3756 0.4617 .55

 5.0000 4.0000 0.3880 0.6848 .6

 6.0000 4.5000 0.0343 0.0383 .65

 7.0000 5.0000 0.6916 0.6933 .7

 8.0000 5.5000 0.5659 0.1000 .75

 9.0000 6.0000 0.4145 0.0307 .8

10.0000 6.5000 0.3336 0.0134 .85

 Linear 3-Port (.s3p) File Example

GHZ S MA R 50.0

! POWER DIVIDER, 3-PORT

5.00000 0.24254 136.711 0.68599 -43.3139 0.68599 -43.3139 ! Frequency Line 1

 0.68599 -43.3139 0.08081 66.1846 0.28009 -59.1165

 0.68599 -43.3139 0.28009 -59.1165 0.08081 66.1846

6.00000 0.20347 127.652 0.69232 -52.3816 0.69232 -52.3816 ! Frequency Line 2

 0.69232 -52.3816 0.05057 52.0604 0.22159 -65.1817

 0.69232 -52.3816 0.22159 -65.1817 0.05057 52.0604

7.00000 0.15848 118.436 0.69817 -61.6117 0.69817 -61.6117 ! Frequency Line 3

 0.69817 -61.6117 0.02804 38.6500 0.16581 -71.2358

 0.69817 -61.6117 0.16581 -71.2358 0.02804 38.6500

 Linear 4-Port (.s4p) File Example

GHZ S MA R 50

5.00000 0.60262 161.240 0.40611 -42.2029 0.42918 -66.5876 0.53640 -79.3473 ! Frequency Line

1

 0.40611 -42.2029 0.60262 161.240 0.53640 -79.3473 0.42918 -66.5876

 0.42918 -66.5876 0.53640 -79.3473 0.60262 161.240 0.40611 -42.2029

 0.53640 -79.3473 0.42918 -66.5876 0.40611 -42.2029 0.60262 161.240

6.00000 0.57701 150.379 0.40942 -44.3428 0.41011 -81.2449 0.57554 -95.7731 ! Frequency Line

2

 0.40942 -44.3428 0.57701 150.379 0.57554 -95.7731 0.41011 -81.2449

 0.41011 -81.2449 0.57554 -95.7731 0.57701 150.379 0.40942 -44.3428

 0.57554 -95.7731 0.41011 -81.2449 0.40942 -44.3428 0.57701 150.379

7.00000 0.50641 136.693 0.45378 -46.4151 0.37845 -99.0918 0.62802 -114.196 ! Frequency Line

3

 0.45378 -46.4151 0.50641 136.693 0.62802 -114.196 0.37845 -99.0918

 0.37845 -99.0918 0.62802 -114.196 0.50641 136.693 0.45378 -46.4151

 0.62802 -114.196 0.37845 -99.0918 0.45378 -46.4151 0.50641 136.693

See also 1-Port (rfdesign), 2-Port (rfdesign), 3-Port (rfdesign), 4-Port (rfdesign), and n-
Port (rfdesign) S-parameter models

SystemVue - Users Guide

208

 Sweeps
Sweeps are used to create analysis results that are functions of a parameter tuned at
several values. A sweep is an evaluation object that controls a specific analysis. It also
contains a single tuned parameter that is swept across a range of values specified by the
user.

Once a parameter is made tunable (part parameter 'Tune' checkbox has been checked or
a question mark '?' has been placed in front of the equation value) it can be selected in
the Parameter Sweep Properties dialog box. The user specifies hard Start and Stop
values as well as the number of swept points.

The number of swept points can be specified in 1 of 4 ways:

Linear: Number of Points
Log: Points / Decade
Linear: Step Size
List

Once the analysis has been selected and the swept parameter has been defined the
sweep will tune the parameter to the first point, run the analysis, and then save the data
in a sweep dataset. The swept parameter is tuned to the next value, the analysis is re-ran
and the new data will be appended to prior values. This process repeats until the last
swept point is reached.

Hint
Remember, an analysis and tuned variable must exist in the workspace before a sweep can be created.

Note
A sweep can control another sweep. Sweeps are also considered an analysis and will appear in the
Analysis to Sweep list.

Note
For additional information on sweeps in Spectrasys see Sweeps of a Path (sim).

 Contents
Getting Started with Parameter Sweeps (users)
Parameter Sweep Properties (users)
Understanding Swept Data (users)

 Parameter Sweep Properties

Name Description

Sweep Name Name of Sweep Evaluation

Analysis to Sweep Analysis used for the parameter sweep. The selected analysis will be recalculated
for each different value of the swept parameter.

Parameter to Sweep Parameter that gets changed to create the sweep. All parameters defined as
tunable are available to be swept.

Output Dataset Dataset file in which the data is saved. If not specified, the dataset name will be
the name of the analysis with "_Data" appended.

Description Description of the evaluation being run. For documentation purposes only, not
otherwise used by SystemVue.

Calculate Now Run the evaluation. Always runs the analysis, regardless of whether or not any
changes were made.

Propagate All Variables
When Sweeping

User created variables in the source dataset will be swept and aggregated into
the sweep dataset.

Show Long Parameter
Name

Display the full parameter name (with path) in case you have multiple
parameters with the same short name (such as C1.C).

Factory Defaults Reset all values to their default

Parameter Range Start. The lower bound (minimum frequency) of the sweep.

Stop The upper bound (maximum frequency) of the sweep.

Unit of Measure Unit of measure used for the evaluation

Type of Sweep Linear: Number of Points. Number of points in entire sweep.

Log: Points/Decade Number of points in each decade of the sweep.

Linear: Step Size (MHz) Allows specification of start and stop frequencies, and space between points.

List of Frequencies (MHz) Allows the explicit specification of analysis frequencies. These points are entered
into the List of Frequencies box separated by spaces.

SystemVue - Users Guide

209

 Understanding Swept Data
The following figure shows the dataset for a modified version of the Getting Started with
Parameters Sweeps (users) example. This example was modified to reduce the number of
linear simulation points from 101 to 6 so the results could be seen in a single figure.

In summary, there is a linear simulation of simple LC low pass filter over 6 frequency
points (0, 30, 60, 90, 120, and 150 MHz). A sweep has been created that tunes the filter
inductor parameter L across 6 values (100, 120, 140, 160, 180, and 200 nH).

Column Name Description

Index Row number in the table.

F (MHz) First independent variable of swept data. In this example, this is the frequency range of the
linear analysis. It is repeated for each tuned value of the swept parameter.

L1_L_Swp_F
(nH)

Second independent variable of swept data. In this example, this is the tuned value of the
inductor parameter L at each frequency point of the linear analysis.

|S21| (dB) Dependent variable for each tuned parameter value (inductor) at each frequency.

Note
The independent variables (in this example F and L1_L_Swp_F) are also stored in the dataset.

Hint
For additional information on indexing into sweeps see Using Math Language (users).

 Getting Started with Parameter Sweeps

 To add a Parameter Sweep Evaluation:

Create a design (users) with a schematic.1.
Define your tunable parameters.2.

Click the New Item button () on the Workspace Tree toolbar and choose "Add3.
Sweep" from the Evaluation menu.
Define the Parameter Sweep Properties (users) and click OK. The analysis runs and4.
creates a data set.

For advanced applications, you can nest Parameter sweeps, creating 4-D, 5-D, or higher
data. This data can then be viewed on a table.

 Performing a Parameter Sweep

A parameter sweep gives you a set of responses for a set of parameter values. You can
perform a parameter sweep on any tuned variable.

To create a parameter sweep:

Click the New Item button () on the Workspace Tree toolbar and select Add1.
Sweep from the Evaluations menu.
You will see the sweep properties box, which will be similar to this:2.

By default the sweep settings will be the same as the last time you created a sweep.3.
The default parameter to sweep is just the first in the list. Here the parameter is in
the Designs folder, in the design named Design1, in the part named C1, as
parameter C.
In the list are all tuned parameters (or equation variables). Use the settings shown
above, then click Calculate Now to calculate the sweep.
Note that a Sweep1_Data dataset is built.4.
Double-click the S21 graph and change the "Default Dataset or Equations" to5.
Sweep1_Data - so you plot S21 for the swept data. Turn off symbols by clicking the
Symbols button (the last button on the Graph toolbar). You get a range of traces that
looks like this:

SystemVue - Users Guide

210

Here the mouse is hovering over a dot on the dark green trace and the popup
identifies the trace and value.
To look at the range at 200 pF enter the following formula into the graph line
Enter S[C1_C_Swp_F@200,2,1]. Note that the swept C value is in the Sweep1_Data6.
set and named C1_C_Swp_F (C1.C swept on F).
The graph now is:7.

SystemVue - Users Guide

211

 Tables
Tables provide text-based tabular output instead of graphical output. There is only one
type of table in SystemVue. You can place any measurement in a table. Change the
properties of a table using the Table Properties window.

 Use Ctrl_MouseWheel to zoom in and out on tables.

Any type of alpha-numeric data (such as S-parameters) may be displayed in a table:

 Contents
Creating Tables (users)
Table Toolbar (users)

 Creating Tables
The easiest way to create a new graph is using the Instagraph Feature (users).
The easiest way to add an arbitrary measurement to an existing table is via the
Graph Properties (users).
Tables can also be created manually:

Click the New Item button () on the Workspace Tree toolbar and select Add1.
Table.
Enter the measurements you want to display in the Table Properties dialog..2.

Click OK.3.
(note that the Independent Variable for PPORT2 in the Snap dataset was set to the
same as PPORT[2] to remove a second Freq column)

The Label entry determines the column labels.

If the data is complex it will often display as dB or magnitude by default. To see the full
complex data select a format from the Complex Format column.

If you want to print a table, copy it to a notes object by using the Copy To Notes right-
click menu entry. This copies the headings and data into an HTML table which you can
then copy to Word or other HTML editor or you can just print the Notes. Modify the Notes
manually to change fonts or formatting.

 New Right-click in the table header to get a popout menu that lets you turn off
columns.

SystemVue - Users Guide

212

 Templates
Templates are a very convenient way to get started quickly with a new design. They give
you a complete circuit as your starting point. You can also modify templates for your
specific program. Many templates are included with SystemVue, and you can easily add
your own.

Selecting a SystemVue Template (users)
Reviewing the SystemVue Templates (users)

 Selecting a SystemVue Template
The Default.wsx template is automatically loaded whenever a new workspace is created.
You can use it or select a different SystemVue template.

To select a template to always start with:

Click Tools on the SystemVue menu and select Options.1.
Click the Startup tab.2.

Click the Start With This Template button.3.
Click the folder button and select a template.4.
Click Open, and then click OK.5.

To select a template once:

Click the Start Page button () on the SystemVue toolbar.1.

In the templates area double-click a template name, such as "Data Flow Template".2.

 Reviewing the SystemVue Templates
The table below lists all of the workspace templates included in SystemVue.

File Name Description

Blank.wsv A blank schematic.

Data Flow Template.wsv A data flow template.

RF Architecture Template.wsv A template for working with RF
architecture.

SystemVue - Users Guide

213

 Tuning Variables
One of the most powerful features of SystemVue is real-time tuning of values in variables.
You can use tuned variables almost anywhere in SystemVue, including part parameters.
See almost any of our examples for tuned variables. Tuned variables are listed in the Tune
Window as shown:

Any numeric parameter in a part can be made tunable. You can tune the value of a
variable or use Gang Tuning (users) to adjust a value which is used in more than one
place. SystemVue lets you dynamically tune variables to determine whether your design
meets its requirements. You can do this by entering different values for a specific variable
and simultaneously viewing the response in a graph. Continue adjusting values and
viewing the graph until you get the desired response.

 Contents
Making Part Parameter Tunable (users)
Tuning Options (users)
Reverting Tuned Values (users)
Checkpoints (users)
Gang Tuning (users)

 Checkpoints
A checkpoint is a saved intermediate point. In a graph, it is usually a dashed trace
showing potentially good values.

Click the Select Graphs dropdown button and select (check) only the graphs
you want checkpointed while tuning, as shown below

Or, check Use All Visible to use all visible graphs. The graph list dynamically
changes as you open and close graphs.

 To establish checkpoints in a graphed analyses:

If the Saved Tune States panel is not currently visible, click its "unfold" button on1.
the right.
Type a name into the Named Setting entry field (such as Better).2.

Click the Checkpoint button.3.

As you tune you will see an echo left behind of the original settings, this is the checkpoint.
You can add as many checkpoints as you like. Each new checkpoint will have a dashed
trace and be in a darker color.

 To remove all checkpoint traces from all graphs:

Click the Remove Checkpoint button in the tune window. This will remove1.
checkpoints from the graphs listed in your graph checkpoint list. As you then tune a
checkpoint will not be created.

 Gang Tuning
Another common task in tuning is to adjust more than one parameter at the same time.
This is called Gang Tuning and the easiest way to do it is with an equation variable.

Start with an example: Signal Processing / CrossCorr. In the following figure, an equation
variable has been setup for the "B2" BitFormatter. A new variable named sampbits has
been entered, so that the both BitFormatters can share the same value for the
SamplesPerBit parameter.

SystemVue - Users Guide

214

Then add an Equation to the workspace and then define the variable (and any others with
might depend on it).

The variable sampbits is defined with a ?1. The 1 is the starting value and the ? syntax
makes the variable tuneable. Other variables, such as packetsampbits can also be defined
based on it (and other variables), for use elsewhere in the workspace.

For more information about Equations and setting variables tunable from Equations,
please refer to the Using Equations (users) section.

 Making a Part Parameter Tunable
Double-click a part on any schematic; this will bring up the Part Properties dialog.1.
Click the Tune check box next to any parameter you wish to be tunable.2.
Click OK3.

Notice that the variable(s) to be tuned have now changed color on the schematic and4.
appear in the Tune window. To tune this parameter, use any of the methods
discussed in Setting Tuned Values (users).

 Note that part parameters can actually be selected for tuning in a number of
ways:

Double-click the part and check the Tune box next to a parameter value (as
described above).
Click the part to select it, then select Make Components Tunable from the
Schematic menu. This sets the first parameter of the part to be tunable.
Click the part to select it, then click the Make Tunable schematic toolbar button,
which toggles the tunable setting of the first parameter.
Parameters can be marked for tuning via on-screen editing: click a part parameter,
unfold the parameters window (if necessary, use the "unfold" button), and click in
the first cell column. A 'T' indicates that a parameter is tunable.
To mark many items tunable at once, try this approach:

In the Tune Window, click the Variable Options button1.
Select Select Variables from the drop down menu, which will show a2.
comprehensive list of everything which can be tuned.
Check the items you wish to tune.3.
Click OK.4.

 An example: Making D2.N tunable

First, load the Model Building / CIC Filter example and rearrange your screen so1.
that it looks like the screenshot below.
Double-click part D2 and check the Tune box next to a parameter value.2.
Once D2 is tunable, the N=8 line should turn teal-colored and the Tune Window3.
should now have a D2.N entry. All of the analyses will turn red because the
schematic has changed.

 Actually changing a value

Tune the D2.N value by selecting it; click in the grid box where it says 8. Then, do any of
the following:

Roll the mouse-wheel to tune up or down
Press the PgUp or PgDown key to tune up or down
Click the up/down arrows in the grid box to move up or down

SystemVue - Users Guide

215

Or type a new value and press enter

After typing a new value N and of 9 pressing enter, we see the following display:

The dashed, dark blue trace is the original simulation result Spectrum. It is dashed
because it is a "checkpointed" trace.
The bright blue is the new, tuned simulation result.

 Save often

This is always a good idea. Saved workspaces remember all the tune settings, including
what you were tuning, what runs when tuned, and which graphs to update. Click the save
button (the diskette icon in the main toolbar) to save.

 Reverting Tuned Values
SystemVue lets you revert to your original values if you do not want to keep the
newly tuned values.
Click the Use These Settings button and select a named set. The set named
Original is the original settings.

 Tuning Options
To assist with the tuning of all the various types of variables you may need to adjust,
there are a number of tuning options, which control how and what is tuned, when and
what is updated, etc.

 Specifying how values are tuned up/down

The tuning percentage controls the amount values are stepped when tuning. Whenever a
variable is tuned up or down, a tuning ratio is used to calculate the new value. You can
use the Tune window to adjust the Normal and Standard options by percentages. The Step
Size option uses decimal values for adjusting.

Click the first box in the Variable column in the Tune window.1.
Select an option from the list. There are three options which control tuned variables2.
values:

Normal – This option is steps the tuned value by the specified percentage, and
is unrestricted. For lumped parts, such as resistors and capacitors, values
between zero (0) and infinity are possible. You can use this option to determine
the theoretical optimum values. This typically increments the value by 5%.
Step Size – This option adds or subtracts the specified step-size to the
parameter. For example, if the step-size value equals 0.5, then the allowable
parameter values are 0.5, 1.0, 1.5, and so on.
Standard – This option uses only standard values for lumped circuit elements,
such as 1.2, 3.3, 4.7, 5.6, and so on. The tuning percentage is shown in the first
box in the Value column. This controls the amount values are stepped when
tuning.

Tip: You can press F6 to decrease or F7 to increase the tuning percentage by a factor of 2.

 To checkpoint graphs, when you save a setting

Click the Graph checkpoint button in the Tune Window and check on/off the
graphs you want to checkpoint when you checkpoint a named setting. The menu
goes away when you click off the menu area.
Check Use All Visible to have the list be all visible graphs. The list dynamically
changes as you open and close graphs.

 Setting Tuned Values

You can set tuned values in a number of ways. Begin by selecting the value you want to
change (click in the grid box cell holding the value), then

 Click the scroll arrows:

Click the up arrow to increase the value, the down arrow to decrease the value.
The analyses you've selected will run will run automatically.

 Scroll the mouse wheel:

Roll the mouse wheel to scroll up and down to tune the value up and down.
The analyses you've selected will run will run automatically.

 Direct entry

Type a new value in the Value box for the variable.
When you press the enter key it will be entered and the analyses you've selected will
run.

When values have been set and you want to save a set under a new name just type the
name into the name entry field and click the save settings (diskette) icon. If you want to
save the current state of graphs, click the graph checkpoint button to create a named
checkpoint.

 Quicker Tuning: don't tune more than you need

In the Tune Window, only enable the Analyses that you want automatically
recalculated after you tune.
Check / uncheck analyses. When checked, they will automatically recalculate (so they
will run while tuning).

SystemVue - Users Guide

216

SystemVue - Users Guide

217

 UI Customizations
 Contents

Introduction (users)
Add Customized UI for Applications (users)
Add Customized UI for Models (users)

 Add Customized UI for Applications
 Steps to create a customized UI for part FFT_Cx in Algorithm Design library.

Create a .NET WPF User Control project1.

Add "Agilent.SystemVue.Extensibility" to the reference list2.

Add WPF Window(ApplicationUI.xaml) to Project SystemVueCustomUI3.
Add Code to the User Control4.

Use namespace Agilent.SystemVue.Extensibility;
Inherit interface IApplicationCustomUI

Define IModel instance to deal with data exchange with SystemVue

Implement OnConnection function

Add event handler to update the UI change to design/model

 Add Customized UI for Models
 Steps to create a customized UI for part FFT_Cx in Algorithm Design library.

Create a .NET WPF User Control project1.

Add "Agilent.SystemVue.Extensibility" to the reference list2.

SystemVue - Users Guide

218

Add User Control(FFTCX.xaml) to Project SystemVueCustomUI3.

Add Code to the User Control4.
Specify the ModelUI Property

Inherite Interface IModelCustomUI

Define the model instance, model is used to deal with the interaction of data

Implement OnConnection function, it will initialize model

Design Control Panel

If UI control's Name is the same as parameter's name, UI control will be initialized by
SystemVue

Add event handler to the control in order to set the parameter to the model

How does SystemVue find the customized UI for models?5.
SystemVue will search for the customized UI in folder "My
Documents\Agilent\SystemVue\CustomUIs".
SystemVue will search for the customized UI in customer model library folder.

 Introduction
Custom UI is a way to provide a control panel for SystemVue applications or SystemVue
models.
For example:

SystemVue - Users Guide

219

Please note that control panel only supports .NET WPF Page or UserControl as the base class

 Agilent.SystemVue.Extensibility

Assembly Agilent.SystemVue.Extensibility provides several application interfaces to
get/set parameter values for model and design.

Interface IModel1.
Methods:
Name Description Model/Application

void GetParameter(string name, out string value) Get parameter as a
string value

Model

void SetParameter(string name, string value) Set a string to
parameter

Model

void GetParameter(string name, out int value) Get parameter as a int
value

Model

void SetParameter(string name, int value) Set a int value to
parameter

Model

void GetParameter(string name, out bool value) Get parameter as a
boolean value

Model

void SetParameter(string name, bool value) Set a boolean value to
parameter

Model

void GetParameter(object rb) Get parameter as .NET
object

Model

void SetParameter(object rb) Set a .NET object to
parameter

Model

void GetParameter(string designName, string
modelName, string param, out string value)

Get a design/model's
parameter value

Application

void SetParameter(string designName, string
modelName, string param, string value)

Get a design/model's
parameter value

Application

void GetParameter(string designName, string
modelName, string param, out int value)

Get a design/model's
parameter value

Application

void SetParameter(string designName, string
modelName, string param, int value)

Get a design/model's
parameter value

Application

void SelectSchematicAndRun(string designName) Run the specified design Application

void SelectEquationAndCalculate(string equationName) Run the specified
equation

Application

Interface IApplicationCustomUI2.
Name Description

void OnConnection(IModel model); As a callback function to pass IModel to customized UI

Interface IModelCustomUI3.
Name Description

void OnConnection(IModel model); As a callback function to pass IModel to customized UI

SystemVue - Users Guide

220

 User Defined Models
 Contents

Catapult C Flow (users)
C Models (users)
Sub Network Models (users)
SystemVue 2007 APG DLL Import (users)

SystemVue - Users Guide

221

 Catapult C Flow
Catapult C Synthesis is an algorithmic synthesis tool by Mentor Graphics that synthesizes
C++ code into RTL (VHDL, Verilog, and SystemC). SystemVue provides a design flow that
can be integrated inside Catapult System Level Synthesis tool to automatically generate
SystemVue C++ model from user's C++ input to Catapult. The resulting SystemVue C++
model can be compiled using supported version of Visual Studio and then resulting dll can
be loaded inside SystemVue to use the model, please see Loading and Debugging a C++
Model Library (users).

 Configuring Catapult to Use SystemVue Flow
In order to use SystemVue flow inside Catapult, you need to add path to SystemVue flow
directory in Flow Search Path in Catapult. This can be done as follows.

Start Catapult System Level Synthesis Tool.1.
Click on Tools > Set Options... > Flows > Flow Search Path2.
Add <SystemVue Installation Directory>\ModelBuilder\Catapult to the Flow3.
Search Path, where <SystemVue Installation Directory> is the directory where you
have installed SystemVue.
Click Apply and Save to save this information in Catapult registry.4.
Either start a new project or restart Catapult to load SystemVue flow.5.

 Using SystemVue Flow
To use SystemVue flow, enable it in the Flow Manager window of Catapult. The
SystemVue flow is enabled for "extract" stage in Catapult. Once the flow is enabled and
design has entered "extract" stage, the SystemVue flow will generate a C++ SystemVue
model around the top-level function, which was synthesized inside Catapult. If supported
version of Visual Studio is installed, the flow will also create a Visual Studio project with
correct configuration and opens it automatically. By default, the generated files, and
Visual Studio project are stored in SystemVue sub-directory inside the solution directory,
to override this behavior specify a directory in SystemVue model directory option of
SystemVue flow. You can compile the Visual Studio project and then load the resulting dll
inside SystemVue to use the model.

 Understanding Generated SystemVue Model

The generated SystemVue model will have only Fixed Point (AgilentEESof::FixedPoint)
type ports with input/output port directions based on the synthesized port directions in
Catapult. The directions are inferred as follows

Catapult Direction SystemVue Direction

IN input

OUT output

INOUT 1 input and 1 output

For INOUT type port, 1 input and 1 output is generated in SytemVue model. The model
reads all the inputs in SystemVue and then call the top-level function to calculate the
outputs. The SystemVue flow currently supports following data types as top level function
parameter and return type, and then infer the SystemVue Fixed Point port precision as
shown in the following table

Supported Data Type / Class Fixed Point Port Precision

bool wl=1; iwl=1; sign=unsigned

char wl=8; iwl=8; sign=signed

unsigned char wl=8; iwl=8; sign=unsigned

short wl=16; iwl=16; sign=signed

unsigned short wl=16; iwl=16; sign=unsigned

int, long, signed wl=32; iwl=32; sign=signed

unsigned int, unsigned long,
unsigned

wl=32; iwl=32; sign=unsigned

long long wl=64; iwl=64; sign=signed

unsigned long long wl=64; iwl=64; sign=unsigned

double, float wl=32; iwl=16; sign=signed (modify the generated code if you need a
different precision)

ac_int wl=infer from ac_int, iwl=wl, sign=infer from ac_int

ac_fixed infer all precision options from ac_fixed

Only scalar, pointer and single dimension array version of above data-types are
supported. Multi-dimensional arrays, struct, and user defined classes are not supported in
SystemVue flow.

 Multirate Properties

The generated port corresponding to a return value, a scalar parameter, and a pointer
parameter to the top level function is always uni-rate. For example the top level function

void fir_filter (ac_int<8> *input, int gain, ac_int<8> *output);

will have 3 uni-rate ports.

The generated port corresponding to an array type parameter to the top level function is
always multi-rate with rate equals to the number of elements in the array. For example
the top level function

void fir_filter (ac_int<10> *input, ac_int<10> coeffs[8], ac_int<10> *output);

will have two uni-rate ports input, and output, and one multi-rate port coeffs with
rate=8.

 Header Files

You must include a header file in the Catapult project, which contains the top-level
function signature and all #define statements needed for this function declaration.

 Using Static Variables

If you use static variables inside a function/method, please make sure not to use
Multithreaded Simulation inside SystemVue. If you must use Multithreaded
Simulation then use of all static variables must be thread safe, either using lock(s) or
using any other method. Also, the values stored in static variables are kept in subsequent
simulation and are not cleared, if you want to clear these values then you must write the
code accordingly and must clear the values explicitly.

 Example of Generated SystemVue Model

If the top-level function declaration is

void fir_filter (ac_int<8> *input, ac_int<8> coeffs[NUM_TAPS], ac_int<8> *output);"

then following SystemVue model will be generated. Please note that port direction is
inferred based on the actual C++ source code (not shown) by Catapult and the same
information is used to infer SystemVue port direction as shown in the table above.

// ---

// file : SystemVueModel_fir_filter.h

// Class : SystemVueModel_fir_filter

// Autogenerated file from Catapult SystemVue flow 2011.03

// Date: 10/15/2010 Time: 16:46:49

// Copyright (c) 2000-2011, Agilent Technologies, Inc.

// ---

#pragma once

#include "ModelBuilder.h"

#include "DFFixedPointInterface.h"

SystemVue - Users Guide

222

class SystemVueModel_fir_filter :

public AgilentEEsof::DFModel, public AgilentEEsof::DFFixedPointInterface

{

public:

// IN port representing input

AgilentEEsof::FixedPointCircularBuffer m_SystemVue_input;

// IN port representing coeffs

AgilentEEsof::FixedPointCircularBuffer m_SystemVue_coeffs;

// OUT port representing output

AgilentEEsof::FixedPointCircularBuffer m_SystemVue_output;

// For Computation

bool Run();

// For multi-rate setup, FixMe: commented out untill implemented

bool Setup();

// It is a fixed point model, we need to propagate fixed point parameters

ERESULT SetOutputFixedPointParameters();

DECLARE_MODEL_INTERFACE(SystemVueModel_fir_filter);

};

// ---

// file : SystemVueModel_fir_filter.cpp

// Class : SystemVueModel_fir_filter

// Autogenerated file from Catapult SystemVue flow 2011.03

// Date: 10/15/2010 Time: 16:46:49

// Copyright (c) 2000-2011, Agilent Technologies, Inc.

// ---

// SystemVue model header file

#include "SystemVueModel_fir_filter.h"

// Header files from Catapult design

#include "fir_filter.h"

// Header to convert data to/from ac datatypes from/to AgilentEEsof::FixedPoint

#include "FixedPoint_AC.h"

// ---

// DEFINE_MODEL_INTERFACE : Defines I/O ineterface in SystemVue

// ---

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE (SystemVueModel_fir_filter)

{

SET_MODEL_NAME("fir_filter");

SET_MODEL_CATEGORY("Catapult");

// Add input representing input

AgilentEEsof::DFPort port_input = ADD_MODEL_INPUT(m_SystemVue_input);

port_input.SetName("input");

// Add input representing coeffs

AgilentEEsof::DFPort port_coeffs = ADD_MODEL_INPUT(m_SystemVue_coeffs);

port_coeffs.SetName("coeffs");

// output representing output

AgilentEEsof::DFPort port_output = ADD_MODEL_OUTPUT(m_SystemVue_output);

port_output.SetName("output");

return true;

}

#endif

// ---

// bool Setup() : Setup multi-rate properties

// ---

bool SystemVueModel_fir_filter::Setup ()

{

m_SystemVue_coeffs.SetRate(8);

return true;

}

// ---

// ERESULT SetOutputFixedPointParameters() : Set output ports fixed point precision

// ---

ERESULT SystemVueModel_fir_filter::SetOutputFixedPointParameters ()

{

// output representing output

ac_int<8, true > output;

m_SystemVue_output.SetParameters (AgilentEEsof::GetFixedPointParameters (output));

return NOERROR_;

}

// ---

// bool Run() : performs scientific calculation

// ---

bool SystemVueModel_fir_filter::Run ()

{

ac_int<8, true > input;

ac_int<8, true > coeffs[8];

ac_int<8, true > output;

// Transfer data from SystemVue inputs to function input

AgilentEEsof::FixedPoint_To_AC(m_SystemVue_input[0], input);

for(size_t i=0; i < 8; i++)

{

AgilentEEsof::FixedPoint_To_AC(m_SystemVue_coeffs[i], coeffs[i]);

}

// Call the C++ function

fir_filter(&input, coeffs, &output);

// Transfer data from function output to SystemVue output

AgilentEEsof::AC_To_FixedPoint(output, m_SystemVue_output[0]);

return true;

}

SystemVue - Users Guide

223

 Creating a Custom C++ Model Library
This section details the step by step procedure that you need to follow to create a custom
C++ Model libray. The C++ models are fullly configurable using C++ API presented in this
section. You could add custom inputs, outputs, bus inputs, bus outputs, and parameters to
customize your model.

 Contents
Requirements (users)
Quick Start (users)
Building your first Custom C++ Model Library (users)
Supported Data Types (users)
Writing Data Flow C++ Models (users)
Loading and Debugging a Data Flow C++ Model (users)
Troubleshooting (sim)
Advanced Topics (users)

SystemVue - Users Guide

224

 Advanced Topics
 Defining the Model Library Properties
To override the default properties of your C++ library, you need to define the bool
DefineLibraryProperties(AgilentEEsof::LibraryProperties* pLibraryProperties)

function in your library.

 Specifying the Library Name in SystemVue

By default, the Part, Model and Enumeration libraries names will be derived from your DLL
name. You can override this behavior, by calling the LibraryProperties::SetLibraryName
method.

 Removing the Model Library Path from Auto-generated Parts

By default, all Parts that are automatically created during the load of your library will
reference the Models using the full path to the model library. You can override this
behavior by using the LibraryProperties::SetExcludeLibrarySuffixFromPartModels
method.

For example, in Visual Studio solution in the Quick start (users) section, the AddCx part
specifies its associated model to be AddCx@Custom Models. If you call
LibraryProperties::SetExcludeLibrarySuffixFromPartModels method, the model will
simply be listed as AddCx.

To learn more about the library manager, refer to the Using the Library Manager (users)
documentation.

 Embedding your own XML Libraries into the DLL

You may create your own XML libraries using SystemVue that you can embed into the
DLL. These XML libraries can then be loaded into SystemVue at the same time the DLL is
loaded.

The XML file generated by SystemVue must be imported as a Resource into your Visual
Studio project. During the Resource Import process, you will be prompted to provide a
name for the Resource Type. You may provide any name you want, but we recommend
"XML". Your imported resource will receive a corresponding ID which must be used to
register the resource.

Register your XML resource by calling the LibraryProperties::AddLibrary method. The
syntax for the method is as follows:

AddLibrary(iResourceID, strResourceType, bMerge)

where iResourceID is the resource ID of the imported XML resource, strResourceType is
the name of the resource type that was given when the resource was imported, and
bMerge specifies whether or not the library should be merged with the auto-generated
library of the same type - explained in further detail below.

When a DLL is loaded, certain libraries are automatically generated. For example, a
Design library consisting of generated model templates for each model defined in the DLL
is produced. A Part library is generated as well, unless you provide your own and mark all
of the models as not needing an auto-generated part (done with the
DISABLE_PART_GENERATION() macro in your DEFINE_MODEL_INTERFACE function).

 Example

#include "Stdafx.h"

#include "LibraryProperties.h"

bool DefineLibraryProperties(AgilentEEsof::LibraryProperties* pLibraryProperties)

{

// Define the library name for the Part, Model and Enum libraries.

// By default, the DLL name is used.

pLibraryProperties->SetLibraryName("C++ Model Builder");

// Strip the @Library suffix in the model name for auto-generated parts.

// This allows you to use the Library Manager search path to easily override the model

// by changing the search path. By default, all generated parts

// will reference the models using the full path.

pLibraryProperties->SetExcludeLibrarySuffixFromPartModels();

// Declare that we have an embedded XML library that we added as a resource.

// The library can be of any object type but in this case we have a Part library and

// a Symbol (Design) library.

// We imported the XML libraries as resources of type "XML", and we would like

// the Parts in this library to be merged into the library of auto-generated parts

// that is created for this library.

// However, we want the symbol library to be imported as-is.

pLibraryProperties->AddLibrary(ID_XML_PARTS, "XML", true);

pLibraryProperties->AddLibrary(ID_XML_SYMBOLS, "XML", false);

// Return true to indicate success. If you return false, {PRODUCT-NAME}

// will report that it was unable to load the library.

return true;

}

 Supporting standalone use of DFModels
To enable use of you models in standalone programs (including those generated by
SystemVue), you should check the SV_CODE_GEN c preprocessor definition as shown below:

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(Adder)

{

ADD_MODEL_INPUT(In1);

ADD_MODEL_INPUT(In2);

ADD_MODEL_OUTPUT(Out);

ADD_MODEL_PARAM(Gain);

return true;

}

#endif

 Object Composition

At times, you may find it useful to develop a set of C++ classes to define a common set of
ports, parameters or algorithms for use by your custom {{DFModel}}s. In object oriented
design, this is called object composition or defining a has a relationship to another class.
To learn more about object composition, refer to the Wikipedia article .

If you use object composition to define ports or parameters, you should use the
DFPort::PrependCodeGenName(const char* pccCodeGenPath) and
DFParam::PrependCodeGenName(const char* pccCodeGenPath) methods to aid in code
generation. These methods prepend a data member name to the code generation name of
the port or parameter. A null pointer argument to these methods is ignored. The path
should include '.' or '->' to define the access to the data members.

Below is a example class - in the example below, we define a AddInterface method to
assist in object composition using this class.

class WriteData

{

public:

int Start; // Index to start writing data

int Stop; // Index to stop writing data

void AddInterface(AgilentEEsof::DFInterface& model, const char* pccCodeGenPath)

{

AgilentEEsof::DFParam start = ADD_MODEL_PARAM(Start);

start.SetDefaultValue("0");

start.PrependCodeGenName(pccCodeGenPath);

AgilentEEsof::DFParam stop = ADD_MODEL_PARAM(Stop);

stop.SetDefaultValue("100");

stop.PrependCodeGenName(pccCodeGenPath);

}

http://en.wikipedia.org/wiki/Object_composition
http://en.wikipedia.org/wiki/Object_composition

SystemVue - Users Guide

225

void Initialize()

{

m_iCount = 0;

}

bool WriteSample(double d)

{

if (m_iCount <= Stop)

{

// Write data d

m_iCount++;

return true;

}

else

{

return false;

}

}

private:

int m_iCount;

};

A DFModel could use this class by object composition.

// Code for header file

class CustomModel : public AgilentEEsof::DFModel

{

public:

DECLARE_MODEL_INTERFACE(CustomModel);

bool Initialize();

bool Run();

WriteData m_WriteData;

double Input;

};

// Code for source file

DEFINE_MODEL_INTERFACE(CustomModel)

{

// Notice the name to be prepended includes both the name of the data member

// and a '.'. Had this been a pointer to WriteData, the argument would

// have been "m_WriteData->".

m_WriteData.AddInterface(model, "m_WriteData.");

// Add a input port

ADD_MODEL_INPUT(Input);

return true;

}

bool CustomModel::Initialize()

{

m_WriteData.Initialize();

return true;

}

bool CustomModel::Run()

{

m_WriteData.WriteSample(Input);

return true;

}

 Writing C++ Models for Code Generation
In general, SystemVue C++ code generator (users) supports any C++ model that is
created and loaded based on Creating a Custom C++ Model Library (users). However, in
order to successfully compile generated code, additional information needs to be provided
in DEFINE_MODEL_INTERFACE (users) of C++ models that are going to be used in code
generation. For more detail, please refer to Writing C++ Models for Code Generation
(users).

 Using Third Party Library in C++ Models
This section provides a general guideline to use third party library content in custom C++
models.

Follow the steps in Writing C++ Models (users) and Building C++ Model Library1.
(users). Include the third party header files in the custom .h and .cpp files.
In the project property page (in Solution Explorer, right click the project, then choose2.
Properties), set the third party include directories in Configuration Properties >
C/C++ > General > Additional Include Directories.
In the project property page, set the third party library directories in Configuration3.
Properties > Linker > General > Additional Library Directories.
In the project property page, set the third party .lib files in Configuration Properties4.
> Linker > Input > Additional Dependencies.
If the third party library is built as dynamic link library (DLL), you must set windows5.
PATH environment variable to point to the directory where third party DLL is located
before starting SystemVue or any executable using C++ Model.

Windows search for PATH environment variable when loading a DLL, not specifying the directory
containing the DLL in PATH may result in un-predictable behavior including crash.

 Example – Using Matlab Compiled Libraries in C++ Models

This example introduces how to compile a Matlab function into dynamic link library and
use it in SystemVue C++ Model.

This Matlab code implements a feed-forward equalizer (FFE) function. Suppose it is written
in a file called "MyFFE.m".

% MyFFE.m

function [out] = MyFFE(Coefficients, SamplesPerBit, Reset, in)

% Declare persistent in order to preserve internal state

persistent dSamples;

persistent numSamples;

persistent taps;

if (isempty(dSamples) || Reset)

numSamples = length(Coefficients) * SamplesPerBit;

dSamples = zeros(1, numSamples);

taps = Coefficients';

out = 0.0;

end

if (~Reset)

dSamples = [in,dSamples(1:numSamples-1)];

out = dSamples(1:SamplesPerBit:numSamples) * taps;

end

end

Users can declare persistent variables in Matlab function to preserve internal state.

By using the following Matlab command, Matlab compiler compiles "MyFFE.m" into
"libmyffe.h", "libmyffe.lib", "libmyffe.dll", as well as other relevant files. Please refer to
Matlab document for more details.

mcc -W cpplib:libmyffe -T link:lib MyFFE.m

The following code segment is generated by Matlab compiler as part of "libmyffe.h", which
declares MyFFE function in C++. MyFFE function is the entry point that performs compiled
FFE operation in the library ("libmyffe.dll").

extern LIB_libmyffe_CPP_API void MW_CALL_CONV MyFFE(int nargout, mwArray& out, const mwArray& Coeff

icients, const mwArray& SamplesPerBit, const mwArray& in);

The following code segment is also generated by Matlab compiler as part of "libmyffe.h",
which initializes and terminates the library respectively.

extern LIB_libmyffe_C_API

bool MW_CALL_CONV libmyffeInitialize(void);

extern LIB_libmyffe_C_API

void MW_CALL_CONV libmyffeTerminate(void);

The following code shows how to write a SystemVue C++ model,

SystemVue - Users Guide

226

Compiled_M_Code_FFE, that uses Matlab-generated MyFFE function to perform FFE
operation.

//Compiled_M_Code_FFE.h

#pragma once

#include "ModelBuilder.h"

class mwArray;

class Compiled_M_Code_FFE : public AgilentEEsof::DFModel

{

public:

Compiled_M_Code_FFE();

~Compiled_M_Code_FFE();

bool Initialize();

bool Run();

bool Finalize();

// parameters

double *m_dCoefs;

int m_iCoefsSize;

int m_iSamplesPerBit;

// i/o

double m_dInput, m_dOutput;

DECLARE_MODEL_INTERFACE(Compiled_M_Code_FFE);

private:

mwArray *m_pMatlabInput, *m_pMatlabOutput;

mwArray *m_pMatlabCoefs, *m_pMatlabSamplesPerBit, *m_pMatlabReset;

bool m_bReset;

};

//Compiled_M_Code_FFE.cpp

#include "Compiled_M_Code_FFE.h"

#include "../libmyffe.h"

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(Compiled_M_Code_FFE)

{

SET_MODEL_DESCRIPTION("Feed-Forward Equalizer");

ADD_MODEL_HEADER_FILE("Compiled_M_Code_FFE.h");

SET_MODEL_CATEGORY("IBIS-AMI Transceivers");

AgilentEEsof::DFPort port = ADD_MODEL_INPUT(m_dInput);

port.SetName("input");

port = ADD_MODEL_OUTPUT(m_dOutput);

port.SetName("output");

AgilentEEsof::DFParam param = ADD_MODEL_ARRAY_PARAM(m_dCoefs,m_iCoefsSize);

param.SetName("Coefficients");

param.SetDefaultValue("[1 0.1 0.2]");

param.SetDescription("Bit level FFE taps");

param = ADD_MODEL_PARAM(m_iSamplesPerBit);

param.SetName("SamplesPerBit");

return true;

}

#endif

Compiled_M_Code_FFE::Compiled_M_Code_FFE() : m_pMatlabInput(0), m_pMatlabOutput(0), m_pMatlabCoefs(0

), m_pMatlabSamplesPerBit(0), m_pMatlabReset(0)

{

m_iSamplesPerBit = 16; // default value

}

Compiled_M_Code_FFE::~Compiled_M_Code_FFE()

{

}

bool Compiled_M_Code_FFE::Initialize()

{

bool bStatus = true;

libmyffeInitialize(); // Initialize library

m_pMatlabInput = new mwArray(1,1,mxDOUBLE_CLASS);

m_pMatlabOutput = new mwArray(1,1,mxDOUBLE_CLASS);

m_pMatlabCoefs = new mwArray(1,m_iCoefsSize,mxDOUBLE_CLASS);

m_pMatlabCoefs->SetData(m_dCoefs,m_iCoefsSize);

m_pMatlabSamplesPerBit = new mwArray(m_iSamplesPerBit);

// Reset coeffs, samples per bit, and internal buffer holding input signal values

m_bReset = true;

m_pMatlabReset = new mwArray(m_bReset);

MyFFE(1,*m_pMatlabOutput,*m_pMatlabCoefs,*m_pMatlabSamplesPerBit,*m_pMatlabReset,*m_pMatlabInput

);

delete m_pMatlabReset;

m_bReset = false;

m_pMatlabReset = new mwArray(m_bReset);

return bStatus;

}

bool Compiled_M_Code_FFE::Run()

{

bool bStatus = true;

m_pMatlabInput->SetData(&m_dInput,1);

MyFFE(1,*m_pMatlabOutput,*m_pMatlabCoefs,*m_pMatlabSamplesPerBit,*m_pMatlabReset,*m_pMatlabInput

); // Call MyFFE

m_pMatlabOutput->GetData(&m_dOutput,1);

return bStatus;

}

bool Compiled_M_Code_FFE::Finalize()

{

bool bStatus = true;

libmyffeTerminate(); // Terminate library

delete m_pMatlabInput;

delete m_pMatlabOutput;

delete m_pMatlabCoefs;

delete m_pMatlabSamplesPerBit;

delete m_pMatlabReset;

m_pMatlabSamplesPerBit = 0;

m_pMatlabCoefs = 0;

m_pMatlabInput = 0;

m_pMatlabOutput = 0;

m_pMatlabReset = 0;

return bStatus;

}

Call Matlab-generated initialize function, e.g., libmyffeInitialize(), in the Initialize() method of the
SystemVue model to properly initialize the library. Also call Matlab-generated terminate function, e.g.,
libmyffeTerminate(), in the Finalize() method of the SystemVue Model to properly close the library.

The following steps guide users to setup a Visual Studio project to build
Compiled_M_Code_FFE into SystemVue model library.

Follow these steps to setup a Visual Studio project (users). Suppose the project1.
name is "SystemVue Compiled M Code Models".
Copy "libmyffe.h" and "libmyffe.lib" to the project directory.2.
Add "libmyffe.h" into the project Header Files.3.
Create "Compiled_M_Code_FFE.h" and "Compiled_M_Code_FFE.cpp" as shown above4.
into the project.
Suppose the Matlab installation directory is "C:\Program Files\MATLAB\R2010a". Add5.
"C:\Program Files\MATLAB\R2010a\extern\include" in Configuration Properties >
C/C++ > General > Additional Include Directories.
Add "..";"C:\Program Files\MATLAB\R2010a\extern\lib\win32\microsoft" in6.
Configuration Properties > Linker > Input > Additional Dependencies. The path ".."
refers to the location containing "libmyffe.lib".
Add "libmyffe.lib" and "mclmcrrt.lib" in Configuration Properties > Linker > Input >7.
Additional Dependencies.
Build the solution. The resulting "SystemVue Compiled M Code Models.dll" is a8.
custom SystemVue library that contains Compiled_M_Code_FFE model.
Set windows PATH environment variable to include the directory where "libmyffe.dll"9.
is located. You must do it before starting SystemVue.

If there is a persistent variable in the Matlab code, only one instance of such SystemVue model can be
placed on the schematic. If there are multiple SystemVue model instances that invoke the same Matlab
function, such persistent variable will be shared by multiple instances, and may cause unexpected
simulation results.

Since both SystemVue and Matlab use Intel Math Kernel Library (MKL), you need to set an environment
variable "KMP_DUPLICATE_LIB_OK=TRUE".

To load and run the DLL, you will need to add the MATLAB Compiler ™ Runtime v710 (or v711) (or v711)
Win32 DLLs to your PATH environment variable. The default install location on a Win32 PC is: "C:\Program
Files\MATLAB\MATLAB Compiler Runtime\v710\bin\win32". These DLLs are available in the MATLAB
Compiler ™ Runtime v710 installers from the MathWorks™.

SystemVue - Users Guide

227

 Writing Data Flow C++ Models
If you have not done so yet, please read and understand the Building your first C++
Model Library (users) section, especially for understanding on how to create/setup Visual
Studio project (users) for Data Flow C++ models. The rest of this section assumes that
you are familiar with setting up a Visual Studio project for Data Flow C++ models.

After you have setup the Visual Studio project (users), you can write a C++ class that
represents a Data Flow model. All C++ Data Flow models must be written as a C++ class.
The C++ class for the model must be derived from AgilentEEsof::DFModel with public
access. Each model requires one class, and each class can support only one model. It is
not possible to write multiple models inside a single C++ class. Inheritance and Object
Composition (users) is permitted, to avoid code duplication.

 Writing Header file for the C++ Class
Follow the instructions below to declare your C++ class in the header.

You must include the header ModelBuilder.h.
The C++ class must be derived from AgilentEEsof::DFModel with public access.
All data members which will act as input/output ports or parameters must have
public access. The supported data types for inputs/outputs and parameters are listed
in the sections Data Types Used as Inputs/Outputs (users), and Data Types Used as
Parameters (users) respectively in Supported Data Types (users) page.
You must call the macro DECLARE_MODEL_INTERFACE(<class name>); in the
public section of your class declaration, where <class name> is the name of your
model class. This step is very important as it declares an interface between the C++
model class and the simulator.
You must override bool Run() method of the AgilentEEsof::DFModel with public
access. The Run() method has special meaning for the simulator which will be
discussed later in this document.
Optionally you can also override bool Setup(), bool Initialize(), and bool
Finalize() methods with public access. These methods have special meaning for the
simulator which will be discussed later in the document.
You can add any other method(s) that is needed for your model implementation or
add non input/output/parameter data members which are needed for your model
implementation with private, protected or public access of your choice.
For a simple example header file please read Adder.h file in the section Adding a
new Model to the Project (users) in First Custom C++ Model Library section.

 Writing cpp file for the C++ Class
Steps for writing a cpp file for the C++ Class are detailed below:

Defining the interface using DEFINE_MODEL_INTERFACE macro
Defining the Run() method.

For a simple example cpp file please read Adder.cpp file in the section Adding a new
Model to the Project (users) in First Custom C++ Model Library section.

 Defining Interface to the Simulator

The interface to the simulator i.e. inputs, outputs and parameters must be defined inside
the mandatory DEFINE_MODEL_INTERFACE(<class name>) { } macro, where <class
name> is the name of the model class. The DEFINE_MODEL_INTERFACE macro must
return true on success and false on failure.

 Adding Inputs to the Interface

The ADD_MODEL_INPUT(<data member>) macro can be used to add a class
data member declared with public access to the interface as an input port.
The data types supported by ADD_MODEL_INPUT macro are listed at Data Types
Used as Inputs/Outputs (users).

The C++ Built In Data Types as Uni-rate Inputs/Outputs (users) are added as
uni-rate inputs. The uni-rate inputs are those inputs which consume one data
point for each invocation of the model by the simulator.
The C++ Built In Pointer Data Types as Multi-rate Inputs/Outputs (users) are
added as multi-rate inputs. The multi-rate inputs are those inputs which can
consume one or more data points for each invocation of the model by the
simulator.
The SystemVue CircularBuffer Data Types (users) are added as multi-rate
inputs.

The simulator is responsible for allocating and releasing memory for pointer data
members, and for CircularBuffer data types.
The default rate of a multi-rate port is "1" which could be changed by adding a rate-
variable for pointer data members and setting the value of this rate-variable in bool
Setup() method, or by calling the SetRate() method on an object of a CircularBuffer
type inside bool Setup().
By default, the name of the input port is chosen to be the name of the data member
added using the ADD_MODEL_INPUT macro.
The ADD_MODEL_INPUT macro returns an object of type AgilentEEsof::DFPort
that you could further use only inside the DEFINE_MODEL_INTERFACE to add a
rate-variable for multi-rate ports or to change the port-name.
The details of using AgilentEEsof::DFPort are discussed later in the document.

 Adding Outputs to the Interface

The ADD_MODEL_OUTPUT(<data_member>) macro can be used to add a class
data member declared with public access to the interface as an output port.
The ADD_MODEL_OUTPUT macro is similar to ADD_MODEL_INPUT macro except
that it adds an output to the interface instead of input.

 Adding Parameters to the Interface

The ADD_MODEL_PARAM(<parameter_data_member>) can be used to add a
C++ Built In Scalar Data Types (users), supported AgilentEEsof::Matrix (users) or
SystemVue Built In Enumerations (users) as a parameter.
The
ADD_MODEL_ARRAY_PARAM(<parameter_data_member>,<parameter_array_size_data_member>)
can be used to add C++ Built In Pointer Data Types (users) as an array type
parameter.
The ADD_MODEL_ENUM_PARAM(parameter_data_member,
enum_type_name) can be used to add a User Defined Enumeration (users) as
enumerated parameter using a user-defined C++ enum.
Where;
The <parameter_data_member> is the class data member that will be set by the
simulator to hold the parameter value.
The <parameter_array_size_data_member> is the class data member that will be
set by the simulator to hold the number of elements present in an array type
parameter. The data type of <parameter_array_size_data_member> must be
unsigned.
The <enum_type_name> is the name of enum type used to instantiate
corresponding <parameter_data_member>.
The value of parameters and number of elements in case of array type parameters
will be available to be read in Setup(), Initialize(), Run() and Finalize() methods.
The simulator is responsible to allocate/release all memories and setting up the
parameter values.
The ADD_MODEL_PARAM, ADD_MODEL_ARRAY_PARAM , and
ADD_MODEL_ENUM_PARAM macros return an object of type
AgilentEEsof::DFParam that you could further use only inside the
DEFINE_MODEL_INTERFACE to change the parameter name, description, to set a
char * type parameter as a file type parameter, to add possible enumerations for an
enumerated parameter, and to convert an integer type variable to use one of the

SystemVue - Users Guide

228

predefined enumeration. The details of using AgilentEEsof::DFParam are discussed
later in the document.
Some special considerations are required when using the
ADD_MODEL_ENUM_PARAM to add User Defined Enumeration (users). After
adding the data member of user defined enumration type, we need to explicitly add
the specific enumerations to the parameter. This could be done using
AddEnumeration(const char * name, int value) method of
AgilentEEsof::DFParam object returned by ADD_MODEL_ENUM_PARAM. As an
example if our Adder example above can take only selected values for its Gain
parameter then we can modify the header and cpp files as follows.

#pragma once

#include "ModelBuilder.h"

class Adder :

public AgilentEEsof::DFModel

{

enum SelectedGains {Zero, One , Three=3, Five=5};

public:

double In1, In2; // Inputs

double Out; // Outputs

SelectedGains Gain; // Enumerated Parameter

DECLARE_MODEL_INTERFACE(Adder); // Declare modelbuilder interface

virtual bool Run(); // Method for scientific code during each invocation of the model

virtual bool Initialize(); // This method is invoked before the start of simulation

};

#include "Adder.h"

DEFINE_MODEL_INTERFACE(Adder)

{

ADD_MODEL_INPUT(In1);

ADD_MODEL_INPUT(In2);

ADD_MODEL_OUTPUT(Out);

AgilentEEsof::DFParam enumParam = ADD_MODEL_ENUM_PARAM(Gain,SelectedGains);

Gain = One; //default value

enumParam.AddEnumeration("Zero Gain",One);

enumParam.AddEnumeration("Gain of One",One);

enumParam.AddEnumeration("Gain of Three",Three);

enumParam.AddEnumeration("Gain of Five",Five);

return true;

}

bool Adder::Initialize()

{

if (Gain == Zero)

{

POST_ERROR("The value of Gain cannot be == Zero Gain");

return false;

}

return true;

}

bool Adder::Run()

{

Out = Gain * (In1 + In2);

return true;

}

Warning
You must use a different parameter_data_member, and/or
parameter_array_size_data_member for each parameter. No two parameters should be added
with the same data member.
The value(s) of data members holding parameter_data_member, and
parameter_array_size_data_member must not be modified by the model, these values are
only modified by the simulator. Modifying these values inside the model can cause undefined
behavior.
The name in AddEnumeration(const char * name, int value) must not contain quotation
\" character. Failure to do this will result in not adding enumerations.

 Modifying Port Properties

The ADD_MODEL_INPUT and ADD_MODEL_OUTPUT macros return an object of
type AgilentEEsof::DFPort. Optionally, this object can be used only inside
DEFINE_MODEL_INTERFACE to modify the default name of the port and to add a
rate-variable to the port using C++ Built In Pointer Data Types as Multi-rate
Inputs/Outputs (users). For example to add a multi-rate input port with data member
defined as double * In, and multi-rate output port double * Out and then to add a
data member unsigned uRate to these ports, we could use the following code
segment

// This will add a multi-rate input port with name "In" with default rate of 1

AgilentEEsof::DFPort Inport = ADD_MODEL_INPUT(In);

// This will change the port name from "In" to "input"

Inport.SetName("input");

// Now, by changing the value of uRate in Setup() method we could change the port rate

Inport.AddRateVariable(uRate);

// This will add a multi-rate output port with name "Out" with default rate of 1

AgilentEEsof::DFPort Outport = ADD_MODEL_OUTPUT(Out);

// This will change the port name from "Out" to "output"

Outport.SetName("output");

// Now, by changing the value of uRate in Setup() method we could change the port rate

Outport.AddRateVariable(uRate);

The same data member, such as uRate in the code above, could be used to define
rates for several input or output ports simultaneously. Alternatively, you could use
separate data member of type unsigned for each multi-rate input or output port.
The

void SetOptional(bool bIsOptional = true);

can be used to set an input port as optional port if the corresponding data member
is of SystemVue CircularBuffer Data Type (users) . An optional input port is the port
that is not required to be connceted on the schematic. To check that an input port is
connected use bool IsConnectde() method of SystemVue CircularBuffer Data Type
(users).

Warning
An object of type AgilentEEsof::DFPort must only be used inside
DEFINE_MODEL_INTERFACE. It is not legal to change port properties outside
DEFINE_MODEL_INTERFACE.
The value of data member representing a port rate (uRate in the code above) must only be
modified in Setup() method. Modifying the value outside the Setup() method could cause
undefined behavior.
The rate of a SystemVue CircularBuffer Data Type (users) must be modified using
SetRate(uRate) method of the corresponding object inside the Setup().
A SystemVue CircularBuffer Data Type (users) must be tested using bool IsConnected()
before accessing if it is set as an optional port.

 Modifying Parameter Properties

The ADD_MODEL_PARAM and ADD_MODEL_ARRAY_PARAM macros return an
object of type AgilentEEsof::DFParam. Optionally, this object can be used only
inside DEFINE_MODEL_INTERFACE to change parameter name, its description, set
a parameter as file, to assign a default value to the parameter, and to add an
enumeration for a User Defined Enumerated (users) parameter. For example to add
two data members double * taps and int decimation as an array and a scalar
parameters with default values we could use the following code.

// The unsigned tapsSize will be set by simulator to the number of elements in the array

param

AgilentEEsof::DFParam paramTaps = ADD_MODEL_ARRAY_PARAM(taps, tapsSize);

paramTaps.SetDescription("Filter tap values");

paramTaps.SetName("FilterTaps");

// The SetDefault value method takes const char * as input, the value of this should be same

as you would enter in SystemVue

paramTaps.SetDefaultValue("[-0.040609, -0.001628, 0.17853, 0.37665, 0.37665, 0.17853, -

0.001628, -0.040609]");

decimation = 1; // For scalar (non-pointer) data members default can also be set before

SystemVue - Users Guide

229

adding as parameter

AgilentEEsof::DFParam paramDecimation = ADD_MODEL_PARAM(decimation);

paramDecimation.SetName("Decimation");

paramDecimation.SetDescription("Decimation ratio");

The SetDefault value method takes const char * as input, the value of this should be
same as you would enter in SystemVue, for enumerated parameters enter
corresponding integer equivalent. For non-pointer data members, you may set the
value of data member before adding it as a parameter, in this case, there is no need
to use SetDefault explicitly and default is selected based on current value of the
corresponding data member added as a parameter. However, for pointer type data
members SetDefault must be called.
The values of the parameters and corresponding value of data member holding array
size are available to be read in the Setup(), Initialize(), Run(), and Finalize()
methods. The values of array type parameters could be accessed using [] operator.
The maximum index that you could use in [] operator should be less than the array
parameter size set by the simulator. In the above code the maximum index for taps
should be tapsSize-1.
If you have added a parameter with data type char * then you can call
SetParamAsFile() method of AgilentEEsof::DFParam to set it as a file parameter. If a
char * is set as a file parameter then Browse button is enabled.
If you have added a parameter as an enumeration using ADD_MODEL_ENUM_PARAM
then AddEnumeration(const char * EnumName, int EnumValue) method of
AgilentEEsof::DFParam must be called to add enumeration values to the simulator
GUI. The AddEnumeration method, optionally, can be used with integer parameters
as well to use integer parameter as enumeration in the simulator GUI.
If you have added an integer parameter, you can also use SetEnumeration(const
char * EnumerationName) method of AgilentEEsof::DFParam to use predefined
enumerations. The list of predefined enumerations is mentioned in Adding
Parameters to the Interface section above. The SetEnumeration method only
supports one of the following as its parameter

AgilentEEsof::QUERY_ENUM (The possible values are QUERY_NO=0, and
QUERY_YES=1)
AgilentEEsof::SWITCH_ENUM (The possible values are SWITCH_OFF=0, and
SWITCH_ON=1)
AgilentEEsof::BOOLEAN_ENUM (The possible values are BOOLEAN_FALSE=0,
and BOOLEAN_TRUE=1)

For example if enumParam is an object of type AgilentEEsof::DFParam having an
integer parameter then it can be used as
enumParam.SetEnumeration(AgilentEEsof::QUERY_ENUM) to use the predefined
enumeration AgilentEEsof::QueryEnum.
The SetHideCondition(const char * pcHideCondition) method of a
AgilentEEsof::DFParam object can be used to hide a parameter from GUI based on
the value of another parameter in the same model. The input pcHideCondition to
this method must be a valid MathLang conditional statement using relational
operators returning true or false. The statement must use one of the parameter
"names" other than the one for which the hide condition is being set. The parameter
name(s) used in hide condition must be the same as set by using SetName method
of a DFParam object e.g myParam.SetHideCondition("ShowAdvancedParams ~= 1");
Any parameter used in hide condition must have a name that could be used as a
valid MathLang variable. Also enumeration cannot be used as is in the condition e.g
myParam.SetHideCondition("ShowAdvancedParams ~= YES"); is incorrect, use
myParam.SetHideCondition("ShowAdvancedParams ~= 1"); instead, if YES is equal
to 1 in your enumeration list.
The SetSchematicDisplay(bool bDisplay) method of a AgilentEEsof::DFParam
object can be used to turn on and off the visibility of a parameter on the schematic.
By default, all parameters are shown on the schematic.
The SetUnit(Units::UnitType eUnitType) method of a AgilentEEsof::DFParam
object can be used to set the unit of a parameter. By default, the unit is set to
AgilentEEsof::Units::NONE. The supported units are

AgilentEEsof::Units::NONE
AgilentEEsof::Units::ANGLE
AgilentEEsof::Units::LENGTH
AgilentEEsof::Units::TIME
AgilentEEsof::Units::FREQUENCY
AgilentEEsof::Units::VOLTAGE
AgilentEEsof::Units::POWER
AgilentEEsof::Units::RESISTANCE
AgilentEEsof::Units::TEMPERATURE

Warning

An object of type AgilentEEsof::DFParam must only be used inside DEFINE_MODEL_INTERFACE.
It is not legal to change parameter properties outside DEFINE_MODEL_INTERFACE
The value of data member added as parameter and it corresponding data member holding array size
must not be modified by the model at all. These are set by the simulator automatically.

 Modifying Model Properties

By default a model is added with a default name that is same as the model class
name, with no description, no category in part selector, and with an auto-generated
symbol. Optionally, this default behavior can be changed, only inside
DEFINE_MODEL_INTERFACE, using any of the four macros as shown in the
following example code segment.

SET_MODEL_NAME("FIR");

SET_MODEL_DESCRIPTION("My First FIR filter model");

SET_MODEL_CATEGORY("DSP Filters");

SET_MODEL_SYMBOL("SYM_FIR");

Warning
If you have decided to choose a pre-created symbol than input and output port names in your
model must match those of the symbol.
The model properties can only be changed inside DEFINE_MODEL_INTERFACE.

 Adding Parent Model Interface

If the model is derived from an existing C++ model then the interface of the parent model
could be added using th macro ADD_PARENT_MODEL_INTERFACE(
<ParentModelClass>), where <ParentModelClass> is the name of parent model class.
If this macro is not used then, optionally, the derived model can add the complete
interface itself.

 The Setup() Method
Optionally the C++ model can override the virtual bool Setup() method of its base class
AgilentEEsof::DFModel only to set rate variables and history depth for input and/or
output ports. See Modifying Port Properties to learn how to assign a rate variable (data
member) to a port. History depth can only be assigned to a circular buffer (users) type
port. This is the first method called by the simulator before scheduling the simulation. All
the parameter values are available to be read in the Setup() method and can be used to
setup the rate if the rate depends upon a parameter value. The data members assigned to
a port must not be used in this method. After running the model's Setup() method, the
simulator allocates memories to all the ports and then schedule the simulation
accordingly. The model itself must not allocate/reallocate/release memories for any of its
data members assigned to a multi-rate port in this method. The Setup() method must
return true on success and false on failure. A model can also post an error, warning, or
an information message from inside the Setup() method. For an example, see the
Example Visual Studio Project for ModelBuilder (users) shipped with SystemVue and used
in Quick Start (users) section.

 The Initialize() Method
Optionally the C++ model can override the virtual bool Initialize() method of its base
class AgilentEEsof::DFModel, to perform any pre-simulation coding that model needs to
perform. This method is called after the virtual bool Setup() and after simulator has
calculated the schedule for the simulation run but before starting the simulation run. The
model must not allocate/reallocate/release memories for any of its data members

SystemVue - Users Guide

230

assigned to a multi-rate port in this method. The Initialize() method must return true on
success and false on failure. A model can also post an error, warning, or an information
message from inside the Initialize() method.

 The Run() Method
The C++ model must override the virtual bool Run() method of its base class
AgilentEEsof::DFModel, to perform any actions that model needs to perform during
simulation. This method is called whenever simulator invokes the model based on the
simulation schedule. The values of data members assigned to the inputs are already set
by the simulator before calling the Run() and a C++ model can read the input values. The
simulator reads the values of data members assigned to the outputs after calling Run()
method.

For a multi-rate input use the index value '0' in [] operator to access the first data point received at
that input port.
For a multi-rate output use the index value '0' in [] operator to to set the first output data point at
the output port.
The maximum index value used in [] to access a data member assigned to a multi-rate port must be
less than the corresponding rate of that port assigned in Setup() method.

The model must not allocate/reallocate/release memories for any of its data members
assigned to a multi-rate port in this method. The Run() method must return true on
success and false on failure. A model can also post an error, warning, or an information
message from inside the Run() method. For an example, see the Example Visual Studio
Project for ModelBuilder (users) shipped with SystemVue and used in Quick Start (users)
section, some of the models in example project also contains multi-rate ports.

 The Finalize() Method
Optionally the C++ model can override the virtual bool Finalize() method of its base
class AgilentEEsof::DFModel, to perform any post-simulation coding that model needs
to perform. This method is called by the simulator after the simulation run is completed.
The model must not allocate/reallocate/release memories for any of its data members
assigned to a multi-rate port in this method, the simulator takes care of releasing port and
parameter memories by itself. The Finalize() method must return true on success and
false on failure. A model can also post an error, warning, or an information message from
inside the Finalize() method.

 Posting Error, Warning or Information Messages
A model can post an error, warning, or information message using appropriate macro(s)
below inside the Setup(), Initialize(), Run() or Finalize() methods or any non-static
method of the model class which is called only inside Setup(), Initialize(), Run() or
Finalize() methods.

POST_ERROR(<const_char_error>): The POST_ERROR macro will post a error to
the error pane and simulation log. Additionally, the simulation will be forced to
terminate. The input <const_char_error> to the macro must be of type const char*.
POST_WARNING(<const_char_warning>): The POST_WARNING macro will post
a warning to the error pane and simulation log. The input <const_char_warning> to
the macro must be of type const char*.
POST_INFO(<const_char_info>): The POST_INFO macro will post a informational
message to the error pane and simulation log The input <const_char_info> to the
macro must be of type const char*.
POST_LOG(<const_char_info>): The POST_LOG macro will post to the simulation
log. The input <const_char_info> to the macro must be of type const char*.
POST_PROGRESS(<const_char_info>): The POST_PROGRESS macro will post a
message to the status window, subsequent calls will replace the progress message.
The input <const_char_info> to the macro must be of type const char*.
CLEAR_PROGRESS(): The CLEAR_PROGRESS macro will clear the messaged posted
using the POST_PROGRESS macro.

The POST_ERROR, POST_WARNING, and POST_INFO macros pre-pend the message with
the instance name of the model in SystemVue schematic which is posting the messages
for easy debugging. It is advisable to not to post a warning and/or information
message(s) for each invocation of Run() method, because Run() method is called several
time depending upon the design being simulated. For a simple example use of
POST_ERROR macro please read Adder.cpp file in the section Adding a new Model to the
Project (users) in First Custom C++ Model Library section.

 Reading or Writing Files
If you would like to read from or write to a file in your model then it is better to use file
type parameters to specify the filenames. Please see Modifying Parameter Properties for
details on how to create a File type parameter with browse button. However if you are not
using file type parameter, then you must use absolute full path to the file location. For
example use c:\tmp\myfile.txt, never use myfile.txt.

 Using Inheritance
To inherit a model from an existing model, derive the class of new model from the existing
model class with public access. There is no need to derive the new model from
AgilentEEsof::DFModel because it will inherit DFModel from the existing parent model
class. If the new model class needs to modify any of the Setup(), Initialize(), Run() or
Finalize() methods then these methods must be declared virtual in the parent model class.

The derived model class must follow the following similar to the parent model class

The derived model must use DECLARE_MODEL_INTERFACE(<class name>); in
its header file, please see the section Writing Header file for the C++ Class.
The derived model must define its interface inside DEFINE_MODEL_INTERFACE. The
interface of the parent model could be added using the optional macro
ADD_PARENT_MODEL_INTERFACE(<ParentModelClass>), where
<ParentModelClass> is the name of parent model class. If this macro is not used
then, optionally, the derived model can add the complete interface itself. The use of
ADD_PARENT_MODEL_INTERFACE is not required and it is provided to easily add
the interface defined by the parent model.

The following header and cpp files show an example of a subtractor derived from Adder
model shown in the section Adding a new Model to the Project (users) in First Custom
C++ Model Library section.

 Example Header File (subtractor.h) of a Derived Model

#pragma once

#include "Adder.h"

class Subtractor :

public Adder

{

public:

virtual bool Run();

DECLARE_MODEL_INTERFACE(Subtractor);

};

 Example cpp File (subtractor.cpp) of a Derived Model

#include "Subtractor.h"

DEFINE_MODEL_INTERFACE(Subtractor)

{

ADD_PARENT_MODEL_INTERFACE(Adder);

return true;

}

bool Subtractor::Run(void)

{

Out = Gain * (In1 - In2);

return true;

}

SystemVue - Users Guide

231

 Writing Fixed Point Models
A model having at least one AgilentEEsof::FixedPointCircularBuffer, and/or
AgilentEEsof::FixedPointCircularBufferBus input/output is considered as a fixed point
model. A fixed point model class must be derived from AgilentEEsof::DFModel as well
as an interface class AgilentEEsof::DFFixedPointInterface both with public access.
The model class must also override the virtual ERESULT
SetOutputFixedPointParameters() method to set output FixedPointParameters based
on the model parameters or the FixedPointParameters of inputs. The
FixedPointParameters for inputs are set by the simulator before calling
SetOutputFixedPointParameters based on the output FixedPointParameters of the
previous model in the design.

 FixedPoint Inputs/Outputs

A model must use AgilentEEsof::FixedPointCircularBuffer, and/or
AgilentEEsof::FixedPointCircularBufferBus to add a FixedPoint input or output, please
see SystemVue CircularBuffer Data Types (users), and SystemVue FixedPoint Data Type
(users) for further details. A data member of type AgilentEEsof::FixedPoint cannot be
added as an input or an output.

 Overriding SetOutputFixedPointParameters

The SetParameters method of AgilentEEsof::FixedPointCircularBuffer must be called for
each single output and also for each output of a AgilentEEsof::FixedPointCircularBufferBus
bus. You may also read the parameters of inputs in this method which are already set by
the simulator. The SetOutputFixedPointParameters is called several times during
simulation until convergence is achieved. In case of models whose output precision
depends upon input precision, you may query that input has a valid FixedPointParameters
or not using AreParametersValid method of the FixedPointCircularBuffer. An input may
not have valid FixedPointParameters in first few iterations before convergence only when
it is connected to a feedback loop. Even, if any of the input does not have valid
FixedPointParameters you must set valid FixedPointParameters for all the outputs.

An example fixed point adder is shown below

// File AddFxp.h

#pragma once

#include "ModelBuilder.h"

#include "DFFixedPointInterface.h"

class AddFxp :

public AgilentEEsof::DFModel, public AgilentEEsof::DFFixedPointInterface

{

public:

/// Output Parameters

int WordLength;

int IntegerWordLength;

AgilentEEsof::FixedPointEnums::Sign IsSigned;

AgilentEEsof::FixedPointEnums::OverflowMode Overflow;

AgilentEEsof::FixedPointEnums::QuantizationMode Quantization;

int SaturationBits;

/// input bus

AgilentEEsof::FixedPointCircularBufferBus dataIn;

///output

AgilentEEsof::FixedPointCircularBuffer dataOut;

private:

/// Accumulator for the sum

/// AgilentEEsof::FixedPointValue is arbitray precision type. An object of

/// FixedPointValue type may store a fixed-point value of arbitrary precision

/// and binary point location without losing precision or magnitude (no quantization

/// or overflow handling). This is suitbale for accumulating the sum. The

/// overflow/quantization handling will be performed on dataOut[0] when we

/// assign this accumulated sum to the dataOut[0]

AgilentEEsof::FixedPointValue m_fxpAccumulator ;

public:

// This Macro is required for all classes derived from CDFModel

DECLARE_MODEL_INTERFACE(AddFxp)

//-------- Function Overloads --------

bool Run(); // Do the math

bool Initialize();

ERESULT SetOutputFixedPointParameters();

};

// File AddFxp.cpp

#include "AddFxp.h"

DEFINE_MODEL_INTERFACE (AddFxp)

{

SET_MODEL_NAME("AddFxp");

SET_MODEL_CATEGORY("Math Scalar");

SET_MODEL_SYMBOL("SYM_AddFxp");

ADD_MODEL_INPUT(dataIn);

ADD_MODEL_OUTPUT(dataOut);

WordLength = 16; // default value

AgilentEEsof::DFParam cWL = ADD_MODEL_PARAMETER(WordLength);

IntegerWordLength = 2; // default value

AgilentEEsof::DFParam cIWL = ADD_MODEL_PARAMETER(IntegerWordLength);

// Adding built in enumerations

ADD_MODEL_PARAMETER(IsSigned);

ADD_MODEL_PARAMETER(Quantization);

ADD_MODEL_PARAMETER(Overflow);

SaturationBits = 0; // default value

AgilentEEsof::DFParam cSB = ADD_MODEL_PARAMETER(SaturationBits);

return true;

}

ERESULT AddFxp::SetOutputFixedPointParameters()

{

dataOut.SetParameters(WordLength,IntegerWordLength, IsSigned,Quantization,Overflow,SaturationBits

);

return NOERROR_;

}

bool AddFxp::Initialize()

{

if(WordLength <=0)

POST_ERROR("Word Length must be greater than 0.");

return true;

}

//---

// Go

// Here we do the math

//---

bool AddFxp::Run()

{

m_fxpAccumulator = 0;

// accumulate the sum for all inputs on the bus without quantization/overflow

// handling

for(size_t szPort=0; szPort < dataIn.GetSize(); szPort++)

{

m_fxpAccumulator += dataIn[szPort][0];

}

// assign the accumulated sum to output, this will cause quantization/overflow handling

dataOut[0] = m_fxpAccumulator;

return true;

}

 Writing a Fixed Point Model for Fixed Point Analysis

When Data Flow Analysis options (sim) are set to collect fixed point analysis data,
SystemVue collects and analyze data at the output ports to collect the information needed
for fixed point analysis table (sim) at the end of each execution of Run method. This
means, to detect an overflow and underflow at the output, the overflow and quantization
flags for the fixed point data at each output are set properly at the end of Run method.
For example, if we have written the Run method in the AddFxp example as follows then
the overflow and quantization flags may not be set properly

/// This code is not a recommended practice and may result in incorrect information

SystemVue - Users Guide

232

/// in the Fixed Point Analysis Table.

bool AddFxp::Run()

{

dataOut[0] = 0;

// Accumulate the sum for all inputs directly in the dataOut[0];

// this may cause incorrect overflow/underflow information in

// fixed point analysis table

for(size_t szPort=0; szPort < dataIn.GetSize(); szPort++)

{

dataOut[0] += dataIn[szPort][0];

}

return true;

}

The reason is that if the input bus for the adder has more than one inputs, then there may
be quantization or overflow during the accumulation phase (for loop) except in the last
assignment to dataOut[0]. Since the last assignment results in no overflow/quantization
therefore at the end of Run method these flags are not set at the output properly. To
avoid this problem make sure to keep one assignment per output port data point in the
Run method for models which can cause overflow and/or quantization. There are models
which will generally do not cause an underflow or quantization (such as AND, OR, XOR),
this restriction can be relaxed for such models. In the original AddFxp code above, an
object of Fixed Point Value (users) is used as an accumulator and the final result is
assigned to dataOut[0] at the end resulting in proper overflow and/or quantization flag
values at the end of Run() method.

For more example fixed point models, see the Example Visual Studio Project for
ModelBuilder (users) shipped with SystemVue and used in Quick Start (users) section.

 Writing Timed Data Flow Models
SystemVue supports two domains of models, numeric (untimed (sim)) models and timed
(sim) models, for representing different timing behavior. The above sections in this
document mainly focus on numeric (untimed) models. In this section, we discuss how to
write timed C++ models. For introduction to timed data flow models, we refer the users to
Timing Method (sim).

 Timed Data Flow Model Class

A timed model class must derive from AgilentEEsof::TimedDFModel, which is the base
class for timed C++ model. AgilentEEsof::TimedDFModel is defined in
\ModelBuilder\include\SystemVue\TimedDFModel.h in the SystemVue installation
directory. AgilentEEsof::TimedDFModel inherits from AgilentEEsof::DFModel to provide
additional firing count property for timing calculation. The firing count (
TimedDFModel::m_iFiringCount) records the number of executions (runs) of the model
during the simulation, and it is initialized to 0. The member methods of
AgilentEEsof::TimedDFModel are described as follows.

void Advance(): Increase firing count after each execution. When using the timed
model in SystemVue, TimedDFModel::Advance() is automatically called after each
execution, i.e., called after each overrided DFModel::Run(). When using the timed
model outside SystemVue, users have to manually invoke TimedDFModel::Advance().
unsigned long long GetCount(): Query the current firing count.
ERESULT CalculateLatency(): See Overriding Latency Calculation.
ERESULT PropagateCharacterizationFrequency(): See Overriding
Characterization Frequency Propagation

 Timed Circular Buffer

SystemVue provides AgilentEEsof::TimedCircularBuffer<T> (users) for a timed model
to access time stamps (sim) of the input (or output) data samples and to set sample rate
and latency information. In general, data flow production and consumption rates as well
as sample rates (for particular TimedCircularBuffer) should be set in
TimedDFModel::Setup(). To set sample rate (equivalently, 1 / time step), use
SetSampleRate or SetTimeStep method of AgilentEEsof::TimedCircularBuffer<T>
(users). To set latency of the timed model, use SetStartTime method of
AgilentEEsof::TimedCircularBuffer<T> (users) in TimedDFModel::CalculateLatency(). In
TimedDFModel::Initialize() and TimedDFModel::Run(), use GetSampleRate,
GetTimeStep, and GetStartTime methods of AgilentEEsof::TimedCircularBuffer<T>
(users) to get the sample rate, time step, and start time associated with the timed circular
buffer. In TimedDFModel::Run(), use GetTime method of
AgilentEEsof::TimedCircularBuffer<T> (users) to get the time stamp of a particular
sample on the timed circular buffer.

The following SineGenerator example shows how to write a simple sine generator model
that sets simulation sample rate based on the SampleRate parameter and generates timed
sine wave based on Amplitude, Frequency, and Phase parameters.

//SineGenerator.h

#pragma once

#include "ModelBuilder.h"

#include "SystemVue/TimedDFModel.h"

#include "SystemVue/TimedCircularBuffer.h"

class SineGenerator : public AgilentEEsof::TimedDFModel //derive from AgilentEEsof::TimedDFModel

{

public:

DECLARE_MODEL_INTERFACE(SineGenerator)

virtual bool Run();

virtual bool Setup();

//parameters

double Amplitude;

double Frequency;

double Phase;

double SampleRate;

//declare output as a timed circular buffer of type double

AgilentEEsof::TimedCircularBuffer<double> output;

};

//SineGenerator.cpp

#include "SineGenerator.h"

#define TWOPI 6.28318530717958647692528676655900576839433879875021

#ifndef SV_CODE_GEN

DEFINE_MODEL_INTERFACE(SineGenerator)

{

//Add TimedCircularBuffer output as a model output

ADD_MODEL_OUTPUT(output);

AgilentEEsof::DFParam paramAmp = ADD_MODEL_PARAM(Amplitude);

paramAmp.SetDefaultValue("1.0");

AgilentEEsof::DFParam paramFreq = ADD_MODEL_PARAM(Frequency);

paramFreq.SetDefaultValue("5e3");

AgilentEEsof::DFParam paramPhase = ADD_MODEL_PARAM(Phase);

paramPhase.SetDefaultValue("0");

AgilentEEsof::DFParam paramSR = ADD_MODEL_PARAM(SampleRate);

paramSR.SetDefaultValue("1e6");

return true;

}

#endif

bool SineGenerator::Setup()

{

bool bStatus = true;

if (SampleRate > 0)

{

//Use TimedCircularBuffer::SetSampleRate method to set the output sample rate in

Setup()

output.SetSampleRate(SampleRate);

}

else

{

POST_ERROR("SampleRate must be greater than 0.");

bStatus = false;

}

return bStatus;

}

bool SineGenerator::Run()

{

bool bStatus = true;

//Use TimedCircularBuffer::GetTime method to get the time stamp of the output sample

SystemVue - Users Guide

233

//In output.GetTime(0, m_iFiringCount), 0 means the 0th output sample of each firing

(run), and TimedDFModel::GetCount returns the current firing count.

output[0] = Amplitude * sin(TWOPI * Frequency * output.GetTime(0, GetCount()) + Phase);

return bStatus;

}

 Overriding Latency Calculation

The derived timed model class can override the virtual ERESULT CalculateLatency()
method to set the start time of output TimedCircularBuffer based on the start time and
time step of input TimedCircularBuffer and model parameters. If the derived timed
model does not override this method, the start time of the output is default to the start
time of the input.

The following TimedDownSampler shows an example that overrides
TimedDFModel::CalculateLatency(). The input samples are downsampled by Factor. For
each firing (run), only the Phase th sample among Factor input samples is sent to the
output. As a result, to make the behavior causal, the time stamp of the first output
sample should be delayed by Phase * input time step for causality.

//TimedDownSampler.h

#pragma once

#include "ModelBuilder.h"

#include "SystemVue\TimedDFModel.h"

#include "SystemVue\TImedCircularBuffer.h"

class TimedDownSampler : public AgilentEEsof::TimedDFModel

{

public:

DECLARE_MODEL_INTERFACE(TimedDownSampler)

virtual bool Run();

virtual bool Setup();

//Override default latency calculation

ERESULT CalculateLatency();

int Factor;

int Phase;

AgilentEEsof::TimedCircularBuffer<double> input;

AgilentEEsof::TimedCircularBuffer<double> output;

};

//TimedDownSampler.cpp

#include "TimedDownSampler.h"

DEFINE_MODEL_INTERFACE(TimedDownSampler)

{

AgilentEEsof::DFParam paramFactor = ADD_MODEL_PARAM(Factor);

paramFactor.SetDefaultValue("2");

AgilentEEsof::DFParam paramPhase = ADD_MODEL_PARAM(Phase);

paramPhase.SetDefaultValue("0");

ADD_MODEL_INPUT(input);

ADD_MODEL_OUTPUT(output);

return true;

}

bool TimedDownSampler::Setup()

{

bool bStatus = true;

if (Factor < 1)

{

POST_ERROR("Phase should be greater than 1.");

bStatus = false;

}

//Set input data flow rate to Factor

input.SetRate((size_t)Factor);

if(Phase >= Factor || Phase < 0)

{

POST_ERROR("Phase should be greater than or equal to 0 and less than Factor");

bStatus = false;

}

return bStatus;

}

ERESULT TimedDownSampler::CalculateLatency()

{

//For causality, set output start time to be the input start time + Phase * input time step

output.SetStartTime(input.GetStartTime ()+ input.GetTimeStep() * Phase);

return NOERROR_;

}

bool TimedDownSampler::Run()

{

output[0] = input[(size_t)Phase];

return true;

}

 Using Envelope Signal in Timed Data Flow Model
SystemVue provides AgilenEEsof::EnvelopeSignal (users) data type and corresponding
AgilentEEsof::EnvelopeCircularBuffer (users) for writing models which requires complex
envelope signals.

The following EnvelopeToReal example shows how to convert an envelope signal (which
can represent either a real signal or a complex envelope signal) to real signal.

//EnvelopeToReal.h

#pragma once

#include "ModelBuilder.h"

#include "SystemVue\TimedDFModel.h"

#include "SystemVue\EnvelopeSignal.h"

class EnvelopeToReal : public AgilentEEsof::TimedDFModel

{

DECLARE_MODEL_INTERFACE(EnvelopeToReal)

virtual bool Run();

//Envelope signal

AgilentEEsof::EnvelopeCircularBuffer input;

//Real signal

AgilentEEsof::CircularBuffer<double> output;

};

//EnvelopeToReal.cpp

#include "EnvelopeToReal.h"

DEFINE_MODEL_INTERFACE(EnvelopeToReal)

{

ADD_MODEL_INPUT(input);

ADD_MODEL_OUTPUT(output);

return true;

}

bool EnvelopeToReal::Run()

{

//If input represents a real signal (based on whether the characterization frequency is equal to

0)

if (input.GetCharacterizationFrequency() == 0)

{

//Use EnvelopeSignal::real() to get the value of the real signal

output[0] = input[0].real();

}

//Otherwise, input represents a complex envelope with associated characterization frequency

else

{

//Use EnvelopeSignal::ConvertToReal to convert the complex envelope to real signal

output[0] = input[0].ConvertToReal(input.GetCharacterizationFrequency(), input.GetTime(0,

GetCount()));

}

return true;

}

 Overriding Characterization Frequency Propagation

The derived timed model class can override the virtual ERESULT
PropagateCharacterizationFrequency() method to set the characterization frequency
of output EnvelopeCircularBuffer based on the characterization frequency of input
EnvelopeCircularBuffer and model parameters. If the derived model does not override this
method, the characterization frequency of output EnvelopeCircularBuffer is default to the
maximum characterization frequency among input EnvelopeCircularBuffers.

SystemVue - Users Guide

234

The following Modulator example up converts baseband I-Q complex sample to complex
envelope signal at CarrierFrequency, and use
TimedDFModel::PropagateCharacterizationFrequency() to set the output characterization
frequency.

//Modulator.h

#pragma once

#include "ModelBuilder.h"

#include "SystemVue\TimedDFModel.h"

#include "SystemVue\EnvelopeSignal.h"

class Modulator : public AgilentEEsof::TimedDFModel

{

DECLARE_MODEL_INTERFACE(Modulator)

virtual bool Run();

ERESULT PropagateCharacterizationFrequency();

double CarrierFrequency;

//Complex baseband I-Q signal

AgilentEEsof::DComplexCircularBuffer input;

//Envelope signal

AgilentEEsof::EnvelopeCircularBuffer output;

};

//Modulator.cpp

#include "Modulator.h"

DEFINE_MODEL_INTERFACE(Modulator)

{

AgilentEEsof::DFParam paramCarrierFrequency = ADD_MODEL_PARAM(CarrierFrequency);

paramCarrierFrequency.SetDefaultValue("1e6");

ADD_MODEL_INPUT(input);

ADD_MODEL_OUTPUT(output);

return true;

}

ERESULT Modulator::PropagateCharacterizationFrequency()

{

//Set output envelope signal characterization frequency to be carrier freqnecy

output.SetCharacterizationFrequency(CarrierFrequency);

return NOERROR_;

}

bool Modulator::Run()

{

//Assign input complex baseband I-Q value to output envelope signal with associated carrier

frequency

output[0] = input[0];

return true;

}

 Controlling Simulation
For more details, see Simulation Control (sim).

SystemVue provides DFSinkControl in
\ModelBuilder\include\SystemVue\SimulationControl.h in the SystemVue installation
directory.

The member methods of AgilentEEsof::DFSinkControl are described as follows.

bool Initialize(DFModel* pModel, unsigned long long iStartSample,
unsigned long long iStopSample) : Initialize DFSinkControl for untimed sink.
pModel is the pointer to the DFModel that owns the DFSinkControl.
bool Initialize(DFModel* pModel, double dStartTime, double dStopTime,
double dTimeStep, double dFirstTimeStamp) : Initialize DFSinkControl for
untimed sink. pModel is the pointer to the DFModel that owns the DFSinkControl.
bool CollectData() : Surround data collection in DFModel::Run() with the following
code to ensure proper data collection as specified in the Initialize method. Data
collection should be performed if CollectData() returns true, otherwise, data
collection should be avoided.

if (sink_control_object.CollectData())

{

//data collection code ...

}

SystemVue - Users Guide

235

 Building Your First Custom C++ Model
Library
In this section, we will build a simple adder with two inputs of type "double". The model
will add the two inputs and then multiply the result with a "Gain" parameter before
passing it to the output. It is assumed that you have already installed SystemVue and the
Microsoft Visual Studio version mentioned in the Requirements (users) section. The
following section also assumes that you have installed SystemVue at C:\Program
Files\SystemVue2009.08.

 Setting Up a New Visual Studio Project
Start Microsoft Visual Studio.1.
Create a new Visual Studio project using File > New > Project as shown below.2.

In the New Project dialogue box choose Win32 under Visual C++ and then choose3.
Win32 Console Application. In this case we will call our first project
MyFirstLibrary. The New Project dialogue box should look like this:

Click Ok and in the next dialogue select Next >4.
In the dialogue under Application Settings choose DLL as the Application type and5.
choose Empty project as Additional Options. Your application settings should be as
follows:

Click Finish.6.
Click View > Property Manager, this should open Visual Studio Property7.
Manager.
In Property Manager, select the project you want to setup, in our case it is8.
MyFirstLibrary, and right click it. Select Add Existing Property Sheet:

Browse to your SystemVue installation, and under the ModelBuilder directory,9.
choose Model Builder.vsprops and open it. With a default installation this should be
located at C:\Program Files\SystemVue2009.08\ModelBuilder. We are now
done with Property Manager.

Note, The property sheet assigned to a project must be updated whenever you choose to update
SystemVue, especially if the SystemVue installation location is updated.

 Adding a new Model to the Project
Right click on the project MyFirstLibrary and select Add > Class. In the Add Class1.
dialogue box select C++ as the category and C++ Class as the template. Click Add.
In the Generic C++ Class Wizard dialogue box, add the Class name of your2.
model, in our example we will call it Adder, the .h file and .cpp file fields will be

SystemVue - Users Guide

236

auto-filled. Choose Base class as AgilentEEsof::DFModel, and click Finish.

All SystemVue Model classes must be derived from AgilentEEsof::DFModel with public access

Modify the added Adder.h file so that it looks like:3.

#pragma once

#include "ModelBuilder.h"

class Adder :

public AgilentEEsof::DFModel

{

public:

double In1, In2; // Inputs

double Out; // Outputs

double Gain; // Parameters

DECLARE_MODEL_INTERFACE(Adder); // Declare modelbuilder interface

virtual bool Run(); // Method for scientific code during each invocation of the model

virtual bool Initialize(); // This method is invoked before the start of simulation

};

You must include ModelBuilder.h.
You must add macro DECLARE_MODEL_INTERFACE(<ClassName>); with public access.
The data members for parameters and input/outputs must have public access.

Modify the the Adder.cpp file so that it looks like:

#include "Adder.h"

DEFINE_MODEL_INTERFACE(Adder)

{

ADD_MODEL_INPUT(In1);

ADD_MODEL_INPUT(In2);

ADD_MODEL_OUTPUT(Out);

Gain = 0; // Default Value

ADD_MODEL_PARAM(Gain);

return true;

}

bool Adder::Initialize()

{

if (Gain ==0)

{

POST_ERROR("The value of Gain cannot be == 0");

return false;

}

return true;

}

bool Adder::Run()

{

Out = Gain * (In1 + In2);

return true;

}

Use the ADD_MODEL_INPUT(<data member>); macro to add a data member as input.
Use the ADD_MODEL_OUTPUT(<data member>); macro to add a data member as output.
Use the ADD_MODEL_PARAM(<data member>); macro to add a data member as a parameter.
Inputs, outputs and parameters can only be added inside DEFINE_MODEL_INTERFACE(<class
name>) macro.
Use POST_ERROR macro to post an error.

Build the solution, using either the Debug or Release configuration by right clicking on the
solution and selecting Build Solution. A successful build should create <project
name>.dll in the Debug and Release directories respectively, in our case it will be
MyFirstLibrary.dll.

 Using the Model in SystemVue
Start SystemVue using a Blank template1.
Click Tools > Library Manager....2.
In the Library Manager dialogue box, select Add From File.3.
Browse to your Project location and then into either the Debug or Release sub4.
directory (use the configuration that you chose to Build the project).
Change the File of Type to "SystemVue DLL Libraries (.dll)" and select the <project5.
name>.dll. In our case it will be MyFirstLibrary.dll.
Click Open. Scroll down to see that the library has been added and is shown in the6.
list.
Click Close.7.
Under Part Selector, in Current Library choose MyFirstLibrary Parts, this will8.
show the Adder that we have created.

Place an instance of the Adder and create the design:9.

Simulate the design. The design will give an expected error about the value of Gain10.
== 0. This is the error we have posted in our Initialize() method in Adder.cpp file
above.
Change the value of Gain to a non-zero value and successfully simulate the design.11.

SystemVue - Users Guide

237

SystemVue uses the DLL library name to name the Part, Model and Enum libraries. The model
builder DLLs that you load must have unique names. Please read Defining the Model Library
Properties (users) to override this default behavior.

 What to Do if the Model Terminates SystemVue
Unexpectedly
 When SystemVue terminates unexpectedly during simulation, the following error report dialog
window will pop up, and you can do one of two things:

Submit the error report
If you use Visual Studio IDE

open the following Error Report Contents dialog window by clicking the "
What data does this error report contain?" link.
click the link to the .dmp file (Visual Studio should come up and load the .dmp)
start debugging by selecting "Start Debugging" under the Debug menu or by
pressing the F5 key. If the problem that caused the unexpected termination is in
your custom model code, Visual Studio should stop at the line of code where the
error occurred.

SystemVue - Users Guide

238

 Loading and Debugging a C++ Model
Library
 Loading a C++ Model Library
To load your model builder DLL, use the Library Manager. See Using the Library
Manager (users) documentation for more details.

 Debugging Data Flow C++ Models
Debugging a Data Flow C++ model requires the corresponding library to be built with
Debug solution configuration in Visual Studio. For hands on learning we will be using the
Adder model that we have developed in the section Adding a new Model to the Project
(users) above.

Build the library with Debug configuration, load the library in SystemVue and create1.
the design using the Adder model as shown in figure below

Change the value of Gain parameter to a non-zero value and save the design.2.
Add the break points in Adder.cpp inside Visual Studio as shown below3.

Make sure that SystemVue is running, inside the Visual Studio click on Debug ->4.
Attach to Process... as shown below

In the Attach to Process dialog box select SystemVue.exe instance that you want5.
to debug with, as shown below.

Click Select... to bring up Select Code Type dialog box.1.
Select Debug these code types: and then select Native. Click OK button to2.
save settings and close Select Code Type dialog box.

SystemVue - Users Guide

239

Click Attach in the Attach to Process to attach SystemVue to the Visual Studio6.
debugger.
In the SystemVue instance, that is now attached to Visual Studio, start the7.
simulation. This will invoke the break point in Visual Studio inside
Adder::Initialize() function. Hit continue, and next break point will be in Run()
method, hit continue again, this will again stop inside Run() but for the next input
data point. Keep debugging in Visual Studio as you do for any other C++ code. Read
visual studio documentation to learn more about how Visual Studio debugger works.
Remove break point from inside Run() method and hit continue again, this will finish8.
the SystemVue simulation.

 Making Changes in C++ Model while SystemVue is
Running
If you make any change in your code in Visual Studio and try to build the project while the
corresponding DLL is still loaded, then Visual Studio build process will fail complaining that
it cannot open the corresponding DLL. To build the Visual Studio project without closing
SystemVue, remove (unload) (users) the corresponding DLL from SystemVue using the
Library Manager. You may need to Add (load) (users) the DLL again in SystemVue after
re-building the DLL. See Using the Library Manager (users) documentation for more
details. Optionally you could close SystemVue, build the project and then restart
SystemVue without having the need to unload/load the DLL library.

SystemVue - Users Guide

240

 Quick start
This quick start section will cover building an example Visual Studio project shipped with
SystemVue, loading the newly built dll in SystemVue and running the simulation using
example workspaces. The later sections will cover:

setting up a new Visual Studio project (users) to build custom C++ models
writing C++ models (users)
debugging C++ models (users)

SystemVue is shipped with an example Visual Studio project in the directory C:\Program
Files\SystemVue2011.03\ModelBuilder\SystemVue Model Builder, where
C:\Program Files\SystemVue2009.08 is the directory where SystemVue is installed. This
project contains source code for several C++ models. Some of those model are shown in
the following table.

Model Description Example Workspace using the Model

AddCx Two input complex adder Examples\Model Building\C Modeling\Simple
Model Builder Example.wsv

FIR Floating point FIR filter, functionally equivalent
to FIR model (algorithm)

Examples\Model Building\C Modeling\Simple
Model Builder Example.wsv

CIC_Filter Floating point cascaded integrator-comb (CIC)
filter

Examples\Model Building\CIC Filter.wsv

UpSample Floating point upsampler, similar to UpSample
model (algorithm)

Examples\Model Building\C Modeling\Simple
Model Builder Example.wsv

Warning
Before opening the examples in the above table, you must compile the example Visual Studio project and
load the generated Custom.dll file in SystemVue

 Compiling the Example Visual Studio Project
Copy the C:\Program Files\SystemVue2009.08\ModelBuilder\SystemVue1.
Model Builder directory to any location on the same computer where SystemVue is
installed. A good location to copy this project can be the default Visual Studio
projects directory such as My Documents\Visual Studio 2008\Projects for Visual
Studio 2008.
In Visual Studio, open the solution file SystemVue Model Builder.sln located in the2.
directory you just copied. This solution contains a Visual Studio project named
Custom.
Observe the code in the Custom project. You may also look at the ReadMe.txt.3.
Build the library by clicking Build -> Build Solution, by default the Debug4.
configuration will be built. A successful build of this project will create a library
named Custom.dll under SystemVue Model Builder\Debug directory.

 Loading the Custom Library into SystemVue
Next, you'll need to load the custom library into SystemVue. To do this, follow the steps
below:

Start SystemVue with Blank Workspace.1.
Click Tools > Library Manager....2.
In the Library Manager dialogue box, select Add From File.3.
Browse to SystemVue Model Builder\Debug directory.4.
Change the File of Type to "SystemVue DLL Libraries (.dll)" and select Custom.dll.5.
In the SystemVue Part Selector, you will now see a new library named Custom6.
Parts.

 Simulating the Example WorkSpace
Open Examples\Model Building\C Modeling\Simple Model Builder1.
Example.wsv in SystemVue.
The workspace contains three designs2.

AddCx Test containing instance A1 using auto-generated symbol and AddCx1.
model from Custom library we have just loaded.

UpSample Test containing instance U1. In this case, UpSample model from2.
Custom library was added to SystemVue built in part UpSample using Manage
Model (users) option.

FIR Test containing instance F1. In this case, the pre-existing FIR symbol was3.
hard-coded in the C++ model. Assigning the existing symbol to a model in C++
code is covered in the section Modifying Model Properties (users) in Data Flow
C++ models section.

Simulate each design, and observe the results.3.

http://en.wikipedia.org/wiki/Cascaded_Integrator-Comb_Filter
http://en.wikipedia.org/wiki/Cascaded_Integrator-Comb_Filter
http://en.wikipedia.org/wiki/Cascaded_Integrator-Comb_Filter

SystemVue - Users Guide

241

SystemVue - Users Guide

242

 Requirements
SystemVue must be installed on the machine where you will be building the Custom
C++ model library.
The SystemVue C++ Model Builder requires either:

Microsoft Visual C++ 2008 Express Edition (freely available from
Microsoft)
Microsoft Visual Studio C++ 2008 with SP1

http://www.microsoft.com/express/vc/
http://www.microsoft.com/express/vc/
http://msdn.microsoft.com/en-us/vstudio/products/default.aspx
http://msdn.microsoft.com/en-us/vstudio/products/default.aspx

SystemVue - Users Guide

243

 Supported Data Types
There are certain restrictions on using data types for inputs, outputs, and/or parameters.
You are free to use any valid C++ data type object if it is not used as an input, output, or
a parameter.

 Data Types Used as Parameters
A C++ model can support only the following types for class data members that will be
used as parameters. These class data members must be declared with public access in
the class declaration:

C++ Built In Scalar Data Types: The C++ data types int, double, float,
std::complex<double>, std::complex<float>, bool, and char * are supported as
scalar parameters. Note that char * is used as scalar parameter to represent a
character string or file name type parameter.
C++ Built In Pointer Data Types: The C++ pointer data types int*, double*, and
std::complex<double>* are supported as array parameters. Each pointer data type
must be accompanied with an unsigned type data member to hold the size of array
set by the simulator.
SystemVue Matrix Data Type: The Matrix is supported for int, float, double,
std::complex<float> and std::complex<double> version of AgilentEEsof::Matrix.
SystemVue Built In Enumerations:

AgilentEEsof::QueryEnum: Possible values are AgilentEEsof::QUERY_NO and
AgilentEEsof::QUERY_YES.
AgilentEEsof::BooleanEnum: Possible values are
AgilentEEsof::BOOLEAN_FALSE and AgilentEEsof::BOOLEAN_TRUE.
AgilentEEsof::SwitchEnum: Possible values are AgilentEEsof::SWITCH_OFF
and AgilentEEsof::SWITCH_OFF.
AgilentEEsof::FixedPointEnums::Sign: Possible values are
AgilentEEsof::FixedPointEnums::UNSIGNED and
AgilentEEsof::FixedPointEnums::TWOS_COMPLEMENT.
AgilentEEsof::FixedPointEnums::QuantizationMode: Possible values are
AgilentEEsof::FixedPointEnums::ROUND
AgilentEEsof::FixedPointEnums::ROUND_ZERO,
AgilentEEsof::FixedPointEnums::ROUND_MINUS_INFINITY,
AgilentEEsof::FixedPointEnums::ROUND_INFINITY,
AgilentEEsof::FixedPointEnums::ROUND_CONVERGENT,
AgilentEEsof::FixedPointEnums::TRUNCATE, and
AgilentEEsof::FixedPointEnums::TRUNCATE_ZERO.
AgilentEEsof::FixedPointEnums::OverflowMode: Possible values are
AgilentEEsof::FixedPointEnums::SATURATE,
AgilentEEsof::FixedPointEnums::SATURATE_ZERO,
AgilentEEsof::FixedPointEnums::SATURATE_SYMMETRICAL,
AgilentEEsof::FixedPointEnums::WRAP, and
AgilentEEsof::FixedPointEnums::WRAP_SIGN_MAGNITUDE.

Note
At your option, to avoid long nested namspace such as "AgilentEEsof::FixedPointEnums" you
may use using directive in cpp file. The use of using directive is not encouraged in .h files.

User Defined Enumerations: A user defined C++ enum can also be used as a
parameter, the enumeration type needs to be specified when adding such an
enumeration for proper type conversions. The details will be given in later sections.

 Data Types Used as Inputs/Outputs
A C++ model can support only the following types for class data members that will be
used as inputs/outputs. These class data members must be declared with public access in
the class declaration:

C++ Built In Data Types as Uni-rate Inputs/Outputs: The C++ data types int,
double, and std::complex<double> are supported as uni-rate inputs/outputs.
C++ Built In Pointer Data Types as Multi-rate Inputs/Outputs: The C++
pointer data types int*, double*, and std::complex<double>* are supported as
multi-rate inputs/outputs. For these data types an unsigned type rate variable may
be added to specify the rate; the default rate for each input/output using these data
types is "1".
SystemVue CircularBuffer Data Types: SystemVue supports highly effecient built
in CircularBuffer data types to implement inputs/outputs for better performance and
ease of coding. It is highly recommended to use the CircularBuffer data types as
inputs/outputs instead of C++ built in data types. The CircularBuffer data types are
multi-rate in nature; to implement a uni-rate model use rate=1.
SystemVue CircularBufferBus Data Types: A bus of CircularBuffer inputs/outputs.
The CircularBufferBus data types are the only way to implement a bus input or bus
output.
SystemVue TimedCircularBuffer<T> Data Types: The templated
TimedCircularBuffer<T> data types are similar to CircullarBffer data types but they
are also able to access time stamps, and to set/get sample rate. TimedCircularBuffer
should only be use inside TimedDFModel (users).
SystemVue EnvelopeCircularBuffer Data Types: Inherits from
TimedCircularBuffer< EnvelopeSignal > and uses a private member double
m_dFc to store the characterization frequency associated with the envelope signal.
Please read Envelope Signal Type for more details.

 CircularBuffer Data Types

A templated CircularBuffer< T > data type is multi-rate by design, hence it is considered
as collection of individual data points, which can be referenced using the [] operator. The
index 0 for the [] operator points to the oldest sample. A CircularBuffer< T > data type
can be used exactly the same way as an array of the same basic data type. For example,
AgilentEEsof::CircularBuffer< double > can be used exactly the same way as a double *.
By default, the rate of a CircularBuffer is set to 1. To change the rate, use the void
SetRate(size_t iRate) method. The rate value can be queried using the size_t
GetRate() const accessor method. SystemVue handles all the memory
allocation/deallocation for the CircularBuffer< T > data types. This memory is guaranteed
to be allocated before the first invokation of the Run() (users) method of a model.
Therefore, the [] operator used to access the individual data values inside the
CircularBuffer< T > must only be called inside the Run() (users) method of your model.
Using the [] operator outside the Run() (users) method would cause access to NULL
memory location, which will result in a crash. On the other hand, the SetRate method
must be called inside Setup() (users) method if you want to set the rate of the
CircularBuffer to a value other than the default one (1) and the GetRate method can be
called anywhere in your code. Inside the Run() (users) method of your model, you can
also query the CircularBuffer< T > to find out whether the corresponding input/output is
connected. This is done using the IsConnected() method and is useful for inputs/outputs
that are set to be optional (users). Sometimes, there is a need to access input samples
older than what you can get based on input's multi-rate properties. In this case, the
method void SetHistoryDepth(size_t iHistoryDepth) can be used (only inside Setup()
(users) method of a model) to set the number of samples that need to be stored in the
CircularBuffer< T > including the most recent sample (if this method is not used the
number of samples stored in the CircularBuffer<T> is equal to its rate). Index 0 for the []
operator will point to the oldest sample in the history. The argument iHistoryDepth must
be greater than or equal to the CircularBuffer<T> rate. The method size_t
GetHistoryDepth() can be used to access the history depth.

The following CircularBuffer<T> data types are predefined using typedefs and are only
supported types for use as inputs/outputs:

AgilentEEsof::BoolCircularBuffer: Stores bool objects (behaves like bool *). Same
as AgilentEEsof::CircularBuffer< bool >.
AgilentEEsof::IntCircularBuffer: Stores int objects (behaves like int *). Same as
AgilentEEsof::CircularBuffer< int >.
AgilentEEsof::DoubleCircularBuffer: Stores double objects (behaves like double

SystemVue - Users Guide

244

*). Same as AgilentEEsof::CircularBuffer< double >.
AgilentEEsof::DComplexCircularBuffer: Stores std::complex<double> objects
(behaves like std::complex<double> *). Same as AgilentEEsof::CircularBuffer<
std::complex < double > >.
AgilentEEsof::FloatCircularBuffer: Stores float objects (behaves like float *).
Same as AgilentEEsof::CircularBuffer< float >.
AgilentEEsof::FComplexCircularBuffer: Stores std::complex<float> objects
(behaves like std::complex<float> *). Same as AgilentEEsof::CircularBuffer<
std::complex < float > >.
AgilentEEsof::FixedPointCircularBuffer: Stores AgilenEEsof::FixedPoint objects
(behaves like AgilenEEsof::FixedPoint *). Same as AgilentEEsof::CircularBuffer<
AgilentEEsof::FixedPoint >. For more details about the SystemVue fixed point data
type AgilentEEsof::FixedPoint see the section SystemVue FixedPoint Data Type.
AgilentEEsof::BoolMatrixCircularBuffer: Stores BoolMatrix (Matrix<bool>)
objects. Same as AgilentEEsof::CircularBuffer< AgilentEEsof::Matrix < bool > >.
AgilentEEsof::IntMatrixCircularBuffer: Stores IntMatrix (Matrix<int>) objects.
Same as AgilentEEsof::CircularBuffer< AgilentEEsof::Matrix < int > >.
AgilentEEsof::DoubleMatrixCircularBuffer: Stores DoubleMatrix
(Matrix<double>) objects. Same as AgilentEEsof::CircularBuffer<
AgilentEEsof::Matrix < double > >.
AgilentEEsof::DComplexMatrixCircularBuffer: Stores DComplexMatrix
(Matrix<std::complex<double>>) objects. Same as AgilentEEsof::CircularBuffer<
AgilentEEsof::Matrix < std::complex < double > > >.
AgilentEEsof::FloatMatrixCircularBuffer: Stores FloatBoolMatrix (Matrix<float>)
objects. Same as AgilentEEsof::CircularBuffer< AgilentEEsof::Matrix < float > >.
AgilentEEsof::FComplexMatrixCircularBuffer: Stores FComplexMatrix
(Matrix<std::complex<float>>) objects. Same as AgilentEEsof::CircularBuffer<
AgilentEEsof::Matrix < std::complex < float > > >.

For more details about the SystemVue matrix data type AgilentEEsof::Matrix<T> see the
section SystemVue Matrix Data Type. To make use of any of the MatrixCircularBuffer
data types, the header file MatrixCircularBuffer.h needs to be included.

Note

CircularBuffer< T > data types are only designed to be used as inputs/outputs and not for any other
purpose.
CircularBuffer< T > data types are the most efficient way to implement inputs/outputs; it is highly
recommended that they are used instead of the built in C++ data types.
The [] and IsConnected() must not be used outside Run() (users) method of your model.

 SystemVue CircularBufferBus Data Types

The CircularBufferBus data types are the only way to implement a bus input or bus output.
The bus inputs/outputs are shown as double arrow ports on the SystemVue schematic.
The following CircularBufferBus data types are predefined and available for use as bus
inputs/outputs (to make use of these data types, the header file MatrixCircularBuffer.h
needs to be included):

AgilentEEsof::BoolCircularBufferBus: Bus of AgilentEEsof::BoolCircularBuffer.
AgilentEEsof::IntCircularBufferBus: Bus of AgilentEEsof::IntCircularBuffer.
AgilentEEsof::DoubleCircularBufferBus: Bus of
AgilentEEsof::DoubleCircularBuffer.
AgilentEEsof::DComplexCircularBufferBus: Bus of
AgilentEEsof::DComplexCircularBuffer.
AgilentEEsof::FloatCircularBufferBus: Bus of AgilentEEsof::FloatCircularBuffer.
AgilentEEsof::FComplexCircularBufferBus: Bus of
AgilentEEsof::FComplexCircularBuffer.
AgilentEEsof::FixedPointCircularBufferBus: Bus of
AgilentEEsof::FixedPointCircularBuffer.
AgilentEEsof::BoolMatrixCircularBufferBus: Bus of
AgilentEEsof::BoolMatrixCircularBuffer.
AgilentEEsof::IntMatrixCircularBufferBus: Bus of
AgilentEEsof::IntMatrixCircularBuffer.
AgilentEEsof::DoubleMatrixCircularBufferBus: Bus of
AgilentEEsof::DoubleMatrixCircularBuffer.
AgilentEEsof::DComplexMatrixCircularBufferBus: Bus of
AgilentEEsof::DComplexMatrixCircularBuffer.
AgilentEEsof::FloatMatrixCircularBufferBus: Bus of
AgilentEEsof::FloatMatrixCircularBuffer.
AgilentEEsof::FComplexMatrixCircularBufferBus: Bus of
AgilentEEsof::FComplexMatrixCircularBuffer.

 Using CircularBufferBus Data Types

The CircularBufferBus data types are the only way to implement a bus type input or
output. The size of the Bus can be accessed using the size_t GetSize() method. An
individual CircularBuffer can be accessed using the [] operator. To access the jth data
sample of the ith input connected to the bus use input[i][j]. For example, input[0][2] can
be used to access 3rd data sample (indexed by 2) in the first multi-rate input (indexed by
0) connected to the bus input. The outputs can be accessed similarly.

 SystemVue Timed Circular Buffer

SystemVue provides AgilentEEsof::TimedCircularBuffer<T> for a timed model to
access time stamps (sim) of the input (or output) data samples and to set sample rate
and latency information. AgilentEEsof::TimedCircularBuffer is defined in
\ModelBuilder\include\SystemVue\TimedCircularBuffer.h in the SystemVue installation
directory. AgilentEEsof::TimedCircularBuffer<T> inherits from
AgilentEEsof::CircularBuffer<T> to provide additional timing information using
AgilentEEsof::CircularBufferTime class. The member methods of
AgilentEEsof::TimedCircularBuffer are described as follows.

double GetTime(size_t iIndex, unsigned long long iCount) const: Get the
time stamp at the iCount th firing of the model and the iIndex th sample of the
buffer. Use this method in TimedDFModel::Run() to get the time stamp of a particular
sample.
bool SetSampleRate(double dSampleRate): Set the sample rate, dSampleRate,
and the corresponding time step (1/dSampleRate) of the model's input (or output)
represented by this circular buffer. Use this method in TimedDFModel::Setup().
Return false if dSampleRate is not greater than 0.
bool SetTimeStep(double dTimeStep): Set the time step, dTimeStep, and the
corresponding sample rate (1/dTimeStep) of the model's input (or output)
represented by this circular buffer. Use this method in TimedDFModel::Setup().
Return false if dTimeStep is not greater than 0.
void SetStartTime(double dStartTime): Set the start time of the output. Use
this method in TimedDFModel::CalculateLatency(). See Overriding Latency
Calculation (users).
double GetSampleRate() const: Get the sample rate. This method can be used
after TimedDFModel::Setup() is called.
double GetTimeStep() const: Get the time step. This method can be used after
TimedDFModel::Setup() is called.
double GetStartTime() const: Get the start time. This method can be used after
TimedDFModel::Setup() and TimedDFModel::CalculateLatency() are called.

SystemVue also provides AgilentEEsof::TimedCircularBufferE<T>, which inherits from
AgilentEEsof::CircularBufferE<T> and provides similar timed circular buffer implementation for data
types that have internal memory.

 SystemVue Envelope Circular Buffer

AgilentEEsof::EnvelopeCircularBuffer inherits from TimedCircularBuffer<
EnvelopeSignal > and uses a private member double m_dFc to store the
characterization frequency associated with the envelope signal. The member methods of
AgilentEEsof::EnvelopeCircularBuffer are described as follows.

EnvelopeCircularBuffer() : Default constructor, the characterization frequency is
default to 0.
double GetCharacterizationFrequency() : Get characterization frequency

SystemVue - Users Guide

245

void SetCharacterizationFrequency(double dFc) : Set characterization
frequency.

typedef CircularBufferBusT<EnvelopeCircularBuffer> EnvelopeCircularBufferBus
is also defined in \ModelBuilder\include\SystemVue\EnvelopeSignal.h for easy usage of
envelope signal circular buffer bus.

Analytic signal is naturally associated with timing information — it requires time stamp to obtain the real
baseband form or to convert to another characterization frequency. As a result, EnvelopeCircularBuffer is
designed to inherit from TimedCircularBuffer in order to access the timing information. For the same
reason, models that use envelope signal are usually inherited from AgilentEEsof::TimedDFModel.

 SystemVue FixedPoint Data Type
SystemVue provides AgilentEEsof::FixedPoint data type that is similar in computational
behavior to SystemC TM 2.2 fixed point type based on IEEE Std. 1666 TM Language
Reference Manual (LRM) . However, the actual API is modified to suit C++ modeling in
SystemVue. The major differences in AgilentEEsof::FixedPoint API and SystemC TM 2.2
fixed point data type API are described below:

The AgilentEEsof::FixedPoint data type can be configured as both signed (2's
complement) and unsigned.
The FixedPointParameters can be changed using SetParameter method of
AgilentEEsof::FixedPoint any time, whereas in SystemC TM 2.2 , the scfx_params
cannot be modified after the construction of sc_fix or sc_ufix. This is needed because
fixed point parameters are dependent on user specified values through model
parameters.
Unlike sc_fix and sc_ufix, the AgilentEEsof::FixedPoint has a default constructor and
a copy constructor. To specify AgilentEEsof::FixedPointParameters, you must call a
SetParameter method.
Unlike sc_fix and sc_ufix, the AgilentEEsof::FixedPoint provides only bit references
and not sub-references.

The computational behavior such as overflow, quantization, effect of integer word length
(which could be negative or larger than word length) is similar to that of SystemC TM 2.2 .
SystemVue also provides an arbitrary precision fixed point data type
AgilentEEsof::FixedPointValue. The data stored in AgilentEEsof::FixedPointValue does
not lose bit-width precision and/or location of binary point i.e. no overflow or quantization
handling is performed on an object of AgilentEEsof::FixedPointValue.

Warning
An object of AgilentEEsof::FixedPoint and AgilentEEsof::FixedPointValue cannot be used as an input or an
output, use AgilentEEsof::FixedPointCircularBuffer or AgilentEEsof::FixedPointCircularBufferBus instead.

 AgilentEEsof::FixedPoint Constructors

The AgilentEEsof::FixedPoint provides

A default constructor which sets the fixed point properties as follows
Word Length (wl) = 32
Integer Word Length (iwl) = 32
Sign = AgilentEEsof::FixedPointEnums::TWOS_COMPLEMENT
SaturationBits = 0
QuantizationMode = AgilentEEsof::FixedPointEnums::TRUNCATE
OverflowMode = AgilentEEsof::FixedPointEnums::WRAP

A copy constructor

 AgilentEEsof::FixedPoint Mutators

The AgilentEEsof::FixedPoint provides following mutators to set fixed point parameters

 void setParameters(FixedPointEnums::Sign eSign,
FixedPointEnums::QuantizationMode qm=FixedPointEnums::TRUNCATE,
FixedPointEnums::OverflowMode om=FixedPointEnums::WRAP, int nb=0);

where

eSgin could be FixedPointEnums::TWOS_COMPLEMENT OR
FixedPointEnums::UNSIGNED .
qm specifies the quantization mode, possible values are. Note that
"FixedPointEnums" is a nested namespace inside AgilentEEsof namespace
(AgilentEEsof::FixedPointEnums)

FixedPointEnums::ROUND - Rounding to Plus infinity.
FixedPointEnums::ROUND_ZERO - Rounding to Zero.
FixedPointEnums::ROUND_MINUS_INFINITY - Rounding to Minus infinity.
FixedPointEnums::ROUND_INFINITY - Rounding to infinity.
FixedPointEnums::ROUND_CONVERGENT - Convergent rounding.
FixedPointEnums::TRUNCATE - Truncation.
FixedPointEnums::TRUNCATE_ZERO - Truncation to zero.

om specifies the overflow mode, possible values are. Note that "FixedPointEnums" is
a nested namespace inside AgilentEEsof namespace (AgilentEEsof::FixedPointEnums)

FixedPointEnums::SATURATE - Saturation
FixedPointEnums::SATURATE_ZERO - Saturation to Zero.
FixedPointEnums::SATURATE_SYMMETRICAL - Symmetrical saturation.
FixedPointEnums::WRAP - Wrap-around.
FixedPointEnums::WRAP_SIGN_MAGNITUDE - Sign magnitude wrap-around.

nb is used to provide number of saturation bits for FixedPointEnums::WRAP and
FixedPointEnums::WRAP_SIGN_MAGNITUDE Overflow modes.

 void setParameters(int wl, int iwl, FixedPointEnums::Sign eSign,
FixedPointEnums::QuantizationMode qm=FixedPointEnums::TRUNCATE,
FixedPointEnums::OverflowMode om=FixedPointEnums::WRAP, int nb=0);

where

wl specifies the word length.
iwl specifies the integer word length.
Other parameters have the same meaning as mentioned above.

 void setParameters(const FixedPointParameters & cParams);

where cParams is an object of AgilentEEsof::FixedPointParameters. The
AgilentEEsof::FixedPointParameters is used to hold all fixed point parameter
information. Please look at the FixedPointParameters.h file under <SystemVue Install
Directory>\ModelBuilder\inlcude directory to use this class.

 AgilentEEsof::FixedPoint Bit Selection Operator/Method

The [] Operator: The operator [i] returns a reference (FixedPointBitRef) to i th bit in
the corresponding FixedPoint object. It is to be noted that value of index i can be
negative to access fractional bits. For example myFix[-2] will return the bit reference
of 2 nd fractional bit to the right of the point in object myFix, and myFix[3] points to
the 4 th integer bit to the left of the point. Except the indexing scheme specific to the
FixedPoint, the [] can be used exactly the same manner as [] operator an array type.
FixedPointBitRef bit(int i); The bit(i) method returns a reference
(FixedPointBitRef) to i th bit in the corresponding FixedPoint object. The indexing
scheme is same as [] operator and the value of index can be negative for fractional
bits.

 AgilentEEsof::FixedPoint Explicit Conversion Methods

short to_short() const; Explicit conversion to short.
unsigned short to_ushort() const; Explicit conversion to unsigned short.
int to_int() const; Explicit conversion to int.
unsigned intto_uint() const; Explicit conversion to unsigned int.
long to_long() const; Explicit conversion to long.
unsigned long to_ulong() const; Explicit conversion to unsigned long.

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org

SystemVue - Users Guide

246

float to_float() const; Explicit conversion to float.
double to_double() const; Explicit conversion to double.
const std::string to_dec() const; Explicit conversion to std::string in decimal
format
const std::string to_bin() const; Explicit conversion to std::string in binary format
const std::string to_oct() const; Explicit conversion to std::string in octal format
const std::string to_hex() const; Explicit conversion to std::string in hexa-
decimal format

Warning
Implicit conversion to any of the above mentioned data type is not supported. You must use explicit
conversion method above for conversions.

 AgilentEEsof::FixedPoint Query Methods

bool is_neg() const; Returns true if negative
bool is_zero() const; Returns true if Zero
bool quantization_flag() const; Returns true if quantization flag is set. This means
that last assignment operator has caused quantization.
bool overflow_flag() const; Returns true if overflow flag is set. This means that
last assignment operator has caused oveflow.
int wl() const; Returns word length.
int iwl() const; Returns integer word length.
FixedPointEnums::QuantizationMode q_mode() const; Returns quantization
mode. The return mode has one of the values specified in SetParameter method
above. Also see FixedPointEnums.h as reference.
FixedPointEnums::OverflowMode o_mode() const; Returns Overflow mode. The
return mode has one of the values specified in SetParameter method above. Also see
FixedPointEnums.h as reference.
FixedPointEnums::Sign sign() const; Returns sign, either
AgilentEEsof::FixedPointEnums::TWOS_COMPLEMENT or
AgilentEEsof::FixedPointEnums::UNSIGNED.
int saturationBits() const; Returns number of saturation bits used for
FixedPointEnums::WRAP and FixedPointEnums::WRAP_SIGN_MAGNITUDE Overflow
modes.
const FixedPointParameters & getParameters() const; Returns an object of
FixedPointParameters.
AgilentEEsof::FixedPoint Assignment Operators: The =, *=, /=, +=, and -=
operators are supported for int, unsigned int, long, unsigned long, double,
const FixedPointValue, and const FixedPoint. The <<=, and >>= operaors can
be used for left, and right shift respectively, The value to the right of operator
specifies the amount of shift.
Bitwise Binary Operators: The three bitwise binary operators | (OR), & (AND), and
^ (XOR) operators are supported bitween two FixedPoint objects. These operators
does not check that FixedPointParameters are same for both inputs, it is the users
responsibility to check for any FixedPointParameters consistency between two inputs
if needed.
Binary Operators: The binary operators * (multiplication), / (division), +
(addition), and - (subtraction) is supported between an object of FixedPoint and one
of the listed data types FixedPoint, FixedPointValue, int, unsigned int, long,
unsigned long, and double. These binary operators returns an object of type
FixedPointValue which is arbitrary precision fixed point representation to avoid any
loss of information.

 AgilentEEsof::FixedPointValue

SystemVue also provides an arbitrary precision fixed point data type
AgilentEEsof::FixedPointValue. The data stored in AgilentEEsof::FixedPointValue does
not lose bit-width precision and/or location of binary point i.e. no overflow or quantization
handling is performed on an object of AgilentEEsof::FixedPointValue. The objects of
FixedPointValue and FixedPoint works seamlessly for all binary operations except bitwise
operations such as AND (&), OR(|), XOR(^) which works only with FixedPoint type. The
major difference between FixedPoint and FixedPointValue are as follows.

An object of FixedPointValue stores data without performing overflow and/or
quantization whereas FixedPoint performs quantization/overflow handling with each
assignment operator call.
An object of FixedPointValue cannot be used to perform bitwise operations such as &,
|, and ^; an object of FixedPoint needs to be used for this purpose.
An individual bit in a FixedPointValue cannot be accessed whereas it can be accessed
in an object of FixedPoint type.

One recommended place to use FixedPointValue is as an accumulator data for internal
computation, for example in case of an adder with bus input it is better to accumulate the
sum using FixedPointValue and at the end assign it to the corresponding output. This will
cause overflow/quantization handling at the output only once.

 SystemVue Matrix Data Type
SystemVue provides a matrix data type AgilentEEsof::Matrix<T>, which implements 2-
dimensional matrices (1-dimensional matrices can be defined by setting the number of
rows or columns to 1). The matrix data type is implemented as a templated class so that
matrices of different data types can be defined. Template instantiations of this class for
the most commonly used types (bool, int, float, double, std::complex<float>,
std::complex<double>) have been predefined for ease of use. The
AgilentEEsof::Matrix<T> class is a very light weight class; it only provides some very
basic matrix operations. Its intend is to facilitate efficient data movement between models
and some basic matrix math operation. Its intend is not to provide a full featured matrix
class with a rich set of matrix math operations. The table below summarizes the methods
defined in this class:

SystemVue - Users Guide

247

Method Description

Matrix() Constructor - creates empty matrix.

Matrix(size_t nRows, size_t nCols) Constructor - creates uninitialized nRows x nCols matrix.

Matrix(const Matrix & matrix) Copy Constructor.

~Matrix() Destructor.

void Resize(size_t nRows, size_t nCols) Resize matrix to nRows x nCols.

size_t NumRows() const Return the number of rows.

size_t NumColumns() const Return the number of columns.

size_t NumElements() const Return the number of matrix elements.

void SetMaxElements(size_t iMaxElements) Set the maximum number of elements the matrix can hold.

bool Zero() Set all elements to zero.

bool Zero(Matrix* pReference) Resize based on dimensions of a reference matrix and set all
elements of resized matrix to zero.

bool operator == (const Matrix & matrix) const Return TRUE if this matrix is equal to another one.

bool operator != (const Matrix & matrix) const Return TRUE if this matrix is not equal to another one.

Matrix& operator = (const Matrix& matrix) Assignment operator (copy contents of right hand side
operand to left hand side operand).

template <typename T2> void CopyFrom(const
T2* pData, size_t iSize)

Copy iSize elements from address pData to this matrix.

template <typename T2> void CopyTo(T2*
pData, size_t iSize) const

Copy the first iSize matrix elements to address pData.

T& operator() (size_t iRow, size_t iCol) Return a reference to the matrix element at row iRow and
column iCol.

T operator() (size_t iRow, size_t iCol) const Return the matrix element at row iRow and column iCol.

T& operator() (size_t iIndex) Return a reference to the iIndex matrix element (elements
stored in column major form).

T operator() (size_t iIndex) const Return the iIndex matrix element (elements stored in column
major form).

Matrix& operator-() Negate matrix.

template<typename S> Matrix& operator+= (S
scalar)

Add scalar to each matrix element.

template<typename M> Matrix& operator+=
(const Matrix<M>& matrix)

Matrix addition.

template<typename S> Matrix& operator-= (S
scalar)

Subtract scalar from each matrix element.

template<typename M> Matrix& operator-=
(const Matrix<M>& matrix)

Matrix subtraction.

template<typename S> Matrix& operator*= (S
scalar)

Multiply each matrix element with a scalar.

template<typename T2> Matrix& operator*=
(const Matrix<T2>& matrix)

Matrix multiplication.

bool diagonal(T data) Make this matrix a diagonal one with all diagonal elements
set to data.

bool identity() Make this matrix an identity one.

T* GetBuffer() Get access to the internal storage array. Matrix elements are
stored in column major form.

const T* GetBuffer() const Get access to the internal storage array (const version).
Matrix elements are stored in column major form.

void Swap(Matrix* pMatrix) Swap contents with another matrix.

In addition, the following matrix related functions are defined in the AgilentEEsof
namespace:

Function Description

template <typename M1, typename M2, typename M3> Matrix<M1>
operator + (const Matrix<M2> &mx1, const Matrix<M3> &mx2)

Return sum of matrices mx1 and
mx2.

template <typename M1, typename M2, typename M3> Matrix<M1>
operator + (const Matrix<M2> &mx1, const M3 &mx2)

Return sum of matrix mx1 and
scalar mx2.

template <typename M1, typename M2, typename M3> Matrix<M1>
operator + (const M3 &mx2, const Matrix<M2> &mx1)

Return sum of scalar mx2 and
matrix mx1.

template <typename M1, typename M2, typename M3> Matrix<M1>
operator - (const Matrix<M2> &mx1, const Matrix<M3> &mx2)

Return difference of matrices mx1
and mx2 (mx1 - mx2).

template <typename M1, typename M2, typename M3> Matrix<M1>
operator - (const Matrix<M2> &mx1, const M3 &mx2)

Return matrix mx1 minus scalar
mx2.

template <typename M1, typename M2, typename M3> Matrix<M1>
operator - (const M3 &mx2, const Matrix<M2> &mx1)

Return scalar mx2 minus matrix
mx1.

For more details see comments in the shipped header file Matrix.h.

 SystemVue Envelope Signal Data Type
A real-valued signal x(t) can be represented in the form of analytic signal xa(t) = xc(t)

exp(j 2 π fc t). In this representation, xc(t) is defined as the complex envelope of x(t),

and fc is the characterization frequency associated with the complex envelope.

Complex envelope xc(t) is a complex-valued signal. It can be expressed as xc(t) = xi(t) +

j xq(t), where xi(t) and xq(t) are both real-valued signals and are referred to as the in-

phase component the quadrature component of x(t). Using this form, the real signal
can be expressed as x(t) = Real{xa(t)} = xi(t) cos(2 π fc t) - xq(t) sin(2 π fc t).

In SystemVue, a modulated passband signal is usually represented as a time varying
complex envelope signal xc(t) associated with a constant positive fc in the envelope

signal data type. The benefit of using SystemVue envelope signal to represent
modulated signal is that the sample rate needed to fully represent a complex envelope
signal can be in the order of the information bandwidth, which is in general orders of
magnitude smaller than the sample rate required for direct real signal representation.

SystemVue envelope signal can represent EITHER a real signal x(t) OR an analytic
signal xc(t) exp(j 2 π fc t) (which is equivalent to a complex envelope signal xc(t) with

associated constant fc). The choice of representation is based on the characterization

frequency fc associated with the envelope signal.

If fc = 0, SystemVue treats the envelope signal as a real signal x(t). If fc > 0, SystemVue treats the

envelope signal as an analytic signal xa(t) = xc(t) exp(j 2 π fc t) (or equivalently a complex envelope

signal xc(t) with associated fc).

SystemVue currently does not support fc < 0.

For more detailed discussion about SystemVue envelope signal, we refer the users to
Envelope Signal (sim).

 Envelope Signal Type

SystemVue provides AgilentEEsof::EnvelopeSignal to represent the envelope signal
data type introduced above and provides AgilentEEsof::EnvelopeCircularBuffer to
access the characterization frequency associated with the envelope signal.
AgilentEEsof::EnvelopeSignal and AgilentEEsof::EnvelopeCircularBuffer are defined in
\ModelBuilder\include\SystemVue\EnvelopeSignal.h in the SystemVue installation
directory.

AgilentEEsof::EnvelopeSignal uses a private member std::complex<double>
m_cxSignal to store the value of a real sample or a complex envelope sample. The
member methods of AgilentEEsof::EnvelopeSignal are described as follows.

EnvelopeSignal() : Default constructor, m_cxSignal is default to 0.
EnvelopeSignal(const std::complex<double>& cx) : Convert constructor,
m_cxSignal is set to cx.
double real() const : Get real part. If the associated characterization frequency is
0, use this method to get the real baseband signal value.
double imag() const : Get imaginary part.
std::complex<double> complex() const : Get complex value. If the associated
characterization frequency is greater than 0, use this method to get the complex

SystemVue - Users Guide

248

envelope I-Q value.
EnvelopeSignal& operator = (const std::complex<double>& cx) :
Assignment operator for std::complex<double>. Use this method to assign complex
envelope I-Q value to the EnvelopeSignal.
EnvelopeSignal& operator = (const double& d) : Assignment operator for
double. Use this method to assign real baseband value to the EnvelopeSignal.
double ConvertToReal(double dFc, double dTime) const : Convert complex
envelope I-Q representation to real baseband signal. dFc is the characterization
frequency. dTime is the time stamp of the EnvelopeSignal sample, which can be
obtained from TimedCircularBuffer::GetTime(size_t iIndex, unsigned long long
iCount). Use this method only if the associated characterization frequency is greater
than 0.
std::complex<double> ConvertToNewFc(double dFc, double dNewFc,
double dTime) const : Convert complex envelope I-Q value characterized at dFc to
the equivalent I-Q representation at characterization frequency dNewFc and return
the converted complex envelope I-Q value. dFc is the characterization frequency
associated with the envelope signal. dNewFc is the new characterization frequency.
dTime is the time stamp of the EnvelopeSignal sample, which can be obtained from
TimedCircularBuffer::GetTime(size_t iIndex, unsigned long long iCount). Use this
method only if the associated characterization frequency is greater than 0.

SystemVue - Users Guide

249

 Sub-Network Models
A sub-network model is used to abstract a model or group of models to something easier
to use and manage from a users perspective. This type of model hides implementation
details that may confuse the user or distract from the readability of a simulation topology.

For example, a user may want to simulate the effects of a non-linear filter. Models exist
for filters and non-linear blocks. However, there is no non-linear filter model. A new sub-
network model can be created out of the two existing models. The parameters from these
two models can be abstracted to only reveal parameters that user would be interested in
entering for this type of sub-network model.

The abstraction of the Sub-Network model in SystemVue is really an object called a
design. The Sub-Network model is really a design object with the following attributes:

PartList
Schematic
Equations
Parameters
Notes

All of these attributes are interrelated except for the Notes which serve as documentation
or help for the Sub-Network model.

 Contents
Roles of Sub-Network Model Attributes (users)
Creating Parameterized Sub-Network Model (users)
Run-time Hierarchy (users)

 Creating a Parameterized Sub-Network Model
There are two different ways to to create a sub-network model in SystemVue. One is by

clicking on the New Item button () on the Workspace Tree toolbar. The other is by
right clicking on a folder in the workspace tree.

Method 1 - Clicking on the New Item Button

Click the New Item button () on the Workspace Tree toolbar1.
Select the 'Designs >' submenu2.
Now select 'Add User Model...'3.
This model will be added under the folder that last selected in the workspace tree4.

Or

Method 2 - Right Clicking on a Workspace Folder

Right click on a folder in the workspace tree to bring up the right click menu.1.
Select the 'Add >' submenu.2.
Select the 'Designs >' submenu3.
Now select 'Add User Model...'4.
The design will be added under the folder that was initially right clicked5.

Note
If you create the new design in the wrong folder, simply drag it to the folder of interest.

 Entering User Parameters

Add new parameters by clicking the Add Parameter button.1.
Copy selected parameters (from the parts in the design) into the list by clicking the2.
Copy Parameters button. A selection dialog box is displayed. Select individual
parameters (to copy from the base design) by placing a checkmark beside each
parameter you wish to copy. Then click OK.
Tip: This is the recommended way of adding parasitics (etc.) to an existing part (a
"user model").
Delete unwanted entries with the Delete Selected Parameter button.3.

Name - The name of the parameter.
Description - A short description of the parameter
Default Value - The normal, standard value for this parameter
Units - The units-of-measure for this parameter
Tune - Is it normally tuned?
Show - Is it normally shown on a schematic?
Initially Use Default - Should the Default value be used when the part is placed on
a schematic?
Validation - Usage rules that determine if a parameter value is valid and in-range.
See details below.
Hide Condition - Dependence of the activity and visibility of the parameter on
values of other parameters of the design. See details below.

 Validation Types

SystemVue - Users Guide

250

Type Comment

Floating point
number

1.0, 1e-6, etc. are valid entries

Warn if negative Posts a warning if the value is < 0

Warn if non-
positive

Posts a warning if the value is < 1

Positive integer Only numbers like 1, 2, 3, ... are allowed

<None> No validation will be performed

Text The parameter is a string; any text is valid

Warning Always generates a warning

Error if negative Posts an error if the value is < 0

Error if non-
positive

Posts an error if the value is < 1

Error Always generates an error

Filename Brings up a browse button for file selection as well option for manual a text entry

Integer Any integer value

Complex number Complex number in RI MathLang syntax, e.g. X + j*Y. Real and integer values supported
by default

Integer array Fully defined MxN array of integers with comma delimited columns and semi-colon
delimited rows

Floating point
array

Fully defined MxN array of integer or real numbers with comma delimited columns and
semi-colon delimited rows

Complex array Fully defined MxN array of integer, real or complex numbers with comma delimited
columns and semi-colon delimited rows

Enumeration Allows definition of arbitrary user-defined labels and options for assigning values to the
parameter of interest

Note
An array parameter may be specified as a scalar number without any delimiters as in MyArray0=2.345. It
may be a one-dimensional vector as in MyArray1=[2, 3, -4].
Two-dimensional arrays are specified row over column as MyArray2=[1, 2, 3; 4, 5, 6] where the first
three parts form the first row.
Higher dimensions are created by appending nested versions of 2-D representations separated by semi-
colons e.g.
MyArray3=[[1, 2; 3, 4; 5, 6]; [-1, -2; -3, -6; -5, -4]].
This is a 3-D array consisting of 2 separate 3x2 2-D arrays such that matrix size is 2x3x2.

 Using enumerated parameters

The process of defining an enumerated parameter starts with the selection of this
validation type followed by selection of the context sensitive Edit Enumeration button
which appears adjacent to the other parameter editing buttons. Clicking this button will
invoke the Enter List of Enumerated Parameter Values dialog box.

It is possible to choose a pre-defined enumeration template by selecting the library and
enumeration name. Customizations can be performed by clicking the New Enumeration
button which is transformed into a Copy From ... button to allow graphical selection from
an existing library, or a newly created enumeration library, name and description.

Names and states of manually created enumerations or modifications of existing
enumerations can be directly entered into the table and organized using the Add,
Remove, Up and Down buttons.

Upon accepting the enumeration list, the corresponding drop-down menu is created under
the Default Values column for this parameter in the main Parameter tab. Note that the
first entry of the enumeration table will be treated as the initial default value regardless of
the state number associated with it. In this example, the first entry was 1:Inverting
Behavior, which despite its state number being 1, not 0, was picked as the default in the
Parameters main tab. The user can set a different default state prior to leaving this tab.

 Setting Hide Condition

The final column of the Parameter entry table allows the user to set up boolean
expressions for hiding and deactivating parameters based on the values of other
parameters. The boolean expressions entered in this column must be written using
MathLang syntax. If the expression evaluates to TRUE the parameter will be hidden and
deactivated (ignored for simulation purposes). If the expression evaluates to FALSE the
parameter will be visible and active (it will be used for simulation purposes).

One example is shown in the Amplifier part of the Algorithm Design library. This built-in
component has a total of 11 parameters as shown in the model view which can be

SystemVue - Users Guide

251

imported from the library into any workspace.

Observe that the parameters TOIout, dBc1out, PSat, GCSat, RappS and GComp all have
Hide Conditions defined based on the value of the GCType paramater. For instance,
TOIout is to be hidden and its assigned value ignored if GCType is NOT in the set {1, 3, 4,
6}, in which case the Hide Condition for TOIout evaluates to FALSE. The corresponding
behavior can be observed when placing an instance of the part on a schematic and double
clicking on it.

When GCType is selected to be a member of the above mentioned set, e.g. to
3:TOI+1dBc, the TOIout parameter is displayed and enabled for editing.

Setting GCType to a non-member of the above set, e.g. 2:1dBc, results in a TRUE value
for the Hide Condition and therefore the parameter TOIout is hidden from the parameter
grid and its value ignored.

Note
Defining Hide Conditions refers strictly to the table view of parameters and not the visibility of selected
parameters on the schematic. Parameters that are hidden by condition are barred from schematic display
even if they had the Show button checked prior to concealment.

As you simulate this design in the workspace, the default parameter values will be used in
the simulation. When you use this design as a model in a part, the part parameters
override these default parameter values.

 Roles of Sub-Network Model Attributes
Parameters - These are the parameters the user sees when entering values for this
model.
Equations - These are commonly used to manipulate data entered by the users to a
format needed by models that appear in the schematic
Schematic - This shows how existing models are visually and electrically connected
together and their relationships with each other. The model parameters in the
schematic can also use the top level parameters as well as any variable created in
the equation block.
PartList - This shows connectivity and part information in a table format.
Notes - This is used for documentation or help for this sub-network.

 Run-time Hierarchy - How Parameters get passed
When a simulation is run, a model tree is instantiated that corresponds to the topology of
the network you are simulating. This is called the run-time hierarchy. In contrast, when
you are editing designs in the workspace, you are working in design-time. The difference
will become apparent shortly.

Each part in your top level design references a model, and an instance of that model is
created and set as a "child" of the top-level design when a simulation is run. If one of
these children corresponds to a subnetwork model, then each model inside the
subnetwork design is instantiated as well, recursively. It is easy to see why this sort of
instantiation is necessary - you can have two parts in your top-level design that point to
the same model, and they may have different values for their parameters.

Suppose we have a workspace as shown here (ie. this is the design-time hierarchy):

and suppose that TopLevel contains 2 instances of SubNetwork, ie. TopLevel has 2 parts
called Part1 and Part2 whose models are both "SubNetwork". When you run a simulation
on TopLevel, the following run-time model hierarchy is constructed:

SystemVue - Users Guide

252

Note that the Equations and Parameters of TopLevel are visible to the model instances of
Part1 and Part2, but only at run-time!

It is important to note that when you are looking at the design called SubNetwork (ie. in
design-time), and in its schematic you are using parameters defined in the Parameters tab
of SubNetwork, the values you see at design-time will correspond to the "Default" values
of the parameters as defined in the Parameters tab. This is because you are editing the
Model called SubNetwork, but that model can be instantiated many times in your top-level
network, and each instance can have different values for the parameters. Since you are
editing the design-time model, it has no way of knowing what the values passed to it will
be at run-time, and thus just shows the default values that are defined at design-time.

SystemVue - Users Guide

253

 SystemVue 2007 APG DLL Import
You can import SystemVue 2007 MetaSystem designs as Sub-Network Models (users)
(without the schematic) if you have the ability to create Automatic Program Generation
(APG) DLLs.

SystemVue 2007 APG Option requires a compatible Microsoft C compiler.

 SystemVue 2007 MetaSystems
MetaSystems are the SystemVue 2007 mechanism for incorporating hierarchy into a
design. For more information on MetaSystems please see SystemVue 2007 User's Guide.
This section provides a very brief overview of MetaSystems as needed for import of your
designs into SystemVue.

 Creating a MetaSystem

To create a MetaSystem, click/drag the mouse to outline the tokens to be included in the
new MetaSystem and then select Tokens|Create MetaSystem from the menu or click the
Create MetaSystem button on the toolbar. The selected subsystem will be represented by
a single MetaSystem token like token 3 on the picture. As you can see, it has become an
equivalent of a sub-network with one input port and one output port.

When preparing a subsystem for import into SystemVue you need to leave stimulating
sources and all the sinks out of the MetaSystem. Those connections will become ports
which will allow you to place it within your SystemVue design. Of course, the whole
MetaSystem could be a signal source in which case it would only have output connections.

 Viewing and Saving a MetaSystem

Double click on a MetaSystem to enter the MetaSystem Window, where you can change
connections and token parameters within the MetaSystem and add tokens, including new
I/O tokens. To return to the main design, select File|Return to System Level from the
menu or click the corresponding toolbar button.

MetaSystems are automatically saved with the parent system file (svu), and may also be
saved to a separate file.

 Building a SystemVue 2007 APG DLL
An APG DLL is a specialized SystemVue 2007 User Code DLL that is automatically
generated from a MetaSystem. It contains one function with no adjustable parameters
(although it could incorporate some globally linked tokens).

Only connected MetaSystem inputs and outputs are translated into the APG inputs and outputs.
Therefore you must connect even the optional inputs and outputs before you create an APG DLL - if you
want those inputs and outputs to be available in the resulting model.

 APG Setup

Select Tools|Auto Program Generation (APG)|Build MetaSystem DLL from the menu and
then click on the MetaSystem token. The following APG dialog window will appear.

The Comments field is helpful for annotating your APG. The comments can be
entered directly or imported from a text file.
Click on the Select Output File button to select the name and folder for the APG DLL.
Make sure to uncheck the Auto Replace MetaSystem checkbox.
Click on the Label DLL I/O Ports button to identify the input and output connections.
By default the labels indicate which tokens within the main design they are connected
to.
Click Finish to begin the build process. If successful, at the end you will see a
message with the location of your APG DLL.

If you forgot to uncheck the Auto Replace MetaSystem checkbox, the APG will replace your original
MetaSystem. Select Edit|Undo from the menu to restore it.

Very rarely you might see APG fail with a message "Cannot create APG SVA file." To troubleshoot,
launch APG Setup again and click on the Select Output File button to select a different name for your
APG. If the APG must have the same name, you need to save your system, then exit and restart
SystemVue 2007.

 Supported C Compilers

SystemVue 2007 APG Option requires a compatible Microsoft C compiler. Two supported
compilers are

Microsoft Visual Studio C++ .NET 2003 Professional Edition
Microsoft Visual Studio C++ 2005 Professional Edition

Other compilers that can be used are

Microsoft Visual C++ 2008 Express Edition
Microsoft Visual Studio C++ 2008 with SP1

These compilers require the use of Custom APG Build as described below.

 Custom APG Build

If you create a batch file named apgbuild.bat within your SystemVue 2007 installation
folder, that batch file will be executed to create APG. This may be useful for customising
the build or using a new compiler.

The C source files are named ~apgtmp.c and ~apgtmp1.c. They are not human
readable.
The module definition file is named ~apgtmp.def.
The two APG libraries are named ApgLibPC.lib and ApgUtlPC.lib. They were
created using Microsoft Visual C++ .NET, which limits the available linking options.
The DLL being built should be named ~apgtmp.dll.
You may want to append the compiler output to APGBUILD.LOG.

In addition to setting the enviroment for the compiler, you may need to add include
directories using /I option and list additional libraries for the linker. Please see the
Microsoft Visual C++ User's Guide for details on using the command line compiler.

SystemVue - Users Guide

254

For example, this script works with Microsoft Visual C++ 2008 Express Edition.

call "C:\Program Files\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"

cl 1>~apgtmp.out ~apgtmp1.c ~apgtmp.c /nologo /MT /O2 ^

/link /machine:ix86 /subsystem:windows /DLL /DEF:~apgtmp.def /OUT:~apgtmp.dll ApgLibPC.lib

ApgUtlPC.lib user32.lib

type ~apgtmp.out >>APGBUILD.LOG

echo +++ END OF LOG +++ >>APGBUILD.LOG

exit

 Importing a SystemVue 2007 APG DLL into
SystemVue

 Different Simulation Engines

SystemVue and SystemVue 2007 have different simulation engines. SystemVue is a data
flow simulator (sim), while SystemVue 2007 is a time based simulator. In order to
translate a SystemVue 2007 subsystem into SystemVue model some additional
information is required - you need to compute integer rate ratios between the system rate
and different I/O token rates in the MetaSystem.

Computing rate ratios for a multi-rate system can be a challenge. A Math Language
(users) script can assist you with this task.

 SystemVue 2007 APG DLL Import Setup dialog

To import an APG DLL into SystemVue select File|Import|SystemVue 2007 APG from the
menu. You will be prompted for a DLL file name. After selecting the APG DLL file you will
see a SystemVue 2007 APG DLL Import Setup dialog.

System Rate is the SystemVue 2007 system sample rate. This is the sample rate of
the time based simulator that runs inside the model. The default value is the variable
Sample_Rate which represents the sample rate of the data flow simulator.
The multi-rate properties of the subsystem must be expressed as integer ratios.
Therefore an integer is assigned to the System Rate and each of the inputs and
outputs of the subsystem. For instance, if the token rate of the MetaSystem input is
the same as the system sample rate but the token rate of the output is 1/3 of the
system sample rate, then the System Rate Ratio and the input Rate Ratio could both
be 3, and thus the output Rate Ratio would be 1. Note that the rate ratios can be
entered as formulas or variables computed using a Math Language (users) script.
Temperature is only used if your subsystem contains tokens dependent on thermal
noise.

After you click OK the APG sub-network model (users) will be placed on the Workspace
Tree (users).

 Using the APG Sub-Network Model

The SystemVue 2007 APG sub-network model (users) can be used as a part in your
SystemVue design. Just drag it onto the schematic from the Workspace Tree (users).

You can also create a library of these models - simply right click and select Copy To from
the popup menu.

The part must be properly connected according to its multi-rate properties. You will
probably want to set the system rate in the Data Flow Analysis (sim) in order to obtain
results compatible with the SystemVue 2007 simulation.

Since SystemVue uses a different random number generator, your SystemVue 2007 simulations that have
random signal and noise sources may not produce exactly identical results even when the random seed is
fixed.

The APG DLL is used during the simulation run, so it must remain in the same location.

 Continuing Development

You don't have to abandon your SystemVue 2007 design after importing it into
SystemVue. As long as the number of inputs and outputs and their multi-rate properties
remain the same, you can go back to modify the MetaSystem - change parameters and
even add new tokens - and then simply re-generate the APG, overwriting your old DLL.
You don't even have to close the SystemVue session - just make sure the simulation is not
running. Your SystemVue design will continue working.

If you change the number of inputs or outputs or their multi-rate properties, you will need
to re-import the APG DLL and modify your SystemVue design accordingly.

SystemVue - Users Guide

255

 Using X-Parameters in SystemVue (RF
Design Kit)
This section shows how X-Parameter data can be incorporated into SystemVue designs.

The X-parameter model is a generalized circuit model that includes nonlinear effects.
The data for this model is contained in a Generalized MDIF file. A non-linear circuit
simulation technique called Harmonic Balance is needed to make sense of X-parameter
data.

X-Parameters are used in RF circuits to represent non-linear incident and reflected
traveling waves.

 Contents
X-Parameters Limit (users)
Getting X-Parameters into the Workspace (users)
Using X-Parameters in a Design (users)
Using X-Parameters in Spectrasys (users)
Using X-Parameters in Circuit Link (users)
Using X-Parameters in RF Link (RF Design Kit) (users)
Convergence Issues (users)
Theory of Operation (users)

 Convergence Issues
The X-parameter model is a circuit level component. A non-linear circuit simulation
technique called Harmonic Balance is needed to make sense of X-parameter data. Under
high nonlinear conditions harmonic balance may be unable to converge to an accurate
solution. In these cases, convergences parameters can be tweaked to optimize
convergence for the given circuit problem.

By default when XPARAMS models are combined with system behavioral models in the
same design each of the XPARAMS models will use the same generic default convergence
criteria. This model provides no mechanism for the user to change the convergence
criteria. When XPARAMS model(s) are placed in a Circuit_Link design the the entire design
will all have common convergence criteria that can be controlled by the user.

 Getting X-Parameters into the Workspace
X-parameters file data will automatically be imported and cached into memory when a
simulation runs that contains X-parameter parts. All X-parameter data used in a
workspace will remain in cached memory until the workspace is close or another
workspace is opened.

Note
Neither datasets nor any other type of workspace tree object is created during this automatic import
process. X-parameter file data is cached to improve simulation performance.

For more information on the X-parameter file format see X-parameter GMDIF Format
(users).

 Theory of Operation

 Traditional S-Parameters

At high RF frequencies terminal voltages and currents are difficult to measure. Scattering
parameters, or S-parameters are ratios of power flow amplitudes and phases in a circuit
which are much easier to measure at these frequencies. However, S-parameters only
characterize the linear behavior of RF devices.

 X-Parameter Basics

Unlike S-parameters, X-parameters characterize the linear and non-linear circuit behaviors
of RF components in a more robust and complete manner. In effect, X-parameters are the
mathematically correct super-set of S-parameters, applicable to both large-signal and
small-signal conditions, for linear and nonlinear components. X-parameters are cascade-
able just like S-parameters so higher levels of integration can be simulated or
characterized.

A simplified non-linear output spectrum from a single input spectrum is shown in the
following figure.

The incident waves A1 and A2 and the resultant reflected B1 and B2 waves are shown for
a simple nonlinear 2 port device.

The X-parameter approach is similar to various nonlinear mapping techniques as shown.

 File Extraction Basics

X-parameter data can either be extracted by special network analyzers such as Agilent's

SystemVue - Users Guide

256

NVNA network analyzer or specialized simulation software such as Agilent's Advanced
Design System (ADS). When an X-parameter file is extracted from a nonlinear device the
user must supply the following extractions parameters and boundaries:

The number of characterization carriers (large signal).1.
The frequency of each carrier (fund_k).2.
The power level range of each carrier (AN_p_n).3.
The phase range of each carrier (AP_p_n).4.
The characteristic impedance.5.
DC voltage or current bias ranges (VDC_p & IDC_p).6.
Load characteristics that may be in the form of either reflection coefficients or7.
impedance's (GM_p_n, _GP_p_n, etc).
User specified variables may also be used8.

Notation:

k - fundamental frequency index
p - port index
n - harmonic index
m - minus sign i.e. _m2 = -2

Example of setup for 1 characterizing tone (Output Incident, A 2 is optional):

 Extracted Data

Specialized hardware or simulation software extracts a text file containing the dependent
data based on the independent input parameters listed in the prior section. The extracted
output consists of several pieces of information for each input carrier. Every port is
examined across a specified range of harmonics of the input carriers. Each piece of the
contributing resultant output spectrum is characterized and saved in the extracted file.

The extracted output consists of the following data:

Carrier reflected wave at the output (FB_pOut_nOut)1.
DC output current (FI_pOut)2.
DC output voltage (FV_pOut)3.
Small signal added output contribution due to a small signal input4.
(S_pOut_nOut_pIn_nIn)
Small signal added output contribution due to phase-reversed small signal inputs5.
(T_pOut_nOut_pIn_nIn)
DC current added output contribution due to small signal inputs (XY_pOut_pIn_nIn)6.
DC voltage added output contribution due to small signal inputs (XZ_pOut_pIn_nIn)7.

Example of extracted data from a single large signal characterizing tone:

Examining the Reflected B 2 spectrum for the 1 characterizing input tone we get:

To account for large and small signal effects a 'Quasi-Linear' system is created by
internally generating a small signal at frequencies slightly different than the characterizing
carrier frequencies. These small signals combined with the large characterizing signals
produce new frequencies. By linear superposition the output frequencies and amplitudes
can be determined for all small signal inputs in a real system.

The following figure illustrates the resulting spectrum from a single large signal
characterization tone and small signal at the input.

For more information see X-parameter Variables (users).

 Using X-Parameters in a Design
To use an X-parameter file in a design follow these steps:

Place an X-Params Part1.
Browse to the X-Parameter File2.
Finish the Design3.
Add an Analysis4.

 Place an X-Params Part

Select the X-Params part from the part selector located in the RF Design library.

SystemVue - Users Guide

257

Note
When the X-Params model is placed the schematic symbol contains no pins. This is because the X-
parameter file has not yet been selected (and of course, has not been read); the number of ports cannot
be determined until the file is actually read.

 Browse to the X-Parameter File

Double click the X-Params part to bring up the part properties.

Click the Browse ().

Select the desired X-parameter file.

At this time the number of ports is resolved and the schematic symbols changes
appropriately because a specified X-parameter file has been selected.

Also, one or two additional (optional) tab pages may appear: A User Parameters tab may
appear, if the X-parameter file has any User Variables defined.

These parameters are defined by the file. You may NOT add, delete, or rename the User
Variables, but you can change their values to any floating point number. (Equations are
not permitted for values.)

A Details page displays a summary of the info from the X-Paramters .mdf file.

For more information on the X-Params model properties see X-Parameter Part (rfdesign).

SystemVue - Users Guide

258

 Finish the Design

Place the desired components to finish the design. (In this particular example a
Multisource, Output Port, and Signal Ground parts are used)

 Add an Analysis

Add the desired analysis.

Run the analysis and plots the results.

 Using DC Bias Voltage
X-parameters can be characterized with various DC bias voltages and can even support
multiple DC bias ports.

Caution
If the X-parameter file has been characterized with a single DC voltage the internal interpolation and
extrapolation algorithms can only use this single bias point so all interpolated or extrapolated DC bias
voltages will all be at the same DC bias voltage. Consequently, specifying a DC bias voltage on the part
becomes irrelevant.

 Using X-Parameters in the Circuit Link
The Circuit Link component is used as a bridge between circuit and system level
components.

This bridge points to a design and contains parameters most often needed to control
circuit level convergence criteria. A nonlinear circuit simulation technique called harmonic
balance uses this criteria to simulate the linear and nonlinear characteristics of the circuit.
These results are passed to the Spectrasys for spectral creation and path measurement
calculations.

For more information see Circuit_Link (rfdesign)

Caution
The accuracy of cascaded circuit components will be increased when all circuit level components are
combined in a single Circuit_Link (rfdesign) component.

 Using X-Parameters in the RF Link (RF Design Kit)
The RF Link characterizes the system design with a single frequency. This
characterization takes place across a frequency range extracted from the DataFlow
analysis, unless this is overridden by the user in the RF Link component. The RF Link
power characterization range is identical to the power range specified when the the X-
parameter file was initially extracted. The frequency at which the power characterization
takes places is in the center of the frequency characterization range.

This characterization method has current limitations on the types of X-parameter files that
may be used in RF_Link:

No Frequency translation. Only X-parameter files that have the same input and1.
output frequencies (amplifiers, attenuators, filters, etc.) are allowed.
Only 2-port Circuit_Link / X-parameter files are supported. If a Circuit_Link2.
component or X-parameter file has more than 2 ports the current characterization
methods does not have any information about other port signals or DC port states.
Consequently, characterization data may be inaccurate.

Note
Since the link uses a one tone characterization technique then the first tone in the X-parameter file should
also be swept to include frequency response. If a two or more tone X-parameter file is used and the first
tone is NOT swept then the frequency response will be constant.

Caution
The RF Link does power compression characterization of the X-parameter device. Terminal 0 is always
used for the input and terminal 1 for the output. Caution must be used when generating the X-
parameter file so that the input is terminal 0 and output terminal 1.

 Using X-Parameters in Spectrasys
The X-Params model predicts the circuit level output currents and voltages given specific
characterization characteristics contained in the X-parameter file. A common nonlinear
simulation technique called Harmonic Balance is used to extract the necessary
information needed by the system simulator called Spectrasys. Spectrasys is a nonlinear
behavioral simulator and the simulation approach is drastically different than that used for
nonlinear circuits.

RF system simulation is used to determine optimum RF architecture as well as
requirements for each of the behavioral blocks or sub-systems in a system that has a
common characteristic impedance. Circuit simulations can be oblivious to characteristic
impedance's and users are generally more interested in circuit input and output
characteristics rather than cascaded parameters are some internal intermediate nodes.

Note
Highest circuit simulation accuracy will be achieved when all circuit level components such as X-
parameters are placed together in a single Circuit Link component. Complex circuit level interactions
between cascaded circuit components may be missed in during the system simulation.

 Validation Limits
Spectrasys simulation using single X-parameters part with single tone or 2-tone1.
stimulus has been compared with equivalent simulation in ADS, all results are
consistent.
Spectrasys simulation using cascaded X-parameters parts with single tone or 2-tone2.
stimulus has been compared with equivalent simulation in ADS, results are consistent
with reasonable (negligible) difference (e.g. less than a few tenths of a dB at
fundamental frequency and can be slightly higher for mixing terms < -50dBm) due to
the difference in underlying computational algorithms (e.g convergence criteria).

 Performance Limits
If simulation speed becomes an issue (most likely due to convergence), use Circuit_Link
with X-Parameters Part (rfdesign) part to control the convergence criteria directly.

SystemVue - Users Guide

259

 Operational Limits

Caution
Currently, X-parameter models are not allowed in the LO chain for RF LINK simulations only.

 Noise

Note
Currently, the X-parameter parts do not support self generated device noise. However, any external noise
appearing at the X-parameter ports will be amplified by the small-signal gain specified in the X-parameter
file.

 Frequency and Power Limits

X-parameter files are extracted across a user specified power range with a fixed number
of input tones at user specified frequencies. During a simulation frequency and power
values will be interpolated if the simulation frequencies and power levels reside within the
characterization limits otherwise the values will be extrapolated.

Caution
If the characterizing tones are not swept in frequency or power there will be noting to interpolate or
extrapolate since all frequency and power levels will appear to be constant.

 Tone Characterization and Mapping

Along with frequency and power level characterization a non-linear circuit is characterized
by a fixed number of input tones (carriers) specified by the user. Furthermore, these
tones can be swept or fixed in frequency and power level. During a simulation three
simulation scenarios exist with regard to the number of tones used in the simulation
versus the number of tones the X-parameter file was characterized with. They are:

Number of Simulation Tones = Number of X-parameter Characterization Tones1.
Number of Simulation Tones < Number of X-parameter Characterization Tones2.
Number of Simulation Tones > Number of X-parameter Characterization Tones3.

Note
Highest accuracy will only be achieved when the X-parameters are extracted with the exact number of
carriers, frequencies, and power levels of interest.

X-parameters are simulated using a large-signal-small-signal analysis technique. In
this technique a certain number of tones are designated as large signal all other input
signals are considered small signal. When the large and small signal analysis techniques
are combined distortion (intermod) products can be determined at all distortion
frequencies.

During an X-parameter simulation all input carriers are sorted by power level. The largest
input signal maps to the 1st X-parameter tone and the 2nd largest input signal maps to
the 2nd X-parameter tone, etc. until all the large signal tones have been mapped. For
example, if an X-parameter file was characterized with two tones, the first one fixed in
frequency and power, and the second swept in power and frequency then during the
simulation the largest power input tone would map to the fixed X-parameter tone and the
next input carrier would map to the swept characterizing tone.

If the number of simulation tones equals the number of X-parameter characterization
tones then each input tone is considered a large signal tone. If the number of simulation
tones is less than the number of X-parameter characterization tones then the extra X-
parameter characterization tones are ignored. If the number of simulation tones is greater
than the number of X-parameter characterization tones then all the unmapped tones
become small signal input tones.

Caution
If the X-parameter file was only characterized with one tone and two tones are being used in the
simulation the resulting simulation will be a one tone large signal analysis with a single small signal not
the traditional two tone analysis.

For more information on large-signal-small-signal analysis see Mass, Stephen A,
Nonlinear Microwave Circuits. Norwood, MA: Artech House, 1988, Chapter 3.

SystemVue - Users Guide

260

 Appendix A - Keystroke Commands
General Keystroke Commands (users)
Graph Keystroke Commands (users)
LiveReport Keystroke Commands (users)
Schematic Keystroke Commands (users)

The availability of keystroke commands depends on the type of active window (Graph, Schematic, etc.).

 General Keystroke Commands
Space – Place another copy of the most recently placed item (schematics and
layouts)
Escape – Cancel current mode
Delete – Delete current selection
Ctrl+A – Select all
Ctrl+C – Copy
Ctrl+D – Duplicate
Ctrl+N – File new
Ctrl+Shift+N – Select none
Ctrl+O – File open
Ctrl+P – Print
Ctrl+S – Save
Ctrl+V – Paste
X – Zoom – use the zoom tool (zoom to mouse rectangle)
Ctrl+X – Cut
Ctrl+Y – Redo
Ctrl+Z – Undo
Z – Zoom to fit all objects (Maximize)
Shift+Z – Zoom to fit with extra margin
Ctrl+Shift+Z – Redo
+ – Zoom in
– – Zoom out
Ctrl+End – Show entire page (maximize)
Ctrl+Home – Zoom to fit
Ctrl+PageUp – Zoom in
Ctrl+PageDown – Zoom out
LeftArrow, RightArrow, UpArrow, DownArrow – Move the current selection in
the direction indicated (use the Enter key to drop parts in schematic after moving
with the arrow keys)
Ctrl+LeftArrow, Ctrl+RightArrow, Ctrl+UpArrow, Ctrl+DownArrow – Pan
(scroll) the view (when nothing is selected)
F3 – Rotate item clockwise
Shift+F3 – Rotate item counterclockwise
Ctrl+F3 – Reset rotation angle to 0
F5 – Does an Action / Run All Out-of-Date Analyses and Sweeps (calculates
simulations/sweeps)
Shift+F5 – Run all optimizations
F6 – Mirror an item
Ctrl+F6 – Reset mirror state to unmirrored
Alt+F7 – Print/export entire screen
F7 – Hide/Show docker windows (tree and tune windows)
F8 – Fit Windows to Frame - resize the windows to fit the non-docker area
Ctrl+F8 – Next editor
Alt+F8 – Print/export active window

 Graph Keystroke Commands
C – Checkpoint – Create a graph checkpoint or remove existing checkpoints
F – Favorite – save a graph axis favorite
B – Back – use a graph axis favorite
V – Vertex – Hide / Show vertex symbols
R – Right – Show markers on right / floating
M – Mark – mark all traces with markers
L – Legend – hide/show the legend
P – Pan – use the pan (scrolling) tool
X – Zoom – use the zoom tool (zoom to mouse rectangle)
Z – Zoom to fit – Maximize the view
Tab – Select the next marker.
Shift+Tab – Select the previous marker.
Enter – Bring up the Marker Properties window. If no marker is selected, it brings up
the Graph Properties instead.
Delete – Delete the currently selected marker.
Shift+Delete – Delete all markers (you are asked to confirm the deletion before
deleting the markers).
Arrow Keys – The up, down, left, and right arrow keys have several functions,
based on the currently selected marker's style.

Standard Marker – Move the reference frequency left or right on the graph.
Peak Marker – Move to the next peak (if any).
Valley Marker – Move the marker to the next valley (if any).
Bandwidth Marker – Move the relative markers to increase or decrease the
bandwidth. This changes the delta values of the child relative markers, so each
arrow key action does not always move the marker by a single data point.
Delta Marker – Increase or decrease the relative delta. This changes the dB
Down value of the marker, so each arrow key action does not always move the
marker by a single data point.

Ctrl+Arrow Keys – Pan (scroll) the chart up, down, left, or right.
Shift+Arrow Keys – Move the marker up or down to the next trace on the graph (if
any).
Ctrl+Shift+S – Change the current marker's style to Standard.
Ctrl+Shift+P – Change the current marker's style to Peak.
Ctrl+Shift+V – Change the current marker's style to Valley.
Ctrl+Shift+B – Change the current marker's style to Bandwidth.
Ctrl+Shift+L – Change the current marker's style to Delta Left.
Ctrl+Shift+R – Change the current marker's style to Delta Right.

 LiveReport Keystroke Commands
A – All Zoom - zoom to page
P – Pan - use the pan (scrolling) tool
X – Zoom - use the zoom tool (zoom to mouse rectangle)
W – Zoom to Width
Z – Zoom to fit - Maximize the view
Tab – switch to next window
Shift+Tab – switch to previous window
1, 2, 3, 4, 5, ... – switch to nth window (zooms to fit specified window)

 Schematic Keystroke Commands
Enter – Bring up part properties or place parts moved using the arrow keys
A – Places an adder (Add)
B – Bits (Source: Bits)
C – Const (Source: Const)
D – Delay
Shift+D – DownSample
G – Gain
I – DataPort (input)
M – MathLang
O – DataPort (output)
P – Use the Pan (scrolling) tool
R – Ramp (source)
S – Sink
Shift+S – SineGen
U – Upsample
W – 90 degree WIRES (Shift+W for any angle wires)
Shift+W – Angled WIRE
X – Zoom - use the zoom tool (zoom to mouse rectangle)
Z – Zoom to show all parts (zoom to fit)
Shift+Z – Zoom to show all parts (with extra margin)
* – Mpy (multiply)

SystemVue - Users Guide

261

F4 – Rotate the text origin of part parameters

If the schematic has RF (Spectrasys) parts on it, the following key / part associations are
used.

Enter – Bring up part properties or place parts moved using the arrow keys
A – Places an ammeter (CURRENT_PROBE)
B – BLOCK (two-port)
C – CAPQ (capacitor with Q)
Shift+C – CAPACITOR (ideal)
G – GROUND
I – INPUT Port
L – INDQ (inductor with Q)
Shift+L – INDUCTOR (ideal)
O – OUTPUT port
P – Use the Pan (scrolling) tool
Q – SQUARE_BLOCK (attached to a design)
R – RESISTOR
S – SIGNAL_GROUND
V – Voltage TEST_POINT
W – 90 degree WIRES (Shift+W for any angle wires)
Shift+W – Angled WIRE
X – Zoom - use the zoom tool (zoom to mouse rectangle)
Z – Zoom to show all parts (zoom to fit)
Shift+Z – Zoom to show all parts (with extra margin)
F4 – Rotate the text origin of part parameters
1, 2, 3, ..., 0 – Place 1-port, 2-port, ..., 10-port

SystemVue - Users Guide

262

 Appendix B - Menus
Action Menu (users)
Edit Menu (users)
Equations Menu (users)
File Menu (users)
Graph Menu (users)
Help Menu (users)
LiveReport Menu (users)
Notes Menu (users)
PartList Menu (users)
Schematic Menu (users)
Scripts Menu (users)
Tools Menu (users)
View Menu (users)
Window Menu (users)

 Action Menu
Use this menu to calculate variables or to access the Create Part, Design, or Source
wizards.

To open: Click the Action button on the menu.

Calculate – Calculate the out-of-date simulations.1.
Calculate All Optimizations – Run all the optimizations.2.
Select Tuned Variables – Make any parameter from a master list tunable.3.
Create Part Wizard – Run the part creation wizard. Use this to create a new part4.
based on existing parts or from scratch by defining the model and symbol for the
part.
Print Screen – print the current screen.5.

 Edit Menu
Use this menu to perform basic editing functions, such as undo, redo, cut, paste, copy,
and delete.

To open: Click the Edit button.

Undo – Reverse previous editing. Multi-level undo is available in a schematic or1.
layout.
Redo – Put back changes that were previously reversed with Undo.2.
Cut – Copy the selected object and delete it.3.
Copy – Copy the selected object. The selection is not deleted.4.
Paste – Paste the last copied object into the current schematic, layout, text, etc.5.
Delete – Delete the selected object.6.
Duplicate – Duplicate the selected object. This is equivalent to a copy-and-paste7.
sequence.
Mirror – Flip the selected object about its horizontal or vertical axis. Mirror is not8.
available for layouts, because it yields backward parts.
Rotate – Rotate the selected object by the Part Constrain angle specified in the9.
Global Schematic Options window.
Bring To Front – Moves the selected item(s) in front of the other items in the10.
window.
Send To Back – Moves the selected item(s) behind the others.11.
Rotate Counterclockwise – Rotate the selected object counterclockwise.12.
Select – Display a submenu allowing easy access to commonly used objects13.
All – Select all objects in the schematic or layout.14.
None – Turn off all selected objects.15.
Properties – Open properties for active object.16.
Workspace Properties – Open workspace properties.17.

 Equations Menu
Use this menu to access equations commands.

To open: Click the Script button on the menu.

Active – When checked, this equation is available for use.1.
Auto Calculate – When checked, these equations will recalculate while typing2.

Caution: be careful not to write infinite loops if this option is checked

Show Line Numbers – Shows / hides line numbers in the equations window.3.
Show Folding – Shows / hides the folding bar in the equations window (next to line4.
numbers). When enabled, the folding bar can be used to expand/contract blocks of
code, such as if / then / else sections.
Equation Wizard – Runs the Equation Wizard.5.
Run Equations – Executes the equation block.6.
Show Equation Errors – Helps diagnose equation errors.7.
Snapshot – Create a dataset with static variables that capture the current state of8.
the equation block. Use it save reference variables, such as when the equation block
is dependent on an analysis that gets re-run and you want to keep around old results
in the workspace.
Properties – Shows the Equation's Properties dialog box9.

 File Menu
Use this menu to open, close, save, or print designs. You can also import or export files,
and exit.

SystemVue - Users Guide

263

To open: Click the File button on the menu.

New – Close the current workspace and open a new workspace. If you select the1.
Allow Multiple Open Workspaces option on the General Global Options page, the
current workspace remains open.
Open – Opens a new workspace.2.
Close Workspace – Close the current workspace.3.
Save – Save the current workspace. If the current file has not been previously4.
saved, you will be prompted for a file name.
Save As – Save the current workspace into a new file.5.
Save All Workspaces – Save all loaded workspaces.6.
Page Setup – Select printer and settings.7.
Print – Print the active window.8.
Export – Display a submenu allowing access to all of the Export options.9.

Bitmap (Active Window) – Export the active window.
Bitmap (Entire Screen) – Export the entire screen, including any applications
outside the window.
XML File – Export the published properties to an XML file.

Import – Display a submenu allowing access to all of the Import commands.10.
M-File – Import an M-file.
Directory of M-Files – Import all M-files in a directory
S-Data file - Import an S Parameter file in Touchstone format.
SPICE File – Import a SPICE file.
XML – Import an XML file.
CITI File – Import a Common Instrumentation Transfer and Interchange (CITI)
file.

Send as Email – Send the current workspace as an email attachment using your11.
email program.

 Graph Menu
Use this menu to specify various graph settings. To open: Click the Graph button on the
menu. (This menu appears only when a graph window is active.)

Show Vertex Symbols – Show or hide the vertex symbols on the trace.1.
Marker Values On Right -- Place marker values on the right of the graph.2.
Show Vertical Marker Lines – Show or hide the vertical marker lines.3.
Mark All Traces -- Place markers on all traces.4.
Checkpoint -- Remove all current checkpoint traces if there are any. Create one if5.
there are none.
Marker Properties – Open the Marker Properties window.6.
Marker Style – Display a submenu allowing easy access to commonly used marker7.
styles.
Standard (Fixed Frequency) – Place a maker on the graph at the sport where you8.
clicked.
Peak – Place a marker at the highest point on the trace.9.
Valley – Place a marker at the lowest point on the trace.10.
Bandwidth – Placer a marker on the trace to indicate bandwidth.11.
Delta (On Left) – Place a marker left of the trace to indicate the relative offset12.
specified in the Marker Properties window.
Delta (On Right) – Place a marker right of the trace to indicate the relative offset13.
specified in the Marker Properties window.
Delete Marker – Delete the currently selected marker.14.
Delete All Markers – Delete all the markers on the current graph; it prompts15.
yes/no before actually deleting the markers.
Graph Properties – Open the Graph Properties window.16.

 See Also
Graphs (users)
Types of Graphs (users)
Graph Properties (users)
Graph Toolbar (users)
Using Markers on Graphs (users)
Tables (users)

 Help Menu
Use this menu to check for the latest update, get quick access to the Agilent Web site, or
get help.

To open: Click the Help button on the menu.

Contents – Open the Help contents.1.
Index – Open the Help index.2.
Keystroke Commands – Open a Help topic containing information about all of the3.
keystroke commands.
Open Example – Open an example workspace.4.
Tutorial Videos – Select and watch a collection of short, helpful videos.5.
Update Authorization Information – Open a page where you can start the6.
authorization process.
Check for Updates – Open a Web page to check for updates.7.
Agilent.com – Open the Agilent Web site.8.
Technical Support – Open the technical support Web page.9.
Web Forums – Open the Web page to access one of the forums.10.

SystemVue - Users Guide

264

Show Start Page – Open the Start page.11.
About – Open a page with information about the program.12.

 LiveReport Menu
Use this menu to set LiveReport options. (A LiveReport is a living notebook page that
collects live views of schematics, graphs, equations, notes, and tables into a single page.)

To open: Click the Schematic button on the menu. This menu appears only when a
schematic window is active.

Show Grid – Show or hide the background grid.1.
Snap to Grid – Toggles (enables / disables) mouse cursor snap-to-grid (constrains2.
mouse coordinates to the grid).
Properties – Shows the LiveReport Properties dialog box, which allows you to3.
specify settings such as Page Width and Height, Paper Orientation, Margins, Headers,
and Footers.

 Notes Menu
Use this menu to access Note commands.

To open: Click the Action button on the menu.

Export – Export the Note's text.1.
Import – Import text into the note.2.
Properties – Shows the Note's Properties dialog box3.

In order for the Note menu to reveal, the Notes page must be the current selected window (either open or
minimized) in the SystemVue workspace area.

 PartList Menu
The PartList has a single item:
Properties – Open the Properties window.

 Schematic Menu
Use this menu to set component and schematic options.

To open: Click the Schematic button on the menu. This menu appears only when a
schematic window is active.

Make Components Tunable – Force selected components to be tunable or1.
optimizable by adding question marks (?) to the first value of each component. This
only adds question marks to part values with a numerical value. If a variable is used
for a particular value, it is not made tunable.
Make Components Fixed – Force selected components to be non-tunable by2.
removing any question marks that were added to the first value of each component.
This only removes question marks on part values with a numerical value.
Add Title Block – Adds a schematic title block to the page, so that the schematic3.
can be documented.
Center Schematic – Center the schematic on the page.4.
Fit Page to Schematic – Resize the page to fit all the parts within it. Note that you5.
can also change the standard part length in a schematic to have parts shrink to fit a
specific page size.
Reapply Auto-Designators – Reassign standardized designators to selected6.
components. A designator is a part name like R1 or C3. The Auto-Designator feature
builds component names by using the appropriate designator prefix (like R for a
resistor or C for a capacitor) and appending a unique sequence number to the end.
When you use this command, the designators are applied in geometric order, from
left to right.
Renumber Nodes – Renumber all nodes in the schematic, regardless of any7.
selection. When you use this commend, the nodes are numbered in geometric order,
from left to right. Nodes that connect to a port are set to match the port number (if
that option is enabled). This is primarily useful before exporting a SPICE file.
Bring to Front – Move the selected objects to the front.8.
Send to Back – Move the selected objects to the back.9.
Keep Connected – Allow wires to remain connected to components as they are10.
moved. The ALT key temporarily toggles this function as long as the key is held
down.
Show Grid – Show or hide the schematic grid.11.
Snap to Grid – Toggles (enables / disables) mouse cursor snap-to-grid (constrains12.
mouse coordinates to the grid).
Convert Using Advanced TLine – Convert all electrical transmission line parts to13.
physical transmission line parts using Advanced TLine (for example, microstrip,
stripline, coplanar, or coax). This allows discontinuities to be added and automatically
compensated for. Also, substrates can be converted from one to another.
Schematic Properties – Shows the Schematic Properties dialog box, which allows14.
you to specify settings such as Page Width and Height, Title, Company Name, and
Company Address.
Edit Selected Part Properties – Shows the Part Properties dialog box, which allows15.
you to specify parameters and settings for the selected part.

 Scripts Menu
Use this menu to access scripting commands.

To open: Click the Script button on the menu.

Copy to Script Processor – Copies the script to the Script Processor window.1.
Run – Executes the script.2.
Properties – Shows the Script's Properties dialog box3.

The script menu shows only when a script page is present.

 Tools Menu
Use this menu to access to some common design tools or change the global options.

SystemVue - Users Guide

265

Library Manager – Open the Library Manager window, which controls which libraries1.
are initially loaded.
Script Processor – Open the Script Processor window, to run VBScript or JScript2.
commands.
Applications3.

DPD – Run LTE, WCDMA 4C, or User Defined1.
Load – Load an assembly2.

Distributed Simulation Setup – Open the Distributed Simulation Setup window, to4.
set Host Name, User Name, and Public Key for distributed simulations.
Options – Open the Global Options window, which controls number formatting,5.
graph and schematic settings, unit defaults, etc.

 View Menu
Use this menu to adjust the size of your window. This menu can also be use to show or
hide docking windows or toolbars.

To open: Click the View button on the menu.

Zoom In – Zoom in on the center of the window.
Zoom Out – Zoom out from the center of the window.
Zoom Page – Zoom to fit the page.
Zoom Maximum – Zoom to fit all objects or traces.
Zoom Rectangle – Allow you to draw a rectangle to zoom in on.
Part Selector – Show or hide the Part Selector.
Error Log – Show or hide the Error Log.
Simulation Log – Show or hide the Simulation Log.
Workspace Tree – Show or hide the Workspace tree.
Advance Windows – Show a secondary list of docking windows.

Equation Debug – Show or hide the Equation Debug window.
Library Selector – Show or hide the Library(Design) Selector.
Part Selector (2nd copy) – Show or hide a second copy of the Part Selector.
Tune – Show or hide the Tune window, which lists and controls tune variables.

Toolbars – Choose how toolbars are shown.
Main – Show or hide the Main toolbar.
Show All Object Toolbars – Show toolbars for the active object.
Hide All Object Toolbars – Hide toolbars for the active object.

Status Bar – Show or hide the status bar at the bottom of the main window.

 Window Menu
Use this menu to organize or open a window. You can also use this menu to close all open
windows at the same time.

To open: Click the Window button on the menu.

Tile Horizontal – Tile open windows above each other.1.
Tile Vertical – Tile open windows beside each other.2.
Cascade – Arrange open windows in an overlapping style.3.
Close All – Close all open windows.4.
New Window – Open a new design window.5.
Tabbed Windows – Switches between tabbed and overlapping document window6.
styles.
Show Dockers – Show / hide vertical dockers (Tune, Workspace Tree, Part Selector,7.
etc.).
Fit Windows to Frame – Resizes the open windows to fit the non-docker area.8.
Next Editor – Toggle between editor windows (schematics, layouts, equation9.
editors).
Show All Output Windows – Open all output windows (graphs, tables, variable10.
viewers).
Numbered Window List – A pick-list of all open document windows. Select one to11.
make it active (current).

SystemVue - Users Guide

266

 Appendix C - Toolbars
Annotation Toolbar (users)
Dataset Toolbar (users)
Equation Toolbar (users)
Graph Toolbar (users)
LiveReport Toolbar (users)
Main Toolbar (users)
Notes Toolbar (users)
Schematic Toolbar (users)
Script Toolbar (users)
Spectrasys Toolbar (users)
Table Toolbar (users)

 Annotation Toolbar
Use this toolbar to add basic drawing objects, such as lines, circles, or arrows, to a design
or to modify the selected annotations by changing the color, dashed line style, etc.

To open: Click the Annotation button () from any design window toolbar, e.g.
schematic window toolbar.

Select – Select an object.1.
Rectangle – Draw a square or rectangle.2.
Ellipse – Draw a circle or ellipse.3.
Polygon – Draws a filled polygon or unfilled polyline.4.
Arrow – Draw a line or arrow. Change the arrow style by selecting a line and picking5.
an arrow type from Arrows button menu.
Arc – Draw an arc.6.
Picture – Insert a picture. Use this annotation to add a company logo to a graph, for7.
example. Double-click the new object and select a JPG, GIF, or BMP image file to be
displayed. To allow all users to see the image, the bitmap file should reside on a
network server.
Text – Place text. Text has a number of settings. Double-click a text annotation to8.
set the horizontal and vertical justification (text alignment). The name of the text
item can be changed and shown on-screen, which simplifies building a schematic title
block.
Text Balloon – Draw a text balloon. This annotation has a "tail" which can be9.
anchored to a data point on a graph, to the page, or not anchored (using the right-
button menu).
Button – Draw a user button (widget). This annotation can be "clicked" to run a10.
custom script, which is specified by double-clicking the outer EDGE of the button
control. The middle of the button runs the script.
Slider – Draw a slider control (widget). This annotation is linked to a tunable11.
parameter and functions much like the Tuning Window.
Fill Color – Set the fill color. Use the 3 color buttons to change the colors of the12.
selected annotations. New annotations will be created using the current colors. The
bottom-right color swatch (with a diagonal slash) is transparent, which specifies an
unfilled object.
Line Color – Set the line color. The bottom-right color swatch (with a diagonal slash)13.
is transparent, which specifies a object with no outline.
Text Color – Set the text color.14.
Line Thickness – Set the width of borders and lines.15.
Line Style – Set the drawing style of borders and lines (dash pattern, etc.).16.
Arrows – Set the arrow style of lines.17.
Properties – Display the properties window for the selected part.18.

 Dataset Toolbar
Use this toolbar to interact with the active Dataset (users) and adjust its settings.

Properties - Brings up the Dataset Properties dialog.1.
Save - Export/save the dataset to a file.2.

 Equations Toolbar
Use this toolbar to change the Equation window display options and debug your equations.
This toolbar automatically displays when you have an Equation window active.

The icons are:

 Show or hide the Line Numbers margin

 Turn autocalculate on/off

 Display Errors for this set of equations

 Go - run the equations, or continue on from a breakpoint (F5 or Ctrl_G)

 Stop - stop debugging (abort execution). This button is only enabled while
breakpointed.

 Step Into - step inside a function and break at the first line of execution in the function
(F11). This button is only enabled while breakpointed.

 Step Over - execute statements on the current line (F10). This button is only enabled
while breakpointed.

 Step Out - run until the current function ends, then break at the next line (the caller)
(Shift_F11). If there is no function call at the current line, or the equation processor
cannot step into the function, then all statements on the current line are simply executed.
This button is only enabled while breakpointed.

 Add or Remove a breakpoint from the current line (F9 or Ctrl_B)

 Toggle all existing breakpoints to either the "enabled" or "disabled" state

 Graph Toolbar
Use the toolbar for Graph functions.

To open: Open a graph window.

Annotation – Display the Annotation Toolbar toolbar.1.
Eye – Hide/Show graph traces in a pulldown menu2.
Graph Properties – Display the Graph Properties window.3.
Select – Select an object.4.
Pan – use the Pan tool to pan the graph (left-right for rectangular graphs, free for5.
polar and smith charts).
Zoom – zoom in on a selected part of the graph.6.
Checkpoint – Add a checkpoint if there is none. Remove all current checkpoint7.
traces if there are any
Add Axis Favorite – Save the current axis settings into the Axis Favorite list.8.
Zoom to Page – Zoom the graph data attractively to fit the page.9.
Maximize – Zoom the graph data exactly to fit the page..10.
Use Axis Favorite – Set the axis settings to the last favorite in the list. Click again11.
to cycle through the axis favorites.
Toggle Vertex Symbols – Show or hide trace vertex symbols (large dots on traces).12.
Marker Values On Right – Place marker text in right margin of graph, or inline in13.
graph.
Mark All Traces – Mark all traces on the graph.14.
Toggle Vertical Marker Lines – Show or hide dashed vertical marker lines at every15.

SystemVue - Users Guide

267

marker position.
Delete Marker – Delete the selected marker.16.
Delete all Markers – Delete all markers on the current graph.17.
Marker Properties – Display the Marker Properties window.18.
Standard Marker – drop a standard marker or convert a selected marker to19.
standard.
Peak Marker – Change marker style to Peak.20.
Valley Marker – Change marker style to Valley.21.
Bandwidth Marker – Change marker style to Bandwidth and insert two Delta22.
markers.
Delta Marker (On Right) – Place a new Delta marker on the left side of the23.
selected marker.
Delta Marker (On Left) – Place a new Delta marker on the right side of the selected24.
marker.

 See Also

Graphs (users)
Types of Graphs (users)
Using Markers on Graphs (users)
Graph Menu (users)
Graph Properties (users)

 LiveReport Toolbar
Use this toolbar to change the LiveReport and adjust its settings. The LiveReport toolbar
automatically displays when you have a LiveReport active.

Annotation – Show/Hide the Annotation Toolbar.1.
Arrange – Brings up the Arrange Views dialog box, which repositions all the sub-2.
objects.
Eye – Use this pull down menu to turn on/off text displays such as Titles, Headers,3.
Footers, etc. on the LiveReport.
Grid Snap – enable/disable the grid snap4.
Select – Use the select tool to select views or annotations..5.
Pan – Use the pan (scrolling) tool to pan the schematic around (press the tool button6.
and drag the LiveReport).
Zoom – Use the zoom tool to zoom into a rectangular region of the LiveReport (press7.
the tool button and drag a rectangle).
Zoom to Page – Zoom to fit the page.8.
Zoom to Fit Selection – Zoom to fit the currently selected objects.9.
Zoom to Fit All (Maximize) – Zoom to fit all objects.10.
Properties – Opens the LiveReport properties dialog box.11.

 Main Toolbar
Use this toolbar for global functions, like File Save, Print, and Undo.

To open: Click View on the menu and select Main from the Tools menu.

Start Page – Create a new workspace.1.
Open – Open an existing document.2.
Save – Save the active document.3.
Cut – Cut the selection to the clipboard.4.
Copy – Copy the selection to the clipboard.5.
Paste – Paste the contents of the clipboard.6.
Undo – Undo the last action. Available only for schematics and layouts.7.
Redo – Redo the previously undone action. Available only for schematics and8.
layouts.
Print – Print the active window.9.
Help – Open the Help file.10.
Docker View Menu – Drop down menu to allow dockers to be toggled hidden or11.
shown.
Hide/Show Dockers – Hide or show the Tree and Tune windows. (Hide them for12.
more work area).
Fit Windows To Frame – Resize all of the object windows to fit into the frame.13.
Run Analysis – Run one or more analyses (calculate simulations).14.

When the active document window is a design/schematic and there is only one
analysis associated with it, the analysis will be run.
If there are several associated analyses then a list containing all the associated
analyses (and evaluations) will be displayed, so that the appropriate one may be
selected.
If no design/schematic is active, or the drop-down arrow to the right of the
button is clicked, a list containing all the analyses (and evaluations) of the
workspace will be displayed, along with options to run all the out-of-date
analyses or every analysis in the workspace.

Stop Analyses – The button is shown instead of the Run Analysis button when15.
any analysis or Evaluation is currently running. Click the button to stop the running
Analyses / Evaluations.

The drop-down on the right side of the button displays options to Show or Hide
the Status Window and to Stop Running Analyses/Evaluations.

Errors Window – Open the Errors window.16.

 Notes Toolbar
Use this toolbar to edit/modify the Note its text settings. The Notes toolbar automatically
displays when you have an active Note.

Font - select a font for the selection or for typing1.
Size - select a font size in html units (3 = average) for the selection or typing2.
Style - click the pulldown to pick from standard html styles3.
Bold - embolden selected characters4.
Italic - italicize selected characters5.
Underline - underline selected characters6.
Color - select font color7.
Number - number the selected paragraphs8.
Bullet - bullet the selected paragraphs9.
Exdent - exdent a paragraph (reduce indent)10.
Indent - indent a paragraph11.
Left Justify - left justify the paragraph12.
Center Justify - center justify the paragraph13.
Right Justify - right justify the paragraph14.
Image - Insert a picture into the notes. This picture is specified by a URL.15.
Absolute - position part as absolute16.
Static - position part as static17.
Hyperlink - add a hyperlink (this is currently disabled)18.

 Schematic Toolbar
Use this toolbar to change a schematic or to bring up another toolbar with commonly used
parts.

OR

SystemVue - Users Guide

268

Run - Runs the analyses.1.
Part Group - Show/Hide the part group toolbar.2.
Annotation - Show/Hide the Annotation toolbar.3.
Part Selector - Show/Hide the Part Selector.4.
Eye - Use this pull down menu to turn on/off text displays such as Part Parameters,5.
Net Names, etc. on the schematic.
Keep Connect - Enable/disable automatic line connections when dragging parts.6.
Grid Snap - Enable/disable the grid snap.7.
Select - Use the select tool to select parts or annotations.8.
Pan - Use the pan tool to pan the schematic around. Press the tool and drag the9.
schematic.
Zoom - Use the zoom tool to zoom into a rectangular region of the schematic.10.
Line - Use the line tool to draw horizontal, vertical or right angled line connections.11.
Angled Line - Use the angled line tool to draw line connections of any orientation.12.
Zoom to Page - Zoom to fit the page.13.
Zoom to Fit Selection - Zoom to fit the currently selected parts/objects on a14.
schematic.
Zoom to Fit All - Zoom to fit all object.15.
Tune - Make the selected parts tunable or fixed.16.
Disable to short - Disable/enable the selected parts and simulate them as short17.
circuit.
Disable to open - Disable/enable the selected parts and simulate them as an open18.
circuit.
Rotate - Rotate the selected parts by 90 degrees.19.
Mirror - Mirror the selected parts.20.
Open Model or Symbol - Open part models/symbols. For a single part, this button21.
can open its model/symbol library.

 Script Toolbar
Use this toolbar to interact with the active Script and adjust its settings.

Line Numbers – Hide/Show line numbers on the display.1.
Script Processor – Hide/Show the script processor window.2.
Copy – copy the script to the script processor.3.
Run – copy the script to the script processor and run it.4.

 Spectrasys Toolbar
Use this toolbar to place system parts.

To open: Click the System button on the Schematic Toolbar.

RF Amplifiers (2nd-3rd Order, High Order, Variable Gain)1.
Mixers (Basic, Double Balanced, Table)2.
Attenuators (Fixed, DC Controlled, Variable)3.
Sources (CW, CW with Phase Noise, Wideband, Multicarrier, Intermod,4.
Receiver Intermod, Continuous Frequency, Noise)
Splitters (2 Way 0 Degree, 2 Way 90 Degree, 2 Way 180 Degree, 3 - 48 Way5.
0 Degree)
Switches (SPST, SPDT, SP3T - SP20T)6.
Frequency Multipliers (RF Multiplier, RF Divider, Digital Divider)7.
Analog to Digital Converter8.
Low Pass Filters (Butterworth, Bessel, Chebyshev, Elliptic)9.
Band Pass Filters (Butterworth, Bessel, Chebyshev, Elliptic)10.
High Pass Filters (Butterworth, Bessel, Chebyshev, Elliptic)11.
Band Stop Filters (Butterworth, Bessel, Chebyshev, Elliptic)12.
Duplexers (Chebyshev, Elliptic)13.
Time Delay14.
Phase Shifter15.
Ferromagnetic (Circulator, Isolator)16.
Couplers (Single Directional, Dual Directional, 90 Degree Hybrid, 180 Degree17.
Hybrid)
Log Detector18.
Oscillator19.
Antennas (Coupled, Path)20.

 Table Toolbar
Use this toolbar to interact with the active Table and adjust its settings.

Properties - Bring up the properties dialog.1.
Save - export/save the table to a file.2.

 See Also

Tables (users)

	 The SystemVue Environment
	 Contents
	 Starting SystemVue
	 SystemVue Design Environment (User Interface)

	 Setting Global Options for SystemVue
	 To set Global Options
	 Appearance Options Tab
	 Code Generation Options Tab
	 Default Units Options Tab
	 Directories Options Tab
	 General Options Tab
	 Graph Options Tab
	 Language Options Tab
	 Schematic Options Tab
	 Startup Options Tab

	 Analysis
	 Annotations
	 Contents
	 Button Annotations (Widgets)
	 Creating Annotations
	 Line Annotations
	 Slider Annotations (Widgets)
	 Text Annotations
	 Variable Selector

	 C++ Code Generation
	 Quick Start
	 Supported Targets
	 Licensing
	 Schema
	 Writing C++ Models for Code Generation
	 Understanding Generated C++ Code
	 Parameter Support
	 Limitations

	 HDL Code Generation
	 Generating Fixed Point Sub-Network Model
	 Generating the HDL and HDL Simulation
	 Testing for Functional Equivalency
	 Understanding the Generated HDL
	 SystemVue Examples

	 IBIS-AMI Model Generation
	 Requirements
	 Licensing
	 Prerequisite
	 Creating AMI Sub-Network Models
	 Configuring Code Generator for AMI Models Generation
	 Generating AMI Models
	 Understanding AMI Model Generation
	 Sharing Generated AMI Models with Others
	 Importing Custom Intellectual Properties

	 Designs
	 Specific Types of Designs
	 Contents
	 Creating a Design
	 Design Properties
	 Modifying a Design

	 Filter Designer
	 Filter Specification Window
	 Coefficients Display Window
	 Response Plots
	 FIR Filter Design
	 IIR Filter Design

	 Equations
	 Contents
	 Automatic Calculation

	 Code Completion
	 Debugging Equations
	 Equations User Interface
	 Hierarchy in Equations
	 Using Math Language
	 Math Language Function Reference
	 abs
	 acos
	 acosd
	 acosh
	 acot
	 acotd
	 acoth
	 acsc
	 acscd
	 acsch
	 alignsignals
	 all
	 angle
	 any
	 asec
	 asecd
	 asech
	 asin
	 asind
	 asinh
	 atan
	 atan2
	 atand
	 atanh
	 awgn
	 bartlett
	 bi2de
	 bilinear
	 blackman
	 butter
	 buttord
	 ceil
	 cheb1ord
	 cheb2ord
	 cheby1
	 cheby2
	 class
	 conj
	 conv
	 convdeintrlv
	 convenc
	 convintrlv
	 cos
	 cosd
	 cosh
	 cot
	 cotd
	 coth
	 crcdec
	 crcenc
	 csc
	 cscd
	 csch
	 dbg_print
	 dbg_showvar
	 de2bi
	 dec2hex
	 deconv
	 deintrlv
	 depuncture
	 diag
	 diff
	 downsample
	 dpskdemod
	 dpskmod
	 eig
	 ellip
	 equalize
	 erf
	 erfc
	 error
	 exist
	 exp
	 eye
	 eyediag
	 fclose
	 fft
	 fftfilt
	 fgets
	 filter
	 find
	 finddelay
	 findstr
	 firls
	 firrcos
	 fix
	 floor
	 fopen
	 fprintf
	 fread
	 fscanf
	 fwrite
	 gaussfir
	 gausswin
	 getindep
	 getindepvalue
	 getmatlabvariables
	 getunits
	 getvariable
	 grpdelay
	 hamming
	 hann
	 hex2dec
	 hilbert
	 histc
	 ifft
	 imag
	 impz
	 inf
	 interp
	 interp1
	 ischar
	 isempty
	 isequal
	 isfinite
	 isfloat
	 isinf
	 isinteger
	 islogical
	 isnan
	 isreal
	 isscalar
	 isstr
	 kaiser
	 kaiserord
	 length
	 linspace
	 log
	 log2
	 log10
	 logspace
	 lp2bp
	 lp2bs
	 lp2hp
	 lp2lp
	 lu
	 matdeintrlv
	 matintrlv
	 max
	 mean
	 median
	 min
	 mkdir
	 mod
	 mode
	 muxdeintrlv
	 muxintrlv
	 NaN
	 false
	 noisebw
	 num2str
	 numel
	 oct2dec
	 phasedelay
	 poly2trellis
	 true
	 puncture
	 qamdemod
	 qammod
	 qfunc
	 qfuncinv
	 rand
	 randerr
	 randint
	 randn
	 randsrc
	 rcosflt
	 real
	 rectpulse
	 rectwin
	 rem
	 resample
	 reshape
	 roots
	 round
	 rsdec
	 rsenc
	 runanalysis
	 sec
	 secd
	 sech
	 setindep
	 setmatlabvariables
	 setunits
	 setvariable
	 sftrans
	 sign
	 sin
	 sinc
	 sind
	 sinh
	 size
	 skewness
	 sort
	 spline
	 sqrt
	 square
	 ss2tf
	 ss2zp
	 sscanf
	 std
	 str2num
	 strcmp
	 strcmpi
	 strncmp
	 strncmpi
	 struct
	 sum
	 svd
	 symerr
	 tan
	 tand
	 tanh
	 tcpip
	 tf2ss
	 tf2zp
	 toeplitz
	 triang
	 turbodec
	 turboenc
	 upfirdn
	 upsample
	 using
	 var
	 vitdec
	 warning
	 wgn
	 xcorr
	 xor
	 zp2ss
	 zp2tf
	 Basic
	 Communications
	 Signal Processing
	 Using Math Language
	 Statements
	 Operators
	 Vectors, Matrices, and Multidimensional Arrays
	 Cell Arrays
	 Structures
	 Network Communication and Instrument Control
	 MATLAB Integration
	 Using MATLAB Integration
	 Performance
	 See Also
	 Tips for Effective Equation Writing

	 Examining Datasets
	 Contents
	 Creating Datasets
	 Creating Variables
	 Importing Variables
	 Using Dataset Variables
	 Using Datasets

	 Variable Properties
	 Graphs
	 Contents
	 Annotating Graphs
	 Creating Graphs
	 Graph Properties
	 Advanced Graph Properties

	 Graph Series Properties
	 Show Every Nth Symbol
	 Graph Series Wizard
	 Types of Graphs
	 Rectangular Graphs
	 Polar Charts
	 Using Markers on Graphs
	 Zooming Graphs

	 Importing and Exporting
	 Contents
	 Exporting Files Using SystemVue
	 Importing Data Files Using SystemVue
	 To import a file

	 Instrument Scripting and Control
	 Overview
	 A Simple Sequence
	 How to Run the Sequence
	 Example of a more Advanced Sequence

	 LiveReports
	 Contents
	 Arranging Views
	 Creating a LiveReport
	 LiveReport Properties
	 Supported LiveReport Object Types
	 Adding a View Window to a LiveReport
	 Removing a Window from a LiveReport

	 Managing Libraries
	 Contents
	 Adding Library Items to Your Workspace
	 Creating Custom Libraries
	 Using the Library Manager

	 Nets, Connection Lines and Buses
	 Contents
	 Connecting Parts in SystemVue
	 Connection Line Net Labels
	 Connection Lines and Ports
	 Connection Terminology
	 Mapping Nets to Ports
	 Part Ports (Terminals)

	 Parts, Models and Symbols
	 Contents
	 Finding Symbols and Models during Simulation
	 Mapping Symbols to Models in Parts
	 Models
	 Parts
	 Symbols

	 Overview
	 RF Link Limitations
	 Simulation
	 Data Flow Specific
	 RF Link Specific

	 Theory of Operation
	 Multiple Input and Output Ports

	 Tutorial
	 Drag and Drop
	 Part Selector
	 RF / Data Flow Co-Simulation Walk Through

	 Schematics
	 Contents
	 Annotating Schematics
	 Changing the Schematic View
	 Creating a Simple Schematic
	 Manipulating Parts
	 Placing Parts on a Schematic
	 Title Blocks

	 Scripts
	 Contents
	 Adding a Script
	 Using Scripts in Programs
	 Creating Script Objects

	 Example: Exploring the Workspace Using Visual Basic
	 VBBrowser

	 Example Running a BER Analysis Controlled From LabVIEW, MATLAB, or C#
	 Example: Running a Script from Microsoft Excel
	 Script Processor
	 Script Verbs

	 Using S-Parameters in SystemVue (RF Design Kit)
	 Contents
	 Creating S-Parameter Data
	 Displaying S-Parameter Data
	 File Based S-Parameters
	 Physical S-Parameters
	 Touchstone Format

	 Sweeps
	 Contents
	 Parameter Sweep Properties

	 Understanding Swept Data
	 Getting Started with Parameter Sweeps

	 Tables
	 Contents
	 Creating Tables

	 Templates
	 Selecting a SystemVue Template
	 Reviewing the SystemVue Templates

	 Tuning Variables
	 Contents
	 Checkpoints
	 Gang Tuning
	 Making a Part Parameter Tunable
	 Reverting Tuned Values
	 Tuning Options

	 UI Customizations
	 Contents
	 Add Customized UI for Applications
	 Add Customized UI for Models
	 Introduction

	 User Defined Models
	 Contents

	 Catapult C Flow
	 Configuring Catapult to Use SystemVue Flow
	 Using SystemVue Flow

	 Creating a Custom C++ Model Library
	 Contents

	 Advanced Topics
	 Defining the Model Library Properties
	 Supporting standalone use of DFModels
	 Writing C++ Models for Code Generation
	 Using Third Party Library in C++ Models

	 Writing Data Flow C++ Models
	 Writing Header file for the C++ Class
	 Writing cpp file for the C++ Class
	 The Setup() Method
	 The Initialize() Method
	 The Run() Method
	 The Finalize() Method
	 Posting Error, Warning or Information Messages
	 Reading or Writing Files
	 Using Inheritance
	 Writing Fixed Point Models
	 Writing Timed Data Flow Models
	 Using Envelope Signal in Timed Data Flow Model
	 Controlling Simulation

	 Building Your First Custom C++ Model Library
	 Setting Up a New Visual Studio Project
	 Adding a new Model to the Project
	 Using the Model in SystemVue
	 What to Do if the Model Terminates SystemVue Unexpectedly

	 Loading and Debugging a C++ Model Library
	 Loading a C++ Model Library
	 Debugging Data Flow C++ Models
	 Making Changes in C++ Model while SystemVue is Running

	 Quick start
	 Compiling the Example Visual Studio Project
	 Loading the Custom Library into SystemVue
	 Simulating the Example WorkSpace

	 Requirements
	 Supported Data Types
	 Data Types Used as Parameters
	 Data Types Used as Inputs/Outputs
	 SystemVue FixedPoint Data Type
	 SystemVue Matrix Data Type
	 SystemVue Envelope Signal Data Type

	 Sub-Network Models
	 Contents
	 Creating a Parameterized Sub-Network Model
	 Roles of Sub-Network Model Attributes
	 Run-time Hierarchy - How Parameters get passed

	 SystemVue 2007 APG DLL Import
	 SystemVue 2007 MetaSystems
	 Building a SystemVue 2007 APG DLL
	 Importing a SystemVue 2007 APG DLL into SystemVue

	 Using X-Parameters in SystemVue (RF Design Kit)
	 Contents
	 Convergence Issues
	 Getting X-Parameters into the Workspace
	 Theory of Operation
	 Using X-Parameters in a Design
	 Using DC Bias Voltage
	 Using X-Parameters in the Circuit Link
	 Using X-Parameters in the RF Link (RF Design Kit)
	 Using X-Parameters in Spectrasys
	 Validation Limits
	 Performance Limits
	 Operational Limits

	 Appendix A - Keystroke Commands
	 General Keystroke Commands
	 Graph Keystroke Commands
	 LiveReport Keystroke Commands
	 Schematic Keystroke Commands

	 Appendix B - Menus
	 Action Menu
	 Edit Menu
	 Equations Menu
	 File Menu
	 Graph Menu
	 See Also
	 Help Menu
	 LiveReport Menu
	 Notes Menu
	 PartList Menu
	 Schematic Menu
	 Scripts Menu
	 Tools Menu
	 View Menu
	 Window Menu

	 Appendix C - Toolbars
	 Annotation Toolbar
	 Dataset Toolbar
	 Equations Toolbar
	 Graph Toolbar
	 LiveReport Toolbar
	 Main Toolbar
	 Notes Toolbar
	 Schematic Toolbar
	 Script Toolbar
	 Spectrasys Toolbar
	 Table Toolbar

